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Abstract  9 

Recent publications on biofilm formation, architecture and function were reviewed. Biofilm 10 

formation begins with organic material, then cell conditioning of a surface. Environmental 11 

conditions and microorganisms then influence the establishment of the biofilm architecture. 12 

This in turn supports the function of the biofilm which enhances microbial survival, 13 

reproduction and contamination of new areas. In the food industry, ‘true’ biofilms are usually 14 

found on closed surfaces such as pipe works where liquid flows over a solid surface. On open 15 

surfaces, fouling will affect microbial retention, survival and transfer potential but is less 16 

likely to support the development of a true biofilm. Each aspect of biofilm formation is 17 

complex with a myriad of influencing factors, which we are only just beginning to elucidate. 18 

Much more research needs to be carried out in all aspects of these areas to understand these 19 

elegant biofilm and fouling systems if they are ever to be controlled. 20 
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Introduction 22 

The preparation and processing of food is considered an important route for cross 23 

contamination of pathogenic bacteria in food products [1-4].Within nature, as well as in food 24 

processing, cells living freely in bulk solution usually become attached to a surface, and if 25 

retained, can then form a biofilm. The formation, architecture and function of biofilms are 26 

complex phenomena influenced by surface properties, microbiological and environmental 27 

factors which will be related to the specific industrial setting in which they are found (Figure 28 

1).  29 

Biofilms are defined as matrix-enclosed bacterial populations that are attached to a surface, 30 

an interface and/or to each other [5]. It not surprising that more than 99% of all the planets 31 

bacteria live in a biofilm since microorganisms gain considerable advantages from being part 32 

of a community [6]. Microorganisms are living organisms with a vast range of 33 

physiologically and metabolically varied species that enables them to colonise, adapt and 34 

utilise almost any situation they encounter. Thus, a biofilm may be a small or large-scale 35 

entity and in the food processing environment these may be a few micrometres or several 36 

millimetres in thickness [7]. In the food industry, large-scale biofilms or fouling may occur 37 

on such items as heat exchangers or may form on enclosed surfaces when they are in contact 38 

with a wet product; an example of this is in pipework. Closed or ‘true’ biofilms usually occur 39 

under conditions of continuous or intermittent flow and are considered to have well 40 

developed stacked structures with pore channels. Under static conditions, it has been shown 41 

that biofilms with different architecture and functionalities occur [8,9]. 42 

Smaller scale biofilms or biofouling may also occur in the food industry on open surfaces. 43 

Open surfaces are exposed, with food being handled or prepared on them and in these 44 

situations flow is absent. On an open surface, organic soiling, which may also compromise 45 

microorganisms along with the food material, is a major issue in the food processing 46 



industries, causing a range of biofouling and microbiological problems [10-12]. The term 47 

biofilm is often used to describe cells and organic material retained on a surface; these do not 48 

have the characteristic, classic biofilm ‘mushroom’ type morphology. This type of biofouling 49 

is common to a regularly cleaned surface, where material may accumulate, but not possess 50 

the morphology of a traditional biofilm.  51 

Biofilm formation, architecture and function is dependent on a wide range and combination 52 

of surface morphologies (chemistry, topography, physicochemistry), environmental 53 

conditions (pH, nutrient availability, temperature, host proteins/adhesins, fluid dynamics) and 54 

microbiological factors (Gram negative/positive, microbial shape, structure, molecular 55 

composition, species, physicochemistry, growth phase, age, presence of flagella, pili, 56 

capsules or exopolymeric substances) [13]. However, to cover all these factors is beyond the 57 

scope of this review. This article will give a brief summary of recent work on three aspects of 58 

the biofilm; formation, architecture and function. 59 

Biofilm Formation 60 

Biofilm formation is a complex process regulated by the diverse characteristics of the 61 

surroundings. Perhaps one of the most important factors that influence biofilm formation are 62 

the surface properties and deposition organic material. Prior to the onset of biofilm formation, 63 

initial cell attachment, adhesion, retention and proliferation must occur. However, before a 64 

cell can bind to a surface, the surface is conditioned by adsorbing molecules from the 65 

surrounding environment.  66 

The chemical, topographical and physicochemical properties of the surface affect initial 67 

organic material adsorption and distribution [14-17]. The type and amount of organic 68 

material adsorbed onto the surface will then, in turn alter the surface properties [18]. Indeed, 69 

it has been demonstrated that a pristine surface only remains as such for one exposure, being 70 

subsequently irreversibly altered by organic material [18]. When stainless steel surfaces 71 



where repeatedly cleaned thirty times without soiling, organic material was still found to 72 

become built up on the surfaces [18]. Further, the biochemical structure, adsorption and 73 

distribution of the conditioning film or organic material is dependent on the type of food 74 

processing being carried out [19,20], adding an additional level of complexity to the surface 75 

(Figure 2). The composition of organic material that might be found in the fish industry 76 

(muscle proteins troponin, tropomyosin, and myosin, and the lipid binding protein 77 

apolipoprotein) [21], will vary from that deposited on surfaces in the dairy industry (α-casein, 78 

