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Abstract 

 
Quantum annealing is the quantum equivalent of the well known classical simulated 

annealing algorithm for combinatorial optimization problems. Despite the appeal of the 

approach, quantum annealing algorithms competitive with the state of the art for specific 

problems hardly exist in the literature. Graph colouring is a difficult problem of practical 

significance that can be formulated as combinatorial optimization. By introducing a 

symmetry-breaking problem representation, and finding fast incremental techniques to 

calculate energy changes, a competitive graph colouring algorithm based on quantum 

annealing is derived. This algorithm is further enhanced by tuning simplification techniques; 

replica spacing techniques to increase robustness; and a messaging protocol, which enables 

quantum annealing to efficiently take advantage of multiprocessor environments. 

Additionally, observations of some patterns in the tuning for random graphs led to a more 

effective algorithm able to find new upper bounds for several widely-used benchmark graphs, 

some of which had resisted improvement in the last two decades.    
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Chapter 1 

 

Introduction 

1.1 Background on Quantum Annealing 

A combinatorial optimization problem can be considered as the search for the global 

minimum of a multi-variable cost function. Combinatorial optimization problems of large 

sizes often require algorithms based on stochastic local search [Hoos & Stiitzle, 2004]. 

Classical (simulated) Annealing (CA) [Kirkpatrick et al., 1983; Černý, 1985] is a well known 

stochastic local search algorithm that employs a temperature parameter to overcome barriers 

in the potential energy landscape defined by the cost function being addressed.  Quantum 

Annealing (QA) [Finnila et al., 1994; Kadowaki & Nishimori, 1998] is an analogous 

algorithm based on quantum mechanics. In QA, the main control parameter is a magnetic 

field strength, which introduces artificial quantum fluctuations for the purpose of tunnelling 

through barriers, instead of having to thermally overcome them. 

 Problem instances of very small sizes can be approached by a variant of QA that 

follows the evolution of the Schrödinger equation, (the characteristic equation of quantum 

mechanics) by numerical integration [Stella et al., 2005]. This variant is very similar to 

another approach termed quantum adiabatic evolution presented in [Farhi et al., 2001], where 

only problems of very small sizes were also investigated. Unless an actual scalable quantum 

computer is available, exact quantum adiabatic evolution is known to be intractable for 

problem sizes with practical significance [Farhi et al., 2001]. Although the components of a 

scalable adiabatic quantum computer are being investigated [Johnson et al., 2011], the 

research is still in its early stages. Therefore, approximate stochastic formulations with 
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quantum Monte Carlo are important for large problem sizes. Path Integral Monte Carlo 

(PIMC) is one of the most promising quantum Monte Carlo approaches, with studies already 

carried out for many problems including protein modelling and Lennard-Jones clusters [Lee 

& Berne, 2000], the two-dimensional random Ising Model [Santoro et al., 2002; Martoňák et 

al., 2002], the travelling salesman problem [Martoňák et al., 2004], Boolean satisfiability 

[Battaglia et al., 2005], clustering [Kurihara et al., 2009] and Variational Bayesian inference 

[Sato et al., 2009]. 

Most of the existing results have concentrated on investigating whether quantum 

annealing can outperform classical annealing, even though in most cases classical annealing 

was not the best performing algorithm for the problem under consideration [Martoňák et al., 

2004; Battaglia et al., 2005]. While this approach has provided useful insights, it is desirable 

to move forward and design quantum annealing algorithms that can match and even 

outperform the best alternatives for a given problem. The graph colouring problem is a 

fundamental hard optimization problem having practical applications such as scheduling, and 

had not been addressed in the context of quantum annealing before the commencement of this 

thesis, but has recently been attempted with negative conclusions in [Lecina, 2011]. The main 

aim is to present a competitive graph colouring algorithm based on quantum annealing. 

 

1.2 Background on Graph Colouring  

The graph colouring problem requires that we find the minimum number of colours with 

which the vertices of a given graph can be labelled so that the graph is properly coloured. 

This minimum number is known as the chromatic number of the graph. A graph is properly 

coloured if no vertices connected by an edge receive the same colour. The decision version of 

the graph colouring problem is known as the k-colouring problem, which involves deciding 
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whether a given graph can be properly coloured when only k colours are available. The k-

colouring problem was one of the first to be classified as NP-complete [Karp, 1972; Garey & 

Johnson, 1979]. An NP-complete problem is a decision problem for which a purported 

solution can be verified efficiently, but no efficient way is known in which a solution could 

be obtained in the first place for all instances of the problem. An algorithm is considered to 

be efficient if it completes in a running time bounded by a polynomial in the input size of 

problem [Cobham, 1965]. Moreover, if any efficient algorithm is found for one NP-complete 

problem, then every NP-complete problem can be efficiently solved [Cook, 1971].  

 The best exact algorithms for the graph colouring problem only terminate in 

reasonable time for small input sizes of about a hundred vertices [Malaguti et al., 2011; San 

Segundo, 2012; Gualandi et al., 2012]. Over the years, several heuristic approaches that relax 

the problem by approximations, or by forgoing guarantees that the exact chromatic number is 

found have been investigated. These include greedy construction [Brélaz, 1979; Leighton, 

1979], classical simulated annealing [Chams et al., 1987; Johnson et al., 1991; Morgenstern, 

1996], Tabu search [Hertz & Werra, 1987] and Evolutionary-Tabu hybrids [Fleurent & 

Ferland, 1996; Galinier & Hao, 1999]. 

 As well as being a widely used problem for testing new concepts in the development 

of metaheuristics, graph colouring has many important practical applications including 

scheduling and timetabling [Leighton, 1979; Mehta, 1981; Sabar et al., 2012], register 

allocation [Chaitin, 1982; Chow & Hennessy, 1984; Briggs et al., 1989], frequency 

assignment [Hale, 1980; Dorne & Hao, 1995], printed circuit testing [Garey et al., 1976], and 

computing derivatives [Gebremedhin et al., 2005; Hossain & Steihaug, 2008].        

       

 

 



15 
 

 

1.3 Thesis Outline 

This thesis consists of seven chapters, including this introductory chapter. Chapter 2 contains 

a review of quantum annealing as already applied to a number of combinatorial optimization 

problems. The main emphasis is on quantum Monte Carlo, as this is the only feasible way to 

implement quantum annealing on a classical computer for problems of large sizes. We 

specifically focus on Path Integral Monte Carlo (PIMC), which has been demonstrated to be a 

promising implementation of quantum Monte Carlo [Das & Chakrabarti, 2008]. 

 Chapter 3 consists of a review of approaches to the graph colouring problem, with an 

emphasis on heuristics rather than exact algorithms, which can only solve small problem 

instances. Greedy construction algorithms, as well as local search and population based 

approaches are reviewed. 

 In chapter 4, we introduce a quantum annealing algorithm for the graph colouring 

problem. An intricate problem representation that avoids graph independent symmetry 

problems arising from the redundancy of colour naming is presented. Alongside this, fast 

incremental techniques are developed in order to calculate cost function changes that arise 

from using the newly introduced graph colouring representation. These lead to a competitive 

graph colouring algorithm which is able to find a chromatic number upper bound previously 

unknown in the literature.   

 Chapter 5 is concerned with enhancements and variations to the quantum annealing 

algorithm presented in chapter 4. Parameter tuning is simplified after the observation that it is 

not necessary to continually decrease the value of the field strength like in the standard 

version. A replica spacing technique inspired by evolutionary algorithms is also introduced to 

combat premature convergence and improve the effectiveness of quantum annealing. 
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Additionally a messaging protocol is presented to enable quantum annealing to take 

advantage of multi-processor environments efficiently. These changes lead to a more 

powerful graph colouring algorithm, which found additional improvements for benchmark 

graphs used in the literature.  

 In chapter 6, tuning patterns for random graphs are investigated. Useful observations 

are made in relation to how the evolution of the move acceptance ratio relates to the success 

of the algorithm. These lead to a tuning mechanism that helps significantly in the solving of 

some difficult  -colouring problem instances that had been open for about two decades. 

Chapter 7 contains the conclusions.      

1.4 Contributions 

The main contributions can be summarized as follows: 

 The first successful quantum annealing algorithm for graph k-colouring, featuring 

an effective Boolean representation, and fast incremental calculations for the cost 

function 

 Enhancement of the quantum annealing k-colouring algorithm by incorporating 

tuning simplification, replica spacing techniques, and parallelization 

 Insights into the optimal tuning of quantum annealing for the k-colouring of 

random graphs by exploiting an observation in which certain parameter values  

lead to a continuously increasing acceptance ratio 

In more detail, the contributions are the following: 

An initial quantum annealing algorithm for graph k-colouring 

[chapter 4]: In addition to the cost function or potential energy used in a classical 

annealing algorithm, quantum annealing requires a kinetic energy defined in terms of a 
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Boolean variable representation of the problem. In the case of the graph k-colouring problem, 

the usual potential energy to be minimized is the number of conflicting edges in the graph. 

We identify a Boolean representation which exploits some problem specific characteristics of 

graph colouring. As the overall cost function used in quantum annealing is more complex due 

to the inclusion of a kinetic energy, fast incremental techniques to calculate changes to the 

total cost function are imperative. These are found. The resultant graph colouring algorithm is 

competitive with the best ones in the literature on a set of well known benchmark graphs. In 

particular, the presented quantum annealing algorithm became the first to successfully colour 

the graph DSJC1000.9 with 222 colours.  

Enhancing quantum annealing by fixing Gamma, spacing the 

replicas, and specifying a parallelization approach [chapter 5]: Gamma, the 

quantum fluctuation parameter, is traditionally lowered gradually from a high value 

throughout the course of the Monte Carlo simulation. It is experimentally demonstrated that 

for graph colouring, heuristically setting Gamma to a fixed value yields an improved and 

more easily managed algorithm. Quantum annealing maintains a population of separate 

configurations of the problem instance called replicas. Due to large computational 

requirements, only a small number of replicas can be used in practice in a Monte Carlo 

algorithm. This can lead to replicas prematurely converging and getting trapped by poor local 

optima. Because evolutionary algorithms have to deal with similar issues, some of their 

techniques such as population spacing and mutations can be applicable.  This thesis 

incorporates them into quantum annealing for the first time, thereby resulting in a more 

robust graph colouring algorithm. We also present a scheme whereby quantum annealing can 

take advantage of multiple processors, with replicas acting as agents that occasionally send 

messages to each other. For the first time in the literature, 97-colourings were discovered for 

the widely studied benchmark Latin square graph, Latin_square_10.  
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Tuning quantum annealing to produce a continuously increasing 

acceptance ratio for random graphs [chapter 6]: It is experimentally 

demonstrated for dense random graphs that the best tuning parameter values for the most 

difficult instances are those that cause the acceptance ratio to diverge over time. This result 

led to the solution of several well known k-colouring benchmark problems, some of which 

had been open for almost two decades. These include 47-colourings and 82-colourings, 

obtained for the first time in the literature, for the well studied DSJC500.5 and DSJC1000.5 

random graphs respectively. 

1.5 Publications 

1. Titiloye, O., & Crispin, A. (2011). Quantum annealing of the graph coloring problem. 

Discrete Optimization, 8(2), 376-384. 

2. Titiloye, O., & Crispin, A. (2011). Graph coloring with a distributed hybrid quantum 

annealing algorithm. Agent and Multi-Agent Systems: Technologies and Applications, 553-

562. 

3. Titiloye, O., & Crispin, A. (2012). Parameter Tuning Patterns for Random Graph Coloring 

with Quantum Annealing. PloS one, 7(11), e50060. 

 

The first paper is the journal publication listed in the references section as [Titiloye & 

Crispin, 2011a] on which chapter 4 is based; the second paper is the conference paper listed 

as [Titiloye & Crispin, 2011b] on which chapter 5 is based; and the third paper is the journal 

paper listed as [Titiloye & Crispin, 2012] on which chapter 6 is based. 

 Different stages of this research produced several graph colouring upper bounds new 

to the literature for widely-used benchmark graphs. Some of these were also found 

contemporaneously and independently by [Wu & Hao, 2012] and [Hao & Wu, 2012] using 
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Evolutionary-Tabu and set extraction algorithms. The chronology of the results is preserved 

by presenting them in the chapters that correspond to our publications. 
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Chapter 2 

Combinatorial Optimization by Quantum 

Annealing 

Many real world problems can be formulated in terms of combinatorial optimization. In the 

difficult cases where efficient exact algorithms for the problem at hand are unknown, a useful 

compromise is to seek for solutions or approximate solutions using stochastic local search. 

The stochastic local search algorithm under consideration is the Path Integral Monte Carlo 

(PIMC) implementation of Quantum Annealing (QA) [Santoro et al., 2002; Martoňák et al., 

2002; Das & Chakrabarti, 2008], which we refer to as PIMC-QA or simply QA or quantum 

annealing, when it is clear from the context.  In what  follows, the  standard formulation of 

PIMC-QA is reviewed in the context of the Ising model in Section 2.1, Boolean satisfiability 

in Section 2.2 and the travelling salesman problem in Section 2.3. 

 

2.1 An Ising Optimization Formulation 

Quantum annealing seeks to exploit an analogy between a combinatorial optimization 

problem and the physics of a many-body problem to which quantum mechanics is applicable. 

Therefore the desired formulation of combinatorial optimization in this context is that of an 

Ising Model [Cipra, 1987]. The Ising Model was introduced by [Ising, 1925] in order to study 

the properties of collections of small interacting particles. Many combinatorial optimization 

problems can be cast into a form similar to the Ising Model or a related multi-state Potts spin 

model [Das & Chakrabarti, 2008]. Finding the ground state (or global minimum) of an Ising 
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model is NP-hard in the general case [Barahona, 1982]. In the Ising spin glass problem, we 

are presented with a system having a set of   spins               , each of which can 

take one of two possible values   . The spins are considered to have interactions with their 

nearest neighbours, and the problem is to minimize the total energy or Hamiltonian given as  

                              

                                                    ∑                                                                                                
〈  〉

 

 

The numbers     represent the strength of the interactions. A positive value for     is 

considered ferromagnetic (or attracting), while a negative value is anti-ferromagnetic (or 

repelling). The expression 〈  〉 signifies that the pairs      and      are counted only once. The 

system in (2.1) is known as the Edwards-Anderson model of the Ising spin glass [Edwards & 

Anderson, 1975, Pál, 1996, Marinari et al., 1998].  

When studying the dynamics of an Ising model, a very important statistical mechanics 

quantity is the partition function  , which is useful for several things including calculating the 

probability of being in a given configuration [Thompson, 1979]. The partition function is 

defined as  

 

                                                         ∑         

  

                                                                       

 

The expression for   in (2.2) is the sum of the exponentiation of the Hamiltonian over all of 

the    configurations in which each spin is assigned either    or   . The quantity   is given 

by     ⁄ , where   is the temperature and    is the Boltzmann constant, which is usually set 

to  . Instead of using the summation symbol  ,   is often written as             , where 
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Tr is the word trace symbol. The probability that the system is in a particular configuration   

is then given by  

  

                                                       
            

 
                                                                  

 

Computations for deriving properties of physical systems were first performed by 

[Metropolis et al., 1953] with what is now known as the Metropolis algorithm. This was later 

extended to general combinatorial optimization problems [Kirkpatrick et al., 1983; Černý, 

1985] in a process now widely known as classical simulated annealing (CA). The quantities 

in (2.2) and (2.3) play a part in the derivation of CA. 

Essentially, a random change is made to one of the spins during each move. If the 

change in the Hamiltonian     is negative, the new configuration is accepted. Otherwise, the 

new configuration is only accepted with a probability of           ⁄  , known as the 

Metropolis criterion, where    is the temperature at time  .  

 Quantum annealing (QA) attempts to improve on CA by using quantum fluctuations 

to tunnel through barriers to the ground state [Das & Chakrabarti, 2008], rather than, or in 

addition to overcoming the barriers thermally. When a search process encounters a local 

minimum, then without the availability of tunnelling, the process would have to visit 

configurations with costs higher than the barrier in order to escape. Any mechanism that 

facilitates an escape from local minimum without having to scale this height can be described 

as tunnelling. This is what QA attempts to achieve as illustrated in [Das & Chakrabarti, 

2008]. For computational feasibility reasons, we are interested in Monte Carlo 

implementations of QA, which can be approximately simulated on a classical computer. One 

of the most promising versions of Monte Carlo QA for large problem instances is the Path 

Integral Monte Carlo Quantum annealing (PIMC-QA) [Santoro et al., 2002; Martoňák et al., 
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2002; Martoňák et al., 2004]. In the main version of PIMC-QA, a kinetic energy term is 

defined as some property of the system that does not commute with the potential energy. A 

magnetic field strength term   is also introduced to control the amount of influence that the 

kinetic energy has on the system in the presence of a small temperature  . The value of the 

field strength   is then lowered from a suitably high value towards zero, in an attempt to 

anneal the system towards its classical ground state. 

In order to formulate PIMC-QA, the classical Hamiltonian is expressed as a quantum 

Hamiltonian in a transverse magnetic field providing quantum fluctuations [Santoro et al., 

2002; Martoňák et al., 2002]. In the case of the Ising spin glass problem, the Hamiltonian    

in (2.1) is re-written as 

  

                                                               ∑     
   

 

〈  〉

  ∑  
 

 

                                               

 

The symbols   
  and   

  are Pauli matrices for the spin   in the   and   directions 

respectively. Pauli matrices are a set of two by two matrices known to be important in 

quantum mechanics. Specifically,    (
  
  

) and    (
  
   

).  The derivation of a path 

integral formulation for the quantum Ising model in (2.4) is known as a Suzuki-Trotter 

transformation of a  -dimensional quantum Hamiltonian into a     dimensional classical 

Hamiltonian [Suzuki, 1976; Das & Chakrabarti, 2008]. The Suzuki-Trotter transformation is 

a way of expressing a quantum Hamiltonian as a new classical Hamiltonian, thereby making 

it easier to perform Monte Carlo simulations on a classical computer. In order to apply a 

Suzuki-Trotter transformation, the quantum Hamiltonian    in (2.4) is re-written as the sum 

of two parts             , where       ∑      
   

 
〈  〉 , and        ∑   

 
 . The 

partition function is then expressed as                       ⁄  . The Trotter 
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formula [Trotter, 1959], is given by                  [      ⁄       ⁄ ] . This 

gives         ∑ 〈   [           ⁄               ⁄  ]
 
   〉 . After further 

algebraic manipulation, which can be found in [Martoňák et al., 2002, Das & Chakrabarti, 

2008], the quantum partition function is decomposed into a classical partition function 

consisting of   interacting replicas, thereby deriving a new classical Hamiltonian, which can 

be written with notation from [Battaglia et al., 2005] as 

                                            

                                                        
 

 
∑ ∑           

〈  〉

 

   

   ∑ ∑          

 

 

   

                       

   

where      is the  th spin of the  th replica, and    is given by   

                      

                                                     
 

 
      (

 

  
)                                                                          

                            

The result of the Suzuki-Trotter transformation in (2.5) is based on the assumption that a 

single spin flip is sufficient to take a valid configuration of the problem to another valid 

configuration [Das & Chakrabarti, 2008]. This is true for the Ising spin glass problem 

[Martoňák et al., 2002]. Quantum annealing can now proceed as a simulation of   in a 

Metropolis algorithm as performed in [Santoro et al., 2002; Martoňák et al., 2002]. 

  

2.2 The Application of QA to Boolean Satisfiability 

In this section, we review a study in which a Boolean satisfiability problem was approached 

with QA [Battaglia et al., 2005]. Boolean satisfiability is concerned with whether a Boolean 
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formula can be satisfied, and is applicable to several real-world problems including circuit 

design and automated planning [Marques-Silva, 2008]. The particular type of Boolean 

satisfiability problem under consideration is 3-SAT, which is one of the most fundamental 

NP-complete problems [Cook, 1971]. 

 In the 3-SAT problem, we have a set of   Boolean variables             . Each 

variable    can only take a value of either 1(TRUE) or 0(FALSE). A 3-SAT formula is a 

conjunction of 3-clauses, which are themselves disjunctions of three selections from the 

Boolean variables and their negations.  A conjunction refers to the use of the logical AND 

(  ), while a disjunction is the use of the logical OR ( ).  An example of a clause is   

           , where     means that the value of    is negated in the clause. A 3-SAT 

problem consists of determining whether there exists an assignment of      to values such 

that a given formula with   clauses            evaluates to TRUE. 

 The 3-SAT problem can be mapped to an Ising model by setting         , and 

defining a classical Hamiltonian 

 

                                             ∑
(        )(        )(        )

 

 

   

                                  

 

which is the sum over the evaluation of each of the   clauses. The value      is defined to be 

   if the Boolean variable    associated with the spin variable    appears negated in the 

clause, and    otherwise. The Hamiltonian    in (2.7) counts the number of violated 

clauses, and is therefore equal to zero if and only if a satisfying assignment has been found. A 

3-SAT formula can originate from a practical application, or it can be generated from a 

probability distribution for the purpose of experiments. The instance of 3-SAT considered in 

[Battaglia et al., 2005] belongs to the distribution of the uniform random 3-SAT [Hoos & 
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Stiitzle, 2000]. In the uniform random 3-SAT, each clause is generated by selecting three 

variables out of the available   at random. Each variable either appears as is, or negated with 

uniform probability. In order to apply QA to the 3-SAT problem, the classical Hamiltonian in 

(2.7) is first expressed as a quantum Hamiltonian in a transverse field, just as in the case of 

the Ising spin glass problem in Section 2.1. Such a quantum Hamiltonian can be written as  

                              

                                                                    
     ∑  

 

 

                                                        

 

The abbreviated notation       
    from [Battaglia et al., 2005] helps avoid having to write 

out the whole of the expression for    given in (2.7). As was the case for the Ising spin glass  

in Section 2.1, after a Suzuki-Trotter transformation of the Hamiltonian in (2.8), we arrive at 

a new classical Hamiltonian 
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The Hamiltonian in (2.9) is analogous to the one in (2.5) and    is defined as in (2.6). 

 An application of CA to the 3-SAT problem consists of using the original 

Hamiltonian    in (2.7). Starting from a randomly initialized state, the CA process 

repeatedly selects a spin at random to be flipped, and the change      calculated. The new 

configuration is accepted if either       or    (      ⁄ )   , where   is a newly 

generated random number between 0 and 1, and    is the temperature at time  . The 

temperature is set to a sufficiently high initial value, and then gradually lowered over time 

according to an annealing schedule such as a linear or a geometric one [Strenski & 
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Kirkpatrick, 1991]. In the case of the application of QA to the 3-SAT problem, the Suzuki-

Trotter transformed classical Hamiltonian   in (2.9) can be used in a Metropolis algorithm, 

which is like a simulated annealing process with a small fixed temperature. In contrast to the 

CA process which has   spins, the QA process has    spins each of which is flipped 

uniformly at random. After a spin flip, the new configuration is accepted if         ⁄   

 . Over time, the field strength   (on which   is dependent), is decreased linearly from a 

sufficiently high value towards zero as in [Santoro et al., 2002]. 

