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Abstract 

 

Aim: To investigate the effect of gold nanoparticle surface plasmon resonance (SPR) on titanium 

dioxide (TiO2) photocatalysis for the breakdown of organic molecules in different settings.  

 

Experimental: Four types of nanoparticle were fabricated for this investigation; Silica-dye colloid (A), 

gold core silica-dye shell (B), silica-dye core coated in gold seeds (C), silica-dye core coated in a gold 

nanoshell (C). The dye used in this investigation was Rhodamine B isothiocyanate (RhB). The 

particles were used to examine their fluorescent boosting effects and therefore their potential at 

boosting photocatalytic activity. The particles were tested for fluorescence using the same amount 

of dye molecules and also underwent photocatalytic exposure with TiO2 films produced by 

magnetron sputtering.  

 

Results: Gold core silica-dye shell nanoparticles (B) gave almost five-fold enhancement. The silica-

dye core coated in gold seeds (C) also boosted fluorescence enhancement by a factor of almost 200, 

a much greater increase compared to the gold core particle (B). TiO2 enhances the photo-bleaching 

of RhB through a loss of fluorescence on its own, and a further doubling the rate when exposed to 

gold nanoparticles. When encapsulated in silica a protective barrier is formed preventing normal 

breakdown of dye, however, using a gold core or gold seeds on the nanoparticle surface overcame 

this barrier to degrade the dye by a small amount.  
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1.0 Introduction 

 

Organic molecules are becoming an increasing problem for the drinking and waste water industry. 

Organic pollution originates from many different sources such as: agricultural, domestic, industrial 

and natural1-4. The European Parliament set up the Drinking Water Inspectorate in order to monitor 

and control levels of harmful substances within drinking water. As part of this they published a list of 

priority substances that are notably dangerous to environmental and human health should they 

persist at high levels within the water supply5-6. 

Table 1. European Union Priority Substance list of Organic Molecules5. 

 

Number  
 

EU number Name of priority substance Source of contaminant 

(1) 240-110-8 Alachlor Herbicide 

(2) 204-371-1 Anthracene Combustion of fuel 

(3) 217-617-8 Atrazine Herbicide 

(4) 200-753-7 Benzene Constituent to crude oil and 
many aromatic 
hydrocarbons. 

(5) not applicable Polybrominated 
diphenylethers 

Building materials, 
electronics, furnishings, 
motor vehicles, airplanes, 
plastics, polyurethane foams 
and textiles. 

(6) 287-476-5 Chloroalkanes Polyvinylchloride (PVC) 
production, Pesticides, 
Insulation 

(7) 207-432-0 Chlorfenvinphos Insecticide and Acaricide. 

(8) 220-864-4 Chlorpyrifos Insecticide 

(9) 203-458-1 1,2-Dichloroethane PVC Production 

(10) 200-838-9 Dichloromethane Solvent for use in paint 
stripper, de greaser, 
decaffeinating coffee, 
aerosol propellant. 

(11) 204-211-0 Bis(2-ethylhexyl)phthalate 
(DEHP) 

Plasticiser in medical 
equipment, PVC, cosmetics 
and fragrences. 
 

(12) 206-354-4 3-(3,4-dichlorophenyl)-1,1-
dimethylurea 

herbicide 

(13) 204-079-4 Endosulfan Insecticide 

(14) 205-912-4 Fluoranthene Combustion of fuel 
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Number  
 

EU number2 Name of priority substance Source of contaminant 

(15) 204-273-9 Hexachlorobenzene Fungicide 

(16) 201-765-5 Hexachlorobutadiene Solvent 

(17) 210-168-9 Hexachlorocyclohexane Pesticides 

(18) 251-835-4 Isoproturon Fungicide 

(19) 202-049-5 Naphthalene Chemical intermediate, 
Insecticide fumigant. 

(20) not applicable Nonylphenols Precursor to detergents 

(21) not applicable Alkylphenols Precursor to detergents, 
additive in fuel and 
lubricants, polymers, 
fragrances, antioxidants and 
fire retardant materials 

(22) 210-172-0 Pentachlorobenzene Manufacture of pesticides 
and fungicides 

(23) 201-778-6 Pentachlorophenol Herbicide, insecticide, 
pesticide, algaecide and 
disinfectant. 

(24) not applicable Polyaromatic 
hydrocarbons(PAH) 

Combustion of fuel 

(25)  204-535-2 Simazine Herbicide 

(26) not applicable Tributyltin compounds Biocides 

(27) 234-413-4 Trichlorobenzenes Precursor for dye and 
pesticides 

(28) 200-663-8 Trichloromethane 
(chloroform) 

Solvent, organic synthesis 

(29) 216-428-8 Trifluralin Herbicide 

(30) 204-082-0 Dicofol Precursor to pesticides 

(31)   217-179-8 Perfluorooctane sulfonic 
acid and its 
derivatives (PFOS) 

Textiles, paint, paper, polish, 
varnish, cleaning products, 
fire fighting foam 
 

(32) not applicable Quinoxyfen Fungicide 

(33) not applicable Dioxins and dioxin-like 
compounds 

By product of industry 
 

(33) 277-704-1 Aclonifen Pesticide 

(35) 255-894-7 Bifenox Herbicide 

(36) 248-872-3 Cybutryne Pesticide 

(37) 257-842-9 Cypermethrin Insecticide 

(38) 200-547-7 Dichlorvos Insecticide 

(39) not applicable Hexabromocyclododecanes
(HBCDD) 

Flame retardent 
 

(40) 200-962-3 / 
213-831-0 

Heptachlor and heptachlor 
epoxide 

Insecticide 
 

(41) 212-950-5 Terbutryn Herbicide 

(42)   200-342-2 17α-ethinylestradiol Contraceptive pill 

(43) 200-023-8 17 17β- estrodiol Hormone treatment 

(44) 239-346-4 Diclofenac Anti-inflammatory drug 
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Naturally occurring organic pollutants degrade over time such as metabolisation by micro-

organisms. The water industry takes advantage of this by using naturally occurring micro-organisms 

to remove dangerous molecules from waste water as they convert this to new bacteria cells, carbon 

dioxide and other byproducts5. This usually removes 90% of organic matter in waste water. 

Advanced biological treatment is also used to reduce levels of nitrate and phosphorus, which when 

introduced to the environment causes algae bloom, resulting in damaging the aquatic environment. 

Bacteria do this by converting nitrates into nitrogen gas or harmless nitrate and phosphorus into 

solids that can be later removed. The 10% of the remaining organic matter resisted biological 

breakdown due to their synthetic nature. The micro-organisms cannot therefore metabolise them. 

This organic matter consists of pesticides from agricultural use, organic waste products from 

industry and pharmaceuticals. These molecules are capable of causing significant environmental 

damage to organic life at high enough concentrations and could potentially come into contact with 

the drinking water supply and affect human health7. Polycyclic aromatic hydrocarbons (PAH) are 

seen as priority substances according to Table 1. These organic compounds compose of fused 

aromatic rings often found in fossil fuels. They are some of the key air pollutants found in built up, 

high population areas as by-products of fuel consumption. These pollutants dissolve in water when 

they are drained into the local natural environment or possibly used as drinking water after 

purification. PAH’s vary in their toxicity dependant on their isomers making them non-toxic to 

extremely toxic. Benzo (a) pyrene is notably the first carcinogen to be discovered often found in 

cigarette smoke8. The study conducted by Gasperi et al (2008)9 analysed the levels within Paris and 

its local waterways as part of the drinking water directive by the European parliament. They 

discovered that PAH’s were present in all samples taken for testing during both dry and wet 

weather. According to the study the levels varies in frequency over different weather periods but 

not concentration. Benzo (a) pyrene showed an average concentration level of 0.06 µgL-1, with a 

maximum of 0.24 µgl-1, which could pose a risk to environmental and human health. These 
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pollutants can quite easily occur within the drinking water from rivers near areas of high population 

and industry. The Ter River near Barcelona reported high pollutant levels due to local industries and 

domestic areas, of which the river is the primary water source in that area10. Current water 

treatment technology does not deal with these organic waste products in drinking water or 

waste/sewage since they are not affected by naturally occurring micro-organisms normally used to 

remove them, nor do they break down naturally in the environment. They therefore persist in the 

natural environment, originally occurring at harmless levels, however further increase in the levels of 

these compounds is capable of causing damage to wildlife or being reintroduced into the drinking 

water supply and cause adverse effects to human health.   New technologies are needed to tackle 

this issue. 

This project aims to investigate the chemical property of titanium dioxide (TiO2) photocatalysis films 

in conjunction with surface plasmon resonance boosting from gold nanoparticles to provide 

enhanced organic compound breakdown. This will be achieved by utilising cutting edge 

nanotechnology to maximise the SPR effect by producing different forms of nanoparticles. The TiO2 

photocatalysis and its effects will be measured by photobleaching of rhodamine B isothiocynate dye. 

 

1.2 Current and New Technology 

 

Current water treatment involves different processes depending on the contamination level of the 

water. There are two types, sewerage and wastewater. Sewerage (brown water) is waste originating 

from domestic areas, while other wastewater (grey water) may originate from industrial sites and 

could include additional pollutants that require separate treatment. All sewage and waste water is 

treated and then reintroduced into the environment11. ‘NE water’ in Singapore however is the only 

company to recycle wastewater directly into drinking water12. In the case of NE water they use high 

grade reclaimed water that undergoes further purification including micro filtration, removing any 

large particles and micro-organisms and reverse osmosis that allows only small molecules such as 
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water through leaving negligible organic concentration levels.  Sewerage/waste water undergoes 

three treatment stages10. The primary stage involves separation of solid material by either settling or 

allowing oils and light material to float to the surface. These solids and oils are removed while the 

liquid moves on. Secondary treatment involves breakdown of organic matter by water borne micro-

organisms, which naturally metabolise some of the organic matter as described before. An 

additional next step known as tertiary treatment is dependent upon the remaining contaminants 

within the water. This involves sterilization from the previous stage by chemicals or microfiltration. 

