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“In that Empire, the Art of Cartography attained such Perfection that the map of a single 

Province occupied the entirety of a City, and the map of the Empire, the entirety of a 

Province. In time, those Unconscionable Maps no longer satisfied, and the Cartographers 

Guilds struck a Map of the Empire whose size was that of the Empire, and which coincided 

point for point with it. The following Generations, who were not so fond of the Study of 

Cartography as their Forebears had been, saw that that vast Map was Useless, and not without 

some Pitilessness was it, that they delivered it up to the Inclemencies of Sun and Winters. In 

the Deserts of the West, still today, there are Tattered Ruins of that Map, inhabited by 

Animals and Beggars; in all the Land there is no other Relic of the Disciplines of 

Geography.” 

On Exactitude in Science, Jorge Luis Borges (1998) 

 

 

“A message to mapmakers: highways are not painted red, rivers don’t have county lines 

running down the middle, and you can’t see contour lines on a mountain.” 

William Kent, Data and Reality (2000)  
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Abstract 

This thesis proposes that on-demand mapping - where the user can choose the geographic 

features to map and the scale at which to map them - can be supported by formalising, and 

making explicit, cartographic generalisation knowledge in an ontology.  The aim was to 

capture the semantics of generalisation, in the form of declarative knowledge, in an ontology 

so that it could be used by an on-demand mapping system to make decisions about what 

generalisation algorithms are required to resolve a given map condition, such as feature 

congestion, caused by a change in scale. 

The lack of a suitable methodology for designing an application ontology was identified and 

remedied by the development of a new methodology that was a hybrid of existing domain 

ontology design methodologies. Using this methodology an ontology that described not only 

the geographic features but also the concepts of generalisation such as geometric conditions, 

operators and algorithms was built.  A key part of the evaluation phase of the methodology 

was the implementation of the ontology in a prototype on-demand mapping system.   

The prototype system was used successfully to map road accidents and the underlying road 

network at three different scales.  A major barrier to on-demand mapping is the need to 

automatically provide parameter values for generalisation algorithms. A set of measure 

algorithms were developed to identify the geometric conditions in the features, caused by a 

change in scale. From this a Degree of Generalisation (DoG) is calculated, which represents 

the “amount” of generalisation required. The DoG is used as an input to a number of bespoke 

generalisation algorithms.  In particular a road network pruning algorithm was developed that 

respected the relationship between accidents and road segments.  The development of 

bespoke algorithms is not a sustainable solution and a method for employing the DoG concept 

with existing generalisation algorithms is required.   

Consideration was given to how the ontology-driven prototype on-demand mapping system 

could be extended to use cases other than mapping road accidents and a need for collaboration 

with domain experts on an ontology for generalisation was identified.  Although further 

testing using different uses cases is required, this work has demonstrated that an ontological 

approach to on-demand mapping has promise. 
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1 Introduction 

1.1 The importance of scale 

Many governments, both national and local, are increasingly making spatial data freely 

available  (Janssen et al., 2012; Tinati et al., 2012).  For example, the DataGM website 

provides access to a variety of georeferenced datasets including road traffic accidents, fire and 

rescue incidents, bus stops, bus routes and traffic signals in Greater Manchester (Trafford 

Council, 2012).  There is no single ideal scale at which to study any geographical 

phenomenon (Mackaness, 2007) and mapping this data at multiple scales, with topographic 

features providing context, will aid interpretation of the data.  At a large scale we can glean 

the attributes of individuals; at a small scale we can put the individuals in context 

(Mackaness, 2007).  

However, simply changing the scale at which data is viewed is not sufficient. At smaller 

scales the map may suffer from feature congestion, for example, which causes illegibility 

(Figure 1.1). 

 

Figure 1.1 Road features at 1:60K (Data © Crown Copyright 2014. An Ordnance Survey/EDINA supplied service.) 

To ensure a legible map, the representation of data at different scales requires generalisation, 

defined by the International Cartographic Association as “the selection and simplified 

representation of detail appropriate to scale and/or purpose of a map” (International 

Cartographic Association, 1973).  Generalisation is performed by a number of generalisation 



2 

operators which can be illustrated by considering the depiction of a superstore at a number of 

different scales (Figure 1.2). As the scale decreases detail is lost but context is gained: “we 

can see different patterns, different relationships, between different entities” (Mackaness et 

al., 2014, p5). 

Scale is hard to define and is linked to a number of related concepts such as resolution and 

accuracy but what is traditionally meant by scale is the cartographic ratio: the ratio of a 

distance on the map to the distance on the ground (Li, 2006).  The introduction of devices to 

display maps, such as laptops and smart phones, has made the definition more difficult still 

and a definition appropriate to this research will be offered later (section 6.3.1).  

1.2 The need for on-demand mapping 

The maps displayed in Figure 1.2 were designed by a National Mapping Agency (NMA), in 

this case the Ordnance Survey, to serve a number of purposes.  However, the digitisation of 

map features and the automation of map production provides an opportunity to construct 

maps that suit a particular user’s needs and are therefore more effective(Wilson et al., 2010). 

For instance, route finding using a map designed for route finding is likely to be more 

successful than using a generic multi-purpose map (Matsuo et al., 2011).  This will require 

on-demand mapping: “the creation of a cartographic product upon a user request appropriate 

to its scale and purpose” (Cecconi, 2003, p17).  This definition should be modified to specify 

that the user need not be a cartographer. 

As stated, generalisation is performed by a number of operators.  However, an operator may 

be implemented by a number of algorithms.  For example, the outline of the superstore in 

Figure 1.2a was simplified, by the removal of selected points, to produce the outline in Figure 

1.2b.  This could have been performed by a number of algorithms (Kulik et al., 2005; Wang 

& Müller, 1998; Visvalingam & Whyatt, 1993; Muller, 1987; Douglas & Peucker, 1973). 
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(a) 1 to 5000 

The outline of the superstore and its car park are clearly 

visible and at this scale a relatively accurate measure of 

the building footprint is possible. 

 

 

(b) 1 to 10000 

The building outline has been simplified and the level 

of detail reduced.  However, some of the neighbouring 

buildings and streets are now visible and it can be seen 

that it is not an “out-of-town” development. 

 

 

(c) 1 to 50000 

The superstore is no longer visible. Individual buildings 

are no longer depicted (apart from churches which have 

been symbolised) and have been amalgamated into 

built-up areas. 

 

 

(d) 1 to 250000 

All of the buildings are depicted as a single shaded area 

but it is now possible to see that the superstore is part 

of an urban area called Knutsford. Although the road 

network has been pruned, and only the major roads in 

Knutsford are depicted, it can be seen that Knutsford is 

near a motorway network and it is also possible to see 

some of the neighbouring towns connected by rail. 

 

(e) 1 to 1000000 

All detail of Knutsford is lost and it has been collapsed 

to a point.  However, we can now see that Knutsford is 

to the south of a major conurbation (Manchester). 

Further reductions in scale would eventually reveal that 

the superstore is on an island. 

Figure 1.2 Urban areas at different scales. Maps © Crown Copyright 2014. An Ordnance Survey/EDINA supplied 

service 
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Much progress has been made in recent years in the automated production of cartographic 

products.  For example, the Netherlands’ Kadaster recently developed a process that created  a 

1:50K topographic map without any human interaction (Stoter et al., 2014).  However, the 

complex workflow required to generate the map was produced manually.  If we assume that 

an on-demand mapping system will be utilised by the non-cartographer then the process of 

selecting, sequencing and execution of generalisation algorithms should be a completely 

automatic process.  

Existing automatic generalisation systems are designed to produce general purpose maps at a 

limited range of target scales (Figure 1.2) and  portraying familiar topographic features such 

as buildings, roads and rivers (Stanislowski & Savino, 2011; Yan et al., 2008; Chaudhry & 

Mackaness, 2005). An on-demand mapping system should be able to map any feature type at 

any scale.  For a given operator, different algorithms may specialise in different feature types.  

For example, the algorithms used to prune river networks  (Stanislowski & Savino, 2011; 

Touya, 2007)  differ from those used to prune road networks (Benz & Weibel, 2013; Liu et 

al., 2010; Touya, 2010). This implies that the mapping of some of the feature types mentioned 

earlier, such as road accidents, will also require special consideration. 

Another requirement of an on-demand mapping system is that it should be able to integrate 

user-supplied data with base data that provide context.  A simple overlay of user data on top 

of a generic base map is not sufficient.  This is often a problem with web-based “mashups” 

that use tools such as the Google Maps API to produce interactive maps (Batty et al., 2010).  

For example, the road name labels in Figure 1.3 are obscured by the bicycle routes. 

 

Figure 1.3 Bicycle routes overlaid on a Google Maps background 

The need for integration is further highlighted when we consider the problem of mapping road 

accidents where generalisation of the road network may lead to loss of context for the 

accident data. For example, the roundabout in Figure 1.4a has been collapsed to a point 

(Figure 1.4b) and the accidents on the roundabout have lost their context. 
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(a) Accidents on a roundabout (b) Roundabout collapsed to a point 

Figure 1.4 Generalised road network and accidents 

The possible loss of context is less obvious when the roads and accidents are considered at a 

smaller scale (Figure 1.5). In this example the individual accidents have been grouped to form 

polygons. The removal of the minor road (A), caused by the change in scale, will lead to the 

loss of context and the accident hot-spot at the junction will appear to be positioned part way 

along a road segment.  

 

Figure 1.5 Road network and accidents hot-spots at small scale 

The usefulness of generalisation is not limited to cartographic legibility.  The generalisation 

of an urban street network can be used to understand the structure, function and organisation 

of a city (Jiang & Claramunt, 2004), for example by allowing the modelling of traffic flows 

(Jiang & Liu, 2009).  Maps such as that in Figure 1.5 could, for example, be used to allow a 

parent to plot a safe walking route to school for a child.  However, the scale has to be 

appropriate (Table 1.1).  
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Scale Extent User Purpose 

Large Road junction Highways engineer To identify the problem arm(s) 

of a junction 

Medium  Local neighbourhood Parent To identify safe routes to school 

Small Local authority Road safety expert To identify accident hot-spots 

Table 1.1 Example relative scales for mapping road accidents 

1.3 Problem statement 

On-demand mapping requires fully automatic generalisation. Generalisation algorithms have 

been developed and refined since the 1960s (Li, 2007) and since the 1980s ways have been 

sought to automate their selection, sequencing and execution rather than simply execute a pre-

defined sequence or “batch” (Harrie & Weibel, 2007). 

The difficulty of the problem can be illustrated by examining a small part of the workflow 

designed to produce the map of the Netherlands mentioned earlier (Stoter et al., 2014).  The 

decision was made to thin, or prune, the waterways network using a road network thinning 

algorithm rather than one of the algorithms for thinning natural hydrographic networks 

because the Dutch water network is almost entirely man-made and resembles a road network.  

How could such a seemingly illogical decision be made by an on-demand mapping system? 

Following selection and sequencing, execution of the algorithms is required.  Most 

generalisation algorithms will have one or more parameters and parameter value selection has 

been identified as having a major impact on the results of generalisation (McMaster & Shea, 

1992).  However, even algorithms that implement the same operator rarely have matching 

parameters and it is unrealistic to expect non-expert users to provide parameter values.  

1.4 A knowledge engineering perspective 

1.4.1 Knowledge engineering 

The knowledge required to automatically produce the general purpose maps described earlier 

is either embedded in software or possessed by the NMA experts that configure the software.  

If we consider agent-based generalisation systems, their associated knowledge base has to be 

updated every time a new generalisation algorithm is introduced to the system or when user 

requirements change (Taillandier & Taillandier, 2012). Carral et al. (2013) make a more 

general point that the knowledge relating to scale dependency in digital representations is 

informally specified and hidden in application source code.  This is not conducive to on-

demand mapping.  If the user wishes to map an unfamiliar feature type then the knowledge 
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required to generalise those features has to be encapsulated in the system.  It would be 

preferable to capture that knowledge in a representation that could be shared. 

The intention is to consider on-demand mapping as a knowledge engineering problem. 

Knowledge engineering  has historically been seen as a human to machine transfer process 

and more recently as a modelling process (Studer et al., 1998). The focus of this research is on 

the latter.  Acquisition of generalisation knowledge has been the focus of a number of studies 

(Mustiere, 2005; Kilpeläinen, 2000; Chang & McMaster, 1993) but there has been less 

discussion of the techniques for representing generalisation knowledge. 

There have been a number of attempts to explicitly represent generalisation knowledge in 

taxonomies of operators (Roth et al., 2011) but these have invariably been informal, natural 

language representations.  If we are to reason about the process of generalisation then formal, 

machine-readable representations are required.  

On-demand mapping requires the integration of thematic data with topographic data and to do 

this automatically requires a machine-readable representation of the semantics of the features 

and the relationships between them (Stoter et al., 2010; Wolf, 2009; Dutton & Edwardes, 

2006).  One way of encapsulating the semantics of a domain is by using an ontology 

(Kavouras & Kokla, 2008). However, the aim is not simply to describe geographic features in 

an ontology but also the process of generalisation and then to use reasoning to infer the 

operators and algorithms required to resolve particular map conditions, such as feature 

congestion. 

1.4.2 A model for generalisation 

If the ontology is to be used to aid the process of generalisation, in particular the selection of 

generalisation operators and algorithms, then a contextual framework, or generalisation 

model, is required (Sarjakoski, 2007; McMaster, 1991).  The most appropriate model for on-

demand mapping is that of McMaster and Shea (1992) who seek to define the Why, When and 

How of generalisation.  

There are a number of reasons why generalisation is required but the focus will be on 

reducing complexity. The moment when to generalise is when certain geometric conditions 

such as congestion or imperceptibility appear in the mapped data (Figure 1.1). How to 

generalise is determined by the operators. 



8 

The model describes three transformation controls, generalisation operator selection, 

algorithm selection and parameter selection. The aim of this research is to use the ontology to 

reason about the first two of these controls. 

Early knowledge-based systems for generalisation were rule-based (Buttenfield & McMaster, 

1991).  Rules represent procedural or “how-to” knowledge, but the intention here is to 

represent generalisation as declarative or “know-what” knowledge which seeks to make 

statements or declarations about the world (Genesereth & Nilsson, 1998). Declarative 

knowledge has the advantage of being extendable by inference, providing “new expressions 

from old” (Davis et al., 1993). 

1.4.3 The mapping engine 

An ontology is a knowledge representation and as such is useful for “reasoning about the 

world rather than taking action in it” (Davis et al., 1993, p17).  Furthermore, a disadvantage 

of the flexibility of declarative knowledge is that, in contrast to procedural knowledge, it does 

not define what to do with the knowledge.  What is required is an on-demand mapping engine 

that will use the ontology to implement the McMaster and Shea (1992) model (Figure 1.6). 

 

Figure 1.6 High level components of an on-demand mapping system 

The mapping engine will take the user requirements, including target scale, the selected data 

sources and query the ontology for the appropriate operator and algorithm to employ given a 

particular condition. However, a mechanism is required to identify the presence of such 

conditions. 

1.4.4 Measures 

The when to generalise is calculated by one or more of the spatial and holistic measures 

described in the McMaster and Shea (1992) model, which will identify decision points (Roth 
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et al., 2011).  For example, feature congestion can be determined by a density measure 

(Stigmar & Harrie, 2011). Measures were implemented by a number of measure algorithms. 

The third transformation control in the model of McMaster and Shea (1992) is algorithm 

parameter selection.  As discussed earlier, it is unrealistic to expect the non-cartographer to 

provide parameter values and since the system is intended to be multi-scale it will not be 

possible to pre-define these values, in the ontology, say. To resolve this, a Degree of 

Generalisation (Zhou & Jones, 2003) is calculated, based on the results from a set of measure 

algorithms, and used as a generic parameter, which determines the “amount” of generalisation 

required. 

1.5 Aim and objectives 

The aim of this research is to develop an on-demand mapping system based on an ontology. 

The following objectives will achieve this aim: 

1. To model the process of generalisation using an ontology. 

2. To devise a method for automatically selecting the appropriate algorithms for mapping 

geographic features at multiple scales using the ontology. 

3. To devise a method for generating parameter values for the selected algorithms’ 

parameters based on the current conditions in the mapped data. 

4. To develop an on-demand mapping prototype for road accidents and roads that will 

test the above methods. 

The aim and objectives can be expressed as a number of research questions: 

 How can the process of cartographic generalisation be captured in an ontology? 

o What are the essential characteristics of generalisation operators? 

o What are the essential characteristics of generalisation algorithms? 

 How can knowledge of the geographic data (accidents and roads) be described in the 

ontology in such a way that it can be used to guide the process of on-demand 

mapping? 

o What are the essential characteristics of a geographic feature type that effect 

how features of that type are generalised? 

 Can we automatically determine the conditions under which the data should be 

generalised? 

 Can the ontology be reasoned with, using inference, to automatically select the 

generalisation operators and algorithms that will resolve particular conditions in the 

mapped data? 
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o Can this be done by using semantics, expressed as declarative knowledge, 

rather than procedural knowledge? 

 Once an algorithm has been selected can values for its parameters be automatically 

generated? 

 Can the geographic features data and ontology be combined in an on-demand mapping 

system? 

1.6 Scope 

On-demand mapping is too complex a problem to be solved by a single project (Balley & 

Regnauld, 2011a) and it is therefore necessary to limit the scope of this research. Based on the 

objectives the following topics are within the scope of this research: 

Generalisation to ensure legibility 

There are a number of reasons why generalisation might be required (McMaster & Shea, 

1992) but this research will focus on maintaining legibility and, in particular, reducing feature 

congestion. 

Mapping of roads and accidents 

The research will be limited to a particular use case; the mapping of road accidents and the 

road network, which will provide context for the accidents. This use case was selected since it 

involves the mapping of both thematic and topographic data.  Most automatic generalisation 

research has focussed solely on topographic features. 

Automatically determining algorithm parameter values 

One of the objectives is to automatically select appropriate generalisation algorithms. To 

execute the selected algorithms it is necessary to provide parameter values. The typical user 

cannot be expected to do this. As will be discussed in Chapter 4, to do this automatically is 

potentially a difficult undertaking but necessary for on-demand mapping. 

The following topics are out of the scope of the research: 

Cartographic knowledge acquisition 

The focus will be on the representation of knowledge rather than how to acquire it. 

Formal specification of user requirements 

For an on-demand mapping system it will be necessary to formalise the user’s requirements. 

Foerster et al. (2012), for example, propose user profiles and Hubert and Ruas (2003) look at 

machine learning to capture user needs. This is too large a topic to be examined fully in this 
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research project but Balley et al. (2014) recently provided a detailed discussion on map 

specifications and user requirements, which included on-demand mapping. 

On-the-fly mapping 

Some definitions of on-demand mapping have included “on-the-fly” mapping (Cecconi et al., 

2002), where the speed at which the map is generated is important. This requirement is 

beyond the scope of this research. 

Web services 

The long term aim of the on-demand mapping project at the Ordnance Survey is to expose 

existing generalisation algorithms as web services.  There has been considerable research into 

geospatial processing web services in general (Fitzner et al., 2011; Brauner et al., 2009; Friis-

Christensen et al., 2007; Lemmens et al., 2007) and generalisation web services in particular 

(Gould, 2012; Neun et al., 2009; Foerster et al., 2008; Burghardt et al., 2005). This research 

will not however consider web services specifically but will focus on the means by which 

generalisation capability, in general, can be automatically selected. 

*** 

On-demand mapping is a complex problem that requires collaboration (Balley & Regnauld, 

2011a). This research is part of a collaboration between Ordnance Survey and its French 

equivalent, Institute National de L’Information Géographique et Forestière (IGN), (Balley et 

al., 2012; Touya et al., 2012; Balley & Regnauld, 2011b). 

1.7 Structure of thesis 

Following a background study of automatic generalisation in the context of knowledge 

representation (Chapter 2), the methodology section of thesis makes a case for describing 

generalisation knowledge in an ontology and details a methodology for building such an 

ontology (Chapter 3).  Chapter 4 then describes a methodology for building an on-demand 

mapping system based on the ontology.  The implementation stage of the thesis describes how 

the ontology was built (Chapter 5) and how the mapping engine was developed (Chapter 6). A 

use-case was developed to guide this stage.  Chapter 7 contains a discussion of the scalability 

of the ontological approach to determine the ease at which it can be extended to other use 

cases.  The thesis concludes with a summary and a discussion of further work (Chapter 8).  
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2 Knowledge representation in automatic generalisation 

2.1 Introduction 

 “The content and graphical structure of a complex, demanding map image can never be 

rendered in a completely automatic way” (Imhof (1982) cited in McMaster and Shea (1992)). 

“This is the first time that a complete topographic map has been generalized without any 

human interaction” (Stoter et al., 2014, p1). 

It is necessary to establish the developments between 1982 and 2013 that made the 

impossible, possible. This chapter discusses developments in automatic generalisation, on the 

understanding that on-demand mapping requires automatic generalisation.  The contention of 

this thesis is that on-demand mapping is a knowledge engineering problem and that it is 

necessary to represent generalisation knowledge explicitly.  Knowledge engineering involves 

the acquisition, representation and use of knowledge for expert systems. What knowledge is 

required for generalisation, and how it is acquired, has been well researched (Mustiere, 2005; 

Kilpeläinen, 2000; Weibel et al., 1995; Chang & McMaster, 1993). However, rather than 

simply present an overview of previous work in automatic generalisation the focus in this 

chapter will be on the types of knowledge that generalisation systems have used and how they 

have represented it.  

Before examining the literature it is necessary to discuss why automatic generalisation is a 

difficult task. 

2.2 Why is automatic generalisation difficult? 

The fact that there are a large number of algorithms that will implement any particular 

generalisation operator is evidence of the complexity of the problem of automatic 

generalisation. 

Mackaness (2007) suggests four reasons why automatic generalisation is difficult.  Firstly, the 

design process is complex and involves a compromise that satisfies a number of competing 

objectives. The importance of studying geographic phenomena at different scales was 

highlighted in section 1.1 but this need leads the second difficulty, how to abstract out 

different representations of the same source data and then assess their truth.  The third 

difficulty is in the necessity of treating generalisation as a modelling process and not the 

merely the manipulation of geometric primitives. Finally, there is the need to take account of, 

and formalise, the user’s need. The latter is particularly important if we wish to realise on-

demand mapping.  
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To these can be added the fact that if the source data is held in a spatial database, which itself 

represents a model of reality, then in creating a generalised map we are creating a model of a 

model. 

2.3 The age of algorithms 

Cartographic generalisation was for centuries the domain of cartographers, a manual process 

of “art clarified by science” (Eckert, 1908).  The 1960s, however, saw the introduction of 

digital generalisation where algorithms were developed to automate specific generalisation 

tasks such as line simplification and smoothing (Li, 2007). Algorithms were combined in a 

process known as batch generalisation where sequences of algorithms and parameter values 

were defined in advance (Harrie & Weibel, 2007).  The knowledge of cartographers was 

encapsulated in the choice of algorithms and their parameter values. 

The inflexibility of batch processing led to a search for a method for automatic generalisation 

where the transformations required to produce a map were not pre-defined.  A distinction is 

made here between digital generalisation, which is the use of algorithms to perform 

generalisation, and automatic generalisation, the automatic selection of those algorithms.  

The first experiments were in rule-based expert systems. 

2.4 Knowledge representation in rule-based systems 

Guidelines for cartographers were often expressed in the form of rules.  The following 

example is from the Ordnance Survey guidelines for the portrayal of ponds at a scale of 

1:10000 (cited by João, 1998, p16): 

“5434: Ponds smaller than 1mm
2
 will be omitted unless they are in an area where there is 

little other water detail, in which case they will be enlarged to the minimum size (i.e. 1mm
2
)” 

and 

“5435: Ponds which are less than 1mm wide but at least 2mm long will be enlarged to 1mm 

wide if space permits.” 

The above rules are not, however, machine-readable. To automate generalisation, rule-based 

expert systems attempted to encapsulate the above knowledge in a machine-readable form. 

For example, Nickerson (1991) attempted to convert the guidelines for producing the 

Canadian National Topographic Series into condition-action rules of the form:  

IF <condition> THEN <action> 
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Exceptions such as “if space permits” can be captured in the condition-action model. 

However, a number of problems with the rule-based approach have been identified: the sheer 

number of rules required (Steiniger et al., 2010; Harrie & Weibel, 2007); the cascading effects 

of generalisation, which rule-based systems find difficult to control; and the problem of 

competition between rules (Armstrong, 1991).  Beard (1991) also stressed the importance of 

addressing user needs in a mapping system, which makes it difficult to build a finite set of 

rules suitable for all requirements. 

Many of these problems are a result of the fact that the condition-action rules, or production 

rules in Artificial Intelligence terms, represent procedural knowledge. Procedural knowledge 

describes “what to do, when” (Rich & Knight, 1991, p113). There is a coupling of the 

knowledge with a description of what to do with that knowledge. The latter is represented by 

the action.  This has its advantages but procedural knowledge is hard to repurpose. A rule is 

required for every situation and for a dynamic system, such as on-demand mapping, the rule-

based approach is unfeasible. This view was reinforced by early explorations in this research 

project, which involved a rule-based approach (Gould & Chaudhry, 2012) (see Appendix A). 

2.5 Knowledge representation in constraints-based generalisation 

Having identified a number of problems with the rule-based approach, Beard (1991) 

suggested a constraints-based approach. This approach can be summarised as: use the 

constraints to define the desired output and then use an optimisation technique to determine 

the best combination of operators to meet the constraints (Burghardt et al., 2007).  For 

example, there might be a constraint on the building size displayed at a certain scale. At 

1:50K the minimum building size might be defined as 50m
2
, on the understanding that 

anything smaller will not be perceptible on a map at that scale.  In contrast to the condition-

action approach, this approach represents a decoupling of the map requirements and the 

method of achieving those requirements; a separation of conflict analysis and conflict solution 

(Burghardt et al., 2007).  At their simplest, constraints represent declarative knowledge.  

Declarative knowledge makes statements, or declarations, about the world (Genesereth & 

Nilsson, 1998).   

Dutton and Edwardes (2006) make a distinction between the more “simple” constraints 

involving minimum widths and separation distances and those that have a semantic element 

involving, say, the relationships between buildings and access roads and between bridges and 

rivers.   
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Consider a constraint that specifies a minimum distance between buildings; one way of 

satisfying this constraint would be to displace one or other or both of the buildings, another 

would be to amalgamate them (Figure 2.1a).  Such a constraint can be  considered “simple” 

(Dutton & Edwardes, 2006). That is, the constraint relies on a single value that acts as a 

threshold. We can infer that if the two buildings were too close then they would be 

indistinguishable but it is not made explicit why the constraint is necessary.  There are no 

semantics associated with the constraint.  Another “simple” constraint is one that specifies the 

minimum size of a building that can be included on the map.  The building could be 

eliminated (as insignificant) or, if the building was of sufficient importance, it could be 

exaggerated (Figure 2.1b). Again we can infer why the constraint is required, if the building 

was too small it would be imperceptible on the map, but again the constraint lacks semantics.  

However, in this case, the solution relies on semantics. It is necessary to know the 

significance of the building before we decide to eliminate or exaggerate it; the solution 

requires further declarative knowledge. 

  

(a) Separation distance constraint (b) Minimum size constraint 

Figure 2.1 Simple constraints 

Consider a more complex constraint such as “roads that provide access to buildings should be 

preserved” as depicted in Figure 2.2.  The minor road sections b, c and d would normally be 

removed because of a minimum width constraint. However, since section d provides access to 

the building, it is preserved. 

 

 

Figure 2.2 Complex constraint 
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We can infer from the constraint that there is a relationship between roads and buildings; 

roads provide access to buildings.  At a higher level we can say that the road provides context 

for the building. This can be classified as declarative knowledge.  However, it could be 

argued that the constraint contains some degree of “how-to” knowledge; to maintain access 

preserve the minor road.  The distinction between procedural and declarative knowledge is 

fuzzy and can be viewed as a spectrum (Rich & Knight, 1991). Generalisation algorithms and 

condition-action rules clearly contain procedural knowledge (Figure 2.3) and simple 

constraints clearly contain declarative knowledge.  The situation is less clear with more 

complex constraints. 

 

Figure 2.3 Spectrum of knowledge 

 There have been a number of attempts to classify constraints in a more sophisticated way 

than merely simple or complex.  Originally Beard (1991) grouped constraints as either 

graphic, structural, application or procedural.  More recently, Burghardt et al. (2007) defined 

a more formal typology in an attempt to harmonise the different constraints defined by a 

number of National Mapping Agencies. At the top level of their hierarchy there is an initial 

division between legibility constraints and preservation of appearance constraints. The 

typology also considers the number of features and the feature type the constraints apply to. 

The constraint involving roads and buildings would fall under the sub-category of topology in 

the category preservation of appearance. 

Burghardt et al. (2007) concluded that it was not possible to automatically translate the 

knowledge in object-oriented topographic data models into constraints since the data models 

lacked the ability to express such constraints as “a building must always be accessible from a 

road”. So the formalisation of constraints requires human interpretation.  

Despite reservations we can say that constraints represent declarative knowledge. However, a 

declarative representation of knowledge requires a method of specifying what is to be done 

with the knowledge (Rich & Knight, 1991). This is the role of the optimisation technique, 

which has to ensure that the constraints are satisfied.  The result is generally a compromise 
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since a feature type may have a number of constraints, some of which may conflict.  For 

example, a minimum size constraint on two neighbouring buildings, which could lead to an 

increase in size, might conflict with an overlap constraint (on all features), which could lead 

to a displacement, which might conflict with a position should not change constraint. 

 

(a) Standard 1:25K product 

 

(b) Vector Map District at 1:25K 

Figure 2.4 Automatic generalisation (Data © Crown Copyright 2014. An Ordnance Survey/EDINA supplied service.) 
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The solution to constraint conflicts is to associate a cost with each constraint violation then 

attempt to minimise the overall cost.  A number of optimisation techniques have been 

developed but the agent-based method (Ruas & Duchêne, 2007; Lamy et al., 1999) is the only 

one that can utilise all generalisation operators (Harrie & Weibel, 2007) and is widely used in 

map production (Revell et al., 2011; Lecordix & Lemarie, 2007).  Figure 2.4 provides an 

example of a map produced by an agent-based system (Figure 2.4b), in contrast to a more 

traditionally produced map (Figure 2.4a).  In an agent-based system each topographic feature 

is represented by an agent. Agents can also represent groups of features (meso-agents). For 

each mapped feature type the system has to list the relevant constraints, the priority of those 

constraints (in case of conflicts) and the algorithms that may resolve the particular constraint 

(Taillandier et al., 2011).  It is not always apparent what type of knowledge is being 

represented here.  For example, the list of algorithms that resolve a particular constraint could 

be classed as declarative or procedural knowledge.  

Agent-based systems employ a tree-based search to reach the ideal solution.  This search can 

be optimised by using another type of knowledge, control knowledge (Taillandier et al., 

2011).  An example of control knowledge is a stopping criterion that determines if a search of 

a particular branch of the tree is worth pursuing. 

The flexibility of the constraints-based technique is the reason why it has been more accepted 

than the rule-based approach and it should be considered for on-demand mapping. All of the 

knowledge described above, including the control knowledge, represents a knowledge base 

for the agent-system. However, this knowledge base has to be updated each time a new 

feature type has to be mapped or a new algorithm is incorporated into the system (Taillandier 

& Taillandier, 2012).  Also constraints such as those that represent minimum width and 

minimum separation require threshold values that might not suit all map conditions.  It is hard 

to see how the constraints-based approach can be easily extended to map a variety of feature 

types at multiple scales without expert involvement. 

2.6 Approaches to on-demand mapping 

One possible solution to on-demand mapping is the multiple representation database (MRDB) 

or multi-scale database (MSDB) which stores different representations of the same objects at 

different scales with bi-directional links between each entity at different scales (Dunkars, 

2004).  
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Figure 2.5 A cluster of buildings at three different scales (based on Hampe et al. (2003)) 

Figure 2.5 depicts a building cluster represented at three different scales in an MRDB.  As the 

scale changes from 1:25K to 1:50K the buildings are amalgamated into a single feature.  This 

represents a semantic as well as a geometric change. As the scale changes to 1:100K the 

buildings are still represented by a single object but at a reduced size and simplified shape. 

MRDB are used by some National Mapping Agencies to manage the process of maintaining 

multiple map products, each at different scales (Regnauld et al., 2013).  For on-demand 

mapping, Bernier and Bedard (2007) suggest a hybrid solution where, if the data can be 

generalised automatically at sufficient speed then it should be, otherwise the data should be 

extracted from an MRDB at the nearest scale to the target scale.  Cecconi et al. (2002) also 

offer a hybrid model but work on the assumption that it is easier to generalise a dataset from a 

level of detail, provided by the MRDB, close to the required scale than it is from a single 

highly detailed scale.  For each feature type, they seek to define which operators are 

applicable over a range of scales. They also make the distinction between “on-the-fly” 

mapping where low processing time is the main motivation and “on-demand” mapping where 

the cartographic quality of the output is the primary concern. 

The effectiveness of an MRDB approach will be determined by the number of layers available 

in the MRDB.  MRDB are not easy to build; they can only be constructed by matching 

existing datasets or by generalising from a single detailed dataset (Sarjakoski, 2007; Dunkars, 

2004). Another problem with this approach is that if the inclusion of user-supplied data is a 

requirement of on-demand mapping then any such data would have to be integrated with the 
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data from the MRDB.  It is, however, possible to express the horizontal relations between 

features at the same scale, such as that between a building and an access road (Bobzien et al., 

2008).  

An example of a map created for a specific purpose is the destination map, where the aim is 

to aid navigation from anywhere in a region to a particular point.  The web-based generation 

of destination maps by Kopf et al. (2010) provides an example of automatic generalisation at 

different scales in real-time.  Although the method works at arbitrary scales it has been 

designed to generalise only two pre-defined feature types, the road and hydrography 

networks, using a pre-defined workflow.  

Sabo et al. (2008) seek to encapsulate generalisation knowledge within “self-generalising 

objects”, which represent the features that have to be mapped, in a technique similar to the 

agent-based approach described earlier.  They stress that on-demand mapping should be a 

completely automatic process but do not address how the knowledge required to generalise 

user-supplied data can be captured. 

The “vario-scale” approach (van Oosterom & Meijers, 2011) aims to generalise topographic 

data to any arbitrary scale.  This is achieved by adding a third, scale-dependent, dimension to 

a 2D representation of the data and then taking a slice through the structure to derive a map at 

a particular scale.  The approach has been used to apply a limited number of generalisation 

operators to features such as roads, rivers and farmland.  However, the authors concede that 

the approach needs to be extended to include more semantics and context awareness (Meijers 

et al., 2012). 

Corcoran et al. (2011) take a similarly “geometric”
1
 approach to on-demand mapping. To 

generate a map at the required target scale and coverage they use the concept of geometric 

coherence; that is, their model assumes that a requested map has similar geometric data as the 

previously requested map and that the new map can be generated simply by adding or 

subtracting from the previous map, thus saving time.  However, this approach may be limited 

to mapping for real-time navigation where geometric coherence is more likely to occur. 

Foerster et al. (2012) consider using user profiles to guide the automatic generation of base 

maps to support thematic data. The profiles describe the topological relationship between the 

thematic data and the base data on the assumption that it is necessary to preserve the 

relationship. The relationship between thematic and base data is also a concern of the 

                                                 
1
 All generalisation is ultimately geometric but the approaches in this category take a purely geometric approach. 
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approach described by Balley et al. (2012) which aims to generate maps with just sufficient 

information to meet user requirements. They use a rule-base to match “mapped concepts” or 

features to a template “global” plan. 

The different approaches are listed in Table 2.1 and an attempt has been made to classify the 

type of knowledge that each approach used, considering that, as discussed earlier, it is not 

always easy to distinguish between procedural and declarative knowledge.  

Approach Priority 

 

Knowledge 

representation 

Reference 

MRDB then on-

demand 

generalisation 

On-the-fly and on-

demand mapping 

Declarative knowledge in 

MRDB 

Cecconi et al. 

(2002) 

MRDB or on-

demand 

generalisation 

On-the-fly 

mapping 

Declarative knowledge in 

MRDB 

Bernier and 

Bedard (2007) 

Self-generalising 

objects 

On-the-fly 

mapping 

Procedural knowledge in 

the object definitions 

Sabo et al. (2008) 

Vario-scale Multi-scale 

representation 

Procedural knowledge in 

the slicing algorithm 

van Oosterom and 

Meijers (2011) 

Geometric 

coherence 

On-the-fly 

mapping 

Procedural knowledge and  

declarative knowledge in 

current state of map 

Corcoran et al. 

(2011) 

Plans Integrating user 

data  

Procedural knowledge in 

generalisation plans 

Balley et al. (2012) 

User profiles Respecting user 

requirements 

Declarative knowledge in 

the profiles 

Foerster et al. 

(2012) 

Destionation map 

workflow 

On-the-fly and on-

demand 

Procedural knowledge in 

the workflow and 

algorithms 

Kopf et al. (2010) 

Table 2.1 Approaches to on-demand mapping 

The definition of on-demand mapping by Cecconi (2003) can be modified to stress the 

importance of automation:  the automatic creation of a cartographic product upon a user 

request appropriate to its scale and purpose. The omission of a requirement for real-time, or 

on-the-fly, mapping from the definition simplifies the problem. 

The approach of Balley et al. (2012) is based on the semantic framework for on-demand 

mapping proposed by Regnauld (2007) where knowledge related to all of the components of a 

future on-demand system, including user requirements, source data, and generalisation 
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operators and algorithms, would be formalised.  This would allow for the sharing of 

generalisation knowledge and its re-use when applied to different data sources. 

2.7 Taxonomies of generalisation operators 

The operator is a key concept in generalisation (Regnauld & McMaster, 2007) and there have 

been a number of attempts to classify and define them.  Roth et al. (2011) identified 13 

classifications prior to their own, with the earliest from 1963. Roth et al. (2011) use the term 

typology,  Foerster et al. (2007a) use the term classification. There are subtle differences 

between such terms (Gruninger et al., 2008; van Rees, 2003) but the term taxonomy will be 

used in this discussion.  

 

Figure 2.6 Comparison of three generalisation operator taxonomies 

The  taxonomy of Roth et al. (2011) and that of Foerster et al. (2007a)  and the much cited 

taxonomy of McMaster and Shea (1992) will be compared in an attempt to highlight some of 

the problems and issues in defining consistent, shared generalisation knowledge (Figure 2.6). 

The three taxonomies are informal representations of declarative knowledge. 

The three classifications suffer from synonymy, the application of different terms to the same 

concept.  For example, to describe the process of grouping a set of point features into a single 

area feature, Foerster et al. (2007a) use the term Combine where McMaster and Shea (1992) 

use the term Aggregation.  The term Classification as employed by McMaster and Shea 



23 

(1992) has the same definition as Reclassification as used by the other two taxonomies.  

Synonymous terms are linked by single lines in Figure 2.6. 

Polysemy, the use of the same term for different concepts, also occurs. Roth et al. (2011), for 

example, define Merging as the replacement of a group of features with a single feature of the 

same dimensionality, whereas in the definition of McMaster and Shea (1992), Merging only 

applies to line features.  

There are also differences in the granularity of the operators; Foerster et al. (2007a) define an 

Enhancement operator that matches what McMaster and Shea (1992) define in three separate 

operators; Smoothing, Enhancement and Exaggeration. Such cases are highlighted using 

multiple lines (Figure 2.6). 

There is also disagreement over what operators can actually be considered as generalisation 

operators.  For instance, McMaster and Shea (1992) do not regard the Selection of features as 

a generalisation process but rather a pre-processing step.  Foerster et al. (2007a)  regard 

Symbolisation in the same manner.  Finally, although all three classifications have two tiers, 

the top-level categories vary in name and meaning. 

Kavouras and Kokla (2008) list a number of possible reasons for “taxonomic diversion” that 

could explain the differences in the taxonomies.  These include perspective, where the 

classification is influenced by the needs of a specific application. The Roth et al. (2011) 

classification, for example, was designed specifically to support the ScaleMaster schematic 

whereas the Foerster et al. (2007a) classification was devised to provide a consistent 

classification of operators to support web-based generalisation. Cultural differences may also 

apply. For example,  Roth et al. (2011) point out that the division between Cartographic and 

Model generalisation operators, employed by Foerster et al. (2007a), is particularly dominant 

in the European literature. 

However, even if an agreed taxonomy and description of operators were devised it would not 

be sufficient for an automated system. A taxonomy can be regarded as an ontology without 

semantics (Kavouras & Kokla, 2008).  For automated on-demand mapping we require formal, 

machine-readable descriptions of operators rather than natural language descriptions. 

Foerster et al. (2007a) claim their classification of generalisation operators as the first to be 

based on a formal model.  They use the ISO General Feature Model and OGC GO-1 

Application Objects model to describe the impact of the operators.  For example, the 

Amalgamation operator is defined as “Based on GM_Object of the original features of the 
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same FeatureType sharing a certain SpatialAssociationType a new GM_Object will be 

generated” (p10), where the terms in italics are defined in the ISO General Feature Model. 

However, such natural language descriptions are still not machine-readable. 

It is possible to derive a more semantically rich classification of algorithms, as opposed to 

operators, based on the section titles of the book by Li (2006).  He uses at least four levels to 

organise the algorithms he details in his book (Figure 2.7).  The top level is based on the 

geometry of the features being transformed.  His use of the term transformation rather than 

generalisation is convenient given the debate over which operators can be termed 

generalisation operators.  He also makes a distinction between algorithms that operate on 

individual features and those that operate on groups or sets of features. The third level 

introduces the operator. 