β-casein, κ-casein, and α-lactalbumin) [22]. This in turn will affect cell retention [9,10] and 79 

thus subsequent biofilm architecture, function [23], surface hygiene and cleanability [12,24]. 80 

Although most cleaning procedures remove gross organic material and microorganisms, there 81 

is concern regarding organic material that is retained on surfaces, especially in surface 82 

features [18] because of its influence on the subsequent adhesion of microorganisms and 83 

possibly increase the retention of organic soil (Figure 3). An example is Shewanella 84 

putrefaciens, a spoilage bacterium of marine fish, some vacuum-packed meats and chicken 85 

that was found to adhere readily to stainless steel disks. In this scenario, it was demonstrated 86 

that bacterial adhesion was facilitated by the formation of an initial conditioning film of 87 

tryptone soya broth [25]. While it might immediately be thought that biofouling might 88 

automatically enhance cell retention and reduce surface hygiene [10,12,24], the adherence of 89 

fish protein layers to surfaces has been shown to provide a steric barrier towards bacterial 90 

adhesion [20] and thus reduce cell retention. Therefore the influence of organic material or 91 

conditioning film on cell retention is a complex issue with sometimes unexpected outcomes. 92 

The adsorption of organic material onto a surface may therefore be considered to be of 93 

particular importance in the subsequent development of biofilm architecture.  94 

Biofilm architecture  95 



In this article, biofilm architecture is defined as the complex design of the biofilm structure. 96 

Once a surface has become conditioned with organic material, biofilm formation can take 97 

place, the architecture of which, will be dependent on a number of environmental and 98 

microbiological influences. In the majority of environments, biofilms are not usually found in 99 

a monoculture but are consortial. Biofilm associated bacteria may sense the growth of the 100 

same or other microbial species attached to the surface, either directly through physical 101 

contact or indirectly by sensing the proximity of fellow organisms in a process known as 102 

quorum sensing [26]. Exopolymeric substances (EPS) are also an important constituent of 103 

biofilm formation at surface liquid interfaces. Bacteria and other microorganisms produce 104 

extracellular matrix components which help them adhere to surfaces. However, the chemical 105 

composition of EPS matrix may differ, depending on the medium in which the biofilm is 106 

grown, for instance, it was demonstrated that the EPS of a biofilm grown in tryptic soy broth 107 

was more complex than a biofilm grown in meat thawing-loss broth [27].  108 

In recent years, it has been demonstrated that cells grown in different nutrients resulted in 109 

different biofilm morphologies. For example, a meat Salmonella spp. grown in meat thawing-110 

loss broth demonstrated a “cloud-shaped” morphology in a mature biofilm, whereas when 111 

grown in tryptic soy broth, biofilms appeared “reticular-shaped” [27]. However, it has also 112 

been revealed that some bacteria, for example L. monocytogenes were unable to form thick, 113 

multilayer biofilms when related to the fish or meat industries [30,31]. In the true sense of 114 

biofilm architecture for a number of food pathogens, mature biofilms are generally described 115 

as a collection of clusters or knitted chains (L. monocytogenes) [8], may be ball shaped 116 

(Listeria monocytogenes) [8], mushroom shaped (Staphylococcal) [28] or honeycombed 117 

shaped (Vibrio cholerae) [29]. In multi-species biofilms, alterations in biofilm architecture 118 

have also been confirmed when microorganisms have been co-cultured from fresh cut food 119 

processing facilities or in raw milk [32,33]. When thirteen Gram negative species were 120 



isolated from two fresh produce processing facilities, the strong biofilm producing strains of 121 

Burkholderia caryophylli and Ralstonia insidiosa exhibited 180% and 63% increase in 122 

biofilm biomass, and significant thickening of the biofilms when co-cultured with E. coli 123 

O157:H7. This has a subsequent effect on biofilm function since it can be suggested that 124 

when bacteria interact synergistically in biofilm formation, there is a potential for the 125 

increased survival of such pathogenic bacteria as E. coli O157:H7 in fresh produce 126 

processing environments [32].  127 

A number of studies which concentrate on specific environmental elements that may 128 

influence biofilm architecture have also been carried out. One of the most investigated 129 

parameters is that of temperature which has been shown to produce increased biofilm 130 

production with a variety of L. monocytogenes or S. enterica strains that were found in a food 131 

production environment [33-36]. pH and biocides have also been shown to have a significant 132 

effect on biofilm architecture; the food pathogens E. coli, L. monocytogenes or S. enterica 133 

serovar Typhimurium demonstrated that increased biofilm production was correlated to the 134 

most acidic, or most alkaline growth conditions tested [37-41]. In contrast to the above 135 

findings, others have established that there was no consistent relationships between biofilm-136 

forming ability and capacity to withstand stress exposures (acid, alkaline, heat and high 137 

hydrostatic pressure treatments) using verocytotoxigenic Escherichia coli strains [42]. The 138 

effect of the surrounding media has also been demonstrated to affect biofilm architecture, 139 

whereby enhanced biofilm production by L. monocytogenes was observed early in biofilm 140 