 Experiments were carried in [Battaglia et al., 2005] with a uniform random 3-SAT 

instance having       variables. It was generated such that the value     ⁄  was 4.2, 

and therefore very close to the unsatisfiability phase transition [Monasson et al., 1999; 

Mézard et al., 2002]. The formula used was first verified to be satisfiable using WALKSAT 

[Selman et al., 1993], a well known SAT solver. Even though QA did not compete very well 

with existing approaches to the 3-SAT, the study is very instructive on the stages to follow 

when applying QA to a combinatorial optimization problem. 

          

2.3 The Application of QA to the Travelling 

Salesman Problem 

The travelling salesman problem (TSP) is an NP-hard problem [Garey & Johnson, 1979] 

having practical applications, and widely used as a test bed for newly introduced search 

procedures. For example, the TSP was one of the first problems to be addressed when CA 

was introduced [Kirkpatrick et al., 1983; Černý, 1985]. It was therefore interesting to see how 

a PIMC-QA algorithm could be implemented for the problem, and what the performance 
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would be. This study has been carried out [Martoňák et al., 2004], and will be reviewed in 

this section. 

 In the TSP, we are given a set of cities              and an     matrix  , where 

    contains the distance between city   and city  . We are required to find the shortest tour 

length that allows us to visit every city once and return to the starting point. Like many 

studies, [Martoňák et al., 2004] concentrates on the symmetric case where        . An 

arbitrary configuration can be represented by a permutation of cities. Therefore, there are a 

total of        possibilities. In order to represent a tour in terms of Boolean variables and 

then Ising spin variables, an     matrix   is defined, such that       if city   directly 

follows city   in the tour, and       otherwise. In this system, only   entries in   are non-

zero. Another matrix   is also defined such that       , where    is the transpose of 

matrix  . While   represents a directed tour,   represents an undirected tour, which can be 

convenient when working with properties of the tour that are independent of direction. Unlike 

the 3-SAT and Ising spin glass problems, the natural basic move made in order to attempt an 

improvement of a configuration is not a single spin flip but a 2-opt move [Flood, 1956; 

Croes, 1958], especially as a single spin flip in   results in an invalid tour. A 2-opt move 

involves the removal of two edges and the replacement of two different edges into the tour. 

With respect to using   as a configuration representation, four Boolean variables would need 

to be changed to accomplish a 2-opt move. This makes the implementation of the TSP more 

involved than the 3-SAT. If a spin variable   〈  〉            is defined, then in order to 

remove edges         and         and replace them with edges         and     

   , four spin variables involving the edges concerned need to be flipped. The tour length or 

Hamiltonian to be minimized can now be expressed as 
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〈  〉

 

 

In trying to progress to the next stage of converting    into a quantum Hamiltonian with a  -

dependent term that respects the 2-opt move, the authors of [Martoňák et al., 2004] noticed 

that it would be difficult to apply a Suzuki-Trotter transformation to the resulting 

Hamiltonian. It was therefore decided that the same single spin flip system for the 3-SAT be 

used for the TSP as an approximation. This way, (2.9) can be used as the new classical 

Hamiltonian, while still performing 2-opt moves during the Metropolis Monte Carlo 

simulation to maintain feasibility. Their experiments on a 1001-city instance from TSPLIB 

[Reinelt, 1991] showed that QA successfully outperformed CA. Perhaps, the most important 

lesson from the study is that when more complicated moves than a single spin flip are 

required for a particular problem, the system in (2.9) can still be tried as an approximation. 

As will be seen in chapter 4, this turns out to be invaluable for the graph  -colouring 

problem. 

 

2.4 Conclusion 

The aim of this chapter was to review the Path Integral Monte Carlo formulation for quantum 

annealing (PIMC-QA). As the Ising spin glass problem is a combinatorial optimization 

problem belonging to classical and quantum physics, it was natural to start from this problem 

while presenting the features of quantum annealing. We reviewed characterising a cost 

function of a problem as a potential energy, expressing this as a quantum Hamiltonian, and 

then applying the Suzuki-Trotter transformation in order to obtain a new classical 

Hamiltonian with P replicas that can be simulated feasibly on a classical computer. 
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 With the Boolean satisfiability problem, we moved from an optimization problem 

originating in physics to a domain more closely associated with computer science. However, 

similar principles still applied as a Boolean variable can be treated as an Ising spin, with the 

cost function re-written accordingly. Even though previous applications of PIMC-QA did not 

show an advantage over classical annealing for Boolean satisfiability, they clearly showed the 

steps involved in applying PIMC-QA to a given problem. The application of PIMC-QA to the 

travelling salesman problem was more involved because single spin flips were not sufficient 

to change one valid configuration to another valid configuration. However, previous authors 

introduced an approximation that nevertheless resulted in a working algorithm.  
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Chapter 3 

Heuristic Approaches to the Graph 

Colouring Problem 

This chapter reviews the graph colouring problem in the context of heuristic algorithms. 

Section 3.1 presents the problem description and definitions. Section 3.2 addresses greedy 

construction algorithms, while Section 3.3 reviews classical simulated annealing algorithms. 

In Section 3.4, Tabu search algorithms are reviewed. Evolution hybrid algorithms are 

reviewed in Section 3.5, while Section 3.6 addresses set extraction algorithms.  

3.1 Problem Description and Definitions 

By the graph colouring problem, we refer to the most common variant involving finding the 

minimum number of colours required to label the vertices of a graph, so that no adjacent 

vertices receive the same colour. Let         be an undirected loop-free graph, where   is 

the set of vertices and   is the set of edges. Given a set of   colours, a proper  -colouring of 

  is a mapping               such that          , for all        . The graph  -

colouring problem can be defined as that of deciding whether any proper  -colouring exists 

for a given instance      . Figure 3.1 shows a graph that has been properly coloured. 

 The graph colouring problem itself asks for the chromatic number  , which is the 

smallest value of   for which a proper  -colouring exists for a given graph  . Clearly, any 

procedure which solves the  -colouring problem can solve the graph colouring problem by 

repeated application for successively decreasing values of  .  
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Figure 3.1: A properly coloured graph 

 

There are some known easy special cases including planar graphs, which are always 

 -colourable [Appel & Haken, 1977], and 2-colourability, which is always decidable in 

polynomial time for any graph. However, in general, the  -colouring problem is NP-complete 

[Karp, 1972; Garey & Johnson, 1979], and thus the graph colouring problem is NP-hard. 

 Algorithms that attempt to find the chromatic number of a graph by exhaustive 

enumeration and backtracking search have been developed in the past [Brown, 1972; Brélaz, 

1979], and continue to be investigated [San Segundo, 2012]. Due to the difficulty of the 

problem, exact solvers are still mostly applicable to graphs with less than a hundred vertices. 

In order to address larger instances, heuristics which do not guarantee that the chromatic 

number would be found, but nevertheless offer practical advantages, have become 

indispensable. We review construction based algorithms in Section 3.2; classical simulated 

annealing algorithms in Section 3.3; Tabu search algorithms in Section 3.4; Evolutionary-

Tabu hybrid algorithms in Section 3.5 and independent set extraction pre-processing in 

Section 3.6. 
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3.2 Greedy Construction Algorithms 

One of the earliest ideas for obtaining approximate solutions to the graph colouring problem 

(and several other combinatorial optimization problems) is that of a greedy construction 

algorithm, sometimes also referred to as successive augmentation [Johnson et al., 1991] . A 

greedy construction algorithm for the graph colouring problem starts with a partial colouring 

involving only a few vertices, which is then extended until all vertices have been coloured. 

Notably, unlike a backtracking approach, the colours given to vertices are not usually 

reconsidered. This usually leads to a fast polynomial-time algorithm that approximates the 

chromatic number of a graph. 

The most basic construction algorithm for graph colouring starts with some 

permutation             of the vertices. Each vertex    is then sequentially assigned the 

numerically smallest colour not already taken by any of its adjacent vertices. After the last 

vertex    has been coloured, the total number of colours used provides an upper bound on the 

chromatic number  . This algorithm is known as SEQ in the heuristics literature [Johnson et 

al., 1991; Malaguti et al., 2008]. SEQ also provides proof that every graph can be properly 

coloured with      colours, where   is the maximum degree of a graph [Diestel, 2000]. The 

degree of a vertex is the number of vertices adjacent to it. In practice, it is usually possible to 

improve on     when colouring with SEQ. Multiple executions can also be carried out 

using a different random permutation each time, after which the best result can be chosen. 

Instead of simply colouring the vertices in the sequence of a random permutation, it is 

possible to use more sophisticated rules to select which vertex should be coloured next, in an 

attempt to improve on the results of SEQ. This is what the construction version of the 

maximum degree saturation (DSATUR) algorithm does [Brélaz, 1979]. DSATUR is based on 

the heuristic idea that fewer colours may be used in the long run if the vertex with the largest 
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chromatic degree is coloured first. The vertex with the largest chromatic degree is one whose 

adjacent vertices already use the largest number of colours. Experiments with DSATUR have 

demonstrated its practical advantages over SEQ by providing better upper bounds to the 

chromatic number of many graphs [Johnson et al., 1991]. 

A slightly different approach to greedy construction consists of building independent 

sets one after the other. An independent set refers to a group of vertices in which no two 

vertices share an edge. All the vertices in an independent set can therefore be assigned the 

same colour. This approach was originally presented as the recursive largest first (RLF) 

algorithm [Leighton, 1979]. Experiments from [Johnson et al. 1991] suggest that RLF can 

outperform DSATUR and SEQ on a wide variety of graphs. Although greedy construction 

algorithms often offer a quick practical way to obtain reasonable colourings, the results can 

be very poor in the worst case [Halldórsson, 1993; Zuckerman, 2006]. Additionally, it is 

difficult to exploit additional running time when available. Stochastic local search approaches 

attempt to improve on this situation. 

            

3.3 Classical Simulated Annealing Algorithms 

Classical simulated annealing (CA) algorithms were among the first stochastic local search 

algorithms to be attempted on graph colouring [Chams et al., 1987; Johnson et al., 1991; 

Morgenstern, 1996]. While greedy construction heuristics run quickly but often produce 

colourings very far from optimal, an algorithm based on CA aims to spend more time in the 

hope of ending up with a better solution. Central to the application of local search to any 

problem is the definition of a cost function (or potential energy) to be minimized. 

Additionally a search space and a neighbourhood function for moving around the search 

space need to be chosen.   Three variants of CA algorithms were presented in [Johnson et al., 
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1991], one of which was similar to that in [Chams et al., 1987]. A fourth one was investigated 

in [Morgenstern, 1996]. What follows is a review of all four. 

3.3.1 Penalty function  

The first CA algorithm considered in [Johnson et al., 1991] was a penalty-function approach. 

In the penalty-function approach, a configuration in the search space is represented as a 

partition of   into   disjoint subsets           , where   can vary between   and   

inclusively. We note that   could have been defined to be in the range        , where 

  is the maximum degree of the graph, as     colours is always sufficient to colour any 

graph [Diestel, 2000]. The search space explored includes any such partition of  , whether 

any    contains conflicting edges or not. Two configurations are defined to be neighbours if 

one could be derived from the other by the movement of one vertex from one subset (or 

colour class) to another, creating a new colour class if necessary. A neighbour is generated by 

first randomly selecting a vertex   from a randomly selected nonempty colour class     . 

Next an integer   is randomly chosen in the range        , where   is the current 

number of colours. Finally the neighbour is obtained by moving   to colour class  . The 

potential energy to be minimized is given as     ∑     
  

    ∑           
 
   , where    is 

the set of conflicting edges contained in   . 

 The main idea behind the term   ∑     
  

    is to encourage movement to parts of 

the search space where colour classes are larger, in order to indirectly influence  , which is to 

be minimized. The other term ∑           
 
    penalizes configurations possessing conflicting 

edges in their colour classes. The penalty function algorithm represents a case where the cost 

function itself is not exact, but only a heuristic.  While the true global minimum of    does 

not necessarily correspond to the chromatic number  , the idea was shown to work 

reasonably well in practice. An interesting property of    noted in [Johnson et al., 1991] is 



36 
 

that every local minimum of    is a proper colouring. With the main components of the 

penalty function algorithm defined, experiments were carried out in the usual CA fashion by 

generating new random neighbours, unconditionally accepting those with      , or 

otherwise accepting the new neighbour with a probability            ⁄  , where     is the 

change in the cost function and    is the temperature at time  . 

3.3.2 Kempe chain neighbourhood 

The second CA algorithm considered in [Johnson et al., 1991] is the Kempe chain 

neighbourhood approach, which uses the same potential energy as in the penalty function 

approach, but only permits proper colourings. The cost function therefore reduces to    

 ∑     
  

   . For a given proper coloring,              of graph  , a Kempe chain   can be 

obtained by selecting any two different colour classes    and    and locating a maximal 

connected component in the subgraph of   induced by      . Provided that        , a 

new neighbouring proper colouring can be derived by replacing    with              , 

and    with              . This forms the basis for a different CA algorithm where    

can be minimized in the same fashion as in the penalty function approach. An advantage of 

this system over the penalty function approach is that the current state of the algorithm 

always consists of a proper colouring, thus allowing the process to be terminated at anytime 

for the retrieval of an approximate solution. 

       

3.3.3 Fixed-k neighbourhood 

The third CA algorithm presented in [Johnson et al., 1991] fixes the value of the number of 

colours  , and tries to find a proper  -colouring by minimizing the total number of 
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conflicting edges to zero. If this succeeds, the process can then be repeated with    , and so 

on.  One of the first uses of this idea can be found in [Chams et al., 1987]. The 

neighbourhood is defined such that a randomly selected conflicting vertex in one colour class 

moves to a different randomly selected colour class. It was observed that this asymmetric 

neighbourhood was more effective than the one in which any vertex was allowed to move to 

any colour class, as the asymmetric neighbourhood forces the algorithm to deal with the 

conflicting vertices. Experiments in [Johnson et al., 1991] did not show any of the simulated 

annealing approaches to be dominant over the others. However, over the years, the fixed-  

neighbourhood has turned out to be very effective, whilst not being unnecessarily 

complicated, and is now used in many of the leading algorithms including those based on 

Tabu search. Particularly, the operations for the fixed-k neighbourhood are cheaper than those 

in the Kempe chain neighbourhood. The fixed-  neighbourhood forms the basis of the 

quantum annealing algorithms for graph colouring designed and studied in chapters 4, 5 and 

6 of this thesis. 

3.3.4 Impasse-class neighbourhood 

An alternative to the standard fixed-  neighbourhood was presented in [Morgenstern, 1996] 

and termed the impasse-class neighbourhood. The idea is that although   is still fixed, a 

proper colouring covering a subset of the vertex set is always maintained, and all vertices that 

cannot yet legally occupy any of the   colour classes are placed together in an impasse class. 

Emptying this impasse class now becomes the objective. The basic local search move 

consists of selecting a vertex   at random from the impasse class, selecting a colour class   at 

random to place this vertex, and moving any vertex adjacent to   in   into the impasse class to 

maintain the feasibility of the partial colouration. Although the cost function to be minimized 

in this system can simply be taken as the size of the impasse class, the sum of the degrees of 
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the vertices in the impasse class was used instead. This was done in order to encourage 

vertices with lower degrees to remain in the impasse class the longest, thereby dealing with 

the potentially more difficult vertices having higher degrees first. Classical simulated 

annealing with a fixed temperature (also known as the Metropolis algorithm) was used to 

search the impasse-class neighbourhood. Experiments in [Morgenstern, 1996] showed the 

impasse-class neighbourhood to be a strong approach to metaheuristic graph colouring. It was 

combined with additional neighbourhoods and pre-processing techniques to produce results 

that improve upon those of [Johnson et al. 1991].  

    

3.4 Tabu Search Algorithms 

Tabu search [Glover, 1989; Glover, 1990] is a successful alternative to simulated annealing 

designed to be more reliant on learning than on the use of a random number generator. The 

signature component of Tabu search is a Tabu list which stores attributes of the 

configurations of the search space already visited. By using the Tabu list to avoid recently 

visited configurations, Tabu search aims to prevent cycling and getting trapped by poor local 

minima. One of the earliest implementations of Tabu search for graph colouring was in 

[Hertz & Werra, 1987].  It uses the same fixed-  neighbourhood discussed in Section 3.3.3. 

An initial configuration is improved in several iterations, each of which consists of the 

random sampling of a given amount of configurations from the neighbourhood, and making 

the best move not prevented by the Tabu list. Every time a move is made, the reverse move is 

added to a Tabu list which was defined to be of fixed size and of length seven. The reverse 

move serves as an abbreviated form of the configuration that is prohibited in the short term. 

As it is the moves that are stored in the Tabu list rather than the prohibited configurations 

themselves, there is a risk that certain high-quality configurations that had actually never 
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been visited are disallowed as well. To alleviate this problem, Tabu search usually employs 

the aspiration criterion that if a configuration is better than all others visited before, its Tabu 

status is overridden. It was noted in [Hertz & Werra, 1987] that the Tabu search 

outperformed a contemporaneous simulated annealing algorithm [Chams et al., 1987] 

developed by the same group of authors. 

 The original Tabu search implementation of [Hertz & Werra, 1987] was subsequently 

improved in several other studies. With the advent of increased computing power, it became 

more feasible to search for the best move in the whole of the immediate neighbourhood, 

rather than just a random sample of it [Fleurent & Ferland, 1996]. It was also observed that 

randomly varying the length for the Tabu list produced a more effective algorithm [Fleurent 

& Ferland, 1996; Dorne & Hao, 1998a; Blöchliger & Zuffery, 2008] than the static 

alternative in [Hertz & Werra, 1987]. Enhancements to the standard cost function of simply 

counting the number of conflicting edges have been investigated for the fixed-  

neighbourhood [Porumbel et al., 2008]. The standard cost function was modified to bias the 

search in such a way that conflicts involving vertices with higher degrees are likely to be 

resolved first, much like it was done for simulated annealing in [Morgenstern, 1996]. 

Additionally, terms based on the move frequency history of the search were incorporated into 

the standard cost function. A Tabu search algorithm based on the impasse-class 

neighbourhood discussed in Section 3.3.2 was presented in [Blöchliger & Zuffery, 2008]. 

Tabu search is often used as the local search component of Evolutionary hybrid algorithms 

which are reviewed in Section 3.5. 
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3.5 Evolutionary Hybrid Algorithms 

Evolutionary algorithms [Bäck, 1996] maintain a population of individuals, which improve 

by competing and co-operating with each other via operators such as mutations, crossovers, 

and selection processes over several generations. Instead of maintaining a large population in 

which each individual undergoes mutations, it was recognized that a much smaller population 

could evolve effectively with each individual performing a deep local search during each 

generation. This paradigm is referred to as an evolutionary hybrid or a memetic algorithm 

[Moscato, 1989; Moscato, 2003; Moscato 2005]. 

  Early studies of evolutionary hybrid algorithms in the context of graph colouring 

were carried out in [Fleurent & Ferland, 1996] and [Galinier & Hao, 1999]. Recombination in 

[Fleurent & Ferland, 1996] used a string-based representation for the colouring configuration, 

so that traditional genetic operators such as the 1-point, 2-point and uniform crossovers could 

be used. In contrast, [Galinier & Hao, 1999] used specialized crossover operators that 

emphasized graph colouring as a grouping problem [Falkenauer, 1994; Falkenauer, 1998], 

and built each offspring by blending colour classes from two individuals. As a result, it 

outperformed the approach in [Fleurent & Ferland, 1996] and became one of the most 

powerful algorithms of its time. The crossover in [Galinier & Hao, 1999] was named the 

Greedy Partition Crossover (GPX). GPX built a new offspring by alternating between two 

parents and copying the largest colour classes. Extensions of the GPX were later studied by 

[Lü & Hao, 2010; Porumbel et al., 2010b] in the context of multi-parent recombination 

[Eiben & Bäck, 1997] operating on up to six parents at once. 

The algorithms in [Lü & Hao, 2010; Porumbel et al., 2010b] also featured improved 

population diversity control and selection with the use of the partition distance [Gusfield, 
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2002] between individuals. Another algorithm using similar ideas but with the impasse-class 

neighbourhood was developed in [Malaguti et al., 2008].  

3.6 Independent Set Extraction Pre-processing 

Before applying any of the colouring algorithms already discussed to any graph, there is the 

possibility of first looking for large independent sets and removing them in order to colour a 

smaller residual graph. This idea was used early on in many graph colouring studies 

[Bollobás & Thomason, 1985; Chams et al., 1987; Hertz & Werra, 1987; Fleurent & Ferland, 

1996; Morgenstern, 1996]. The resulting upper bound to the chromatic number is the number 

of independent sets extracted, plus the number of colours required by the residual graph. 

Independent set extraction pre-processing has been mostly effective for medium 

density random graphs. After hybrid evolutionary algorithms began to produce very good 

results on their own, set extraction fell out of use. It was later revived with a more powerful 

version than had ever been devised [Wu & Hao, 2012]. 

Previous versions iteratively sought a largest possible independent set, immediately 

removing each one as soon it was found. If there were multiple independent sets of the same 

size, then refinements mainly consisted of selecting one covering the most edges, and 

removing it immediately.  However, in [Wu & Hao, 2012], whenever an independent set of 

size   is found (with a Tabu search heuristic), instead of extracting this immediately, 

additional independent sets of size   are sought and placed into a bank  . Clearly the 

independent sets in   would usually not be mutually exclusive. A Tabu search heuristic then 

approximately solves an NP-hard set packing problem to find a maximum number of 

mutually exclusive sets in  , which are then extracted all at once from the graph. The 

procedure is then repeated until a suitably sized residual graph is left, which is then coloured 

with more conventional methods. This way of extracting independent sets allows more 
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vertices to be covered than was previously possible with earlier versions for the same number 

of independent sets, thus leading to better results on some types of graphs. 

3.6 Conclusion 

The aim of this chapter was to review the graph colouring problem from the perspective of 

heuristic algorithms. While greedy construction algorithms terminate very quickly in 

polynomial time, they  often provide very weak upper bounds for the graph colouring 

problem. Attempts to improve on the results of greedy construction while making use of 

additional running time involves the use of algorithms based on local search such as classical 

simulated annealing, Tabu search and Evolutionary hybrid algorithms which were all 

addressed. The population based algorithms are known to be more powerful than local search 

approaches maintaining only a single configuration. 
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Chapter 4 

A Quantum Annealing Algorithm for the 

Graph Colouring Problem 

This chapter is concerned with the design of a competitive graph colouring algorithm based 

on quantum annealing. The graph colouring problem can be approached heuristically by 

solving a series of k-colouring problems for progressively lower values of k, thereby 

obtaining an upper bound for the chromatic number. Given an undirected graph         

with      ,   is k-colourable if there exists a mapping               such that      

             . 