Additional specific bacteria may be used to remove contaminants such as nitrates and phosphorus. 

The tertiary stage may be vigorous using new and expensive technology, for example if the water 

was being reintroduced directly into to the water supply, or this might be very basic in areas where 

the water will enter a low risk environment.  

Potable water is defined as water suitable for human consumption or with low long term risk. Most 

potable water undergoes 6 processes13. The first step is to screen the water for any large pieces of 

debris such as leaves or twigs. Smaller particles are then filtered out by auto-coagulation tanks 

specific mixture of coagulant chemical. Coagulated particles are then allowed to settle in clarification 

tanks and removed as sludge while the clear water is then chlorinated to disinfect and kill any 

bacteria that could be a danger to human health. Water is run through rapid gravity filters such as 

sand and gravel pits, often also including carbon to filter out some pesticides if required. The water 

undergoes a final chlorination check and additional chlorine is added if required. From this process, 

it is clear there are no widely used techniques for removing organic contaminants. 

Currently water treatment is only effective at degrading organic molecules that micro-organisms are 

capable of metabolising leaving the majority of pharmaceuticals that are resistant to this 

breakdown. New technologies are being developed to meet the objectives set out by the water 

framework directive and the EU Parliament5, 6.  Nanofiltration technologies are emerging as a 

possibility by having the potential to filter out pesticides, pharmaceuticals, microorganisms and 

metal salts14. Uncharged particles are filtered out by size exclusion, the pores of the membrane 
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being large enough for small molecules to pass through. Charged particles such as metal ions can 

also be filtered out according to the charge difference of the ion and the membrane surface. One 

method uses iron oxides to trap heavy metals.  Sand is coated with the iron oxide which then is used 

as a filter.  Heavy metals are attracted to the iron oxide and become trapped and isolated from the 

water.   Smaller organic molecules with a molecular weight less than 100 can still easily pass through 

these systems. Organic molecules can be specifically filtered by active carbon, which attracts 

pollutants and holds them in the nanofilter structure, isolating it from the water15.  Organic 

molecules are naturally attracted to activated carbon however the effectiveness of this filter 

decreases as the active carbon sights become blocked. The filter must therefore be regenerated 

before it can be used again. This process is expensive due to the filters being regularly regenerated 

and maintained, not to mention the initial cost of producing these filters.  

A different practical approach to removing organic pollutants is destroying or denaturing them 

through chemical means.  In order to break down such molecules, highly reactive chemicals such as 

hydrogen peroxide (H2O2) and UV light is required16. Such treatment can improve pollutant control 

by molecules breaking down to water and carbon dioxide or by coagulation thereby allowing easy 

removal through filtration. Ozone is also capable of oxidizing organic pollutants and destroying 

them. Pisarenko et al17 reported that ozone could also help reduce levels of nitrosodimethylamine, 

which is created in the post chlorination step of the potable water treatment. By introducing H2O2 as 

well, the efficiency of organic removal is further increased. Chemical removal can also be achieved 

indirectly by photocatalysis of titanium dioxide (TiO2)
18. A TiO2 film is irradiated with UV light 

initiating photocatalysis producing hydroxyl radicals by splitting water molecules and superoxide 

from the electron donation capable of reducing and oxidizing organic pollutants. The benefit of such 

a system is that there is no need to introduced chemicals to the water supply; however, electrical 

energy is required to power the UV lamp. Improvements to the technique have been studied such as 

using a TiO2 film sensitive to visible light through doping19, 20. The process changes the TiO2 
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properties to excite at visible wavelengths and potentially take advantage of the abundant (and free) 

sunlight opposed to powering a UV lamp.   
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1.3 Titanium Dioxide Photocatalysis 

Titanium dioxide is a naturally occurring oxide of titanium (TiO2). As a mineral, it occurs in three 

different forms, anatase, rutile and brookite21. There are many different methods of analysing TiO2 

films. For imaging TEM and SEM are used frequently providing a basic idea of the crystal structure 

and therefore some indication of the type of crystal produced. Examples are shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. SEM images of titanium dioxide films for (A) anatase, (B) rutile, (C) brookite. 

 

For a more accurate measurement of crystal formation X-ray diffraction and Raman Spectroscopy 

(shown in Figure 2), which are used to help identify and quantify the different crystals formed. This is 

important when predicting the possible properties the TiO2 films possess. 

 

A B 

C 
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Figure 2. Raman Spectra of (a) anatase and (b) rutile. 

 

TiO2 possesses interesting properties including photocatalysis. This is the process involving TiO2 using 

light energy, specifically UV light for pure TiO2, to cause molecules to become charged producing 

electrons and positive holes22. These photogenerated charge carriers diffuse to the surface allowing 

them to interact with surface molecules such as water and oxygen. The positive holes can react with 

water molecules forming hydroxyl radicals, which can reduce organic molecules. Electrons also 

diffuse to the surface and can react with oxygen producing superoxide, oxidising organic molecules. 

 

 

 

 

 

 

 

 

 

 

a b 
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Figure 3. Diagram outlining the process of photocatalysis on a TiO2 film. 

 

Figure 3 outlines how this effect makes TiO2 useful as a self-cleaning material with current research 

looking into making the material more active on irradiation with visible light wavelengths. The 

composition of TiO2 is a key factor in determining the photocatalytic activity of the film, i.e. what 

crystal forms are present.  The different crystalline forms of titanium have different levels of 

photocatalytic activity. Anatase has the greatest activity so photocatalytic products aim to produce a 

higher proportion of this form and rutile TiO2 has lower activity, brookite is the least active. The 

method of producing photocatalytic products should also be taken into account since other factors 

such as surface area and morphology are important for producing the best activity. For example, a 

fine granular structure provides a larger surface area for when electrons and holes can combine with 

water and oxygen to produce the radicals responsible for photocatalytic activity. Pure TiO2 activates 

under UV light due to its band gap of 3.2 eV meaning only UV light has the correct energy to initiate 

photocatalysis23. 
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There are different methods of testing the photocatalytic effects of TiO2. Since photocatalysis is used 

to break down organic molecules methods can be used to detect particular molecules and analyse 

any change in concentration over time and possibly detect any new molecules being produced 

through breakdown. Detection can be done by methods such as gas chromatography and mass 

spectrometry. In order to gain insight into the rate of photocatalysis itself, observing the degradation 

of a coloured molecule such a methylene blue and measuring its change in absorbance over time can 

provide a faster and cost effective method24-25. An alternative is to use a fluorescent organic 

molecule that will lose its fluorescent as it degrades. The benefit of such methods is that the 

instrument will be more sensitive to a fluorescent signal at lower concentration levels. For the most 

efficient method of exposure to TiO2, powders are often used that can provide an 80% breakdown 

within 1 hour of TiO2 (anatase) and UV exposure25. This project however, required the TiO2 to remain 

stationary opposed to freely mixing with the organic molecule. The solution was to utilise methods 

of TiO2 film synthesis, otherwise removal of TiO2 would be required as additional purification or 

sacrificing a substantial loss of material. This would lead to a relatively low rate of decay to be 

expected. 
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1.3.2 Surface Plasmon Resonance 

 

Surface plasmon resonance (SPR) is a phenomenon that occurs on the molecular surface of precious 

metals such as gold and silver26. Plasmon refers to the oscillation of electrons or “plasma” on the 

metal surface. The coupling of light with surface plasmons causes enhanced fluorescent effects of 

certain range of light depending on the metal used. The oscillating plasmons provide additional 

electrons for fluorescence to occur, boosting the effect of any fluorescent already occurring (Figure 

4).  

 

 

 

 

 

 

 

Figure 4. Diagram outlining the process of surface plasmon resonance on the surface of a 

metal nanoparticle when light is introduced 27. 

 

An example of this is shown by coating a quartz substrate with a thin layer of noble metal28, the 

author began with gold 50 nm in thickness, thin enough for the gold to exhibit surface plasmon 

resonance properties.  A dye doped polymer layer was added 200 nm thick alongside a control 

sample covered with only the dye-doped polymer. UV light irradiated the samples and the emission 

of the coumarin laser dye (460 nm wavelength) was measured. The gold enhanced the emission two 

fold. The experiment however, was repeated by using a silver layer in place of gold and the emission 

was enhanced eleven fold. Figure 5 shows that the plasmon reflection can enhance or boost 

fluorescent dye emission but that it is also metal dependent, with certain metals being more 

effective at certain wavelengths than others. The report shows how SPR will enhance the 
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fluorescence properties of this project’s nanomaterial system through boosting the fluorescence 

effect of fluorescent molecules.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Photoluminescent spectra showing fluorescent enhancement due to gold and 

silver plasmon resonance 28. 

 

This project investigated the way gold plasmon boosting can be used to affect photocatalysis of TiO2. 

Rather than using a thin layer of gold as the previous study used, this project used gold 

nanoparticles. Gold nanoparticles are spheres ranging from 2-15 nm in diameter and possess the 

same plasmon affects as the 50 nm film, but with the added advantage of a greater surface area.  