maturation in nutrient poor media [34].  141 

Further work has been carried out with the emphasis on bacterial serotypes rather than on 142 

environmental factors and their influence on biofilm architecture, whereby differences 143 

between the biofilm forming capacity were found to exist between different Salmonella 144 

enterica serovars taken from different stages of the poultry farm environment [36]. This work 145 



demonstrated that certain farm isolates were capable of forming biofilms under laboratory 146 

conditions, whereas laboratory grown strains were not [36].  147 

As might be expected, the role of hydrodynamics has a significant effect on biofilm  148 

architecture. Yazdi and Ardenaki [43] investigated in a micro channel the influence of fluid 149 

flow on the dynamics of motile microorganisms and their aggregation. They showed that 150 

vortical structures promoted cell aggregation and triggered biofilm streamer formation. 151 

Further, using E. coli it was demonstrated that biofilms adapted their architecture in order to 152 

cope with hydrodynamic conditions and nutrient availability [44]. It was found that until a 153 

certain thickness was reached, nutrient availability dictated biofilm architecture but when a 154 

critical thickness was exceeded, mechanical resistance to shear stress (i.e. biofilm cohesion) 155 

became more important [44]. 156 

Biofilm Function 157 

Biofilm functionality may be defined in this review as the manner in which the biofilm 158 

operates. Biofilm function, is highly dependent on environmental and microbiological 159 

factors. The function of the biofilm is thought to be developed in order to primarily provide 160 

defence for the cells against harmful conditions and allow further cell colonisation of 161 

available surfaces [14]. The build-up of the biofilm structure and extracellular matrix 162 

provides protection from physical factors and from predators, as well as potentially providing 163 

a diffusion barrier against different chemical compounds (such as antibiotics, biocides, and 164 

disinfectants) [45], for example, a complex three-dimensional microscopic structure of a L. 165 

monocytogenes biofilm demonstrated a high resistance to benzalkonium chloride [46]. 166 

Bacteria in biofilms communicate through signalling molecules and use quorum-sensing to 167 

optimize their virulence factors and survival [47]. Quorum sensing is widely recognized as an 168 

efficient mechanism to regulate expression of specific genes responsible for communal 169 

behaviours in bacteria [48]. Greater antimicrobial resistance has been demonstrated in S. 170 



aureus biofilms when compared to planktonic cells with bacteria isolated from the fish 171 

industries [49]. The age of a biofilm has also been suggested to influence both biofilm 172 

architecture and function, where an increase in E. coli O157:H7 population was observed as 173 

storage time progressed on surfaces encountered in meat processing plants [50] and aged L. 174 

monocytogenes biofilms demonstrated resistance to desiccation [23].  175 

Although not often recognised, on an open surface, similarities between organic/microbial 176 

fouling and a biofilm can be made whereby a complex, heterogeneous matrix of organic 177 

material encloses the bacterial population attached to a surface (Figure 4) and the presence of 178 

organic material may protect the bacteria from cleaning agents in much the same way. 179 

Exposure to conditioning films has also been suggested to affect the function of the biofilm 180 

by significantly increasing the survival of L. monocytogenes [23], or to be one of the main 181 

reasons for disinfection failure [51].  182 

Conclusions 183 

Microbial biofilms are elegant systems that provide an impressive survival trait for 184 

microorganisms in food consortia. Each of the biofilm aspects (formation, architecture and 185 

function) invole numerous contributing factors which need to be investigated in order to 186 

understand these systems further. However, influencing and contributing factors are specific 187 

for each food-processing environment and setting. What is also clear is that the definition of a 188 

biofilm encompasses many different forms of microbial and organic material consortia. 189 

Whatever the setting, these sophisticated systems require much further investigation before 190 

we can truly begin to really understand or control them. 191 

  192 
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Figure Legends  388 

389 

Figure 1 A complex interplay of factors results in biofilm formation, architecture and hence 390 

functionality which are related to the specific industrial food setting in which they are found. 391 

 392 

  393 



a) b) c)  394 

Figure 2 Ten percent a) beef extract, b) cod extract and c) whey solution deposited on 395 

stainless steel surfaces demonstrating that different organic material produce different 396 

patterns of retention of organic material (yellow) across surfaces. This difference in the 397 

pattern of organic material retention will presumably also affect cell retention and the 398 

formation of initial biofilm architecture. 399 

 400 
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a)  b)  402 

Figure 3 Organic material and cells retained on a surface, resulting in the heterogeneous 403 

distribution of a) organic material (red) and b) cells (blue). 404 
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a) b) c)407 

d) e) f)  408 

g) h) i)  409 

Figure 4 Using confocal microscopy it can be demonstrated that as food material and cells are 410 

visualised, the distribution of cells (blue) and organic material (pink) form a heterogeneous 411 

matrix which may protect the cells. a-c) Nearest the surface the conditioning film is most 412 

prevalent but visualising up from the surface to the top of the food particle (d-f) the bacteria 413 

become more obvious. At the top of the food particle (g-i) bacteria predominate. 414 
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