An arbitrary assignment of vertices to colours can be denoted by the 

configuration                    . An alternative representation of a configuration   is 

as a partition of the vertex set   into   subsets            , where vertices given the same 

label belong to the same subset. Depending on the configuration, some of the subsets may be 

empty. The partition-based representation is known to be important in the design of 

population-based metaheuristics for the graph colouring problem, as it can alleviate 

symmetry problems resulting from the redundancy of colour naming [Galinier & Hao, 1999].  

In order to cast k-colouring as a combinatorial optimization problem, we require a 

cost function. Given that a solution must not contain any conflicting edges, a natural choice is 

to minimize the number of conflicts. The set   of all possible assignments of vertices to the 

available   colours is the search space from which we seek a solution. A solution is any 

configuration     such that         ,          . 
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We denote the cost function representing the number of conflicting edges by   . A 

graph is k-colourable if and only if there exists at least one configuration   such 

that        . Any such   is a global minimum of the cost function   . This approach is 

the fixed-k formulation discussed in Section 3.3.3. Its main strength is that a potential energy 

of zero provides evidence that a global minimum has been reached. Furthermore, there is 

nothing to suggest that the fixed-k formulation is any worse than the alternatives such as the 

kempe chain and penalty approaches discussed in Section 3.3. For example, the experiments 

in [Johnson et al., 1989] demonstrate that no approach dominates the others. Additionally, the 

current leading algorithms use the fixed-k approach [Lü & Hao, 2010; Porumbel et al., 

2010b].  

A basic local search approach can start by initializing   uniformly at random. 

Afterwards, a conflicting vertex is selected at random to have its colour changed to a new 

randomly chosen one, giving a new configuration   . If     
   is less than      , then    

is accepted. Otherwise another    is generated and tested. After some iterations of 

generating, testing and moving to configurations with a lower value for the cost function, a 

local minimum will eventually be reached. Only for the simplest of problem instances would 

such a local minimum also be a global minimum. In a typical problem instance, there are 

usually an exponential number of local minima which trap the process described. However, 

the basic local search serves as a fundamental principle for more sophisticated local search 

approaches. 

One improvement over the basic local search is the well-known approach of Classical 

(simulated) Annealing (CA) [Kirkpatrick et al., 1983; Cerný, 1985], in which the cost 

function is regarded as a potential energy. Instead of only accepting downward movements in 

the potential energy landscape, upward movements are also eligible according to the 
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Metropolis criterion. Thermal fluctuations provide an opportunity of escape from poor local 

minima, and increase the chance that a global minimum will eventually be found. 

The main idea of Quantum Annealing (QA) [Santoro et al., 2002; Martonák et al., 

2004; Das & Chakrabarti, 2008] is to introduce quantum fluctuations to perform an analogous 

role to thermal fluctuations of facilitating the escape from poor local minima. Quantum 

fluctuations allow tunnelling through barriers rather than having to scale the height of these 

barriers thermally. In addition to the potential energy   , we need to provide a kinetic energy 

that will provide the quantum fluctuations. This is usually done by expressing the 

combinatorial optimization problem at hand in terms of an Ising spin system, and then 

defining the kinetic energy as some intuitive property of the spins [Martonák et al., 2004; 

Battaglia et al. 2005]. 

 In Section 4.1, we define a suitable spin system and present a sketch of our quantum 

annealing algorithm for graph  -colouring. Section 4.2 deals with the provision of efficient 

procedures and essential data structures for critical components of the  -colouring quantum 

annealing algorithm. Implementation specific considerations such as the random number 

generator and code optimization techniques are addressed in Section 4.3. In Section 4.4, the 

results of experiments in which quantum annealing is compared to other algorithms are 

reported. Quantum annealing is found to be competitive. Particularly, our algorithm became 

the first to report a 222-colouring for the DIMACS competition graph DSJC1000.9. This was 

published in a journal article [Titiloye & Crispin, 2011a]. This result was subsequently 

reported independently by [Wu & Hao, 2012] with the aid of set extraction pre-processing 

and an Evolutionary-Tabu algorithm.   
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4.1 A Quantum Annealing Formulation 

4.1.1 The Suzuki-Trotter transformation of a k-colouring Ising 

model 

An Ising model consists of spins (or spin variables) which can only be in one of two states 

[Cipra, 1987]. The standard values of these spins are either up      or down     .  The k-

colouring problem can be defined in terms of Boolean variables, and hence Ising spin 

variables. If there are several ways to do this, then it is important to choose one that reflects 

the problem-specific issues of the combinatorial optimization at hand [Martoňák et al., 2004]. 

Possibly the most straightforward idea is to a have one Boolean variable     for every vertex-

colour combination to denote whether the combination is present in the current configuration. 

In this system, there would be a total of       variables, and any configuration   could be 

represented by setting the Boolean variables to appropriate values. An undesirable feature of 

this system is that configurations that are essentially the same except for colour labelling do 

not correspond to the same set of Boolean variables. This is the problem of symmetry. As 

discussed in chapter 2, a Suzuki-Trotter transformation produces a population of interacting 

replicas. In the case of graph colouring, if the interacting replicas do not respect the highly 

symmetric nature of the problem, the effectiveness of the interaction will degrade. This has 

been recognized in past studies of population-based algorithms for the graph colouring. For 

example, although both are Evolutionary-Tabu hybrid graph colouring algorithms, the 

approach in [Galinier & Hao, 1999] outperformed that of [Fleurent & Ferland, 1996] by 

providing crossover operators that handled symmetry better. Even graph colouring algorithms 

that are not population based benefit from dealing with symmetry properly [Ramani et al., 

2004; Méndez-Díaz & Zabala, 2008].       
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We therefore introduce an alternative system in which each Boolean variable is 

concerned with whether one vertex has the same colour as another vertex, and not about the 

specific colour of any vertex. In this system, there is one Boolean variable     for every 

unique pair of vertices.  Specifically,       if          , and       otherwise. Every 

configuration   can be expressed as a set       of   constrained Boolean variables, where 

      and      , and      for the uniqueness of vertex pairs. The total number of 

Boolean variables   is the same as the number of edges in a complete graph of   vertices, 

and is therefore equal to ( 
 
) or        ⁄ . The variables {   } treat a colouring as a 

partition of the vertex set, rather than simply an assignment of vertices to any specific 

colours, thereby capturing a problem-specific essence of graph colouring. As a result, 

configurations that differ only because of a permutation of colours are nevertheless 

represented by the same set of Boolean variables. When the k-colouring problem is viewed as 

an assignment of vertices to colours, there are a total of    possible configurations, some of 

which are the same but for colour naming. Not all of the    possible states of {   } 

correspond to valid members of the k-colouring search space. Instead, the total number of 

valid states of       is the same as the number of possible partitions of the vertex set   into up 

to   subsets. While this should be less than   , there is no simple expression for it. The total 

number of possible settings of {   } is given as ∑        
   , where        denotes Sterling 

numbers of the second kind [Stanley, 2011]. The quantity        is the number of ways in 

which a set containing   elements can be partitioned into exactly   parts, and is defined by 

the recurrence relation                            . An Ising model can be 

obtained from the Boolean variables       by defining a set of spins       where       

       . The potential energy represented by the number of conflicting edges in terms of 

the spins is given as 
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                                ({   })  ∑ (     )  ⁄

    

                                                                                 

 

The Hamiltonian    in (4.1) can already be used in a CA algorithm as    correctly counts 

the number of conflicting edges in a configuration. Only valid configurations of the  -

colouring search space should be sampled however. Therefore, instead of generating a new 

configuration by a single spin flip with the likelihood of ending up with an invalid one, 

validity is guaranteed by making multiple spin flips that correspond to the movement of a 

vertex from one colour class to another.  Just as in the case of the Ising Model in Section 2.1 

in chapter 2, the Hamiltonian in (4.1) can be converted to a quantum Hamiltonian with a 

transverse field to yield: 

 

                                              ({   
 })   ∑   

 

  

                                                                         

 

The terms    
  and    

  are Pauli matrices. The  -dependent term in (4.2) from a standard Ising 

model implies that a single spin flip in a valid configuration can always produce another valid 

configuration, which is true for the standard Ising Model [Martoňák et al., 2002], but not for 

our k-colouring Ising Model, which has its spins constrained to one another in the sense that a 

single spin flip is in general not enough to move from one valid configuration to another valid 

one. The same problem was faced in the travelling salesman problem, where it was observed 

that applying a Suzuki-Trotter transformation to a quantum Hamiltonian with multiple spin 

flip operators is complicated, whereas the standard model with a single spin flip operator is 

trivially dealt with [Martoňák et al., 2004]. As a result of this, the travelling salesman study 

used the equivalent of (4.2) with a single spin flip operator as an approximate formulation. 
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We follow the same approach here. Just as in the case of the Ising Model in Section 2.1 in 

chapter 2, applying the Suzuki-Trotter transformation on the quantum Hamiltonian in (4.2) 

yields a standard classical Hamiltonian 

 

                         
 

 
∑   ({     })    

 

   

∑ ∑                                                                    

  

 

   

 

 

The classical Hamiltonian   in (4.3) can be viewed as consisting of   replicas of the original 

classical Hamiltonian    in (4.1), with the  -dependent term serving as the kinetic energy. 

The spin       represents the   th spin of the  th replica, while    is given as: 

 

                                            
 

 
          ⁄                                                                              

 

In order for the classical Hamiltonian in (4.3) to be an exact equivalent of the quantum one in 

(4.2),   has to tend to tend to infinity. Obviously this cannot be done in a practical Monte 

Carlo simulation, and a small value of   has to be used. We connect a finite and small 

number of the replicas in a ring, and revise (4.3) as: 

 

                                
 

 
∑   ({     })    

 

   

(∑ ∑             ∑          

    

   

   

)              

         

The reason for connecting them in a ring is so that each replica is identical to the others in 

terms of sharing spin products with exactly two other replicas. This helps simplify the 

algorithm as the first and last replicas do not have to be taken as special cases. For 

computational purposes we take   as the expression in (4.5).  
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4.1.2 CA-Col: A classical annealing algorithm for the k-colouring 

problem 

Before presenting the quantum annealing algorithm for the graph  -colouring, it is helpful to 

review the CA approach, due to the relationship between them. A classical simulated 

annealing graph colouring algorithm called CA-Col is presented in Algorithm 4.1. The cost 

function used counts the number of conflicting edges, and is therefore the same as   . One 

configuration is obtained from another by changing the colour of a conflicting vertex. In 

other words, the neighbourhood of a configuration is the set of all configurations that can be 

reached from the current one by choosing a new colour for a conflicting vertex. 

 

Algorithm 4.1: Classical annealing for the k-colouring problem 

1. Input:  ,  ,  ,   ,         , and estimate neighbourhood size    as       

2. 

3. 

4.  

5. 

Output: “Yes” if proper  -colouring is found or “No” otherwise 

Randomly initialize a configuration  , and initialize       

While termination condition is not met 

                
6.    While                 
7.       Randomly select a vertex    conflicting in   

8.       Change colour of   to a new randomly selected colour to derive     

9.               
         

10.       If       

11.               
12.       Else  

13.          With probability          ⁄  ,         

14.                             
15.          End While 

16.                          ⁄      
17. End While 

 

Algorithm 4.1 is essentially the same as the classical annealing algorithm for the k-

colouring problem presented in [Chams et al., 1987; Johnson et al., 1991]. On line 1, we input 

the graph  , the number of available colours  , and starting temperature   . We also input an 
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integer multiplier   for the neighbourhood size, and a maximum number of Monte Carlo 

steps         .  The neighbourhood size    is estimated as      . Line 2 describes the 

required output, which is either an acknowledgement of success with evidence, or failure of 

the algorithm. 

 As classical annealing belongs to a class of algorithms termed incomplete, it is unable to 

confirm that a k-colouring absolutely does not exist. Line 3 chooses one of the   colours for 

each vertex uniformly at random to provide an initial configuration  . The temperature is 

also initialized. On line 4, a loop is started, which ends when a termination condition is met. 

A termination condition could be a time limit, or when the temperature has been decreased to 

zero. The algorithm is definitely stopped if a solution has been found, though this is not 

explicitly shown in Algorithm 4.1 to simplify the flow of the algorithm.  We start a counter of 

attempted moves on line 5 before starting an inner loop on line 6, which operates until the 

number of attempted moves has reached     . 

 On line 7, a vertex   is selected uniformly at random from the set of conflicting 

vertices and assigned a new randomly selected colour on line 8 to yield a new 

configuration   . The change in the value of the cost function is computed on line 9 as    . 

If the change in cost function represents a decrease on line 10, then    is accepted as the 

new   on line 11. Otherwise we proceed to line 13, where a random number   [     is 

generated and compared to          ⁄  .  If    (     ⁄ ) is greater than r, then    is 

accepted. This is known as the Metropolis criterion. Line 15 ends the inner loop and a Monte 

Carlo step. On line 16,   is decreased according to a linear schedule [Strenski & Kirkpatrick, 

1991]. 
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4.1.3 QA-Col: A quantum annealing algorithm for the k-colouring 

problem 

Algorithm 4.2 describes our quantum annealing algorithm for the k-colouring problem. While 

classical annealing maintains a single configuration and attempts to minimize the number of 

conflicting edges, quantum annealing maintains   interacting replicas that attempt to 

minimize the shared and more complex Hamiltonian   in (4.5). Line 1 depicts the input of 

the graph  , available colours  , multiplier  , initial temperature    and         , all 

present in Algorithm 4.1 for CA as well. In addition, we input the number of replicas  , and 

the initial value of the field strength parameter   .  

Algorithm 4.2 Quantum annealing for the k-colouring problem 

1. Input:  ,  ,  , ,   ,  ,          

2. Initialize:         ,     ,      

3. Output: “Yes” if a proper k-colouring is found or “No” otherwise  

4. Randomly initialize   configurations        

5. While termination condition is not met 

6.    For         
7.                   
8.       While                   
9.          Randomly select a vertex    conflicting in    

10.          Change colour of   to a new randomly selected colour, to derive   
  and     

11.                (  
 )         

12.                                                                                                                                                                                                                                                                                                                               

13.          If        Or      

14.                  
15.          Else 

16.             With probability exp     ⁄  ,      

17.                                
18.       End While 

19.    End For 

20.                   ⁄   
21. End While 

 

On line 2, the estimation of the neighbourhood size, the temperature, and the field strength 

are all initialized. In contrast to CA-Col, the temperature is kept fixed throughout, and it is 
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the field strength that is periodically reduced linearly towards zero, according to the 

maximum number of steps specified, just as in [Santoro et al., 2002; Martoňák et al., 2002]. 

On line 4, a set of   independent configurations indicated by      or   is initialized 

randomly. The structure of the algorithm is such that line 5 starts an outermost loop, which 

continues until a termination condition is satisfied, while an inner loop gives control to the 

replicas one at a time on line 6. When each replica executes, it enters an innermost loop on 

line 8.  

On line 9, a conflicting vertex   is randomly selected in the  th replica, and has its colour 

changed to a new randomly chosen colour to derive   
  and hence    on line 10. On lines 11 

and 12, we compute     and    respectively. 

Line 13 checks whether either     or    is less than zero, and accepts the change if this is 

the case. When     is less than zero, this means a new configuration with less potential 

energy has been identified. It is accepted as is customary in annealing. Furthermore     

 , almost always implies that      provided that reasonable parameters have been chosen 

from   and   so that    (the actual cost function that we care about) carries a lot of weight. 

Additionally, the device on line 13 ensures that opportunities to move to a global minimum 

from configurations where      are not missed. On line 16, the crux of the algorithm, 

where the Metropolis criterion is tested, it is    that is used, rather than    . On line 20, 

the field strength   is decreased linearly [Santoro et al., 2002; Martonák et al., 2004]. The 

practicality and success of the quantum annealing algorithm depends on how efficiently    

can be calculated, given how involved   is, as defined in (4.5). Section 4.2 is devoted to 

finding incremental techniques to enable a reasonably efficient computation of   . 
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4.2 Efficient Procedures and Data Structures for 

Critical Components of QA-Col 

4.2.1 Efficient computation of the potential energy change 

Computing the potential energy change     is an important part of calculating the 

overall   . Even though    is expressed in terms of Boolean variables in (4.1), the Boolean 

variable themselves are not needed in order to compute    or     quickly, as    is the 

number of conflicting edges in the current configuration. If       is the number of 

conflicting edges in  , then     can be expressed as             . Let the set of 

vertices adjacent to a vertex   in   be denoted by       . If we propose to move   from 

colour class    to colour class   , then      is equivalent to |         |             . 

This is because edge conflicts with the adjacent vertices of   having colour   would be 

resolved, while new edge conflicts would be formed with any adjacent vertices of   having 

colour  . If an array   with dimensions       is initialized and maintained such that for any 

vertex   and any colour  ,                   , then                   can be 

computed in constant time or     .  QA-Col needs to maintain   separate instances of  , 

while CA-Col only needs one. The array   is initialized at the start of the algorithm, and only 

needs to be updated anytime a vertex actually changes colour. In this case, the array   can be 

updated in      by decrementing        by one and incrementing        by one for 

all         . Similar approaches are widely used to compute the cost function while trying 

to find the best move in Tabu search algorithms for the k-colouring problem [Fleurent & 

Ferland, 1996; Galinier & Hertz, 2006]. In any annealing algorithm with a high move 

acceptance ratio, having to update   in      every time a move is accepted is likely to 
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become too expensive. In the CA algorithm for the  -colouring problem in [Johnson et al., 

1991], 50-60  of the randomly proposed moves were accepted at the start of the algorithm. 

This is probably why the incremental approach to calculating     does not appear to have 

being used. There is no mention of the approach in [Chams et al., 1987] either. However, 

quantum annealing aims to maintain a low temperature, while driving the simulation mainly 

by the field strength. As a result, much lower acceptance ratios than in [Johnson et al., 1991] 

are expected in QA-Col, making the incremental approach attractive. Additionally, it has 

been demonstrated that even classical annealing with low starting temperatures and 

acceptance ratios can be successful for graph colouring [Morgenstern, 1996]. Therefore we 

used low starting acceptance ratios for our CA experiments as well.        

 The Hamiltonian   for quantum annealing in (4.5) can be rewritten as        

      , where        is the part containing the potential energy term    and        is 

the  -dependent kinetic energy part. It follows that                   . The 

change in the potential energy term,          can be computed as              ⁄ , where   

is the replica under consideration. This is because only the currently changing replica enters 

into the calculation of        . Computing         reasonably efficiently is more 

involved and the next section is devoted to this. 

 

4.2.2 Errorless function swindle for the kinetic energy change 

The efficient computation of the change in       , the  -dependent term in the Hamiltonian 

  in (4.5) is crucial for the success of quantum annealing. Calculating         is 

complicated due to the fact that it involves tracking the change in the products of spins 

between different replicas. Additionally, because of the definition of the Boolean variables 

the spins are based on and the constraints between them, several spins usually change in the 
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current replica whenever a single vertex changes colour. An incremental approach is needed, 

as calculating        from scratch each time would be prohibitively expensive. Each 

replica   is involved in spin products with two other replicas we label   and  , because the 

replicas are connected in a ring as implied by the Hamiltonian in (4.5). If   and   are the old 

and new colours respectively, then only the spins of the vertices associated with colour 

classes    and    of the current replica   can change whenever a move is made in that 

replica. We define an integer          where                    , which 

gives                     . Recalling the definition of the spin variables in Section 

4.1.1,       is    if           in replica  , and    otherwise, where      is the colour of 

vertex  . If a vertex   is moving from colour class    to colour class   , then           can 

be computed in          as:  

 

                          ∑  (           )  ∑  (           )

            

                                       

 

The expression for           in (4.6) is derived by noting that any spin products that 

contain changed spins need to be subtracted and replaced with the products having the 

updated spin values. Specifically, whenever a vertex   moves from colour class    to    in the 

 th replica,          ,       changes from    to   , and      ,       changes from    

to   . As the corresponding spins in the two connected replicas   and   are regarded as 

staying the same during this move,          , the quantity                     

                    which simplifies to                 gets contributed to          . 

Similarly,      , the quantity                 gets contributed to          . In order to 

be able to compute the resulting expression in (4.6) in         , the right data structures 

have to be used. A list of dynamic disjoint sets is needed to hold the colour classes, and it is 
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desirable to be able to iterate through a colour class in linear time in the size of the given 

colour class. Since the sum of all the sizes of the sets has to be equal to    , such a data 

structure can be designed using perfect hashing with arrays. Furthermore, addition, removal 

and membership checking can be realised in constant time for the colour classes. Additionally 

we keep an array data structure  , which stores the colours of the vertices such that   , 

         . There is no need to store the spins directly in any data structure, as they can be 

deduced by comparing the colours of the vertices under consideration by using  .  

 While computing the change in the kinetic energy incrementally in linear time with 

(4.6) is much more efficient than computing it in quadratic time using (4.5), the 

computational cost is still high, considering that trillions of evaluations could be needed for 

large problem instances. Given that an average of       ⁄  vertices needs to be checked in 

order to compute          , it can be expensive to iterate through the colour classes of 

sparser graphs, as they can usually admit smaller values of   than denser graphs with the 

same number of vertices. However, by first computing an upper bound on          , we 

are able to demonstrate that it is possible to drastically reduce the number of times the 

expression for which           in (4.6) has to be fully computed. Since the expression 

                   is used to evaluate move acceptance by comparing 

        ⁄   to a random number   [    , a smaller value for    increases the chance of 

acceptance. Because    from (4.4) is always positive,    is at its smallest when           

is at its largest. If a vertex   moves from colour class    to    then the upper bound on 

          is given as: 

    

                                                  (     |  |   )                                                                
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The expression for             in (4.7) is obtained from (4.6) by substituting    for all 

the spins related to   , and    for all the spins relating to   . An inspection of (4.6) shows 

that it is not possible to obtain a larger value for           than           . Whenever 

we need to compare         ⁄   to   [    , we first compute a lower bound for    as: 

 

                                                                                                                      

    

The point is that if a proposed move causes           ⁄   to be less than  , then we can 

reject the move, safe in the knowledge that it would have been rejected even if the actual 

value for    had been computed and compared to the same  . On the other hand, if 

          ⁄   turns out to be larger than  , only then is it necessary to fully compute the 

actual   , in order to compare it with the same   and find out if the move really should be 

accepted. 