 

1.3.2 Magnetron Sputtering 

 

Magnetron sputtering was the method used to produce the TiO2 film indicated in this project. Other 

methods exist capable of fabricating a film, in particular the sol-gel method is popular involving a sol 

of TiO2 to be prepared which is then dipped or spun onto a substrate, often quartz29. This sol is dried 

and then further sintering (heating) to form the crystals and provide the necessary film properties.  
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Magnetron sputtering however is a much more precise and repeatable method of coating thin films 

onto a substrate30. The process takes place in an evacuated sputtering chamber where the 

composition of the atmosphere can be carefully controlled.  A high powered magnet or magnetron 

directs plasma of argon onto a specific target. The argon atoms bombard the target causing the 

surface atoms of the target to eject and deposit them onto the substrate surface (Figure 6). To 

produce TiO2 films by this method a titanium target is used alongside a mixture of argon and oxygen 

gas. Once the titanium atoms are ejected from the target they easily react with oxygen and deposit 

onto the substrate as TiO2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic representation of the process that occurs during magnetron 

sputtering. 
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1.3.3 Fluorescent Molecules 

 

Organic dye molecules were used as a model organic molecule as they show fluorescence, which 

provides an easy method of detecting via their photobleaching due to changes in molecular 

structure or chemical breakdown into colourless constituents. 

A fluorescent molecule or chromophore possesses electrons capable of being excited to a higher 

energy level when interacting with certain wavelengths of light. When this electron returns to the 

ground state it emits a photon of energy depending on the distance between energy levels from 

which it came from. This light however is of a longer wavelength due to a loss of energy within the 

molecule called internal conversion shown in Figure 7. This ability to react to certain wavelengths of 

light means the organic molecules can be easily detected by their fluorescent signal and any loss in 

signal can be assumed to be due to change in molecule structure due to photocatalysis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic representation showing the movement of electrons between energy 

level that occur during the relaxation in the fluorescence process. 
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Figure 8. Molecular structure of Rhodamine B isothiocynate. 

 

Rhodamine B isothiocyanate (RhB) (Figure 8) was used as the fluorescent dye in this project. The 

structure of RhB is very important in that the benzene ring structures provide the electrons capable 

of excitement and producing fluorescence. Changes to these structures leads to loss of this property 

known as photobleaching. This may not be a result of molecule breakdown into smaller molecules 

but just minor changes to the structure31. 

 

 

Figure 9. Fluorescence Spectrum of Rhodamine B dye showing excitation at 550nm (left 

curve) and emission at 580 nm (right curve) spectra. 
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The fluorescence spectrum of rhodamine B is shown in Figure 9. The left curve shows absorption 

with a peak centred at 560 nm, which is the excitation wavelength of the fluorescent dye. The right 

curve shows emission peak centred at 580 nm. The emission spectra wavelength increases from   

560 nm to 580 nm indicating a loss of energy during the fluorescence process. 

 

1.4 Nanoparticle Technology 

 

Nanotechnology is an intense area of study possessing great potential in many areas of science with 

a huge variety of potential commercial applications32. Nanoparticles are usually defined as a particle 

less than 100 nm in diameter or less than 100 nm in any one of its other dimensions however many 

particles of a similar size are still referred to as nanoparticles for displaying unique properties that 

differ from the bulk equivalent. Properties such as fluorescence, super magnetism, surface plasmon 

resonance and other optical properties arise only at the nanoscale, largely attributed to a dramatic 

increase in surface area to volume ratio. These new properties provide the basis for new 

technologies to arise such as drug release studies in which a drug can be administered within a 

porous nanoparticle and released over time opposed to constantly varying the concentrations in the 

patient. They also allow the drug to be released in certain areas of the body preventing peripheral 

side effects and damage, for example localising a drug around the blood brain barrier33.  

In this project nanotechnology will be used to utilise the SPR effects of gold nanoparticles but also 

using other nanoparticles to help stabilize and potentially localise the gold to maximise TiO2 

photocatalysis.  
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1.3.5 Dye Molecule Capture Using Silica Nanoparticles 

This project investigates the use of a TiO2 film capable of breaking down organic molecules through 

UV light irradiation and their potential enhancement by SPR boosting from gold nanoparticles. 

 

Silica nanoparticles where first fabricated by Stöber in 196834. He used a method of polymerisation 

to combine a silica monomer (TEOS) while suspended in a solvent (ethanol) catalysed by ammonia. 

The following reaction occurs: 

Si(OC2H5)4 + 2H2O                        SiO2 + 4 C2H5OH (in the presence of NH3OH)  

The initial silica produced nucleates and attracts other silica molecules to join it. After the first 10 

minutes of the reaction no other nuclei form and instead build up to form larger and larger particles. 

This method of silica nanoparticle production forms the basis of the nanoparticle production 

methods used in this project. 

In this project  dye molecules must be encapsulated into the silica nanoparticle matrix. A modified 

dye molecule is used to enable this by adding an isothiocyanate group on the end, i.e. producing 

rhodamine B isothiocyanate. This group has no effect on the fluorescent properties of the molecule 

however it allows the molecule to form a conjugate with (3-aminopropyl)trimethoxysilane (APS) 

(Figure 10).  

 

 

 

 

 

 

Figure 10. Molecular diagram of 3-aminopropyl trimethoxysilane. 
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The APS molecule once tagged with RhB is then able to polymerise with TEOS in the Stöber reaction 

utilising the Si-O-H3C bonds and encapsulating the dye within the nanoparticle. The dye molecule 

will no longer be able to exhibit any chemical effects on the surface, however, it does not affect the 

fluorescent properties. 

The initial concept is to produce a gold nanoparticle of 10-15 nm in diameter and coat this with a 

dye-silica shell (Figure 11). The gold core is capable of boosting the fluorescent signal of the dye 

while the silica matrix ensures the dye molecules are static and protected from any photobleaching. 

 

 

 

 

 

 

 

Figure 11. Schematical diagram representing the initial nanoparticle design. 

 

The coating method used is based on a paper by Liz Marzan35 and modified by Graf36 however using 

an incorporated dye was originally proposed by Vrij 34. 

 

1.3.6 Gold Nanoparticles 

 

Gold nanoparticles provide the SPR properties necessary in this project. Gold colloids were originally 

synthesised and characterized by Turkevich37. The method involved reducing gold chloride with 

sodium citrate to generate gold atoms in suspension that would ultimately undergo nucleation and 

eventually nanoparticle formation.  

2HAuCl4 .4H2O + 4Na3C6H5O7                         H2 + 2Au + 4CO2 + 4NaC5H5O5 + 8NaCl + 8H2O 

Silica matrix 

Gold core 

Dye molecule within 

silica matrix 
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The reaction is relatively fast taking only 20 minutes and this reflects on the size of nanoparticles 

produced being 10-15 nm opposed to silica that is usually 100 nm and can take over an hour to 

produce. Sodium citrate is not the only reducing agent capable of forming gold. THPC or tetrakis 

(hydroxymethy) phosphoniumchloride was also used in this project to produce even smaller gold 

nanoparticles (1-3 nm). THPC is a much faster acting reducing agent and hence why the particles are 

much smaller 38. Additional gold can be added by using another reducing agent when in the presence 

of gold salt (HAuCl4 + K2CO3). Hydroxylamine hydrochloride was used in the project to attempt to 

create a gold shell around a silica-dye nanoparticle and investigate the change in fluorescent 

properties39. 

 

 

  



29 
 

1.3.7 Zeta Potential  

 

Zeta potential is an important concept in nanoparticle technology. It is the electric potential 

between the particle surface and the medium in which it is suspended. This potential difference 

allows the medium to provide a “slippery layer” to prevent surfaces from interacting and possibly 

aggregating 40 (Figure 12). 

 

 

 

 

 

 

 

 

 

 

Figure 12. Diagram showing the effect of the media is creating a stable particle from its 

zeta potential. 

 

In the case of gold nanoparticles for example citrate ions are used to prevent the positively charged 

gold from aggregating with other particles. These citrate ions are coincidently produced during their 

synthesis37. When in ethanol, there are no ions to provide this and so the suspension turns from 

ruby red corresponding to nanoparticles of 15 nm to black indicating aggregated particles. To 

prevent this without changing the medium, steric bonds can be added to the gold surface which 

physically separates the nanoparticles by using a polymer to prevent them from touching (Figure 

13). This project uses this property by functionalising the surface with polyvinypyrrolidone of molar 

mass 10,000 (PVP) when coating gold colloids with silica in an ethanol medium. Placing gold colloids 
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Tangling and instability of PVP causes loss of 
gold stability and prevents silica shell formation 

in ethanol would normally cause them to become unstable and coagulate. Adding steric bonds can 

however affect the surface properties over time making it unable to take part in further modification 

leaving the sample useless and eventually losing the ability to maintain stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Diagram outlining the effect of steric bonds and their short effective lifetime 
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2. Experimental 

2.1 Fabrication of Nanoparticles 

 

Four distinct types of nanoparticle were synthesised for photocatalytic testing with TiO2 to 

investigate their unique properties outlined in Figure 14. 

 

 

 

 

 

 

Figure 14. Various nanoparticles synthesised to test the effect of gold plasmon boosting of 

TiO2 photocatalysis. A is a silica-dye nanoparticle, B a gold core silica-dye shell, C Silica-dye 

nanoparticle coated in gold seeds, D silica-dye nanoparticle coated in a gold nanoshell. 

