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Abstract: Aptamers are an emerging class of molecules which, due to the development of the 

systematic evolution of ligands by exponential enrichment (SELEX) process, can recognize 

virtually every target ranging from ions, to proteins, and even whole cells. While there are 

many techniques capable of detecting template molecules with aptamer-based systems with 

high specificity and selectivity, they lack the possibility of integrating them into a compact 

and portable biosensor setup. Therefore, we will present the heat-transfer method (HTM) as 

an interesting alternative since this offers detection in a fast and low-cost manner and has the 

possibility of performing experiments with a fully integrated device. This concept has been 

demonstrated for a variety of applications including DNA mutation analysis and screening of 

cancer cells. To our knowledge, this is the first report on HTM-based detection of proteins, in 

this case specifically with aptamer-type receptors. For proof-of-principle purposes, 

measurements will be performed with the peanut allergen Ara h 1 and results indicate 

detection limits in the lower nanomolar regime in buffer liquid. As a first proof-of-

application, spiked Ara h 1 solutions will be studied in a food matrix of dissolved peanut 

butter. Reference experiments with the quartz-crystal microbalance will allow for an estimate 

of the areal density of aptamer molecules on the sensor-chip surface.  
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1. Introduction 

Aptamers are synthetic oligonucleotides which can specifically bind target molecules based 

on a combination of hydrogen bonding, electrostatic interactions, van der Waals forces and 

their three dimensional conformation
1,2

. The selection of the optimal aptamer for a given 

target molecule is accomplished in vitro via a SELEX process (Systematic Evolutions of 

Ligands by EXponential enrichment) from libraries containing random oligonucleotide 

sequences
3,4

. With this procedure, it is possible to develop aptamers for a variety of target 

categories ranging from ions
5
, to proteins

6,7
, and even to whole cells

8,9
. Aptasensors have 

already been designed based on capillary electrophoresis
10

, colorimetric assays
11

, fluorescence 

anisotropy
12

, surface plasmon resonance
13

, and microgravimetric sensing
14

. These techniques 

ensure a high specificity and selectivity; however they are less suited for integration into 

portable, low-cost sensor devices. In that aspect, field-effect transducers and electrochemical 

impedance spectroscopy are interesting alternatives
15,16,17

. Tran et al. described an aptamer-

based, impedimetric sensor platform which could specifically detect IgE in buffer solutions 

and human serum samples
18

. These measurements were performed with a high-end 

impedance analyzer requiring comparatively long measurement times and a refined data 

analysis based on the phase angle of the impedance signal. More recently, Peeters et al. 

developed an aptamer-based, impedimetric sensor system in pocket format, allowing 

detecting the peanut allergen Ara h 1 specifically and quantitatively correct in the lower 

nanomolar regime in buffers
19

. The sensor output in this case was simply the amplitude of the 

impedance signal at a given frequency. While impedimetric measurements allow for a 

considerable system miniaturization, data acquisition and processing still require a piece of 

software- and hardware engineering.  

Within in this article, we will therefore present an aptasensor based on a purely 

thermometric concept, the heat-transfer method (HTM). This technique has the benefits of 

being straightforward and requiring only limited hardware, merely two temperature sensors 

and a heat-source that can be regulated to keep a pre-defined temperature. This is analogous 

to a dc resistivity measurement in which the electronic current is replaced by a thermal 

current. Until date, this method has been applied successfully for the analysis of DNA 

mutations
20,21

, detection of cells and small organic molecules
22,23

, and phase transitions in 

lipids
24

, but not yet in the context of proteins. The latter is considered as one of the most 

challenging tasks in label-free biosensing and it is a priori unclear whether the recognition of 

proteins by aptamers brings about measurable changes of the heat-transfer resistance. We 
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point out that the HTM principle is conceptually different from the approach by Wang et al. 

who detected thrombin with aptamers by determining the binding enthalpy calorimetrically in 

a sandwich-type assay with detection limits down to 22 nM
25

. In contrast to this, HTM aims at 

the detection of molecules from the heat-transfer resistance under steady-state conditions and 

does not necessitate a temperature ramping of the sample under study.   