In comparison to the three taxonomies described above it is possible to see how a traversal of 

this hierarchy could be used as a basis for reasoning about generalisation.  For example, if the 

data was a set of point features that required aggregation, then either the ISODATA or the K-

means algorithm could be used.  Although the geometry of the source data is easy for a 

mapping system to determine it would still be necessary to determine automatically that 

aggregation was the required transformation. One weakness of this accidental taxonomy is 

that it favours a geometric, rather than semantic approach to generalisation. 

 

Figure 2.7 A partial taxonomy of generalisation algorithms based on Li (2006) 

Although the taxonomies discussed are knowledge representations, they are informal, i.e. not 

machine-readable. The proposal is, therefore, to formalise generalisation knowledge using an 

ontology.  However, the application of ontologies in cartographic generalisation is not new. 
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2.8 Ontologies for generalisation 

This section looks at applications where geographic knowledge has been made explicit and 

formalised using ontologies in an attempt to aid generalisation. 

Kulik et al. (2005) used information about road class in a line simplification algorithm that 

assigned geometric and semantic weights to vertices.  User profiles were defined which 

reflected the type of map user.  The knowledge was represented simply as quintuples, each 

element in the quintuple represented a road class; minor roads, major roads, highways etc. 

Dutton and Edwardes (2006) used the Web Ontology Language (OWL) to represent the roles 

of geographic features and semantic and structural relationships between features in a coastal 

region.  Wolf  (2009) also proposed the encoding of semantic relationships using ontologies, 

in particular to influence the aggregation and dimensional collapse of features. 

A hierarchical ontology of Geological Time Scales was designed and utilised by Ma et al. 

(2012) to aid the generalisation of geological maps.  Rather than directly influence 

generalisation, the aim of Luscher et al. (2008) was to use ontologies to aid pattern-

recognition in features, in particular to identify terrace houses. Such information could be 

used to enhance the semantic information in a spatial database, which could then be used to 

aid decisions on representation. 

Iosifescu-Enescu and Hurni (2007) would classify these ontologies as spatial, defining the 

semantics of features, as opposed to  cartographic ontologies which contain “operational 

knowledge” required to build legible maps. Their proposed cartographic ontology contains 

knowledge in the form of cartographic rules aimed at producing high quality web maps. 

However, their rules are related to symbolisation and are used to represent cartographic 

conventions related to use of colour and label display and are not concerned with 

generalisation. 

There is a distinction between using ontologies to aid the decision making process and using 

ontologies and ontological reasoning to make decisions (Šaša Bastinos & Krisper, 2013). The 

work described above mainly falls in the former category.  Despite that, they fall in that rare 

category of ontologies that “go beyond simple taxonomies and have been adopted into 

scientific workflows” (Janowicz et al., 2012, p7). However, none of these ontologies describe 

the process of generalisation, which is the aim of this research.  
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2.9 Conclusions 

This chapter has examined automatic generalisation from a knowledge representation 

perspective, which has been lacking since the publication of Map Generalization: Making 

Rules for Knowledge Representation (Buttenfield & McMaster, 1991). Since then there has 

been research into the acquisition of generalisation knowledge (Mustiere, 2005; Kilpeläinen, 

2000; Weibel et al., 1995; Chang & McMaster, 1993) but little research that reflects the 

paradigm shift in artificial intelligence from knowledge engineering as a transfer process to a 

modelling process (Studer et al., 1998). 

The rule-based and constraints-based approaches for automatic generalisation, described 

above, have limitations; in particular they lack the flexibility that is required by on-demand 

mapping. This is partly because much generalisation knowledge is embedded in software, 

either in ArcGIS workflows or in the configurations of agent-based systems.  Encapsulating 

that generalisation knowledge in an ontology will lead to “smarter data” (Carral et al., 2013) 

where the business logic is transferred from the application to the data.  Formalising both the 

knowledge of the features to be mapped (the data) and the process of generalisation in an 

ontology will enable that knowledge to be shared and will also allow for reasoning about the 

selection of operators and algorithms to create maps on-demand. The following chapter will 

expand on the advantages of using an ontology and describe how such an ontology might be 

built. 
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3 An ontological approach to on-demand mapping 

3.1 Introduction 

The knowledge required for automatic generalisation is currently encapsulated either formally 

and implicitly in generalisation software such as agent-based systems (Taillandier & 

Taillandier, 2012) or informally and explicitly, for example, in different generalisation 

operator taxonomies (Roth et al., 2011; Foerster et al., 2007a; McMaster & Shea, 1992).  

Encapsulating that knowledge explicitly and formally in an ontology will allow it to be 

shared, expanded and utilised by an on-demand mapping system. This will also result in 

“smarter” data where the business logic is no longer held in the application but in the data 

(Carral et al., 2013). 

The aim is to design an ontology specifically to solve the problem of on-demand mapping, 

which requires the implementation of a model for automatic generalisation to provide context 

for the ontology (section 3.2). This will provide context and help elicit the concepts that are 

relevant to the domain.  It is then necessary to identify the type of knowledge we wish to 

represent and section 3.3 justifies the representation of declarative knowledge over procedural 

knowledge.  Knowledge can be represented in a number of ways, it is therefore necessary to 

justify the use of an ontology (sections 3.4 and 3.5). The type of ontology has also to be 

considered (section 3.6) before, finally, selecting a methodology that can be used to guide the 

building of the ontology (section 3.7).  The implementation of the methodology is described 

in Chapter 5. 

3.2 A model for generalisation 

Knowledge and knowledge representation are context dependent (Kavouras & Kokla, 2008), 

and a model of the process of generalisation will provide context, determining how the 

knowledge is reasoned with. Such a model has been described as a “conceptual framework” 

(McMaster, 1991) and a “conceptual model” (Sarjakoski, 2007) but the intention is the same; 

it is necessary to provide a high-level description of the process that does not attempt to 

specify the details of how generalisation should be done. 

For an automatic generalisation system a formal, comprehensive conceptual framework is 

required (McMaster, 1991) and a number of generalisation models have been developed 

(Sarjakoski, 2007).  Of these, the Brassel and Weibel (1988) model has been cited as the most 

appropriate for computerisation in general (Li, 2007) and for expert systems in particular 

(McMaster, 1991).  The Why, When and How approach to generalisation (McMaster & Shea, 

1992), which can be viewed as an extension of the Brassel and Weibel model (Weibel, 1997), 
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has the flexibility required for the totally automated approach required for on-demand 

mapping and is particularly appropriate to a semantic approach to generalisation. Their model 

(Figure 3.1) seeks to define why generalisation is required (for example, legibility), when it 

should be employed (when certain geometric conditions such as congestion occur) and how it 

should be implemented (using generalisation operators such as amalgamation and 

displacement).   

The model starts by considering the reasons why generalisation is required.  This research is 

limited, at first, to maintaining map legibility by reducing complexity. The model defines a 

number of geometric conditions that will define when generalisation is required. These 

conditions can be assessed using a number of measures.  The final step is to decide how to 

generalise. This is done by applying spatial and attribute transformations, or operators.  The 

model also defines three transformation controls generalisation operator selection, algorithm 

selection and parameter (value) selection. These are the key tasks of an on-demand mapping 

system, which has to possess the knowledge required to perform these tasks automatically. 

The model was revised and simplified for on-demand mapping (Figure 3.1).  The major 

concepts were retained but, for example, the more esoteric concepts such as Gestalt and 

abstract measures were removed.  Also removed were the Computational elements reasons for 

generalisation since they were not a priority for this research.  The distinction between Spatial 

and Attribute transformations (Figure 2.6) was also removed as it is unnecessary for machine 

understanding. Added to the model was a new transformation control, measure algorithm 

selection, which is necessary for the approach to on-demand mapping that was adopted.  In 

addition, some of the more imprecise concepts, such as the “conflict” geometric condition, 

might require revision. 
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Figure 3.1 The McMaster and Shea generalisation model modified for on-demand mapping 

As has been discussed earlier, the knowledge required for operator, algorithm, and parameter 

selection (the original Transformation Controls) is invariably embedded in generalisation 

software or held by the expert users of those systems.  It would be sensible to formalise this 

knowledge and make it sharable so that the knowledge required to map road accidents, for 

example, would only need to be defined once and then shared by the different mapping 

systems. 

By framing the process of generalisation as a set of questions the McMaster and Shea model 

imposes a semantic approach to generalisation in contrast to a mechanistic, unthinking 

approach such as rule-based systems.  The semantic approach is further strengthened if 

generalisation knowledge is represented as declarative knowledge. 

3.3 Declarative versus procedural knowledge 

Whereas procedural knowledge can be characterised as “know-how” knowledge, declarative 

knowledge can be described as “know-what” knowledge (Chen, 2008). While procedural 
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knowledge describes what to do with the knowledge, the defining characteristic of declarative 

knowledge is “use-free expression” (Davis et al., 1993). 

The main reason for using declarative over procedural knowledge is that it does not prescribe 

a use and can be “extended, beyond that explicitly represented, by reasoning processes that 

derive additional knowledge” (Genesereth & Nilsson, 1998, p3).  This is done by inference.  

The advantages of declarative knowledge have not gone unrecognised in the cartographic 

domain and Kilpeläinen (2000) states “formalisation of knowledge can lead to discovery of 

new knowledge” (p50).  As discussed earlier, it is not always obvious whether particular 

generalisation knowledge is procedural or declarative.  This is the same in other domains, but, 

Rich and Knight (1991, p395) conclude that it “often turns out that more declarative 

representations are more flexible than more procedural ones are”. 

One disadvantage of declarative knowledge is that its use is slower than directly applying 

procedural knowledge; efficiency is sacrificed for flexibility (Genesereth & Nilsson, 1998). 

With declarative statements the user has to decide how to use the knowledge (Davis et al., 

1993). More specifically, for an automated system, a program is required that determines how 

the knowledge is used (Rich & Knight, 1991). The methodology for developing such a system 

will be discussed in the next chapter. 

The intention is to describe the concepts in the Why, When and How model in a declarative 

manner. That is, to describe sufficiently the concepts of conditions, measures, operators and 

algorithms so that we can infer procedural knowledge.  This will then be used to generalise 

the mapped geographic features that exhibit any of the geometric conditions (Figure 3.1) at 

any scale.  There will still be procedural knowledge contained in the algorithms. But the 

intention is to use declarative knowledge as much as possible to select those algorithms.  That 

knowledge will be represented in an ontology. 

3.4 What is an ontology? 

The most cited definition of an ontology is that of Gruber (1993): “an explicit specification of 

a conceptualization”. This definition was refined by Borst (1997)  as a “formal specification 

of a shared conceptualization”.  Studer et al. (1998) then merged these two definitions, 

describing an ontology as a “formal, explicit specification of a shared conceptualization”. 

The key term in these definitions is  conceptualization, which has been described by 

Genesereth and Nilsson (1998)  as “the objects, concepts, and other entities that are assumed 

to exist in some area of interest and the relationships that hold among them”. They describe a 

conceptualization as an “abstract, simplified view of the world”, which is why 
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conceptualizations are partial, imprecise and conflicting (Kavouras & Kokla, 2008).  In effect, 

a conceptualization is a model of reality.  In our case we are trying to create an abstraction 

(the ontology) of a process (generalisation) that produces an abstraction (a map). Given the 

complexity of this task it is not surprising that differences, such as those described in 

section 2.7, arise.  An explicit  specification means that the concepts and their relationships 

must be explicitly defined (Studer et al., 1998).  This is in contrast, for example, to the 

implicit knowledge held in software. 

The specification must be formalised in a machine-readable language, which excludes natural 

language (Guarino et al., 2009). So the natural language descriptions used by the 

generalisation operator taxonomies (section 2.7) are insufficient. The term “shared”, 

introduced by Borst (1997), implies that the knowledge encapsulated is consensual, without 

which the benefits of the ontology are limited. This imposes a limit on the design of the 

ontology in that, even if it is not constructed by consensus, its concepts and the terms used to 

describe those concepts must be understood by the ontology’s target audience. 

The knowledge representations discussed so far can be classified in terms of their formality 

and explicitness (Figure 3.2). Cartographers’ knowledge can be classed as implicit and 

informal or tacit. Attempts to make this knowledge explicit have led to a number of 

generalisation operator taxonomies as described in the previous chapter. Much knowledge has 

been formalised implicitly in generalisation software but only ontologies are both formal and 

explicit. 

 

Figure 3.2 Classifying knowledge representations 



32 

A key feature of an ontology is the representation of the relationships between concepts. As 

an example, Figure 3.3 gives a view of the possible relationships in the part of the ontology 

that describes the FeatureType concept. The model makes a distinction between Topographic 

(material) and Thematic (immaterial) feature types on the assumption that these two feature 

types will be mapped differently. The NetworkFeatureType is defined, in turn, as a sub-class 

of the TopographicFeatureType on the assumption that networks, such as roads and rivers will 

be managed differently from other topographic features.  Most of the relationships between 

the objects are hierarchical, of the form “X is a type of Y”, and an ontology consisting 

entirely of such subsumption relationships is no more than a taxonomy. However, an ontology 

can define relationships across classes, for example, the occursOn relation between road and 

accident feature types. 

 

Figure 3.3 Example relationships in an ontology 

The structure of the ontology depends on its intended use.  If we consider point features we 

might believe that the generalisation of point events such as crimes and accidents could be 

done differently from the generalisation of physical point features such as bus stops.  It might 

be sensible to aggregate events such as crimes and accidents to identify hot-spots but not to do 

the same with bus stops. In this case the definition of an EventFeatureType would be useful 

(Figure 3.3). 

3.5 Why use an ontology? 

Although accepting that the results of generalisation are the results of manipulating geometric 

primitives, Mackaness (2007) states that those manipulations need to be based on context.  

That is why, when mapping road accidents, for example, the road network cannot be 

generalised without taking account of its relationship with the accidents.  Context is part of  

the semantics of a domain, which can be “encapsulated, elucidated, and specified by an 

ontology” (Kavouras & Kokla, 2008, p10).  In the domain of generalisation, the semantic 
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relationships that govern generalisation must be made explicit and formalised (Wolf, 2009; 

Dutton & Edwardes, 2006). Over twenty years ago, Nyerges (1991) pointed out that 

cartographers lacked the means to systematically document the knowledge required for 

generalisation. The concept of ontologies provides the means. 

It is not easy to express the relationships between different feature types, such as those 

between buildings and access roads, using the hierarchical object-oriented data model.  

However, as we have seen, it is possible to describe such relationships in an ontology since an 

ontology can not only represent the parent-child relations between objects in a hierarchy but 

also the relationships that cross the hierarchy (Figure 3.3) and even those relationships that 

cross between different hierarchies. 

Using an ontology to describe a domain can lead to intelligent knowledge retrieval 

(Benjamins et al., 1998).  It has been argued that every information system contains an 

implicit ontology and making it explicit avoids conflicts between the ontological concepts and 

their implementation (Fonseca et al., 2002).  For example, two different algorithm 

programmers might have different understandings of the concept of the amalgamation 

generalisation operator. 

Kavouras and Kokla (2008) assert that the “only intelligent activity justifying the possession 

of knowledge is reasoning” (p126) and the aim of this research is to use an ontology to aid 

decision-making, such as selecting a generalisation operator and algorithm for a particular 

geometric condition.  Reasoning with ontologies can be done by inference, which allows us to 

get “new expressions from old”  (Davis et al., 1993).  The intention is to encapsulate the 

concepts of generalisation in an ontology in a sufficiently explicit manner so that it can be 

used to infer decisions on what operators should be applied.  The application of ontologies 

supports the aim of defining declarative knowledge and using it to infer procedural 

knowledge.  So rather than explicitly state that geometric condition X can be remedied by 

generalisation operator Y, the intention is to describe the characteristics of the condition and 

operator with sufficient detail to infer that relationship. 

A study of the literature reveals that most ontologies are designed to simply formalise, or 

“fix”, the knowledge in a domain to make it shareable rather than to solve particular 

problems.  There are a number of ontologies that attempt the latter, for example to match 

students to modules (Kontopoulos et al., 2008) and applicants to jobs (García-Sánchez et al., 

2006). In the geospatial domain there are ontologies to aid route finding (Niaraki & Kim, 

2009), flood risk assessment (Scheuer et al., 2013), earthquake emergency response (Xu et al., 
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2014) and web service selection (Jung et al., 2013).  The route finding application of Szwed et 

al. (2012), which uses an ontology to suggest appropriate algorithms has the most relevance to 

the this research.  However, they use the ontology to encapsulate procedural knowledge, in 

the form of rules, rather than declarative knowledge. Ontologies designed to solve specific 

problems seem to be a relatively recent phenomena. 

3.6 What type of ontology is required? 

A domain ontology defines the concepts for a particular domain of interest (Kavouras & 

Kokla, 2008).  Domain ontologies are necessarily comprehensive since they are not coupled 

with a particular task whereas an application ontology will contain concepts that are essential 

for a particular task and draw on concepts from a relevant domain ontology where necessary 

(Hart & Dolbear, 2013).  An ontology for on-demand mapping using the How, Why and When 

model will contain terms that would not necessarily appear in a general purpose domain 

ontology for generalisation. 

An application ontology, or “task” or “problem-solving” ontology, will not be as reusable as 

an ontology intended to fix the knowledge of an entire domain but will sacrifice scope for the 

semantic richness required to support useful inference.  It may be possible to draw on a 

generalisation domain ontology such as that proposed by Touya et al. (2010) for some 

common concepts such as operators, but the intention is to develop an application ontology 

limited to solving the problem of on-demand mapping.  If we accept the assertion by Davis et 

al. (1993, p29) that “representation and reasoning are inextricably and usefully intertwined” 

then how we describe generalisation knowledge is dependent on how it is to be used. 

3.7 Selecting an ontology design methodology 

The discipline that examines the principles, methods and tools for the development of 

ontologies is known as “ontological engineering” (Sure et al., 2009). Ontological engineering 

can be seen as a more robust and theoretically sound successor to knowledge engineering 

(Mizoguchi & Kozaki, 2009).  In particular, an ontology engineering methodology provides a 

guide to the creation of an ontology.  A number of methodologies have been developed and it 

is necessary to select one that is appropriate to the task. This is not however, a straightforward 

choice since there is no one correct way of designing an ontology (Noy & McGuinness, 

2001). 

3.7.1 69Existing design methodologies 

The application of a methodology will provide structure to the process of building an 

ontology and will ensure best practice (Hart & Dolbear, 2013).  
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Uschold and King (1995), who were the first to emphasise the necessity of applying a 

methodology in ontology design (Fernández-López & Gómez-Pérez, 2002), based their 

methodology on their experiences gained in developing an ontology for enterprise modelling. 

In the geospatial domain,  Torres et al. (2011) developed GEONTO-MET specifically aimed 

at geographic concepts.  The METHONTOLOGY methodology (Fernández-López et al., 

1997), in contrast, was intended to provide a generic approach to building ontologies. 

However, because most methodologies were designed for specific domains or projects, there 

is a lack of a single dominant methodology (Iqbal et al., 2013). 

A literature search failed to find a methodology that advertised itself as specifically targeted at 

the development of application ontologies so it was necessary to examine a number of 

methodologies in an effort to find the most suitable.  Reviews of available methodologies are 

a useful starting place.  Reviews have been carried out by Fernández-López and Gómez-Pérez 

(2002), Sure et al. (2009) and more recently by Iqbal et al. (2013) but selecting a 

methodology based on reviews is not an easy task.  Some reviews have restricted domains 

such as public administration (Stadlhofer et al., 2013) or tend to have a particular perspective; 

for example, software engineering (Fernández-López & Gómez-Pérez, 2002).  Iqbal et al. 

(2013) define a number of criteria that can be used to aid the selection of an appropriate 

methodology but their criteria are biased towards reusability and sharing which is not yet a 

priority for this research, which is currently limited to testing the concept of the applicability 

of ontological reasoning to the selection of generalisation operators and algorithms. 

An alternative starting place in the search for a suitable methodology is to examine the 

literature for the methodologies used in similar decision-making geospatial projects.  

However, if formal methodologies have been used to develop geospatial ontologies then their 

use seems to be rarely documented.  For example, Jung et al. (2013) developed eight 

ontologies for a “geospatial problem solving environment” without describing how the 

ontologies were designed. 

However, despite the diverse origins of ontology design methodologies, a study of four of 

them reveals areas of overlap (Figure 3.4).  
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Figure 3.4 Comparable steps in four ontology design methodologies 

A common feature among many methodologies is the separation of phases for the informal 

and formal description of concepts.  For example, the Grüninger and Fox (1995) methodology 

involves the definition of  informal and formal competency questions and formal and informal 

terminologies;  Noy and McGuinness (2001)  recommend creating an informal list of 

concepts and their natural language descriptions prior to defining the class hierarchy; and  

METHONTOLOGY has conceptualisation and formalisation phases (Fernández-López & 

Gómez-Pérez, 2002).  To allow for a less abrupt transition from the informal to the formal it 

is useful to subdivide the conceptualisation phases further into informal, semi-formal and 

formal (Figure 3.5) where the semi-formal phase will consist of “mind maps” or, more 

exactly, directed or undirected graphs  (Sure et al., 2009).  Some ontology editing tools, such 

as Protégé  (Stanford Center for Biomedical Research, 2014), contain components for viewing 

ontology structures visually but these are used after the ontology has been encoded and are 

not appropriate for this phase. 
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Figure 3.5 Three phase conceptualisation in ontology design 

Methodologies such as METHONTOLOGY and UPON (De Nicola et al., 2009)  employ a 

software engineering approach to ontology design.  Mirroring the software development 

approach adds structure and organisation to the process (Saripalle & Demurjian, 2012).  This 

approach has been justified by the inclusion of the term “data” in the IEEE definition of 

software (Fernández-López & Gómez-Pérez, 2002)  but that definition could be regarded as 

too broad and neither of the two OED definitions of software includes the term “data”  

(Oxford English Dictionary, 2014c) .  Fernández-López and Gómez-Pérez (2002) employ the 

fact that an ontology, by definition, has to be machine-readable as further justification for a 

software engineering approach but it could be argued that the ontology only becomes 

machine-readable at the end of the design process.  

It might be argued that a software engineering approach is particularly relevant to the 

development of an application ontology and the developers of UPON state that their 

methodology is not designed to construct generic domain ontologies but user-oriented 

ontologies, where users include humans and automated systems (De Nicola et al., 2009).  

However, the development of a knowledge representation should not necessarily mirror that 

of a software application and even an application ontology represents only a part of the whole 

application.  The software engineering approach places too much emphasis on the 

management of the process of designing the ontology rather than the design process itself. 

There are, however, some aspects of the software development approach that are useful. For 

example, the UPON methodology advocates the employment of use cases at the start of the 
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ontology design process since they “drive the exploration of the application area” (De Nicola 

et al., 2009, p259).  Another useful inclusion from software engineering is the iterative 

approach and a number of methodologies stress the iterative nature of the ontology 

development process. 

One aspect of ontology design that should be considered is ontology design patterns, which 

are small ontologies designed to solve particular, recurring, problems in ontology design  

(Gangemi & Presutti, 2009).  The use of design patterns can lead to the improved efficiency 

of the design process (Sure et al., 2009) and to a higher quality ontology in terms of its ability 

to answer competency questions (Gangemi & Presutti, 2009).  The Ontology design patterns 

website
2
  was searched for any relevant patterns but none were found. 

The much cited Ontology Development 101 guide of Noy and McGuinness (2001)  is a 

methodology in all but name. They stress that for an ontology to work effectively it should be 

designed with a specific task in mind.  This is close to the definition of an application 

ontology.  In particular, their approach gives detailed guidance on complex issues relating to 

the definition of class hierarchies and properties of classes and individuals (or instances) 

(Iqbal et al., 2013). The guide also gives assistance on making decisions on whether an entity 

should be represented as a class or an instance.  Given that the proposed ontology will not 

only describe geographic features but intangibles such as events and algorithms, such detailed 

guidance will prove useful. Indeed lack of sufficient detail has been identified as a common 

failing among a number of other methodologies (Iqbal et al., 2013). 

After studying a number of methodologies including METHONTOLOGY (Fernández-López 

et al., 1997),  GEONTO-MET (Torres et al., 2011), KANGA (Denaux et al., 2011) and the 

methodologies of  Uschold and King (1995) and  Grüninger and Fox (1995),  it was decided 

that the approach of Noy and McGuinness (2001)  was most suitable for developing an 

application ontology.  However, embracing the assertion of Noy and McGuinness (2001) that 

there is no single, correct, methodology for designing an ontology,  the decision was taken to 

use their guidelines as a starting point and integrate recommendations from other 

methodologies where they add value; for example, the semi-formal description of the 

ontology in the form of directed graphs suggested by Sure et al. (2009) will aid the 

visualisation of both hierarchical and non-hierarchical relationships between concepts.  

                                                 
2
 http://ontologydesignpatterns.org 
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The determination of classes and relationships mark the end of semi-formal conceptualisation 

phase (Figure 3.5). For the next stage, formal conceptualisation, the ontology will need to be 

implemented in an appropriate machine-readable language. 

3.7.2 Formalising the ontology in Web Ontology Language (OWL) 

Up to now the discussion of the ontology has been as a high level, abstract, concept and the 

ontology will need to be formalised using a knowledge representation instrument.  Such 

instruments allow for the examination of the concepts and their relations (Kavouras & Kokla, 

2008). According to Rich and Knight (1991) a good knowledge representation system should 

have Representation Adequacy (the ability to represent all of the necessary knowledge), 

Inferential Adequacy (the ability to derive new knowledge from old), Inferential Efficiency 

(the ability to include information that guides the inference process), and Acquisitional 

Efficiency (the ability to acquire information easily). 

The last of these, knowledge acquisition, is without the scope of this discussion but the 

acquisition of procedural generalisation knowledge directly from cartographers (Rieger & 

Coulson, 1993; Kilpeläinen, 2000) and by using machine-learning techniques (Steiniger et al., 

2010; Taillandier, 2007; Mustiere, 2005; Chang & McMaster, 1993)  has been well-

researched. 

Ontologies can be represented in a number of ways using frames, logic, rules and semantic 

nets (Davis et al., 1993; Shea, 1991). Of these, logic, in particular Description Logics (DL) 

has high Inferential Adequacy, aiding both the design and deployment of ontologies 

(Horrocks, 2013). 

Ultimately the ontology has to be implemented in a machine-readable language.  The Web 

Ontology Language (OWL) (Antoniou & van Harmelen, 2009) can be used to represent an 

ontology.  OWL has a number of sub-languages of which OWL-DL will be utilised.  OWL-

DL uses Description Logics to encapsulate the ontology and offers a balance of 

expressiveness and computational completeness; that is, it guarantees to always return an 

answer to any query.  OWL-Full is more expressive but does not offer computational 

completeness;  it may be possible to query an OWL-Full ontology and not get any answer 

(Hart & Dolbear, 2013). The Protégé-OWL editor can be used to encode the ontology in 

OWL-DL (Stanford Center for Biomedical Research, 2014). The representational adequacy of 

OWL will be tested by the construction of the ontology. 



40 

3.7.3 Evaluation 

The evaluation of the ontology is seen as a key phase in several ontology development 

methodologies (Sure et al., 2009; Fernández-López et al., 1997; Grüninger & Fox, 1995). The 

use of competency questions, which can be used to evaluate whether the ontology meets 

requirements and act as a justification for the ontology (Grüninger & Fox, 1995),  has been 

adopted by a number of methodologies and is particularly appropriate when developing an 

application ontology, since a well-defined aim should aid the formation of the competency 

questions.  The optimal extent of the competency questions is disputed; Noy and McGuinness 

(2001) suggest that they need not be exhaustive whereas Hart and Dolbear (2013) state there 

should be as many questions as necessary to encompass all usages of the ontology.  

The competency questions can be expressed informally in natural language at the start of the 

process (Noy & McGuinness, 2001) and then formally using the Manchester OWL syntax 

(Horridge & Patel-Schneider, 2009) once the ontology has been formalised in Protégé. The 

Manchester OWL syntax provides a simplified method of writing OWL expressions and has 

been implemented in Protégé.  It can be employed using one of the Description Logics 

reasoners built-in to Protégé such as HermiT (Shearer et al., 2008) or Fact++ (Tsarkov et al., 

2006).  

A reasoner can also be used to check the ontology’s consistency, for example ensuring that 

there are no individuals (instances) in unsatisfiable classes, that is, poorly defined classes that 

cannot, for logical reasons, have any members.  Furthermore, the OntoClean methodology 

(Guarino & Welty, 2002) takes a formal, philosophical approach to evaluating ontologies, as 

opposed to the application-centric approach of competency questions.  OntoClean can be 

implemented in Protégé. 

If the ontology being developed was a general purpose domain ontology then the evaluation 

steps described so far would be sufficient. But since the aim is to develop an application 

ontology then the ontology can only be evaluated sufficiently by developing a prototype of 

the system for which the ontology was designed.  In this case it meant developing an on-

demand mapping system. 

One of the fundamental rules of ontology design defined by Noy and McGuinness (2001) is 

that development is “necessarily an iterative process” and if the evaluation phase revealed 

inadequacies in the ontology then the ontology will need to be redesigned. 
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3.7.4 The final methodology 

The methodology developed can be seen in Figure 3.6.  There is some overlap between 

phases. For example, evaluation can take place as the ontology is being formalised in Protégé.  

The method includes a feedback loop in case the Evaluation phase identifies any problems 

with the design. Whether any redesign occurs at the informal, semi-formal or formal phases 

depends on the extent of the inadequacies. The more serious the problems the further back in 

the process it may be necessary to go.  

 

Figure 3.6 Hybrid ontology design methodology  

3.8 Conclusions 

An assessment of ontology design methodologies revealed the lack of a suitable methodology 

specifically for the design of an application ontology. This was resolved by the development 

of the novel methodology described above. The application of the methodology to the How, 

Why and When generalisation model of  (McMaster & Shea, 1992) is described in Chapter 5.  

The methodology includes an evaluation phase, which includes the ultimate test of any 

application ontology: its implementation as part of a software application. The following 

chapter describes a methodology for implementing a mapping engine that will evaluate and 

use the ontology. 
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4 Reasoning with the ontology 

4.1 Introduction 

The contention of this thesis is that on-demand mapping can be aided by formalising 

generalisation knowledge in an ontology and the previous chapter discussed a methodology 

for building that ontology.  However, a knowledge representation, such as an ontology, is for  

“thinking rather than acting... reasoning about the world rather than taking action in it” (Davis 

et al., 1993, p17).  That is, the ontology is not on its own sufficient; a reasoning agent is 

required to make use of the ontology.  More specifically, the reasoning agent will utilise the 

ontology to implement the How, Why, and When generalisation model of McMaster and Shea 

(1992) (Figure 3.1).  What is also required is a mapping engine that will interact with the user, 

the geographic data, the reasoning agent and other software components and present the 

results to the user. These are the main components of the proposed on-demand mapping 

system. 

Furthermore, ontology development is a modelling process, which is typically faulty, and an 

evaluation of the model is required to ensure its adequacy (Studer et al., 1998). Therefore the 

implementation of an on-demand mapping system is a necessary stage of the evaluation of the 

ontology and is part of the ontology design methodology described in Chapter 3. 

It could be argued that there was no need to develop an entirely new system and that the 

ontology could have been integrated with an existing generalisation system. However, this 

would have provided a less rigorous examination of the ontological approach. 

This chapter describes a methodology for building the on-demand mapping system and 

provides a theoretical foundation for the implementation.  The actual implementation of the 

system is described in Chapter 6. 

4.2 Implementing the generalisation model of McMaster and Shea 

A flowchart of the process of generalisation based on the adapted McMaster and Shea (1992) 

model can be seen in Figure 4.1.  The process can be divided into two steps, involving the 

identification of a geometric condition in the mapped features and the remedy of that 

condition using a transformation algorithm.  The term generalisation is not used in the 

flowchart since there is disagreement amongst domain experts over what processes should be 

classed as generalisation (section 2.7). Therefore the term generalisation operator is replaced 

by operator and the term generalisation algorithm is replaced by transformation algorithm 

(to make the distinction from measure algorithm). The model describes three transformation 
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controls which determine the “How” of generalisation and are depicted in the flowchart as 

Select operator, Select transformation algorithm and Select parameter values(s).  A fourth 

control, Select measure algorithm, was added to the model to determine the “When” of 

generalisation (section 3.2).  The measure algorithm will implement a cartometric measure to 

determine the existence of a geometric condition.  As with the selection of an operator and a 

transformation algorithm, the selection of a measure algorithm will be supported by the 

ontology. 

The supply of parameter values for transformation algorithms will not be supported by the 

ontology and the reasons why will be discussed later.  The flowchart represents a simplified 

model of the generalisation process.  In particular it applies to a single set of features of the 

same feature type and it considers only a single geometric condition at any one time. The 

workflow also depicts generalisation as a strictly linear process. 

 

Figure 4.1 The process for generalising a feature collection 



44 

The traditional model of a knowledge-based system (KBS) is that of an inference engine 

interacting with a knowledge base (Studer et al., 1998).  However, unlike an expert system, 

the on-demand mapping system is required not only to identify a problem and suggest a 

solution but also to implement that solution. Therefore only a proportion of the tasks will be 

carried out using knowledge from the ontology (labelled as Ontology tasks in Figure 4.1); 

other tasks such as the execution of algorithms and the interaction with the user will not be. 

The component that interacts with the ontology will be called the reasoning agent (Figure 

4.2). This term is preferred over the more established inference engine since the latter implies 

that the component is driving the on-demand mapping process where, in fact, it is merely a 

component of a larger system; termed the Mapping Engine. 

 

Figure 4.2 The role of the mapping engine 

As with the design of the ontology, the design of the system that utilises that ontology (the 

reasoning agent) will benefit from the structure provided by a suitable methodology. The next 

section (4.3) discusses that methodology. The selection of transformation parameters will be 

based on the use of cartometric measures (section 4.4). How these various components will be 

combined in an on-demand mapping engine is described in section 4.5. 

4.3 A methodology for designing the reasoning agent 

Knowledge engineering was traditionally seen as a process where human knowledge was 

transferred to a knowledge-based system (KBS), but it is now regarded as a modelling 

problem (Studer et al., 1998). To ensure well-formed models, a knowledge engineering 

methodology is vital (Taboada et al., 2001).  The CommonKADS methodology provides a 

structured approach to the development of knowledge-based systems (Schreiber et al., 2000). 

The methodology not only describes the type of knowledge required for the application but 
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also provides a strategy for solving a particular problem (Xavier et al., 2013) and has become 

the de facto standard for knowledge modelling (Akerkar & Sajja, 2010). 

The main feature of the CommonKADS methodology is a collection of models one of which, 

the expertise or knowledge model (Figure 4.3), defines three different types of knowledge that 

a KBS requires to perform the task.  Each knowledge type corresponds to a particular view of 

the KBS.  The expertise model was intended as a knowledge-level description of the system 

and was developed on the understanding that control knowledge, in addition to domain 

knowledge, is an important part of a KBS.  The model sub-divides control knowledge into 

inference knowledge and task knowledge, where inference knowledge describes how to use 

domain knowledge with inference and task knowledge describes the tasks that will realise the 

main goal of the system. 

The ontology is contained in the domain layer and contains the domain knowledge required to 

reason about the domain, in this case generalisation. The expertise model does not specify the 

type of domain knowledge that is defined, but in this research the ontology will contain 

declarative rather than procedural knowledge.  The advantage of using the expertise model is 

that it indicates how the ontology can be exploited and what further control knowledge is 

required to develop an on-demand mapping system. 

 

Figure 4.3 CommonKADS Expertise model (based on Schreiber et al., 1994 and Studer et al., 1998) 

The methodology for building the ontology was described in Chapter 3 but before the 

ontology is built it is necessary to define the control knowledge required by the KBS.  This a 

consequence of the  interaction problem, which states that domain knowledge is highly 

dependent on the use to which it is put, which is defined in the control knowledge (Bylander 

& Chandrasekaran, 1987).  It is therefore necessary to describe the knowledge required for the 

task and inference layers. 
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4.3.1 Task layer 

Task knowledge is held in the task layer, which consists of a hierarchy of tasks and sub-tasks 

(Figure 4.4) and describes the goal of the system (Schreiber et al., 1994). There is an implied 

left to right sequencing of the tasks. The leaf-node tasks in the hierarchy, for example Identify 

candidate condition and Select transformation algorithm should invoke particular inferences 

that are described in the inference layer. It could be argued that the Retrieve dataset 

characteristics task does not strictly involve inference but since it involves an interaction with 

the ontology then it can be classed as such.  The tasks in the hierarchy represent a refinement 

of those in Figure 4.1 but the hierarchy is limited to describing only those tasks that require an 

interaction with the ontology (domain layer). For example, once the user selects a particular 

dataset to map, the characteristics of that dataset are extracted from the ontology and used to 

identify one or more relevant geometric conditions to detect.  Using that knowledge, one or 

more suitable measure algorithms can be selected.   

 

Figure 4.4 Hierarchy of tasks for mapping road accidents at a particular scale 

However, the CommonKADS task layer only considers the tasks that are the responsibility of 

the reasoning agent and not those that are managed by the mapping engine, such as executing 

algorithms. This disparity is handled by the system design model discussed later. 

Each task is defined by a task specification, which has two parts, the task definition and the 

task body (Schreiber et al., 2000). The task definition defines the goal of the task; what must 

be achieved. The task body specifies a procedure for how it is to be achieved.  

As an example, the specification for a mid-level task from the task hierarchy (Figure 4.4) is 

displayed in Figure 4.5. The aim of this task is to identify a possible symptom for a set of 

features, which is an indication of a condition, and then identify a measure for that symptom. 

The control structure in the task body is a set of functions, where the output of one function 
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serves as the input to the next.  The control structure in this example is very simple, but the 

model supports more complex structures such as REPEAT-UNTIL loops. 

 
 
 

 

 

 

 

 

 

Figure 4.5 Task specification for identifying a measure algorithm 

4.3.2 Inference layer – Problem-solving methods 

The inference layer is the link between the task layer and the domain layer (the ontology). It 

describes how the knowledge in the domain layer can be used to satisfy the goals specified in 

the task layer. In particular it describes how the task definition can be mapped to a task body 

(Schreiber et al., 1994). The inference layer exploits the notion of a problem-solving method 

(PSM) to specify the reasoning process of the KBS (Studer et al., 1998). A PSM can be 

viewed as a domain-independent reasoning pattern (Taboada et al., 2001) and the 

CommonKADS methodology is built on a library of domain-independent PSMs. Domain 

knowledge (from the ontology) is expressed as a role in a PSM which acts as input to an 

inference step (Role 1 in Figure 4.6).  The output of the inference is inferred knowledge 

(Roles 2 and 3). 

 

Figure 4.6 Components of a PSM (based on Gómez Pérez and Benjamins, 1999) 

The CommonKADS methodology includes a library of reusable PSMs, grouped by category 

(Schreiber et al., 2000).  In this case, the first problem the system needs to solve is to identify 

any condition that the mapped features have, such as congestion, which can be done by 

selecting and executing an appropriate measure algorithm. The library is divided into analysis 

task identify-measure-algorithm 
 task-definition 
  goal: “identify a relevant measure for a set of mapped features”; 
  input: 
   feature-dataset;    
  output: 
   measure-algorithm; 
 task-body 
  type: composite; 
  sub-tasks: retrieve-dataset-characteristics, identify-candidate-symptom, 
                                      select-measure-algorithm;   
  control-structure: 
    retrieve-dataset-characteristics(feature-dataset  characteristics) 
   identify-candidate-symptom(characteristics  symptom) 
       select-measure-algorithm(symptom  measure-algorithm) 

end 
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tasks, such as diagnosis and classification, and synthesis tasks such as assignment and 

scheduling. The diagnosis task seems appropriate to selecting a measure algorithm although it 

could be argued that the problem is one of classification. 

The PSM should describe the reasoning process in a domain-independent and 

implementation-independent manner (Gómez Pérez & Benjamins, 1999).  For example, the 

Heuristic Classification PSM developed by Clancey (1985) can be used as a diagnostic tool in 

multiple domains.  Figure 4.7 depicts the use of the Heuristic Classification PSM for 

diagnosing a medical condition. The inference actions and knowledge roles are domain-

independent but the labels in italics show what the domain specific knowledge might be. 

 

 

Figure 4.7 Heuristic Classification PSM used for medical diagnosis (based on Studer et al, 1998) 

The same PSM can be applied to the diagnosis of a geometric condition in the generalisation 

model (Figure 4.8). Once the condition has been diagnosed then an appropriate operator can 

be selected. The medical analogy can be extended if we regard an operator as a remedy for a 

condition. The analogy will be used when it comes to defining the relationships between 

concepts when the ontology is built.  



49 

 

Figure 4.8 Heuristic Classification PSM used for identifying the presence of a geometric condition 

However, the Heuristic Classification PSM does not match the tasks defined in the task layer 

(Figure 4.4) because it assumes that the measurement tool is known in advance; it is 

equivalent to assuming that the doctor knows how to measure temperature.  The on-demand 

mapping model does not make that assumption. However, the authors of the CommonKADS 

methodology accept that library of templates can be used as a starting point and then be 

extended and refined (Schreiber et al., 1994). The Heuristic Classification PSM was therefore 

modified to allow for the notion that it is first necessary to know what phenomena is to be 

measured, and how, before measuring it (Figure 4.9).  Strictly speaking this structure is not a 

PSM since it is domain-dependent (but still implementation-independent). 