 

This section will describe the different methods used to synthesise these nanoparticles, how they 

were characterised and the experiments of photocatalysis with TiO2.  
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Table 2. List of the chemicals and materials used in the following experimental 

Chemical Name and Purity Source CAS Number 

3-(Aminopropyl)triethoxysilane (99 %) Sigma Aldrich 919-30-2 

Ammonia Solution (29 % wt) Sigma Aldrich 7664-41-7 

Gold Chloride (99 %) Sigma Aldrich 27988-77-8 

Ethanol (4.8 % denatured methanol) Fletcher Chemicals 64-17-5 

Fluorescein (≥90 %) Sigma Aldrich 2321-07-5 

Polyvinylpyrrolidone (mol wt 10,000) 

(100 %) 

Sigma Aldrich 9003-39-8 

Rhodamine B isothiocyanate (95%) Sigma Aldrich 36877-69-7 

Sodium Citrate (anhydrous) (≥99 %) Sigma Aldrich 6132-04-3 

Sodium Hydroxide (anhydrous pellets) 

(≥99 %) 

Sigma Aldrich 1310-73-2 

Tetraethyl Orthosilicate (99.9 %) Sigma Aldrich 78-10-4 

tetrakis(hydroxymethy)phosphonium 

chloride (THPC) (80 % in H2O) 

Sigma Aldrich 124-64-1 

Potassium Carbonate (≥99 %) Sigma Aldrich 584-08-7 
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2.1.1 Synthesis of Silica Particles 

 

Synthesis of silica nanoparticles used the established method by Stöber 18 by using a silica monomer 

such as TEOS and polymerizing using ammonium hydroxide as a catalyst and reactant (the H2O) in 

ethanol medium.  

Ethanol (90 ml) was poured into a 250 ml round bottomed flask. A separate dilution of TEOS       

(0.25 ml) was added to ethanol (10 ml) in a 50 ml beaker and gently stirred. The TEOS mixture was 

added to the ethanol and mixed for 1 minute under magnetic stirring at 300 rpm. Ammonium 

hydroxide (29% wt) (3.5 ml) was introduced during stirring and left to react for 5 hours at 25oC 

(Figure 15). When the reaction was completed the product was centrifuged at 15,000 rpm for 20 

minutes. The supernatant was removed with a pasteur pipette and the remaining suspension was re-

dispersed in ethanol (90 ml). The procedure was repeated to ensure residual reactants are no longer 

in the silica nanoparticle suspension.  

 

 

 

 

 

 

 

 

Figure 15. Schematic representation of the apparatus set up used in fabricating silica 

nanoparticles. 
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2.1.2 Synthesis of Silica-Dye Nanoparticles (Particle A) 

 

Incorporation of dye to silica in a monodisperse nanoparticle was first demonstrated by Van 

Blaaderen et al 36. The preparation coupled the dye (rhodamine B isothiocyanate) with a silane 

coupling agent (APS) and incorporating this into the Stöber reaction or alongside a different catalyst 

such as Sodium Hydroxide (NaOH).   

To Prepare the dye, APS conjugate rhodamine B isothiocyanate (0.001 g) was dissolved in ethanol 

(1ml), then  APS (0.1 ml) was added and allowed to react for 12 hours in dark conditions (covered in 

foil) under magnetic stirring at 300 rpm. The conjugate was stored in dark conditions.  

TEOS (0.15 ml) is used along with the full amount of APS + dye in ethanol (1.1 ml). These were added 

to ethanol (90 ml) in a round bottomed flask under magnetic stirring at 300 rpm. NH3OH (29 % wt.) 

(3.5 ml) was introduced to initiate the reaction. The reaction took 5 hours at 25oC. After 5 hours the 

product was purified by centrifuging at 12,000 rpm for 20 minutes, removing the supernatant and 

resuspending in ethanol. Centrifuging was performed twice to ensure all reactants were removed.  

Alterations to the above procedure were performed with the aim of producing particles of different 

morphology.  Alterations were made to the amounts of materials used and the timing of the 

reaction however all other apparatus and conditions remained the same. The following table 

outlines the different conditions used. 
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Table 3. Conditions used in producing silica-dye nanoparticles. 

Reaction 
Attempt 

TEOS(ml) APS(ml) RhB(ml) NH3OH(ml) Ethanol 
(ml) 

Reaction 
Time (h) 

1 0.15 0.01 0.001 3.5 90 5 

2 2.83 0.067 0.010 5.1 57 5 

3 3.54 0.067 0.010 4.3 100 3 

4 1.5 0.1 0.001 2 30 12 

5 1.5 0.1 0.001 3 50 2 

6 1 0.1 0.001 3 40 2h 20 
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2.1.3 Gold Nanoparticles 

 

Synthesis of gold nanoparticles uses the method based by Turkevich et al 37. Gold chloride 

tetrahydrate (0.011g) was measured out using a glass pipette and dissolved in distilled water (10 ml) 

in a 50 ml beaker. This solution was added to near boiling distilled water (80ml between 80-90oC) in 

a round bottomed flask under 300 rpm stirring. The mixture was taken off the heat to slowly cool. 

Sodium citrate was prepared as a 1% solution (0.1 g in 10 ml) in a 50 ml beaker and sonicated to 

ensure it is completely dissolved. The solution was then added to the reaction mixture (3.5 ml of 

prepared solution). The reaction remained under stirring for 30 minutes. After 5 minutes the mixture 

turned from a pale yellow/clear to a dark blue. The mixture would gradually go from blue to a deep 

purple and eventually a wine red like colour after 20 minutes (Figure 16). Once the colour of the 

mixture had completely changed (after 30 min reaction time) the gold nanoparticle suspension was 

ready and stored at room temperature, in the dark. 

 

 

 

 

 

 

 

 

 

Figure 16. Schematic representation of the apparatus set up used in gold nanoparticle 

fabrication, including the colour change. 
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2.1.4 Synthesis of gold core silica shell nanoparticles 

 

Gold nanoparticles were first PVP functionalised before the shell growth process. PVP (1.25 g) was 

dissolved in distilled water (50 ml) requiring vortex mixing and sonication to ensure all the powder 

had dissolved. PVP solution (3.5 ml) was added to gold suspension as prepared (50 ml) in a 100 ml 

beaker. The mixture was left under magnetic stirring at 300 rpm for 15 minutes. The mixture was 

centrifuged after this time at 8,000 rpm for 10 minutes to remove any remaining PVP and 

resuspended in ethanol (50 ml). This mixture would have to be used within 1 week of preparation. 

This PVP functionalised suspension was used in the following coating process. 

TEOS solution (0.25 ml in 10 ml ethanol) was prepared in a 50 ml beaker. PVP functionalized gold 

particle suspension (5 ml) was added to ethanol (80ml) in a round bottomed flask. Ammonia 

hydroxide (29 % ammonia in distilled water, 3.5 ml) was then added under stirring at 300 rpm. TEOS 

solution (2 ml) was then added to the mixture. After 1 hour additional TEOS was added (2 ml) and 

again every hour, continuing for 4 hours. After a final hour of reacting the mixture was centrifuged at 

15,000 rpm for 20 minutes and resuspended in ethanol.  

The product was characterized using PCS to determine particle size, TEM to analyse structure since 

this method will allow imaging of the gold core with a shell. Particles will also be of sufficient size to 

be visible under SEM to provide more evidence of size and dispersion. UV-vis was useful to 

determine the amount of gold and silica present in the product. 

An additional method for producing gold core silica shell nanoparticles was investigated using 

sodium hydroxide (NaOH) 42. A TEOS solution was prepared (0.25 ml in 10 ml ethanol) separately 

while PVP functionalised gold nanoparticles (5 ml), distilled water (24 ml) and NaOH (4 ml of 10M 

solution) was added to ethanol (66 ml). TEOS was added drop wise using a Pastur pipette at a rate of 

approximately 1 drop per second at room temperature. The reaction was left for 12 hours and 

centrifuged at 10,000 rpm for 20 minutes, resuspending in ethanol. 
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2.1.5 Synthesis of gold core silica+dye shell nanoparticles (Particle B) 

 

Rhodamine B isothiocyanate (0.001 g) was measured out into a glass bijou (10 ml) along with a flea 

stirrer using a disposable plastic measuring spatula, this equates to 3.22 x1023 molecules in each 

reaction. Nitrogen gas is gently introduced via a tube to remove oxygen from the bijou however a 

high flow was not used to avoid liquid and powder to blow out of the bijou and quickly sealed after 1 

minute of blowing. APS (0.01 ml) is measured out using a pipette and added to the rhodamine B 

isothiocyanate along under a constant stream of nitrogen. Nitrogen was also bubbled into the APS 

bottle before storage. Stirring at 300 rpm and maintained in dark conditions for a minimum of 2 

hours. The mixture should turn an amber colour. 

Once the dye and APS complex was complete it takes part in the normal silica coating reaction. 

Instead of adding a 2nd injection of TEOS solution, add the dye-APS conjugate. Continue adding the 

TEOS solution as normal, however, leave out the final injection.  

A method was also investigated using NaOH as the catalyst as an adaptation by Kobayashi et al42. 

TEOS (0.02 ml) was diluted in ethanol (10 ml) in a separate 50 ml beaker. Ethanol (35 ml) was added 

to a 200 ml round bottomed flask along with the TEOS solution, NaOH (6 ml of 1.5 x10-3 M solution), 

distilled water (11 ml), gold nanoparticle suspension (0.85 ml) and APS-dye conjugate (9.2 x 10-5 ml). 

React for 5 hours and centrifuge at 15,000 rpm for 20 minutes. Resuspend in ethanol. 

Table 4. Summary of the different conditions and concentrations used for the NaOH method 

Gold 
Nanoparticles 

TEOS NaOH (ml 
of 1x10-4 
M) 

H2O (ml) APS-Dye 
(ml) 

Ethanol 
(ml) 

Time (hr.) 

0.0847 1.94 x 10-2 6.5 12.77 9.2 x 10-5 70.74 5 

0.847 9.71 x 10-4 1.58 17.68 9.2 x 10-1 70.74 5 

 

The previous stated characterisation techniques should be used (i.e. SEM, TEM, UV-VIS, PCS). 