Until now, the heat-transfer principle is based on empirical grounds and the theoretical 

foundations are not yet developed. However, there is clearly an interest for heat transport 

through biological molecules as illustrated e.g. by the vibrational-dynamics studies on double- 

and single-stranded DNA molecules
26

 and the molecular dynamics simulations of heat flow 

through lipid membranes
27

. As a possible starting point for a deeper understanding of the 

principle behind the HTM technique we note that all aforementioned applications have a 

common denominator: The enhancement of the heat-transfer resistance goes along with a 

structural softening at the solid (sensor chip) to liquid interface. In case of DNA this is the 

transition from ‘rigid’ double-stranded DNA to highly flexible single-stranded DNA
21

. In case 

of cell recognition by surface imprints, mechanically flexible membrane material adheres to 

the polymeric surface
28

. A jump-like Rth increase is observed when lipid vesicles undergo 

their main phase transition from the gel- to the liquid-disordered phase
24

. Finally, the small-

molecule recognition by molecularly imprinted polymers is based on the weak and reversible 

binding of these molecules in molecular-size cavities. In summary, these are interface effects 

in which the molecular layer right at the interface is gaining additional degrees of freedom. 

Regarding aptamers, we will address below whether the capturing of proteins is also 

associated with gaining additional degrees of freedom at the solid-to-liquid interface. 

Throughout all experiments described below, i.e. before, during and after capturing of the 

target proteins, the aptamers are in their natural, temperature- and pH-dependent conformation 

without utilizing neutralizing oligomers: This concept, introduced recently by Das and 

coworkers, forces aptamers into a straight and rigid configuration before binding of the 

molecular targets and seems beneficial for achieving ultralow detection limits when combined 

with a fluorescence-based readout system
29

. 

 

For proof-of-principle purposes, we will first show the HTM-based thermal detection of Ara h 

1 in buffer solutions with an aptamer-based sensor platform. This system was selected for two 

reasons: First, the molecular recognition between the aptamer and Ara h 1 has already been 

thoroughly studied
30

 and, second, it is highly relevant for the food industry as the peanut 

allergen Ara h 1 (a trimeric protein with 195 kDa molecular weight) is responsible for most 
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food-related anaphylactic shocks
18

. To demonstrate the principle not only in buffer solutions 

but to provide also a first proof-of-application, experiments will be performed with spiked 

Ara h 1 samples in a matrix enriched with peanut butter. The sensor platform is generic, 

making it probably possible to detect a variety of other proteins with only minor 

modifications, provided that corresponding aptamers do exist. In summary, this is the first 

sensor platform based on the thermal HTM read-out technique, which can detect proteins in 

buffers and, moreover, also in more complex matrices. This illustrates that also the molecular 

recognition of a protein by an aptamer goes along with a measurable heat-transfer effect.  

 

2. Experimental 

2.1 Materials 

The thiol 11-mercapto-undecanoic acid (MUA) and bovine serum albumin (BSA, Mr ~ 66.5 

kDa) were purchased from Sigma Aldrich (Steinheim, Germany) and 1-ethyl-3-(3-dimethyl-

aminopropyl)carbodiimide (EDC) from Thermo Scientific (Aalst, Belgium). The peanut 

allergen Ara h 1 was obtained from INDOOR technologies (Cardiff, Wales) and used as 

received. The compounds required for the preparation of the buffers, respectively, 2-(N-

morpholino)ethanesul-fonic acid (MES buffer, pH 6.0), tris(hydroxyamino)methane-glycine-

potassium (TGK buffer, pH 8.3) and phosphate buffered saline solution (PBS buffer, pH 7.4), 

were purchased from Sigma Aldrich (Steinheim, Germany) and Fisher Scientific (Landsmeer, 

the Netherlands). Ethanol of analytical grade (anhydrous, purity 99.9%) was from VWR 

(Leuven, Belgium). The optimal aptamer for Ara h 1 detection had been determined in 

previous research by Tran et al. and the sequence is given below
13

.  

Aptamer sequence: NH2 – C6 – 5’ 

TCGCACATTCCGCTTCTACCGGGGGGGTCGAGCTGAGTGGATGCGAATCTGTGGG

TGGGCCGTAAGTCCGTGTGTGCGAA 3’ 

This sequence, consisting of 80 nucleotide bases, was ordered from IDT Technologies 

(Leuven, Belgium). The 5’ end, serving for attachment to the thiols, was modified with an 

amino group and a C6 carbon spacer. The structural conformation of the aptamer at selected 

temperatures, calculated with the online software package ‘Mfold’ 
31

, can be found in ref
18

. 