 Our experiments in Section 4.4.4 show that depending on the problem instance, 

     in (4.8) can be used to reject up to 99% of all attempted moves. This is remarkable, 

considering that the behaviour of the quantum annealing algorithm is not changed in any way 

apart from its speed. The role of surrogate cost functions in classical annealing was 

investigated in [Tovey, 1988]. One of the techniques introduced by that author was termed 

the “surrogate function swindle”, with the idea that the annealing algorithm selectively uses 

an approximate cost function according to an adjustable probability selected to reduce the 

effect of the errors. The technique of first using     , and only computing the actual    in 

the few cases where it is necessary can be considered to be an “errorless surrogate function 

swindle”, made possible because of the relationship of the kinetic energy to total cost 

function used in quantum annealing. This can be expected to be a recurring feature in the 

application of quantum annealing to other combinatorial optimization problems. 
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4.2.3 Further efficiency gains with look-up tables 

The exponential function        is much more expensive to compute than division or 

multiplication [Schraudolph, 1999]. Since the value of         ⁄   is required many times, 

it is desirable to be able to use look-up tables, and avoid the expense of computing the 

exponential function directly each time [Morgenstern, 1996]. The expression         ⁄   

is equivalent to             ⁄                ⁄  . As the temperature   always 

remains constant in QA-Col, we can pre-compute all possible values of              ⁄   

by noting that if      is the maximum degree of  , then     can only take on integer values 

ranging from –      to      . This means that an array of size         is large enough 

to store all possible values of             ⁄   . 

 In order to pre-compute the values of             ⁄  , we first determine the range 

of possible values of        . Substituting          and |  |    in (4.7) gives       

   as the maximum value of           over all possible pairs of colour class sizes. A 

similar reasoning gives          as the minimum. Therefore an array of size      is 

needed. This second look-up table needs to be recomputed at the end of every Monte Carlo 

step because it depends on   which decreases. Nevertheless, this is relatively inexpensive, as 

the number of entries in the lookup table is small in comparison to the number of attempted 

moves in every Monte Carlo step. 

4.3 Implementation Specific Considerations 

4.3.1 Pseudo-random number generator 

The Metropolis criterion in CA-Col and QA-Col requires a random number generator. In 

software environments, a function referred to as a pseudo-random number generator (PRNG) 
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is used for this purpose. PRNGs deterministically produce a number on each function call, 

with the aim of providing a sequence complex enough to appear random to an application. A 

study in [Maucher et al., 2008] found that the quality of PRNGs have a noticeable effect on 

the performance of simulated annealing algorithms. One of the main determinants of the 

quality of a PRNG is its period. (There are several other tests for high quality PRNGs 

[Marsaglia & Tsang, 2002; Lecuyer & Simard, 2007].) The period of a PRNG determines 

how many numbers are generated before the sequence repeats. There is a balance to strike 

between the quality of a PRNG and affordable computational expense. PRNGs can range 

between simple linear congruential generators to more complex generators such as the 

Mersenne twister [Matsumoto & Nishimura, 1998]. 

 We experimented with the XOR shift generator presented in [Marsaglia, 2003], the 

one presented in [Panneton & L’ecuyer, 2005], and the in built-in rand function from MinGW 

C++, and settled on the generator in [Marsaglia, 2003], as it provided an adequate balance 

between quality and efficiency. 

      

4.3.2 The dynamic set of conflicting vertices 

In both CA-Col and QA-Col, each attempted move requires a selection of a conflicting vertex 

uniformly at random for a colour change. For an efficient implementation, it is desirable that 

that a set    consisting of all vertices involved in edge conflicts is maintained. Otherwise, one 

would have to select from   at random and check if it is conflicting, possibly having to 

discard many non-conflicting vertices in the process. Constant time random access into the 

data structure of    is desirable in order to select a vertex quickly. When a conflicting vertex 

moves to a different colour class, this usually affects the conflict status of several other 

vertices, possibly requiring an extensive update to   . Therefore, ideally, we want the data 
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structure from which    is implemented to be capable of addition and removal in constant 

time. 

 The library data structures supporting constant time random access which are 

available in programming languages, such as vector in C++ and array lists in Java would not 

usually support constant time addition and removal from an arbitrary position in the data 

structure. On the other hand, set-like data structures from those same libraries which support 

fast membership checking, addition and removal do not usually support random access, as 

they often make use of trees or hash tables. However a custom data structure is able to take 

into account the specifics of the situation, and provide these seemingly diametrically opposed 

useful characteristics. Unlike in the general case, all the possible values of    are restricted to 

elements of  , and thus its size is bounded by    . This enables    to be implemented as an 

associative array with a resizable list backed up by a separate array of fixed-size     storing 

the index of every entry that is actually present in   . Any absent vertex in    would have a 

null value (or   ) entered for it in the backing array. This way, addition, removal and 

membership checking can be done in constant time.      

4.3.3 The list of dynamic sets for the colour classes 

An important data structure to maintain is a partition of   into colour classes, which are 

disjoint subsets of  . Fast iteration over a colour class is imperative in the cases where the 

change in the kinetic energy in (4.6) needs to be calculated in full. Colour classes also need to 

be updated anytime a colour change of any vertex occurs. This involves addition to and 

removal from the respective colour classes. One associative array data structure, of the type 

used for the conflicting vertices in Section 4.3.2 can be set up for each colour class. While 

this would meet all the time requirements of data accessibility, this basic idea would take up 

more space than necessary, as each colour class would have a resizable array with a 
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maximum size of     and another backing array of size     to store the corresponding indices 

of the present vertices. An improvement involves taking advantage of the mutual exclusivity 

of the colour classes by using only two backing arrays of size     for all of the colour classes: 

one to keep track of the index of each present vertex in its resizable list, and another to store 

the colour that each vertex is currently assigned. 

4.4 Results and Discussion 

4.4.1 Experimental methodology 

In order to determine whether quantum annealing improves on classical annealing for the k-

colouring problem, CA-Col and QA-Col were implemented as described in Algorithm 4.1 

and Algorithm 4.2 respectively in C++ on a PC running Windows XP with a 3.0 GHz 

processor and 3.0 GB of memory. The stopping criterion was a 5 hour time limit as used in 

recent graph colouring publications such as [Lü & Hao, 2010] and [Porumbel et al., 2010b]. 

QA-Col is also compared to the strongest algorithms in the literature by comparing the best 

upper bounds reached for the chromatic number.  

The benchmark graphs used were from the second DIMACS competition [Johnson & Trick, 

1996]. We considered the benchmark graphs that have been known to be challenging. Those 

include Leighton graphs [Leighton, 1979], Erdös-Rényi random graphs [Erdös & Rényi, 

1959], geometric random graphs [Penrose, 2003], flat graphs [Culberson et al., 1995; 

Culberson & Luo, 1996] and a Latin square graph [Lewandowski & Condon, 1996]. 

Leighton graphs were introduced as part of a study of the application of the graph 

colouring model to scheduling [Leighton, 1979]. A Leighton graph is generated by planting 

cliques of various sizes up to a given size by a specified procedure that guarantees that the 

maximum clique size is the chromatic number, and the density of the graph is never greater 
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than 0.25. A clique is a set of vertices that are all pair-wise connected to one another.  It was 

suggested by [Leighton, 1979] that graphs with a density of about 0.25 frequently occurred in 

applications of graph colouring to exam scheduling. Real world data supporting this notion 

has been observed [Lewandowski & Condon, 1996]. The Leighton graphs from the DIMACS 

benchmarks graphs have the naming format Le _  , where   is the number of vertices,   is 

the chromatic number, and   distinguishes between various Leighton graphs. 

Erdös-Rényi is a widely used model of generating random graphs [Erdös & Rényi, 

1959; Erdös & Rényi, 1960] in which a graph of   vertices is generated by independently 

including each possible edge with probability  . Erdös-Rényi random graphs from the 

DIMACS benchmarks follow the naming format of DSJC    or C   , where   is the number 

of vertices and    ⁄  is equivalent to the probability  .  

Geometric random graphs are generated by placing   vertices randomly in a square of 

unit size, and connecting with an edge any two vertices within a distance   of each other 

[Penrose, 2003].  The geometric random graphs from the DIMACS benchmarks are of the 

naming format DSJR    or R   , where   is the number of vertices, and   is equivalent 

to    ⁄ . A “c” is added as a suffix to the name of a graph when the complement of the 

constructed graph is meant. 

 Flat graphs are denoted by Flat _ _0, where   is the number of vertices,   is the 

chromatic number, and “0” is the value of a construction parameter termed the flatness. 

Details of how these graphs are generated are given in [Culberson & Luo, 1996]. 

 Additionally, there is one Latin square graph Latin_square_10 in the DIMACS 

benchmarks first provided in [Lewandowski & Condon, 1996] based on the theory of Latin 

squares. The maximum independent set size in Latin_square_10 is 10, and the graph consists 

of 900 vertices. 
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 The comparison between CA-Col and QA-Col was done by solving several  -

colouring problems with CA-Col and QA-Col, and noting the differences in the number of 

attempted and accepted moves required for a successful run, as well as the average wall-clock 

time. Robustness was compared by noting how frequently a solution was successfully 

obtained. It was also checked whether QA-Col was able to improve on CA-Col by finding 

colourings with lower values of   than could be obtained with CA-Col. Finally we compared 

the results of both CA-Col and QA-Col to those of successful algorithms mainly by noting 

the lowest value of    reached for each graph. This is customary, since other methods of 

comparison such as the time taken, and the numbers of nodes encountered are known to be 

problematic, due to varying experimental conditions, algorithms and implementations.  

4.4.2 Parameter tuning 

CA-Col has two critical parameters that often need to be set differently depending on the 

problem instance. They are the initial temperature   , and the inverse rate of decrease of 

temperature         . The multiplier  , which plays a part in determining how many 

moves are attempted before the temperature is decreased can usually be set large enough that 

it does not need to change for a variety of graphs. We fixed   to a value of 4 for all problem 

instances considered in this chapter. In [Johnson et al., 1991], which featured a classical 

annealing  -colouring algorithm very similar to CA-Col, the initial temperature    was set by 

choosing a value such that the starting move acceptance ratio was approximately 50-60%. 

There, the authors noted that most of the improvement in the value of the cost function 

occurred towards the end of the simulation when the acceptance ratio was much lower. They 

did not use lower starting acceptance ratios in order not to increase the risk that the algorithm 

would get trapped in a local minimum, and in order to try and maintain generality amongst a 

wide variety of instances. However, a classical annealing algorithm with a fixed temperature 
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and a different neighbourhood choice for graph colouring worked with much lower starting 

acceptance ratios [Morgenstern, 1996]. 

 For CA-Col, we adopted starting temperatures and acceptance ratios that were as low 

as possible, as an alternative to the approach in [Johnson et al., 1991], and in preparation for 

the quantum annealing algorithm QA-Col. Quantum annealing is primarily controlled by the 

field strength  , and generally requires low temperatures. A comparison of classical 

annealing to quantum annealing for the travelling salesman problem in [Martoňák et al., 

2004] found that a successful low value for the starting temperature    in classical annealing 

could be used as an approximation for the resultant temperature    for quantum annealing. 

Trial runs with CA-Col and QA-Col confirmed that this usually applied to the graph  -

colouring problem as well. In attempting to find a guideline for setting the starting 

temperature for CA-Col and QA-Col, it was observed that good values of    for a problem 

instance       were often suitable for the more difficult problem instance        . This 

means that faster parameter tuning can be done by performing trial runs with high (easy) 

values of  , and the resulting starting temperature    would still be relevant for lower (more 

difficult) values of  . Obviously it is important that the high values of   are not so high as to 

be trivial. For example, the lowest value of   for which the random graph DSJC250.5 has 

ever been coloured is 28. Especially because of its small size, the instance (DSJC250.5, 30) 

can be solved very quickly. A successful value of    for (DSJC250.5, 30) can then be used to 

attempt (DSJC250.5, 29), and then (DJSC250.5, 28). Propagating    values from      

through to       is reliable, as there is only a distance of 2 colours. For DSJC250.5, trying 

to start from a much higher value such as      would be less reliable, especially as the 

instance (DSJC250.5, 50) is trivial. 

    Trial runs also play a part in the selection of the value of the starting field 

strength    for QA-Col. Here again, it is important to use higher values of   to speed up the 
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tuning. As the problem instances from a given graph   get more difficult by the reduction 

of  , it was observed that the starting value    could usually just be incremented by a few 

hundredths. Tests demonstrated that the ranges         ] and           ] are 

appropriate for many graphs in the DIMACS benchmark. 

4.4.3 Experimental results 

Table 4.1 shows the results of the experiments with CA-Col. Column 1 (Graph) contains the 

names of the graphs under consideration from the DIMACS benchmarks and the lowest 

known value k* in the literature; column 2 (k) is for the number of available colours; column 

3 (  ) contains the value for the initial temperature; column 4 (        ) contains the 

maximum number of steps; column 5 (Attempted) and column 6 (Accepted) contain the 

number of attempted and accepted moves respectively, both averaged over successful runs; 

column 7 (t) is for the average wall-clock time for the successful runs out of ten, and the hit 

rate or success ratio out of ten runs is contained in column 8 (Hit). 

 

Table 4.1: CA-Col results with a 5 hour time limit 

Graph(k
*
)

a
 k             Attempted Accepted   t[s]  Hit 

DSJC250.5(28) 28 0.35 1.0 × 10
5
 5.0 × 10

8
 1.6 × 10

7
 45 7/10 

DSJC500.1(12) 12 0.45 1.0 × 10
7
 4.8 × 10

9
 4.1 × 10

8
 489 10/10 

DSJC500.5(48)  49 0.35 1.0 × 10
6
 2.1 × 10

10
 3.8 × 10

8
 2117 8/10 

 48 0.35 1.0 × 10
6
 - - - 0/10 

DSJC500.9(126) 127 0.20 1.0 × 10
6
 2.4 × 10

10
 2.6 × 10

8
 2330 10/10 

 126 0.20 1.0 × 10
7
 - - - 0/10 

Le450_15c(15) 15 0.60 1.0 × 10
6
 6.3 × 10

8
 6.3 × 10

7
 73 10/10 

Le450_15d(15) 15 0.60 1.0 × 10
6
 3.7 × 10

8
 4.2 × 10

7
 41 4/10 

Flat300_28_0(28) 31 0.35 1.0 × 10
6
 3.9 × 10

9
 1.1 × 10

8
 375 10/10 

a
See the footnote of Table 4.2 with regards to k

*
 values 

Each of the ten runs for each problem instance       was done with a different seed to the 

random number generator.  

The main results of QA-Col are presented in Table 4.2. Column 1 (Graph) contains 

the names of the graphs and best known results; column 2 (k) contains the number of 
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available colours; column 3 (PT) contains the values for the fixed resultant temperature   ; 

column 4 ( ) contains the initial values of the field strength  , column 5 (        ) 

contains the maximum number of Monte Carlo steps to run the algorithm for. Columns 6 

(Attempted) and 7 (Accepted) contain the number of moves that were attempted and accepted 

respectively, averaged over successful runs; column 8 (ES%) contains the percentage of 

attempted moves for which we avoided having to fully calculate the actual kinetic energy 

change after the errorless swindle (ES) technique introduced in Section 4.2.2; column 9 (t) 

contains the average wall-clock time of the number of successful runs; and column 10 (Hit) 

contains the success rate of each instance out of 10 runs. 

   

Table 4.2: QA-Col results with a 5 hour time limit 

Graph(k
*
)

a
 k                Attempted Accepted ES[%] t[s] Hit 

DSJC250.5(28) 28 0.35 0.75 1.0 ×10
4
 6.1 ×10

7
 2.1 ×10

6
 95 8 10/10 

DSJC500.1(12) 12 0.45 1.30 1.0 ×10
6
 4.5 ×10

8
 3.8 ×10

7
 88 82 10/10 

DSJC500.5(48) 49 0.35 0.65 1.0 ×10
5
 4.3 ×10

8
 9.3 ×10

6
 96 63 10/10 

 48 0.35 0.75 1.0 ×10
5
 3.4 ×10

9
 7.0 ×10

7
 97 494 10/10 

DSJC500.9(126) 127 0.20 0.35 1.0 ×10
5
 7.9 ×10

8
 8.8 ×10

6
 99 103 10/10 

 126 0.20 0.38 1.0 ×10
6
 9.9 ×10

9
 1.1 ×10

8
 99 1198 10/10 

DSJC1000.1(20) 20 0.44 1.10 1.0 ×10
6
 9.1 ×10

9
 3.8 ×10

8
 85 1951 9/10 

DSJC1000.5(83) 84 0.36 0.68 2.0 ×10
7
 1.8 ×10

10
 2.8 ×10

8
 97 2842 10/10 

 83 0.36 0.72 5.0 ×10
7
 8.2 ×10

10
 1.0 ×10

9
 98 12,773 9/10 

DSJC1000.9(223) 223 0.23 0.38 1.0 ×10
8
 2.6 ×10

10
 2.2 ×10

8
 99 4100 8/10 

 222 0.19 0.375 2.0 ×10
9
 1.1 ×10

11
 5.6 ×10

8
 99 13,740 2/10 

Le450_15c(15) 15 0.60 1.60 1.0 ×10
5
 1.9 ×10

7
 1.9 ×10

6
 83 4 10/10 

Le450_15d(15) 15 0.60 1.80 1.0 ×10
5
 1.5 ×10

8
 1.3 ×10

7
 86 26 10/10 

Le450_25c(25) 26 0.30 0.48 1.0 ×10
5
 5.5 ×10

7
 2.2 ×10

6
 74 9 10/10 

 25 0.30 0.58 2.0 ×10
9
 3.7 ×10

10
 1.6 ×10

9
 86 5592 2/10 

Le450_25d(25) 26 0.30 0.48 1.0 ×10
5
 8.7 ×10

7
 2.8 ×10

6
 74 13 10/10 

 25 0.30 0.59 1.0 ×10
7
 6.7 ×10

10
 3.2 ×10

9
 87 10,069 1/10 

Flat300_28_0(28) 31 0.35 0.75 1.0 ×10
5
 1.5 ×10

8
 4.7 ×10

6
 95 19 10/10 

Flat1000_76_0(82) 83 0.36 0.67 5.0 ×10
7
 1.4 ×10

10
 1.9 ×10

8
 97 2250 10/10 

 82 0.36 0.71 5.0 ×10
7
 6.4 ×10

10
 7.9 ×10

8
 97 9802 7/10 

R1000.5(234) 239 0.11 0.07 1.0 ×10
5
 2.3 ×10

10
 5.7 ×10

8
 85 5979 10/10 

 238 0.11 0.07 1.0 ×10
8
 3.7 ×10

10
 8.9 ×10

8
 86 9511 3/10 

DSJR500.5(122) 123 0.14 0.10 1.0 ×10
8
 2.4 ×10

9
 8.1 ×10

7
 78 483 10/10 

 122 0.15 0.10 1.0 ×10
8
 1.8 ×10

9
 5.6 ×10

7
 73 370 10/10 

DSJR500.1c(85) 85 0.25 0.55 1.0 ×10
6
 3.4 ×10

9
 6.1 ×10

7
 97 525 2/10 

R250.5(65) 65 0.10 0.10 1.0 ×10
6
 1.1 ×10

9
 5.8 ×10

7
 92 168 9/10 

R1000.1c(98) 98 0.50 1.50 1.0 ×10
6
 1.6 ×10

9
 1.8 ×10

7
 98 287 10/10 

Latin_square_10(98) 98 0.45 0.90 1.0 ×10
7
 9.0 ×10

9
 9.9 ×10

7
 98 1449 10/10 

a
The values for k

*
 in the table were the best in the literature before our paper [Titiloye & Crispin, 2011a] was 

accepted for publication. Some of these were subsequently improved as a result of our further work presented in 

chapter 5 and 6 and published in [Titiloye & Crispin, 2011b] and [Titiloye & Crispin, 2012] respectively. More 

information about the origin of the k
*
 values can be found in [Lü & Hao, 2010]. 
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The maximum number of steps,          for both QA-Col and CA-Col was 

selected to be large in proportion to the size of the graph, and the known difficulties of other 

algorithms in solving them, in order to create a slow annealing schedule with increased 

chances of success. To facilitate comparisons between QA-Col and CA-Col, the value for 

         in CA-Col was set to be 10 times that of QA-Col, to provide equivalence by 

accounting for the fact that QA-Col used a population of     . Just as in the experiments 

with the travelling salesman problem in [Martoňák et al., 2004], good values for the initial 

temperature    for CA-Col tended to be good values for    for QA-Col.   

After experimenting with CA-Col for a number of  -colouring instances, it was 

apparent that it was no better than its predecessor in [Johnson et al., 1991], which mainly 

differs from CA-Col in its parameter tuning approach. Particularly, unlike the current 

powerful metaheuristics for graph colouring, CA-Col could not find any 48-colourings for 

DSJC500.5. QA-Col was able to do this easily. Even on the smaller graphs such as 

DSJC250.5 where CA-Col matched QA-Col in attaining the current best results of 28-

colourings, CA-Col required much more computational effort in terms of the number of 

attempted moves, as is apparent from the entry of DSJC250.5 in Table 4.1 and Table 4.2. 

This indicates that CA-Col is often less effective than QA-Col in escaping locally minimal 

traps. Experimenting with different values of the parameters could not improve the worse 

performance of CA-Col with respect to QA-Col. It can be seen from Table 4.2 that QA-Col 

found a new upper bound of 222 for the chromatic number of DSJC1000.9. On the other 18 

graphs, the best known results in the literature were matched except in the two cases of 

Flat300_28_0 and R1000.5. The algorithms that do best on these two graphs are known to be 

specialized to them. For example, the partial colouration algorithm in [Blöchliger & Zufferey, 
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2008] for the flat graph Flat300_28_0 and the column generation algorithm in [Malaguti et 

al., 2008] for R1000.5. 

 

4.4.4 The influence of the errorless swindle on computational 

speed 

It was shown analytically in Section 4.2.2 that the computational expense of calculating the 

change in the Hamiltonian    can be reduced throughout the running of QA-Col by first 

calculating a lower bound     , and only calculating the actual value of    in relatively 

few cases. This was termed an errorless swindle in Section 4.2.2. An important feature of this 

reduction in computational expense is that the colouring configurations that QA-Col visits are 

not changed in any way, and no errors or deviations are introduced as a result of its use. 