However, as the new particles have fluorescent properties, the fluorescence can be measured. The 

fluorescence spectrophotometer was set to a range of 500-700 nm using the excitation of 
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rhodamine B at 550 nm and emission at 580 nm. The sample of suspension was diluted before 

measuring by taking 1 ml of suspension and adding this to ethanol (9 ml). This sample was then 

added to a quartz cuvette and placed in the fluorescence spectrometer for analysis.  

To provide evidence of plasmon boosting, coreless silica and dye nanoparticles were synthesised as 

references. This was the same method of coating, however, the initial mixture had no gold 

nanoparticles. Therefore the silica would nucleate new particles and grow from these, containing the 

same amount of dye. 
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2.1.6 Synthesis of Silica-Dye Core Nanoparticles Coated in Gold Seeds (Particle C) 

 

The method to produce the silica-dye nanoparticle remained the same however gold seeds were 

attached to the surface of the nanoparticle to produce an alternative method of producing plasmon 

boosting. 

Gold seeds are produced by reducing gold chloride with THPC. The nanoparticles produced using this 

method will be much smaller than using sodium citrate, 1-3 nm in diameter opposed to 10-15 nm.38 

NaOH (0.5 ml of 1 M) was prepared in distilled water (45 ml) with THPC (12 µl in 1 ml H2O) and 

stirred for 5 minutes. After this time HAuCl4.3H2O (2 ml of 1% solution) was added quickly to the 

mixture which turned from yellow to a rust brown colour. This gold seed suspension was later used 

in the attachment process. 

An aliquot of silica nanoparticles (50 ml) was heated to 80oC and APS (0.01 ml) was added remaining 

under magnetic stirring for 1 hour at 300 rpm. After this time the mixture was centrifuged at 6000 

rpm for 10 minutes and resuspend in ethanol. 

To attach gold seeds to APS functionalized silica nanoparticles, gold seed suspension (2 ml) was 

added to the APS functionalised silica-dye nanoparticle suspension (50 ml). This was mixed 

vigorously for 30 seconds then left static for 2 hours at room temperature. Centrifuged at 6000 rpm 

twice to ensure all unattached gold seeds are removed and resuspend in ethanol. 

 

 

2.1.7 Silica Core Nanoparticles With a Gold Nanoshell (Particle D) 

 

Growth of the nanoshell required a mixture of potassium carbonate (0.025 g) and gold chloride     

(1.5 ml of 1 % solution) in distilled water. The solution would appear yellow at first but turn clear 

after 30 minutes. The gold salt formed can be left covered in the dark for 24 hours to produce “aged 

gold”. The silica gold seed suspension (0.2 ml) was then added to the gold salt mixture (4 ml), under 
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vigorous magnetic stirring. Hydroxylamine hydrochloride solution (1.87 x 10-3 M) was prepared and 

added drop-wise to the gold salt and nanoparticle mixture until a colour change to blue was visible. 

This colour change indicated that the gold seeds on the particle surface had grown and eventually 

joined together to form the Nanoshell. Additional hydroxylamine hydrochloride would increase the 

ultimate thickness of the shell, as more seeds to combine resulting in a thicker shell. In this project 

10 ml of hydroxylamine hydrochloride solution was added. Centrifuged at 4000 rpm for 10 minutes 

and the particles resuspended in ethanol. 
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2.2 TiO2 Film Growth 

 

In order to grow TiO2 films a rectangular stainless steel vacuum chamber was used with internal 

dimensions of 1800 mm long, 650 mm wide and 300 mm high. The vacuum chamber was used as a 

large area coating chamber manufactured by Prevac Sp.2.0.0. The chamber has the capacity for 2 

rectangular magnetrons side by side. The chamber would be pumped down by diffusion pump 

backed by a rotary pump with a typical base pressure of 2-3 x 10-5 Pa measured by a Penrings gauge 

(manufactured by Edwards Ltd.  

The substrate used for magnetron sputtering was a clear glass microscope slide. The slide was 

cleaned with isopropanol and dust removed by blowing air on the surface. A line of marker pen was 

drawn on the middle of the surface to be sputtered to later aid in measuring the thickness of the 

film. The glass substrate was placed on an aluminium substrate stand 90mm from the target within 

the sputtering chamber, which was closed ensuring the chamber was sealed. 

The magnetron was fitted with a solid titanium target 100 mm wide and 300mm long with the 

chamber evacuated to a pressure of 3.2 x 10-5 mbar. This was achieved by roughing the chamber 

with a rotary pump initially then with the addition of a diffusion pump the pressure can continue to 

decrease. Once the chamber reached the required vacuum pressure, water cooling was introduced 

to prevent the target from burning out. Argon gas was added at a flow of 31 sccm by an MKS mass 

flow controller (MKS PR 4000). The power source was then turned on with varying settings. Settings 

where initially 1000 W of power, 300 volts, 3 Amps of current, frequency of 100 kHz, off time 5µs 

and an operating pressure of 3.6 mTor. Before the film was grown the target had to be cleaned by 

having the power onto the target while a screen was used to prevent any sputtering onto the 

substrate. This cleaning was performed for 10-15 minutes, however it could be observed since the 

plasma colour changed from flashing pink to an even violet. Rotation was used on the target to 

produce a more even film. Sputtering was performed for one hour, initiated by removing the 

dividing screen. To stop sputtering the power supply was first turned off, then rotation, then the gas 
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supply and then the water cooling pump. The substrate was left to cool for an equivalent time that 

the sputtering has been performed for, i.e. 1hour 15 minutes.  During the production of different 

films these settings were slightly altered to produce variable results, notably film quality and 

thickness.  

Table 5 Different settings for production of TiO2 films by magnetron sputtering. 

Sample name Off Time 
µs 

Frequency 
(kHz) 

Voltage (V) Current Reaction 
time 
(min) 

TiO2 20/01/12 5 100 500 2.5 60 

TiO2 24/01/12 5 100 300 2.5 60 

TiO2 25/01/12 5 100 300 3 108 

TiO2 26/01/12 4 100 400 2.6 120 

TiO2 30/01/12 5 100 450 2 120 

TiO2 03/02/12 4 20 500 2 120 

TiO2 08/02/12 5 100 450 2.2 120 

TiO2 10/02/12 5 100 400 3 120 

TiO2 15/02/12 4 100 350 2.2 120 

 

To measure the film thickness, the line of ink produced using the marker pen (before sputtering) is 

removed using a tissue soaked in ethanol as shown in Figure 17. This created a step between the 

sputtered film and unsputtered glass that could be measured by Dektak Profilometry. 
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Figure 17. Schematic of creating a TiO2 film step using a marker pen and removing with 

ethanol and tissue. 

Removable film 
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2.3 Characterisation 

 

Different characterisation techniques were used to analyse the samples produced. Full analysis was 

necessary since nanoparticles in particular need to be sized, quantified, and their morphology 

analysed. Different techniques were then used to evaluate the functional parts of the products such 

as fluorescence and photocatalytic properties. Table 6 outlines the different types of sample made in 

this project and what different characterisation methods where used on them. 

 

Table 6. Different characterisation techniques performed on different samples. 

Sample 
type 

SEM TEM DLS Spectrophotometer 
photometer 

Fluorescence Step 
nanotribology 

Gold NP - yes Yes yes - - 

Gold 
Silica 
Shell NP 

- yes Yes - - - 

Gold core 
Silica+Rh
B NP 

- yes Yes - yes - 

Silica-dye 
NP 

- yes Yes - yes - 

Gold core 
Silica+Rh
B NP 
(NaOH 
Method) 

- yes yes - yes - 

Silica NP - yes - - - - 

Silica 
core gold 
seed 
coating 

Yes Yes - Yes Yes - 

RhB 
solution 

- - - - yes - 

TiO2 films yes - - yes - yes 
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2.3.1 Scanning Electron Microscopy (SEM) 

 

JEOL JSM-5600LV scanning electron microscope was used for this project. The SEM was capable of 

viewing at up to x 50,000 magnification. For the TiO2 films chips 1cm x 1cm squares were cut from 

the coated slide with a glass cutter and bonded to an aluminium stub. The aluminium stubs were 

then placed into their assigned spaces in the sample holder within the chamber. The chamber was 

evacuated to allow viewing of the sample. In order to achieve a quality image a low scan rate is 

required to enhance visible details. Images were taken at x5000, x20,000 and x50,000 magnification. 

This magnification was required in order to view the individual crystalline structures on the film 

surface.  

 

To view nanoparticle samples a drop of suspension was added to an aluminium stub and allowed to 

dry. The stub was then coated in a thin layer of gold using an EMITECH SC7460 sputter coater. The 

chamber was evacuated to 4mbar. The anode voltage was set to 800 V and the argon bled in to 

produce an anode current of 10 mA. The sputtering process continued for 2 minutes, after which 

time the leak valve was closed, the chamber and vented. The coated sample is then imaged in the 

SEM using the same method as for the TiO2 substrates.  