As shown previously, this optimized Ara-h1 aptamer shows negligible cross selectivity to 

proteins with a similar molecular weight such as horse-radish peroxidase (HRP) and BSA
19

. 
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Even more importantly, reference tests with a second important peanut allergen, Ara h 2 with 

17 kDa, have proven negative
13

.  

 

2.2 Aptamer functionalization of sensor chips and protein-sample preparation 

The sensor chips, see Figure 1 for a schematic layout, consisted of gilded silicon substrates (1

× 1 cm
2
, 450 µm thickness) which were prepared as follows: First, a 20 nm adhesive layer of 

chromium was thermally evaporated under a vacuum pressure of 5× 10
-5 

Pa onto doped 

silicon chips, followed then by a 80 nm layer of gold. These chips were treated with a Digital 

PSD series UV-ozone system from Novoscan (Nürnberg, Germany) for 1 h in order to clean 

the surface and make them more hydrophilic by surface-bound oxygen species. Subsequently, 

they were briefly exposed to a cold “piranha” solution (H2O2 and H2SO4 in a 1:3 ratio), rinsed 

with ethanol, and then incubated for 48 h with a MUA thiol solution in ethanol (concentration 

1 mM) at room temperature under nitrogen atmosphere. After cleaning the samples in pure 

ethanol, the amino-terminated Ara h 1 aptamers were attached via direct EDC coupling in 

MES buffer of pH 6. This process was monitored in-real time by probing the thermal 

resistance at the solid-liquid interface. In order to reduce non-specific adsorption, especially 

of proteins, the aptamer-functionalized gold surface was blocked by immersing the substrates 

overnight into a BSA solution (50 nM in PBS, temperature of 4 
0
C), generating a blocking 

BSA monolayer
18

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Scheme of the sensor-chip layout in which the amino-modified aptamer is EDC-

coupled to a self-assembled monolayer of MUA thiols on gold. The BSA overcoating serves 

for blocking non-specific adsorption. Under the chosen conditions (TGK buffer with pH 8.3, 

37 
0
C) the aptamer is expected to attain the indicated conformation before binding of the Ara 
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h 1 antigen. The flow direction of the heating power P is indicated. The aptamer, BSA, and 

Ara h 1 are drawn to scale, the scale bar indicates 10 nm
32,33

. 

 

The aptasensor was now ready for use and, after stabilizing in TGK buffer, various solutions 

of Ara h 1 concentrations (5, 10, 15, 25, and 50 nM) in TGK buffer were added sequentially 

to the set up. To address the specificity of the molecular recognition, reference experiments 

were also performed with a chip with only the SAM and its BSA overcoating, but without 

presence of the aptamer. As a first proof-of-application, measurements were performed in a 

matrix enriched with peanut butter. To obtain these samples, 50 mg of peanut butter (Unilever 

– Calvé , Delft, the Netherlands) was first molten and then dissolved into 200 ml of TGK 

buffer by stirring for 2 hours at 50 
0
C. After filtration through a filter with 1 micron pore size, 

the resulting fluid (also addressed as ‘buffer diluted extract’) was split into two aliquots one of 

which was unaltered and the other one spiked with 100 nM of Ara h 1. The concentration of 

Ara h 1 in the non-spiked, buffer-diluted extract can be estimated as follows: The amount of 

25 mg peanut butter per 100 ml equals 20 mg of pure peanut substance, corresponding to 5 

mg of proteins. According to literature, the maximum percentage of Ara h 1 in the total 

protein contents is 16% 
34,35

, meaning that there is maximal 0.8 mg of Ara h 1 present in the 

100 ml of extract. Together with the molecular mass of Ara h 1 (195 kDa) this corresponds to 

an upper limit of the Ara h 1 concentration of 40 nM. 

 

2.3 The thermal resistance set up 

The equipment used for the thermal resistance measurements was an in-house design, see 

Figure 2, which was described previously in detail in ref
20

. A schematic drawing with the 

exact dimensions of the equipment can be found in Figure S-1 of the Supporting Information. 