We now experimentally demonstrate the speed-up it provides, its relationship to the 

density of the graph, and that it does not introduce any errors. The graph k-colouring 

instances used are (DSJC1000.1, 20), (DSJC1000.5, 83) and (DSJC1000.9, 223). Provided 

that the seed of the random number generator is kept the same, QA-Col should perform the 

same operations on multiple runs for the same problem instance, if all other things are kept 

constant. Therefore, each of the problem instances is run twice: once with the errorless 

swindle turned off, and a second time with the errorless swindle turned on. There was a 

reduction in wall-clock time of 61% for (DSJC1000.1, 20), 58% for (DSJC1000.5, 83), and 

47% for (DSJC1000.9, 223) when errorless swindle was turned on. Additionally, as long as 

the seed for the random number generator was kept the same, QA-Col visited the same 

configurations and ended up with exactly the same results irrespective of whether the 

errorless swindle was turned on or off. The results also suggest that the sparser graphs benefit 

the most. 
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4.4.5 The influence of the choice of the PRNG 

The XOR shift generator with only three shifts presented in [Marsaglia, 2003] was used in all 

of our experiments. The same type of generator with seven shifts in [Panneton & L’ecuyer, 

2005] did not provide better results despite its larger period, and only resulted in longer 

computing times. A geometric random graph R250.5 could not be coloured with 65-colours 

by QA-Col when the built-in rand function available from the MinGW C++ compiler was 

used, while the XOR shift generators did not have this problem. This drawback of the built-in 

generator was not so visible on other graphs. 

The adverse effect that weaker random number generators have on R250.5 can be at 

least partially explained by the observation that a larger proportion of zero-cost moves 

(where      ) were encountered in comparison to other graphs. It is therefore reasonable 

that a strong random number generator is desirable in order to avoid getting stuck looping on 

a plateau consisting of a large number of configurations with the same potential energy.  

4.4.6 Comparison with alternative algorithms 

As CA-Col has been demonstrated to be a worse algorithm than QA-Col in Section 4.4.3, it is 

important to focus on QA-Col, and how it measures up to the leading graph colouring 

algorithms. Table 4.3 facilitates this comparison. The results from [Johnson et al., 1991] are 

in column 4 as “Joh1991”; those of [Morgenstern, 1996] are in column 5 as “Mor1996”; 

those of [Galinier & Hao, 1999] are in column 6 as “GH1999”; those of [Funabiki & 

Higashino, 2000] are in column 7 as “FH2000”; those of [Galinier et al., 2008] are in column 

8 as “GHZ 2008”; those of [Malaguti et al., 2008] are in column 9 as “MMT2008”; those of 

[Blöchliger & Zufferey, 2008] are in column 10 as “BZ 2008”; those of [Lü & Hao, 2010] are 
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in column 11 as “LH2010”; and those of [Porumbel et al., 2010b] are in column 12 as 

“PHK2010”. 

The Joh1991 results from [Johnson et al., 1991] are a selection of the best solutions 

obtained from a wide-ranging study mainly consisting of various methods of applying 

classical annealing to graph colouring, as well as some greedy and exhaustive approaches. 

The classical annealing variants considered included a penalty function approach, a kempe-

chain annealing approach and most importantly because of the relevance to this work, a  -

colouring approach. 

Table 4.3: A comparison between QA-Col and some competitive algorithms 

Graph(k
*
)

a
 QA CA Joh MOR GH FH GHZ MMT BZ LH PHK 

 -Col -Col 1991 1996 1999 2000 2008 2008 2008 2010 2010 

DSJC250.5(28) 28 28 29 28 28 28 28 28 - 28 28 

DSJC500.1(12) 12 12 13 12 - 12 12 12 12 12 12 

DSJC500.5(48) 48 49 49 48 48 49 48 48 48 48 48 

DSJC500.9(126) 126 127 128 126 - 127 126 127 126 126 126 

DSJC1000.1(20) 20 - 21 21 20 21 20 20 20 20 20 

DSJC1000.5(83) 83 - 86 84 83 88 84 83 89 83 83 

DSJC1000.9(223) 222 - 226 226 224 228 224 224 225 223 223 

Le450_15c(15) 15 15 - 15 15 15 15 15 15 15 15 

Le450_15d(15) 15 15 - 15 - 15 15 15 15 15 15 

Le450_25c(25) 25 - - 25 26 26 26 25 25 25 25 

Le450_25d(25) 25 - - 25 - 26 26 25 25 25 25 

Flat300_28_0(28) 31 31 - 31 31 31 31 31 28 29 29 

Flat1000_76_0(82) 82 - - 89 83 87 84 82 87 82 82 

R1000.5(234) 238 - - 241 - 237 - 234 247 245 237 

DSJR500.5(122) 122 - 124 123 - 122 125 122 125 122 122 

DSJR500.1c(85) 85 - 85 85 - 85 86 85 85 85 85 

R250.5(65) 65 - - 65 - 65 - 65 65 65 65 

R1000.1c(98) 98 - - - - 98 - 98 98 98 98 

Latin_square_10(98) 98 - - 98 - 99 105 101 - 99 98 
a
See the footnote of Table 4.2 with regards to k

*
 values 

 

Apart from parameter tuning, the  -colouring classical annealing algorithm in [Johnson et al., 

1991] is very similar to our CA-Col, as well as the algorithm in an earlier classical annealing 

study for  -colouring in [Chams et al., 1987]. The random graphs and geometric random 

graphs which became part of the DIMACS benchmarks were first used in [Johnson et al., 

1991]. The paper was also one of the first to present graph colouring results from a stochastic 
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local search algorithm, producing results that were the best in its time. From Table 4.3, it can 

be seen that on the first four random graphs, CA-Col slightly outperforms Joh1991, probably 

due to a different tuning approach of starting with low acceptance ratio, whereas QA-Col 

clearly outperforms Joh1991 by saving one colour on each of the four instances.  

 The Mor1996 results from [Morgenstern, 1996] are from a classical annealing 

algorithm with some design decisions that differ from [Johnson et al., 1991] on some 

important points. Low starting acceptance ratios were aimed for. This meant setting low 

starting temperatures which allowed a strategy in which decrementing the starting 

temperature was unnecessary. Therefore in contrast to [Johnson et al., 1991], experiments 

were carried out with a low fixed temperature. Although applications of classical annealing 

with a low fixed temperature are not very common in the literature, they are studied in 

[Connolly, 1990; Cohn & Fielding, 1999; Fielding, 2000]. The algorithm in [Morgenstern, 

1991] used a technique similar to that presented in [Greene & Supowit, 1986] to reduce 

efficiency issues arising from the rejection of a large proportion of bad moves. The main 

neighbourhood used was termed impasse-class. The impasse-class strategy maintains   

colour classes that together always form a proper colouring using a subset of  , as well as 

one impasse class consisting of vertices that cannot yet enter into any of the   colour classes 

without creating edge conflicts. The aim is then to empty the impasse class with exchange 

moves. Some of the good results on the random graphs were obtained by initialising the 

classical annealing algorithm not to a random state, but with colourings obtained by a semi-

exhaustive independent set extraction procedure called XRLF presented in [Johnson et al., 

1991]. Highlights of [Morgenstern et al., 1996] include being the first to present 48-

colourings for DSJC500.5 and 84-colourings for DSJC1000.5. Up until the appearance of the 

Evolutionary-Tabu algorithm in [Porumbel et al., 2010b] and our quantum annealing results 

in [Titiloye & Crispin, 2011a] it was also the only reporting of a 98-colouring for the Latin 
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square graph Latin_square_10. QA-Col outperforms Mor1996 on the larger random graphs 

and geometric random graphs and matches it on all other graphs. 

 The GH1999 results are from an Evolutionary-Tabu algorithm in [Galinier & Hao, 

1999]. Unlike an earlier Evolutionary-Tabu algorithm in [Fleurent & Ferland, 1996], the 

approach in [Galinier & Hao, 1999] and its precursor [Dorne & Hao, 1998b] carry out 

recombination by blending colour classes in a way that respects the notion that graph 

colouring is a grouping problem, and not only an assignment problem. This is rather like the 

care that was taken in Section 4.1.1 by selecting a Boolean variable system for graph 

colouring that does not suffer from obvious symmetry problems while the individuals in a 

population are cooperating. At the time, three new results of a 20-colouring for DSJC1000.1, 

83-colouring for DSJC1000.5 and 224-colouring for DSJC1000.9 were reported in [Dorne & 

Hao, 1998b]. These were also replicated in [Galinier & Hao, 1999] in addition to 83-

colourings for Flat1000_76_0 that were new at that time. In terms of the quality of results, it 

can be seen from Table 4.3 that QA-Col is able to compete with GH1999. 

 The FH2000 results are obtained from a local search algorithm in [Funabiki & 

Higashino, 2000]. It finds some of the best results available on the geometric random graphs.  

 The GHZ2008 results are from an adaptive memory approach in [Galinier et al., 

2008]. The idea of an adaptive memory algorithm for graph colouring was inspired by an 

earlier algorithm for the vehicle routing problem in [Rochat & Taillard, 1995], which stored 

components of solutions that could be combined to form a full solution to be improved by 

local search. As far as graph colouring is concerned, the adaptive memory approach is an 

interesting alternative design for a hybrid evolutionary algorithm that does not appear to be as 

strong as the more traditional design in [Galinier & Hao, 1999], considering the relatively 

weaker results  on graphs such as DSJC1000.5. Quantum annealing is able to match and 

improve upon all results presented in [Galinier et al., 2008]. 
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 The MMT2008 results are from an Evolutionary-Tabu algorithm in [Malaguti et al., 

2008].  The algorithm is combined with an exact lower-bounding procedure that is sometimes 

able to prove optimality in reasonable time. The algorithm reported 82-colourings for the first 

time for the graph Flat1000_76_0. It was also the first to prove that the chromatic number of 

R1000.5 is 234. Quantum annealing is able to match all the MMT2008 results except for 234-

colourings on R1000.5. Quantum annealing also improves on MMT2008 on some graphs 

such as DSJC1000.9 and Latin_square_10. 

 The BZ2008 results are from a Tabu search algorithm [Blöchliger & Zufferey, 2008]. 

It uses a variation of the impasse-class neighbourhood [Morgenstern, 1996] and was the first 

to produce 28-colourings for the graph Flat300_28_0. As can be seen from Table 4.3, 

quantum annealing competes well with this algorithm. 

 The LH2010 results are from an Evolutionary-Tabu algorithm in [Lü & Hao, 2010], 

which improves upon the algorithm in [Galinier & Hao, 1999] mainly by using multi-parent 

recombination operators and controlling the distance between individual members of a 

population. It is strong on the Leighton graphs, colouring all of them optimally with a 100% 

success rate and in very fast times compared to competing algorithms. It is able to replicate 

the 82-colourings of [Malaguti et al., 2008] for Flat_1000_76_0 like quantum annealing. The 

algorithm is able to find 223-colourings for DSJC1000.9 as were independently found in [Xie 

& Liu, 2009], and also improves on known results for two larger random graphs C2000.5 and 

C4000.5 that are addressed in chapter 5 and chapter 6 of this thesis. As can be seen from 

Table 4.3, quantum annealing competes well with this algorithm. 

 The PHK2010 results are from an Evolutionary-Algorithm in [Porumbel et al., 

2010b], which also extends ideas in [Galinier & Hao, 1999], mainly with multi-parent 

recombination operators and a control of the distance between the members of a population. 

However there are some structural differences in the design of its Evolutionary component as 
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well as the features of its underlying Tabu search. It uses a population spacing technique 

[Porumbel et al., 2011], which proves applicable to an enhanced version of quantum 

annealing in chapter 5. In [Porumbel et al., 2010b], 98-colourings were reported only for the 

second time in the literature since [Morgenstern et al., 1996]. Our quantum annealing became 

the third to do this [Titiloye & Crispin, 2011a]. The PHK2010 results also include 223-

colourings for DSJC1000.9, which quantum annealing is able to improve upon by finding 

222-colourings. PHK2010 also features results for the larger random graphs C2000.5 and 

C4000.5, matching the results in [Lü & Hao, 2010] and improving on C4000.5 by saving one 

colour. As can be seen from Table 4.3, quantum annealing competes well with this algorithm. 

 A contemporaneous attempt at a quantum annealing implementation for graph 

colouring by [Lecina, 2011] reported the negative conclusion that quantum annealing was 

outperformed by classical annealing. This publication appeared shortly after our journal paper 

[Titiloye & Crispin, 2011a] on which parts of this chapter are based. The definition of the 

spin variables used by [Lecina, 2011] was derived from a  -state Potts spin model for graph 

colouring which is well known in the physics community. However a direct usage of the 

Potts spin model in a population-based algorithm results in symmetry problems, as the names 

of the colours take on an unwarranted importance. An interdisciplinary approach that 

considered the success and failures of past Evolutionary-Tabu algorithms has allowed us to 

avoid this pitfall by introducing a more involved spin variable definition that avoids graph 

independent symmetry problems. 
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4.5 Conclusion 

The aim of this chapter was to design a competitive Monte Carlo quantum annealing 

algorithm for graph colouring and to study the characteristics and specializations such an 

algorithm needs to possess. Although there exist past quantum annealing studies for various 

problems including the travelling salesman problem [Martonák et al., 2004] and Boolean 

satisfiability [Battaglia et al., 2005] showing some promise in competing with classical 

annealing, they have generally been unable to compete with state of the art algorithms for the 

problem at hand. The present study set out to change that state of affairs. Each application of 

quantum annealing to a different combinatorial optimization problem requires some 

specialization especially in representing the problem as a spin model and in the choice of the 

neighbourhood moves to be performed during the search. An important feature of the graph 

colouring quantum annealing algorithm presented is the choice of the definition of a set of 

constrained spin variables that treat graph colouring as a grouping problem [Falkenauer, 

1994], and prevent the algorithm from being severely affected by symmetry problems that 

arise due to the redundancy of colour naming. A different choice of the definition of spin 

variables was at least partly responsible for the negative conclusions reported by [Lecina, 

2011] in a contemporaneous study of the application of quantum annealing to graph 

colouring. 

 In order to achieve a competitive running time in comparison to the leading 

algorithms, the change in kinetic energy needed to be computed as efficiently as possible. 

This was made more difficult by the intricate definition of our spin variables. An incremental 

technique to calculate the kinetic energy change was devised. Additionally an errorless 

“surrogate cost function swindle” [Tovey, 1988] was provided based on an upper bounding of 



77 
 

the kinetic energy change. This meant that the cost of computations could be reduced even 

further. 

Experiments have shown that quantum annealing outperforms classical annealing on 

the graph colouring problem. Quantum fluctuations defined by a population based kinetic 

energy, and controlled by a field strength parameter were effective in allowing the quantum 

annealing algorithm to tunnel to favourable states that are difficult for classical annealing to 

attain by thermal fluctuations alone. Moreover, quantum annealing proves competitive with 

the leading graph colouring algorithms which are mainly Evolutionary-Tabu hybrid 

algorithms. Most of the best results on challenging graphs from the DIMACS benchmarks are 

matched, and quantum annealing even finds a new result of 222-colourings for DSJC1000.9. 

The results of this chapter indicate that quantum annealing can be a viable approach for 

population-based stochastic local search algorithms that can be used in place of traditional 

Evolutionary algorithms. The study enhances our understanding of how to adapt quantum 

annealing to grouping problems such as graph colouring, and provides the hope of 

extensibility to similar problems. 

 A limitation of most implementations of quantum annealing, including the current 

one, is the relative difficulty in determining suitable tuning parameters in comparison to 

Evolutionary-Tabu algorithms. Studies in later chapters of this thesis will focus on parameter 

tuning issues and seek improvements. Additionally, the monitoring of the partition distance 

[Gusfield, 2002] between individuals has proved useful for preventing premature 

convergence in the leading Evolutionary-Tabu algorithms for graph colouring. An adaptation 

of this idea to quantum annealing is investigated in the next chapter.       
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Chapter 5 

Enhancements and Variations to the 

Quantum Annealing Algorithm 

Following the introduction of a quantum annealing algorithm for graph colouring in the last 

chapter, the present one deals with investigations of enhancements and variations aimed at 

making the algorithm even more competitive. 

Section 5.1 is concerned with a simplification of parameter tuning by not decreasing 

the field strength during the course of the simulation as is customary [Santoro et al., 2002; 

Das & Chakrabarti, 2008], but heuristically choosing its value so that it can be kept fixed 

throughout. In Section 5.2, the partition distance [Gusfield, 2002] is used to space the replicas 

in order to combat premature convergence. This is inspired by its success in the different 

domain of Evolutionary-Tabu algorithms for graph colouring [Porumbel et al., 2010b]. It 

marks the first time that such a replica spacing mechanism has been incorporated into any 

quantum annealing algorithm. Section 5.3 addresses the parallelization of our graph colouring 

algorithm in order to take advantage of more processing power in tackling this 

computationally intensive problem. Only sequential versions of the leading graph colouring 

metaheuristics [Malaguti et al., 2008; Lü & Hao, 2010; Porumbel et al., 2010b] are available 

even though computational times can run into several weeks for some difficult instances. We 

present a parallelized graph colouring algorithm, which also incorporates the enhancements 

in Section 5.1 and Section 5.2. 

Results and discussions are contained in Section 5.4. In Section 5.4.1 and Section 

5.4.2, empirical results for the enhanced quantum annealing algorithm are presented. Section 
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5.4.3 is concerned with comparisons with other algorithms in the literature. These are 

favourable for quantum annealing. Section 5.4.4 discusses the influences of the individual 

enhancements. Section 5.4.5 discusses variants of our algorithm, which deal with some 

peculiar instances effectively.         

5.1 The Fixed-Γ Quantum Annealing 

The initial quantum annealing algorithm for graph  -colouring presented in chapter 4 

required three critical and problem instance specific parameters to be set: a fixed 

temperature  , field strength  , and the rate of decrease of  . The standard approach to 

annealing algorithms such as classical annealing (CA) and quantum annealing (QA) involves 

the provision of a main control parameter that is decreased over time. In the case of CA, this 

parameter is the temperature  . In chapter 4, we used a linear annealing schedule to 

progressively decrease   throughout the course of a simulation, just as in [Santoro et al., 

2002; Martonák et al., 2004]. The alternative approach of keeping the main parameter 

heuristically set and fixed throughout the duration of an annealing algorithm has previously 

been investigated for CA [Connolly, 1990; Cohn & Fielding, 1999; Fielding, 2000]. Fixed-

temperature CA, also known as the Metropolis algorithm, has delivered competitive results 

for the quadratic assignment problem, travelling salesman problem and graph partitioning 

[Fielding, 2000]. Moreover, it was indicated by [Cohn & Fielding, 1999] that under certain 

conditions, a fixed-temperature classical annealing algorithm converges to a global minimum 

in finite time following from the classical theory of Markov chains.  

 It is interesting to consider whether   can be heuristically set for a given graph  -

colouring problem instance in such a way that no decrease is needed throughout the duration 

of the simulation. The main motivations for introducing a fixed-  Monte Carlo quantum 

annealing algorithm are to simplify its tuning and make it more robust. In chapter 4, the rate 
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of decrease of   was set by specifying         , the number of steps it would take to 

linearly decrease the initial value of   to zero. The value of          can be considered as 

an inverse rate of decrease of  . In order to derive a practical algorithm, the initial value of   

was not simply set to an arbitrarily high value, but to a low heuristic value that fit the 

particular problem instance. If the value of          was too small, causing the rate of 

decrease of   to be too fast, quantum annealing usually got trapped by poor local minima. It 

is particularly important in the graph k-colouring problem to reach a global minimum, as it is 

only then that the graph can be properly labelled with k colours. 

Some of the more challenging problem instances addressed in chapter 4 required such 

a large value for          that   changed only very little during the execution of the 

quantum annealing algorithm. This suggests that we can consider setting a value of   for a 

particular instance, in such a way that no decrease is necessary at all. The algorithm can then 

be terminated after passing an alternative criterion such as a time limit, or when a global 

minimum is located. This would mean that only two critical parameters,   and   would need 

to be specified for each problem instance. The experimental results from this change are 

reported in Section 5.4, and they show that it is helpful in making quantum annealing more 

robust while simplifying its tuning.  

         

5.2 Quantum Annealing with Replica Spacing 

A Monte Carlo quantum annealing algorithm maintains   different sets of configurations or 

replicas, as depicted in the Hamiltonian (4.5) and Algorithm 4.2 from chapter 4. These 

replicas are connected in a ring and interact with one another according to a shared 

component or the kinetic energy, which is the  -dependent term in (4.5). As the replicas 

interact, they become increasingly similar to each other. While this mechanism allows the 
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replicas to jointly navigate the search space and escape shallow local minima, it is obvious 

that if all replicas were to prematurely become too similar, the effectiveness of the algorithm 

would be compromised. In the context of the k-colouring problem, a useful measure of how 

different two colouring configurations are to each other is known as the partition distance 

[Gusfield, 2002]. If one replica consists of a partition of    given by              and 

another replica consists of a partition given by      
    

      
  , then the partition distance 

        is the minimum number of vertices that must change their class in  , so that   

becomes equivalent to   . In order to compute the partition distance        , we first define 

a matrix         of order   by  , and assign each entry     to the number       
  . As 

explained by [Gusfield, 2002], solving the assignment problem on the matrix         in 

polynomial time gives a number        , and the required partition distance         is 

given as            , where   is the vertex set. The assignment problem can be solved in 

      with the Hungarian algorithm [Kuhn 1965; Jonker & Volgenant, 1986; Wright, 1990].  

 The distance measure        , which ranges between   and     is useful in detecting 

when any two colourings are too similar to each other, and has been used in some successful 

Evolutionary-Tabu algorithms for graph colouring [Lü & Hao, 2010; Porumbel et al., 2010b]. 

A possible use for the partition distance in quantum annealing is to prevent any replica   

from getting too close to its two directly connected replicas   and   with which it shares spin 

products. To quantify what it means for the colouring configuration of one replica to be “too 

close” to that of another replica, we look to recent empirical studies of the spatial 

arrangement of high quality colouring configurations in the search space. In [Porumbel et al., 

2010a], experimenting with a wide variety of graphs, several  -colouring configurations from 

each graph were generated with Tabu search, and represented within a scaled three-

dimensional space. The findings were that high quality colouring configurations (with low 

numbers of edge conflicts) were arranged in several clusters, with each cluster having a size 
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of approximately        ⁄ . A successful Evolutionary-Tabu algorithm called Evo-Div 

was designed by the same authors, in which individuals of the population were restricted to a 

minimum spacing of   between themselves [Porumbel et al., 2010b]. The authors verified 

that a smaller minimum spacing distance of   ⁄  was too restrictive, while a larger value of 

   created too much diversity, and affected convergence adversely.  