 

2.3.2 Transmission Electron Microscopy (TEM) 

 

For TEM imagery the nanoparticles were placed onto 300 mesh formvar coated copper film grids. To 

prepare a sample on the TEM grid, the sample suspension was first diluted to 1/10 of its initial 

concentration so that the particles would not appear overcrowded on the grids and provide a clear 

image. A drop of the sample was placed onto the grid whilst holding in a warm atmosphere or oven 

by tweezers. The grid was allowed to dry and the prepared sample was returned back into the 

allocated slot in the grid case. Once prepared the TEM grids are placed individually into the 
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microscope. The magnification used reached x200,000  in order to view nanoparticles 50 nm in 

diameter and smaller. Images were taken for both a distant/perspective view and high magnification 

images of individual nanoparticles. 
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2.3.3 Photon Correlation Spectroscopy (PCS) 

 

For PCS the Malvern Zetasizer nano was used to measure the size of particles in a particular sample 

and produce a graph of particle number against particle size. The method also provides an average 

particle size and particle size distribution. Particle size was measured by taking a drop of sample 

suspension and placing into a polystyrene cuvette containing distilled water. The instrument was 

then programmed to size the particles in the sample depending on the substance, i.e. silica or gold. 

The instrument provides the graph of results of number of particles against particle diameter, while 

also providing information on the mean size and poly dispersity index (PCI). PCI is a measurement of 

how uniform the particle sizes are, with 1 being extremely polydispersed and <0.07 being uniform or 

monodisperse. 

2.3.4 Zeta Potential 

 

The Malvern Zetasizer Nano was also used to measure zeta potential. This was used on some 

samples as a method of determining the stability of a nanoparticle suspension. The method uses the 

same machine as PCS, i.e. the Malvern Zetasizer. The method, however, does not use clear cuvettes 

but diodes capable of measuring the potential difference of a sample. A few drops of the sample is 

added to the capillary cell using a pasture pipette and inserted into the machine. The medium used 

does not have to be considered so the sample can be immediately measured. The machine provides 

a value of the zeta potential in electron volts (eV).   

 

2.3.5 UV/VIS Spectrophotometer 

 

The Perkin Elmer Lambda 40 UV/VIS spectrometer was used to measure absorbance of light 

wavelengths in particular samples. This was used to quantify certain samples such as gold, 

specifically when calculating the amount of gold being used in each experiment and rhodamine dye 
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during the photocatalytic breakdown experiment. In order to gauge the gold concentration a 

calibration graph was created. A sample was taken of known gold concentration and measured, and 

the peak transmittance was taken. The sample was then halved in concentration and another peak 

was taken. This systematic dilution was continued and a graph was produced plotting gold 

concentration against absorbance. This could be used to determine the gold content of unknown 

samples, particularly after centrifugation purification.  

 

2.3.6 Fluorescence 

 

The Perkin Elmer LS 55 Luminescence spectrometer measured the light fluorescing from a sample 

when illuminated by certain wavelengths. It was important to set an adequate range for the 

instrument to test from so that both the excitation and emission could be observed. The only 

fluorescent molecule used for testing was Rhodamine B, with an excitation at 550 nm and emission 

at 580 nm so the Excitation wavelength was set to 550 nm with a peak expected at 580 nm. This 

required the measurement range to be set between 400 and 700 nm. Once the range was set 3 ml of 

the sample suspension was added to a quartz cuvette and the measurement performed, producing a 

graph usually including an excitation peak and emission peak. Quartz was required in order to not 

produce any unwanted emission peaks that a plastic cuvette will produce. These measurements 

were used as part of photocatalytic tests. 
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2.3.7 Dektak Profilometry 

 

Dektak Profilometry (Dektak® 3 stylus profilometer manufactured by Vecco Instruments Inc) was 

used to measure the step indentation for a sputtered film. The glass substrates were prepared 

before sputtering to provide a step between the sputtered film and bare glass, as described in 

section 2.2.  The films were mounted onto the step machine and microscope imagery allowed the 

step to be lined up with the measurement needle. The needle used does not touch the sample but 

relies on atomic forces to determine the distance between itself and the sample. The needle then 

moved across measuring the relative height of the film producing a two dimensional graph/image 

(Figure 18). The difference in height between the TiO2 film and bare glass was then calculated. 

Several repeatable measurements along the step line were in order to produce an average value. 

 

 

 

 

 

 

 

 

 

Figure 18. Schematic representation of a Dektak Profilometry two dimensional graph for 

measuring the thickness of a film. 
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2.3.8 Raman Spectroscopy  

 

Raman spectroscopy (Renishaw in via spectrophotometer with a 514,4 nm argon laser) is a powerful 

technique in analysing the chemical structure and physical form of TiO2 photocatalytic films39. This is 

achieved by shining the argon laser onto the sample causing the molecules electron cloud to become 

polarised, causing then to rise to a higher energy state. This creates a virtual state of the molecule 

which is unstable resulting in the energy being released from the molecule. The scattering of this 

ejected light creates a distortion field that can be measured.  This scattering relates to the chemical 

structure of the samples molecules, providing information on their chemical composition, in 

particular what forms of TiO2 are present and in what quantities, i.e. anatase, rutile or brookite. The 

samples were cleaned gently with ethanol before measurements and a central measurement of the 

sample was found with the aid of a light microscope. 

 

2.4 Photocatalytic Testing 

  

Photocatalytic testing measures the activity of TiO2 and its ability to break down organic molecules. 

A solution of methylene blue of concentration to give an absorbance of 1 was first produced. To 

determine basic activity of TiO2 a piece of TiO2 film (2cm x 2cm) was cut out and placed into a 50 ml 

beaker filled with 10 ml of the methylene blue solution. The beaker was placed under the UV lamp 

(360 nm wavelength, 1147 µW/cm2 intensity at 2”) and used for the absorbance of the mixture 

measured every hour for 5 hours using UV/Vis spectroscopy. The rate of degradation can be 

determined from the shape of a peak absorbance versus irradiation time plot. This value was 

compared to a control without a catalytic film so that the UV photobleaching could be taken into 

account and the actual photocatalytic activity could be found. The effect of the TiO2 film in 

combination with the various nanoparticles produced was then investigated using the same method 

as five different samples. The RhB molecule concentration was 3.22 x 1022 molecules/ml for catalysis 
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on all samples. This includes those that did not have RhB encased within the nanoparticles, the same 

concentration used during synthesis.  

As RhB is a fluorescent dye, fluorescence spectroscopy was in preference to UV/Vis spectroscopy. 

The fluorescence spectrophotometer was therefore programmed for rhodamine B ( λ excitation 550 

nm and λ emission 580 nm). 

An additional investigation was performed in order to determine the effect of gold seeds on TiO2 

photocatalysis. Using four (2cm x 2cm) square TiO2 films placed in 50 ml beakers, two contained 

rhodamine B solution (50 ml 0.01 g/L distilled water)(1.61 x1022 molecules), two contained the same 

rhodamine B solution (0.01 g/L distilled water) with 1 ml gold suspension (15 nm diameter, 1.546 x 

1018 particles per ml). An additional beaker containing rhodamine B (50 ml 0.01 g/L in distilled water) 

without a TiO2 film, was used as a control. These samples were also irradiated with UV light, 

however, as the gold would possibly alter the fluorescence results of the sample, UV/VIS 

spectroscopy was used to monitor the photo degradation of the dye.  
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3. Results and Discussion 

The results for this project were derived from the various characterisation and analytical techniques 

used, described in section two. 

3.1 Fabrication of Nanoparticles  

 

3.1.1 Silica Nanoparticles 

 

This section will present the results of silica nanoparticle fabrication 

 

Figure 19. TEM images of silica nanoparticles prepared using the Stöber method. 

 

Silica nanoparticles where fabricated as planned using the method by Graf et al36. Although not the 

primary type of nanoparticle required in this project, forming adequate silica nanoparticles first was 

needed to form a basis in terms of what methods to use in the future and what to avoid. Figure 19 

shows TEM images of some silica nanoparticle samples produced. These samples where relatively 

uniform however there was a mixture present as seen in Figure 19 A where the majority are 

between 90-80 nm in diameter however some go larger than 100 nm and some are much smaller 

and not spherical at all. Figure 19 B shows more spherical and uniform sizes however, there were a 

few particles much larger than most. When measuring the sample with PCS the various sizes present 

A B 
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in the sample suspension leads to the average particle size to be inconsistent and not provide a size 

for the particles of interest. It was therefore important to take TEM images to fully visualise the way 

particles are arranged, how big the majority of particles are and what shape they have. 

 

 

3.1.2 Silica-Dye Nanoparticles 

 

Besides showing distinct fluorescent properties, compared to silica nanoparticles, silica-dye 

nanoparticles showed no significant differences in shape and size as seen in Figure 18. 

 

Figure 20. TEM image of Silica-Dye nanoparticles synthesised under different conditions.  

 

Figure 20 A shows silica-dye nanoparticles that appear to be no different to particles without dye. 

Figure 20 B however, shows a sample where the particles have grown much larger. Although the 

amounts of reagents are no different, because the method of using an APS-dye conjugate alongside 

the normal silica polymerisation reaction slight differences can have a large effect on particle size 

and quality. In this case, it is likely the monomer in which the conjugate has integrated into the 

reaction caused the nucleation stage of the process to stop prematurely therefore fewer larger 

particles opposed to many smaller particles. Many factors can cause alterations including 

A B 
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temperature, amount of catalyst and concentration of reagents. Use of dirty or rough glassware or 

impure, poor quality, reagents can cause polydisperse and unpredictable particles and sizes.  When 

preparing a sample it is therefore vital to use exactly the same method with the same reagents and 

the same glassware, ensuring variation of results minimised and chance of reproducibility 

maximised.  
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3.1.3 Gold Nanoparticle Synthesis 

Gold nanoparticles were prepared using the method described section 2.1.3. PCS was not, however, 

useful in sizing the particles due to the plasmon properties and absorbance of nanosized gold. This 

resulted in peaks as exemplified below in Figure 21. 

 

 

 

 

 

 

 

 

 

Figure 21. PCS results for gold nanoparticles. 