To this system, a Perspex flow cell with an inner volume of 110 µl (6 mm diameter, 4 mm 

and inner height) was coupled, connected to a syringe-driven flow pump. The functionalized 

sensor chips were mounted horizontally in the set up in order to prevent sedimentation of 

heavier components, causing possibly non-specific signals by physical adsorption. The sensor 

chip was hereby pressed mechanically onto the copper block. This block served as thermal 

reservoir and heat flow was generated using a thermistor on top of the copper block. The 

temperature of the copper, T1, was measured by a thermocouple and actively steered through 

a PID controller (P = 8, I = 1, D = 0) which in turn was regulating the heating power. 

Throughout the measurement, this temperature was kept constant at 37.00 °C in order to 
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mimic body temperature and the ambient temperature remained constant at 19.0 °C. The 

temperature in the liquid, T2, was measured with a second miniaturized thermocouple, 

positioned in the middle of the flow-through cell at a distance of 1.7 mm underneath the chip 

surface. The thermal resistance (Rth, given in °C/W) was then obtained by dividing the 

temperature difference (T1 – T2) through the input power P that is required to keep the copper 

block at the constant temperature T1 = 37.0 
0
C (Equation I). While the absolute value of Rth is 

governed mainly by the thermal conductivity of the buffer liquid, the positioning of the heated 

sensor chip at the top of the flow-through cell guarantees that there is no convection of liquid, 

which could possibly compromise the results.  

               

��� � 	
����	



           (I) 

 

 

 

Figure 2: Schematic view of an aptamer-based setup for detecting changes of the thermal 

resistance upon molecular recognition of proteins. The thermal flow, generated by a 

thermistor, passes from the backside of the chip through the receptor layer into the sample 

liquid (heat-flow direction indicated by a red arrow). The temperature gradient is monitored 

using two thermocouples. 

 

 

2.4 Microgravimetric measurements 

Reference measurements with the quartz-crystal microbalance were performed on a QCM-D 

E4 system manufactured by Q-SENSE (Gothenburg, Sweden) and data were analyzed with 

QTools software. We employed UV-ozone treated gold-coated quartz crystals with a nominal 
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resonance frequency f0 = 4.95 MHz and an active area size of 75 mm
2
. One crystal was left 

blank, a second was activated with a self-assembled MUA-thiol linker layer and blocked with 

BSA, and the third chip received the full treatment with the linker layer, tethering of aptamers 

and finally blocked with BSA as well. All these steps were carried out according to the 

protocols given in Section 2.2. The measurement temperature (liquid and chip are here at an 

identical temperature) was 37 
0
C and we evaluated frequency shifts of the fundamental 

resonance frequency. Due to instrumental constraints, the QCM-sensor chips were mounted 

horizontally with the active coating facing upward towards the liquid sample.  

 

1. Results and discussion 

3.1 Thermal monitoring of aptamer functionalization 

Prior to the actual protein-recognition experiment, we studied whether the tethering of the 

aptamers to the thiol-functionalized sensor chips would already bring about a measurable 

increase of the heat-transfer resistance Rth. In previous experiments with DNA sequences 

from exons of the PAH gene, it was observed that ds-DNA with up to 123 base pairs does not 

cause an Rth increase; this length is slightly below the persistence length of ds-DNA and the 

fragments are still considered as being ‘mechanically quasi-stiff’. After denaturation to single-

stranded fragments consisting of 123 bases, a clear Rth jump was observed and explained on 

grounds of the reduced persistence length of ss-DNA and curling up into Flory spheres
20,36

. 