 

Figure 4.9 PSM for identifying a measure algorithm 

Once a geometric condition has been diagnosed, the system needs to suggest a remedy, in 

particular an appropriate transformation algorithm. As with the selection of a measure 

algorithm, it is not immediately apparent which of the CommonKADS PSM categories is 
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appropriate.  Based on their descriptions a case could be made for more than one of the 

analytic tasks including classification and diagnosis. 

An alternative to the CommonKADS library is to examine the literature, and Mustiere (2005) 

suggested a PSM for generalisation algorithm selection (albeit as part of a machine learning 

process) and that PSM has been adapted (Figure 4.10).  It can be seen how each leaf-node 

task in the task hierarchy (Figure 4.4) maps to an inference action in the PSM. 

The abstract features are those features identified as having a particular condition, such as 

congestion, using the diagnosis PSM (Figure 4.8). Selection of an appropriate algorithm 

requires not only knowledge of the selected operator but also knowledge of the features (the 

arrows in the PSMs represent inputs and not workflow).  This is necessary since many 

generalisation algorithms have been designed for generalising particular feature types such as 

roads (Benz & Weibel, 2013; Weiss & Weibel, 2013) and buildings (Steiniger et al., 2010; 

Regnauld & Revell, 2007). As with the PSM depicted in Figure 4.9, this PSM is domain-

dependent but also implementation-independent. 

 

Figure 4.10 PSM for identifying a transformation algorithm (adapted from Mustiere, 2005) 

4.3.3 Domain layer 

The expertise model does not stipulate an ontology as the source of domain knowledge, but 

that is what is proposed here.  The tasks that determine the PSMs in the inference layer can be 

used to determine the knowledge that the ontology is required to represent; including concepts 

such as geometric conditions, mapped features and algorithms. This is why a distinction can 

be made between an application ontology and an all-purpose domain ontology. The inference 

layer can use the ontology to make a number of decisions (Figure 4.1). However the ontology 

is not used to provide parameter values for the transformation (generalisation) algorithms. 
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4.4 Parameter selection using the Degree of Generalisation concept 

This section describes how the output of the measure algorithms can act as input to the 

transformation algorithms. 

4.4.1 The problem with parameters 

Assuming that a system can be developed that will automatically select the appropriate 

generalisation algorithms then it will be necessary to automatically provide parameter values. 

For example, the Douglas-Peucker line simplification algorithm (Douglas & Peucker, 1973) 

has a tolerance parameter that influences the output of the algorithm; a large tolerance will 

remove more points from a line than a smaller value.  For a limited range of target scales and 

familiar feature types it is possible to use cartographic experience to determine optimum 

values for  parameters but on-demand mapping, by definition, does not allow this. 

After reviewing the comparison of line generalisation algorithms by Jenks (1989), McMaster 

and Shea (1992) concluded that parameter selection has probably a greater impact on the final 

result than the selection of the generalisation operator and the generalisation algorithm.  At 

the very least, differences in scale will require different parameter values for the same 

algorithm. Other factors such as feature distribution and the properties of the features may 

also effect the selection of the optimum values. 

The non-expert user cannot be expected to supply parameter values. Parameter names do not 

provide much guidance; some names such as smoothing strength are relatively semantically 

rich, but others such as stiffness and elasticity do not even represent geographic concepts and 

names such as tolerance are too vague. 

A further barrier to automation is that even those algorithms that implement the same operator 

do not share the same parameters.  For example, line simplification has been implemented by 

a number of algorithms, including the Douglas and Peucker (1973) algorithm, which has a 

minimum distance parameter, and the Visvalingam and Whyatt (1993) algorithm, which has a 

minimum area parameter. Both parameters do however represent a single concept, tolerance, 

which influences the amount of simplification, i.e. the number of points removed from the 

line. 

There is also a problem with polysemy, where the same parameter name represents different 

concepts. For example minimum distance can be used to refer to the distance between a point 

and a line (Douglas & Peucker, 1973) and the distance between two buildings (Yan et al., 

2008). There may also be differences in how that distance is expected to be measured (Qi & 

Li, 2008).  The point feature aggregating algorithms K-means and ISODATA  both have a 
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parameter, K (Figure 4.11), which in both cases represent a number of clusters (Li, 2006). 

However, for the K-means algorithm, the parameter represents the target number of clusters to 

be generated whereas for ISODATA the parameter is used only as a stop on the number of 

iterations and the target is defined by two distance measures (σx,max and σy,max). 

 

Figure 4.11 Parameters for four point-aggregation algorithms 

Synonymy can also be a problem, where the same concepts are represented by two different 

parameter names.  For example, the Aggregation distance parameter in the ArcGIS Aggregate 

points algorithm (ESRI, 2011b) and the Eps parameter in the DBSCAN (Ester et al., 1996) 

algorithm both specify the maximum distance between points that will be aggregated (Figure 

4.11). 

Algorithms frequently have multiple parameters; some of which are more important than 

others.  Some parameters have an effect on the final output whereas others have an effect on 

the speed of processing.  Some parameters, such as K and n for ISODATA, are optional.  Any 

automatic system should have an awareness of this.  Also, parameters may have to be 

balanced.  For example the snakes algorithm (Burghardt, 2005), which uses a mechanical 

analogy and is used for line smoothing, has two parameters, one controlling elasticity and 

another controlling flexibility (Li, 2006).  A successful application of the algorithm depends 

on selecting the optimum values for the two parameters. 

Finally, even when parameter values are set by experts there is anecdotal evidence, from some 

users of commercial software provided to National Mapping Agencies, that there is some 

confusion over the effect of some of the parameters, and values are often left at default 

settings.  This may be the result of a lack of documentation of the algorithms. 
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4.4.2 Possible solutions to the problem of automatic parameterisation 

The Radical Law of Selection (Töpfer & Pillewizer, 1966) can be used to determine the 

number of objects to be retained on a map at a reduced scale, based on the number of source 

objects and the ratio of the source and target scales.  If generalisation was simply a case of 

determining which features to retain then heuristics could be used to determine parameter 

values based on the target number of features.  However, the Radical Law does not take 

account of the local distribution of features and does not take into account the transformation 

of groups of point features into polygons, for example (McMaster & Shea, 1992).  

When considering line simplification, Foerster et al. (2007b) defined a simplification ratio 

that could be used by both the Douglas-Peucker and the Visvalingam-Whyatt line 

simplification algorithms.  The value of the ratio is dependent on the user’s choice of target 

scale and is based on the ratio of the number of vertices before and after simplification. The 

ratio is a variation on The Radical Law, which is also used in a point generalisation algorithm 

(Yan & Weibel, 2008) as a limit on the number of iterations the algorithm performs.  The 

same algorithm considers the importance value of the source points when deciding to retain a 

point.  By employing the user requirements (target scale) and the source data (number of 

points and importance values) and by defining neighbours using Voronoi diagrams this 

algorithm requires no parameters. These concepts could possibly be used to provide 

parameter values for those generalisation algorithms that do have parameters. 

One possible approach is to employ machine-learning methods and neural networks to 

determine parameter values and then store them in the ontology. Lagrange et al. (2000) 

employed a machine-learning approach to determine parameter values for the smoothing of 

individual line features.  However, the machine-learning approach is reliant on the existence 

of a set of reference values (Sester, 2005) and it is likely that this is too complex an approach 

for on-demand mapping because of the variations in scale and content that on-demand 

mapping must support. 

The method employed in this research is based on the concept of map evaluation. The 

intention to use the output of the measure algorithms, which determine when generalisation is 

necessary, to determine the amount, or degree, of generalisation performed.  

4.4.3 Map evaluation 

The “when to generalise” question in the McMaster and Shea (1992) model is answered using 

map evaluation techniques or cartometric measures, which determine the existence of 

conditions that affect legibility, such as congestion and imperceptibility. The ontology will 
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define a relationship between particular measures and particular conditions.  For example, a 

measure of feature density could be used as an indication of congestion. 

The McMaster and Shea model of identifying the consequences of scale reduction (the 

geometric conditions) and then identifying the solutions (generalisation operators) has been 

characterised as a “bottom-up” approach and is particularly appropriate for relatively small 

changes in scale (Mackaness & Ruas, 2007). The alternative, “top-down” approach involves 

bypassing the consequences of scale reduction by selecting the features and their 

representation appropriate to the scale. This approach is considered to be appropriate for large 

changes of scale; however it requires knowledge of appropriate representations of different 

feature types at different scales, which will be difficult in on-demand mapping. 

Evaluation is carried out by a number of measures that can be categorised as one of three 

types; those that assess the amount of information on the map, those that assess the spatial 

distribution of the map features and those that assess the complexity of individual objects 

(Stigmar & Harrie, 2011).  If we consider the amount of information, the simplest measure is 

to count the number of objects on the map and compare it to a threshold.  If the measure 

exceeds the threshold then it can be concluded that the features have the condition.  This is a 

straightforward task to automate but defining a threshold is difficult since it depends on the 

feature distribution, symbolisation and the number of feature types. For example, all four 

representations in Figure 4.12 contain the same number of features with the same distribution 

yet have differing degrees of legibility since they vary in their symbolisation (Bertin, 1983).  

An analysis of legibility measures concluded that no single measure could be used to define 

legibility and a combination of measures is required (Stigmar & Harrie, 2011). 

    

(a) (b) (c) (d) 

Figure 4.12 Legibility as a function of symbolisation  

Despite the difficulties, for any automated mapping system to work it does require a means of 

self-assessment (Fisher & Mackaness, 1987). If a particular condition has been identified in a 

set of mapped features then a generalisation operator will be applied and a measure (not 

necessarily the same one) re-applied to test whether the remedy has worked (Figure 4.1). The 

process is repeated until the data is free of geometric conditions.  The ultimate test of a map’s 
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legibility is the user’s experience.  However, the evaluation of the map from the user’s point 

of view is not in the scope of this research. 

4.4.4 Calculating a Degree of Generalisation 

Not only can the cartometric measures identify whether generalisation is required but they can 

also be used to determine the transformation algorithm parameter values.  If we consider a 

single set of features of the same type, termed the source feature collection (Figure 4.13), then 

the features the user wishes to map can be termed the mapped feature collection. In this 

example, a measure for feature density (an indication of congestion) has identified two 

clusters of features, termed problem feature collections.  

 

Figure 4.13 Feature collection definitions 

Once the problem features have been identified, the concept of a Degree of Generalisation 

(Zhou & Jones, 2003) can be adapted and used as a measure of the “extent” of generalisation 

that is required.  The Degree of Generalisation (DoG) is defined here as the ratio of the 

number of features in problem feature collections to the number of features in the mapped 

feature collection (Equation 4.1).  

                         
                          

                         
 

Equation 4.1 
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Unlike the Radical Law (Töpfer & Pillewizer, 1966) and its derivatives (Foerster et al., 

2007b) the DoG concept does not directly use the change of scale to influence generalisation 

but the consequences of the change in scale, which are assessed using cartometric measures.   

Chapter 6 describes how the DoG can then be used as an input parameter to the 

transformation algorithms. 

The use of the DoG concept does bypass the problem of how to provide parameter values for 

existing algorithms since it will require a set of generalisation algorithms that have been 

designed to use the DoG concept.  However, the concept of a translator function (Touya et 

al., 2010) that takes the DoG and translates it into algorithm specific parameter values could 

be applied to existing algorithms. 

So far this chapter has described how to perform the selection of a measure algorithm, an 

operator and a transformation algorithm by using inference and how to provide parameter 

values using the concept of a DoG derived from measures. The next step is to provide a model 

of how these components are brought together in an on-demand mapping engine. 

4.5 The on-demand mapping system – system design model 

The completely automated production of the Netherlands’ Kadaster map (section 1.2) was 

achieved by using many ArcGIS workflows (Stoter et al., 2014).  For on-demand mapping a 

more flexible approach is required. As discussed earlier the system will need to be more than 

a knowledge-based system since it will need to take the user requirements, make the 

necessary calls to the reasoning agent, execute the measure and transformation algorithms and 

present the results to the user. The mapping engine is the equivalent to the derivation engine 

in the on-demand mapping model of Balley and Regnauld (2011a). 
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Figure 4.14 On-demand mapping system (Balley and Regnauld, 2011a) 

Their model (Figure 4.14) does not specify how the derivation engine produces a custom 

product from the specification and is not implementation-independent since it is based on web 

services. However, it provides a useful starting point since it identifies the main tasks and 

components of an on-demand mapping system. 

The CommonKADS methodology provides a system design model (Schreiber et al., 2000), 

which consists of three parts, application design, architecture design, and platform design 

(Figure 4.15). The last of these, platform design, defines the hardware and software used to 

implement the system and will be detailed in Chapter 6. The aim of the system design model 

is to move to platform-dependence as late as possible (Kingston, 1998).  Another aim is to 

preserve the structures of the expertise model as much as possible, such that the expertise 

model can act as a means of documenting the final system. This has been described as a 

structure-preserving approach (Schreiber et al., 2000).  In essence, the system design model 

provides a means of getting from the expertise model to the implemented system. 
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Figure 4.15 CommonKADS system design model (based on Kingston, 1998 and Schreiber et al., 1994) 

According to the CommonKADS methodology the task layer only contains inference tasks; 

however, the on-demand mapping system requires a number of other tasks such as algorithm 

execution, that do not involve inference and the ontology.  The aim is to integrate inference 

and non-inference tasks in an implementation-independent model that can later be used to 

design the final system (platform design).  One solution to this problem is to employ transfer 

functions. 

The CommonKADS methodology allows for transfer functions in the task hierarchy, which 

enable interactions between the reasoning agent and other agents such as users (Schreiber et 

al., 2000). In this case the external agent will be the Mapping Engine.  The CommonKADS 

model describes four types of transfer function: obtain, receive, present, and provide. The 

distinction between obtain and receive and between present and provide is based on whether 

the reasoning agent has the initiative (obtain and present) or the external agent has the 

initiative (receive and provide). In the on-demand mapping system the mapping engine will 

have the initiative rather than the reasoning agent. 

By using the transfer functions as an intermediary between the mapping engine tasks and the 

inference tasks, an integrated task layer (Figure 4.16) can be developed that combines the 

tasks of the CommonKADS task layer (Figure 4.4) with those of the mapping engine. The 

implied sequencing of the task layer in Figure 4.4 is made explicit in the revised version. 
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Figure 4.16 Integrated task layer for mapping a single feature set 

The integrated task layer is used by the application design component of the CommonKADS 

system design model, where the tasks of the expertise model are mapped to functions of the 

application (Kingston, 1998). For example, Identify candidate condition could be mapped to 

the function get_condition(parameter 1, parameter 2…). Mapping a single task to a 

single function is part of the structure preserving approach. 

The next stage of the design model is architecture design (Figure 4.17)  where a computation 

model able to implement the functions defined in the previous phase is defined (Kingston, 

1998). This model should be implementation-independent; an abstract computational 

machine (Schreiber et al., 1994). There is potentially a feedback loop (Figure 4.15) if the 

architecture design identifies further functionality that is required but was not identified in the 

expertise model, for example a task that may be split. 
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Figure 4.17 On-demand mapping system architecture design 

An architecture was designed (Figure 4.17) that not only describes the components of the on-

demand mapping system, but also describes, where relevant, the type of knowledge the 

component represents. The inference and task knowledge are part of the expertise model 

whereas the process knowledge is that control knowledge that the mapping engine uses to 

sequence the process of generalisation, from taking the user requirements to applying 

algorithms to presenting the results, as in Figure 4.16. The algorithms contain procedural 

knowledge but their characteristics, such as what operator they implement and what, if any, 

feature type they specialise in, will be encapsulated in the ontology as declarative knowledge, 

which will allow them to be automatically selected.  

Although the capture of user requirements and their formalisation as a map specification is a 

necessary component of on-demand mapping (Foerster et al., 2012; Balley & Regnauld, 

2011a) it is out of the scope of this research. The user requirements will be limited to 

selecting the geographic feature types they wish to map and a target scale. 

The architecture design will be implemented in hardware and software as the platform design, 

which is described in Chapter 6. 

4.6 Conclusions 

The contention of this thesis is that much of the domain knowledge required for automatic 

generalisation is encapsulated within proprietary software systems and that to facilitate on-
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demand mapping it should be made shareable by formalising it in an ontology.  One 

advantage of the CommonKADS methodology is that it encourages the consideration of the 

types of knowledge required for a knowledge-based system and where that knowledge is 

encapsulated. For example, the application methodology has highlighted the fact that control 

knowledge is also required for an on-demand mapping system. 

However, the distinction between domain knowledge and control knowledge is not always 

obvious. It is not clear, for example, whether the formula used to calculate the Degree of 

Generalisation (Equation 4.1) is control knowledge or domain knowledge that should be 

stored in the ontology.  In a case study Schreiber et al. (1994) define an inference step that 

employs a formula from a knowledge base; the formula is therefore domain knowledge.  The 

more knowledge that is defined as control knowledge, the less the ontology becomes an 

application ontology and the more it becomes an application independent domain ontology. 

Ideally as much knowledge as possible will be described in the ontology since it is shareable 

and explicit. 

There are a number of components of the CommonKADS methodology, such as the 

organisational model (Schreiber et al., 2000), that were not employed. Also, those that were 

used were not always implemented exactly as defined in the methodology.  This was because 

the methodology is designed for knowledge-based systems but there are tasks in the on-

demand mapping system, such as algorithm execution, that do not involve the knowledge 

base.  However, the methodology did prove a useful framework for designing the system. 

The concept of building knowledge-based systems with reusable components (PSMs) seems 

attractive but it has not been widely adopted (Fox, 2011).  However, the designers of the 

CommonKADS state that the library of components can at least provide a starting point for an 

expertise model (Schreiber et al., 1994) and that proved the case.  However, it is the models 

of CommonKADS, the Expertise model and the System design model in particular, rather than 

the library of PSMs that have proved the most useful part of the methodology.  In particular it 

is the decoupling of the knowledge from the implementation,  which the methodology 

supports, that allows for flexibility in the implementation (Wielinga, 2013). 

The methodology will be tested in Chapter 6 as will the novel concept of using the Degree of 

Generalisation concept as a method for automatically parameterising generalisation 

algorithms.  However, before this methodology can be implemented, and the on-demand 

mapping system built, it is necessary to build the ontology on which it is founded.  



62 

5 Building the ontology 

5.1 Introduction 

A methodology for designing an application ontology was developed in Chapter 3 and will be 

implemented in this chapter.  The content of the ontology will be influenced by the McMaster 

and Shea (1992) generalisation model and the inference tasks defined using the 

CommonKADS model (Chapter 4).  The content of the ontology will also be influenced by a 

use case that involves mapping road accidents and the underlying road network at different 

scales. The methodology is reproduced in Figure 5.1 with numbers that indicate which 

sections in this chapter describes each phase of the methodology. 

 

Figure 5.1 Methodology steps with related chapter sections 

Generalisation is difficult partly because it is a modelling problem (section 2.2).  However, 

the representation of that process in an ontology is also a modelling problem.  In effect, we 

are trying to produce a representation of a process (generalisation) that produces a 

representation (the map) of both material entities (roads) and immaterial entities (accidents). 

To what extent is it possible to represent intangibles such as operators, algorithms, and events 

in an ontology?  According to  Davis et al. (1993, p18) it is possible to represent “actions, 

processes, beliefs, causality and categories” in a knowledge representation such as an 

ontology.  One of the roles of a knowledge representation is to act as a surrogate, or 

substitute, for an entity.  Surrogates of real world objects will inevitably be imperfect and will 

always be simplifications.  However, mathematical objects, such as algorithms can be 

captured exactly since they are “formal objects”.  In summary, describing algorithms in the 
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ontology will be relatively easy, describing geographic features less so, and describing 

abstract concepts such as generalisation even less so. 

5.2 Defining the scope of the ontology 

The first phase of the methodology involves defining the scope of the ontology.  Since this is 

an application ontology it is necessary to define a use case that will be used to limit that 

scope.  If the ontology can be successfully applied to the use case then it can be tested with 

further use cases. 

5.2.1 Defining the use case 

The use case involves mapping road accidents at different scales.  This particular use case was 

chosen as it involves mapping non-topographic, thematic, features (the accidents) with 

topographic features (the underlying road network) that share the same geographic space.  It 

fulfils the aim of mapping user-supplied data with data that might be supplied by a National 

Mapping Agency such as the Ordnance Survey. 

The need to vary the feature types mapped according to the user’s purpose is well-

documented.  McMaster and Shea (1992), for example, describe how a farmer and a 

construction engineer may have different priorities.  However, this use case looks at how 

different users may wish to view the same feature types but at different scales. Three types of 

potential users have been identified; each with a particular reason to map road accidents and 

each with a particular working scale (Table 5.1). 

The road safety expert is interested in identifying particular accident hot-spots, areas where a 

large number of accidents have occurred.  This requires a relatively small scale map, showing 

the city centre for example.  A parent wishing to identify a safe walking route to school for a 

child would require a map at an intermediate, neighbourhood scale.  It can be seen (Table 5.1) 

that the route ACB is of similar length to but safer than ADB.  If a particular junction has 

been identified as an accident hot-spot then the road engineer would need to view the junction 

in detail.  In this example (Table 5.1) it can be seen that the western side of the junction is 

where most of the accidents occur.  In all three cases the road network acts as a context for the 

accidents; without this context it is difficult to extract useful information from the map. 
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User type Aim Relative 
scale 

Example map 

Road 
safety 
expert 

Identify accident “hot-
spots” in the city centre 

Small 

 

Parent Identify a safe walking 
route to school 

Medium 

 

Road 
engineer 

Identify problem arm at a 
junction 

Large 

 

Table 5.1 Potential users of an on-demand mapping system 

There are reasons other than legibility to generalise geographic data.  For example, the 

simplification of line and polygon objects, representing them with fewer points, can be used to 

reduce data storage and transmission (Bashar et al., 2012).  In addition, the aggregation and 

reclassification of features will allow different analyses of that data (Mackaness, 2007).  The 

generalisation of an urban street network can be used to understand the structure, function and 

organisation of a city (Jiang & Claramunt, 2004) by allowing the modelling of traffic flows, 

for example (Jiang & Liu, 2009).  The focus of this research, however, is on map legibility 

and in particular the problem of feature congestion.  However, it may be that the pursuit of 

legibility might lead to the greater understanding of the accident data such as the 

identification of hot-spots. 

It is necessary to consider the knowledge that is required to map road accidents at different 

scales.  Firstly, we need to know how to generalise the road accidents, represented initially as 
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point symbols, at different scales.  When mapping immaterial entities, such as accidents and 

crimes, which can share the same geographic space, the user may find some degree of 

overlapping acceptable.  Whereas the overlap, caused by a change in scale, of material 

entities such as topographical features, would not be acceptable.  At smaller scales, however, 

the degree of overlap of accident symbols may be excessive and generalisation is required 

(Figure 5.2). 

 

Figure 5.2 Road accidents at 1:60K (data provided by Transport for Greater Manchester) 

Congestion occurs as a consequence of scale reduction when too many features need to be 

represented in the same geographic space (McMaster & Shea, 1992). This phenomenon has 

also been described as clutter and is not always straightforward to define (Stigmar & Harrie, 

2011) but for the purpose of this research it is to be regarded as occurring when the feature 

density is too high.  There are a number of ways of resolving high feature density; reducing 

the number of features, reducing their size, and moving the features apart (Figure 5.3).  

Reducing the size of features can be classed as symbolisation (Figure 5.3b), which has been 

defined as “the graphic encoding of a feature on the map page” (Roth et al., 2011, p39).  

However, symbolisation is not always regarded as a generalisation process, but as a pre-

generalisation process (Foerster et al., 2007a).  Whether or not symbolisation can be classed 

as generalisation, it is true that it can be used in many ways to improve map legibility, 
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including changing the size, shape, colour, transparency and pattern of features (Roth et al., 

2011) (Figure 4.12).  However, to limit the scope of this research, the decision was made to 

focus on the  fundamental, “spatial” operators (McMaster & Shea, 1992) and ignore 

symbolisation. 

 

   

(a) original features (b) reduction in size with 

symbolisation 
(c) reduction in the number of 

features by the removal of the less 

important features 

  
 

(d) reducing density by separating 

features  

(e) reduction in the number of 

features by replacing point features 

with an area feature of the same 

extent 

 

(f) reduction in the number of 

features using a single feature 

Figure 5.3 Resolving congestion in accident data by reducing feature density3 

Of the other possible solutions to congestion, the separating of features (Figure 5.3d) presents 

problems.  According to the McMaster and Shea (1992) model maintaining spatial accuracy 

is one of the goals of generalisation but at a large scale the displacement of features might 

cause an unacceptable loss of spatial accuracy.  At a relatively small scale (such as Figure 5.2) 

the displacement of features may not be possible due to the lack of vacant map space in which 

to move the features.  This is a particular problem for events, such as accidents, where 

multiple features may have the same location. 

When features are congested then some sort of grouping may be helpful i.e. replacing a 

cluster of features with a single feature (Figure 5.3e and Figure 5.3f).  So a group of clustered 

accidents would become an accident hot-spot. This can be regarded as an example of 

conceptual generalisation, where new information has been derived; “the tree gives way to 

the forest” (Bertin, 1983, p300).  However, this operator is relatively invasive (Foerster et al., 

2007a) and leads to the loss of individual detail. 

An alternative is structural generalisation, where the level of conceptualisation remains the 

same but the distribution is simplified (Bertin, 1983).  One way of achieving this would be to 

                                                 
3
 This part of the discussion avoids reference to operators, focussing on the solutions and not the means. 
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reduce the number of features by displaying only the most important (Figure 5.3c).  For this to 

be possible the data requires an attribute that can be used to rank features by importance.  In 

the case of accidents this could be a severity value.  The on-demand mapping system would 

need to know whether the dataset possessed such an attribute and this information would be 

part of the formalised knowledge of the dataset. 

If we define a road accident as an event that occurs at a particular point on a road then we can 

infer that road features provide necessary context when mapping the accidents.  Therefore we 

need to map road features (Table 5.1).  How the road network is represented is also important; 

to examine a road junction in detail then the road features should be represented as area 

features whereas at smaller scales a line representation is sufficient. 

At smaller scales the road network too might require generalisation (Figure 1.1).  In this 

example, the density of features is too high in many places and it is necessary to remove the 

less important roads segments to reduce congestion (Figure 5.4c). 

   

(a) original features (b) reduction in size with reduction 

in dimensionality 

(c) reduction in the number of 

features 

Figure 5.4 Reducing feature congestion in road segments by reducing feature density 

It is also possible to reduce feature density by reducing the size of features with a reduction in 

dimensionality (Figure 5.4b). This process is generally regarded as generalisation whereas the 

reduction in size of features using symbolisation (Figure 5.3b) is not. 

The generalisation of road networks has been well-researched (Benz & Weibel, 2013; Weiss 

& Weibel, 2013; Touya, 2010; Chen et al., 2009; Jiang & Harrie, 2004; Thomson & 

Richardson, 1999) as has the generalisation of point data, although to a lesser extent (Bereuter 

& Weibel, 2012; Yan & Weibel, 2008).  However, the mapping of both accidents and the 

underlying road network presents a particular problem as the relation between roads and 

accident needs to be represented and respected when the road network is generalised, 

otherwise context may be lost. As the scale is reduced the standard method to ensure the 

legibility of the road network is to prune the network by removing the less important roads.  

However, as can be seen in Figure 5.5, a loss of context for some of the accidents can be the 
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result.  The semantic (and ultimately spatial) relationship between roads and accidents has to 

be defined in the ontology and respected during generalisation. 

 

Figure 5.5 Loss of context for the accidents 

Some of this knowledge is generic and some is specific to road accidents.  Consider another 

point feature type such as a crime, which is also an event and could be generalised in a similar 

manner to accidents; either by grouping or removing less important features.  However, the 

contextual features would be different; buildings, for example, may be more relevant as a base 

feature layer.  

This section has described some of the knowledge required to map a single feature type, road 

accidents, with the road network providing context, at different scales.  Given the large 

number of feature types that users may wish to map, just a few of which were listed in at the 

start of Chapter 1, there is a case for sharing this knowledge amongst mapping systems by 

using an ontology.  

5.2.2 Competency questions 

The aim of the ontology is to aid the automatic selection of generalisation algorithms. The 

domain is on-demand mapping in particular and not cartographic generalisation in general 

and the ontology needs to hold only sufficient knowledge to solve the problem of on-demand 

mapping.  In particular, the aim is to encapsulate the knowledge necessary to implement the 

Why, When, and How model of (McMaster & Shea, 1992).  Inference will then be used to 

determine which generalisation algorithms should be applied in any given situation. 

In the second part of the Define Scope phase of the methodology the informal competency 

questions (Grüninger & Fox, 1995) can be framed, although at this stage they may be 

relatively vague.  Examples of competency questions are 
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 “What are the geometric conditions that might affect the accidents when mapped at a 

smaller scale?” 

 “When should the road network be generalised?” 

 “How can the road network be generalised?” 

 

Noy and McGuinness (2001) suggest that the competency questions need not be exhaustive 

and this was the approach adopted here. A sufficient number of questions were framed to 

ensure that they focussed the design process rather that act as a specification. 

 

In summary, the scope of the ontology is limited initially to the use case.  However, some 

sub-concepts that are not necessary for the use case such as additional feature types and 

operators will be included since they can act as control information.  For example, if the only 

operators that can be selected are those that are applicable to the use case then it is not a 

sufficient test of the approach. 

5.3 Informal conceptualisation 

This stage of the methodology matches Step 3 of the Noy and McGuinness (2001) 

methodology:  enumerate important terms in the ontology. An ontology encapsulates the 

semantics of the concepts of a domain (Kavouras & Kokla, 2008) and is therefore more than a 

list of concepts. The enumeration will require descriptions of the concepts and their 

relationships with other concepts.  At this stage no structure needs to be applied to the 

knowledge. 

To guide this process the third of the fundamental rules of Noy and McGuinness (2001) can 

be employed 

“Concepts in the ontology should be close to objects (physical or logical) and relationships in 

your domain of interest.  These are most likely to be nouns (objects) or verbs (relationships) 

in sentences that describe your domain.” (p4). 

Some of the main concepts will be highlighted in the following discussion which is based on 

concepts from the McMaster and Shea (1992) model and the tasks listed in the Expertise 

model (section 4.3.1)
4
. 

The feature collection (FC) concept will be used to represent a set of features.  The source 

feature collection represents the entire dataset, the mapped feature collection represent the 

                                                 
4
 This is an iterative process. The tasks in the Expertise model were revised following the conceptualisation. 
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features in the user’s selected bounding box.  Features that exhibit any of the geometric 

conditions in the model, as identified by the measures, will be marked as problem features 

(Figure 4.13).  Each feature collection is composed of objects of the same feature type; 

accidents or road segments, for example. 

The scope of this research is limited to measures of legibility (Stigmar & Harrie, 2011).  A 

measure does not directly measure a condition.  In this interpretation of the McMaster and 

Shea model a condition is characterised by one or more symptoms, which can be identified by 

the measures.  For example, congestion can be characterised by high feature density which 

can be measured by a density measure. 

Measures will be implemented by measure algorithms, the selection of which will be based 

on the geometry of the mapped feature collection. For example, feature density will be a 

relevant measure of congestion for features with any geometry; feature complexity will be a 

relevant measure of imperceptibility applicable to line and area geometries only. The measure 

algorithm will return a set of problem feature collections identifying features in the mapped 

FC with a particular condition. 

The next stage is to identify the operators that will remedy the symptom and by inference the 

condition.  An operator is implemented by a transformation algorithm.  The term 

generalisation algorithm is avoided since there is debate over which cartographic operators 

can be classed as generalisation (Foerster et al., 2007a; McMaster & Shea, 1992; Roth et al., 

2011). 

Some of the concepts highlighted above are described in Table 5.2.  If another concept is 

included in the description then it is underlined. 
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Concept Description 

Cartographic 
generalisation 

“The abstraction, reduction, and simplification of features so that a 
map is clear and uncluttered at a given scale” (Sommer & Wade, 
2006). This definition is used in preference to the frequently cited  
International Cartographic Association (1973) definition: “the 
selection and simplified representation of detail appropriate to scale 
and/or purpose of a map” since it better represents the aims of the 
use case. 

Congestion The geometric condition where “too many geographic features need 
to be represented in a limited physical space on the map” 
(McMaster & Shea, 1992). 

Geometric 
Condition 

Conditions in the mapped features that are caused by a reduction in 
scale and used to determine the need for generalisation (McMaster 
& Shea, 1992). For example, congestion. 

Event An incidence or occurrence (Oxford English Dictionary, 2014b); an 
immaterial object that can share the same space as a topographic 
feature or another event. 

Feature A mapped object. Can be material (topographic) or immaterial (such 
as an event). Features can be grouped by feature type. E.g. 
Buildings. 

Feature collection A set of features all of the same feature type. 

Feature type A class of features e.g. buildings, rivers. 

Geometry “The measures and properties of points, lines, and surfaces. In a 
GIS, geometry is used to represent the spatial component of 
geographic features” (ESRI, 2014). 

Operator “Abstract or generic description of the type of modification that can 
be applied when changing scale”(Roth et al., 2011). An abstract 
function that transforms geographic data.  An operator is 
implemented by one or more algorithms. 

Road accident Point event feature type. Takes place on a road segment. 

Road segment Section of road between two junctions (nodes). A topographic 
feature type. Part of a network. 

Symptom “A phenomenon or circumstance accompanying some condition … 
and serving as evidence of it” (Oxford English Dictionary, 2014a) 

Measure algorithm A procedure for measuring a particular symptom. 

Transformation 
algorithm 

A procedure for implementing a particular operator. Some 
transformation algorithms specialise in particular feature types. 
Normally termed a generalisation algorithm. Implemented in 
computer code. 

Table 5.2 Example concept descriptions 

5.3.1 New knowledge from old 

It is possible to encapsulate the relationships between operators and conditions as rules within 

the ontology. Szwed et al. (2012), for example, used an ontology to store rules encoded in the 
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Semantic Web Rule Language (Horrocks et al., 2004) to aid the selection of algorithms for 

route-finding.  However, there are a number of problems with a rule-based approach to 

generalisation which have been well-documented (Harrie & Weibel, 2007; Armstrong, 1991; 

Beard, 1991) and discussed in section 2.4.  A particular problem is the large number of rules 

required for a complex process such as generalisation.  We also cannot simply state that 

operator X resolves geometric condition Y. This is, in effect, a rule 

IF geometric_condition = Y THEN apply operator X 

The aim, therefore, is to formalise the characteristics of the operators and the conditions and 

then infer any relationship between any operator and any condition. The descriptions of the 

concepts need to be semantically rich enough to make possible the automatic selection of 

operators and algorithms using inference. 

One challenge is to harmonise the differing definitions of operators described earlier 

(section 2.7).  This will be done by starting with existing descriptions of operators in the 

literature.  Take for example, the definition of an Aggregate operator by Roth et al. (2011): 

“The aggregate operator captures the spatial extent of multiple features with a single feature 

of increased dimensionality (i.e., lines-to-polygon, points-to-polygon, or points-to-line)” 

(p43). 

They also define a merge operator: 

“The merge operator combines an array of related features into a single representative feature 

without a change in dimension” (p44). 

From these two definitions we can determine that the ontology requires the concepts of an 

operator, feature and dimensionality. We can also conclude that some operators will reduce 

the number of features with or without a change dimensionality. We can therefore define a 

relationship between an operator and a feature.  The two definitions cited above, however, 

make no mention of why the operator might be applied. This is necessary if we wish to 

automate their selection. 

The McMaster and Shea (1992), definition of aggregation applies only to point features and 

takes a group of such features in close proximity and represents them with a single area 

feature. They also provide a reason for using the operator: the density of point features in a 

particular region on the map prevents them from being displayed individually. So we can state 
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in the ontology that aggregation
5
 reduces the density of features.  If we also state that 

congestion can be resolved by a reduction in feature density, we can infer that aggregation 

resolves congestion (Figure 5.6).  All that is required is a measure of high feature density to 

determine its presence. 

 

Figure 5.6 Reducing illegibility 

If we consider the congested road network (Figure 1.1) then the eliminate operator as defined 

by Roth et al. (2011) – the removal of features – seems appropriate. They define three reasons 

why elimination may be appropriate: when there is unnecessary detail; when there are too 

many features, causing illegibility; and when only the most significant features are required.  

All three of these could be applicable to the road network.  In this case we can say that the 

eliminate operator reduces the density of features.  We have already asserted that a reduction 

in feature density resolves congestion so we can infer that the eliminate operator resolves 

congestion.  This seemingly trivial example demonstrates how we can use inference to get 

“new expressions from old” (Davis et al., 1993, p18).  

A similar process will be carried out for the commonly defined operators in the literature, 

encapsulating in the ontology the effects of the operator and the circumstances for its use.  

The general rule will be to assert as little as possible and infer as much as possible. 

An operator can be implemented by one or more algorithms.  The abstract concept of the 

operator could be omitted and the ontology asked directly to suggest an algorithm that 

resolves a particular geometric condition.  The aim of the ontology is to automate the process 

of generalisation and thus the emphasis is on machine understanding. However, a knowledge 

representation, such as an ontology, is also a medium for human communication and therefore 

requires lucidness and neatness (Kavouras & Kokla, 2008).  So, despite differences between 

the definitions of operators, the concept of an operator is well-understood and is used 

extensively in the domain. Furthermore, most algorithms are described in the literature by the 

operators they implement (Li, 2006).  Since it is important to reflect the experts’ view of the 

domain in the ontology (Noy & McGuinness, 2001) the concept of an operator will be 

included. 

                                                 
5
 This operator was termed amalgamation in the final version of the ontology. 
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5.3.2 Refining the competency questions 

The competency questions can be refined in terms of the newly defined concepts. For 

example: 

 Which measures should be applied to which mapped feature collections? 

 Which generalisation operator should be applied for a given geometric condition? 

 Which generalisation algorithm(s) should be applied to implement the selected 

operator? 

The next stage is to refine and organise these concepts in a semi-formal representation using 

directed graphs. 

5.4 Semi-formal conceptualisation 

Once the important concepts in the domain have be listed and defined in natural language 

(Table 5.2) the next stage is to start to refine and organise these concepts. For example, the 

concept of an operator has been defined but it is necessary to model the different types of 

operators.  This was done by organising the concepts into classes and defining the 

relationships between the classes.  This can be done using the descriptions of concepts (Table 

5.2). Firstly the “is a”, or “type of” or “kind of” subclass relationships are defined in multiple 

hierarchies then other relationships between classes are defined. The relationships are 

modelled as directed graphs where the classes are represented as nodes and the relationships 

as edges (Figure 5.8). Subclasses inherit the properties of their parent class. The directed 

graphs will be colour coded using the convention shown in Figure 5.7.  

This section will focus on defining the generic concepts in then section 5.5 will focus on the 

specific challenges for the road accident use case.  The first stage is to map out the high level 

concepts and relationships that are required to automatically select a generalisation algorithm 

(Figure 5.8).  Figure 5.9 illustrates how the model may be implemented using lower level 

concepts (which will be described later). 

The concept of a Remedy is introduced to act between an operator and a symptom. This helps 

to explain why a particular operator can resolve a particular condition. The condition concept 

is represented implicitly as part of the ProblemFeatureCollection class. Symptoms are 

measured by a MeasureAlgorithm.  If the symptom exists then a Remedy that resolves it can 

be identified, for example a FeatureCountReduction will remedy HighFeatureDensity (Figure 

5.9). From then an appropriate operator and then an appropriate algorithm can be determined. 
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For example, Amalgamation or SelectionByAttribute can resolve HighFeatureDensity in point 

data (Figure 5.9).  

The next stage is to define the top level concepts in more detail and describe the subclasses 

illustrated in Figure 5.9 such as Amalgamation and SelectionByAttribute.  The ontology 

broadly has two main parts, one that will describe the features that need to be mapped, which 

will be similar to a conventional domain ontology, and the other describing the more abstract 

concepts, such as conditions, operators, and algorithms, described in the model of McMaster 

and Shea (1992). The hierarchy of geographic feature types to be mapped will be considered 

first. 

 

Figure 5.7 Colour coding for high level concepts 
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Figure 5.8 Selecting an algorithm – general case 

 

 

Figure 5.9 Selecting an algorithm – particular case 
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5.4.1 Modelling feature types in the ontology 

The representation of features types in the ontology is similar to a conventional domain 

ontology.  There are a number of approaches to modelling hierarchies of concepts in a domain 

ontology (Noy & McGuinness, 2001).  The top-down approach starts with general (top-level) 

concepts and then considers specialisation.  The bottom-up approach starts with the bottom-

level concepts and groups them into general concepts.  The method used here is the 

combination or middle-out approach (Sure et al., 2009), which starts with a top level concept 

and a number of bottom-level concepts and links them via mid-level concepts.  

For example, we have a top-level feature type concept and a bottom-level accident feature 

type. The two concepts can be linked via a thematic feature type, for immaterial entities, and 

an event sub-type (Figure 5.10). A mid-level concept topographic feature type includes 

material entities such as roads and rivers. Subclasses will inherit the properties of parents. 

The distinction between thematic and topographic features facilitates the task of selecting an 

appropriate operator.  For example, if two topographic features overlapped, due to a change 

in scale but not symbology, then some action would be required such as displacing one or 

both of the features.  However, the user will accept some degree of overlapping for event 

features such as accidents. 