Previous quantum annealing algorithms have not attempted to control the spacing of 

replicas, even though the problem of maintaining diversity amongst replicas had been 

recognised and acknowledged. For instance, in a study of the application of quantum 

annealing to the Boolean satisfiability [Battaglia et al., 2005], the authors noted that over the 

course of the execution of the algorithm, the replicas tended to collapse into a set of identical 

states prematurely. Their attempted remedy was to start increasing   to a predetermined 

maximum any time the system was trapped, and then to start decreasing it afterwards in what 

was termed “field cycling”. This achieved only limited success, but there were other possible 

responsible factors such as the structure of the potential energy landscape of the 

combinatorial optimization problem that was being investigated. 

Experiments in Section 5.4 with an enhanced version of quantum annealing 

incorporating replica spacing showed that this idea improved the algorithm considerably. 

Some test runs indicated that maintaining a minimum spacing distance of        ⁄  

empirically derived by [Porumbel et al., 2010a] for Tabu search was suitable for quantum 

annealing as well. 
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5.3 Parallelizing Quantum Annealing 

Graph colouring is computationally intensive, with some problem instances from the 

DIMACS benchmarks requiring several weeks of wall-clock time on a single processor [Lü 

& Hao, 2010; Porumbel et al., 2010b]. Yet the current leading graph colouring publications 

[Malaguti et al., 2008; Lü & Hao, 2010; Porumbel et al., 2010b] have not addressed 

parallelization. Even for combinatorial optimization problems other than graph colouring, it 

has been pointed out that research on parallel metaheuristics significantly lags that of serial 

metaheuristics [Crainic & Toulouse, 2003; James et al., 2009].  It is often not the case that 

inherently sequential algorithms can be trivially converted to parallel algorithms without 

significant modifications, even if some of these are population based. Given that most end-

users now have access to personal computers with multi-core processors, it seems justified 

that parallelized versions of algorithms for problems as computationally intensive as graph 

colouring should be addressed more thoroughly by researchers. 

5.3.1 Parallelization in the context of metaheuristics 

Research on parallel metaheuristics has been grouped into three categories by [Crainic & 

Toulouse, 2003]. Type 1 is mainly concerned with converting non population based 

sequential metaheuristics, such as classical annealing, into parallel ones by methods such as 

parallelizing the evaluation of a computationally intensive cost function, or the dividing of 

the exploration of the neighbourhood amongst available processors. With Type 2, the 

problem instance itself is broken up into regions which are divided amongst the processors. 

Type 3 applies to population based approaches where individuals divided amongst processors 

run their own local search exploring their own neighbourhoods, while communicating with 

each other periodically or not at all. 
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      Approaches using Type 1, also known as low level parallelism, aim to follow the 

sequential execution of an underlying non population based heuristic as closely as possible, 

while exploiting opportunities for data parallelism and task parallelism. In data parallelism 

[Hillis & Steele, 1986], the same operations are performed on multiple data. In task 

parallelism [Subhlok et al., 1993], various tasks are distributed amongst processors. Classical 

annealing has incorporated Type 1 parallelism by two methods known as single-trial and 

multiple-trial parallelism [Eglese, 1990]. The single-trial parallelism version of simulated 

annealing proceeds with all the processors combining to evaluate the cost function and make 

one move, therefore behaving exactly like the sequential version. Since the opportunity for 

parallelism in this case is usually limited to the evaluation of the cost function, it can be 

difficult to attain significant speedups. This is one of the reasons why multiple-trial 

parallelism has been tried. In multiple-trial parallelism, each processor independently tries to 

find an acceptable move for a shared configuration. As soon as one of the processors finds a 

move, the shared configuration is locked while it is being updated, to stop concurrent updates 

in order to prevent errors. After the update, the new configuration is broadcast to all the 

processors which repeat the process by trying to find the next move. When the move 

acceptance ratio is low, as it would be in the case of low temperatures, then a significant 

speedup may be attained due to less synchronization. However in the case of high move 

acceptance ratios, the performance can deteriorate due to the excessive periods of time spent 

by the processors waiting for each other to update the configuration. 

 Type 2 parallelism involves the splitting of the variables of the configuration of the 

problem between the processors. For example, the cities of the travelling salesman problem 

may be divided amongst the processors which perform simulated annealing on their assigned 

cities, with the aim of combining the results afterwards [Felten et al., 1985]. 
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 Type 3 parallelism refers to the case whereby the algorithm is already population 

based, and each processor possesses its own configuration (or candidate solution). There may 

or may not be interaction between the individuals in the population. In other words, the 

individuals may be independent or cooperative. In the context of classical annealing 

algorithms, this would mean each individual running a separate instance of classical 

annealing, probably with a different initial configuration, with or without the same parameter 

values. The Type 3 strategy was called  -control in [Crainic et al., 1997], and multiple-walk 

in [Verhoeven & Aarts, 1995]. Given that quantum annealing consists of interacting replicas, 

which can be viewed as individuals in a population, Type 3 parallelism is the most applicable 

to it. 

5.3.2 Parallelization in the context of graph colouring 

Even though existing parallel graph colouring algorithms from the literature are not the best 

performing ones in terms of the quality of results, a review of them is still instructive. An 

approach hybridizing an exact algorithm with a heuristic algorithm was presented by 

[Lewandowski & Condon, 1996]. A master process initiates independent processes, each with 

their own different initial colouring. Some of the processes use a branch and bound colouring 

algorithm, while the others use an iterative improvement heuristic. The cooperation between 

the processes is very limited. If any of the processes finds a colouring that results in a new 

upper bound for the chromatic number, it sends this to the master process that then broadcasts 

the message to all processes. A fraction of the processes might also occasionally abandon 

their own configurations and start from a perturbed version of the best found so far. 

Due to the high independence of the processors, and the fact that each one works on 

its own colouring, this implementation qualifies as a Type 3 under the classification of 

[Crainic & Toulouse, 2003]. However, while it is often advantageous to minimize the time 
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spent by the processors in communication, the type of information shared and how this is 

used can be very important. In this particular hybrid parallel graph colouring algorithm, the 

cooperation is basic. While the algorithm benefits from an increase in speed, it does not 

improve significantly over sequential algorithms in terms of the quality of the final 

colourings. The parallelization approach in [Morgenstern, 1996] termed Distributed 

Coloration Neighbourhood Search (DCNS) is similar to the one just described. Additional 

parallel graph colouring algorithms include the one by [Jones & Plassmann, 1993] based on 

cooperating to find independent sets; that of [Gebremedhin & Manne, 2000] based on greedy 

colouring heuristics; [Kokosinski et al., 2004] which employs recombination operators; and 

[Boman et al., 2005] based on an iterative improvement idea.      

5.3.3 A parallel graph colouring quantum annealing algorithm 

By representing the P replicas as agents that cooperate via a shared kinetic energy in order to 

minimize the Hamiltonian   from (4.5), we present in Algorithm 5.1 a distributed quantum 

annealing algorithm for k-colouring, which also incorporates the fixed-  and replica spacing 

from Section 5.1 and Section 5.2 respectively. The algorithm can either be considered to be 

parallelized or distributed depending on the hardware architecture being used. It can also be 

considered to belong to the Type 3 category according to the classification of [Crainic & 

Toulouse, 2003]. There is some flexibility and simplification in presenting Algorithm 5.1 

from the point of view of only one agent (or replica). The advantage comes from the fact that 

all agents behave in the same way on different data, that is, the algorithm takes a data parallel 

approach.  

 Line 1 is for the input of the graph  , the number of available colours  , the multiplier 

to the neighbourhood size  , the number of replicas  , the temperature   and the field 

strength  . Unlike in the initial version of quantum annealing for graph colouring in 
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Algorithm 4.2 in chapter 4, there is no need for the inverse decrement rate          here as 

  is kept constant throughout the duration of the algorithm. Line 2 initializes the estimation of 

the neighbourhood size. Line 3 announces the discovery of a proper  -colouring, or that no 

proper  -colouring could be found after the satisfaction of a termination criterion such as a 

time limit. On line 4, each agent initializes its configuration   randomly and also randomly 

initializes place-holder copies of its two neighbouring configurations    and   .  On line 5 

each agent starts a while loop, which exits when a termination condition such as a time limit 

is satisfied.  

Algorithm 5.1: Messaging protocol for each quantum annealing replica 

1. Input:        ,  ,  , , ,  

2. Initialize:          
3. Output: “Yes” if a proper k-colouring is found or “No” otherwise  

4. Randomly initialize configurations  , and local neighbour copies    and    

5. While termination condition is not met 

6.    If distances           and           are each larger than      ⁄  

7.       Send own configuration   to neighbours   and   

8.       Receive and update    and    if available   

9.    Else      

10.       Perturb   by randomly changing the colour of a  of      ⁄  random vertices 

11.                
12.    While                
13.       Randomly select a vertex    conflicting in   

14.       Change colour of   to a new randomly selected colour to derive    

15.               
         

16.       Calculate    using    and     

17.       If        Or      

18.               
19.       Else  

20.          With probability exp     ⁄  ,      

21.                             
22.    End While 

23. End While 

 

On line 6, each agent      computes the partition distance between itself and its two 

neighbours   and   as           and           respectively and checks if each of the 

distances is larger than        ⁄ . If this is the case, then      executes line 7 and line 8, 
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sending its configuration to   and   and also receiving their own configurations if they have 

been sent. Otherwise, this means that      is too close to at least one of   and  . The agent 

     therefore proceeds to line 10 and perturbs its configuration by randomly choosing 

       ⁄  vertices and changing the colour of each of them to a randomly chosen colour.  

On the remaining lines, each agent executes steps similar to those at the corresponding stage 

in the initial graph colouring quantum annealing algorithm in Algorithm 4.2 in chapter 4. The 

main compromise in using the data parallel distributed algorithm in Algorithm 5.1 is that 

each agent has to make use of a slightly outdated state of its neighbours in order to have the 

increased autonomy and the efficiency gains which follow from not having to synchronize 

every time a change is made. Experimental results in Section 5.4 show that this compromise 

does not result in any noticeable drawback. 

5.4 Results and Discussion 

5.4.1 Experimental set-up 

Various aspects of the enhanced graph colouring quantum annealing algorithm were tested on 

some of the most challenging graphs from the DIMACS benchmarks. The enhanced quantum 

annealing algorithm leaves   fixed, intervenes to control the similarity of the replicas, and is 

parallelized by an agent-based messaging protocol. Implementation was done in GNU C++ 

and run on a Linux operating system with hardware consisting of a single desktop PC with 

6GB of RAM and a six-core processor with 2.6GHz per core. 

An important feature of the algorithm is the parallelism. Algorithm 5.1 was designed 

to be adaptable to different architectures such as shared memory and message passing, or a 

combination of both. The current implementation uses Open Multiprocessing (OpenMP) on 

the shared memory architecture of a multi-core desktop PC. OpenMP is a parallelism 
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standard built into the GNU C++ compiler, which takes care of low level parallelization 

details after required directives have been specified. In terms of memory management, there 

are global areas that can safely be accessed by all agents, and there are local areas exclusive 

to each individual agent. 

The most straightforward areas that can be designated global are the read-only data 

structures for the graph. These consist of the adjacency matrix and the adjacency lists. Other 

read-only data structures are the ones for the look-up tables for the exponential function. It is 

clear that no corruption can occur here as the agents do not write to these data structures. The 

more critical cases involve giving each agent access to its neighbour’s configurations in order 

to calculate changes in spin products and the kinetic energy, corresponding to line 16 of 

Algorithm 5.1. This is tackled by providing a collection of the copies of each agent’s 

configurations that is maintained as read-only when the agents are searching. There is then a 

synchronization point corresponding to lines 6-8, where a master thread brings the shared 

copy of the agents’ configurations up to date with the local copies. Examples of data that 

need to be localized and individualized to each agent include the array storing the colouring 

configuration, the dynamic set of conflicting vertices, and the list of dynamic sets for the 

colour classes, which were discussed in Section 4.3 of chapter 4. Additionally any data 

structures used by the pseudo random number generator should be exclusive to each agent to 

avoid corruption. 

Load balancing conditions are favourable to our implementation as each agent 

attempts the same      moves before a synchronization barrier is encountered where the 

master thread updates the shared copy of configurations. Out of the six processor cores 

available, only five were used so that the sixth was free for any system processes. In our 

current experiments the number of replicas was set to     , meaning that there were 
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always 20 agents. OpenMP automatically load balances these among the 5 available 

processors. 

The problem instance specific values to which    and   were fixed were obtained by 

the procedure in Section 4.4.2 of performing short trial runs on easier related instances. In 

many cases, the tuned parameter values for    and   are the same as those of chapter 4. To 

take advantage of the additional processing power afforded by the parallelization, the 

neighbourhood estimation multiplier was set to     in this chapter, as opposed to     

in chapter 4. 

 

5.4.2 Experimental results 

The implementation of the enhanced quantum annealing from Algorithm 5.1 described in the 

Section 5.4.1 was run multiple times on instances from some difficult DIMACS graphs. The 

results are presented in Table 5.1.  

 

Table 5.1: Results for quantum annealing with 5 processor cores 

Graph(k
*
)

a
 k      Attempted Accepted t[m] Hit 

DSJC500.5(48) 48 0.35 0.70 2.9 ×10
9
 5.8 ×10

7
 1 10/10 

DSJC500.9(126) 126 0.20 0.37 6.9 ×10
9
 7.0 ×10

9
 3 10/10 

DSJC1000.1(20) 20 0.44 1.05 4.7 ×10
9
 2.3 ×10

8
 3 10/10 

DSJC1000.5(83) 83 0.36 0.67 3.9 ×10
10

 4.6 ×10
8
 24 10/10 

DSJC1000.9(222) 222 0.19 0.375 1.8 ×10
11

 8.1 ×10
8
 84 2/10 

Le450_25c(25) 25 0.28 0.55 7.0 ×10
10

 1.4 ×10
9
 26 10/10 

Le450_25d(25) 25 0.28 0.55 1.4 ×10
11

 2.3 ×10
9
 49 7/10 

Flat300_28_0(28) 31 0.35 0.70 1.5 ×10
8
 4.7 ×10

6
 < 1 10/10 

Flat1000_76_0(82) 82 0.36 0.67 4.0 ×10
10

 4.7 ×10
8
 24 10/10 

R1000.5(234) 238 0.11 0.07 5.1 ×10
10

 9.4 ×10
8
 45 4/10 

DSJR500.5(122) 122 0.15 0.10 9.6 ×10
9
 3.1 ×10

8
 7 5/10 

R250.5(65) 65 0.10 0.10 3.5 ×10
9
 2.1 ×10

8
 2 10/10 

Latin_square_10(98) 97 0.45 0.95 2.0 ×10
11

 2.0 ×10
9
 132 1/10 

C2000.5(148) 147 0.32 0.60 1.5 × 10
12

 7.0 × 10
9
 928 5/5 

a
The values for k

*
 in the table were the best in the literature before our paper [Titiloye & Crispin, 2011b] was 

accepted for publication. Some of these were subsequently improved as a result of our further work presented in 

chapter 6 and published in [Titiloye & Crispin, 2012]. More information about the origin of the k
*
 values can be 

found in [Lü & Hao, 2010]. 
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Column 1 (Graph) contains the name of the graph and the number of colours used in the best 

colourings in the literature. Column 2 (k) contains the number of colours used by the best 

results obtained in our experiments on each graph. Columns 3 (PT) and 4 ( ) contain the 

tuned values of the resultant temperature    and the field strength   respectively for each 

instance. Columns 5 (Attempted) and 6 (Accepted) report the average number of attempted 

moves and the average number of accepted moves respectively for each problem instance. 

Column 7 (t) contains the average wall-clock time in minutes for a successful run, while 

column 8 (Hit) reports the success rate out of a number of runs. Experiments were run with a 

termination condition of a limit on the wall-clock time used. This was set to 1.5 hours for all 

graphs except Latin_square_10 and C2000.5, which were set to 2.5 and 20 hours 

respectively.   

Enhanced quantum annealing finds a new upper bound of 97 on the chromatic number 

of the Latin square graph Latin_square_10. Additionally the algorithm improves on recent 

results of 148-colourings for the random graph C2000.5 by finding 147-colourings. The 

Leighton graphs Le450_25c and Le450_25d are already known to be coloured optimally, and 

therefore no improvement could have been made there. On the other graphs, exploratory 

experiments carried out with longer running times suggested that they would not be 

improved. The results of many of these graph had also not been improved for about two 

decades despite several attempts by researchers. The robustness of the enhanced algorithm is 

also better than the initial quantum annealing of chapter 4 in terms of the success ratio (Hit) 

of the algorithm reported in the last column of Table 5.1.   

5.4.3 Comparison with alternative algorithms 

In this section, the results from the enhanced quantum annealing algorithm are compared to 

those from six important publications. In Table 5.2, these are indicated as Mor1996 
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[Morgenstern, 1996], GHZ2008 [Galinier et al., 2008], MMT2008 [Malaguti et al., 2008], 

BZ2008 [Blöchliger & Zufferey, 2008], LH2010 [Lü & Hao, 2010], and PHK2010 

[Porumbel et al., 2010b]. They have been discussed in Section 4.4.5 of chapter 4. It is 

customary to compare different graph colouring algorithms using the criterion of the lowest 

value of   attained as other criteria such as the time taken are difficult to compare in a fair 

way. Another good reason for using the quality criterion is that it is a good discriminator 

between excellent algorithms and poorer ones. Most of the time a substandard graph 

colouring algorithm is not able to replicate the results of better algorithms even when allowed 

an exorbitant amount of time. Quantum annealing matches all the other algorithms on the 

random graphs and just like the initial version in chapter 4, finds a 222-colouring for 

DSJC1000.9, which none of the others had been able to report. Our algorithm finds 25-

colourings for the two challenging Leighton graphs Le450_25c and Le450_25d with high 

success ratios of 100% and 70%. 

     

Table 5.2: A comparison between quantum annealing and some leading algorithms 

Graph(k
*
)

a
 QA Mor GHZ MMT BZ LH PHK 

  1996 2008 2008 2008 2010 2010 

DSJC500.5(48) 48 48 48 48 48 48 48 

DSJC500.9(126) 126 126 126 127 126 126 126 

DSJC1000.1(20) 20 21 20 20 20 20 20 

DSJC1000.5(83) 83 84 84 83 89 83 83 

DSJC1000.9(222) 222 226 224 224 225 223 223 

Le450_25c(25) 25 25 26 25 25 25 25 

Le450_25d(25) 25 25 26 25 25 25 25 

Flat300_28_0(28) 31 31 31 31 28 29 29 

Flat1000_76_0(82) 82 84 84 82 87 82 82 

R1000.5(234) 238 241 - 234 247 245 237 

DSJR500.5(122) 122 123 125 122 125 122 122 

R250.5(65) 65 65 - 65 65 65 65 

Latin_square_10(98) 97 98 104 101 - 99 98 

C2000.5(148) 147 - - - - 148 148 
a
See the footnote of Table 5.1 with regards to k

*
 values 

 

Many of the algorithms in the literature not listed here struggle with finding 25-colourings for 

these Leighton graphs. The graph Flat300_28_0 is a peculiar case that was not coloured with 
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28-colours until 2008 by [Blöchliger & Zufferey, 2008] despite being used in experiments in 

the literature since the 1993 DIMACS competition. Although we report only 31-colourings in 

our general experiments, we show in Section 5.4.4 how special cases of our algorithm can 

find 28-colourings. On the larger flat graph Flat1000_76_0, quantum annealing matches the 

82-colourings first reported by [Malaguti et al., 2008], and subsequently reported by [Lü & 

Hao, 2010] and [Porumbel et al., 2010b]. 

 Quantum annealing is also strong on the random geometric graphs R250.5 and 

DSJR500.5, reaching the best ever results of 65 and 122 respectively. The algorithms by 

[Morgenstern, 1996] and [Blöchliger & Zufferey, 2008] could only reach 123 and 125 

respectively. 

 The 97-colouring for the Latin square graph Latin_square_10 is new, and an 

improvement over the previous best results of 98-colourings first reported by [Morgenstern, 

1996], and later by [Porumbel et al., 2010b]. The 147-colourings for the large random graph 

C2000.5 outperform the result of 148-colourings reported by both [Lü & Hao, 2010] and 

[Porumbel et al., 2010b]. 

5.4.4 The influence of introduced features 

It is important to measure the effectiveness of our parallel algorithm at providing a speedup 

when running on multiple processors instead of just one. Two widely used measurements in 

the parallelization of algorithms are termed speedup and efficiency. Adopting the notation 

from [Cung et al., 2002], for a problem  , and a parallel algorithm    running on a machine 

  with   identical processors, then          is the time taken by    to solve   on   

using     processors. Additionally,    
 represents the time taken by the best sequential 

algorithm running on the same type of processor in  . With these definitions, the speedup 

         provided with   processors can be written as 
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 . 

 

In the context of our experiments and as mentioned in [Cung et al., 2002],    
 is replaced 

by         , the time it takes to run our parallel algorithm using only one processor of  . 

In order to present numerical results for the speedup, the instance     DSJC500.5       

was solved a hundred times first with the parallel algorithm, initially with 1 processor core 

and then with 5 processor cores. The average time of 285 seconds was used with 1 processor, 

while this was 70 seconds with 5 processors. The ratio          for the given problem 

instance is then      ⁄ , yielding a value of about 4. This means that using 5 processors 

results in a speedup of about 4. 

 The second measurement denoted efficiency is a generalisation of the speedup that 

aims to factor out the number of processors.  The efficiency          is given as 

 

                                                                             
        

 
 . 

         

The closer the value of the efficiency is to 1, the better the effect of the parallelization. An 

efficiency of 1 represents a linear speedup which is generally difficult to achieve. In the case 

of our example with the problem instance                   , the efficiency is given 

by            ⁄  or 0.8. 

 The benefit of the enhancement of not having to decrease the field strength   is clear 

in that the results of Table 5.1 are at least as good as (and in some cases better than) the ones 

in Table 4.2 in chapter 4, without the burden of having to specify an extra parameter 

         to control the rate of change of  . In addition to having to find an appropriate 
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initial value for  , the initial implementation of quantum annealing ran the risk that an 

inappropriate value of          would be set, causing failure. This risk was removed with 

the fixed-  enhancement and efforts only need to be concentrated at finding a suitable value 

of   and   for each instance. 

Additional experiments were carried out to demonstrate the efficacy of the replica 

spacing enhancement. The implementation of Algorithm 5.1 was run 10 times for the 

instance                     with replica spacing disabled and with the parameter 

settings         and       . Apart from the disabling of the replica spacing component, 

all other conditions were the same as those used for the results in Table 5.1, including the 5-

hour time limit. None of the 10 attempts were successful at reaching an 83-colouring. This 

was in contrast to the 100% success rate achieved with the replica spacing component in 

place. It was only when the larger value of      was set for   and the time limit was relaxed 

that solutions were found. However, this led to a three-fold increase in the time taken. 