 In the present work, the immobilization of the 80-bases aptamer molecules was 

performed directly inside the HTM flow-through cell illustrated in Figure 2. First, a baseline 

was established by mounting a chip, comprising the thiol-linker layer, inside the cell and 

filling it up with MES buffer. Then, a solution containing MES buffer, aptamer molecules 

(0.1 µM), and EDC (400 mM) was added. The temperature T1 was kept constant at 37.00 
0
C 

throughout the experiment. Figure 3 presents the measured Rth values as bar charts 

normalized to a baseline defined by the heat-transfer resistance before addition of the 

aptamers and the EDC reagent. The baseline of 100% corresponds to an absolute value Rth of 

8.01 ± 0.14 
0
C/W, determined by the materials, dimensions, and interfaces present along the 

heat-flow path between the two temperature sensors. The height of each bar in Figure 3 was 

determined as an averaged value over 1000 individual Rth data points, taken during a period of 

1000 s with a sampling rate of 1 point per second. The width of the error bars is given by the 

standard deviation of the data with respect to the mean value within each of the five 

considered time intervals. Between 3000 s (50 minutes) and 4000 s (67 minutes) after addition 
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of the aptamer-EDC mixture, there is no significant change anymore in Rth, indicating that the 

reaction is completed. This duration of 60 minutes for an EDC-mediated linking reaction of 

amino-modified nucleotides to COOH groups is similar to the earlier reported optimal 

duration of approximately 2 hours
37

. This value of 2 hours was determined with a different 

monitoring technique (confocal fluorescence microscopy) and on polycrystalline diamond 

films, a chip material with a higher roughness than the gold layers employed within this study. 

Therefore, the 60 minutes for optimal EDC coupling found here are in line with the previous 

results of ref
38

.  

 

Figure 3: Relative increase of the heat-transfer resistance Rth during the EDC coupling of 

aptamers to the thiol-SAM linker layer. The baseline of 100% (corresponding to an absolute 

Rth = 8.0 ± 0.14 
0
C/W) was obtained during stabilization in MES buffer. A saturated aptamer 

coating increases the relative Rth to 108 ± 0.8 %. Each bar represents data averaged over a 

time interval of 1000 s. 

 

The most important observation from Figure 3 is the fact that an aptamer monolayer displays 

a measurable Rth contribution (increase by 0.64 
0
C/W or 7.9 %). This is similar to single-

stranded DNA, even quantitatively regarding the amplitude of the effect, and in contrast to 

double-stranded DNA where no measurable Rth increase occurs even for rather high areal 

densities of more than 10
12

 ds-fragments per cm
2 20

. Correspondingly, it seems reasonable to 

assume that aptamers do have a mechanical flexibility irrespective of preferential folding such 

as indicated in Figure 1. 
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Next, one may assume that the adsorption of a BSA blocking layer should result in a second 

increase of the absolute Rth value: The adsorption process has to be performed at 4 
0
C in the 

refrigerator, meaning that it is not possible to monitor the BSA adsorption in real time 

because the HTM principle is only applicable when a temperature gradient is present. Instead, 

we performed a reference experiment with Rth monitoring at room temperature while the chip 

temperature was kept constant at T1 = 37.0 
0
C. During the adsorption of BSA on a sensor chip 

covered with only the MUA SAM (no aptamer functionalization) we observed a minor Rth 

increase by 0.1 ± 0.05 
0
C. This increase stayed persistent even after rinsing and the data are 

given in the Supporting Information, Figure S2. This confirms the strong adhesive 

properties of BSA while its impact on the heat-transfer resistance is significantly less 

pronounced as compared to the aptamer.   

 

3.2 Thermal monitoring of protein recognition and reference testing 

After depositing the BSA overcoating, the sensor chip was installed again in the thermal-

resistance setup (Figure 2) and the Rth measurement was started after filling the flow-through 

cell with TGK buffer and allowing stabilizing for 30 minutes. This initial stabilizing 

guarantees that the system is in thermal equilibrium. Then, Ara-h1 spiked TGK buffer was 

injected manually with increasing concentrations from 5 to 50 nM. Each spiked TGK sample 

had a volume of 1 ml, exceeding the inner volume of the flow-through cell 9 times. This way, 

we ensured that liquid from the previous concentration under study was fully removed from 

the flow-through cell and the tubing. Figure 4A shows a stepwise increase of the heat-transfer 

resistance for each next-higher concentration while the waiting time before adding the next-

higher concentration was chosen 20 to 30 minutes. Immediately after injection of the next 

concentration there is a temporary overshooting of the Rth signal: This is an artifact due to the 

fact that the injected fluid is at room temperature, taking approximately 5 minutes to achieve 

again thermal-equilibrium conditions. Therefore, data obtained during the first 5 minutes for a 