A distinction also needs to be made between different types of topographic feature since 

dedicated algorithms have been developed for generalising specific feature types such as 

rivers, roads, and buildings (Stanislowski & Savino, 2011; Chen et al., 2009; Yan et al., 

2008).  So it is not sufficient to simply search for an algorithm that generalises a network of 

linear features, say.  The first iteration of the feature type hierarchy is depicted in Figure 5.10  

(the building and crime feature types are not necessary for the use case, they are included for 

illustration).  

 

Figure 5.10 The feature type class hierarchy 
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In an ontology, everything must add value (Hart & Dolbear, 2013) and the addition of the 

TransportFeatureType class to the hierarchy (Figure 5.11) may seem unnecessary if it does 

not help answer any of the competency questions.  However, as has been stated, one of the 

roles of any knowledge representation is to aid human communication (Kavouras & Kokla, 

2008) so its inclusion is justifiable if it makes the ontology more readable by balancing the 

width and the depth of the hierarchy. 

 

Figure 5.11 Extended feature type class hierarchy 

An ontology, in contrast to an object-oriented structure, can exhibit multiple inheritance. For 

example the RoadFeatureType is both a subclass of the TopographicFeatureType and the 

TransportFeatureType (Figure 5.11). 

So far the discussion has been limited to class and subclass or subsumption relationships. The 

advantage of ontologies is that they can represent other types of relationships.  For example, 

the relations between feature collections (Figure 4.13) are partonomic relationships where a 

problem feature collection (FC) is part of a mapped feature collection, which is part of a 

source feature collection.  Such relations are transitive; if a problem FC is part of a mapped 

FC and the mapped FC is part of the source FC then we can say that the problem FC is part of 

the source FC. 

In fact, an ontology can describe any relation.  For example, since each feature collection 

contains features of the same feature type, we can define a hasFeatureType relation between a 

feature collection and a feature type. Such relations are termed property relations and are 

displayed as labelled edges (Figure 5.12).  It is this ability to represent relations other than 

hierarchical that allow connections to be made between disparate concepts such as conditions, 

symptoms, and operators. 
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Figure 5.12 Property relations between concepts 

5.4.2 Modelling operators in the ontology 

The informal conceptualisation identified the operator as a high-level concept in the ontology 

and the next step is to define the lower level concepts (a top-down approach).  As previously 

discussed (section 2.7) there have been a number of attempts to classify and define operators; 

Roth et al. (2011) identified 13 taxonomies prior to their own, with the earliest from 1963. 

The taxonomies often vary in the terms they use to describe the same operators (synonymy) 

and often use the same term to describe different operators (polysemy).  There is also some 

disagreement over which functions can be classed as generalisation operators (Roth et al., 

2011; Foerster et al., 2007a; McMaster & Shea, 1992).  Given the different descriptions of 

operators it is necessary to choose which definitions to include in the ontology and decide 

how they should be organised. 

The taxonomies of operators examined earlier group operators into different subclasses.  For 

example, Roth et al. (2011) group operators into four subclasses; geometry, content, symbol 

and label. Such hierarchies, which aid human understanding but are not necessary for 

machine understanding, can be included or not. In this research they will be omitted and each 

type of operator will be a direct subclass of the operator class. This solves the problem of 

scope in that as long as the ontology describes all of the operators necessary to produce the 

desired output then whether an operator is classified as a generalisation operator or a pre-

processing operator is unimportant. 

The first step is to discover the characteristics that can be used to define and distinguish 

operators. The characteristics were drawn from the literature and grouped and described in 

Table 5.3.  The Effect category is equivalent to the ontology Remedy class (Figure 5.8). The 

next step is to decide which of these characteristics each operator, in each classification, has. 

Figure 5.13 shows a selection of operator characteristics from the three taxonomies studied 
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earlier (section 2.7).  If an operator definition has a particular characteristic then the value of 

the relevant cell is set to 1. 

Each operator definition will have a characteristic signature which can be used to compare 

definitions.  For example, if two operators from different classifications have the same 

signature then we can conclude they represent the same concept.  Conversely, no two 

operators in the same classification should have the same signature and if they do then it 

implies that there needs to be a refinement of the list of characteristics, assuming that the 

definitions have not been misunderstood.  

An easy way to compare characteristic signatures is to convert the binary number derived 

from the signature into a decimal value, the total points column in Figure 5.13. For example, 

it can be seen that the definition for merge in the Roth et al. (2011) taxonomy matches the 

amalgamation definition in the Foerster et al. (2007a) taxonomy.  Therefore these two 

synonyms require only a single entry in the ontology. It might be beneficial to record the fact 

that a concept has multiple labels and that can be accommodated by the ontology (Stevens & 

Lord, 2012). 

The process of defining the list of characteristics is iterative.  For example, the smoothing and 

simplification definitions of the McMaster and Shea (1992) taxonomy currently have the same 

signature (Figure 5.13), which means that the set of characteristics needs further refinement 

(Table 5.3).  Also each operator should have at least one effect characteristic; otherwise there 

would no reason to use it.  For example, neither the exaggeration nor the enhancement 

operator in the McMaster and Shea list have any effects and have the same signature.  In this 

case at least one new effect characteristic needs to be defined, so that the model distinguishes 

the subtle differences between these two operators. After any new additions all of the other 

operator definitions need to be reassessed to see if they possess the new characteristic. 

Enhancement, as defined by Foerster et al. (2007a), has a wide definition and includes 

exaggeration, smoothing, squaring, and emphasis.  They maintained that there was not a 

sufficiently sophisticated cartographic model that allowed the components of the operator to 

be separated out.  The technique of defining characteristic signatures for the operators will 

allow this. 
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Category Characteristic Description 

Input 
Geometry 

Point 

Line 

Polygon 

The input geometry on which the operator works. At 
least one of these must be selected. 

Level applies 
to 

Single feature 

Multiple features 

This is the scope at which the operator works (Li, 2006). 
In some cases its application is obvious.  For example, it 
is not possible to amalgamate a single building. Other 
applications are less obvious. For example, it is possible 
to displace a single feature but it is done with respect to 
other features so the displacement operator is defined 
as operating on multiple features. 

Effect 

Reduction in 
detail 

Indicates whether the application of the operator results 
in a reduction in the detail of a feature. 

Abstraction Indicates whether the application of the operator results 
in an abstraction.  All generalisation is an abstraction (Li, 
2006) but this characteristic relates to a semantic 
abstraction i.e. a change of meaning.  For example, a 
set of buildings that are amalgamated are no longer a 
set of buildings but a new feature representing a city 
block or built-up area. 

Feature count 
reduction 

Indicates whether the application of the operator results 
in fewer features. 

Reduction in 
dimensionality 

Indicates whether the application of the operator results 
in a decrease in dimensionality. For example, when the 
collapse operator transforms a polygon to a line. 

Increase in 
dimensionality 

Indicates whether the application of the operator results 
in an increase in dimensionality.  For example, the 
combine operator as defined by Foerster et al. (2007) 
transforms point features into a polygon. 

Change in 
location 

Indicates whether the application of the operator results 
in a change in location of a feature.  

Table 5.3 Operator characteristics 
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Figure 5.13 Selected characteristics from operator taxonomies 

One characteristic not listed is the output geometry of the operator.  Unlike input geometry, 

the output geometry of an operator is not relevant to the selection of that operator.  However, 

the output geometry of one operator will affect the selection of subsequent operators.  For 

example, if the effect of a particular operator was to produce point features then the collapse 

operator would not be subsequently applicable.  In any case, the output geometry can be 

inferred from the input geometry and the increase/decrease in dimensionality characteristics. 

The process of characterising the operators is not always straightforward; some are easier to 

characterise than others and the definitions of the effects have to be clear. For example, 

refinement as defined McMaster and Shea (1992) calls for the depiction of a “selective 

number and pattern” (p59) of features where they are too dense to show all of them. This is 

achieved by removing the smallest or least important features.  Does this involve a reduction 

in detail? When we consider the overall map then there is certainly a reduction in detail, but 

when we consider individual features there is not; those features that have been retained are 

unchanged.  So the definition of reduction in detail refers only to individual features. 

The column of operator names (Figure 5.13) is headed term rather operator to emphasise that 

an operator is defined by its characteristics and not its label.  Ultimately the labels assigned to 
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different operators will be invisible to the end-user and irrelevant to the machine.  All that is 

necessary is that there is at least one operator that will remedy any given condition. 

The characteristics listed in Table 5.3 and applied in Figure 5.13 proved sufficient for the use 

case but the list will require further refinement.  For example, the description of the input data 

includes point, line and polygon geometries but does not include concepts such as a network 

or a surface.  Also the technique can be used to determine if two operator definitions match 

exactly but there is currently no easy way of determining which definitions are similar, 

without examining individual characteristics. A method for highlighting similar operator 

definitions would be a useful aid to determining definitive representations. 

Once the characteristics of the operators have been defined they can be modelled, as before, 

by a directed graph.  Figure 5.14 depicts, as an example, the conceptualisation of the collapse 

operator, which has a definition that is shared across the three taxonomies studied. 

 

Figure 5.14 Semi-formal conceptualisation of the collapse operator 

One of the major problems at this stage was that it was not always apparent whether a concept 

should be modelled as a class or an individual
6
.  There are guidelines for helping the decision 

making (Noy & McGuinness, 2001; Stevens & Sattler, 2013) and context is an important 

factor.  For example, consider the book “Great Expectations”.  In the context of a reading list 

for a university course then it is an individual in the class book.  However, in the context of a 

bookshop it is a class and the individuals are the copies in stock. 

                                                 
6
 The term individual is used in OWL and is interchangeable with the term instance. 
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Geometry has been identified as a key concept and a characteristic of the operator class.  

Features are defined by their geometry and the application of operators is determined partly 

by geometry; for example, it is possible to simplify an area or line feature, but not a point 

feature.  So modelling geometry correctly is important.  There are two options.  Geometry 

could be defined as a single class with three individuals (instances) – point, line and area. 

Alternatively point, line and polygon could exist as subclasses of the geometry class and the 

individuals would be geometries of particular features or feature collections.  Noy and 

McGuinness (2001) suggest that subclasses should be introduced if they have additional 

properties from the superclass or if they take part in different relationships from the 

superclass.  They also suggest that if the concept is important, then it should be introduced as 

a subclass.  For this reason the three types of geometry were modelled as subclasses. 

Generalisation is a transformative process and it is important that those changes are 

transmitted as the workflow progresses.  For example, if we define collapse as change in 

geometry from polygon to point or polygon to line, then that change to the feature collection 

needs to be recorded in the ontology since it will affect what operators are applicable for 

subsequent transformations. 

5.4.3 Modelling transformation algorithms 

The ultimate aim of the ontology is the implementation of the McMaster and Shea (1992) 

generalisation model and the automatic selection of the appropriate generalisation algorithms 

to remedy geometric conditions.  A survey of the literature to identify the characteristics of 

generalisation algorithms, similar to that of the operator taxonomies, was carried out.  The 

process was, by necessity, iterative and the characteristics identified in Table 5.4 were 

developed from a starting list that was refined as more algorithms were examined.  The 

survey focussed on algorithms for point aggregation, line simplification and line smoothing, 

road selection and building amalgamation.  This ensured that algorithms for the generalisation 

of points, lines and polygons were surveyed.  Point aggregation and road selection algorithms 

were surveyed since they were required for the road accident mapping use case.  Not all of the 

characteristics listed in Table 5.4 were implemented in the ontology and some are included to 

aid human comprehension; specifically the “Reference” and “Li Category” characteristics 

were not modelled. 

Most algorithms have one or more parameters. Once the algorithm has been selected then any 

parameter values will have to be calculated automatically for on-demand mapping. The 

survey was therefore extended to establish the characteristics of parameters (Table 5.5). Over 
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forty journal and conference papers were examined in the survey and Table 5.6 shows an 

example. 

Characteristic Description 

Name Common name of the algorithm e.g. Douglas-Peucker. 

Reference Journal/conference paper where the algorithm is first described. 

Operator(s) The operator that the algorithm implements. The operator name recorded 
is that used in the reference.  Some algorithms implement more than one 
operator; line simplification and smoothing, for example (McMaster, 1989). 

“Li” Category Category of the algorithm based on Li (2006) (see Figure 2.7).  For 
example, aggregation of a set of point features. This categorisation was 
used in addition to operator because of the differences in the names of 
operators that are used to describe the function of algorithms.  For 
example, the process of removing minor roads from a network has been 
termed Simplification (Regnauld & McMaster, 2007), Thinning (ESRI, 
2012) and Selection  (Touya, 2010). 

Since the “Li” categories are relatively expressive and based on 
algorithms and not operators they can provide a better description than 
the operator category. 

Description Natural language description of the algorithm. 

Application The context where the algorithm has been used. Some algorithms have 
been developed for specific contexts, such as generalising rural buildings 
(Revell, 2004). 

Input features Nature and geometry of source data. For example, set of points, single 
line. 

Output features Nature and geometry of output data. e.g. polygon representing a cluster of 
points. 

Target scale Some algorithms have been developed for a particular target scale (Benz 
& Weibel, 2013; Regnauld & Revell, 2007; Chaudhry & Mackaness, 2005). 

Source scale Some algorithms have been developed for a particular source scale 
although determining this is not as easy as determining the target scale 
since source data is frequently held in spatial databases where the “scale” 
of the data is not always obvious. 

Table 5.4 Characteristics of generalisation algorithms 
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Characteristic Description 

Name Name of the parameter e.g. maximum distance. 

Description Natural language description of the parameter. 

Role What the role the parameter plays. For example, the parameter might 
affect the amount of generalisation or the time taken to execute the 
algorithm. 

Effect on output Describes the particular impact of the parameter.  

Necessity Indicates whether a parameter can be omitted or whether a default could 
be provided. 

Weight Defines the importance of the parameter in relation to the other 
parameters of the algorithm.  For example a parameter that effects the 
amount of generalisation will be given a higher weight than one that 
servers a stop on the number of iterations. The combined weights of an 
algorithm’s parameters will sum to 1. This is a subjective assessment. 

Data type Double, integer etc. 

Units Linear units, areal units etc. 

Range Range of possible values for the parameter. 

Table 5.5 Characteristics of algorithm parameters 

It was immediately apparent from the survey that each operator is implemented by a number 

of algorithms.  For example, six algorithms were identified for building amalgamation (ESRI, 

2011a; Damen et al., 2008; Yan et al., 2008; Regnauld & Revell, 2007; Regnauld, 2003; 

Revell, 2004).  There are a number of reasons for this variety. For example, many algorithms 

have been developed or refined to solve specific problems such as amalgamating rural or 

urban buildings or smoothing mountain roads.  

The context in which the algorithm is applied is important.  Some algorithms such as the line 

simplification algorithm of Douglas and Peucker (1973) do not specify a particular context, 

other are highly specific, specifying the target scale and the feature type of the source data.  

For example,  Regnauld and Revell (2007) describe two algorithms for amalgamating 

buildings at 1:50000 scale for both rural and urban contexts.  The building simplification 

algorithm described in Table 5.6 is aimed at simplifying the complex, overly-detailed building 

footprints that might be the result of surveying techniques such as LIDAR. 
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Name Fan & Meng 

Reference Fan and Meng (2010) 

Operator(s) Simplification 

Li Category Transformation of a single area feature 

Description Building simplification – pre-processes the ground plan by removing any redundant 
non-characteristic points using a buffer. Then simplification by the removal of sides 
shorter than a specified threshold. The method depends on whether the 
neighbouring sides are parallel or not, and if not then angles are compared to a 
threshold angle. 

Application Single buildings, complex, non-rectangular. Building plans derived from LIDAR. 

Input features Single polygon 

Output features Single polygon 

Target scale Not specified 

Source scale Not specified, but will be at a scale with high detail. 

Parameters 

Name Description Role Effect on 
output 

Necessity Weight  Data type Unit Range 

ε ½ buffer width 
used for pre-
processing i.e. 
removing 
redundant non-
characteristic 
points. 

Distance, 
Buffer, 
Pre-
processing 

The larger the 
buffer the 
more points 
are removed. 

Required 0.4 Double m  

Ts Minimum length 
that is just visible 
at a given scale. 
Any lines shorter 
than this are 
removed. 

Distance 
threshold, 
Minimum 
length, 
Speed 

The larger the 
threshold the 
more points 
are removed. 

Required 0.4 Double m 1m to 
20m 
in 
their 
tests 

Ws Angle threshold 
used when the two 
sides adjacent to a 
short side are not 
parallel. 

Threshold Does not 
affect removal 
of shortest 
side – just the 
meeting point 
of the two 
adjacent sides 
after removal. 

Could 
use 
default 

0.2 Degrees  < 20° 

Table 5.6 Example algorithm characterisation 

Extracting information about particular algorithms from the literature is not always 

straightforward.  For example, rather than describe a single algorithm that implements a 

single operator, the literature frequently describes specific techniques that combine existing 

algorithms to solve a particular problem.  Revell (2004), for example, describes a technique 

for identifying clusters of rural buildings at a scale of 1:50K, amalgamating each cluster and 

simplifying the resulting geometries. 
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Despite the complexities, the survey helped to identify the main characteristics of 

generalisation algorithms which, in turn, helped to formalise the conceptualisation of 

generalisation algorithms.  The representation of a generic generalisation or transformation 

algorithm is shown in Figure 5.15. 

 

Figure 5.15 The definition of a generic transformation algorithm 

A more detailed definition of two line simplification algorithms is shown in Figure 5.16.  Line 

simplification provides a good example of why the term transformation is used since it is not 

universally regarded as a generalisation process.  In this example, the definitions of the two 

algorithms will need more than a parameter to separate them.  Further characteristics will 

need to be added to provide a reason why one should be chosen before the other. 

Defining different algorithms as subclasses, such as Douglas-Peucker and Visvalingam-

Whyatt, might not be easy since many algorithms are refinements of existing algorithms and 

there may be several versions of the Douglas-Peucker algorithm, for example.  Ultimately, the 

automatic selection of algorithms will be based on their properties and not their origins. 

Therefore it might be better to represent the source of the algorithm (e.g. Douglas and 

Peucker (1973)) as a property of the algorithm class rather than as a subclass. 
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Figure 5.16 The definition of two line simplification algorithms 

In this implementation the individuals (instances) of the transformation algorithm class will 

be Java functions.  The Balley and Regnauld (2011a) model for on-demand mapping (Figure 

4.14) specifies the exposure of algorithms via web services and this model does not prevent 

that. 

5.4.4 Modelling measure algorithms 

The role of a measure algorithm is to identify the features in the mapped feature collection 

(Figure 4.13) that exhibit a particular symptom (such as high feature density) of a condition 

(such as congestion).  The definition of a measure algorithm (Figure 5.17) is less complex 

than that of a transformation algorithm.  

 

Figure 5.17 The definition of a generic measure algorithm 
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The concept “generalisation” was included in the informal conceptualisation (Table 5.2) but 

is omitted from the semi-formal conceptualisation since an explicit definition was not 

required as the concept is encapsulated by other concepts and their relationships.  So far the 

semi-formal conceptualisation has been relatively general.  The following section focuses on 

some of the specific challenges for the use case. 

5.5 Use-case specific challenges in semi-formal conceptualisation 

The previous section developed semi-formal conceptualisations of the main concepts of the 

ontology, in particular the operator and algorithm concepts.  This section focusses on some of 

the specific challenges that have to be solved to implement the use case.  The operators have 

to be defined in such a manner as to help their automatic selection.  Not all operators are 

appropriate for the feature types in the use case.  The definition of the use case highlighted a 

number of actions that could be used to reduce congestion in accidents and road segments 

(Figure 5.3 and Figure 5.4) and this section will seek to refine the operators for the use case. 

5.5.1 Selection by Attribute  

Perhaps the simplest way to reduce congestion of road accidents is to remove the least 

important accidents (Figure 5.3c).  Li (2006) terms this operator selective omission but it is 

not immediately obvious what the equivalent is in the three taxonomies studied.  The nearest 

equivalent is probably class selection as defined by Foerster et al. (2007a).  The process is 

also contained within the very broad add operator defined by Roth et al. (2011).  It may be 

included as part of refinement operator of McMaster and Shea (1992) but it is not clear, and 

all three definitions are too broad for what is required. 

There is little detailed discussion of this process in the literature, partly because it is relatively 

easy to implement and partly because it is not always regarded as a generalisation process but 

as a pre-processing step.  Unlike most generalisation operators, it has no geometric effect.  It 

may be that since it requires the features to have attribute information it has been historically 

less relevant.  It is only in recent years that maps have been created from databases rather than 

from other maps at a larger scale.  The relative importance of topographic features can be 

inferred from their geometry, specifically their size, rather than a particular attribute value.  

The generalisation of topographic features can then be controlled by applying a minimum size 

constraint.  However, the minimum size constraint is not relevant to point event features such 

as accidents and this is why selection by attribute needs to be defined as a distinct operator 

(Figure 5.18). 
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Figure 5.18 Defining the selection by attribute operator 

As stated earlier (section 5.2.1), the source feature collection must have an attribute that can 

be used to rank the features by importance.  Such a feature collection is defined in the 

ontology as a RankedFeatureCollection (Figure 5.18).  The SelectionByAttribute operator is 

defined as requiring a RankedFeatureCollection.  The RankedFeatureCollection is defined by 

having an importance attribute represented by a string which will simply be the name of the 

source dataset attribute that can be used for ranking.  Such a relation is termed a data property 

in contrast to the object properties that have been defined so far.  Any individual (instance) of 

the FeatureCollection class that has a value for the hasImportanceAttribute data property will 

be inferred to be a RankedFeatureCollection.  The hasImportanceAttribute is not made a 

property of the AccidentFeatureCollection class since that would imply that all accident 

feature collections had an importance attribute.  The dataset in the use case has an attribute 

SEVERITY, which can be used as an importance attribute, and that detail is recorded in the 

ontology. 

The selection by attribute operator makes no semantic changes to the individual features; all 

that has changed is their number.  However, if congestion in a collection of road accidents is 

resolved by grouping the accidents into a single feature then the features have changing 

meaning from a set of accident features to a hot-spot, say.  The individual attributes, including 

the importance attribute, of the accidents are lost.  This will effect subsequent transformation 

of the data.  The ontology will therefore need to manage the change in meaning of a feature or 

feature collection.  This process is termed semantic propagation (Janowicz et al., 2010). 

One of the road segment datasets employed in the use
7
 case has an attribute that describes the 

class of the road (Motorway, A road, B road etc.) that could be used for ranking features.  

                                                 
7
 Ordnance Survey’s ITN dataset provided by the Digimap service (University of Edinburgh, 2014) 
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However, selection by attribute is not appropriate for the road features since it is necessary to 

maintain a consistent network when generalising roads and the retention of some minor roads 

can help to do this
8
.  The removal of road segments needs to be more sophisticated (see 

section 5.5.4).  If the dataset has a ranking attribute then the select by attribute operator 

should not be selected for use on the road network.  

The solution was to define a new feature class, NetworkFeatureCollection and add 

RoadFeatureCollection as a subclass (Figure 5.19).  If it is asserted that a network forbids 

selection by attribute then, since a road feature collection is a type of network, selection by 

attribute cannot be applied to roads. 

 

Figure 5.19 Preventing the application of selection by attribute to road features 

5.5.2 Amalgamation 

Amalgamation can be defined as the replacement a cluster of features with a single area 

feature of the same extent.  Generally the literature makes a distinction between two operators 

depending on whether there is a change in dimensionality or not.  For example, Foerster et al. 

(2007a) use the term combine when an increase in dimensionality occurs and amalgamation 

when not. Roth et al. (2011) uses the term aggregate when an increase in dimensionality 

occurs and merge when not. McMaster and Shea (1992) use the terms aggregation, merging, 

and amalgamation for the combination of point (to area), line (to line) and area (to area) 

features, respectively.  Li (2006) terms this operator regionalisation when applied to point 

features and aggregation when applied to area features.  The operator as defined here, termed 

amalgamation, applies to source data of any dimensionality (Figure 5.20) since there is no 

requirement from the use case for two separate operators.  Its application to accidents is 

                                                 
8
  Some road pruning algorithms will utilise the road class to aid selection but not use it as the sole criteria for 

selection (Zhou & Li, 2012). 
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relatively straightforward (Figure 5.3e) but its application to road features needs to be 

considered. 

 

Figure 5.20 The definition of the amalgamation operator 

Figure 5.21a depicts urban buildings at a scale where individual buildings are difficult to 

distinguish and amalgamating the buildings into “city blocks” would be appropriate. Figure 

5.21b depicts road features (as polygons) that suffer the same problem. However, in this case 

the amalgamation of the features would be inappropriate; whereas the concept of a built-up 

area representing a number of individual buildings is conventional the same does not apply 

for roads. The ontology needs to be designed in such a way that it does not suggest this 

operator for road features. 

  

(a) High density buildings (b) High density roads 

Figure 5.21 High density topographic features 

The reason amalgamation is inappropriate is that it performs a semantic abstraction which is 

unsuitable for networks such as roads and rivers; there is no concept that describes a cluster of 
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roads
9
.  The most direct solution would be to simply assert that the amalgamation operator 

does not apply to a network (as was done with the selection by attribute operator).  However, 

a more generic solution is to define Abstraction as a new subclass of Remedy (Figure 5.22).  

 

Figure 5.22 Preventing the application of amalgamation to road features 

It is asserted that Abstraction is an effect of amalgamation and that a Network FC forbids 

abstraction.  It is then possible to define a property chain
10

 (Figure 5.23), from which it is 

possible to infer that amalgamation should not be applied to road features. 

 

Figure 5.23 A property chain 

As the intention is to use semantics, a direct assertion – that a network should not be 

amalgamated – was avoided.  Therefore any operator that performs an abstraction will not be 

applied to any network of features including roads and rivers.  Describing the nature of the 

operator, amalgamation, allows it to be reasoned about. 

                                                 
9
 At a relatively small scale a cluster of roads could be used to define the extent of a settlement but that is 

normally done by buildings. 
10

 This is done using the property chain function of Protégé in the formal conceptualisation phase. 
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As discussed earlier the selection by attribute operator was deemed inappropriate for 

generalising a network but in that case a direct assertion was made (Figure 5.24).  The more 

direct assertion is less useful since we are not getting “new expressions from old” (Davis et 

al., 1993, p18) but it is difficult to see how it could be refined; it is in the nature of a network 

that its components cannot be removed based simply on the value of an attribute. 

 

Figure 5.24 Indirect and direct restrictions on operators 

5.5.3 Aggregation 

The process in Figure 5.3f can be defined as  “the categorisation of a set of points into groups 

and then representation of each group by a single point” (Li, 2006, p76) and is termed 

aggregation in the ontology.  It is equivalent to the amalgamation operator of Foerster et al. 

(2007a) and the merge  operator of Roth et al. (2011) with point data as input.  This operator 

differs from amalgamation in that there is no change in dimensionality and it only applies to 

point features (Figure 5.25). 

 

Figure 5.25 Definition of the aggregation operator 
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5.5.4 Pruning 

The operators discussed in detail so far are applicable to the accident data. The operator 

discussed here, termed pruning, is relevant to the road network.  It is similar to selection by 

attribute in that it selectively reduces the number of features but does it in a distinctively 

different manner that requires a separate operator.  This operator is sometimes referred to as 

refinement (Regnauld & McMaster, 2007; McMaster & Shea, 1992) or thinning (ESRI, 2012) 

and aims to remove features from while respecting the topology of the features (Figure 5.4c).  

Roth et al. (2011) define a more general operator, eliminate, and regard refinement as a type 

of elimination that can be managed at the algorithm level.  Their reasoning is that refinement 

is a function of the data structure and that the effect, the elimination of features, is the same.  

This means that the requirement for a network is a property of the algorithm (Figure 5.26a) 

rather than the operator (Figure 5.26b).  This raises the general question of whether the detail 

exists with the operator or the algorithm.  It should be remembered that Roth et al. (2011) 

have a different motivation for their classification and here it is the operator that will have the 

requirement for a network. 

 

 

(a) Roth et al. (2011) model (b) McMaster and Shea (1992) model 

Figure 5.26 Location of properties 

The term pruning has been used before (Stanislowski & Savino, 2011) and will be used here 

since it is more meaningful than “refinement”.  The definition of the operator (Figure 5.27) 

prevents it being applied to the accident dataset since it requires a network feature collection 

and line geometry. 
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Figure 5.27 The definition of the pruning operator 

The operators required by the use case have been semi-formally conceptualised.  The 

evaluation phase may lead to further refinement but it is now necessary to consider the 

conceptualisation of the measure algorithms. 

5.5.5 Selecting the correct measure algorithm 

The use cases focuses on feature congestion, of which high feature density is a symptom. 

Different algorithms are required to measure high feature density in accidents and in roads. 

The ontology will include five types of measure algorithms (Figure 5.28).  Algorithms are 

required for the three different geometries since the accidents will be represented as points 

(initially) and area features (if amalgamated) and the roads will be represented as area features 

and line features. The accident feature density will be measured by the generic algorithms; 

PointFeatureDensityMeasureAlgorithm and AreaFeatureDensityMeasureAlgorithm. The road 

feature density will, however, be measured by two specialised algorithms; 

RoadAreaFeatureDensityMeasureAlgorithm and RoadLineFeatureDensityMeasureAlgorithm. 

The density of crossroads is used in these algorithms as a more subtle measure of the density 

of road features than the density of feature centroids that is used in the generic line and area 

feature measures (the detailed implementation of these algorithms is described in Chapter 6).  
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Figure 5.28 Definition of measure algorithms for the use case 

The hierarchy for the measure algorithms is shallow. It could be argued that the 

RoadLineFeatureDensityMeasureAlgorithm is a specialisation of the 

LineFeatureDensityMeasureAlgorithm class and should be made a subclass of it.  However, 

this is not the case since the RoadLineFeatureDensityMeasureAlgorithm only applies to road 

features and not any other type of line feature.  The generic 

LineFeatureDensityMeasureAlgorithm is not required by the use case and no individuals 

(instances) will be created; that is, the algorithm will not be implemented in code.  However, 

the class has been included as a test.  The system should not suggest an algorithm from class 

for the road network. 

5.5.6 Modelling spatial relations in the ontology 

The aim when modelling spatial relations is to assert relations between different feature types 

so that they can be respected during generalisation.  This in contrast to recent work by Jaara et 

al. (2012) where relations at the individual feature level are inferred and then respected during 

any transformation.  In yet another approach, Corcoran et al. (2012) use generalisation to infer 

spatial relations, for example between an access road and an amalgamated group of buildings.  

The loss of context that occurs when generalising without respecting spatial relations is not 

always as obvious as in Figure 5.5.  For example, the removal of the minor road segment (A) 
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in Figure 1.5 may lead the user to conclude that the accident hot-spot is located on a straight 

section of road rather than at a junction.  

A spatial relation between two geographic features can either be expressed as a  metric (a 

proximity relation can be measured by distance, for example) or expressed as a binary relation 

using predicates; the road is parallel to the rail track (Egenhofer & Franzosa, 1991).  

Shi (2011) believes that the spatial relations between objects in ontologies have been ignored 

in favour of  semantic relations but more recently there have been a number of attempts to 

define spatial relations in an ontology (Ordnance Survey, 2014b; Touya et al., 2014; Bucher 

et al., 2012; Laurini, 2012; Touya et al., 2012).  The intention here is to encapsulate those 

spatial relations between feature types that are the result of semantic relationships. For 

example, a road accident is an event that takes place on a road; a bus stop is an access point to 

a network. 

It might seem obvious that spatial relations should be modelled as properties of classes. i.e. a 

relation is modelled using a relation (Figure 5.29a), which is the model used by the Ordnance 

Survey (2014b).  However, in the Web Ontology Language (OWL), properties have limited 

characteristics.  An inverse property can be defined (the inverse of follows is isFollowedBy) 

or a symmetric property (nextTo, for example) but there is no way of adding attributes to 

properties.  Modelling spatial relations as properties is limited to binary relations so we 

cannot model higher order spatial relations, such as the intersection of three different features.  

The solution is to model spatial relations as classes (Figure 5.29b) but at the expense of 

making the reasoning process more complex. 
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(a) Spatial relation as a property (b) Spatial relation as a class 

Figure 5.29 Representing spatial relations in the ontology 

The relationship between accidents and roads can be considered initially as a semantic 

relation: by definition a road accident is an event that takes place on a road. However, the 

nature of the “on” relation is vague. Consider the different meanings between “the nose on 

your face”, “the house on the street”, and “the box on the floor” (Varanka & Caro, 2013). The 

relation between the accident and the road is similar to the last of these.  The semantic relation 

is modelled simply in the ontology as a property (Figure 5.30).  At the feature type level it is 

asserted that, in general, features of the type “accident” are “on” features of the type “road”.  

However, at the feature collection level, each particular relationship will in fact be between 

individual feature collections (Figure 5.31).  Modelling this semantic relation between the two 

feature collections allows the system to infer that when a particular accident feature collection 

is to be mapped then a particular road feature collection can provide context. 

 

Figure 5.30 Modelling the general semantic relationship between accidents and roads 

 

Figure 5.31 Modelling a particular semantic relationship between roads and accidents 

To allow for the generalisation of the road network with respect to the accident data, however, 

the imprecise semantic relation, “is on”, needs to be expressed as a spatial relation.  In fact, it 
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is expressed as a number of spatial relations which are dependent on the current geometries of 

the two feature types (Figure 5.32). For example, if the road accidents have been 

amalgamated into an area feature and the roads have been collapsed to lines then the 

relationship is intersects (Figure 5.32d). The relationship can be used as a constraint on the 

generalisation of the roads.  So, if the road segment intersects an accident cluster then the road 

segment should be retained. These relationships need to be represented in the ontology. 

 

    

(a) contained by (b) adjacent (c) intersects (d) intersects 

Figure 5.32 Spatial relation predicates between roads and accidents 

Figure 5.33 depicts the relation containedBy between accidents and roads.  This relation is not 

symmetric and the definition stresses the primacy of the accidents in the relation by referring 

to the accidents as thematic features and the roads as support features, using the terminology 

of Jaara et al. (2012). The concept of thematic and support roles is semantically more 

expressive than primary and secondary roles (Figure 5.29) and reflects the aim of the on-

demand system to map user data (accidents) in context (road network). The 

ContainedByTestAlgorithm class will contain algorithms for testing whether a feature of one 

type is contained by a feature of another type.  If they are (as in Figure 5.32a) then this 

relationship needs to be respected during generalisation. The spatial relation test algorithms 

are sufficiently different from the cartometric measure algorithms (section 5.4.4) to warrant 

their own class and are applicable to any feature type. 
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Figure 5.33 Modelling the contained by spatial relation as it related to accidents and roads 

The relations between feature types can be used to select which features to map. For example, 

if the user expresses a requirement to map road accidents then the system can use the 

ontology to infer that the road network should also be mapped although the inverse would not 

be true and the thematic and support concepts help to ensure that. 

Complications occur when accident features are amalgamated (Figure 5.32c and Figure 

5.32d).  The road segments, although generalised, retain their original character, only their 

geometry has changed.  However, it could be argued that the accident features are replaced by 

a new feature type, an accident cluster or hot-spot.  The original relation is between the 

accident feature type and roads feature type. A new feature type accidentHotSpot could be 

created and the relation between it and the road feature type defined.  However, the definition 

of the amalgamation operator would need to be updated to record the fact that road accidents 

are transformed into the new accidentHotSpot feature type.  This would be the same for any 

amalgamated feature type such as buildings. This change would make the ontology 

unnecessarily complex but the inconsistency needs to be noted.  Ignoring the fact that 

amalgamation leads to a change in feature type, the intersects relationship is depicted in 

Figure 5.34.  As with the adjacent relationship, and unlike the contained by relationship, 

intersects is symmetric. Another difference from the contained by relationship is that it 

supports two different support geometries. 
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Figure 5.34 Modelling the intersects spatial relation in the ontology 

5.6 Formal conceptualisation 

The concepts defined in the directed graphs were encapsulated in a formal language (OWL-

DL) using the Protégé ontology editor (Stanford Center for Biomedical Research, 2014). 

Protégé is a free, open-source, and widely used ontology editor.  Classes and subclasses were 

created in Protégé, based on the directed graphs created in the previous section, and then 

object properties (relations) were added. Finally individuals (instances) were added. 

The semi-formal stage can to some extent defer the question of whether a concept exists as a 

class or as an individual (instance) in the ontology. However, the question cannot be avoided 

in the formal conceptualisation phase. The issue, in relation to geometry was raised earlier 

(section 5.4.2), but it is also applicable to other concepts such as algorithms. For example, the 

Douglas-Peucker algorithm could be modelled as an individual in a line simplification class 

or as a class of its own.  It is only in the evaluation stage that these uncertainties can be 

answered. 

5.7 Evaluation 

After the ontology has been formalised using OWL the competency questions can be 

expressed as Manchester OWL Syntax  queries (Horridge & Patel-Schneider, 2008), for 

which Protégé has a parser. The parser requires the use of a reasoner, and HermiT (University 
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of Oxford, 2011), which is built into Protégé 4.1, was used. For example, the competency 

question 

Find an algorithm that will implement a particular operator 

is expressed in the Manchester OWL syntax as 

TransformationAlgorithm and implements some Collapse and hasInputGeometry 

some AreaGeometry 

This will return any subclasses such as the AreaFeatureCollapseAlgorithm (Figure 5.35) and 

any individuals in those subclasses that meet the query. 

 

Figure 5.35 Definition of the AreaFeatureCollapseAlgorithm 

The collapse operator can either have line or area input geometry (Figure 5.14) whereas the 

AreaCollapseAlgorithm is limited to area geometry input only (Figure 5.35).  A distinct 

subclass of algorithms that perform area feature collapse as opposed to line feature collapse 

was created because they are two distinctly different processes.  

Figure 5.28 provided the definition required for modelling specialist and non-specialist 

measure algorithms.  That structure can be used as follows.  Firstly it is necessary to check 

whether a specialist algorithm exists for a particular feature type, roads, assuming an area 

geometry, for example 

MeasureAlgorithm and measures some HighFeatureDensity and hasInputGeometry 

some AreaGeometry and appliesTo only RoadFeatureType 
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The key clause is the final one (in bold) since it limits the return to only those measure 

algorithms that only apply to road features.  If no specialist algorithm is found then the next 

step is to find a general algorithm 

MeasureAlgorithm and measures some HighFeatureDensity and hasInputGeometry 

some AreaGeometry 

Ideally the ontology will only return one class and one individual for any query.  Otherwise a 

decision has to be made by the user.  For example, the ontology returns three operators to 

remedy congestion in accident features; SelectionByAttribute, Amalgamation and Aggregation 

which produce the outputs displayed in Figure 5.3c, Figure 5.3e and Figure 5.3f respectively.  

This is because all three operators have the desired effect but there is not enough information 

to commend one over the others.  Possible solutions to this problem will be discussed in 

Chapter 7. 

By using the Manchester syntax queries, the ontology can be evaluated as it is built and 

changes made where necessary.  When anything other than minor changes are made, the 

directed graphs should be updated to reflect the changes (Figure 5.1).  The graphs can act as a 

documentation of the ontology. 

Another advantage of using Protégé to create the ontology is that the concept of a defined 

class can be used to check whether two concepts are equivalent. A defined class is where the 

necessary and sufficient conditions for membership have been stated.  This is in contrast to a 

primitive class where only the necessary conditions have been defined.  If two operator 

classes are marked as defined classes then the reasoner will highlight them if they are 

equivalent.  That is, they have the same definition and either one or both definitions need to 

be refined. 

The reasoner can also be used to check the ontology’s consistency in general, and in 

particular, for example ensuring that there are no individuals in unsatisfiable classes, that is, a 

poorly defined class that cannot, for logical reasons, have any members. 

5.8 Conclusions 

The ontology was designed using the methodology described in Chapter 3. To what extent 

was the methodology successful? The building of the ontology was a long process and large 

number of versions were created before the competency questions could be answered to 

satisfaction. Ontology design is “necessarily an iterative process” (Noy & McGuinness, 2001, 

p4), however, the process was at times less iterative than circular where some classes and 

relations were created, discarded and then recreated.  
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Noy and McGuinness (2001) assert that “there is no one correct way to model a domain” 

(p4). The design of a relational database, in comparison, follows a well-defined process of 

normalisation (Codd, 1970).  However, an ontology represents a higher level of abstraction 

than a relational database and provides more enriched meaning (Martinez-Cruz et al., 2012), 

which makes their design more difficult.  It has been suggested that since building ontologies 

by hand is error prone, they could be derived from existing relational databases (Man et al., 

2005). This has been attempted in the geospatial domain but with material entities such as 

buildings (Baglioni et al., 2007) whereas the problems with the development involved 

defining more immaterial concepts such as the operator and geometry. 

A badly-designed methodology might be another cause of ontology design difficulties.  The 

absence of methodologies aimed at specifically designing application (or task) ontologies 

meant that one was developed specifically for the purpose of the research.  However, the 

informal and semi-formal conceptualisation phases were based heavily on the established Noy 

and McGuinness (2001) methodology so it can be assumed that the methodology is not at 

fault.  In addition the purpose of the ontology was made explicit before design started.  It may 

be that ontology design is by its nature a complex process and its efficiency is dependent on 

the experience of the designer. 

One frequent difficulty in the ontology design was in deciding whether a concept should be 

represented as a class or as an individual.  The problem with the concept of geometry has 

already been discussed (section 5.4.2).  However, the concept of the operator represents a 

variation on this problem.  It is clear that the different operators should be represented as 

subclasses of the operator class since they have different properties from each other and from 

the superclass.  However, the subclasses currently have no individuals and it is hard to 

conceive what they could be.  This is addressed in Chapter 7. 