 

It is likely the PCS is incorrectly measuring particle size since according to the literature, particle size 

should only range between 10-15nm. It should be noted that most published studies no not rely on 

PCS to measure the size of gold nanoparticles, but rather assume the size from the method of 

fabrication or use more direct imaging techniques such as SEM and TEM. 

 

 

 

 

 

 

Figure 22. TEM image of gold nanoparticles surrounded by silica. 

Peak 1 Peak 2 Peak 3 

3.04nm (5.1%) 17.47nm (42.3%) 62.7nm (52.5%) 
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Figure 22 shows gold nanoparticles surrounded by silica, in the case of this sample the coating 

process was unsuccessful. However, is does provide a good image for viewing the size, shape and 

distribution of gold nanoparticles. They are all of similar size approximately 10-15 nm in diameter as 

expected, and do not appear to have coagulated, although some have formed clusters with small 

gaps in between. 

 

3.1.4 Gold Core Silica Shell Nanoparticles 

 

The initial methods for producing gold core-silica shell nanoparticles were successful, however, not 

all the particles possessed a gold core, shown in Figure 23. 

 

Figure 23. TEM image of gold core silica shell nanoparticles. Image A shows nanoparticles 

at a lower magnification including those of many different sizes and some not containing a 

gold core at all. B is a higher magnification image of a single gold core silica shell 

nanoparticles. 

 

From these TEM images some conclusions can be drawn relating to why the method was 

unsuccessful. It is clear that the ratio of gold particles to the amount of silica was too small causing in 

silica particles to nucleate themselves and form new particles opposed to growing on the gold 

surface. Figure 22 A is a less magnified image and shows no evidence of gold particles not being 

A B 
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coated, which is one possibility. The next methods would require investigating the correct ratio of 

gold to silica to ensure all particles possess a gold core. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. PCS Results for Gold Core nanoparticles. 

 

Figure 24 shows the PCS results for the gold core nanoparticle samples. They appear to be much 

larger than indicated from the TEM images. This is due to aggregating of particles make the test 

conditions used which resulted in over estimation of particle size. It is likely the PDI is large due to 

the multiple sizes evident and particle aggregation.  

Additional time was not spent on producing better quality particles since that was not the primary 

aim of the project. 

 

 

 

 

 

Sample Name Peak 1 

Au core SiO2 shell (A) 252 nm (100%) 

Au core SiO2 shell (B) 265 nm (100%) 

A B 
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3.1.5 Gold Core Silica-Dye Shell 

 

This part of the project aimed to produce gold core silica-dye shell nanoparticles that could later be 

used in photocatalytic testing. The aim was to encapsulate a dye and have the plasmon boosting 

effect of gold boost the fluorescent signal. 

Initial methods of fabricating the nanoparticle were unsuccessful as seen by the following TEM 

images.  

 

Figure 25. TEM images of gold core silica-dye shell nanoparticles. 

 

In Figure 25 it is clear that the silica-dye had difficulty coating the gold nanoparticles resulting in 

large silica nanoparticles being formed without a gold core. Figure 25 A shows a cluster of gold 

particles indicating that there was not a lack of gold particles in this case but that the silica was 

unable to coat them. Figure 25 B shows gold nanoparticles only on the surface. This is likely to be 

due to the silica not being able to interact with the PVP gold surface. The adsorption of PVP onto the 

gold particles was intended to prevent aggregation via steric stabilisation. This is only a short term 

solution as the PVP steric bonds eventually tangle, covering the gold surface resulting in particles 

coagulating and preventing silica attachment on the gold surface evident by the cluster forming in 

Figure 25 A. In the case of this reaction the freshly stabilised PVP gold where either not used fast 

enough or compression by the centrifuge caused the particles to coagulate prematurely. 

A B 
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Centrifuging PVP stabilised gold is risky as excess PVP will interrupt formation of the shell coating, 

however, the process causes unwanted compression and loss of a large amount of gold particles 

when used under a slower setting. A method to minimise compression using a slower centrifuge 

setting, with vigorous sonication to disperse the particles was eventually used. 

After the previous samples were examined, the method of using NaOH was introduced40 to see if a 

new approach could reliably produce good, quality particles. 

 Table 7. PCS results for samples produced by the NaOH method. 

Sample Name Peak 1 (nm) Peak 2 (nm) PDI (nm) 

MA-NP-29/03 71.0 nm (1.2 %) 540 nm (98 %) 0.653 

MA-NP-1-03/04 234 nm (84.6 %) 5380 nm (15.4 %) 0.401 

MA-NP-2-03/04 370 nm (78.2 %) 4950 nm (21.8 %) 0.423 

NP-MA-11/04 172 nm (96.3 %) 4430 nm (3.7 %) 0.259 

NP-MA-27/04 9.30 nm (8 %) 182 nm (92 %) 0.266 

NP-MA-16/05 286 nm (97 %) 5560 nm (3.0 %) 0.447 

MA-NP-21/05 177 nm (11.3 %) 427 nm (88.7 %) 0.796 

MaSiO2NP1 63.4 nm (81 %) 4.89 nm (18.9 %) 1.00 

MASiO2RhBNP3 69.6 nm (100 %)   0.398 

 

Table 7 shows the PCS results for particles produced using the NaOH method. The results vary 

because of the different methods used. The most notable data however is that almost all the 

samples displayed two distinct peaks. This means that the method was unreliable in terms of 

producing uniform sized particles. Such high possibility of producing a polydisperse sample is evident 

in the PDI results where none of the samples were below the 0.07 threshold for uniformity and one 

sample showed a result of 1, the maximum PDI measurable. From the method used it is also 

apparent that the concentrations of reagents used are very small. This is a reflection of the 
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Kobayashi’s paper where the concentrations were also small making large amounts of nanoparticles 

difficult, requiring very large volumes.  

Although the method produced small amounts of polydisperse samples, the TEM results show that 

the reaction was successful at coating gold nanoparticles. 

 

 

 

 

 

 

Figure 26. TEM images of gold core silica-dye shell particles produced by the NaOH method. 

A shows two double nuclei nanoparticles, B shows particles fused together and C shows a 

high magnification image of a single gold core shell nanoparticle. 

 

Figure 26 A shows multi core particles coated in silica-dye. The multi core in this case is likely due to 

gold nanoparticles beginning to coagulate during formation of the shell layer. In this sample the 

particles where very few in number, due to change in production method. The ratio of gold to silica 

may also be too high, however, this cannot be confirmed. Figure 26 B shows more multi-core 

particles, however, the gold particles do not appear to have coagulated, showing discernible spacing 

between them. The particles may be linked by PVP during adsorption onto multiple particles 

however it is also likely the coating process occurred at a much faster rate, causing it to envelop the 

A 

B C

A 
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loose cluster of gold particles. There is also a lot of excess silica in the suspension that should have 

polymerised onto the particles. This silica has instead formed silica gel, again due to the reaction 

occurring too rapidly. Other than producing multi-core particles and causing the silica to form gel the 

method was successful in producing some particles of the desired size and shape as seen in Figure 26 

C. 

 

3.1.6 Silica Core Gold Nanoshell Particles 

Three silica nanoparticle samples where produced using the Stöber method for use in coating in a 

Nanoshell. 

Table 8. Summary of the Sizes of Silica-Dye Nanoparticles for use in Nanoshell Formation. 

 

Sample Name Amount of 

TEOS (ml) 

Diameter nm PDI Zeta Potential 

(mV) 

APS mod 

zeta (mV) 

SIO2RHB4 1.5 605 0.591 -64.7 17.3 

SI02RHB6 1.5 631 0.059   

SIO2RHB7 1.0 220 0.122   

 

Table 8 shows the amount of TEOS used in each sample. They were increased from the original 

method in order to produce a high concentration of particles. This however resulted in increased 

particle size with more variation in the quality of particles. SIO2RHB4 was reacted in a conical flask 

while SIO2RHB6 used a round bottomed flask. The round bottomed flask provided a far better 

reaction environment for producing nanoparticles in terms of producing high levels of 

monodispersity. The PDI of SIO2RHB6 is significantly lower than SIO2RHB4 and being below the 0.07 

threshold it is considered monodisperse. The amount of TEOS affected the size significantly, as seen 

by a decrease of 0.5 ml in SIO2RHB7. Although not as monodisperse, the sample was of sufficient 

quality for coating, but more importantly it was of a more suitable size as smaller particles would 
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provide an improved surface area to volume ratio. Zeta potential was measured for the first sample 

during APS functionalization. Initially the zeta potential is negative due to the surface silica creating a 

repulsion force between particles; by adding APS to the surface amine bonds will become more 

frequent, shifting the potential to a more positive state. The zeta potential reading indicates that a 

large amount of the surface had been functionalised resulting in an overall positive surface 

potential. It is important to maintain a high surface potential in order for the sample to remain 

stable due to repulsion forces preventing particles from naturally coagulating. Logically more APS 

would lead to more surface modification and therefore a more stable product. APS is however 

capable of polymerising in the presence of oxygen, although the synthesis can be performed under 

nitrogen there is no guarantee so as little APS was used as possible to prevent contamination. 

 

 

 

 

 

 

 

 

Figure 27. TEM images of silica-dye particles coated in gold seeds. 