given concentration are discarded. Figure 4B displays the concentration dependence of the 

normalized increase, reaching roughly 9 % for 50 nM of Ara h 1 in TGK. The width of the 

error bars represents the standard deviation on three separate measurements with the averaged 

value for a given concentration, ignoring data taken during the first five minutes after 

injection. For reference purposes, Figure 4B comprises also the normalized Rth data for the 

same Ara h 1 concentrations, but measured with a sensor chip without the aptamer 

functionality. All other chip features and handling, including the MUA-thiol SAM and the 
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BSA overcoating, are identical. Irrespective of the Ara-h 1 exposure, the Rth values measured 

with this reference chip remain constant within the error bars and only for the highest 

concentration (50 nM) one might infer a slight and non-specific Rth increase to 101 ± 0.8 %. 

   

 

 

Figure 4: The upper panel (A) shows the absolute values of the heat-transfer resistance of the 

device with an aptamer-functionalized sensor chip for various concentrations of Ara h 1 in 

TGK buffer. The displayed data are non-smoothed, raw data. The lower panel (B) presents the 

data of panel A as solid boxes on a normalized scale with an allometric fit line according to 

Equation II. Error bars were calculated over three individual measurements with freshly 

prepared samples. The reference data given as open boxes were obtained with an identically 
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prepared sensor chip lacking the aptamer functionality. Within error bars, there is no 

indication for a false-positive response. 

 

At this point it is verified that i) the protein recognition by aptamers enhances the interfacial 

heat-transfer resistance, ii) that the dose-response curve can give a quantitative information on 

the protein concentration, and iii) that the BSA overcoating has protein-repellant properties. 

The observation iii) is evident and expected from daily laboratory practice while i) and ii) are 

novelties and can thus be utilized as a new technique for label-free protein detection. 

From Figure 4B we can now derive an estimate for the limit of detection LOD; the fit curve 

follows an allometric formula given by Equation II: 

 

y = a · x 
b       

(II) 

 

Here, x is the Ara h 1 concentration in nanoMolar units and y is the sensor response in % with 

100 % corresponding to the baseline. The parameters of the fit curve are a = 99.1 %, b = 

0.024 with a coefficient of determination R² = 0.92. The allometric fit describes the saturation 

effect occurring at high target molecules concentration and has been used before in ref
21,23

.  

 

The standard deviation of the signal at the lowest concentration (baseline) is 0.5 %. Defining 

the LOD as the concentration where the signal amplitude corresponds to the threefold 

standard deviation we estimate an LOD of 3 nM. The limit of quantification, corresponding to 

five times the standard deviation, is accordingly found at an Ara h 1 concentration of 4 nM. 

This agrees very well with the previously obtained value for aptamer-based Ara h 1 detection 

using impedance spectroscopy as readout technique
18

. For comparison, impedimetric protein 

sensors employing natural antibodies can still reach lower detection limits (< 1 nM), but 

antibodies are not really competitive with aptamers regarding their price, shelf-life, and 

reusability
39

.  

 

3.3 Ara h 1 detection in peanut-butter extract 

First, a baseline was established in TGK buffer after which the peanut extract (50 mg of 

peanut butter in 200 ml TGK, see Section 2.2) was added and subsequently the extract that 

was additionally spiked with 100 nM of Ara h 1. The results are shown in Figure 5 as bar 

charts for exposure times 30 min each, discarding data collected during the first 5 minutes 

Page 13 of 24

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 

 

after injection. Upon exposing the functionalized sensor chip to the non-spiked peanut extract, 

a first increase by 2 ± 0.8 % was observed. By using the dose-response characteristics in 

buffer solutions according to Equation 2 this would correspond to an Ara h 1 concentration of 

≈ 3 – 5 nM, thus below the maximum of 40 nM estimated from the protein content of the 

peanut butter. We point out that according to prior literature the Ara h 1 content decreases 

with increasing roasting time as compared to raw peanuts
34

. When the spiked solution (100 

nM of Ara h 1) was introduced, the Rth value went further up to 111 ± 0.7  %. Assuming that 

the analytical form of the dose-response curve (Equation II) stays valid beyond the maximum 

concentration used for calibration, the increase to 111.3 % would correspond to an Ara h 1 

concentration of 126 nM. This is in good agreement with the value of 100 nM from spiking 

plus native Ara h 1 present in the peanut butter.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Measuring Ara h 1 in a peanut butter enriched matrix: The baseline was obtained in 

pure TGK buffer and the sample obtained from dissolved and filtrated peanut butter displays a 

measurable Rth increase by ± 2.2 %. The sample spiked with 100 nM of Ara h 1 (the total 

Ara-h1 contents slightly exceeds 100 nM) shows a substantial Rth increase by almost 12 % as 

compared to baseline level.  