Although the competency questions were answered by the ontology there are still a number of 

issues that require consideration. 

The ontology is not sufficiently refined to suggest a single operator for the resolution of 

congestion in road accidents (section 5.7).  This can be seen by comparing the definitions of 

the three operators, SelectionByAttribute (Figure 5.18), Amalgamation (Figure 5.20), and 

Aggregation (Figure 5.25). The definitions are not sufficiently distinct.  If the system can not 

make a choice between one of the three operators then it is not the fully automatic system that 

was aimed for. 
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One concept that is not explicitly defined in the ontology is scale, which seems incongruous 

in a domain so concerned with scale.  Many algorithms and generalisation workflows are 

defined in the literature by their optimum source and target scales (Benz & Weibel, 2013; 

Stoter et al., 2014; Chaudhry & Mackaness, 2005; Revell, 2004).  The existence and degree of 

geometric conditions, such as congestion is, of course, dependent on the scale at which they 

are mapped.  However, for a given condition for a given set of features, the ontology will 

suggest the same operator(s), whatever the degree of the condition.  It would be useful, 

therefore, to investigate the potential for making the choice of operator scale-dependent, 

which may lead to more efficient generalisation. 

Another option would be to give the user a visual indication of the output of each operator, 

similar to the diagrams in Figure 5.3 and allow the user to make the choice.  However, the 

conclusion could be that there is a need for a more sophisticated expression of user 

requirements than merely the features that should be mapped and the map scale and extent. 

Some of the challenges specific to the road accident use case were identified and resolved 

earlier (section 5.5) but the ease at which the ontology can be extended to other use cases and 

other feature types needs to be examined.  Chapter 7 will discuss other use cases and also 

address the issues raised above. 

The differences between different classifications of operators were highlighted in section 2.7. 

The informal natural language descriptions of the existing taxonomies (Foerster et al., 2007a; 

McMaster & Shea, 1992; Roth et al., 2011) can lead to confusion where it is difficult for 

humans to determine an appropriate operator, let alone a machine.  Some existing operator 

definitions such as add and eliminate (Roth et al., 2011) and enhancement (Foerster et al., 

2007a) are too broad and they have been refined to allow for automatic selection.  This was 

aided by a technique that allows for the creation of characteristic signatures for operators, 

with which operator definitions could be compared and then encapsulated formally in an 

ontology (section 5.4.2).  This technique needs to be refined and extended to ensure a more 

complete definition of operator characteristics. 

The reader might conclude that this process has merely created yet another generalisation 

operator taxonomy to add to the confusion described in section 2.7.  However, a taxonomy is 

concerned with labelling and grouping concepts whereas as the ontology is concerned with 

formalising the characteristics of the concepts and, the labels applied to the concepts are 

essentially irrelevant. 
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The ontology has been evaluated by phrasing the competency as Manchester Syntax queries. 

However, there are a number of unresolved issues and the true test of an application ontology 

is in the successful development of an application that uses the ontology. The next chapter 

describes the development of a prototype on-demand mapping system that will use the 

ontology. 
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6 Implementing the on-demand mapping system 

6.1 Introduction 

Following the creation of the ontology the next stage is to implement a prototype on-demand 

mapping system to evaluate it.  As the ontology is an application ontology the development of 

the prototype is seen as an important stage in the evaluation phase of the ontology building 

methodology (section 3.7.3).  The prototype will be limited to implementing the road accident 

use case. 

Chapter 4 described a methodology for building an on-demand mapping system in an 

implementation-independent manner, based on the adapted CommonKADS methodology 

(Schreiber et al., 2000).  This chapter describes the platform design phase, which is the 

implementation of the architecture design of Chapter 4 (Figure 4.17) into software.  The 

ontology contains the domain knowledge and chapter 4 described the control knowledge in 

terms of task knowledge and inference knowledge.  The prototype will use the task 

knowledge to orchestrate the inference knowledge, which will utilise the domain knowledge. 

This chapter will also describe the procedural knowledge that is held by the algorithms 

developed to implement the use case.  The measure algorithms will be used to derive the 

Degree of Generalisation, which will be used as a parameter to the transformation 

algorithms. 

6.2 Data 

The area covered is the centres of the adjacent cities of Manchester and Salford in Greater 

Manchester (Figure 6.1).  This area was selected since it provides a variety of roads including 

motorways, major radial and ring roads, city centre, and residential roads.  The extent is 

limited because the algorithms developed were not optimised and were limited by the number 

of features they could process. 
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Figure 6.1 Extent of use case data (background map © Microsoft Corporation 2014) 

6.2.1 Accidents 

The dataset consists of 9306 road accidents from 1994 to 2008. The data is provided by 

Transport for Greater Manchester via the DataGM open data website
11

. The data only consists 

of those accidents that occurred on public roads, were reported to the police, and where at 

least one person was injured. The data was stored using the ESRI Shape file format. 

6.2.2 Roads 

The road data is provided by the Ordnance Survey via the Digimap Service (University of 

Edinburgh, 2014). Two road datasets were used; MasterMap, a polygon-based topographic 

dataset and the Integrated Transport Network (ITN) described by lines. The data was 

converted from Geographic Markup Language (GML) format to the Shape file format. 

                                                 
11

 www.datagm.org.uk 
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References to the accident dataset and the two road datasets were added to the ontology as 

individuals in subclasses of the feature collection class. The properties of each individual such 

as the filename can also be defined in the ontology at this stage. 

 

Figure 6.2 Defining feature collection individuals 

This is contrast to the design proposed in Figure 5.10, which has the concepts of thematic and 

topographic features associated with the feature type class.  The decision to have a more 

enriched feature collection definition was made because the feature collection is a more 

important concept than the feature type; a result of the aim to classify particular mapped 

features rather than general types of features.  This is an example of why the implementation 

of the ontology is an important part of its evaluation and how it can influence its design. 

The following two sections describe the algorithms developed for the prototype.  The 

algorithms have not been optimised and there may well be better implementations but the 

intention is not to develop a set of ideal measure and transformation algorithms but to test the 

concept of using an ontology to automatically select algorithms. 

6.3 The measure algorithms – identifying problem features 

The measure algorithms will be used to answer the when to generalise question of the 

McMaster and Shea (1992) model.  For the use case the amount of congestion in the accident 

and road features need to be determined. 

6.3.1 Measuring congestion in accident features 

Congestion is measured by identifying clusters in the mapped feature collection (Figure 4.13).  

The DBSCAN point clustering algorithm (Ester et al., 1996) was used since it is a density-
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based algorithm that will eliminate noise points, unlike other algorithms such as K-means 

(MacQueen, 1966) that add every point to a cluster, which will not help in the identification 

of hot-spots.  The algorithm has two parameters, the values for which should be derived 

automatically.  MinPts, the minimum number of points in a cluster can be set to 4 (Ester et al., 

1996).  Eps, a real world distance value which is used to determine if two points are in the 

same cluster, requires more consideration since a suitable value is dependent on scale.  The 

Eps value defines how close features have to be before they are considered congested and acts 

as a form of threshold.  If two or more symbols overlap on a map then their real world 

separation could be measured in centimetres or kilometres depending on the scale but for the 

sake of legibility they need to be generalised.  Therefore a scale-based equation to derive Eps 

was developed (Equation 6.1). 

     (
          

     
)                

Equation 6.1 

The application was developed using GeoTools, an open source GIS Java toolkit (GeoTools, 

2014) and it is the GeoTools definition of scale that has been used 

the number of pixels per Coordinate Reference System (CRS) distance units. 

In effect, this is the number of pixels on the screen per metre on the ground.  As scale 

decreases the value of Eps increases, i.e. features that were too far apart to be congested 

appear congested at a smaller scale (Figure 6.3a and Figure 6.3b).  This assumes a fixed 

symbol size (in pixels) whatever the scale.  In the same way the Eps value decreases with 

decreasing symbol size.  Given a small symbol size there might be no need for generalisation 

(Figure 6.3c).  The symbol size in this implementation does not automatically change with 

scale and could be chosen by the user. 

 The featureWeight is a unit-less multiplier dependent on the nature of the source data and 

will be discussed in detail later. 
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(a) Accidents at large scale (b) Smaller scale, same symbol 

size 

(c) Smaller scale, smaller 

symbol size 

Figure 6.3 Accidents represented as points at different scales and symbol sizes 

The measure of high density in point features is implemented by a generic algorithm, 

findHighPointDensityClusters (Table 6.1).  It works on the assumption that any cluster is an 

area of high density and rather than return a measure of density the algorithm returns a set of 

(problem) feature collections, each one representing a cluster (Figure 6.4). 

Input parameters 

Name Data type Description 

MappedFeatureCollection SimpleFeatureCollection Mapped features 

PointSize Integer Size of the feature symbol 

Scale Double Number of pixels per CRS 
distance units 

FeatureWeight Double Feature related weighting 

Output 

 SimpleFeatureCollection 
set 

Set of simple feature 
collections, each collection 
representing a cluster of 
problem features 

Table 6.1 Parameters for the findHighPointDensityClusters measure algorithm 

The algorithm first calculates the Eps parameter value and then calls the DBSCAN algorithm, 

which was implemented using the version developed by Tan et al. (2006).  The 

implementation of the algorithm is represented in the ontology as an individual in the class 

PointFeatureDensityMeasureAlgorithm (Figure 5.28).  The individual holds a reference to the 

Java function implementing the algorithm. 
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At a large scale (Figure 6.4a) only two clusters have been identified in this example, but at a 

smaller scale the number of clusters increases and the number of features in each cluster 

increases, as features that were not previously in clusters join a cluster since Eps increases 

with decreasing scale (Figure 6.4b). 

 

(a) Large scale 

 

(b) Small scale 

Figure 6.4 Problem accident features (highlighted in red) 
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6.3.2 Measuring congestion in road segment features 

The road segments can exist as area or line features, therefore two different algorithms are 

required to measure the feature density.  As with the point density algorithm both algorithms 

return a set of problem feature collections, each collection containing the features in a cluster, 

rather than a measure of density.  The density of crossroads is used as a measure of road 

feature density
12

 (Figure 6.5 and Figure 6.8). 

 

Figure 6.5 Identifying high density of road features as areas using crossroad density 

For road features represented as areas (Figure 6.5) the crossroad features were identified in a 

pre-processing stage by identifying those features that shared a border with three or more 

features.  The measure algorithm (findHighDensityAreaCrossroadClusters) then identifies the 

centroids of the crossroads features and uses the implementation of DBSCAN to identify 

clusters of these points.  However, in this case Eps is calculated differently from that method 

used for point features (Equation 6.1) by omitting the symbol size component (Equation 6.2).  

This is because there is no obvious equivalent for area features to the symbol size in point 

features.  Scale and featureWeight are again input parameters to the algorithm (Table 6.2). 

     (
 

     
)                

Equation 6.2 

                                                 
12

 The density of all types of road junctions, not just crossroads, could also be considered. 
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Once the clusters of crossroad centroids were identified, it was then necessary to identify 

those road segments that were related to the cluster.  Firstly the centroid of each cluster is 

determined by calculating the mean X and Y values of the cluster points.  This centroid is 

used as the centroid of a circular buffer.  The radius of the buffer is determined by the spread 

of the crossroad centroids and the radius is set to ½ of the largest dimension of the bounding 

box (Figure 6.6a).  Any road segment that intersects with the buffer is then marked as part of 

a cluster of road segments (Figure 6.6b).  The algorithm returns a set of problem feature 

collections, each collection containing the road segments in a cluster.  An example of 

congested road features is shown in Figure 6.7. 

  

(a) Determining the buffer (b) Determining the clustered features 

Figure 6.6 Determining a high density cluster of road segments 

Input parameters 

Name Data type Description 

MappedFeatureCollection SimpleFeatureCollection Mapped features 

CRS CoordinateReferenceSystem CRS of mapped features 

Scale Double Number of pixels per CRS 
distance units 

FeatureWeight Double Feature related weighting 

Output 

 SimpleFeatureCollection set Set of simple feature 
collections, each collection 
representing a cluster of the 
mapped features 

Table 6.2 Parameters for the findHighDensityAreaCrossroadClusters 
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Figure 6.7 High density area road segments (highlighted) 

The density of crossroads was also used to identify clusters of congested road features when 

they are represented as lines (Figure 6.8).  In contrast to the area feature density measure 

algorithm, no pre-processing was required.  Each feature in the source dataset has a start and 

end node identifier and the algorithm (findHighDensityLineCrossroadClusters) identifies each 

unique node in the dataset and then determines the number of links associated with that node. 

If the number of links is greater than 3 then that node is flagged as a crossroad and a 

temporary set of point features is created (Figure 6.8).  Clusters are again identified using 

DBSCAN, but this in this case Eps is calculated using Equation 6.1 (p112) and the symbol 

size is the width of the lines used to represent road links (all roads are mapped with the same 

width).  The remainder of the process is exactly the same as for area road features and the 

output is the same; a set of problem road feature collections, each collection representing a 

cluster.  The parameters are the same as for the previous algorithm (Table 6.2) with the 

addition of a symbol size parameter, representing the road feature width. 
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Figure 6.8 Identifying high density of road features represented as lines using crossroad density 

Two different values of the featureWeight (Equation 6.1 and Equation 6.2) were used, one for 

accidents and one for roads.  For a given dataset the default featureWeight is fixed for all 

scales.  When identifying clusters of accidents, values of around 3 were found to be 

appropriate using a subjective visual assessment.  However, a featureWeight of 3 for the roads 

results in too few features being identified as being part of a cluster and therefore a congested 

map.  This is because the points represent only the crossroads in the mapped FC and not the 

actual features.  Therefore a higher weight factor, and thus a higher Eps, is more suitable for 

the road features.  After some experimentation, a value of 25 was found to be more 

appropriate.  These values were determined by a visual estimate of what gave acceptable 

results, but this is obviously subjective and dependent on the user. What are not subjective are 

the measurement of scale and the symbol size. The featureWeight therefore allows for some 

user discretion and could be changed from the default by the user in a more sophisticated 

implementation. 

6.4 Calculating the Degree of Generalisation 

For both feature types, once the problem features have been identified by the measure 

algorithms, the Degree of Generalisation (section 4.4.4) can be calculated (Equation 4.1). 

The value is then standardised to an integer between 1 and 9, where 9 indicates a maximum 

degree of generalisation.  Integers were used because using anything else would give an 

incorrect impression of exactness in the process.  The value 9 is used as an upper limit since 

the value 10 implies a value of 100% generalisation, which in turn implies the removal of all 

features.  Although the intention is for automatic generalisation, where the user is unaware of 

the underlying processing and parameter values, it will be easier to allow for some user 

interactivity if a simple range of values for DoG is used.  This enables interactions such as 
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“the accidents were generalised with a degree of generalisation of 6, would you like to repeat 

with a different value?”  Once calculated, the DegreeOfGeneralisation can then be passed to 

the appropriate generalisation algorithm. 

6.5 Algorithms for generalising the accidents 

This section describes three algorithms for generalising the road accidents. It was necessary to 

develop new algorithms in order to utilise the DegreeOfGeneralisation concept.  

All three algorithms use the DoG to determine the number of features to retain (Equation 6.3). 

A DoG of 1 will generate a target of removing 10% of mapped features and a maximum value 

of 9 will generate a target of 90%. 

                           (    
                      

  
)                         

Equation 6.3 

6.5.1 Selection by attribute 

One way to solve the problem of point congestion is to select only the most important 

features.  This has been termed as the selection by attribute operator in the ontology (section 

5.5.1).  To apply this operator the source data will require an attribute that can be used to rank 

features by importance.  This attribute is defined in the ontology (Figure 6.2) and its name is 

passed as a parameter to the algorithm (Table 6.3).  In the case of road accidents a severity 

attribute can be used, where the value 1 represents a fatal accident, 2 a severe accident and 3 a 

slight accident. 

The algorithm then uses this attribute and the number of features to retain (derived from the 

DoG) to determine which features to retain.  For example, if the target number of features to 

retain was 1000 then the algorithm would retain features of severity value of 1 and 2 (Figure 

6.9) since that would return a number closest to the target.  A disadvantage of selection by 

attribute is that it applies to the complete mapped FC and some features that were not 

identified as problem features may still be removed. 
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Figure 6.9 Using the DoG to determine the class of features to retain 

Input parameters 

Name Data type Description 

MappedFeatureCollection SimpleFeatureCollection Mapped features 

ImportanceAttribute String Name of the importance 
attribute in the dataset 
(extracted from the ontology) 

DegreeOfGeneralisation Integer Degree of generalisation 
calculated from the measure 
algorithm results 

Output 

 SimpleFeatureCollection  Simple feature collection 
containing the retained 
(accident) features 

Table 6.3 Parameters for the select by attribute algorithm 

For useful results, this technique is dependent on there being an even distribution of features 

and a reasonable range of values in the importance attribute.  The road accident data has only 

three values for severity and is heavily weighted to the slight accidents category (Figure 6.9). 

The result is a lack of resolution for different DoG values as can be seen in Figure 6.10.  

There is only a close match between the target number of features retained and the actual 

number of features retained when the DoG is relatively low and relatively high and there is no 

actual removal of features until the DoG is 5 and over.  This, however, is more a limitation of 
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the selection by attribute operator and the source data rather than the DoG concept.  If, for 

example, the year of each accident was used as an importance attribute, where more recent 

accidents were given priority then there is a larger number of values (years) and a more even 

distribution of the data (compare Figure 6.11 to Figure 6.9) and there will be a variation of 

output from the algorithm over the range of DoG values. 

 

Figure 6.10 Target and actual features retained from the full accident dataset with selection by attribute 

 

Figure 6.11 Number of accidents in each year of the sample dataset 
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6.5.2 Amalgamation of accidents 

This algorithm aims to implement the amalgamation operator (section 5.5.2). The input to this 

algorithm differs from the previous one because, rather than take the full set of mapped 

features as input, it takes only the clusters of high density features identified by the measure 

algorithm findHighPointDensityClusters (Table 6.4).  The number of features to retain is 

again derived from the DoG (Equation 6.3, p119).  The algorithm orders the input clusters by 

descending size (in terms of number of members) and then, starting from the largest, adds 

them to a set of clusters until the target number of features is reached.  The resulting set of 

clusters is turned into a set of polygon features by drawing a convex hull around each cluster 

(Figure 6.12).  

Input parameters 

Name Data type Description 

ClusterSet Set of 
SimpleFeatureCollection  

Clusters of point features 
identified by the measure 
algorithm 

CRS CoordinateReferenceSystem CRS of mapped features 

TotalFeatures Integer total number of mapped 
features 

DegreeOfGeneralisation Integer Degree of generalisation 
calculated from the measure 
algorithm results 

Output 

 SimpleFeatureCollection  Simple feature collection of 
polygons representing the 
retained (accident) features 

Table 6.4 Parameters for the point amalgamation algorithm 
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Figure 6.12 Amalgamated accident cluster with DoG of 6 (accidents in red are those identified as problem features). 

Figure 6.13 depicts the generalised accidents (as polygons) and the source data as a reference, 

mapped at the full extent of the source dataset using the automatically derived value of DoG 

of 9. It can be seen that only the numerically largest clusters are retained and many congested 

features will not be represented.  If a lower DoG is manually selected then the result is more 

representative (Figure 6.14).  It can be argued that simply converting all identified clusters 

into convex hulls provides the most representative result (Figure 6.15).  However, the DoG 

concept allows for an element of control by the user but it still requires a more sophisticated 

implementation in this algorithm; when calculating the number of features to retain the 

algorithm does not allow for the changed representation of those features. 
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Figure 6.13 Accidents at scale 0.17 pixels/m amalgamated (yellow) with DoG of 9 (problem features in red) 

 

 

Figure 6.14 Accidents at scale 0.17 pixels/m amalgamated with DoG of 5 (problem features in red) 
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Figure 6.15 Accidents at scale 0.17 pixels/m. All problem feature collections amalgamated 

6.5.3 Aggregation of accidents 

This algorithm seeks to represent each cluster of accidents as a single point, where the 

diameter of the point is in proportion to the number of points in the cluster.  The operator is 

termed aggregation in the ontology (section 5.5.3).  The algorithm has the same input 

parameters as the amalgamation algorithm (Table 6.4). 
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Figure 6.16 Aggregated road accidents (problem features in red) 

The result is the same number of features as the amalgamation algorithm but with the clusters 

represented as points instead of a convex hull (Figure 6.16).  The new features do not 

correctly represent the geographical extent of the cluster, only its numerical size.  This can be 

seen from the point feature representing the cluster at the bottom of Figure 6.16, which 

overlaps two non-clustered accidents.  However, it could be argued that, aesthetically, 

aggregation is an improvement on amalgamation if Figure 6.17 is compared to Figure 6.18. 

More importantly aggregation gives a more accurate representation of the total number of 

features in a hot-spot than amalgamation does. 
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Figure 6.17 Aggregation with a DoG of 1 at scale 0.17 pixels/m 

 

Figure 6.18 Amalgamation with a DoG of 1 at scale 0.17 pixels/m 

As with the amalgamation algorithm, the aggregation algorithm does not retain any features 

that are not in a cluster; generalisation is not restricted to those areas of the map that have 
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congestion problems. The decision to omit uncongested accidents is not a technical one; they 

can be easily retained. The equivalent is the retention of isolated buildings, in rural areas for 

example, where buildings in built-up areas have been amalgamated.  

It might be argued that a spatial analysis such as a kernel density estimation (Silverman, 1986) 

could be used to visualise the density of the accident features (Figure 6.19).  However, such 

an analysis produces a raster image and there is no representation of the clusters as features.  

The latter allows for further analysis; for example, attaching a “number of accidents” attribute 

to road junctions where a road junction intersects a hot-spot.  However, it may be useful to 

investigate whether the kernel density approach could be used to identify clusters. 

 

Figure 6.19 Kernel density analysis of the complete set of road accidents (using the ArcMap 10.1 function) 

6.6 Algorithms for generalising the road network 

6.6.1 Collapse 

The collapse operator is a binary operator, there is no concept of a degree of collapse and the 

DoG concept is not applicable to this operator. Therefore, for the sake of simplicity, the 

collapse of the MasterMap road network from a set of area features was simulated by simply 

substituting the area features with the line features of the ITN road network (Figure 6.20). 
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Figure 6.20 Simulating the collapse of area road features using the ITN network (lines) 

6.6.2 Pruning the road network 

The road pruning (or thinning or selection) operator (section 5.5.4) was implemented by a 

simple application of the strokes technique, where road segments are concatenated into chains 

or strokes based on the good continuation principle (Thomson & Richardson, 1999). The 

strokes method is a well-known generalisation technique and Zhou and Li (2012) have carried 

out a comparative study of a number of implementations of the method.  A more recent 

approach is the mesh-based approach (Chen et al., 2009), which considers the density of 

meshes of road segments, where a mesh is a closed region that is bounded by a number of 

road segments.  Even more recently, combined mesh and stroke approaches have been 

developed (Li & Zhou, 2012) and refined (Benz & Weibel, 2013).  Whatever the technique 

employed, many road selection algorithms have been optimised for a particular target scale 

(Benz & Weibel, 2013; Weiss & Weibel, 2013; Revell et al., 2005), which is not ideal for on-

demand mapping, where the user should be able to select an arbitrary scale.  The combined 

stroke and mesh approach of Li and Zhou (2012) is multi-scale but still has four parameters, 

two of which are always known but the other two need to be determined. 

This implementation of the strokes method simply considers the angle between adjacent road 

segments to determine whether the segments should be in the same stroke.  For example, the 

links a, b and c in Figure 6.21 are part of the same stroke; as are links m and n. Link f is not 
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part of the same stroke as a and b since the angle between it and link b is greater than the 

threshold (the limiting angle).  The limiting angle is a parameter to the pruning algorithm and 

was set, after some experimentation, at 20° for this research. 

 

Figure 6.21 Creating strokes using the good continuation principle 

A more sophisticated algorithm might also consider the road name and/or its class when 

determining whether adjacent links are in the same stroke (Zhou & Li, 2012) but the purpose 

of developing a new algorithm was to simply to test the Degree of Generalisation concept, not 

to develop the optimal road selection algorithm.  An example of some of the strokes generated 

can be seen in Figure 6.22.  Those road sections in the same stroke are labelled with the same 

numeric identifier. 

 

Figure 6.22 Strokes identified by the pruning algorithm 

The ITN network is particularly difficult to prune when the only criteria for creating the 

strokes is the angle between adjacent segments and the strokes depicted in Figure 6.22 do not 

give the full picture.  This is because ITN is a topological network designed to aid routing and 
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consequently its representation of junctions can be complex and can disrupt the generation of 

strokes.  For example, the relatively simple crossroad in Figure 6.23a is represented in ITN as 

Figure 6.23b.   A less complex representation of the road network such as Meridian 2 

(Ordnance Survey, 2014a) would be easier to prune (Figure 6.23c) but Meridian 2 has a 

nominal scale of 1:50K and some minor roads are omitted.  These minor roads, however, may 

be necessary to provide context for accident hot-spots (Figure 1.5) and are represented in 

ITN. 

   

(a) MasterMap (b) ITN (c) Meridian 2 

Figure 6.23 Three representations of a crossroad 

Traffic islands (Figure 6.24a) tend to introduce large angles from one segment to the next thus 

breaking the stroke (Thom, 2005) and creating a series of single segments that are not in 

strokes (Figure 6.24b). The simple traffic islands in the sample network were identified 

(where two links share the same two nodes and are below a certain length) and removed 

(Figure 6.24c) and the result was that longer roads were preserved as a single stroke (For 

example, Figure 6.24d, stroke with an ID of 1857).  However, the more complex traffic island 

structures (such as that shown in Figure 6.23b) were not removed due to the additional 

complex programming that would be required. 
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(a) Traffic islands on a major city centre road (b) The effect of traffic islands on stroke creation 

  

(c) Traffic islands removed (d) The effect of traffic island removal on strokes 

Figure 6.24 Removing traffic islands to improve strokes 

Which strokes are retained is governed by the DoG in a similar manner to that used in point 

generalisation.  However, instead of using the DoG to determine the number of features to 

retain, the total length of the features to retain is determined (Equation 6.4).  For example, a 

DoG of 9 would mean that 90% of the network should be removed.  Starting with the longest 

stroke, the algorithm adds strokes to the output feature collection until the target network 

length is reached. 
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Equation 6.4 

So far the discussion has been restricted to pruning the road network in isolation and the first 

version of the pruning algorithm did just that (Table 6.5). However, for the use case it is 

necessary to prune the network with respect to the accident data since the road network 

provides context for the accident features.  One option would be to retain every road segment 

that has an accident associated with it. The number of segments retained would depend on the 

time span over which the accidents are mapped; the longer the time span the more likely a 

segment is to have an accident on it. At relatively large scales this approach would not 

represent a problem but at smaller scales with a relatively long time span then the number of 

road segments retained would be too high for legibility.  However, given the distribution and 

nature of the two datasets, as scale decreases, the accident data will require generalisation 

before the road network.  This generalisation will reduce the number of features representing 

accidents; either directly by selection by attribute (section 6.5.1), or indirectly by 

amalgamation (section 6.5.2) or aggregation (section 6.5.3). This might relieve the problem 

of representing too many road features. 

Input parameters 

Name Data type Description 

MappedFeatureCollection SimpleFeatureCollection Mapped (road) features 

DegreeOfGeneralisation Integer Degree of generalisation 
calculated from the measure 
algorithm results 

CRS CoordinateReferenceSystem CRS of mapped features 

MaximumAngleForStroke Double Limiting angle for 
determining whether two 
adjacent road segments are 
part of the same stroke 

Output 

 SimpleFeatureCollection  Simple feature collection 
containing the retained (road 
segment) features 

Table 6.5 Parameters for the basic pruning algorithm 

The revised pruning algorithm was developed on the assumption that, at the stage when it was 

used, the accidents would be represented as polygons and the road network as lines and thus 
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the relationship would be intersects but it could be easily expanded to operate on different 

geometries and therefore different relationships such as adjacent (Figure 5.32).  When using 

the strokes method, single segments that do not form part of a stroke would normally be 

omitted.  However, those that intersect an accident hot-spot can provide valuable context so 

they are retained. 

The pruning process is described in Figure 6.25.  Note that the term accident has been used 

but the process could be applied to pruning roads with respect to any point feature type as 

long as the ontology describes its relation to the road network.  Features are added until the 

target length of network to retain is reached (Equation 6.4). 

The order of priority when determining which road segments to retain is: 

1. segments in strokes that intersect with accident clusters 

2. single road segments (not in a stroke) that intersect with accident clusters 

3. segments in strokes that do not intersect with accident clusters, longest strokes first. 
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Figure 6.25 Algorithm for pruning the road network 

The parameters for the enhanced pruning algorithm are described in Table 6.6. The relation to 

respect is extracted from the ontology, before the algorithm is called, based on the respective 

geometries and feature types of the two feature collections. The Manchester OWL syntax to 

return the relation (based on Figure 5.34) is  

SpatialRelation and hasThematicFeatureType some AccidentFeatureType and 

hasThematicGeometry some AreaGeometry and hasSupportFeatureType some 

RoadFeatureType and hasSupportGeometry some AreaGeometry 

This should return the class AccidentsIntersectsRoad. The next step is to identify the parent of 

the class, that is intersects (which is not specific to roads and accidents). This is the relation 
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passed to the algorithm (Table 6.6). The IntersectMeasureAlgorithm defined in the ontology 

(Figure 5.34) is implemented by the intersects method of JTS Topology Suite
13

 geometry 

class. Currently it is the responsibility of the pruning algorithm to determine the functionality 

that will implement the intersects test. It might be preferable for the mapping engine to 

determine this functionality and pass it to the algorithm. 

Input parameters 

Name Data type Description 

MappedFeatureCollection SimpleFeatureCollection Mapped (road) features 

DegreeOfGeneralisation Integer DoG calculated from the 
measure algorithm results 

CRS CoordinateReferenceSystem CRS of mapped features 

MaximumAngleForStroke Double Limiting angle for 
determining whether two 
connected road segments 
are part of the same stroke 

RelationToRespect String Name of the relationship to 
be respected e.g. 
“intersects” 

ThematicFeatureCollection SimpleFeatureCollection Features that have to be 
“respected” e.g. accident 
clusters as polygons 

Output 

 SimpleFeatureCollection  Simple feature collection 
containing the retained (road 
segment) features 

Table 6.6 Parameters for the pruning with respect to accidents algorithm 

The effect of pruning the road network while respecting the relation with the accidents can be 

seen in Figure 6.26
14

. The single segment, x (Figure 6.26b) and the stroke yy (Figure 6.26b) 

that would normally be omitted when the only consideration is stroke length (Figure 6.26a) 

are retained because they intersect the accident cluster. 

                                                 
13

 JTS is implemented by GeoTools to provide the Geometry data structure. 
14

 The scale depicted is not the scale at which the features were generalised. The scale has been exaggerated for 

improved presentation. 
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(a) Not respecting the relation with accidents (b) Respecting the relation with accidents 

Figure 6.26 Pruning the road network 

6.7 Platform design 

This section describes how the ontology and the algorithms described above were utilised in a 

prototype on-demand mapping system.  The aim was to transform the architecture design 

developed in Chapter 4 (Figure 4.17) into a platform design as prescribed by the 

CommonKADS methodology (Schreiber et al., 2000).  The platform design is depicted in 

Figure 6.27. The on-demand mapping system was implemented by developing a Java 

application.  In the implementation the reasoning agent described in the architecture design is 

included as part of the Mapping Engine and therefore is not depicted separately.  Although 

integrated in the Java application, the measure and transformation algorithms could be 

implemented externally, as web services for example. 

 

Figure 6.27 On-demand mapping system platform design 
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6.7.1 Interacting with the ontology - the OWL API 

The only role of the Protégé editor is to create and edit the ontology; it has no part in the on-

demand mapping process. Because the generalisation process makes modifications to the 

ontology, by creating new individuals, the on-demand mapping system takes a copy of the 

ontology at start-up.  There is an individual in the original ontology that describes each source 

feature collection.  However, when, the accidents are amalgamated into polygons, for 

example, a new individual is created that describes the output feature collection that has a 

different set of features with a different geometry. 

Interaction between the Java application and the ontology, strictly the copy of the ontology, is 

done via the OWL API (Horridge & Bechhofer, 2011).  Most of the calls to the ontology 

consist of queries in the form of Manchester OWL syntax (Horridge & Patel-Schneider, 

2008).  The syntax is verbose but human-readable, which makes development easier.  The 

following is an example of query string generated by the Mapping Engine and executed 

against the ontology, which will return a list of measure algorithms meeting the specified 

criteria: 

MeasureAlgorithm and measures some HighFeatureDensity and hasInputGeometry 

some AreaGeometry 

More specifically, the API can be instructed to return either classes or individuals that meet 

the criteria.  Throughout this chapter, the OWL objects discussed are classes unless stated 

otherwise. 

6.7.2 Implementing the Problem Solving Methods 

The OWL queries are based on the inference tasks defined in the inference layer (Figure 

4.16).  Some of the tasks were broken down into multiple queries, with the output of one 

query being used as an input to another.  For example, the task of identifying an appropriate 

measure algorithm involved three queries to match each inference action in the problem 

solving method (Figure 4.9). 

6.7.3 Workflow – control knowledge 

The problem solving methods, now expressed as OWL queries have to be sequenced in order 

to create a map of the accidents and roads at the user’s selected scale.  This is the control 

knowledge that describes how the components are utilised each time the user changes scale.  
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The control knowledge is built in to the mapping engine and not represented separately. 

Figure 6.28 lists the initial steps for the mapping engine. 

 

 

Figure 6.28 Preliminary steps for the mapping engine 

At the conclusion of the preliminary steps the user is presented with a map of the accidents 

and roads at a large scale, centred on the accidents dataset (Figure 6.29). If the user uses any 

of the navigation tools – zoom in, zoom out, display full extent and pan – the code defined in 

the map bounds change event listener is executed. The steps executed in the Mapping Engine 

are listed in Figure 6.30. For the sake of simplicity the flowchart shows only one possible 

condition being processed and only one possible symptom for that condition but the software 

can manage multiple conditions and symptoms for the same feature collection. 
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The current scale is determined since it is required as an input parameter to the measure 

algorithms and most of the transformation algorithms. The rest of the workflow is repeated 

for each feature collection mapped; the accident features, as the thematic features are 

processed first and then the road features. Generalisation is incremental in that once a feature 

collection has been processed a geometric measure is applied to the generalised features and 

not the original mapped feature collection.  This is repeated until there are no geometric 

conditions in the feature collection. The same measure algorithm is not necessarily used since 

the nature of the features mapped may have changed or new conditions may have been 

introduced by the previous generalisation step.  The application of a transformation algorithm 

will change the data (e.g. from a cluster of point features to an area feature).  However, the 

changes enacted by the transformation have to be reflected in the ontology; this is why a 

working copy of the ontology is made, to protect the original (Figure 6.27).  The semantics of 

the features may have changed as well as the geometry.  To be precise, the feature type of a 

set of amalgamated accidents is no longer AccidentFeatureType.  The changes in the 

semantics may well effect what measure and transformation algorithms are applicable in 

subsequent iterations (if required).  This process is known as semantic propagation (Janowicz 

et al., 2010) and is not yet fully managed in the prototype. 

The entire process is complete when there are no geometric conditions identified by the 

measure algorithms for either of the feature collections.  If the user changes scale again then 

the process is repeated, starting with two new mapped feature collections. 
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Figure 6.29 Initial view of the on-demand mapping system at scale 5.0 pixels/m (the dots represent accidents) 
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Figure 6.30 Simplified steps in the map bounds changed event listener (FC = Feature Collection) 

The following are some observations about the OWL queries (the numbering follows that in 

Figure 6.30 where classes are in italic and relationships in bold): 

1. This will return any Feature Collection class that has any symptom and the geometry 

of the Mapped FC. For example, the CongestedFeatureCollection class will have the 

symptom HighFeatureDensity. This step is repeated following application of the 

transformation algorithm because new a new condition may have been introduced by 

the generalisation. 
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2. This query will return the MeasureAlgorithm subclasses that measure the specified 

symptom (extracted in the previous step), and have the specified geometry (which is 

that of the Mapped FC). The final clause restricts the results to specialist measure 

algorithms as discussed in section 5.7). 

3. This query returns any algorithm class that implements the specified operator and has 

the specified input geometry. Specifying an operator alone is not sufficient since 

different algorithms will generalise different geometries.  Once an algorithm class has 

been identified, the Java function that is represented by an individual in that class will 

be called. 

The select operator step, highlighted in Figure 6.30, is described in detail in Figure 6.31.  

This process is handled by a separate function (Table 6.7).  The aim of this function is to 

return a list of candidate operators that can remedy a given symptom in a given feature 

collection.  The process implements the concepts of an operator requiring a particular type of 

feature collection (Figure 5.18) and a feature collection forbidding a particular operator 

(Figure 5.19 and Figure 5.22).  The process as described may seem too complex and could be 

simplified by refining the OWL queries (listed to the right of the flowchart).  

Input parameters 

Name Data type Description 

FeatureCollection SimpleFeatureCollection Feature Collection to 
generalise (represented by an 
OWL individual) 

Symptom OWL Class Symptom identified by 
measure algorithm e.g. 
HighFeatureDensity 

Geometry String Geometry of FeatureCollection 

CRS CoordinateReferenceSystem CRS of FeatureCollection 

ParentClass OWL Class Parent class of 
FeatureCollection e.g. 
AccidentFeatureCollection 

Output 

List of operators Set of OWL Class Operators that may remedy the 
symptom 

Table 6.7 Parameters for function to identify candidate operators for a particular symptom 
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Figure 6.31 Flowchart for returning list of appropriate operators for the given feature collection (FC) and  symptom  

The following are some observations about the OWL queries (the numbering follows that in 

Figure 6.31): 
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1. theSymptom is the Symptom class specified by the input parameter (Table 6.7). 

2. theGeometry is the Geometry class specified by the input parameter (Table 6.7). 

theRemedy is the current Remedy derived from query 1; FeatureCountReduction, for 

example. 

3. theFeatureCollection is the parent class specified by the input parameter (Table 6.7). 

theOperator is the current Operator class. 

4. All classes in the ontology are members of the Thing class. It is used here since the 

object of the requires property can be one of a number of classes. The query will 

discover the requirement but inference is used to check whether the current Feature 

Collection (represented as an individual) is in the required class. 

If the ontology suggests more than one operator to resolve the condition then the user is 

presented with a drop-down box (Figure 6.32). Currently there is a one-to-one matching of 

operator to algorithm. 

 

Figure 6.32 User selection of an operator/algorithm 

6.8 Results 

Results will be described for maps at three scales, for the three different types of user 

identified in the use case (Table 5.1); a relatively large scale that displays the details of a 

junction (approximately 1:500 scale), an intermediate, neighbourhood scale (approximately 

1:5K), and a relatively small scale that extends to a city centre (approximately 1:20K).  The 

results were saved as Shape files and imported into QGIS for clearer visualisation than can be 

provided by the GeoTools map frame environment (Figure 6.29). 

6.8.1 Large scale – Highways engineer 

At a relatively large scale (8.0 pixels/m, approximately equivalent to 1:500) the detail of road 

junctions can be seen (Figure 6.33, p149).  The point feature density measure algorithm 

(findHighPointDensityClusters described in section 6.3.1) and the road area density measure 
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(findHighDensityAreaCrossroadClusters described in 6.3.2) were automatically selected and 

applied and no conditions were identified in the mapped FC. 

At this scale it is possible to see that the accidents in the central T-junction are mostly at the 

south of the junction.  It can also be seen that this junction has a relatively high number of 

accidents in comparison to the other two T-junctions mapped. Chapter 7 will discuss how to 

provide more context to determine why this might be the case. 

6.8.2 Medium scale – Parent 

After the user (the parent) selects the accident dataset the system suggests two road datasets 

(the ITN dataset and the MasterMap dataset) as support feature collections since both 

individuals share an isOn relationship with the accident (Figure 5.31). In this example, at a 

scale of 1.0 pixels/m (approximately equivalent to 1:5K), the ITN road network was selected 

as a base feature set (Figure 6.34).  This led to the findHighDensityLineCrossroadClusters 

being selected by the system which found that there was no need to generalise the road 

features.  However, a number of congested accident clusters were identified by the measure 

algorithm (Figure 6.34).  The ontology offered one of the three point feature generalisation 

algorithms (section 6.5) and aggregation was selected by the user (Figure 6.35).  A DoG of 6 

was derived by the system based on the number of problem features identified but this 

removed too many features for the user’s preference and a DoG of 3 was used. 

It can be seen immediately that when walking from A to B the route via junction X should be 

safer than that via junction Y (Figure 6.35).  The map therefore serves the aim of a parent 

finding a safe route for a child to walk to school. 

At a similar scale the selection by attribute algorithm (section 6.5.1) was applied but at the 

suggested DoG of 4 (derived from the problem features highlighted in Figure 6.36) all of the 

mapped features were retained and only by applying a DoG of 9 could the feature count be 

reduced (Figure 6.37).  The reason for this can be seen in Figure 6.9. This highlights the 

reliance of this operator on having an even distribution of values in the importance attribute. 

6.8.3 Small scale – Road safety expert 

At this scale, 0.15 pixels/m (approximately equivalent to 1:20K), the full extent of the test 

data is shown. The problem accident features can be seen in Figure 6.38. The roads were 

initially represented as polygons in the MasterMap dataset and at this scale the system 

identifies problem road features (Figure 6.39) using the 

findHighDensityAreaCrossroadClusters algorithm (section 6.3.2). This topographic dataset is 

not defined as a Network in the ontology therefore pruning is not suggested at this stage. In 
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fact, the only operator suggested is collapse. This operator is defined in the ontology as 

reducing feature density by reducing feature size rather than feature count as with pruning. 