Generally, if all other conditions are equal, a simulation with a higher value for   would take 

longer to complete, at it spends a lot of time in the regions where the moves made are similar 

to a random walk. It can be deduced that replica spacing allows a lower value of   to be set 

with little risk of premature convergence, while simulations not using replica spacing may be 

forced to use higher values of  , and hence larger amounts of time in order solve the same 

problem instance.  

Table 5.3 displays the number of searches by the replicas and the number of times a 

perturbation had to be applied to a configuration because it was too close to its connected 

neighbours. As can be seen from Table 5.3, the perturbation count is usually only a small 

fraction of the total number of searches. But this has usually been enough to prevent 

premature convergence of the replicas. The figures in Table 5.3 are averaged over the number 

of successful runs in the same experiments as in Table 5.1 
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Table 5.3: Measuring the amount of perturbation used 

Graph k Replica search count Perturbation count 

DSJC500.5 48 14880 0 

DSJC1000.1 20 29313 51 

DSJC1000.5 83 58860 1025 

Le450_25c 25 330706 23 

Le450_25d 25 1553078 32 

Flat100_76_0 82 60358 1202 

C2000.5 147 668190 1150 

 

 

The geometric random graphs never produced configurations that caused replicas to 

come with      ⁄  of each other. Therefore the replica spacing routine was never triggered 

for these graphs. The very dense random graphs with       such as DSJC500.9 are also not 

very reliant on perturbations and the replica spacing component. Our experiments showed 

that even when two replicas came within      ⁄  of each other, this usually corrected itself 

and the replicas moved away from each other again. Turning on the replica spacing 

component initially appeared to be disruptive to these graphs and was therefore not used for 

the experiments in [Titiloye & Crispin, 2011b]. However further experiments revealed that 

although the replica spacing component could cause very dense random graphs to take a 

longer time to produce colourings, the process itself is not disrupted and robustness can 

actually be improved by using it. We therefore switched replica spacing on for very dense 

graphs in further experiments related to the study of parameter tuning in chapter 6. 

5.4.5 Variations and special cases 

One feature our Monte Carlo quantum annealing algorithm shares with Evolutionary 

algorithms is that they are both based on the interaction between individuals in a population. 

In the case of graph colouring, they work on the premise that two different configurations of 

high quality often share common components. There is usually a correlation between low 
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lying local minima in terms of the composition of their colour classes [Culberson & Gent, 

2001; Hamiez & Hao, 2004]. However we should expect the level of this correlation to be 

dependent on the probability distribution from which a graph is drawn, or the method by 

which it is constructed. When dealing with a graph exhibiting a low level of correlation 

between its colouring local minima, forcing a high amount of cooperation between 

individuals may not yield much benefit, and may even be counterproductive. 

Quantum annealing does have a method to finely regulate the amount of cooperation 

in the replicas by adjusting the initial value set for the field strength  . A high value for   

means less interaction and more individual freedom, while a low level for   means more 

interaction and less individual freedom. One graph from the DIMACS benchmarks that has 

traditionally not been able to benefit substantially from the interaction of a population is the 

Latin square graph Latin_square_10. Some key results from leading algorithms seem to 

suggest that colouring Latin_square_10 with just the local search component is more 

productive than using the full Evolutionary-Tabu approach. For example, the Evolutionary-

Tabu algorithm in [Malaguti et al., 2008] could not match the long-standing upper bound of 

98 found by [Morgenstern et al., 1996], and could only colour this graph with 101 colours. 

(From the results of quantum annealing in Table 5.1, we now know that Latin_square_10 is 

in fact 97-colourable). Another leading Evolutionary-Tabu algorithm by [Lü & Hao, 2010] 

only found 99-colourings. In a third Evolutionary-Tabu publication by [Porumbel et al., 

2010b], the regular approach which works well for other graphs only finds 100-colourings. 

However a variant of the main approach does find 98-colourings. Interestingly, the 98-

colourings were found by increasing the number of iterations used by the Tabu search phase a 

hundred fold from 100,000 to 10,000,000. Although it was not stated explicitly in [Porumbel 

et al., 2010b], this minimizes the effect of the evolutionary phase. Even then, the success rate 

was    ⁄  with an average time of 12 hours on a single processor core. In contrast, as can be 
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seen from Table 4.2 in chapter 4, quantum annealing achieves a 100% success rate in finding 

98-colourings, while requiring less than 1 hour on a single processor core.  

In order to confirm that quantum annealing benefits from less cooperation for 

Latin_square_10, the field strength was set to a very large value of      , which decouples 

the replicas, making them behave like parallel classical annealing. The value of the 

temperature was kept the same at        . There was no change in the effectiveness of our 

algorithm in finding 98-colourings. In contrast, trying to find 83-colourings for the random 

graph DSJC1000.5 by setting the same       failed. The replicas simply behaved in a 

manner similar to a random walk. The next stage was to determine if the success rate for 97-

colourings could be improved from the 10% reported in Table 5.1 by decoupling the replicas. 

This was indeed the case. The success rate turned out to be 100% in 5 runs in an average 

wall-clock time of about 20 hours with 5 processor cores. It was checked that allowing this 

much time while having interacting replicas with a low   did not have the same effect. 

Decoupling the replicas was the key to getting an improved performance for 

Latin_square_10. 

Another graph that can be considered an anomaly is the flat graph Flat300_28_0. 

Despite consisting of only 300 vertices and studied in the context of graph colouring since 

1993, it was only in 2008 that 28 colourings were found [Blöchliger & Zufferey, 2008]. 

Before then, no results better than 31-colourings were reported in the literature. Here again, 

non-population based metaheuristics have fared better than population based ones. In 

particular it was noticed by [Blöchliger & Zufferey, 2008] that the impasse-class 

neighbourhood [Morgenstern, 1996] was advantageous for the graph. Since the kinetic 

energy is not important in a decoupled version of quantum annealing, a variant of our 

algorithm that used the impasse-class neighbourhood could be readily implemented. This 

variant was able to find 28-colourings in an average time of less than 1 hour on 5 processors. 
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We next reverted back to the basic fixed-  neighbourhood used for all other instances and 

found that if additional time of up to 24 hours on 5 processors was allowed, 28-colourings 

could be found using the usual neighbourhood as well, with a 100% success ratio over  5 

independent runs. 

                 

 

5.5 Conclusion 

The main aim of this chapter was to provide enhancements to the quantum annealing 

algorithm in order to improve its performance for the graph colouring problem. The first 

change presented was a fixed-  approach inspired by analogous fixed-temperature schedules 

for classical annealing. This modification led to a simplification of the tuning process and an 

increase in the robustness of the quantum annealing algorithm. The second enhancement 

involved the spacing of replicas. This was inspired by similar techniques in evolutionary 

algorithms designed to prevent premature convergence. Experiments showed that this 

improved the results of quantum annealing in terms of the success rates, and it enabled a new 

result to be found for a large random graph. The third enhancement was the parallelization of 

the algorithm by the presentation of an agent based messaging protocol. Experiments showed 

that an impressive speedup was achieved, enabling hard problem instances to be solved in 

much quicker times than would otherwise have been possible. Variations of quantum 

annealing based on the exploration of a different neighbourhood were also considered, 

enabling an atypical problem instance to be optimally solved quickly.    
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Chapter 6 

Tuning Patterns for the Colouring of 

Random Graphs 

This chapter deals with investigations into patterns that help in the decision of how to set the 

parameters of quantum annealing in order to increase the chances of finding a global 

minimum for the  -colouring problem when random graphs are under consideration. 

 Section 6.1 and Section 6.2 review the existing approaches to tuning classical 

annealing and quantum annealing respectively. Section 6.3 addresses tuning features specific 

to graph colouring for quantum annealing, with an emphasis on random graphs, which are 

widely used as benchmark problems. In Section 6.4, we report the first 82-colourings for 

DSJC1000.5 in the literature, discovered after observing variances for parameter tuning of a 

random graph as the value of   changes. Section 6.5 investigates the evolution of the 

acceptance ratio for favourable and unfavourable parameter settings and important patterns 

are observed. This contributed to the discovery of additional new benchmark results, 

including 47-colourings for DSJC500.5, 145-colourings for C2000.5, 259-colourings for 

C4000.5 and 400-colourings for C2000.9.   

6.1 Approaches to Tuning Classical Annealing 

Standard versions of the classical annealing algorithm require the specification of a 

temperature parameter  , and a rate of decrease of  . The setting of these parameters is often 

termed an annealing schedule. In order to guarantee convergence to a global minimum of any 



101 
 

cost function or Hamiltonian   , an inverse logarithmic schedule is needed. From the theory 

of Markov chains, it is known that such a schedule requires that the temperature at each 

Monte Carlo step satisfies the relation                 ⁄  where   is a measure of time 

in Monte Carlo steps and   , the initial temperature, is a large constant dependent on the 

characteristics of the problem at hand [Geman & Geman, 1984; Hajek, 1985; Mitra et al., 

1986]. A bound for the value of the constant    was given in [Hajek, 1985] as      , where 

   is maximum value of the depth   of all local minima that do not correspond to a global 

minimum. The depth   of a locally minimal configuration is the smallest value of an uphill 

move         needed in order to escape from that local minimum. This is more 

rigorously defined in [Hajek, 1985]. 

 Although the inverse logarithmic schedule (also known as the canonical schedule) 

guarantees convergence to the global minimum, it is extremely slow. As a result, faster 

schedules that work well in practice but may forgo guaranteed convergence have to be used. 

Annealing schedules are categorized into static and adaptive approaches. In the static 

approach, an initial temperature and rate of decrease of the temperature are specified, and 

these never change until the algorithm is terminated. On the other hand, the adaptive 

approach such as the one by [Lam & Delosme, 1988] attempts to react to information 

obtained during the search process, and to use this to determine what the temperature or the 

rate of decrease should be at any given time.  Two main types of static schedules are the 

geometric and linear schedules. The geometric schedule, also known as the exponential 

schedule was first used in [Kirkpatrick et al., 1983]. 

 A geometric schedule is characterized by the relation        . Here again,    is an 

initial temperature larger than zero and    is the temperature at time  . The constant   is 

chosen to be between zero and one. For example,   was set to     in [Kirkpatrick et al., 

1983]. At each temperature   , a Markov chain consisting of several moves is searched before 
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the temperature is reduced in the next time step. One method of tuning    is to calculate the 

maximum value of    , the change in the cost function, and set    to it. This approach is 

known to be computationally intensive [Aarts et al., 1997]. Instead, test runs can be used to 

empirically determine a value for    at which all moves or almost all moves are accepted 

[Kirkpatrick et al., 1983]. 

A linear schedule can be defined as              ⁄  , where      is a pre-

defined maximum number of Monte Carlo steps (equivalent to          in chapter 4) for 

which we are willing to run the algorithm. It is simpler than the geometric schedule. 

Although the linear schedule is not as widely used as the geometric schedule, an analytical 

study has determined with a problem of small size that both schedules are of similar 

effectiveness [Strenski & Kirkpatrick, 1991]. The linear temperature schedule was used in the 

implementation of classical annealing that was compared to quantum annealing for the 

travelling salesman problem [Martoňák et al., 2004], and also for the classical annealing 

graph colouring algorithm in chapter 4 of this thesis. Although    can be tuned as already 

described for the geometric schedule, a lower starting temperature obtained by exploiting 

problem specific characteristics may be more effective in some circumstances. This has also 

been observed for a rarely used schedule that maintains such a heuristically obtained low 

temperature fixed    for the whole duration of the algorithm [Connolly, 1990; Cohn & 

Fielding, 1999; Fielding, 2000]. In [Connolly, 1990],    was determined for the quadratic 

assignment problem by performing short trial runs and choosing the temperature according to 

the lowest and highest values for the cost function during the trial. Instead of starting from a 

random initial configuration, a construction heuristic could be used to provide a better initial 

configuration which could permit the temperature to be tuned to a low value without the 

algorithm getting trapped [Johnson & McGeoch, 1997]. 

.                   
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6.2 Approaches to Tuning Quantum Annealing 

In a quantum annealing algorithm, the field strength   is the main tuning parameter. 

However, many of the same issues still apply, and it is possible to try the same annealing 

schedules used for classical annealing. The number of replicas   needs to be set for quantum 

annealing. It was previously unclear how sensitive the value of   was over a variety of 

problem instances from the same optimization problem. This was partly because of a 

shortcoming in the Physics quantum annealing literature, whereby it was customary to 

consider only one problem instance in all experiments for a publication. For example, only 

the one TSPLIB [Reinelt, 1991] instance pr1002 was used in a study of quantum annealing 

for the travelling salesman problem [Martoňák et al., 2004]. Additionally only a single 

10,000 variable random 3-SAT instance was used in an application of quantum annealing to 

Boolean satisfiability [Battaglia et al., 2005]. However, chapter 4 of this thesis considered 

several problem instances for the graph  -colouring problem using the same value      

for all of them and achieving competitive results. Therefore it would appear that good values 

of   do not vary considerably from one instance to another, and one can concentrate on 

finding the patterns that determine good initial values of the field strength   and the 

temperature   for various problem instances, and at what rate they should be decremented if 

at all. It is our aim to use the simplest annealing schedule that can be effective, as an overly 

complicated tuning procedure threatens the usability of an algorithm. Standard versions of 

quantum annealing prescribe that the temperature be fixed (to a determined low value), and 

the field strength set to a high value to be gradually lowered towards zero [Santoro et al., 

2002]. There are variants of quantum annealing that decrement the temperature as well as the 

field strength [Lee & Berne, 2000; Kurihara et al., 2009; Sato et al., 2009]. It is possible that 

the best treatment of the temperature depends on the optimization problem at hand. A fixed 
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temperature appears to be favourable for the graph  -colouring problem just as in past studies 

for the Ising model [Santoro et al., 2002; Martoňák et al., 2002] and the travelling salesman 

problem [Martoňák et al., 2004]. Suitable values of the fixed temperature still have to be 

sought. 

 At least partially because classical annealing has been studied for a lot longer and a 

lot more than quantum annealing, knowledge about parameter tuning for quantum annealing 

is not as advanced as that of classical annealing. The process of determining the starting 

values for   and   for the two-dimensional random Ising Model study in [Santoro et al., 

2002] was not very systematic. Instead, a number of trial runs were performed and the best 

performing values were chosen. The study in [Martoňák et al., 2002] attempted to go further 

by examining the dependence of quantum annealing on varying values for the number of 

replicas   and a low temperature  .  The field strength   was determined in the same way as 

in [Santoro et al., 2002]. In both cases,   was then slowly lowered towards zero with a linear 

annealing schedule. During several experiments on the same random Ising Model problem 

instance, three different values of the quantity    were tried. Values for the resultant 

temperature of              and      were experimented with, while also varying   

from between 5 and 50 in various experiments. Various plots were then produced to show the 

relationship between the parameter settings and the rate of decrease of the cost function over 

different lengths of annealing time. This way, it was determined that the settings      and 

     were very good for the two dimensional random Ising Model considered. 

 In the case of the quantum annealing study for the travelling salesman problem in 

[Martoňák et al., 2002], quantum annealing was tuned by first tuning classical annealing. 

While classical annealing can operate from a high temperature that is gradually lowered, the 

standard quantum annealing needs a low fixed temperature. In order to derive a suitable value 

for the fixed temperature to be used for an instance pr1002, several short classical annealing 
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trial annealing runs of various lengths were performed. A dynamical temperature      

defined as the temperature for which cooling curves for various lengths of annealing times 

started to differ was determined. The initial temperature for longer classical annealing runs 

was then set as         for an alternative type of schedule with low starting temperatures. 

More interestingly, it was observed that a suitable way to tune quantum annealing was to 

set        . The performance of quantum annealing is less sensitive to the value of  , and 

was set as      based on the availability of computing resources. To set higher values 

for  , it is sufficient to simply adjust   accordingly such that the same working value for    

is maintained. This behaviour was also observed for the graph  -colouring problem in 

chapter 4 and chapter 5. Setting the value of the field strength   for the travelling salesman 

problem appeared to require less care, and a large initial value of        was set and 

linearly reduced towards zero. 

 

6.3 Tuning for Graph Colouring 

We now focus on parameter tuning for the graph  -colouring problem. The nature of the  -

colouring problem presents challenges as well as opportunities not generally present in other 

combinatorial optimization problems. For any graph   and number of colours  , the  -

colouring problem is concerned with whether the instance       possesses a configuration   

such that the number of conflicts (or cost function)    is zero. Although it has become 

customary for researchers to test their algorithms on problem instances with values of   

already known to be solvable in the literature, it is also possible to perform a higher level 

optimization procedure as follows: First colour   using a greedy heuristic [Brélaz, 1979; 

Leighton, 1979] to obtain an upper bound    for the chromatic number, then set        
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and attempt to find a colouring with the main solver. If successful, increasingly difficult 

instances        ,         and so on are attempted, until some readily computable 

lower bound such as a clique size in   is reached, or another termination condition such as a 

time limit. Something similar to the described approach was used in [Malaguti et al., 2008]. 

Apart from being a higher level optimization procedure to estimate the chromatic number   

of a graph, it forms the basis of a useful tuning procedure. Since there are a series of related 

problem instances of progressively increasing difficulty, the same (or a minor adjustment) of 

the parameters used for       can be tried for        . Carrying out most of the tuning on 

the easier instances with a larger   can result in an easier tuning procedure. This is what was 

done in chapter 4 and chapter 5. More specifically it was observed that in many cases, the 

same low fixed temperature  , or the same resultant temperature    could be used for 

instance       and        . Additionally, once a suitable value for the field strength   had 

been found for      , a reasonable value of   for         was usually obtainable by 

adjusting that of       by a few hundredths in a somewhat predictable manner. 

 The structure of a graph influences what parameters are likely to be suitable. 

Invariants like the edge density, maximum degree, minimum degree and average degree 

affect the energy landscape induced by a problem instance. Intuitively, different graphs that 

are generated from the same probability distribution or with a similar strategy are likely to 

share a common tuning pattern that can be discovered. In order to verify that this is indeed 

the case, and to study what patterns there are if any, it is useful to focus on graphs generated 

from the same distribution. The Erdös-Rényi [Gilbert, 1959; Erdös & Rényi, 1959; Erdös & 

Rényi, 1960; Bollobás, 2001] is a well-known model of random graphs studied extensively 

theoretically, and widely used in experiments for various graph optimization problems. They 

are easy to generate, and a standard benchmark of graphs of various sizes and densities 

provided by the second DIMACS [Johnson and Trick, 1996] competition are readily 
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available for researchers to compare results. In the Erdös-Rényi        model, a graph of   

vertices is generated by independently including each of the ( 
 
) possible edges with 

probability  . The case of       is especially appealing as every graph from that 

distribution is chosen uniformly at random from all the  (  ) graphs with   vertices. 

Additionally many asymptotical properties of the        model are derived from the case of 

      as     [Bollobás, 2001]. Although many of the characteristics of the        

model such as connectivity, maximum clique size and chromatic number are customarily 

studied in an asymptotical context, some attention has been devoted to the situations where 

the number of vertices   is only in the region of hundreds or a few thousands [Bollobás & 

Thomason, 1985]. It is noteworthy that the graph  -colouring problem is still hard when 

restricted to Erdös-Rényi random graphs if instances are chosen near the phase transition 

were   is very close or equal to the chromatic number   [Achlioptas et al., 2005; Zdeborová 

& Krząkała, 2007]. Particularly, no known polynomial time algorithm is guaranteed to colour 

Erdös-Rényi random graphs with        colours where     is fixed [Achlioptas & Coja-

Oghlan, 2008]. It is known that the move acceptance ratio during annealing is strongly related 

to parameter tuning [Lam & Delosme, 1988]. In the next section we exploit a behaviour 

exhibited by the evolution of the acceptance ratio while colouring random graphs with an 

annealing algorithm, in order to find good tuning parameters for very low values of   that are 

close to the chromatic number  . 

 

6.4 Parameter Tuning Variance for Random Graphs 

The Erdös-Rényi        random graphs in the DIMACS benchmarks have   ranging 

between     and    , and can all be considered dense in comparison to very sparse 3, 4 and 5-
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colourable graphs that were considered in [Zdeborová & Krząkała, 2007]. Of particular 

importance is DSJC1000.5, the only             graph in the DIMACS benchmarks 

collection. Erdös-Rényi graphs with        and       have an interesting history over 

the past several decades of graph colouring research. One reason for this is that they are 

complex enough to be challenging and approachable by a variety of methods, while not being 

so large that they could not fit easily into the available memory of legacy computers 

[Bollobás & Thomason, 1985]. Initially, only poor estimates of   of about 116 for the 

DSATUR [Brélaz, 1979] greedy heuristic and about 107 for the RLF [Leighton, 1979] greedy 

heuristic were available [Johnson et al., 1991]. 

Colourings with an average chromatic number of 95.9 were presented in [Johri & 

Matula, 1982]. There also, a probabilistic estimation  ̅ of the expected chromatic number of 

graphs from the             family was given as  ̅    . An algorithm presented in 

[Bollobás & Thomason, 1985] was able to improve on [Johri & Matula, 1982] by providing 

colourings using an average of 86.5 colours. This family of graphs was also studied early on 

with Tabu search in [Hertz & Werra, 1987], finding solutions with 87 colours. The research 

in [Johnson et al., 1991] produced solutions with an average of 85.5 colours on a sample of 

four             graphs using a semi-exhaustive version of RLF called XRLF. It was here 

that the now widely used instance DSJC1000.5 was introduced. Solutions using 86 colours 

were provided, and it was noted that its density of 0.5000152 was slightly higher than those 

for which solutions with 85 colours were found. Subsequently, there was an improved result 

by [Morgenstern, 1996] with the provision of solutions using 84 colours using a classical 

annealing algorithm that was initialized with XRLF. After a few years, 83 colourings for 

DSJC1000.5 were presented in [Galinier & Hao, 1999]. The upper bound of 83 remained best 

until the commencement of this thesis, and had been reproduced by several state of the art 

graph colouring algorithms [Malaguti et al., 2008; Lü & Hao, 2010; Porumbel et al., 2010b]. 
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A powerful probabilistic estimating procedure in [Bollobás & Thomason, 1985] 

suggested that      for instances of the             family, and that the lower bound was 

tight with very high probability. Therefore one of the goals of this thesis was to produce the 

first 82-colourings of DSJC1000.5. By exploiting a tuning pattern related to the acceptance 

ratio, we succeeded in attaining this result which had resisted solution since the year 1999. 