 

This is a first proof-of-application showing that screening of allergens can also be performed 

in liquefied and filtrated food samples. Furthermore, the magnitude of the Rth increase is 

surprisingly high comparing the size of the molecules that are bound to the solid-to-liquid 

interface to the overall macroscopic dimensions of the heat-flow path. 
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3.4 Comparative study with quartz-crystal microbalance QCM                

Since the HTM-based results for protein detection are the first of their kind, additional control 

experiments were performed with the QCM, a well-established bioanalytical technique. For 

these experiments, we employed three Au-coated, standard QCM crystals: The first crystal 

was used as delivered with a non-modified gold surface, the second crystal was functionalized 

with a SAM-layer of MUA thiols and subsequently treated with a BSA blocking layer. The 

third crystal was functionalized with the SAM, followed by EDC linking of the aptamers, and 

finally overcoated with a BSA layer. All surface modifications were carried out according to 

the protocols given in Section 2.2 for the preparation of the HTM sensor chips. These 

references were used in order to verify the efficacy of the sensor coating independently and 

also to check for matrix-related viscosity effects due to the presence of peanut butter. 

Furthermore, there is a relevant difference with HTM because the functionalized quartz-

crystals have to be mounted horizontally in the QCM device with the functionalized surface 

pointing upward. Therefore, the QCM data can in principle be affected by sedimentation of 

microparticles or heavier molecules. The experiment was conducted according to the same 

procedure as for the HTM experiments described in Section 3.3: First, the signal was 

stabilized in TGK buffer; thereafter, the non-spiked peanut extract was added, and finally the 

three different QCM chips were exposed to the peanut extract spiked with 100 nM of Ara h 1. 

The QCM-response of the three differently prepared quartz crystals to these three different 

solutions is summarized in Figure 6.  
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Figure 6: Shift of the resonance frequency ∆f of the quartz crystals up exposure to pure TGK 

buffer (baseline), to the non-spike peanut extract, and to peanut extract spiked with 100 nM 

Ara h 1. The black bars correspond to non-treated quartz crystals with gold coating, the red  

bar represent crystals coated with the MUA, SAM and BSA, and the blue bars represent 

samples with MUA, SAM, aptamer functionalization and the BSA blocking layer. 

 

The addition of the peanut extract or the extract spiked with Ara h 1 did not result in a 

significant frequency shift when the Au-coated QCM crystal was left non-functionalized. For 

the spiked sample we see a shift of 2 ± 1 Hz which is not there in case of the non-spiked 

extract. From this we can at least conclude that the measurements are not affected by the 

slightly enhanced viscosity of the extract as compared to pure TGK buffer. In case that the 

QCM crystals were treated with a SAM layer blocked with BSA, the crystal became more 

hydrophilic and was more prone to non-specific absorption. With only the peanut extract the 

increase was insignificant, but when spiked with 100 nM Ara h 1, a decrease by 15 ± 1 Hz 

was measured. This was however still significantly lower compared to the fully aptamer-

functionalized crystal: In that case with the extract already a significant decrease by 6 ± 1 Hz 

was observed and with the spiked extract this resulted in a frequency drop by 30 ± 1 Hz. By 

taking the difference between the reference experiment (crystal with SAM and BSA, only 
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non-specific adsorption) and the sample functionalized with aptamer (non-specific adsorption 

and specific recognition together), the signal attributed to specific binding of Ara h 1 

corresponds to 15 Hz. Here, we refer to the data obtained with the spiked extract and we not 

that the observed frequency shifts remained stable even after rinsing with TGK buffer.  