Collapse was applied (section 6.6.1) and since the output is line features the system applied 

the findHighDensityLineCrossroadClusters algorithm (section 6.3.2) and problem features 

were highlighted (Figure 6.40). Since the ITN network represents a network and consists of 

line data the system suggested a pruning algorithm. 

The first set of results can be seen in Figure 6.41.  Both datasets were generalised with the 

DoG derived from the respective measure algorithms. The amalgamation algorithm was 

applied to the accident features with a DoG of 9. It can be seen that the accidents were over-

generalised and only the numerically largest clusters were retained (section 6.5.2). The road 

network was pruned with the suggested DoG of 4 and it can be seen that the network is not 

fully connected but the aim was not to develop the perfect pruning algorithm. What is 

important is that any road segment intersecting an accident cluster polygon was retained. In a 

normal pruning algorithm “dangling” links will be removed but here they provide context for 

the accident data. 

The retention of such road segments can, unfortunately, cause areas of high density road 

features to be retained and thus identified as problem features when the measure algorithm is 

run again, which means that the road network can never be generalised to satisfaction.  This 

can be resolved in a number of ways; firstly by simply accepting the initial level of pruning. 

The system allows for this by giving the user of “doing nothing” when a feature set is found 

to have a condition.  Another option would be to breaking the relation between roads and 

accidents and remove road segments that intersect an accident polygon.  Finally, a higher 

degree of generalisation to the accidents than is suggested could be applied and thus reducing 

the number of accident polygons mapped. 

The process was repeated (at the same scale) but with the accidents amalgamated with a DoG 

of 5 (Figure 6.42). This gave a better picture of the accident hot-spots.  In the final set of 

results, the DoG of 5 for the accidents was retained but used as an input to aggregation 

(Figure 6.43).  The roads were pruned with a DoG of 7 and not the suggested value of 4.  It 

could be argued that this provides the most useful results.  If the user zooms in to the bounds 

of the numerically largest cluster (highlighted with a dashed line in Figure 6.43) then the user 

gains more detail (Figure 6.44).  At this stage some labelling with road names would be 

useful.  
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It could be argued that the “small” scale here is not that small and it is unfortunate that the 

limitations of the algorithms developed prevents the system from being tested at a scale where 

larger extents could be mapped
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Figure 6.33 Scale of 8.0 pixels/m no problem accident or road features identified 
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Figure 6.34 Scale 1.0 pixels/m. Problem accidents highlighted in red. (road line features dataset chosen at start)  
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Figure 6.35 Scale 1.0 pixels/m. Accidents aggregated with a DoG of 3 (suggested values of 6). No problem road features identified  
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Figure 6.36 Scale 0.94 pixels/m Problem accident features highlighted in red  
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Figure 6.37 Scale 0.94 pixels/m.  Selection By Attribute applied to accidents with a DoG of 9 (suggested value was 4)  
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Figure 6.38 Scale 0.15 pixels/m. Problem accident features highlighted in red  
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Figure 6.39 Scale 0.15 pixels/m.  Problem road area features (MasterMap) highlighted in red  
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Figure 6.40 Scale 0.15 pixels/m. Problem road line features (ITN) after collapse highlighted in red  
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Figure 6.41 Scale 0.15 pixels/m. Accidents amalgamated with a DoG of 9 (suggested value was 9).  Roads pruned with DoG of 4 (suggested value was 4)  
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Figure 6.42 Scale 0.15 pixels/m. Accidents amalgamated with a DoG of 5 (suggested value was 9). Roads pruned with DoG of 4 (suggested value was 4)  
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Figure 6.43 Scale 0.15 pixels/m. Accidents aggregated with a DoG of 5 (suggested value was 9). Roads pruned with DoG of 7 (suggested value was 4)  
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Figure 6.44 Scale 1.69 pixels/m. Accidents aggregated with a DoG of 5 (suggested value of 5)
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6.9 Conclusions 

Chapter 7 will discuss the results in general but this section will assess the methodology and 

evaluate the algorithms that were developed. 

6.9.1 Methodology assessment 

To what extent was the application of the CommonKADS methodology, as described in 

Chapter 4, successful?  The CommonKADS methodology was specifically designed for 

knowledge-based systems (KBS) and the on-demand mapping system is only partially a KBS, 

mixing inference and non-inference tasks.  This led to a less than perfect mapping of the 

architecture design (Figure 4.17) to the platform design (Figure 6.27). 

The main advantage of the commonKADS methodology was how it aided the development of 

the prototype by allowing the organisation and definition of the control knowledge and 

making a distinction between inference knowledge and task knowledge (Figure 4.3).  The 

inference knowledge represents the demands on the ontology and the task knowledge 

represents the expression of the McMaster and Shea generalisation model.  Whereas the 

domain knowledge was held by the ontology, the control knowledge was embedded in the 

Java code; the inference knowledge, explicitly, as a loose collection of Manchester syntax 

OWL queries and the task knowledge, implicitly, within the control flow of the prototype 

software.  This representation contradicts the desire to make as much of the generalisation 

knowledge as possible shareable. 

Further consideration of how the different components interact with the ontology is required. 

Whether, for example, the pruning algorithm should interact directly with the ontology.  

Currently the intersects test is implemented in the algorithm using the GeoTools Java library. 

The test, however, could be exposed as a web service.  The algorithm could then interact with 

the ontology to locate a service that implemented the test or the mapping engine could locate 

the service and pass the address to the algorithm. 

The development of a prototype was defined as necessary part of the evaluation phase of the 

ontology design methodology (section 3.7.3).  Although no new top-level concepts were 

added during the development of the prototype some problems with the ontology design were 

identified in a number of places during the development of the prototype, which led to new 

subclasses and relationships being added to the ontology.  In particular the definition of 

semantic and spatial relationships between the two feature types was initially too superficial 

to meet the needs of the prototype and had to be made more sophisticated.  This is an example 
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of the feedback loop described in the ontology design methodology (Figure 3.6).  A proper 

record of the changes made to the ontology specifically during the prototype development 

phase was not kept, but there were enough changes to conclude that the final ontology would 

look very different if the prototype had not been attempted.  It can be concluded that the 

development played a vital role in the evaluation of the ontology. 

6.9.2 Evaluation of the measures and the Degree of Generalisation concept 

The measure algorithms identified the problem, congested features, and the Mapping Engine 

calculated the DegreeOfGeneralisation as a linear function of the number of problem features. 

When used with the aggregation and amalgamation algorithms the application of the DoG 

removes too many accident features (compare Figure 6.41 and Figure 6.42). It could also be 

concluded that the application of the suggested DoG removes too few road features (Figure 

6.41). 

As it stands the application of the measures and the derivation of the DoG lacks 

sophistication.  The total number of problem features was used to derive the DoG and the 

number of congested clusters and their distribution was not considered.  As Stigmar and 

Harrie (2011) concluded, the application of a single measure to determine legibility is not 

sufficient and a combination of measures is necessary.  Also the measures were applied to 

each mapped feature collection separately and it might be beneficial to consider holistic 

measures.  

The measure algorithms identified the problem features but the generalisation algorithms were 

applied to the complete mapped feature collection.  So, for example, accidents that were not 

identified as problem features were still removed. This is not necessarily a disadvantage. If we 

consider that the aim of the generalisation of the accidents is to identify accident hot-spots 

then the removal of non-problem features is desirable.  

Despite these limitations, the application of measures combined with the DoG concept leads 

to generalisation based on measured need. This is in contrast to the Radical Law (Töpfer & 

Pillewizer, 1966) and its variation, the Simplification ratio (Foerster et al., 2007b),  which are 

based on expected need, where the amount of generalisation is simply based on the number of 

mapped features and the ratio of the source and target scales (section 4.4.2). Therefore, it can 

be concluded that, despite the limitations in the current implementation, the DoG concepts 

merits further investigation. 
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6.9.3 Evaluation of the transformation algorithms 

Improvements could be made to the transformation algorithms, in particular the pruning 

algorithm. For example, disconnected strokes could either be connected to the rest of the 

network by using a shortest path measure or removed if they do not interact with clusters. The 

strokes were created by considering only the angle between adjacent segments. Other factors 

such as road name and road class could be used when judging whether two adjacent segments 

were part of the same stroke.  For example, adjacent road links that are in the same road class 

could be allowed to have a higher limiting angle than those in different classes (Thomson & 

Richardson, 1999).  A mesh approach (Chen et al., 2009) or a combined stroke and mesh 

approach could also be investigated, particularly the multiple-scale method of Li and Zhou 

(2012). 

The pruning algorithm (Figure 6.25) retains all strokes and single road segments that intersect 

an accident cluster. This assumes that the combined length of these features does not exceed 

the target length of the network as determined by the DegreeOfGeneralisation (Equation 6.4). 

There were instances, especially at smaller scales, where the target length was exceeded and 

the commitment to respect the relationship with the accidents conflicted with the need to 

respect the DoG required in the road network (Figure 6.45). 

 

Figure 6.45 Compromise between showing all of the accident clusters and reducing road density 

It might be useful to capture the balance between low and high detail in the ontology as a part 

of a concept of user requirements to determine if the user was interested in detail or in an 

overview.  The concept of user requirements will also help with the problem of deciding 

which of the generalisation operators is appropriate for the accident features.  This will be 

discussed in the following chapter.  Although the pruning algorithm is not without 

weaknesses it represents a rare attempt to prune a road network while respecting its relation 

with another feature type. 

Despite the limitations discussed above, the system fulfilled the aim of providing junction 

detail (although the mapping of more contextual features, such as traffic lights would be 
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useful), identifying safe route to schools and identifying accident hot-spots at city centre 

scale. 

The aim of this research was to fully automate the generalisation process. But this aim 

ignored subjectivity in mapping.  This is evident when questions such as “What is 

congestion?” and “How much generalisation is required?” are considered.  The first question 

can be resolved by allowing the user to adjust the featureWeight factor, used to determine the 

clusters, and the second by allowing the user to adjust the Degree of Generalisation applied. 

However, would we expect the selection of generalisation algorithms to be completely 

automated?  Generalisation of the road network was relatively straightforward; operators 

proposed were limited to collapse and pruning.  However, the user was given a choice of 

three operators to generalise the accident data.  Allowing the user to influence the mapped 

output is one of the benefits of on-demand mapping and the next chapter will consider ways 

of, not limiting that choice, but embracing it.  
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7 An evaluation of the ontological approach 

7.1 Introduction 

The creation of the ontology (Chapter 5) and its implementation as part of an on-demand 

mapping system (Chapter 6) raised a number of issues that require further consideration 

(section 7.2).  Although the ontological approach proved successful for the road accident use 

case it is important to assess how the approach could be applied to other use cases (7.3). 

7.2 Outstanding issues 

7.2.1 Knowledge representation 

Existing automatic generalisation systems such as those that implement agent-based 

techniques were criticised earlier (section 2.5) for embedding generalisation knowledge 

within software and thus restricting its use.  The aim of this research was to formalise 

generalisation knowledge in an ontology, however a lot of knowledge is held in the Mapping 

Engine and in the algorithms (Figure 6.27).  The knowledge held in the Mapping Engine 

includes 

 the formula used to calculate the Degree of Generalisation (Equation 4.1) 

 the inference tasks (expressed as Manchester OWL queries) 

 the procedural knowledge that is the control flow of the mapping engine, which is 

based on the Problem-Solving Methods (section 4.3.2) and the sequence dictated by 

the McMaster and Shea model. 

 

The knowledge held in the algorithms includes 

 the formulae to calculate the Eps value used in the measure algorithms (Equation 6.1 

and Equation 6.2) 

 the formulae to calculate the number of features to retain and length of network to 

retain used in the transformation algorithms (Equation 6.3 and Equation 6.4) 

 the procedural knowledge that is the control flow of the algorithms. 

 

The knowledge embedded in the algorithms represents less of a problem because if the 

characteristics of the algorithms are sufficiently represented in the ontology then a lack of 

knowledge of their internal behaviour will not affect how they are utilised by software 

systems and a natural language description will satisfy the curious human. 
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Of the knowledge embedded in the mapping engine it is unlikely that all control knowledge 

could be made explicit and formalised in the ontology but it is not clear how much should be.  

It could be argued that the control knowledge is specific to the implementation and that there 

is no advantage in sharing it. 

In additional to considering the location and representation of knowledge it will be useful to 

consider what components of the on-demand mapping system should have access to the 

ontology.  For example, rather than allow the measure and transfer algorithms to interact 

directly with the ontology, it could be stipulated that any communication should always be via 

the Mapping Engine (Figure 6.27).  The latter approach ensures that if significant changes are 

made to the ontology then only the Mapping Engine need be updated.  It should be stressed, 

however, that a change to the ontology does not always require a change to the application 

that uses it.  For example, an early version of the ontology included a generic Selection 

operator.  As the prototype was developed it was realised that the Selection operator was too 

general and subclasses of it, such as Selection by Attribute and Pruning were added.  This 

refinement of the ontology did not require any changes in the mapping engine.  This 

demonstrates the flexibility of the ontological approach; the ontology can be extended by 

adding new operator and algorithm subclasses and more generally by adding new properties 

to existing classes without requiring a change in the Mapping Engine.  This is a major 

advantage of formalising the domain knowledge in an external ontology. 

7.2.2 Refining the ontology design  

The difficulties experienced in designing the ontology were raised in section 5.8.  These 

difficulties can be grouped in the following categories 

 should a concept be represented by a class or individual? 

 in which class should a property be represented? 

 is a particular concept necessary? 

 

The first of these is illustrated by the discussion of whether the Geometry concept should be 

modelled as a class or individual (section 5.4.2).  There are a number of concepts where the 

individuals are not easily comprehended.  For example, there is a symptom class but it is not 

obvious what its individuals represent.  An individual symptom could represent a particular 

symptom of a Feature Collection and therefore only exist when the model is executed. 
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The second category concerns the problems in determining which particular attribute (or item 

of knowledge) belongs to which concept.  For example, there are conflicts between the 

concepts of an operator and a transformation algorithm (section 5.3.1).  It might not be 

necessary to specify the input geometry of both operators and algorithms.  There are similar 

conflicts between feature types and feature collections (section 6.2.2).  These problems might 

not be resolved until the ontology is tested with further use cases. 

The final category is concerned with whether a particular concept is necessary or not. An 

ontology class can be defined as a set of individuals sharing the same characteristics (Hart & 

Dolbear, 2013).  There are currently no individuals in any of the Operator subclasses 

(Amalgamation, Aggregation, Collapse etc.) and it might be concluded that the concept of an 

operator is redundant and the algorithm concept is sufficient to model the process of 

generalisation. 

One solution could be to regard the operator class as similar to an abstract class in the Object-

Oriented (OO) model, where an abstract class is one that cannot instantiate objects.  In the OO 

model an object is instantiated from a class.  However, in OWL an individual can exist 

separately from the class.  Individuals are not instantiated and there is no concept of an 

abstract class in OWL.   

The necessity of encapsulating the concept of the operator was justified earlier (section 5.3.1) 

as an aid for human comprehension based on the fact that the operator was a key concept in 

the literature and practice of generalisation.  Alternatively, the Transformation Algorithm 

class could be removed and the implementations of the algorithms become the individuals of 

the Operator subclasses. 

It could also be argued that the lack of individuals for the Operator subclasses has not stopped 

the competency questions from being answered satisfactorily.  Whatever the solution, these 

difficulties question the assertion by Davis et al. (1993) that a knowledge representation such 

as an ontology acts as a surrogate for tangible and intangible objects equally well. 

These problems are partly due to the intangible nature of the generalisation domain and partly 

due to the inexperience of the designer.  It would be hard to argue against the assertion of Noy 

and McGuinness (2001) that “there is no one correct way to model a domain”. However, the 

implementation uncovered one aspect of the ontology design that does require further 

deliberation and its resolution could help answer some of these apparent problems. 
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In OWL inference involves determining which class a particular individual belongs to.  It can 

be argued that the interactions with the ontology currently involve too many queries and not 

enough inference.  Some of the Manchester OWL syntax queries seem overly long and 

complex; for example, the query used to determine a spatial relation between two feature 

types described in section 6.6.2.  The emphasis of the ontology needs to be altered to focus on 

classifying individuals.  For example, rather than query the ontology to determine an 

appropriate measure algorithm for a particular feature collection (FC) it should be possible to 

infer the appropriate measure algorithm.  This will require a redesign of the ontology.  A class 

of feature collections that require a point density measure algorithm could be defined, for 

example, and then inference used to determine whether a mapped FC individual is in this 

class based on the attributes of the FC.  If it is then it can be concluded that the FC can be 

assessed by the particular algorithm. 

In summary, to get the full advantage of using the concept of ontologies and inference there 

needs to be a change of emphasis from general classes to specific individuals; in particular 

the focus should be on classifying features collections as requiring a particular measure 

algorithm, as requiring a particular operator and requiring a particular transformation 

algorithm.  It is relatively easy to understand what the individuals in a FC class represent and 

it could be argued that if the focus of the ontology was on classifying feature collections then 

the lack of individuals for classes such as Operator is less important that first thought. 

As well as shifting the focus of the ontology there is also a deficiency in content; the ontology 

is still too focussed on geometry, which can be seen by the OWL queries in Figure 6.30 and 

Figure 6.31.  Although geometry is important it needs to be less prominent in the process of 

selecting operators.  This implies that the ontology requires greater representation of the 

semantics of generalisation.  One aspect of the ontology that requires more consideration is 

user requirements. 

7.2.3 User requirements 

The specification of user requirements was identified as necessary for an on-demand mapping 

system but ruled as out of the scope of this research due to the size of the topic.  Despite this, 

the formalisation of user requirements cannot be entirely ignored in a discussion of on-

demand mapping and can, in fact, help with the selection of appropriate operators. 

When congestion is identified in the accident features the ontology suggests three operators 

that would potentially resolve the condition; selection by attribute, amalgamation and 
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aggregation (sections 5.7 and 6.8.2).  This could mean that the ontology lacks refinement.  

All three operators are valid in that they remedy the condition (although the effectiveness of 

the selection by attribute operator is dependent on the source data) but there might be a need 

for other criteria, not currently defined in the ontology, that influence the selection of 

operators.  All three operators vary in their outputs; selection by attribute retains the concept 

of individual accidents, and their distinct details, rather than abstract them into clusters, 

amalgamation retains the geography of the cluster and aggregation provides the best 

indication of the numeric size of each cluster.  So there is scope for refining the operator 

definitions by including these characteristics. 

Such a refinement of the operator definitions could be linked to the requirements of specific 

user roles.  A number of typical users have already been defined as part of the use case (Table 

5.1).  For example, the role road engineer might require the preservation of spatial accuracy 

and preservation of feature detail.  In this case an operator, such as selection by attribute, that 

does not change the location of (accident) features and a road network portrayed as area 

features rather than line features would be preferable. Representing these requirements in the 

ontology would help guide the choice of operator. 

Currently, when more than one operator is suggested by the ontology the prototype prompts 

the user to select one from a drop-down box (Figure 6.32).  The prototype could be adjusted 

such that the preferred operator, its identification now aided by the user requirements, could 

be highlighted but the user given the final choice.  However, the non-expert user cannot be 

expected to make an informed decision based solely on the names of operators.  One solution 

would be to provide visual clues to the effects of each operator (Figure 7.1). 

 

 

(a) Amalgamation (b) Selection by attribute 

 
 

(c) Collapse (d) Pruning 

Figure 7.1 Example icons for generalisation operators 
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In addition to determining appropriate generalisation operators the concept of the role could 

be used to guide the selection of feature types to map.  For example, the addition of a school 

would improve the map generated for the parent role (Figure 6.35).  This would involve 

defining the role in the ontology and then defining the feature types relevant to that role 

(Figure 7.2). 

 

Figure 7.2 The relation between feature type and role 

One of the main requirements of an on-demand mapping system is an ability to map features 

at multiple scales and it is necessary to reflect on the concept of scale, and how it is 

represented in the ontology, in more detail. 

7.2.4 Scale 

The concept of scale is not explicitly defined in the ontology.  Given that many existing 

algorithms are designed to generalise features over a specific scale range, for example 1:10K 

to 1:50K, this may be a significant omission.  The process of assessing the geometric 

conditions of the mapped features and then identifying the solutions is a bottom-up approach 

(as discussed in section 4.4.3) and is characteristic of the McMaster and Shea model. A 

consequence of this is that, in the current implementation, the same operators are suggested 

for the same conditions whatever the scale and whatever DoG is calculated.  Is it possible, or 

desirable, to incorporate the concept of scale explicitly and allow a top-down approach, where 

the features and their representation are selected based on the current scale? 

The attraction of the top-down approach can be seen if we consider the accidents in the 

Greater Manchester area over the same time period as the use case  but covering an area of 
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approximately 1200 km
2
 compared to the 18km

2 
of the use case data (Figure 7.3). The 

calculation of a measure of feature density for this number of accidents (155,919) was beyond 

the simple measure algorithm developed because of an upper limit on the size of the matrices 

used by the algorithm (section 6.3.1) but even with a more sophisticated algorithm the 

measurement would still be time-consuming. The application of a top-down approach in this 

example is therefore attractive. 

 

Figure 7.3 Road accidents in Greater Manchester 1994 to 2008 

Such an approach could be implemented in a multi-scale on-demand mapping system but it 

would require the definition of a set of scale ranges (e.g. 10K to 20K, 20K to 30K) and the 

enumeration of the features that were relevant in each range and how they were best 

represented. However, such an approach is akin to defining procedural knowledge and 

comparable to the rule-based systems that were dismissed earlier (section 2.4).  It is necessary 

to encapsulate the characteristics of a particular scale change and then infer the appropriate 

action as has been done with the use case. 

The issue of whether an operator was applicable at a particular scale was raised when the 

application of the displacement operator to accident features at small scales was rejected but 
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the reasons why were not encapsulated in the ontology (section 5.2.1).  The remainder of this 

section will consider ways of doing this. 

Displacement is one of the few operators were there is a consensus on its meaning (Figure 

2.6) although it is hard to implement (Regnauld & McMaster, 2007).  As discussed earlier 

(section 5.2.1), the use of displacement is not applicable to this use case as it is difficult to 

apply in areas of high feature density (Regnauld & McMaster, 2007) and it is more relevant 

when a small number of topographic features are involved.  For example, a road and a railway 

line, and the coastline they follow, will tend to coalesce when portrayed at a small scale 

(Regnauld & McMaster, 2007) (Figure 7.4).  Topology should be respected during 

displacement so the railway line stays between the road and the coastline. 

 

  

(a) Original scale (b) Reduced scale (b) Displaced features 

Figure 7.4 Applying displacement 

Displacement is inappropriate at a small scale where many features are mapped and hundreds, 

potentially thousands of features would have to be displaced to reduce congestion (Figure 

7.3).  The ontology must represent the fact that this operator is not applicable to the use case.  

One option would be to define a feature density threshold, above which the application of 

displacement would be forbidden but this approach seems too similar to the application of a 

rule. There is however, an alternative, semantic, approach. 

McMaster and Shea (1992) make a distinction between the geometric conditions congestion 

and coalescence.  Whereas the former is the result of mapping too many features than is 

appropriate for the particular scale, the latter is defined as “… a condition where features are 

closely, partially, or completely in juxtaposition in their map or geographic coordinate 

locations” (p44) and is regarded as a result of the representation of the features rather than 

their quantity.  It could be argued that the features depicted in Figure 7.4b are suffering from 

coalescence and not congestion.  If the ontology defines displacement as a remedy for 

coalescence but not congestion then it will not be suggested as a solution to accident 
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congestion. This approach will prevent operators such as amalgamation that resolve 

congestion, from being applied to situations such as that in Figure 7.4b. 

It is, therefore, not then the scale itself but the number of features that are mapped (which is a 

consequence of the scale) that prohibits the use of the displacement operator (Figure 7.3).  For 

example, the London Underground map originally designed by Harry Beck (Figure 7.5) 

contains a great amount of displacement and is at a similar scale to the Greater Manchester 

accident map.  This is why the ontology can manage without an explicit definition of scale. 

Rather than capture in the ontology the knowledge that a particular algorithm is suitable for a 

particular target scale it is necessary to capture the reasons for its suitability thus allowing that 

knowledge to be repurposed for other situations.  This is the “new expressions from old” 

(section 3.5). 

 

Figure 7.5 London Underground map (fragment) © Transport for London 

If this solution is adopted it will still be necessary to develop one or more measures for 

coalescence that are distinctive from the measures of high feature density that identify 

congestion.  One possibility would be to assert that coalescence is only applicable to features 

of different types such as those in Figure 7.4.  However, the routes mapped in Figure 7.5 are 

of the same feature type and would have suffered from coalescence so perhaps it is necessary 

to additionally consider the number of features.  In the implementation of the Mapping 

Engine, four features was set as the lower limit for the size of any cluster that suffered 

congestion (section 6.3.1), so coalescence could be defined as involving three or fewer 

features.  However, this seems arbitrary, and again reminiscent of a rule, and the distinction 

between congestion and coalescence requires further consideration. 
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To what extent is the McMaster and Shea model suitable for on-demand mapping?  For 

mapping familiar feature types (building, roads and rivers, for example) at a limited range of 

scales then the constraint-based model is the dominant model (section 2.5).  However, when 

mapping unfamiliar feature types at multiple scales then the concept of measuring the 

condition of the features before deciding when to generalise has worked with the, admittedly 

limited, use case. 

However, the model’s focus is on the cartographic rather than the geographic; it focusses on 

resolving geometric conditions such as congestion and imperceptibility.  It will be necessary 

to update it to focus on resolving semantic conditions such as the relationships between 

feature types.  For example, not only “we can not see the accidents legibly at this scale” but 

also “the relationship between roads and accidents is not maintained at this scale”. 

As well as exploring the appropriate scales for different operators it is also necessary to 

consider which feature types should be mapped at particular scales.  This can be considered 

more effectively if we look beyond the current use case. 

7.3 Beyond the use case  

The previous section discussed scale in the cartographic sense; here it is discussed in the 

context of the scalability of the software solution.  The system worked for the road accident 

use case (with the qualifications discussed in chapter 6) but it is important to consider how 

easy it is to apply the solution to other use cases.  This can be measured in terms of the extra 

work required; the extent to which the ontology and the on-demand mapping system software 

have to be modified to accommodate other use cases.  If two new feature types can be mapped 

by simply adding two new classes to the ontology and describing their relationship then the 

solution could be said to be scalable.  However, if “significant” changes to the ontology or 

mapping system have to be made then the solution cannot be acknowledged as such.  To 

assess scalability three scenarios, with increasing variance from the original use case, are 

discussed 

1. extending the current use case to include new feature types 

2. examining another use case but in the same transport theme 

3. examining another use case in a different theme. 

7.3.1 Extending the current use case 

The use case currently maps two feature types; accidents and roads.  At a large scale the 

addition of bus stops and traffic lights would provide useful context (Figure 7.6).  For 
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example, if it can be seen in Figure 6.33 that the central T-junction has a relatively high 

number of accidents but at the other two T-junctions there are few or no accidents.  The 

mapping of additional features might help to explain why. 

It was suggested that the decision to map schools could be influenced by the role concept 

(section 7.2.3).  Here, the traffic lights and bus stops feature types, can be defined in the 

ontology as subclasses of a road transport feature type class (Figure 5.11) and since they share 

a superclass with road accidents the mapping engine could suggest them to the user as feature 

types that provide context. 

 

Figure 7.6 Accidents at a junction with traffic lights15 and bus stops 

At a smaller scale both of these datasets will suffer from congestion as the accident dataset 

did and, since they are both point features, the ontology would suggest selection by attribute, 

amalgamation and aggregation as remedies.  However, selection by attribute is not likely to 

be an option since neither dataset is likely to have an importance attribute; one bus stop is 

unlikely be more important than another.  Amalgamation and aggregation are possible but not 

appropriate, since there is no concept of a “hot-spot” of traffic-lights or bus stops as there is 

with accidents or crimes.  Amalgamation and aggregation are appropriate for other physical 

features such as buildings or trees since there are higher level collective concepts that 

represent these features; such as a built-up area, village and town for buildings and a forest for 

                                                 
15

 The single traffic light symbol represents a set of traffic lights at a junction. 
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trees (Figure 7.7).  Why are there no equivalent higher level concepts for bus stops and traffic 

lights and how can the ontology be designed so it can be inferred that these operators are not 

suitable for these feature types at small scales? 

A traffic light may be described as a property of a node (road junction) on a network; without 

the node and the network there is no traffic light.  Similarly, a bus stop can be regarded as an 

access point to a bus route network.  Although both feature types are material objects, neither 

has an independent existence and therefore no higher level abstraction.  This is in contrast to a 

hill, for example, which has multiple functions - a view point, part of walking route, a flood-

free location - and can exist independently from other concepts. 

 Buildings Trees Accidents Bus stops 

Individual 
features 

 
 

  

Higher level of 
abstraction 

   

? 

 City block Forest Accident hot-spot  

Figure 7.7 Levels of abstraction for different feature types 

Table 7.1 lists a number of feature types and determines whether they have a higher level 

collective concept or not.  It can be concluded that those that do not should not be 

amalgamated or aggregated, but this needs to be modelled in the ontology. 

Feature type Function 
Higher level collective 
concept 

Manhole cover Access point to a network None 

Bus stop Access point to a network None 

Traffic light 
Control flow at a network 
node 

None 

Tree Multiple Copse, wood, forest 

Building Multiple Block, village, town 

Hill Multiple Range 

Table 7.1 Higher level collective concepts for different feature types 
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Firstly, Bertin’s concepts of structural and conceptual generalisation (discussed in 5.2.1) can 

be used to classify the different operators.  Operators such as amalgamation and aggregation, 

that change the level of abstraction of the features, can be classed as conceptual operators and 

those that do not, such as selection by attribute and pruning, are classed as structural 

operators (Figure 7.8).  The NetworkObjectFeatureType class is asserted to forbid conceptual 

generalisation and its subclasses will inherit this property.  Another possible subclass of 

NetworkObjectFeatureType might be man-hole covers (used to access a sewerage network). 

The forbids concept was introduced in section 5.5.2 and here it is used to prevent any 

NetworkObjectFeatureType from being amalgamated or aggregated.  Therefore, as scale 

reduces, such features will be mapped until the scale is small enough for them to exhibit 

congestion.  At this point, unless selection by attribute is possible, the features will no longer 

be mapped. 

 

Figure 7.8 Conceptual and structural operators 

There is however, at least, one problem with this solution in that amalgamation does not 

always cause a change in the level of abstraction.  Consider the two features in Figure 7.9a. If 

they represent two buildings separated by a road then when they are amalgamated they will 

represent a new concept, a building block or built-up area.  However, if they represent two 

areas of woodland separated by a track then following amalgamation there is merely a larger 

area of woodland.  
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(a) original features (b) features at reduced scale (c) amalgamated features 

Figure 7.9 Amalgamating two features 

This problem could be possibly solved by defining the concepts of countable features 

(buildings) and non-countable features (woodland) in the ontology.  This example highlights 

the importance of semantics to generalisation and the benefit of capturing those semantics in 

an ontology. 

To summarise, the extension of the use case to include the mapping of bus stops and traffic 

lights requires the following changes to the ontology 

 the addition of the bus stop and traffic light feature types (Figure 7.8) 

 the definition of a number of roles and their properties such as their relation to 

different feature types (Figure 7.2) 

 the definition of the relationships between the new feature types and the road network 

feature type (similar to section 5.5.6). This is perhaps less important then the 

relationship between the road and accident feature types since, at the scale where the 

roads require pruning, the new feature types are not likely to be mapped. 

7.3.2 Mapping bus routes 

The second proposed new use case involves the same theme, road transport, but considers the 

mapping of bus routes at different scales.  As with the original use case, three different scales 

are considered. 

 At a relatively small scale (approximately 1:300K) the extent of the bus route network in 

Greater Manchester is depicted but the map is not particularly useful (Figure 7.10). What 

would be useful at this scale would be to limit the map to the major cross-region routes. This 

could be achieved relatively easily by pruning the network and retaining the longest strokes. 

However the strokes need to be determined by the route (service) number rather than the 

angle between road segments.  Since the routes are not to be pruned with respect to another 

feature, an algorithm based on the first version of the road pruning algorithm developed in the 

implementation (section 6.6.2) is required. This revised algorithm would take as input an 
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attribute similar to the importance attribute required by the selection by attribute algorithm 

(section 6.5.1), which would define the main factor in determining whether two segments 

were part of the same stroke. In this example, the “pruning attribute” would be the route 

number.  The use of the algorithm would be triggered by the detection of congestion in the 

dataset (Figure 7.10). 

A modification to the ontology would be required to ensure the selection of the new algorithm 

for those network feature collections with an importance attribute specified.  The ontology 

would also have to be extended to differentiate between simple pruning and pruning a 

network with respect to another feature collection.  The latter would require the existence of a 

relationship between the feature collection to be pruned and another mapped feature 

collection such as exists between roads and accidents.  At this scale a schematic map (similar 

to Figure 7.5, for example) might be more appropriate (Mackaness & Reimer, 2014). 

 

Figure 7.10 Bus routes in Greater Manchester 

At a medium scale the requirement might be to show a particular route at a neighbourhood 

level (Figure 7.11).  At this scale (approximately 1:30K) the local road network would 

provide some context.  As can be seen the road network is not congested and the algorithm 

that measures the density of road line features (section 6.3.2) is unlikely to identify any 
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problem features thus it could be concluded that no generalisation is required.  However, there 

is a lot of unnecessary detail and perhaps only those strokes that intersect the network should 

be mapped.  This is a situation were the focus of the McMaster and Shea model on the 

existence of geometric conditions to determine when to generalise has its disadvantages.  In 

this case there is a semantic rather than a geometric reason to generalise and remove those 

road segments that do not provide context for the bus route. 

The semantic relationship between accidents and roads was ultimately expressed as a number 

of spatial relationships (section 5.5.6) and this will be the case with the relationship between 

the bus routes and the road network: the road segments mapped will be those that intersect a 

buffer around the bus routes.  This questions the need for defining the semantic relationship 

between features if they are also going to be expressed as spatial relationships. 

 

Figure 7.11 A bus route (in red) at the neighbourhood scale mapped with the road network 

Firstly, the semantic relationships in the two use cases are different. The mapping of the road 

network provides a context for the bus routes and aids understanding of the bus routes and 

will, for example, aid the bus driver in learning a new route.  The mapping of the road 

network with the road accidents does more than provide context; without the road network the 

map is meaningless as the road features form part of the definition of a road accident. 

Secondly, if we define the relationships at the higher, semantic, level they can be repurposed. 

If we assert that the mapping of the major roads and those minor roads that intersect a buffer 

around a bus route “provide context” to that bus route we can reuse that definition of 

“providing context” in other situations with other feature types. 
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Finally, if we consider geometry alone, then there is no reason to generalise the road network 

in Figure 7.11, despite the fact that if it is generalised then redundant data will be removed 

from the map. 

At this scale landmarks might provide some context. Landmarks are a complex concept as 

they do not form a single feature type and can be natural (a hill, the bend of a river) or man-

made features (a building, a highway) (Richter & Winter, 2014). As with the road network 

only those landmarks that provide context to the bus route are relevant and it is important to 

determine which landmarks should be mapped at which scale.  A small shop would not be 

considered a landmark at a small scale (Figure 7.10) but at a larger scale (Figure 7.11) it 

might provide a useful addition to the map.  Depending on the scale almost any tangible 

feature can act as a landmark and it is necessary to define a hierarchy of landmarks (Grabler et 

al., 2008). 

If the discussion is limited to buildings as landmarks then a hierarchy would need to be 

established to ensure that only the most important buildings are mapped at a small scale.  The 

relationship between the bus routes and the landmark buildings is weaker than that between 

accidents and roads.  The relationship might be of the form “landmark buildings provide 

context to bus routes” or “landmark buildings aid navigation of bus routes”.  Another 

approach is to create a new role, traveller, say, and define that role as requiring landmarks.  

Either way, the semantic relationship can be expressed as one or more spatial relationships 

such as “landmark buildings are near bus routes”.  This will allow for the selection of only 

those landmarks that are relevant to the particular route. 

The ranking of the buildings as landmarks is a complex decision, involving a number of 

factors such as building function, height and age.  However, if building area alone is 

considered then each building can be classified in, say, 10 categories, where buildings in 

category 1 have the largest footprint and the highest importance.  This attribute would be then 

flagged as the importance attribute for the feature collection in the ontology and the collection 

would then be inferred to be a RankedFeatureCollection (section 5.5.1).  This would mean 

that the feature collection would be eligible for selection by attribute, and only the most 

importance landmarks mapped (section 6.5.1). 

Assuming the generalisation of the building features is triggered by congestion then 

amalgamation operator (section 5.5.2) will also be suggested by the ontology as a remedy. 

However, this would effectively destroy the landmarks; therefore a mechanism is required to 



182 

prevent this operator from being suggested by the ontology.  In this case the features mapped 

are landmarks rather than buildings and have to be defined as such in the ontology using a 

LandmarkFeatureCollection class, for example.  The forbids relationship, which was used to 

prevent the amalgamation of features in a network (Figure 5.22) and the amalgamation of 

features such as bus stops (Figure 7.8) could be used to prevent the amalgamation of 

landmarks.  

The forbids property has now been used in a number of situations and it might be argued that 

its use is similar to procedural knowledge; for a particular feature type forbid a particular 

operator. This could be seen as being contrary to the aim of asserting as little as possible and 

inferring as much as possible.  However, the assertions involving the forbids property have 

been indirect, passing through intermediate concepts such as a network (Figure 5.19 and 

Figure 5.22) or a conceptual operator (Figure 7.8).  So we can infer the road features should 

not be amalgamated because we have asserted that the road features are part of a network and 

we have asserted that a network cannot be amalgamated. It may be possible to detail in the 

ontology why a network should not be amalgamated but ultimately all inferences are based on 

assertions.  The aim should be to make the assertions about higher level concepts such as 

networks. 

Bus routes are networks.  They do not have formal nodes but the point where they intersect is 

a virtual node and allows the traveller to switch routes (this might not be in the exact location 

of the intersect but it will be nearby).  Individual bus stops can be mapped along with the 

route network at a relatively large scale (approximately 1:5K) (Figure 7.12).  The mapping of 

the bus stops was discussed in the previous use case. 
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Figure 7.12 Two intersecting bus routes with bus stops 

To summarise, the following developments to support the multi-scale mapping of bus 

routes have been identified 

 the development of the basic pruning algorithm to develop strokes based on a 

specified “pruning attribute” (e.g. route number) 

 the modification of the ontology to ensure the selection of the new algorithm for 

those network feature collections with a pruning attribute specified 

 the recording in the ontology of the relationship between the road network and the 

bus routes 

 the addition of a new, Landmark feature collection class and the definition of its 

relation to the bus routes. 

Although coalescence was discussed briefly, so far only a single geometric condition, 

congestion has been considered in detail.  The following section will discuss the 

consequences of modelling another condition. 

7.3.3 Assessing a condition other than congestion 

The original use case concentrated on the single geometric condition of congestion in two 

feature types: roads and accidents.  The proposed new use cases considered the mapping of 

different feature types but still focussed on the congestion of features.  To test the model 

further, this next section will consider another geometric condition defined in the McMaster 

and Shea model (Figure 3.1), imperceptibility; which, here, is defined as the condition that 

occurs when a feature is portrayed with too much detail for the current scale.  In addition to 

being a different condition from congestion it also operates on individual features as opposed 
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to the multiple features that congestion applies to.  It is therefore a useful test of the 

ontological approach. 

If we consider the rather complex building outline in Figure 7.13a (the supermarket portrayed 

in Figure 1.2a), we can see that at a reduced scale there is too much detail and the building 

outline is hard to determine (Figure 7.13b).  The feature would benefit from simplification 

(Figure 7.13c) but first, “too much detail” needs to be quantified.  When considering 

individual features, Stigmar and Harrie (2011) state that legibility is influenced by object 

complexity, which is determined by the shape and size of the features, and list several relevant 

measures; including object size, line segment size, angularity, line connectivity, and polygon 

shape. 

 

 
 

(a) Large scale (b) Reduced scale (c) Simplified 

Figure 7.13 A building represented at two different scales 

Harrie and Stigmar (2010) define a measure for the number of object points that simply sums 

the number of points used to define each mapped feature.  This can be adapted to individual 

features by defining a vertex density as the number of points used to define the feature divided 

by its area
16

.  However, the threshold value that determines whether the feature is 

imperceptible must be scale dependent, in the same way that the Eps value was (section 

6.3.1), since the same feature at a larger scale will not suffer from imperceptibility. However, 

this measure is not without disadvantages.  Consider the two buildings portrayed in Figure 

7.14a.  They both have the same area and are defined by the same number of points and 

therefore have the same vertex density but at a reduced scale their perceptibility differs 

(Figure 7.14b); it is not clear whether Building 2 is, in fact, two separate buildings. 

                                                 
16

 For linear features, the number of points divided by the line length would provide an equivalent measure. For 

point features, of course, the condition is not relevant. 
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 Building 1 

 

 

 Building 2 

(a) Original scale (b) Reduced scale 

Figure 7.14 The effect of building shape on perceptibility 

The polygon shape measure calculates the ratio between the area of a feature and the area of 

its convex hull and can be used as an indicator of the complexity of a polygon feature 

(Stigmar & Harrie, 2011). However, in this example (Figure 7.14) its application would again 

result in the same value for both buildings. So a further measure might need to be applied, 

such as angularity, which considers the changes in the direction of a line that defines a feature 

(Stigmar & Harrie, 2011). In this case Building 2 would be identified as having a high 

angularity. 