 Using the enhanced version of quantum annealing for graph colouring presented in 

chapter 5, and setting the number of replicas to     , we easily found colourings in the 

range         for DSJC1000.5. The hardware setup for the experiments in this chapter 

consisted of a cluster of two identical desktop personal computers, each with six-core 

processors. The specifications of the desktop computers were the same as the ones given in 

chapter 5. The number of replicas was set to      in an attempt to save time during the 

tackling of the bigger graphs. One processor core was left free on each desktop, and the 

replicas were shared equally between them. Intra-communication on each desktop was done 

with OpenMP as in chapter 5, while inter-communication was done with MPI (Message 

Passing Interface).   The resultant temperature of         was used for all values of  , just 

as in chapter 4 and chapter 5, with increasing values for a fixed field strength   in the range 

between 0.55 and 0.68. The acceptance ratio during annealing can be calculated as the 

number of accepted moves divided by the number of attempted moves. The resultant 

quantum annealing temperature of         can be considered quite low as it produces a 

starting acceptance ratio of about 1.3% for     , in comparison to the 50% starting 

acceptance ratio for classical annealing in [Johnson et al., 1991]. It is notable that a resultant 

temperature of about        would have had to be set in order to produce a 50% 

acceptance ratio for quantum annealing. However the idea of quantum annealing is to control 

the simulation mainly by the field strength in the presence of a low temperature. Ideally, the 

temperature would be set to absolute zero so that all optimization is carried out entirely by 
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quantum fluctuations. But the path integral Monte Carlo quantum annealing which our 

algorithm is based on cannot be simulated at zero temperature [Battaglia et al., 2005]. 

We observed that setting the resultant temperature to be even slightly less than 

        for the instance DSJC1000.5 caused our algorithm to take orders of magnitude of 

additional time to solve        . This was the motivation for keeping the resultant 

temperature at         for all values of   for DSJC1000.5 so far. It was also observed that 

the extra difficulty of successively lower values of   could be compensated for by using a 

slightly larger value for  . Specifically with the graph DSJC1000.5, for the values of   

              , the values of the field strength were set to                             

respectively. It was observed in chapter 4 and chapter 5 that these increments to   are 

important as the values of   gets lower and more difficult, in order to prevent quantum 

annealing from getting trapped due to the replicas becoming too similar too quickly. 

 The first attempt we carried out in seeking valid solutions for the instance with 

     was to continue the pattern of setting an increased value of   while maintaining the 

resultant temperature at        . However, this idea met with obstacles, as setting 

       was too high, causing the replicas to decouple and individualize, while a value of 

      appeared to be too low, causing simulations to collapse too quickly with very similar 

replicas which got trapped. Setting various values for   between     and      did not help 

either, and several unsuccessful experiments were carried out, each running for up to several 

days. It became clear that a change in strategy was needed. Even though setting temperatures 

to below         had been observed to cause unnecessarily long running times for the 

instances of DSJC1000.5 in the range        , we carried out a series of experiments 

for      with a reduced resultant temperature of         and set the field strength 

to      . Remarkably, experiments produced a      success rate over ten runs with the 

new parameter settings, thus marking the first time that 82-colourings have ever been found 
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for DSJC1000.5 in the literature [Titiloye & Crispin, 2012]. The successful parameter values 

of DSJC1000.5 for the range         are plotted in Fig 6.1. 

It was important to not terminate the algorithm too soon and allow a large enough 

amount of time as the instance with      took a lot longer to solve than that with     . 

Specifically, it took quantum annealing an average of 5.6 × 10
11

 attempted moves and 4.4 × 

10
9
 moves for each of the ten successful runs for the problem instance of finding 82-

colourings for DSJC1000.5. In contrast, 83-colourings were found with the settings of 

        after an average of 3.9 × 10
10

 attempted moves and 4.6 × 10
8
 moves in chapter 5.   

 

 

       

 

Figure 6.1: Parameter tuning variance with the number of colours for the graph DSJC1000.5. 

The field strength Γ (red), and the effective temperature PT (blue), plotted against the number 

of available colours k. 
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6.5 Patterns in the Evolution of the Acceptance 

Ratio 

During the experiments in which 82-colourings of DSJC1000.5 were attempted and 

eventually attained, interesting features of the acceptance ratio were observed. Figure 6.2 

shows a typical plot for an unsuccessful experiment with the instance (G = DSJC1000.5, k = 

82) using the parameter settings         and      . The acceptance ratio first declines 

over the first few tens of thousands of Monte Carlo steps and then stagnates.  

 

 

 

Figure 6.2: An unsuccessful simulation with a declining and stagnating acceptance ratio. The 

acceptance ratio is plotted against Monte Carlo steps for (G = DSJC1000.5, k = 82) with 

parameters Γ = 0.7 and PT = 0.36. 
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In contrast, successful experiments for the same instance with all conditions remaining the 

same except for the change to         exhibits an unusual pattern of a steadily increasing 

acceptance ratio over time in Figure 6.3.  

It is notable that the declining pattern of the acceptance ratio displayed in Fig 6.2 is 

usual and generally helpful for easier instances. For instance, solutions for DSJC1000.5 

instances for the range         exhibit a similar declining pattern with         

without affecting the success of the experiments. Past classical annealing experiments for  -

colouring in [Johnson et al., 1991] also follow a declining pattern in the acceptance ratio. 

Although in their case it was more obvious that this should happen since the temperature was 

being decreased over time.  Interestingly, when we set         for instances in the 

        range, the pattern of the rising acceptance ratio appeared, but solutions were 

obtained with up to a fivefold increase in computational time. This suggests that         

is unnecessary and even inappropriate for the easier instances as this causes quantum 

annealing to be uncompetitive with the leading algorithms in terms of computational 

requirements. It is only when the value of   is low and probably close to the chromatic 

number that the strategy with the higher temperature fails. Only then is it necessary to employ 

a value of the temperature low enough to induce the increasing acceptance ratio. The patterns 

exhibited by the acceptance ratio were not unduly influenced by the perturbation from the 

replica spacing technique introduced in chapter 5 as the patterns were established well before 

any replica got to within      ⁄  of its neighbours. 

 The pattern of the continuously increasing acceptance ratio can be induced to 

improve the results for other random graphs in cases where the alternative declining pattern 

has stopped working. 
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Figure 6.3: A successful simulation with a continuously rising acceptance ratio. The 

acceptance ratio is plotted against Monte Carlo steps for (G = DSJC1000.5, k = 82) with 

parameters Γ = 0.7 and PT = 0.31. 

  

Table 6.1 and Table 6.2 show quantum annealing results. These include the discovery 

of 47-colourings for DSJC500.5, a            graph from the DIMACS benchmarks. This is 

the first improvement in the results of DSJC500.5 since 48-colourings were first discovered 

by [Morgenstern, 1996]. The easier instance of     DSJC500.5        was solved in 

chapter 4 and chapter 5 with the parameter settings          and      0, which 

produced a declining acceptance ratio. 

 

 

Table 6.1: Quantum annealing (QA) colouring results compared with the best alternatives 

Graph QA Evolutionary-Tabu Extraction pre-processing 

DSJC500.5 47 48 [Galinier & Hao, 1999] 48 [Morgenstern, 1996] 

DSJC1000.5 82 83 [Galinier & Hao, 1999] 83 [Wu & Hao, 2012] 

DSJC1000.9 222 223 [Lü & Hao, 2010] 222 [Wu & Hao, 2012] 

C2000.5 145 148 [Lü & Hao, 2010] 145 [Hao & Wu, 2012] 

C4000.5 262 (259
*
) 271 [Porumbel et al, 2010b] 259 [Hao & Wu, 2012] 

C2000.9 400 413 [Wu & Hao, 2012] 408 [Hao & Wu, 2012] 

Flat1000_76_0 81 82 [Lü & Hao, 2010] 81   [Hao & Wu, 2012] 

*We found 259-colourings for C4000.5 by performing quantum annealing on a residual graph obtained from the 

independent set extraction experiments in [Wu & Hao, 2012] where only 260-colouring were found 
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Evolutionary-Tabu algorithms maintain a population of colourings that are iteratively 

improved by Tabu search and periodic crossover operations. The implementations in 

[Galinier & Hao, 1999; Lü & Hao, 2010; Porumbel et al, 2010b] provide some of the best 

results in the literature. They are discussed in more detail Section 3.5 in Chapter 3 and 

Section 4.4.6 in Chapter 4. Extraction pre-processing involves seeking large independent sets 

that can be removed from a graph to allow smaller residual graphs to be coloured with more 

conventional methods. The best results from this approach are found in [Wu and Hao, 2012; 

Hao and Wu, 2012].  

 

Table 6.2: Detailed quantum annealing results 

Graph k PT Γ Attempted Accepted Time Success 

DSJC500.5 47 0.30 0.70 2.8 × 10
11

 4.1 × 10
9
 36 min 2/10 

DSJC1000.5 82 0.31 0.70 5.6 × 10
11

 4.4 × 10
9
 1.2 hr 10/10 

DSJC1000.9 222 0.20 0.40 5.9 × 10
11

 3.1 × 10
9
 1.1 hr 6/10 

C2000.5 146 0.32 0.65 2.5 × 10
12

 1.1 × 10
10

 5.4 hr 5/5 

 145 0.32 0.69 1.4 × 10
13

 6.7 × 10
10

 31.6 hr 2/2 

C4000.5 270 0.28 0.51 1.2 × 10
14

 2.0 × 10
11

 11 days 1/1 

 262 0.28 0.57 1.3 × 10
15

 1.8 × 10
12

 4 mo. 1/1 

C2000.9 403 0.18 0.29 1.2 × 10
13

 2.0 × 10
10

 24 hr 5/5 

 402 0.18 0.295 2.8 × 10
13

 4.5 × 10
10

 54 hr 1/1 

 401 0.18 0.30 8.8 × 10
13

 1.4 × 10
11

 174 hr 1/1 

 400 0.18 0.31 1.3 × 10
14

 2.0 × 10
11

 505 hr 1/1 

Flat1000_76_0 81 0.31 0.70 1.0 × 10
12

 8.7 × 10
9
 2.2 hr 10/10 
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Figure 6.4: An ineffective simulation for (G = C2000.5, k = 146) with an increased 

temperature PT = 0.35. The acceptance ratio persistently declines in a manner very similar to 

classical annealing. 

 

Figure 6.5: Acceptance ratio plot for (G = C2000.5, k = 146) with Γ = 0.65 and PT = 0.32.  A 

successful simulation shows a continuously rising pattern for the acceptance ratio over time. 
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Figure 6.6: Acceptance ratio plot for (G = C2000.5, k = 145) with Γ = 0.69 and PT = 0.32.  A 

successful simulation shows a continuously rising pattern for the acceptance ratio over time. 

 

Figure 6.7: Acceptance ratio plot for (G = C2000.5, k = 146) with Γ = 0.8 and PT = 0.32.  

When the field strength is set higher than the critical value of Γ = 0.65, the simulation 

becomes ineffective. It also shows a persistent stagnation in the evolution of the acceptance 

ratio. 
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But rather like the situation of DSJC1000.5, the strategy stopped working when the instance 

with      was attempted, no matter the value of  . Success was only achieved with a 

continuously rising acceptance ratio after the temperature was reduced to       . The 

value of the field strength was kept the same at      . We also carried out experiments 

using two larger        graphs with      , namely C2000.5 and C4000.5. These two 

graphs with 2000 and 4000 vertices respectively, are rarely used in experiments because of 

the computational challenges created by their size. The graph C2000.5 has about a million 

edges, while C4000.5 has about four million edges. Until recently, the best result for C2000.5 

of 150-colourings was reported in [Morgenstern, 1996]. Well over a decade after that result, 

148-colourings were found using Evolutionary-Tabu algorithms [Lü & Hao, 2010; Porumbel 

et al., 2010b]. 

 

 

Figure 6.8: Acceptance ratio plot for (G = C2000.5, k = 146) with Γ = 0.5 and PT = 0.32. 

The simulation becomes ineffective when the field strength is set lower than the critical value 

of Γ = 0.65. The evolution of the acceptance ratio shows a long period of decline and a very 

weak growth afterwards. 
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Subsequently, the pre-processing technique of set extraction was revisited and used to 

obtain an improved result of 146-colourings [Wu & Hao, 2012] using the Evolutionary-Tabu 

algorithm in [Lü & Hao, 2010] as the main colouring algorithm. Afterwards, a revised 

algorithm consisting of iterating between the pre-processing procedure and the Evolutionary-

Tabu algorithm was able to find 145-colourings. Any graph colouring algorithm can employ 

set extraction pre-processing. However, depending on the structure of the graph, this does not 

always lead to better results, and in fact one could obtain worse results by using the pre-

processing. Medium density        graphs with       have been known to perform very 

well with set extraction pre-processing [Bollobás & Thomason, 1985; Chams et al., 1987; 

Hertz & Werra, 1987; Fleurent & Ferland, 1996; Morgenstern, 1996]. Large independent sets 

that are difficult to find by the main colouring procedure can be identified during the pre-

processing stage. Additionally the random nature of the graph makes it less likely that the 

extraction of large independent sets before the colouring of a residual graph actually damages 

the prospects of achieving a good overall colouring. This is in contrast to geometric random 

graphs [Penrose, 2003], which exhibit more structure. It was observed in [Wu & Hao, 2012; 

Hao & Wu, 2012] that set extraction pre-processing was not helpful and was even 

counterproductive for geometric random graphs such as R1000.5 from the DIMACS 

benchmarks. The good behaviour of set extraction for        with       was further 

confirmed in [Wu & Hao, 2012] with the discovery of 260-colourings for C4000.5, when 

prior to that, the best available had been 272-colourings [Lü & Hao, 2010] and 271-

colourings [Porumbel et al., 2010b] with Evolutionary-Tabu algorithms. 

 As can be seen from Table 6.1 and Table 6.2, quantum annealing with a random 

initial start can obtain 146-colourings as well as 145-colourings, with both instances working 

with a temperature of        . Like-for-like competition from Evolutionary-Tabu 

algorithms without set extraction pre-processing appears to be unable to match this, reaching 
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their limit at 148-colourings [Lü & Hao, 2010; Porumbel et al., 2010b]. In terms of parameter 

tuning for quantum annealing on the C2000.5 graph, similar patterns to those of DSJC1000.5 

are observed. Figure 6.4 shows the effect of setting the value of the temperature to    

    , which turns out to be too large. This results in a declining and stagnating pattern for the 

acceptance ratio. In contrast, the lower temperature         results in the continuously 

increasing acceptance ratio depicted in Figure 6.5. While simulations with         can 

repeatedly solve                   in about 100,000 Monte Carlo steps, we verified 

that simulations with         repeatedly fail to find a solution even when allowed up to 

500,000 Monte Carlo steps. Similarly, for the more difficult instance              

    , the lower temperature results in success and a continuously increasing acceptance ratio 

shown in Figure 6.6. So far, the temperature has been varied while all other conditions have 

been kept constant, such as keeping the value of the field strength at         for      . 

To show that this is important, two additional sets of experiments were run with higher and a 

lower values of       and       respectively. The acceptance ratio patterns produced are 

depicted in Figure 6.7 and Figure 6.8. They are significantly different from the successful 

ones in Figure 6.5 and Figure 6.6, and no solutions are found.    

Quantum annealing can also outperform the best representatives of Evolutionary-

Tabu on C4000.5, improving over the 271-colourings in [Porumbel et al., 2010b] by finding 

270-colourings and even 262-colourings in the long run. However we found it necessary to 

follow suit with extraction pre-processing in order to match the best results of 260-colourings 

[Wu & Hao, 2012] and 259-colourings [Hao & Wu, 2012]. Our quantum annealing results for 

C4000.5 are presented in Table 6.1 and Table 6.2.     

 The graph C2000.9 is a             graph from the DIMACS benchmark for which 

409-colourings and 408-colourings were reported in [Wu & Hao, 2012] and [Hao & Wu, 

2012] respectively, using set extraction pre-processing. When the standard random 
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initialization was used, a worse result of 413 was obtained by their Evolutionary-Tabu 

algorithm [Wu & Hao, 2012]. Remarkably quantum annealing is able to find 400-colourings 

for C2000.9, beating the previously best known result in [Wu & Hao, 2012] by eight colours. 

The comparatively weaker effect of the set extraction pre-processing on this much denser 

instance is at least partially explained by the fact that there is very little variance between the 

sizes of maximal independent sets found in such a dense random graph. For example, the two 

known largest independent set sizes that our algorithm and any other algorithm are currently 

able to find are 6 and 5. These independent sets of C2000.9 are very numerous and very easy 

to find in comparison to those of size 18 in C4000.5 for example. The problem encountered 

when colouring C4000.5 is mainly that of finding a large number of mutually exclusive 

independent sets of size 18 and 17. Whichever of those independent sets gets extracted is not 

usually of importance to the quality of the final result. However in the case of C2000.9, the 

main problem is that of finding the right combination of mutually independent sets of size 6 

and 5 to extract, such that the colouring of the resulting residual graph still leads to a high 

quality colouring. As a result, the set extraction pre-processing is of less help, and the burden 

falls unto the main colouring algorithm to find the right combinations of mutually exclusive 

independent sets. It is here that the quantum annealing algorithm appears to do a better job 

than MACOL [Lü & Hao, 2010], the Evolutionary-Tabu colouring algorithm used in [Wu & 

Hao, 2012; Hao & Wu, 2012]. 

 The flat graph Flat1000_76_0, even though not an Erdös-Rényi random graph has 

been known to behave similarly to DSJC1000.5 in terms of parameter settings, computation 

effort and chromatic number upper bounds when coloured by metaheuristic algorithms 

[Galinier & Hao, 1999]. The graph Flat1000_76_0 also consists of the same number of 

vertices and is of similar density to DSJC1000.5. In chapter 4 and chapter 5, we used the 

same parameter settings         and        to find 83-colourings and 82-colourings of 
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DSJC1000.5 and Flat1000_76_0 respectively. It was observed during experimentation that 

Flat1000_76_0 exhibits the same problems when an attempt is made to find an 81-colouring. 

Keeping         and setting an increased value for   did not work. After the observation 

that setting a reduced         improves the results of DSJC1000.5, it was natural to test 

the same idea on Flat1000_76_0 to check if it would work here as well. Experiments showed 

that it indeed does, with a similar 100% success rate out of 10 runs, and with a similar 

computational effort. This result is listed in Table 6.1 and Table 6.2.    

                  

6.6 Conclusion 

The aim of this chapter was to investigate tuning patterns peculiar to random graphs in order 

to provide an understanding of how quantum annealing can be made to tackle graph 

colouring more effectively. The evolution of the acceptance ratio exhibited during 

simulations was found to be related to whether difficult instances were solved or not. As a 

direct result of this finding, some problem instances that had resisted solution for about two 

decades were solved.    
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Chapter 7 

Conclusions and Perspectives 

7.1 Conclusions 

We have developed a Monte Carlo quantum annealing algorithm for the graph colouring 

problem. In the introductory chapter 1, we set out to present: 

 The first successful quantum annealing algorithm for the graph k-colouring problem 

by using an effecting Boolean representation, and finding fast incremental 

calculations for the resulting more complex cost function for quantum annealing 

 Enhancements of the quantum annealing algorithm by the incorporation of tuning 

simplification, replica spacing and parallelization 

 Insights into the optimal tuning for random graphs following from observations on the 

evolution of the acceptance ratio 

The following paragraphs revisit these three statements in turn. 

 In chapter 4, an alternative problem representation was introduced to counteract 

difficulties that often arise due to symmetries in the search space induced by graph colouring 

problems. The unconventional problem representation though very useful, presented 

computational challenges for calculating energy changes due to an involved kinetic energy 

expression. Fast incremental techniques were found, which made the presented quantum 

annealing algorithm competitive. This included the provision of an easily computable upper 

bound to the kinetic energy that could be used in place of the actual value most of the time 

without introducing any errors. The algorithm became the first in the literature to colour the 
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benchmark graph DSJC1000.9 with 222 colours. Quantum annealing was competitive with 

the best algorithms on the overall DIMACS benchmarks on the most relevant criterion of the 

best chromatic number upper bound found on each graph. This suggests that quantum 

annealing is a viable approach to population based metaheuristics as an alternative to current 

Evolutionary-hybrid approaches. 

 In chapter 5, several enhancements and variations to the basic quantum annealing 

algorithm for graph colouring were presented. Inspired by analogous schedules for some 

classical annealing algorithms, the field strength parameter was fixed rather than 

decremented, and this was demonstrated to simplify tuning and increase robustness. The 

fixed parameters ensured that the opportunity to find a new upper bound of 97 for the 

chromatic number of a well known graph named Latin_square_10 was not missed. A replica 

spacing scheme similar to those used in some evolutionary algorithms was also introduced 

for quantum annealing for the first time. This demonstrably resulted in an algorithm more 

resilient to premature convergence, thereby allowing solutions to larger and more difficult 

problem instances. As a result, quantum annealing was able to improve on recent results of 

some Evolutionary algorithms [Lü & Hao, 2010; Porumbel et al., 2010b] by finding 147-

colourings for the graph C2000.5. A parallelized version of the algorithm was also presented, 

thereby enabling the reporting of faster computing times than would usually be possible. 

 In chapter 6, tuning patterns were investigated for the colouring of random graphs. It 

was found that the most difficult instances could be solved by setting parameters that result in 

a continuously increasing acceptance ratio for quantum annealing. As a result, several new 

chromatic number upper bounds were discovered, including 47 for DSJC500.5 and 82 for 

DSJC1000.5. These graphs had not had their upper bounds improved in almost two decades 

of study in the literature. We also obtained a 400-colouring for C2000.9, beating the nearest 

competitor [Hao & Wu, 2012] by eight colours. This demonstrated that despite the merits of 
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the set extraction approaches advanced in [Wu & Hao, 2012] and [Hao & Wu, 2012], it can 

still be outperformed in several cases by the strong population interaction provided by the 

quantum annealing approach.   

7.2 Further Work 

 A good lead for future work is the application of quantum annealing to other 

combinatorial optimization problems using techniques developed here. The techniques that 

might be transferable include the casting of problem representations to a set of constrained 

Boolean variables similar to ours, the use of the newly introduced errorless surrogate function 

swindle, and the structure of our parallelized algorithm. In the cases where the new problem 

is closely related to graph colouring, such as list colouring [Diestel, 2000] and exam 

timetabling [Sabar et al., 2012], the Boolean representation presented in chapter 1 could be 

directly applicable with small modifications. For entirely different combinatorial optimization 

problems such as the quadratic assignment problem [James et al., 2009], appropriate problem 

specific representations and procedures may need to be developed, and its own favourable 

tuning patterns may need to be found by using similar investigative approaches to the one 

presented in chapter 6. Our parallel algorithm structure presented in chapter 5 is likely to be 

applicable to different problems. The future of quantum annealing as a metaheuristic appears 

promising.   
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