 

If we assume that the Sauerbrey equation is valid, this frequency response equals a mass 

addition of roughly 204 ng or 6.2·10
11

 specifically bound Ara h 1 molecules. Due to the high 

spiked Ara h 1 concentration we can furthermore assume that each of the tethered aptamer 

molecules captures one Ara h 1 protein. In combination with the active surface area of the 

QCM-sensor chips of 75 mm
2
 we can deduce an areal density of approximately 8·10

11
 bound 

aptamers per square centimeter. This is in the same order as the earlier determined surface 

density of double-stranded DNA fragments tethered to synthetic diamond layers with the 

fatty-acid & EDC coupling technique, being widely analogous with the protocol described in 

Section 2.2 
20,38

. Furthermore, we can give a rough estimate for the Flory radius rF of an 

aptamer based on Equation III when ignoring for simplicity its self-folding properties
20

:              

    
3

Ll
r

p

F

⋅
≈        (III) 

The persistence length of single-stranded DNA is lp = 1.5 nm and the fragment length is L = 

28 nm for 85 bases. This results in a Flory radius rF ≈ 3.7 nm or 2.3·10
12

 aptamers per cm
2
, 

being approximately three times more than our indirect evaluation based on the QCM results.   

 

The data illustrate that also QCM allows detecting Ara h 1 in a spiked but complex matrix. 

The QCM responds also to the non-spiked peanut extract; however the signal does not exceed 

the LOD defined by the threefold noise level and is partially due to non-specific adsorption 

effects. The adsorption effect is noticeable in the spiked- as well as in the non-spiked peanut 

extract which can be attributed to the horizontal configuration with the QCM chip underneath 

the fluid under study. 

 

4. Conclusions 

The heat-transfer method (HTM) monitors the properties at the solid-liquid interface and has 

been used in the past for the detection of cells, small organic molecules, and phase transition 

in lipids. We have shown for the first time the possibility to determine also protein 
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concentrations with this technique. This was demonstrated by employing an aptamer-based 

receptor system for the peanut protein Ara h 1. First, the functionalization procedure was 

followed in situ, confirming the presence of the aptamer on the gold surface, which had been 

pre-activated with a MUA-thiol linker layer. Then, proof-of-principle measurements were 

performed with Ara h 1 in buffer solutions. A dose-response curve was constructed up to Ara 

h 1 concentrations of 50 nM and the detection limit was in the order of ~ 3 nM, comparable to 

optimized values obtained by impedance spectroscopy. As a first proof-of-application, peanut 

extract and peanut extract spiked with Ara h 1 were studied, demonstrating the possibility to 

screen for trace allergens in liquefied and filtered food matrices. A distinguishable signal was 

already obtained with non-spiked peanut extract in which 50 mg of peanut butter was 

dissolved in a 20.000 times higher volume of TGK buffer.  

 

To verify these results independently, additional experiments were conducted with the quartz-

crystal microbalance QCM: Also this microgravimetric technique is capable of detecting Ara 

h 1 in a food matrix using aptamer receptors; however, it is considerably harder to integrate 

QCM in a miniaturized, portable and cost-efficient device. Nevertheless, the QCM 

experiments provided a very reasonable and realistic estimate for the areal density of aptamer 

receptors on gold surfaces in the order of 8·10
11

 molecules per square centimeter.  We point 

out that HTM requires especially little instrumental equipment while it can detect proteins 

specifically and label-free even in complex matrices. The combination of a blocking layer 

with an upside-down positioning of the sensor chip allowed to suppress non-specific 

adsorption to the widest possible extend. Moreover, the aptamers stayed at any time in their 

intrinsic conformation without necessitating the use of neutralizing oligomers, which are 

displaced upon binding of the target proteins. We assume that the described methodology 

offers a new approach for the quantitative detection of proteins including allergens and 

applications can be seen in biomedical- and clinical research as well as in food-safety 

screening.  

 

Supporting Information Available 

In the Supporting Information, a design with the exact dimensions of the heat-transfer 

resistance set up is provided and the effect on the thermal resistance when a BSA overcoating 

is applied onto the sample in order to minimize non-specific binding. Supporting information 
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to this document contains additional graphs that are referred to in the text. This material is 

available free of charge via the Internet at http://pubs.acs.org. 
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