Currently it is possible to define a number of measures in the ontology that will identify 

symptoms and thus identify a particular condition but there is no mechanism to combine 

measures to identify a condition.  A process that is similar to Multi-Criteria Decision Making 

(MCDM) (Longley et al., 2005) is required, where the existence of a condition is defined by 

the sum of its symptoms. This can be modelled in the ontology. For example, if the class 

ImperceptibleFeature is defined as 

(hasSymptom some HighAngularity) and (hasSymptom some HighShapeComplexity) 

and (hasSymptom some HighVertexDensity) 

then any feature, and only those features, that possessed all three symptoms would be classed 

as an ImperceptibleFeature. Alternatively, the class could be defined as 

(hasSymptom some HighAngularity)  or (hasSymptom some HighShapeComplexity)  

and (hasSymptom some HighVertexDensity) 
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then only those features that had the HighVertexDensity symptom and either or both of the 

other symptoms would be classed as an ImperceptibleFeature.  So it is possible to model a 

combination of symptoms that defines a condition.  

If the condition of imperceptibility is identified in the building feature (Figure 7.13b) then it 

needs to be remedied.  All three of the symptoms described above can be remedied by 

reducing the number of vertices in the features.  This can be implemented by the 

Simplification operator, which in turn can be implemented by any number of algorithms. 

Consider the most well-known of these, the line simplification algorithm of Douglas and 

Peucker (1973).  The DP algorithm is not sufficiently sophisticated for building simplification 

(Guercke & Sester, 2011) but has been selected here for its simplicity.  It has a single 

parameter, tolerance and a relationship between this parameter and the DoG needs to be 

determined.  Previously the DoG values have been derived from the ratio of problem features 

(as identified by the measures) to mapped features (Equation 4.1).  Here, however, we are 

examining how to generalise a single feature.  So it will be necessary to combine the results of 

the applied measures to determine a value for the extent of the imperceptibility of each 

feature. With the current system design the knowledge (specifically the equation) to do this 

will be embedded in the Mapping Engine.  A further equation that converts the 

imperceptibility value into a DoG is required.  Finally the line simplification algorithm has to 

convert the DoG into a tolerance value.  The higher the DoG is then the higher the tolerance 

value and the greater the simplification (Figure 7.15).  There is not necessarily a linear 

relationship between the tolerance and the number of vertices removed.  For example, 

tolerance values from 4 to 9 all removed the same number of vertices (Figure 7.15e). This is 

similar to the non-linear behaviour of the selection by attribute operator (section 6.5.1) and 

demonstrates that the DoG concept requires further refinement. 
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(a) Original shape (b) DP with tolerance = 1 (c) DP with tolerance = 2 

   

(d) DP with tolerance = 3 (e) DP with tolerance = 4 to 9 (f) DP with tolerance = 10 

Figure 7.15 The application of the Douglas-Peucker (DP) algorithm with different tolerances 

To summarise, the implementation of this use case will require greater changes to the system 

than those discussed in sections 7.3.1 and 7.3.2. Changes are required not only to the ontology 

but also to the mapping engine as a result of introducing a new geometric condition to the 

system. The changes include 

 the definition of  the imperceptibility condition and its symptoms in the ontology 

 the development of a number of measure algorithms to assess the new symptoms 

 the definition of the new measure algorithms in the ontology 

 the inclusion in the Mapping Engine of the equations to  

o calculate an imperceptibility value for a feature  

o calculate a value of DoG based on imperceptibility 

 the development of one or more feature simplification algorithms that will utilise the 

DoG value 

A means of representing equations in the ontology would ensure that no changes to the 

Mapping Engine would be required; only changes to the ontology and the development of 

new algorithms. 
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7.4 Summary 

This chapter has looked beyond the original use case and considered the changes to the 

ontology and the Mapping Engine that would be required to apply the on-demand mapping 

system to other use cases.  Without implementing the new use cases it is not possible to be 

certain, but the only major changes are when the system is required to take account of a new 

geometric condition; in particular changes are required to the Mapping Engine.  However, 

these changes are finite as the number of conditions are limited; McMaster and Shea list only 

six in their model (Figure 3.1). 

The adaption of the system to new use cases will require more measure and generalisation 

algorithms.  In the original use case a number of algorithms were developed from new rather 

than using existing algorithms.  This was because of the need to incorporate the DoG concept. 

It is neither practical nor desirable to develop a complete set of new generalisation algorithms 

for the on-demand mapping system and some method of integrating the DoG concept with 

existing algorithms needs to be found.  One possible option is an adaptation of the translator 

function concept (Touya et al., 2010) to allow the DoG to be translated into the parameter 

values of the generalisation algorithm.  This will not be a simple task since the variety of 

generalisation algorithm parameters, even among algorithms implementing the same operator, 

is wide.  The work of classifying algorithm parameters, started in section 4.4.1, will need to 

be extended to support this task. 

In contrast, the changes to the ontology required by the new use cases were relatively 

straightforward.  There was no need to alter the essential structure of the ontology to apply the 

model to different use cases.  The changes required were additions to the sub-concepts in the 

ontology, such as new feature types.  The only new top level concepts required were a user 

Role and a Landmark.  

The ontology can represent either procedural or declarative knowledge but the intention was 

to encapsulate declarative knowledge in the ontology (section 3.3).  Cartographic constraints 

can be classed as declarative knowledge and it might be asked why constraints were not 

captured in the ontology, since constraints-based generalisation is a well-used approach.  

Constraints were ruled out because of the difficulty of defining constraints for all mapped 

feature types at many different scales and also because constraints do not capture the 

semantics of generalisation (section 2.5).  It is necessary, therefore, to consider whether the 

alternative knowledge representation, modelling the semantics of generalisation in the 

ontology in the form of declarative knowledge, was successful. 
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Most of the assertions about feature types are done at a relatively abstract, level such as a 

network feature collection rather than at the lowest level, such as road feature collection 

(Figure 5.22).  So it would only be necessary, for example, to define a river feature type and 

assert that it is a network for it to be generalised in a similar manner to a road network.  Or a 

crime feature type could be created and classified as a point event and mapped in a similar 

manner to the accidents, but perhaps with different features providing context.  So the aim of 

deriving new expressions from old was met but the implementation of further use cases will 

be necessary before it can be concluded that the semantic, declarative approach can support 

on-demand mapping.  The ontological approach will still require the representation of a lot of 

knowledge but if the ontology was built collaboratively then much work could be saved. 
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8 Conclusions and further work 

Following a summary of the work completed (section 8.1), this chapter considers how the 

ontological approach to on-demand mapping could be extended beyond the McMaster and 

Shea model (section 8.2).  The thesis concludes with a summary of the major achievements 

(section 8.3). 

8.1 Thesis summary 

On-demand mapping requires automatic generalisation and an assessment of the difficulties of 

automatic generalisation was made.  A survey was done on how generalisation knowledge 

had been represented in the past; in software systems and in generalisation operator 

taxonomies. Previous approaches to on-demand mapping were also investigated (section 2.6). 

A case was made for formalising and sharing cartographic generalisation knowledge by using 

an ontology and then reasoning with that ontology to automatically select generalisation 

algorithms. The ontology had to be based on a model of generalisation and the McMaster and 

Shea (1992) model was selected as the most appropriate for on-demand mapping.  Because of 

the lack of an existing methodology specifically to design an application (or task) ontology, a 

hybrid methodology, based on a number of existing methodologies was developed (Chapter 

3).  

To evaluate and make use of the ontology an on-demand mapping system was required and a 

methodology, based on CommonKADS, was devised for integrating domain knowledge (from 

the ontology) with control knowledge.  A method was also developed to automatically derive 

generalisation algorithm parameter values based on the concept of a Degree of Generalisation 

(DoG), a measure of the “amount” of generalisation required to resolve a condition.  The 

value for the DoG is a function of the number of problem features identified by the geometric 

condition measure algorithms (Chapter 4). 

An ontology was built using the methodology and evaluated using the competency questions 

devised in Chapter 3.  A number of use case specific challenges were identified and addressed 

(section 5.5). 

To properly evaluate the ontology a prototype was developed.  The prototype was tested at 

three different scales, each scale representing the requirements of a different type of potential 

user and satisfactory results were obtained (Chapter 6).  A set of generalisation algorithms 

that employed the DoG as an input parameter was developed but a technique for integrating 

the DoG with existing algorithms is still required.  



191 

Consideration was given to how the ontology could be extended to other use cases 

(Chapter 7) and it was concluded that the ontological approach was scalable; although those 

extra use cases, and others, will have to be implemented before this can be stated with 

authority.  

It may be argued, with some justification, that the scope of the thesis is too wide. The scope 

could have been limited to the design and development of the ontology and its evaluation 

limited to testing the competency questions (section 3.7.3).  This would then have allowed 

time for the development of a more sophisticated ontology.  However, since the aim of the 

research was to develop an application ontology to support on-demand mapping as opposed 

to an all-purpose domain ontology, the ontology could only be properly evaluated by 

attempting an implementation of an on-demand mapping system.  This necessitated the 

development of a method for automatically generating generalisation parameter values which 

led to the development of the DoG concept.  This in turn led to the need to develop a set of 

generalisation algorithms that would work with the DoG concept (Most existing road pruning 

algorithms, for example, have been developed for a particular scale).  In addition, on-demand 

mapping is an immature concept and has not been researched extensively.  All of these 

considerations meant that, by necessity, the scope of the thesis is wide. 

The aim and objectives were stated in section 1.5. The main aim was to “develop an on-

demand mapping system based on an ontology”. The following objectives were defined: 

1. To model the process of generalisation using an ontology. 

2. To devise a method for automatically selecting the appropriate algorithms for mapping 

geographic features at multiple scales using the ontology. 

3. To devise a method for generating parameter values for the selected algorithms 

parameters based on the current conditions in the mapped data. 

4. To develop an on-demand mapping prototype for road accidents and roads that will 

test the above methods. 

The objectives were expressed as a number of research questions: 

 How can the process of cartographic generalisation be captured in an ontology? 

o What are the essential characteristics of generalisation operators? 

o What are the essential characteristics of generalisation algorithms? 

The process of generalisation was captured using the generalisation model of McMaster 

and Shea (1992). The ontology captured the concepts of their model but the sequencing of 
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the tasks required to generalise geographic features was expressed in the control 

knowledge of the prototype.  The characteristics of both generalisation operators and 

algorithms were defined (sections 5.4.2 and 5.4.3).  However, in both cases the list of 

characteristics needs to be refined and more of the characteristics need to be represented 

in the ontology.  This should be done with the involvement of domain experts using the 

methods developed in this research. 

 How can knowledge of the geographic data (accidents and roads) be described in the 

ontology in such a way that it can be used to guide the process of on-demand 

mapping? 

o What are the essential characteristics of a geographic feature type that effect 

how features of that type are generalised? 

The characteristics of the two feature types was expressed in the ontology; the road 

segments, for example, were classed as a network, which influenced how they were 

generalised.  However, more of the characteristics of geographic features need to be 

represented to make full use of the ontological approach.  Again this should be done with 

the involvement of domain experts using the hierarchy of feature types developed here as 

a starting template (section 5.4.1). 

 Can we automatically determine the conditions under which the data should be 

generalised? 

Measures for determining a single geometric condition, congestion, were developed; 

although techniques for assessing imperceptibility were also appraised (section 7.3.3). The 

application of different measure algorithms at different scales needs to be investigated 

further. For example, the application of different measure algorithms to the features in 

Figure 5.2 and those in Figure 6.34 would be beneficial. 

 Can the ontology be reasoned with, using inference, to automatically select the 

generalisation operators and algorithms that will resolve particular conditions in the 

mapped data? 

o Can this be done by using semantics, expressed as declarative knowledge, 

rather than procedural knowledge? 

The ontology was used to select generalisation operators and algorithms although the 

emphasis needs to be moved from reasoning about classes using OWL queries to inference 
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based on classifying individuals (section 7.2.2).  There is not always a clear distinction 

between procedural knowledge and the expression of the semantics of generalisation using 

declarative knowledge but in general it was the latter that was represented in the ontology. 

 Once an algorithm has been selected can values for its parameters be automatically 

generated? 

The DoG concept was developed to allow for the automatic parameterisation of algorithms. 

This was successful but required the development of a number of algorithms that used the 

DoG value as a parameter. A technique is required where the DoG can be translated into 

parameter values for existing algorithms. The development of such a technique could be 

supported by the method developed here for assessing algorithm parameters (Table 5.5). 

 Can the geographic features data and ontology be combined in an on-demand 

mapping system? 

A prototype was developed for mapping accidents and road segments at multiple scales, with 

the limitations discussed in sections 6.9 and 7.2. 

In summary, all of the objectives were met sufficiently to ensure that the aim of developing an 

on-demand mapping system based on an ontology was reached, although only for a specific 

use case.  The previous chapter discussed how the ontology might be extended to make it 

applicable to other use cases (section 7.3).  The following section will look at roles for a 

generalisation ontology beyond the implementation of the McMaster and Shea model.  

8.2 Further work: beyond the McMaster and Shea Model 

This section looks at how a generalisation ontology could be used for applications other than 

implementing the McMaster and Shea model in a standalone on-demand mapping system. 

8.2.1 Supporting existing generalisation systems 

The current design of the on-demand mapping system involves cycling through each 

symptom of each feature collection and attempting to resolve it.  It can be argued that this 

linear approach is too simple and generalisation is a more complex problem.  It may be that 

there are conditions which are best resolved by a sequence of operators, whereas the ontology, 

currently only suggests atomic solutions. 

Agent-based systems have been employed by a number of NMAs to resolve this problem 

(section 2.5).  However, as discussed earlier, such systems are primed to map a fixed set of 
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feature types at particular scales.  The knowledge that these system employ is also embedded 

within; if we wish to map an unfamiliar feature type then this local knowledge has to be 

updated (Taillandier & Taillandier, 2012). 

Agent-based systems could be made more flexible by providing a shared, formalised 

knowledge base founded on an ontology.  The amount of knowledge required just to map road 

accidents and the underlying road network is considerable, as was demonstrated above.  It is 

advantageous to share this knowledge and the knowledge required to map other feature types 

at multiple scales.  A method where existing systems could interact with an ontology would 

need to be developed. 

8.2.2 Supporting web services 

There has been a lot of research on geospatial web services in general  (Fitzner et al., 2011; 

Friis-Christensen et al., 2007; Lemmens et al., 2007) and generalisation web services in 

particular (Regnauld et al., 2014; Gould, 2012; Foerster et al., 2008; Burghardt et al., 2005).  

The standard for implementing geospatial web services is the OGC’s Web Processing Service 

(WPS) protocol (Open Geospatial Consortium, 2010).  However, the protocol does not 

provide for semantic interoperability (Janowicz et al., 2010); there is no method of adding 

machine readable descriptions to a service.  It is possible to determine from the input and 

output parameters that the algorithm might input point data and output polygon data but no 

semantics can be determined.  Human-readable service descriptions can be added but there is 

no way that a computer can reason about why a particular processing service should be 

selected. 

One possible solution is the Semantic Enablement Layer (Janowicz et al., 2010), which injects 

semantics into both data and processing services using ontologies (Figure 8.1).  In the use 

case the same ontology was used to define spatial data and generalisation concepts such as the 

operator.  In this example, separate ontologies for data and generalisation are depicted. A Web 

Ontology Service is used to manage the ontologies, including updating, and  a Web Reasoning 

Service is then used to reason with the ontologies; to match a particular processing (or 

generalisation) service to a  feature collection, for example.  

The WEBGEN portal (Dresden University of Technology, 2014; Neun et al., 2013) offers a 

number of WPS-based cartographic generalisation web services, including building 

displacement, building simplification, and line smoothing. These services are based on the 
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WPS protocol and could be employed as a use case for the Semantic Enablement Layer 

concept. 

 

Figure 8.1 Semantic injection of generalisation web services (based on Janowicz et al., 2010) 

Both of these suggested expansions of the ontological approach (integrating with existing 

systems and supporting web services) will require collaborative working.  There are still a 

number of unresolved matters regarding the design of the ontology and they can be best 

resolved by involving domain experts.  The open source webProtégé ontology editor 

(Tudorache et al., 2013) allows for the collaborative development of ontologies and can be 

downloaded and installed on a server or used via the Stanford University hosted 

implementation. webProtégé supports the OWL 2 standard for ontologies (Grau et al., 2008).  

Collaboration is supported by features such as change tracking, and a discussion forum for 

each class defined in the ontology (Figure 8.2).  Indeed it might be possible to use webProtégé 

for the Web Ontology Service component of the Semantic Enablement Layer (Figure 8.1). 
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Figure 8.2 The webProtégé interface 

8.3 Major achievements 

The major achievements can be divided between those relating to on-demand mapping and 

those relating to the use of ontologies for generalisation.  This thesis has 

 Defined the requirements for on-demand mapping including the need to respect 

relationships between thematic features and topographic features when generalising 

the latter.  This was demonstrated by the development of an algorithm for pruning a 

road network with respect to point features. 

 

 Developed a method for the automatic calculation of algorithm parameters based 

on the DegreeOfGeneralisation concept.  The output of a set of measure algorithms 

was used to derive the DoG which was then used as a parameter to a number of 

generalisation algorithms. 

 

 Demonstrated the need to formalise and make explicit generalisation knowledge. 

Generalisation is a complex process and automatic generalisation of familiar features 

at a fixed scale is difficult task.  On-demand mapping, which requires automatic 

generalisation of any feature at arbitrary scale, involves another level of difficulty.  

Formalising this knowledge, making it explicit, and allowing it to be shared by 

generalisation systems will ease that difficulty. 

 

 Developed a method for producing a consistent definition of generalisation 

operators. Many generalisation operator classifications or taxonomies have been 

developed over the past 50 years.  There has been much disagreement over the 
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meaning of terms and the scope of operators.  A technique was developed that 

involved producing characteristic signatures of operators that can ensure consistency 

when defining an operator’s characteristics.  Although the technique requires further 

development, it could be used in the future to harmonise generalisation operator 

definitions. 

 

 Developed a methodology specifically for the design of task ontologies.  There are a 

large number of methodologies for designing domain ontologies but none was 

discovered that was aimed at designing a task ontology.  In addition, many of the 

methodologies were designed for a specific domain.  A hybrid methodology was 

developed, based on a number of existing methodologies, specifically to develop a 

task ontology. 

 

 Modelled the complete process of generalisation in an ontology for the first time. 

The use of ontologies in generalisation has been proposed before but their use has 

been restricted to specific aspects of generalisation such as classifying features or 

supporting a particular algorithm.  The ontology developed here attempted to 

encapsulate the complete process of generalisation and was evaluated by developing 

an on-demand mapping prototype.  Many ontologies are designed, some are built, but 

few are applied to specific tasks.  The ontology developed here requires further 

development, but the methods developed in this thesis that will aid the development of 

a comprehensive generalisation ontology. 

8.4 Final words 

The introductory chapter discussed the recent maps generated automatically, using a number 

of pre-defined workflows, by the Netherlands’ Kadaster (section 1.3).  In particular, their use 

of a road network pruning algorithm to prune the hydrographic network was mentioned as 

just one of the problems in attempting to completely automate the process.  It might be 

concluded that such counterintuitive decision-making might make the aim of on-demand 

mapping futile.  Such a decision is certainly beyond the current version of the ontology but 

not beyond a future version.  It is a case of defining the characteristics of the algorithm that 

make it suitable for this particular hydrographic network and the characteristics of the 

network that make it appropriate to use this algorithm.  If these characteristics are described 

with sufficient detail then the link between data and algorithm can be inferred. 
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The initial aim of the research was to develop a method for completely automating the 

production of a map with arbitrary content at an arbitrary scale.  This ambition was tempered 

by experience.  However,  if the aim is not to reproduce the detailed multi-purpose maps 

produced by National Mapping Agencies but instead to allow the user to map a set of  

thematic features, plus one or two topographic feature types to provide context, then on-

demand mapping does not appear to be an unattainable task.  In addition, an on-demand 

mapping system that allows the user some control over the output is desirable.  

The ambition of generalisation was defined in Chapter 1 as allowing us the ability to “see 

different patterns, different relationships, between different entities” (Mackaness et al., 2014).  

The explicit formalisation of both the process of generalisation and the knowledge of these 

entities in an ontology will aid that ambition by shifting the focus of generalisation from 

geometry to semantics.  However, the Why, When and How model of generalisation of 

McMaster and Shea needs to be updated. The ambition gives reasons why we generalise. We 

generalise when comprehension is threatened.  Finally, how we generalise is by respecting the 

semantic relationships between these entities. 
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Abstract— The paper presents a method to 

automatically select and sequence the tasks required to 

build maps according to user requirements. Workflows 

generated are analysed using Petri nets to assess their 

validity before execution. Although further work is 

required to select the optimal method for generating the 

workflow and to execute the workflow, the proposed 

method can be used on any workflow to assess its 

validity. 

Keywords-automated map generalisation; workflows; 

Internet mapping; Petri nets. 

I. INTRODUCTION 

The development of Google Maps and similar 
products has led to a vast number of ‘mashups’ where 
users can overlay their own data on Google Maps 
backgrounds and make the resultant map available to 
others. The problem with this approach is that the user 
is limited to the background maps supplied by Google; 
there is no, or very little, flexibility to vary the content 
depending on the context and there is no data 
integration [1]. This is highlighted in Fig. 1 where the 
street names are obscured by overlaid cycle routes. 
Further problems may occur when the scale changes. 
For instance, a minor road that may be part of a cycle 
route may disappear at smaller scales since the two 
datasets are independent. 

What is required is a system to allow data from a 
variety of sources to be mapped at a variety of scales. 
Since, the possible combination of datasets and scales 
is too numerous to be pre-defined, on-demand 
generalisation (deriving smaller scale maps from 
larger scale maps) is necessary.  

Cartographic generalisation is a complex process 
[2] and much effort has gone in to developing 
automation techniques that reduce or eliminate human 
involvement [3].  

 
 
 
 
 

The focus has, until recently, been on allowing 
National Mapping Agencies (NMAs) to automate the 
production of maps at different scales from a single 
master source [4][5]. Automatic generalisation is 
applied to a pre-defined set of map features at pre-
defined scales to produce a pre-defined set of 
products. However, the advance of neo-geography and 
Volunteered Geographic Information [6] means that 
on-demand generalisation is required allowing users to 
integrate their data with that of NMAs and other 
mapping resources. There have been attempts to 
generate online on-demand maps to user requirements, 
but such systems have been developed by applying a 
fixed sequence of generalisation operations to known 
datasets [7][8]. 

An on-demand mapping system will require a 
number of components including a means of taking 
high level user requirements (e.g., “I want a city-wide 
map of road accidents”) and producing a machine-
readable specification of the map [9]. The system will 
also need a knowledge base to store cartographic rules 
of the type: “if the scale is greater than 1:30,000 omit 
minor roads”. A set of map generalisation services are 
then required to satisfy such rules or constraints. 
Traditionally the selection of map generalisation 
operators and their sequencing is done by cartographic 
experts, but for  on-demand mapping, aimed at the 
non-expert user, a system is required that can 
automatically generate, validate, execute and monitor 
these operations; in other words a workflow needs to 
be generated and executed [9].  The focus of this 
research is on developing a workflow engine that, 
given the specification, using the rules, will 
automatically select, sequence, and execute the map 
generalisation services required to generate the map or 
spatial output. 

This paper describes the initial attempts to 
automatically generate a workflow for building a map 
based on user requirements and suggests how to 
validate that workflow. 

To illustrate the process, a use case involving the 
mapping of road accidents will be employed. Fig. 2 
represents a detailed map of accidents at a road 
junction. 

 
 
 
  
 
 
 
  

Figure 1 Google Maps with cycle routes overlaid 

Figure 2 Accidents at a road junction 
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To represent all of the data at a smaller scale the 

road network is generalised by eliminating any minor 
roads and collapsing (reducing to single lines) the 
major roads. To avoid information overload the 
accidents are clustered (Fig. 3). Elimination, collapse 
and clustering are common generalisation operations. 
The junction in Fig. 2 is represented by ‘B’. 

The generalised map serves to highlight accident 
hot spots. However, by removing the minor road ‘A’, 
context is lost, since the cluster will appear to be on a 
straight section of road, so a step is required to 
reinstate those minor roads that intersect a cluster. 
What we have is a set of tasks that have to be carried 
out, some of which are in a particular order, i.e., we 
cannot reinstate the minor roads until we have created 
the clusters.  Since there a number of tasks to execute, 
some of which have to be completed before others can 
start, a workflow is required to express these 
relationships. In addition that workflow has to be 
valid, i.e., all of the tasks must, at least, be called. 

The method used was based on the premise that 
workflow definitions can be analysed using Petri nets 
for flaws that would stop the workflow from 
completing execution [10][11]. 

Firstly, a technique was implemented to generate 
the list of tasks and their dependencies based on 
applying user requirements to a set of applicable rules 
(described in Section II). From this a workflow 
definition could be created, represented by a directed 
graph (Section III).  A method was developed to 
produce a Petri net from a given directed graph 
(Section IV). The Petri net could then be analysed for 
flaws in the workflow definition (Section V). 

 

II.  GENERATING A LIST OF TASKS AND DEPENDENCIES 

There are a number of different techniques for 
automatically generating workflows including Case 
Based Reasoning [12] and product structures, where 
the map is treated as a product that has to be 
constructed from component parts [13].  

The technique used in this research was one that 
employs user preferences to define the selection and 
execution of a set of rules [14].  This technique was 
selected because of its focus on the user’s needs, 
which is essential for on-demand mapping.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The user preferences are gathered by navigating a 

knowledge/rule hierarchy (Fig. 4). If a particular 
branch is not selected by the user than that branch is 
closed off. For example, if the user does not select an 
‘unknown’ feature type they are not prompted for 
‘vector’ or ‘raster’. In the prototype the user is simply 
prompted for his or her preferences using text boxes 
and drop down boxes in a web page. Each leaf node in 
the hierarchy has one or more associated rules; these 
are added to a set of applicable rules as the user 
requirements are gathered.     

If the user selects the ‘roads’ feature type then the 
rules associated with that feature type (R1, R2, R3) are 
added to the set of applicable rules. Rules consist of a 
condition and an action (e.g., insert a task to the 
workflow or order two tasks) and are stored in an 
XML file (Fig. 5). Using XML allows for the use of 
schemas to enforce correct structure. 

The gathered user requirements are held in 
memory as ordered pairs, for example: 

 
< scale,50000 > 
< theme,generic > 
< featureType,roads > 
< featureType,accidents > 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

Figure 3 Generalised data at a small scale 

... 

<featureType name="roads"> 

    <rules> 

      <rule id="R1"> 

       <condition>scale >= 5000 AND 

featureType = roads</condition> 

       <action>insert(t1)</action> 

      </rule> 

      <rule id="R2"> 

        <condition>scale >= 5000 AND 

featureType = roads</condition> 

        <action>insert(t2)</action> 

      </rule> 

      <rule id="R3"> 

      <condition>scale >= 5000 AND featureType 

= roads</condition> 

      <action>order(t2,t1)</action> 

      </rule> 

    </rules> 

</featureType> 

...  

 

Figure 5 Knowledge/rule hierarchy (partial) as XML  

 

Figure 4 Knowledge hierarchy 
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Once these have been collected, the applicable 
rules are then evaluated, checking rule conditions 
against user preferences to generate a set of tasks and a 
set of task dependencies. For example, if the user has 
selected the feature type “roads” and a map scale of 
greater than 1:5000 then the conditions for rules R1, 
R2 and R3 (Fig. 5) will be met and their actions 
triggered, e.g. task t1 is inserted into the workflow. 
The action ‘order(t2,t1)’ means task t1 is a 
dependency of task t2 and should only be run after t2 
has been executed. 

Using the above use case, the selected tasks may 
be: 

 
t1: collapse roads 
t2: delete minor roads 
t9: add copyright notice for roads dataset 
t3: cluster accidents 
t8: reinstate minor roads on clusters 
 
and the dependencies: 
 
t2 ≺ t1 
t1 ≺ t8 
t3 ≺ t8 
 
In this case, there are five tasks to perform and 

there are three dependencies (or precedence 
constraints). For example, we want to delete any 
minor roads (task t2) before we collapse the roads 
(task t1) as it is inefficient to collapse a subset of the 
road network that we are later going to delete. Task t9 
is not involved in any dependency and is classified as 
an independent task. 

The above output can be expressed as a directed 
graph where tasks are represented as nodes and 
dependencies as edges (Fig. 6).  

However, the graph does not constitute a 
workflow. The next section describes why and then 
what is needed to construct a workflow definition. 

 

III. CREATING A WORKFLOW DEFINITION 

The directed graph (Fig. 6) generated from the 
example set of task dependencies does not make up a 
workflow definition. This is because there is no place 
for any independent tasks (in our case task t9). In 
addition, the following rules must be satisfied for a 
workflow definition according to [15]: 

 

 The workflow graph should have a single 
source node and a single sink node 

 Every other node should have at least one 
parent and at least one child 

 
This ensures that the workflow has a defined start 

and end and that there are no unnecessary tasks. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
A workflow definition directed graph can be 

created by the following procedure: 
 
1. Add start (A) and end (B) nodes 
2. Create an edge for every dependency 
3. For every node that has no children add an 

edge to the end node 
4. For every node without a parent add an edge 

from the start node 
5. For each independent tasks link the task 

directly to the start and end node. 
 
The revised graph can be seen in Fig. 7. 
 
The method so far has produced a workflow 

definition for the given case study but is it valid? For 
instance, it is relatively easy to ensure that there are no 
directly contradictory dependencies between the 
selected tasks so that both t1 ≺ t2 and t2 ≺ t1 did not 
appear in the same workflow. However, indirectly 
contradictory dependencies such as that seen in Fig. 8 
would be harder to identify. In this example the 
dependency “t3 precedes t14” has introduced deadlock 
[15] into the workflow. Task t3 will not start until t8 
starts; but t8 will not start until t14 starts, which will 
not start until t3 starts. So, tasks t14, t8, t5, t3 and 
subsequent tasks will never be executed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 Directed graph based on dependencies 

 

Figure 7 Workflow definition graph 
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A method of testing the soundness of a workflow 

before attempting execution is needed. The simplest 
way of checking for deadlock is by performing a 
topological sort on the graph. However, the 
application of Petri nets will allow for a more 
expressive form of graph and the ability to describe 
more complex workflow patterns [16] than that 
described above. In addition to describing workflows, 
the mathematical foundations of Petri nets [17] allow 
for the analysis of workflows and are applicable to 
more complex analysis than the deadlock problem 
[10][11]. Extensions to Petri nets, such as coloured 
Petri nets, which allow for the investigation of delays 
and throughput, have been defined formally [11]. Petri 
nets offer a number of advantages over PERT charts 
such as the ability to model nondeterministic 
behaviour and loops in the workflow [31]. The 
adoption of Petri nets at an early stage will allow the 
design to be scaled to more complex workflows. But, 
first, we need to generate the Petri net from the 
directed graph. 

 

IV. GENERATING A PETRI NET 

A Petri net is a particular class of directed graph, 
defined as a bipartite directed graph consisting of two 
types of nodes called transitions and places [17]. 
Nodes are linked by arcs such that arcs cannot link a 
place to a place or a transition to a transition. 
Transitions, denoted by rectangles, represent events or, 
in our case, workflow tasks. Places denoted by circles, 
represent states (Fig. 9). 

Staines [18] describes the process for generating a 
directed graph from a Petri net, which can be reversed 
to generate a Petri net. The procedure used is as 
follows: 

 
1. Nodes (tasks) are converted to transitions 
2. Each edge generates arc-place-arc 
3. Extra places are added preceding the start 

node (A) and following the end node (B). 
 
The Petri net generated from the workflow shown 

in Fig. 7 can be seen in Fig. 9. 

 
 
 
The starting place, P0, contains a single token. 

Tokens can be used to model the workflow. A 
transition may be fired only if there are one or more 
tokens in all of its input places [17]. In this example, 
transition A can be fired. When a transition fires it 
takes a token from each of its input places and places a 
token in each of its output places. So after the firing of 
transition A, there will be a token in each of the places 
P5, P4, P7 (but no longer P0) thus enabling transitions 
t3, t2 and t9. Note that t8 will not be fired until both t3 
and t1 have, which models the original dependencies. 

Code was written to generate an XML file in a 
format that can be read by the PIPE software [19]. 
PIPE can then be used to visualise and animate the 
Petri net firings to ascertain whether the workflow is 
executable. 

Deadlock can be identified visually or by using a 
Petri net analysis tool such as PIPE. It needs, however, 
to be identified as part of the on-demand mapping 
system. The following section describes how this was 
done. 

 

V. VALIDATING THE WORKFLOW 

Our system generates a workflow net [15], a 
particular type of Petri net such that: 

 
• The net has a single source and a single sink 

node  

Figure 8 Deadlock in a workflow 

Figure 9 Petri net for valid workflow 
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• Every tasks lies on a directed path between 
the source and the sink nodes. 

 
However, as has been shown, a workflow net 

containing anomalies such as deadlocks can still be 
generated. A sound process is defined as one that 
contains no unnecessary tasks and where every case 
submitted to the process must be completed in full and 
no reference to it remaining in the process, i.e., for 
every token that is in the start place there is one token 
in the end place and no others in the net [15]. 

There is a number of, sometimes complex, 
techniques for checking the soundness of a workflow 
net. Fortunately the Petri nets derived from our 
workflow generation are a particular sub-class of Petri 
nets known as conflict free or T-systems where every 
place has no more than one input and one output 
transition [20]. In effect conflicts are ruled out; there 
are no logical ORs in the system. This makes them 
easier to analyse [21].  

In the prototype the Petri net is checked for 
deadlock by looping through the set of places and 
firing any transitions that are enabled until no more 
transitions can be fired. If all the transitions are fired 
then the workflow is valid, if there are transitions that 
cannot be fired then these are listed. 

 
In addition to the case study, the method was 

tested on a number of randomly generated task lists 
and dependencies. A demonstration version of the 
prototype can be seen at    
www.ondemandmapping.org.uk (Fig. 10). 

 
 

VI. CONCLUSION AND FUTURE WORK 

The increasing availability of once inaccessible 
datasets and the explosion of crowd-sourced data, 
alongside the growth of web-based mapping, have led 
to the need for on-demand mapping. The requirement 
to integrate data from a number of disparate sources 
means that there is a need to automate the creation of 
the workflow required to generate such maps.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This paper has presented two aspects of automatic 

workflows; firstly the generation of the workflow from 
simple user specifications and secondly the generation 

of Petri nets from the workflow definitions to allow 
for their validation. In particular the work done so far 
has highlighted the potential problem of contradictory 
rules that can generate deadlocks in workflow 
definitions. 

It was assumed that the generation of the workflow 
is a static scheduling problem, i.e., the workflow is 
deterministic, known in advance of execution [22]. 
This is likely to be a simplification of the on-demand 
mapping problem; it will be necessary to consider how 
the workflow may change during execution when, e.g., 
a particular generalisation service is not available at 
execution time. For this reason adaptive and 
autonomic workflow techniques [23][24][25] may 
need to be investigated. However, it could be argued 
that any replacement service or set of services would 
not affect the workflow if the replacement(s) could be 
represented as a sub-net with a single point of entry 
and a single point of exit to replace the failed service.  

Further work is also required on the means for 
expressing the cartographic rules.  For example, in the 
case study (Fig. 5) three rules had the same conditions 
but different actions. Could the rules be expressed 
more concisely? Also required is further investigation 
into how the rule base is to be populated and the 
knowledge hierarchy defined.  

The execution of workflows will consist of calling 
a number of web services that provide generalisation 
operators. Web services are usually orchestrated using 
Business Process Execution Language (BPEL) [26]. 
Once sound workflow nets can be generated and 
validated using Petri nets it will be useful to 
investigate the process of generating BPEL from Petri 
nets [27][28]. 

Previous research into the orchestration of 
generalisation services in particular [29][30] will also 
need to be considered with a view to investigating how 
to integrate such services into the system. 

A major problem with the work done so far is the 
lack of a data model. The method lacks the concept of 
tasks doing work on spatial datasets. Datasets have to 
be managed as they progress through the workflow 
and conflicts have to be handled when two different 
tasks attempt to work on the same dataset at the same 
time. One possibility may be to regard the presence of 
a dataset as a pre-condition to the firing of a transition. 
The transition would not fire until the dataset was 
available. The output from the transition would then 
be the processed dataset, e.g., a set of clustered 
accidents. 

Whatever the eventual process is employed for 
generating the workflow, it is believed that the method 
described in this paper can be used to validate the 
workflow definition before an execution is attempted. 
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Abstract 

This paper discusses the need for the semantic description of web services that implement map 
generalisation algorithms to allow the services to be selected automatically. Particular focus is 
placed on need to define a common set of parameters that can be used by any number of 
algorithms. 

 
Keywords: automatic generalisation; semantic web services; on-demand mapping 
 

1. Introduction 

This project focuses on automated mapping techniques.  The development of Google 
Maps has led to a vast number of “mashups” where users can overlay their own data 
on a Google Maps background and make the result available to others. The problem 
with this approach is that the creator is limited to using the background map as 
supplied and there is no opportunity to vary the content depending upon the context. 
The lack of integration of user-supplied data leads to cartographic problems such as 
road names being obscured by overlaid cycle routes, for example (Figure 1).  

 

Figure 1 Cycle routes on Google maps 

 

The aim of the project is to aim is to design a system for the automatic generation of 
workflows for on-demand mapping. This will involve the automatic selection, 
sequencing and execution of generalisation web services based on the OGC’s Web 
Processing Service (WPS) (Open Geospatial Consortium, 2011). 

The steps involved in creating and executing the workflow are abstract composition, 
concrete composition, and execution. 

What is required is a system to 
allow data from a variety of sources 
to be mapped at a variety of 
scales. Since the possible 
combination of datasets and scales 
is too numerous to be pre-defined, 
on-demand generalisation (deriving 
smaller scale maps from larger 
scale maps) integrating user-
supplied data is needed. There 
have been attempts to provide 
online on-demand maps (Kopf, et 
al., 2010) but such systems have 
been developed by applying a fixed 
sequence of generalisation 
operations to a known set of data. 
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The abstract composition phase will involve taking the user’s requirements and the 
descriptions of the data sources and generating an abstract workflow that consists of 
generalisation operators (simplification, smoothing, amalgamation etc.) The concrete 
composition phase will involve finding the appropriate web services for those 
operators and the execution phase will involve calling and managing those services. 
This paper focusses on the concrete composition phase and in particular two issues; 
1) how to annotate the web services in such a way that they can be automatically 
selected, and 2) once a service has been selected, to supply values to its parameters 
automatically. 

 

1.1 Definitions 

A single WPS service can perform a number of processes. Each process will 
implement one or more generalisation algorithms (atomic or composite processes). 
An algorithm may implement one generalisation operator (e.g., building 
amalgamation) or a combination of operators (e.g., road simplification and 
smoothing). 

 

1.2 The need for the semantic description of services 

The selection and sequencing of the generalisation operators, to build the abstract 
workflow, will be derived from the system’s cartographic knowledge, for example, 
generalisation of a road network might require selection, simplification and smoothing 

in that order. The issue is how do we select the appropriate web services to perform 
these generalisation operators (concrete workflow)? We need semantic descriptions 
of the web services to allow for the automatic selection and parameterisation of 
algorithms. However, it is a well-documented problem with the OGC protocols that 
they provide for syntactic interoperability but not semantic interoperability (Janowicz 
et al., 2010; Lemmens et al., 2007). A free-text description field is not sufficient to 
allow for the automatic selection of a process. 

The second issue is, once selected, how do we execute the services i.e. supply the 
required parameter values? WPS services are syntactically interoperable in that for 
any parameter a data type is defined (double, integer etc.). This is not sufficient; we 
need to know the meaning of the parameters. For example, the point clustering 
ISODATA algorithm (Li, 2007) has two parameters both of which represent a 
distance – how will the system be able to distinguish between the two? 

Another problem is that some algorithms will have geographically meaningless 
parameters. The ‘simulated annealing’ approach to automatic feature displacement 
includes among its parameters an ‘initial temperature’ and a ‘temperature gradient’ 
(Ware et al, 2003). How can values for these parameters be derived from user 
requirements expressed in geographic terms such as target scale?  Other algorithms 
such as the Douglas-Peucker line simplification have a single parameter, ‘tolerance’, 
which has a geographic meaning i.e., the maximum distance from the original line 
and the simplified line (Douglas and Peucker, 1973).  However, the Visvalingam-
Whyatt algorithm, which also performs line simplification, has a different concept of 
tolerance, a minimum area (Visvalingam and Whyatt, 1993). 
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Some algorithms define as many as six parameters (Revell, 2004; Ware et al 2003) 
others have none (Yan and Weibel, 2008). Every time a new algorithm was exposed 
by a web service the system’s knowledge would have to be updated.  Rather than 
the system having knowledge of all of the parameters for every algorithm it may use, 
it is more sensible for the system to define a common set of parameters that all 

algorithms must use. It would be the responsibility of the service to translate from the 
common parameters to the specific parameters of the algorithm.  

In summary, processes need to be described in such a way that the system selects 
the most suitable WPS process for each task and then provides appropriate values 
for their parameter. But what information is required to describe a service 
sufficiently? Section 3 describes a classification of generalisation algorithms and their 
parameters. Section 4 includes a survey of generalisation algorithms based on this 
classification. Section 5 discusses the conclusions and future work. 

 

2. Related work 

How are the generalisation web services to be semantically enhanced? One 
approach is semantic annotation (Maue et al., 2009; STI Innsbruck, 2011) where 
OGC standards are enhanced with semantic descriptions. A comprehensive 
approach is the semantic enablement layer (Janowicz et al, 2010) that includes a 
web ontology service that manages a processing ontology and a features ontology, 
and a web-reasoning service that encapsulates a semantic reasoner that aims to 

combine processing and features to meet the user’s needs.  

 

2.1 Defining a common parameter set 

Touya et al (2010) describe translator functions that take the set of constraints and 
set of rules held in the system knowledge and the user requirements and translates 
them into algorithm parameters. Each algorithm will have its own translator function. 
This approach embeds the translator component in the system rather than ask each 
generalisation service to manage its own translation. 

When considering line simplification Foerster et al. (2007) defined a simplification 
ratio that could be used by both the Douglas-Peucker and the Visvalingam-Whyatt 

algorithms. The value for the ratio is dependent on the user’s choice of target scale 
and is based on the ratio of the number of vertices before and after simplification. 
The ratio is a variation on the Radical law of selection (Töpfer and Pilliwizer, 1966) 
which is used to determine the number of objects to be retained on a map at reduced 
scale based on the number of source objects and the ratio of the source and target 
scales. 

The Radical law is also used in a point generalisation algorithm (Yan and Weibel, 
2008) as a limit on the number of iterations the algorithm performs. The same 
algorithm considers the importance value of the source points when deciding to 
retain a point. By employing the user requirements (target scale) and the source data 
(number of points and importance values) this algorithm requires no parameters. 
Could these concepts be used to provide parameter values for those generalisation 
algorithms that do have parameters? 
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3. Classification of Algorithms 

Following discussions with the project’s partner, the Ordnance Survey of Great 
Britain, a set of attributes that were needed to describe generalisation algorithms, 
and hence any web service that implemented them, was defined and extended 
(Table 1). 

 

Attribute Description 

Description Free text description of what the algorithm does (this will not be part of the 

algorithm’s semantic description but will aid its construction). 

Operators The generalisation operator(s) that the algorithm implements. This needs 

to be classified. 

Feature types The feature type that the process applies to; e.g. buildings. Some 

algorithms are either specific to, or work best on, particular feature types. 

We will need a classification of feature types. 

Geometry of the 

input data 

We need to know what type of data the algorithm uses. 

Scale related 

information 

Maxima and minima for target scale and scale ratio. 

Nature of source 

data 

Some algorithms work better on rural buildings than they do on urban 

buildings, for example. This will have to be classified. 

Data quality 

 

In particular data input quality – e.g. for algorithms operating on networks 

issues such as a badly formed network or duplicate vertices can cause 

problems. 

Performance  Some algorithms may be restricted in the size of input dataset they can 

operate on; e.g., a maximum number of features.  

Time factor  Some algorithms may produce high ‘quality’ results but take a relatively 

long time and vice versa (the selection of such services will be dependent 

on user requirements). This needs to be quantified. 

Table 1 Algorithm descriptions 

 

Model generalisation Cartographic generalisation 

Class selection Enhancement 

Reclassification Displacement 

Collapse Elimination 

Combine Typification 

Simplification  

Amalgamation 

Table 2 Operator classification (Foerster et al, 2007) 

Since the abstract workflow will be based on generalisation operators we will need to 
classify algorithms by the operator(s) they implement and for that we will need a 
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consistent way of classifying operators; do filtering and elimination mean the same 

thing, for example? The most recent attempt to classify operators was by Foerster et 
al (2007) (Table 2) which makes a distinction between model and cartographic 
generalisation. However, this classification is at too high a level of abstraction; for 
example, enhancement includes exaggeration, smoothing and enlargement so it is 
not sufficient to state that a road network requires enhancement,we need to be more 
specific. 

A complement to the generalisation operator method of classifying algorithms would 
be to adopt the descriptions used by Li (2007) in his survey, where the nature of the 
source data is incorporated in the description, hence we have categories such as 
‘smoothing individual line features’ and ‘transformation of individual area features’ 
(e.g. building simplification). Li introduces sub-categories that refer to the processing 
method so ‘transformation of individual area features’ can have the sub-categories 
‘Boundary-based shape simplification of an area feature’ and ‘Region-based shape 
simplification of an area feature’. Also included are subcategories that relate to the 
generalisation operator they implement such as ‘Collapse of area features’. Although 
the categorisation used by Li has not been formalised it offers the advantage of 
describing what action is being taken on what type of data and is thus relatively 
expressive. 

 

3.1 Description of parameters 

A method of describing parameters is required such that the workflow system can 
automatically provide values for the parameters based on the user requirements and 
the nature of the data that is to be generalised. A number of attributes for describing 
parameters was defined (Table 3) based on the requirement to describe a parameter 
sufficiently  that values can be supplied automatically. The next step was to apply the 
classifications to a set of generalisation algorithms. 

 

4. Survey of generalisation algorithms 

The algorithms and their parameters were described using the categories listed 
above (Table 1, Table 3). It was decided to focus on point clustering algorithms, line 
simplification and smoothing, and building simplification and amalgamation. This 
includes point, line and polygon data. Table 4 provides an example description. 

To give an indication as to the variety of parameters, the name of each parameter 
was extracted from the survey data and represented as a word cloud (Figure 2). 

The survey has exposed the large variety of parameters in just a subset of the 
generalisation operators. The word cloud serves to highlight certain parameters such 
as minimum distance that appear frequently. However, the meaning of what 

minimum distance represents varies from algorithm to algorithm. 
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Attribute Description 

Name Name of the parameter e.g. maximum distance 

Description Free text description of the parameter (this will not be part of the 

algorithm’s semantic description but will aid it). 

Class What the parameter represents. E.g. a tolerance 

Effect on output Describes the particular impact of the parameter.  

Weight How important is this parameter in relation to other parameters of the 

algorithm? This is a quantification of the previous parameter 

Necessity Can the parameter be omitted or can a default be provided? This needs 

to be codified as a Boolean attribute. 

Data type Double, integer etc. 

Units Linear units, areal units etc. 

Range Range of possible values for the parameter. This can be used as a check 

against non-sensible values being supplied. 

Table 3 Description of parameters 

Algorithm ISODATA 

References Li, 2007, p78 

Li Category Aggregating point features (clustering) 

Operator(s) Combine 

Description Repeatedly split a cluster until the maximum standard deviation of distance from centre in 
each direction (x,y) is reached. 

Application Punctual events 

Source data Set of points 

Parameters 

Name Description Class Effect on 
output 

Necessity Weight Data type Units Range 

σx,max Max. standard 
deviation 
from centre 
of any cluster 
in x direction 

Maximum 
Distance 

Fixes the 
maximum 
width of 
any cluster 

Required 0.5 Decimal Linear  
Unit 

 

σy,max Max. standard 
deviation 
from centre 
of any cluster 
in y direction 

Maximum 
Distance 

Fixes the 
maximum 
height of 
any cluster 

Required 0.5 Decimal Linear  
Unit 

 

K Number of 
clusters 

Goal Determines 
number of 
clusters 

Optional 0 Integer   

n Number of 
iterations 

Speed, 
Time 

 Optional 0 Integer   

Table 4 Example description of an algorithm (ISODATA) 
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The challenge is to define a common set of parameters that is neither too restrictive 
nor too broad. Their values should be derived using the user requirements and the 
source data. The value of any parameter defined by an algorithm would be a function 
of one or more of the common parameters. The relationship need not be a 
continuous function, it could be, for example, that for a range of values for a common 
parameter the algorithm’s parameter could take a single value. 

Since the use case focuses on the clustering of road accidents, the initial 
investigations will be based on clustering algorithms. There are a number of 
clustering algorithms but two, ISODATA and K-means, both include all source points 
in their generated clusters. K-means has a single parameter K which represents the 
number of clusters to be generated. As can be seen from Table 4 this parameter is 
shared with ISODATA. However, for ISODATA, K is only an optional parameter and 
is used with n, the number of iterations (optional), to put a stop on the iterative 
process. Its key parameters, σx,max and σy,max, define the maximum size of the 
resulting clusters. 

Further work will be carried out to examine how the output of each algorithm varies 
with their respective parameters in an attempt to define one or more common 
parameters that is defined by both the source data (for example, the initial point 
density) and the required output (target scale).  

 

 
 

 

5. Conclusions and further work 

The next stage is to implement and formalise the algorithm classification described 
above by using it to semantically describe the generalisation services. This will be 
aided by a formalisation of the classification used by Li (2007). 

The concept of a semantic enablement layer (as described by Janowicz et al., 2010) 
to facilitate service selection will be investigated further with a view to describing the 
algorithms/services using an ontology such as OWL-S (Martin et al., 2007) and a 
reasoning engine such as Racerpro to perform ontological matching (Lemmens et al, 

2007; Fitzner et al., 2011; Janovicz et al, 2010). 

Figure 2 Word cloud of parameter names 
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Regarding the parameterisation of the algorithms, the survey has shown the diversity 
in their parameters emphasising the need to define a common set and work will 
continue to that aim. 
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Introduction 

Automatic generalisation for map production has been in use for decades (Li, 2007a). The 

process is still, however, only semi-automatic in that the expert selects and sequences the 

required generalisation operators and the algorithms that implement them and provides 

parameter values. Different techniques can be applied to rural and urban areas at the 

discretion of the expert, working to a fixed target scale and with familiar feature types 

(Regnauld and Revell, 2007).   But in the case of on-demand mapping the expert will be 

replaced by a system that will be able to automatically select, sequence and execute map 

generalisation operations according to user requirements.   

The aim of this project is to develop a workflow generation engine that is at the core of an 

on-demand mapping system (Balley and Regnauld, 2011). The concept of abstract tasks as 

represented by generalisation operators (Simplification, Amalgamation etc.) and concrete 

tasks as represented by algorithms, that implement operators, will be employed. The 

separation of abstract and concrete tasks allows for a separation of the definition of the 

requirements and its implementation (by web services).  The process to generate a workflow 

for on-demand mapping can be broken down as follows: 

1. Define abstract tasks - operators 

2. Define concrete tasks - algorithms 

3. Generate workflow 

4. Execute workflow 

 

Before we can automate any task it is necessary to understand it (Georgakopoulos, et al., 

1995). We need to formalise the why, when and how of generalisation (McMaster and Shea, 

1992). This is particularly important if we want an open, interoperable system. Ontologies 

allow us to semantically enrich the descriptions of both data and services such that the data 

and services can become machine-interpretable (Lutz, 2007). This paper focuses on the 

semantic description of generalisation operations and algorithms using ontologies. 

To work effectively, an ontology has to be designed for a specific task (Noy and 

McGuinness, 2001). Section 3 describes the development of an ontology for automatically 

selecting generalisation operators.  Section 4 describes an ontology for the automatic selection 

of algorithms to implement the chosen operators. Possible options for deploying the 

ontologies are discussed in section 5 along with some conclusions. The next section discusses 

previous work in geospatial ontologies and in on-demand mapping. 
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Related work 

One possible solution to on-demand mapping is to avoid the dynamic generalisation of data 

and use a Multi Resolution DataBase (MRDB) (Dunkars, 2004). However, if we define on-

demand mapping as generalisation according to user requirements, and potentially integrating 

user-supplied data, then the MRDB approach is not applicable. Bernier and Bédard (2007) 

describe a hybrid approach – if the data can be generalised quickly and without human 

intervention then it should be – otherwise the data should be extracted from the MRDB.  

If an on-demand system is to integrate user-supplied data in an ad-hoc fashion then 

automatic, on-demand, generalisation is required. However, if the process is to be completely 

automated then we first need to formalise the knowledge required to produce a generalised 

map (Touya et al, 2010).  Generalisation is achieved by applying one or more transformations 

or operators (Sarjakoski, 2007).  However, following a series of interviews with 

cartographers, Rieger and Coulson (1992) concluded that there was no consensus over the 

description of these operators; cartographers had different definitions of the same term and 

different terms for the same definition. Rieger and Coulson were attempting to elicit 

declarative knowledge about the procedures as opposed to procedural knowledge, which 

describes how the task is carried out. Declarative knowledge, that knowledge contained in 

declarations about the world, can be extended by reasoning processes that derive additional 

knowledge (Genesereth and Nilsson, 1998). Can such a method be applied to generalisation? 

There have been a number of attempts to classify and describe generalisation operators 

(Foerster, et al., 2007a; McMaster and Shea, 1992; Roth, et al., 2011) but the problems 

highlighted by Rieger and Coulson (1992) remain. As well as differences between the 

proposed categories of operators there are also differences in naming (Aggregation or 

Combine?) and in granularity; McMaster and Shea (1992) define Smoothing, Enhancement 

and Exaggeration where Foerster et al. (2007a) simply define Enhancement. There is also 

disagreement as to what functions can be regarded as generalisation operators. For example, 

is Symbolisation a generalisation operator (McMaster and Shea, 1992; Roth et al., 2011) or a 

pre-processing step (Foerster et al., 2007a)? 

The use of different operator taxonomies in closed systems does not matter, but, if we are 

to develop an interoperable on-demand system, an agreed taxonomy and the semantic 

description of the operators is required. This is because we cannot simply ask for a web 

service that performs Smoothing, say, since that operation can be performed by a number of 

different algorithms (Gaussian, Cubic Spline, Fourier transform etc.), often with different 

results.  Similarly, some operators apply to different geometry types and will need to be 

implemented by different algorithms.  Likewise some algorithms specialise in different 

feature types e.g. buildings (Guercke and Sester, 2011). Thus these details need to be formally 

defined so that automatic selection and execution is possible by the on-demand system. 

Li’s study (2007b) of generalisation algorithms (rather than operators) provides a possible 

framework for the semantic description of the generalisation process. He focuses on 

algorithms and groups them by geometry and by what function they perform; point reduction 

of areas, for example. 

At some stage in the development of an on-demand mapping system there will be a need 

for Knowledge Acquisition (Kilpeläinen, 2000; Mustiere, 2005; Rieger and Coulson, 1993) 

but first it is necessary to define the type of knowledge that needs to be  acquired and how it is 

to be encapsulated.  The dominant methods for encapsulating cartographic knowledge are 

rules and constraints. The rule-based approach involves defining a set of condition-action 

pairs that will solve particular problems (Sarjakoski, 2007). Rules encapsulate procedural 

knowledge. The disadvantage of this approach is that a rule has to exist for every eventuality 
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which means a large number of rules need to be defined for a viable system (Harrie and 

Weibel, 2007).  Unlike rules, constraints do not prescribe how a problem should be solved 

only the condition that should be maintained (Neun et al., 2009). 

Formalisation of knowledge can lead to the discovery of new knowledge as long as 

appropriate formalisation tools are available (Kilpeläinen, 2000). One such tool is the 

ontology - the explicit specification of the objects, concepts and the relationships in a body of 

knowledge concerning a particular subject or domain (Gruber, 1993).  Ontologies have the 

advantage of allowing the sharing and reuse of formalised knowledge (Gruber, 1993). The 

semantic description of geospatial operations, and the web services that implement them, 

using ontologies to allow for automatic selection is not new (Klusch et al., 2005; Lutz, 2007; 

Lemmens, et al., 2007) but there has been little focus on the particular problems of 

generalisation. Touya et al. (2011) have made progress on a generalisation ontology but not 

specifically for on-demand mapping. 

The next section describes the process for developing a generalisation operator ontology. 

 

Developing the operator ontology 

There is no single, ideal, methodology for designing an ontology (Noy and McGuinness, 

2001). The authors’ first attempt to develop a generalisation ontology for on-demand mapping 

involved attempting to capture, in one-step, all the knowledge that could be used to describe 

the generalisation process. This led to a large, cumbersome, and ultimately unusable ontology. 

An alternative approach was taken, that involved defining an ontology for a specific purpose.  

The purpose of the operator ontology is to describe the properties, behaviours and relations 

of generalisation operators in such a way that they can be selected automatically. The 

ontology will be designed by reference to a road accident use case (Figure 1). The model will 

then be tested against further use cases such as the cycle route planner described by Balley 

and Regnauld (2011). The requirement of the user is to view the road accidents at a detailed 

level, where no generalisation is required – showing the road network as polygons and 

individual accidents (Figure 1a) – and at a small, city-wide scale.  

   
a b c 

Figure 1  Road accident use case 

The aim of the system is to produce a map that maintains legibility as the scale is reduced 

(Why generalise). We can decide when to generalise by describing a number of geometric 

conditions (McMaster and Shea, 1992). For example, the road network which is described 

using an area geometry (Figure 1a) becomes congested at a smaller scale (Figure 1b) and also 

suffers from imperceptibility as the lines that define the road boundaries become too close. 

The accident dataset at a smaller scale (Figure 1c, shown separately) suffers from congestion, 

coalescence and overlap. We also have to define a number of measures, such as feature 
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density, to evaluate when a condition has been reached (Stigmar and Harrie, 2011). We can 

then say that generalisation is required when a particular geometric condition occurs. The 

condition is resolved by one or more operators (How to generalise). 

Rather than simply present the completed ontology we have described below the decisions 

and steps taken to build the ontology.  This will facilitate criticism of the resultant ontology 

and help inform further development. This was thought to be particularly important for 

ontologies that describe a process rather than a set of tangible objects. 

The first version of the ontology can be seen in Figure 2. The labelled solid lines represent 

object properties and the unlabelled dotted lines represent “is-a” sub-class relationships. 

 

Figure 2 Operator ontology - version 1 

The LogicalConflict condition is a renaming of the Conflict condition defined by McMaster 

and Shea (1992). Such a condition may occur, for example, when a number of accidents are 

displayed but the road they lie on has been eliminated for some reason. 

Operators can be added to the ontology and linked to one or more conditions (e.g. Collapse 

resolves HighDensityCongestion). The measure for HighDensityCongestion can be modelled 

by creating a data property hasDensity and adding it to the HighDensityCongestion condition 

with a threshold value. This will need refinement since we will likely have different measures 

for the congestion of different geometries.  The ontology was implemented in Protégé 

(Horridge, 2011) which allows for the querying of an ontology. So the query: 

Operator and resolves some HighDensityCongestion 

might return a number of operators. However, not all operators work on the same geometry 

types. For example, Amalgamation applies to area features and not point features; Collapse 

can apply to areas and lines but not points. By introducing a geometry class and linking 

specific operators to specific geometry classes, we can reduce the number of operators 

applicable to a given situation, thus facilitating the automatic selection of an operator. The 

refined version of the ontology can be seen in Figure 3. 
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Figure 3 Operator ontology - version 2 (some classes and relations omitted for clarity) 

The query can be refined: 

Operator and resolves some HighDensityCongestion and operatesOn some PointGeometry 

Only the operators Aggregation and Selection would be returned since they are the only two 

operators that were defined as resolving congestion specifically in point features.  The 

ontology can be further refined when we consider the Selection operator in more detail. 

Selection can be used in our use case to reduce congestion by only selecting the most serious 

road accidents or the most important roads. However, for Selection to work the dataset needs 

an attribute that can be used to rank its features. The ontology therefore needs a concept of a 

dataset, in particular a ranked dataset, and the concept of an operator transforming a dataset 

(Figure 4). 

 

Figure 4 Operator ontology - version 3 (some sub-classes omitted for clarity) 

It can be seen that there are a number of relations and classes that could have been defined but 

were not; for example the relationship between a dataset and its geometry or the possible sub-

classes of a dataset (Road dataset, Accident dataset, for example). However, the ontology has 

been designed on the principle of defining only that which is necessary to fulfil the defined 

aim (Noy and McGuinness, 2001). 

A number of measures were defined for the two datasets in the use case. For point data (the 

accidents) a density measure of congestion was utilised, based on the number of points per 

unit map area (pixels). For polygon data (the road network) two measures were defined; an 

average polygon width (in pixels) as a measure of imperceptibility, on the understanding that 

if the road section is too narrow then it will be difficult for the viewer to distinguish between 

opposite sides of the road section. The second measure was for congestion and uses a total 
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feature area per unit map area. The measures were implemented using the Geotools JAVA 

library and tested on sample data from Greater Manchester. Arbitrary threshold values for the 

measures were defined and used to indicate whether generalisation was required. The aim is 

that once the conditions have been identified then the ontology can be queried to determine 

the appropriate operators to resolve the conditions. This application of measures to trigger 

generalisation requires further refinement. For the point density measure the effect of symbol 

size was ignored and no account was made for the spatial distribution of features in either 

dataset. In addition, each dataset was considered in isolation. It is unlikely that there is a 

single measure for a condition that is appropriate in all cases and a combination of measures 

might need to be applied (Mustiere, 2005; Stigmar and Harrie, 2011). 

The ontology itself is not complete and there are some unanswered questions. For example, 

should the operator ontology include the concept of feature type? Also, Amalgamation may be 

identified as a suitable operator for congested area features, which may be appropriate for 

buildings but not for roads or a river network. 

The ontology also lacks the concept of precedence. If a query returns two operators that 

meet the conditions then does this mean that both operators should be applied to the dataset? 

If so, then in what order? If we apply the first operator and the condition persists do we try the 

second operator or repeat the first but with a different parameter value?  Such a question may 

lie outside the remit of the ontology and be the responsibility of a Problem Solving Method 

(PSM) (Gómez Pérez and Benjamins, 1999), which is required to manage the process of 

constructing and asking the queries and then acting on the results. For example, an agent-

based or other optimisation method may be used to define the ideal sequence of proposed 

algorithms. 

Kilpeläinen (2000) refers to the knowledge that is used to select the right generalisation 

operator for the task as procedural knowledge. For the ontological approach to be effective, 

rather than having to explicitly state the procedural knowledge in the form “operator X 

resolves condition Y”, the procedural knowledge could be derived from the declarative 

knowledge by reasoning (Genesereth and Nilsson, 1998). In effect, the “operator resolves 

condition” relation needs to be made redundant by describing both conditions and operators in 

such a way that we can derive the relation by query. This requires a more explicit statement of 

what the operators do and what the conditions are. 

The next stage is to develop an ontology that will help select algorithms to implement the 

selected operators. A separate algorithm is required since algorithms have a different set of 

properties from operators and an operator can be implemented by a number of algorithms. 

 

Developing the algorithm ontology 

Before developing the algorithm ontology a survey of generalisation algorithms was done 

with the intention of informing the design process by highlighting the attributes and 

behaviours of generalisation algorithms. Algorithms for point aggregation, line Simplification, 

line Smoothing, and building Amalgamation were examined and common attributes 

documented (Gould, 2012).  

In addition to the operators they implemented and the geometry types they applied to, 

algorithms varied by feature type - some algorithms were specific for roads or buildings, for 

example - and by terrain - some algorithms were targeted at mountain roads or rural 

buildings. Algorithm parameters provide further variety - algorithms performing the same 

task, e.g. line simplification may have different parameters. Scale also provides an additional 
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layer of complexity; some algorithms are designed for specific source and target scales. This 

explains why we need a separate algorithm ontology. 

A similar incremental approach to the operator ontology design was used to answer the 

question: how do we describe an algorithm so that it can be automatically selected? An initial 

version of the ontology can be seen in Figure 5. 

 

 

Figure 5 Algorithm ontology (some sub-classes omitted for clarity) 

An example query, that aims to find an algorithm for road smoothing might be: 

 
Algorithm and implements some Smoothing and appliesTo some RoadFeatureType 

 

In practice an algorithm can be regarded as an abstraction for a web service. It is not 

practical, or necessary, to have a model where we search for a service that implements a 

particular algorithm. It is unlikely that any service could advertise itself only by the algorithm 

it implements. 

As with the operator ontology, the algorithm ontology requires further refinement. 

Algorithms that implement multiple operators, such as line simplification and smoothing, 

need to be modelled. Further consideration of which concept should sit within which ontology 

may be necessary. For example, should the ‘terrain’ concept sit within the operator ontology? 

 

 

Conclusions and further work 

We believe that although there are still questions to be answered, the ontological approach to 

on-demand mapping merits further investigation. But, to what extent can we use ontological 

reasoning to develop a workflow for on-demand mapping? Is the ontological approach merely 

a stepping stone to help inform another approach or is it an end in itself?   How could the 

ontologies be applied? 

The standard for implementing geospatial web services is the OGC’s Web Processing 

Service (WPS) protocol. However, the protocol does not provide for semantic interoperability 

(Janowicz et al., 2010); there is no method of adding machine readable descriptions to a 

service. One possible solution that will be investigated further is the Semantic Enablement 

Layer (Janowicz et al., 2010) where a Web Ontology Service injects semantics into both data 

and processing services. A Web Reasoning Service can then be used to match a processing 
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service to a dataset. Previous work on the generation of workflows for on-demand mapping 

from a set of tasks and task precedencies (Gould and Chaudhry, 2012) could be employed to 

generate valid workflows from the output of a Semantic Enablement Layer. The Web 

Ontology Service could be employed to maintain a shared set of on-demand mapping 

ontologies. 

One major obstacle yet to be resolved is the problem of how to automatically provide 

parameter values to the selected services especially since any two algorithms performing the 

same generalisation operation may have different parameters. Even if the two algorithms had 

parameters with a common name such as minimum distance, their concept of what a 

minimum distance means may differ. One possible approach would be to define a common 

set of parameters to be used by all services, extending the work on line simplification ratios of 

Foerster et al. (2007b).  It would then be the responsibility of any service implementing an 

algorithm to translate the common parameter values to local parameter values.  Values for the 

common parameters could be derived from the geometric condition measures described in the 

Operator ontology. For example, a high value for a condition could lead to a correspondingly 

high value for a parameter for the selected algorithm. 
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Can the concepts of cartographic generalisation be formalised in an ontology with sufficient 

detail to allow the process to be automated? 

 

1. Introduction 

Government, both national and local, is making increasing amounts of spatial data freely 

available.  The DataGM website, for example, provides access to georeferenced data for road 

traffic accidents, fire and rescue incidents, bus stops, bus routes and traffic signals in Greater 

Manchester (Trafford Council 2012).  However, how can thousands of road accidents be 

mapped legibly by the non-expert cartographer without obscuring the underlying road 

network? Tools such as the Google maps API provide only a partial solution in that they 

merely overlay data on base maps. There is no integration of user-supplied data. What is 

required is cartographic generalisation on-demand. But to automate the map creation process 

it is necessary to formalise the knowledge required for generalisation (Touya et al. 2010). 

 

2. Why use an ontology? 

The prevailing paradigm for automatic generalisation is constraint-based, in particular agent-

based, modelling (Harrie and Weibel 2007). Agent-based systems require a knowledge base 

that has to be updated each time a new generalisation algorithm is introduced or when user 

requirements change (Taillandier and Taillandier 2012). What happens when an end-user 

wishes to map features of an unfamiliar type, such as road accidents? The knowledge required 

to generalise these features, their attributes, relevant operations and relations with other 

features, has to be encoded. In effect, cartographic knowledge is embedded in the 

configurations of sophisticated software applications. Ideally that knowledge, once defined, 

would be shared. 

One possible option for representing domain knowledge in a sharable and reusable manner 

is to employ ontologies (Gruber 1993). An ontology captures the semantics of the concepts in 

a domain and is not merely a classification (Kavouras and Kokla 2008).  It has been argued 

that all information systems are based on implicit ontologies and making the ontology explicit 

avoids conflicts between ontological concepts and their implementation (Fonseca et al. 2002). 

The use of ontologies to realise semantic interoperability in a distributed environment is well 

researched (Lemmens et al. 2007; Lüscher et al. 2007; Janowicz et al. 2010) and Regnauld 

(2007) proposed an on-demand mapping system based on ontologies.  

Ontologies are more than taxonomies; we can reason with them and apply them to 

decision-making. Such ontologies, used in scientific workflows, are rare (Janowicz et al. 

2012).  In other domains ontologies have been used to match students to courses 

(Kontopoulos et al. 2008) and applicants to jobs (García-Sánchez et al. 2006). This paper 

describes an attempt to use an ontology to model the process of generalisation, in an effort to 

facilitate the automation of map generation at different scales. 

The aim of this project is to determine the why, when and how of generalisation (McMaster 

and Shea 1992). The need to produce a legible map is the reason why we need to generalise. 
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The existence of geometric conditions (congestion, imperceptibility) in the mapped data 

determines the when. The existence of these conditions can be determined by using measures 

such as the density and distribution of features (Stigmar and Harrie 2011). How is answered 

by the use of generalisation operations such as Amalgamation and Collapse. The goal is to use 

an ontology to help choose which measures and operations to apply. 

There is no single correct way of modelling a domain and ontological engineering is 

necessarily an iterative process (Noy and McGuinness 2001).  There are a number of 

methodologies available to guide the process (Sure et al. 2009) but in our case the “simple” 

method described by Noy and McGuinness (2001) was employed. This involves defining a set 

of competency questions that the ontology is expected to answer. These include: what 

measure algorithm should be used for a particular condition? What operation will alleviate 

the condition? 

The ontology employs a (loose) medical analogy which describes conditions (such as 

feature congestion) that are characterised by symptoms (e.g. high feature density) which have 

remedies (e.g. feature count reduction). The remedies are implemented by operations which in 

turn are implemented by transformation
17

 algorithms.  

The applicability of an operation to a given condition of a given set of features is governed 

by a number of factors, primarily geometry (for example, point features cannot be collapsed; 

pruning only applies to line features, specifically a network of line features). Geometry alone 

is not sufficient, however. The choice of operation is also governed by a number of 

requirements and restrictions. SelectionByAttribute requires that the source data has an 

attribute (field) that can be used to rank the features by importance. Amalgamation is 

restricted from application to a road network since Amalgamation is a form of Abstraction, 

which is forbidden for a Network by the ontology. 

The intention is to describe the operations sufficiently that they can be selected 

automatically. It is also necessary to define the output geometry of the operation since that 

will influence the selection of subsequent operations. Any unintended consequences of the 

operation also have to be described. For example the process of Amalgamation, in abstracting 

the original features, will remove any importance attribute from the features and thus prohibit 

the use of SelectionByAttribute in subsequent operations.  

The ontology, stored as an OWL2 (Web Ontology Language) file, was developed using the 

Protégé ontology editor (Horridge 2011) and it could be tested by issuing queries from within 

the editor. However, to fully test the concept a prototype was developed. 

3. Implementation 

The prototype consists of using the ontology to select appropriate measure algorithms, 

applying those measure algorithms and, if a condition was identified, selecting an operation 

(and transformation algorithm) to remedy the condition. 

In the current prototype (Figure 1) the measure and transformation algorithms, 

implemented as Java methods, form part of the system, but it is envisaged that these will be 

provided in future by web services such as WEBGEN (Burghardt et al. 2005).  The following 

sections describe the main components of the prototype. 

3.1 Source data 

In the first instance the prototype is restricted to mapping traffic accidents with roads as a 

base. The accidents are in Greater Manchester, UK, over a 12 year period. Each accident has a 

                                                 
17

 The word transformation is used instead of generalisation because of doubts over what operations actually 

constitute generalisation (Foerster et al. 2007). 
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severity attribute with values of 1 (fatal), 2 (severe), or 3 (slight). The base road network is 

Ordnance Survey’s MasterMap road features (polygons) and their Integrated Transport 

Network (ITN) road network (lines)
18

. 

The source dataset is described as an individual (or instance) in the ontology using 

attributes such as Geometry and FeatureType. In the current implementation the source data is 

held as Shape files but future versions could use web services. 

 

 
Figure 1. On-demand mapping system prototype architecture. 

3.2 Using the ontology 

Interaction between the Java application and the ontology is done via the OWL API (Horridge 

and Bechhofer 2011).  Most of the calls to the ontology consist of queries in the form of 

Manchester OWL syntax. The syntax is verbose but human-readable, which makes 

development easier. The following is an example of query string generated by the Mapping 

Engine and executed against the ontology, which will return a list of measure algorithms 

meeting the specified criteria: 

 
MeasureAlgorithm and measures some HighFeatureDensity and 

hasInputGeometry some AreaGeometry 

 

The first usage of the ontology is to identify an appropriate measure algorithm for each 

mapped feature collection, where a mapped feature collection is defined as a set of features, 

of the same type, in the user’s selected bounding box. 

3.3  Measure algorithms 

A number of measure algorithms were developed for the prototype, including one to measure 

the density of point features and others to measure the density of road features (as areas and 

as lines). There is also an algorithm to measure the density of generic area features, such as 

amalgamated clusters of accidents. The algorithms begin by identifying clusters in the source 

data. What constitutes a cluster is determined by scale. If the density of features in a cluster 

exceeds a threshold then the clusters are returned flagged as high density (Figure 2).  The 
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 The ITN network is used to simulate a collapse of the Master Map road features. 
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focus on the density of features is because we are primarily interested in resolving the 

congestion of features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If a mapped feature collection is deemed to have a particular condition (e.g. congestion) then 

the next stage is to select an appropriate operation to remedy the problem and then to choose 

an algorithm that implements that operation. 

3.4 Transformation algorithms 

The transformation algorithms implemented in the prototype are governed by a 

DegreeOfGeneralisation parameter (Zhou and Jones 2003). The value of this parameter (1 = 

low, 9 = high) is governed by the output from the respective measure algorithm. The higher 

the number of congested features found, the higher the value of the DegreeOfGeneralisation.  

The exception is the Collapse algorithm which is a binary - all or nothing - operation. A more 

sophisticated version of the prototype would consider then number of clusters and their 

distribution rather than simply the total number of clustered features. 

The SelectionByAttribute operation will only be suggested by the ontology if the source 

data has an ImportanceAttribute defined in its ontology description. This is simply the name 

of a data attribute (field) that can be used to rank the features by importance. The accident 

data has a severity attribute that can serve as such.  

 

 
Figure 3. Distribution of accident importance 

Figure 2. Regions of high crossroad density (in black). 
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The algorithm that implements SelectionByAttribute uses the DegreeOfGeneralisation to 

determine the number of features to retain. This value is then used to determine which 

features to retain. For example, if the number of features to retain was 500 then the algorithm 

would return features of importance value of 1 and 2 (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same principle is used to govern the pruning algorithm applied to the road network. 

Pruning, like SelectionByAttribute, is a form of Selection (Figure 4). However, in this case the 

algorithm uses the DegreeOfGeneralisation to determine the total length of the features to be 

retained. The pruning algorithm uses strokes to determine which road features to retain 

(Thomson and Richardson 1999). The longer the stroke the higher its importance and the 

more likely it is to be retained. 

3.5 Workflow 

The user selects two data sources (accidents and roads). The order of selection is important; it 

means that the roads have to be generalised with respect to the accidents. The user is 

presented with a starting bounding box with the features displayed at a large scale. The 

workflow (Figure 5) is triggered when the user either pans or changes scale by zooming.  The 

features in the bounding box are defined as a mapped feature collection, one for each feature 

type (i.e. one for road sections and one for accidents). 

 

 
 

Figure 4. Operation sub-classes in the ontology 

Figure 5. UML sequence diagram (single mapped feature collection) 
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The workflow is applied to each mapped feature collection in turn for a given scale. The 

entire process is complete when there are no conditions identified by the measure algorithms 

for any of the mapped feature collections. If the user chooses another scale then the process is 

repeated, starting with the original source data. 

If the problem feature collection (those features in the mapped feature collection identified 

as having the condition) is empty (step [2], Figure 5) then the sequence stops for that 

particular mapped feature collection. After step [3], step [1] is called again to assess the effect 

of the transformation. As depicted, the transformation algorithm is applied to all features in 

the mapped feature collection, not only those identified as problem features. This is, in fact, 

dependent on the transformation operation. For example, for collapse the transformation will 

apply to all features in the class but for amalgamation only those features in the problem 

feature collection will be affected. 

The application of a transformation algorithm will change the data (e.g. from a cluster of 

point features to an area feature). However, the changes enacted by the transformation have to 

be reflected in the ontology; this is why a working copy of the ontology is made (Figure 1). 

The semantics of the features may have changed as well as the geometry. For example, the 

feature type of a set of amalgamated accidents is no longer AccidentFeatureType. The 

changes in the semantics may well effect what measure and transformation algorithms are 

applicable in subsequent iterations (if required). This process is known as semantic 

propagation (Janowicz et al. 2010). 

4. Preliminary results 

Sample results, exported to a Shape file, can be seen in Figure 6. The road network has been 

collapsed then pruned with a DegreeOfGeneralisation of 6. The accidents have been 

amalgamated. The pruning algorithm requires further work as there are dead-ends in the 

network. A combined stroke and mesh approach (Li and Zhou 2012) could be applied. More 

importantly, the spatial relation between the roads and the accident needs to be respected by 

the pruning algorithm as can be seen by the isolated accident cluster in the centre-right of the 

image. This can be done by giving a high weight in the pruning process to those roads 

intersecting an accident cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Generalised roads (lines) and accidents (polygons) 
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The amalgamation algorithm only returns features in a cluster; any features not in a cluster are 

discarded. In future this could be left to the discretion of the user. As yet no attempt has been 

made to formally evaluate the results from a user’s point of view, the main concern being to 

see if the system could automatically identify congestion in the features and then 

automatically identify suitable transformation algorithms and apply them using appropriate 

parameter values. This was achieved with the provisos described above. 

5. Discussion and further work 

5.1 What are the expectations of the ontology? 

What can we expect the ontology to do and what can it leave to the mapping engine? As it 

stands, the ontology may return more than one relevant operation, and hence more than one 

relevant transformation algorithm, for a given condition found in a given set of features. If 

this is the case then the user currently has to select which one to apply. For example, when 

congestion in the road accident features is identified, the ontology currently suggests 

Amalgamation and SelectionByAttribute. This is not ideal for an on-demand mapping system 

aimed at non-expert users. One possibility is to utilise an optimisation method to select the 

best operation from those suggested. But should the ontology do more? Can it indicate a 

preferred operation, perhaps influenced by user preferences? 

Another possible deficiency of the ontology is that there may be conditions that are best 

solved by a sequence of operations (e.g. selection, pruning, and then smoothing). However, as 

it stands, the ontology only suggests atomic tasks. 

A key requirement of an on-demand mapping system is that when generalising the 

topographic data it should respect any relationship it has with the thematic data. The 

relationship in our use case is initially semantic; a road accident, by definition, takes places on 

a road. This semantic relation can be expressed as a spatial relation. However, the exact 

nature of the relation is dependent on the current geometry of each feature type, which may 

change following generalisation. For example, when accidents are represented as points and 

road sections as polygons then accidents are contained by roads Figure 7a. If a cluster of 

accidents is represented by a polygon, then the relationship is intersects (Figure 7c 

and Figure7d). 

 

    

(a) contained by (b) adjacent © intersects (d) intersects 

Figure 7 Spatial relation between accidents and roads for different geometries 

 

The ontology is currently being modified to describe these relations (Figure 8) based on the 

models described by Jaara et al. (2012) and Touya et al. (2012).  
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Figure 8 Spatial relations model for describing the intersects relation 

 

The spatial relations model in Figure 8 describes only the intersects relation between 

accidents and roads depicted in Figure 7c and Figure 7d. The ontology is describing 

relationships between classes of features and not individuals. The terms thematic and support 

(Jaara et al. 2012) were adopted as they are more expressive than term such as member1, 

member2 (Touya et al. (2012).  Given a current feature type and geometry for both mapped 

feature collections it should be possible to determine any relevant spatial relations and then 

determine how it is measured. This information can then be passed to a road pruning 

algorithm, say, to ensure that the algorithm respects any relation when pruning.  

In general, further consideration needs to be given to the relative roles of the ontology and 

the mapping engine. Ideally we would want to expect as much as possible of the ontology 

since it is a formalisation that can be shared whereas the mapping engine is local and 

proprietary. 

5.2 Scale 

The prototype has only been tested over a range of relatively large scales. At smaller scales, 

where there are a high number of features to be mapped, processing times for the measure 

algorithms become very long. One solution could be to make the selection of the measure 

algorithms scale dependent; for example, at small scales a quick estimate could be used to 

assess a condition. 

Similarly, for a given condition for a given set of features, the ontology suggests the same 

operation(s) whatever the scale; all that changes is the DegreeOfGeneralisation. It would be 

useful to investigate the possibilities of making the choice of operation scale-dependent. 

The processing speed of the transformation algorithms is also affected by scale. Each time 

the user changes scale then the process (Figure 5) is repeated starting each time with the raw 

source data; as the user zooms out there is no progressive generalisation. This may offer a 

further route to optimisation, perhaps by utilising a Multiple Representation Database 

(MRDB). 
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5.3 Further work 

One advantage of the ontological approach can be shown by considering the Selection 

operation. As the prototype was developed it was realised that the Selection operation was too 

general and sub-classes were added (Figure 4). This refinement of the ontology did not 

require any changes to the mapping engine. 

This raises the question of the applicability of the approach. Can it be extended beyond 

mapping traffic accidents? If, for example, we wished to map bus routes would this merely 

require the additional description of bus routes and their properties (line geometry, routes 

follow roads etc.) in the ontology? The next stage, after refining the transformation 

algorithms, is to test the prototype with different use cases and to test more conditions, not 

just congestion, such as feature imperceptibility. 

Finally, given the limitations of the model described above, it may be that the role of 

ontologies in generalisation is to support other models such as agent-based systems by 

providing a shared, formalised knowledge base. This application of ontologies requires 

further investigation. 
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Appendix E 

Extract from Regnauld et al., 2014. 

This extract from a book chapter provides an overview of this research.  
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