 

A B 

C 
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Figure 27 shows TEM images of silica-dye nanoparticles coated in gold seeds. The PCS results 

indicated it was not monodisperse with a PDI of 0.122, which is clear from the larger particles dotted 

about the Figure 27 A. The attachment of gold seeds is not complete either (Figure 27 B and C) 

where some particles have some gold and others have little or none. There are some possible 

explanations to this effect. The initial APS functionalization was insufficient, leaving some particles 

not coated in APS at all. It is therefore likely that APS in the functionalization stage is required or that 

the reaction should be continued for longer. Without APS functionalization the gold seeds could not 

bind to the silica shell. This is unlikely to be the only contributing factor as there would still be an 

even distribution of APS on each particle and therefore an even amount of gold on each particle. The 

reason for the uneven distribution is caused by the method used for adding gold seeds to the 

functionalised particles. The method added a fixed amount of gold and vortexing to mix. The method 

required the particles to remain static for binding to take place, however, this caused some particles 

to acquire more gold than others and likely needed gentle mixing for a longer period of time to 

ensure the particles bind on the surface and for a more even distribution. 

Figure 27 C is interesting as it has larger gold seeds on the surface. This change is caused by the use 

of hydroxylamine hydrochloride in combination with gold salt to build up a gold shell. This method 

essentially adds gold atoms to the gold seeds eventually causing them to fuse together to form a 

shell. The shell formation was not complete as it was stopped after a colour change from a rust 

brown to navy blue was observed. The change indicated that the seeds became bigger and fusing 

together. This fusion resulted in loss of the ruby red colour, which is indicative of the presence of 

gold nanoparticles.  

Note that PCS was not performed on particles after the addition of gold due to the plasmon effect, 

which adversely affects the accuracy of size measurements. PCS was not carried out either as the 

particle size should not change during the gold seed addition reaction. 
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3.2 Fluorescent enhancement 

 

One of the primary aims of this project was to demonstrate the plasmon boosting effect of gold 

nanoparticles in enhancing fluorescent dye, of which rhodamine B was chosen to be suitable. In the 

nanoparticle synthesis stage particles where made demonstrating possible methods of plasmon 

boosting, via a gold core coated in a silica-dye shell, a silica-dye core coated in gold seeds and a 

silica-dye core coated in a gold shell. Fluorescence was performed on each sample and compared 

with silica-dye nanoparticles containing the equivalent number of dye molecules (9.66 x 1020 

molecules). 

 

3.2.1 Gold Core Silica-Dye Shell 

 

 

Figure 28. Fluorescence spectra showing the enhancement of gold core nanoparticle (B) 

compared to one silica-dye control (A). 

 

Figure 28 shows a fluorescence spectra of a gold core silica-dye nanoparticle compared with a silica-

dye nanoparticle, both samples containing the same amount of dye and therefore should produce 

the same fluorescence. The gold core sample however produced, significantly more fluorescence 
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than the control by a factor of 4.9 (peak of 48.8 ÷10.2). This result demonstrated what was to be 

expected from the literature. In possessing a gold core the plasmons on the surface were capable of 

boosting fluorescence interactions of the dye within the silica shell. This resulted in a more efficient 

fluorescence interaction providing an amplified emission signal. This was only a basic test to see if 

there was any affect at all, the exact level of enhancement would require additional, testing. 

 

 

3.2.2 Silica-Dye Core Gold Shell (C)  

 

The gold nanoshell consisted of a silica-dye nanoparticle coated with gold seeds with the addition of 

a gold salt and hydroxylamine hydrochloride in order to add additional gold to the seeds, such that 

they gradually fuse to form a shell. The following graph compared the fluorescence properties of a 

silica-dye nanoparticle and one coated with a gold nanoshell containing the same number of dye 

molecules (9.66 x 1020 molecules) 

 

 

 

 

 

 

 

 

Figure 29. Fluorescence Spectra of Silica-dye nanoparticles and Nanoparticles Coated in a 

Nanoshell. 
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Silica-dye 
Nanoparticle 

Gold seeds fusing together 
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Unlike the gold core nanoparticle in Figure 28, the gold nanoshell did not produce the same boosting 

effect as seen in figure 29. The graph shows that a basic silica-dye nanoparticle has peak 

fluorescence at 174.6, whilst with a gold shell this is reduced to 31.3. This is likely due to the gold 

nanoshell on the surface not exhibiting the same plasmon boosting properties normally seen in 

nanosized gold. This loss was observed when the mixture changed in colour from a rust red to navy 

blue as a result of further addition of gold. The rust red colour is caused by the plasmons on the gold 

nanoparticle surface absorbing light to give a red colour, when fused with other gold seeds the 

plasmons change their resonance wavelength further towards the infrared resulting in a loss of 

colour changes. The nanoshell is no longer in a position to enhance fluorescence of rhodamine B dye 

(580 nm absorbance), but instead interferes with light entering and exiting the nanoparticle 

effectively reducing the fluorescent signal even though the same amount of fluorescent molecules 

(rhodamine B dye) were present (Figure 30). This is evident in the literature where nanoshells are 

used to enhance plasmon resonance in the infra-red opposed to fluorescent dyes21. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Diagram representing the effect of a nanoshell on a silica-dye nanoparticle 

fluorescence.  
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This result was once again to gain a basic level of enhancement or loss of fluorescence. Additional 

testing is required to calculate a more accurate level of fluorescent loss. 

3.2.3 Silica-Dye Core Coated in Gold Seeds Nanoparticles (D). 

 

Silica-dye nanoparticles coated in gold seeds were compared with silica-dye nanoparticles for their  

fluorescent properties containing the same number of dye molecules (9.66 x 1020 molecules) 

 

Figure 31. Fluorescence comparison of silica-dye control (Particle A) shown in graph A and 

silica-dye coated in gold seeds (Particle C) shown in graph B. 

 

Figure 31 A shows the fluorescence emission of silica-dye nanoparticles without any gold seeds. The 

peak reaches only 157 AU. Figure 31 B shows the fluorescence emission of silica-dye coated in gold 

seeds compared to the control. The gold seed sample has a peak of 3 x 104 AU. Both samples 

contained the same amount of rhodamine B molecules so any change in fluorescence was caused by 

light interacting with gold seeds and their surface plasmons. Using the values from the graph, the 

introduction of gold seeds resulted in a 196 fold boost in fluorescence. This is a significant difference 

in activity relative to the gold core, which only gave a 4.98 fold increase in activity. Therefore there 
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are factors that have allowed plasmon boosting they occur more effectively. To gain an accurate 

level of fluorescence enhancement more testing is required. 

In the gold core nanoparticle, the plasmon boosting only effects dye molecules in a certain radius 

with the maximum effect located 25nm from the gold surface. This is shown in Figure 30. 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Diagram representing the area of plasmon boosting in a gold core silica-dye 

nanoparticle. 

 

The area of maximum plasmon effect is the area in which the plasmons emitting from gold boosts 

fluorescence. In Figure 32 the core in the centre provides only one surface for plasmon emission, 

limiting the amount of plasmons available for fluorescence boosting. The zone of maximum plasmon 

effect is also well within the nanoparticle where only a fraction of the light used for possible 

fluorescence can penetrate. This is a major factor as the majority of fluorescence will occur on or 

near the nanoparticle surface and only a small amount deeper in. It is possible to make a thinner 

shell however, which does improve the signal40. 
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Figure 33. Diagram representing the area of plasmon boosting for a silica-dye nanoparticle 

coated in gold seeds. 

 

Figure 33 shows that the area of plasmon boosting is much larger due to the gold seeds being 

present on the surface. This also allows for plasmon boosting to occur in the area where light will be 

most abundant. As there are many gold seeds with their own plasmon cloud, opposed to a single 

core producing one cloud. The area of plasmon boosting contains significantly more plasmons, they 

further enhancing the fluorescent properties of rhodamine B in this area. The benefit of this method 

is that the size of the nanoparticle is not very critical in terms of boosting dye molecules. The benefit 

of smaller particles would provide a better surface area to volume ratio and reduce the 

number/fraction of dye molecules which are not within the plasmon cloud. 

One part of the model that cannot be explained is that normally fluorescent interactions so close to 

a gold nanoparticle are self-quenched, which means that photons emitted from dye molecules are 

absorbed by the gold nanoparticle itself. This could still be occurring and the other factors are 

overriding this, however, with the scope of this project it was not able to quantify and explain this. 
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3.3 Titanium Dioxide Film 

 

3.3.1 Step thickness measurements 

 

Table 9. Step thickness results for sputtered films. 

 

Sample name Thickness (µm) Standard Deviation 

TiO2 20/01/12 - - 

TiO2 24/01/12 0.555 0.014 

TiO2 25/01/12 1.086 0.012 

TiO2 26/01/12 1.01 0.014 

TiO2 30/01/12 1.06 0.161 

TiO2 03/02/12 (1) 2.205 0.114 

TiO2 03/02/12 (2) 2.356 0.010 

TiO2 03/02/12 (3) 2.314 0.005 

TiO2 08/02/12 -  

TiO2 10/02/12 -  

TiO2 15/02/12 (1) 1.798 0.026 

TiO2 15/02/12 (2) 1.973 0.508 

 

Table 9 shows how the TiO2 films varied in thickness. The results were acquired by measuring six 

different steps in different areas of the film and finding the average. Six different measurements are 

deep accurate enough for a reliable average thickness since there should be no large variants on a 

stable film. There is an increase from sample TiO2 24/01/12 to TiO2 26/01/12 since this is where the 

reaction time was increased to 100 minutes to create a film 1 µm thick, which was successful. The 

three samples prepared on 03/02/12 where all much thicker due to use of a much lower sputtering 
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frequency. This allowed more TiO2 to deposit in one cycle rather than smaller amounts more 

frequently. This method produced a much thicker film. The final two films where thicker than those 

performed before 03/02/12 since they used a longer deposition time of 120 minutes but the same 

frequency. Films with no thickness results stressed during or after sputtering causing the film to peel 

off and become immeasurable. The reason for this was often due to inconsistencies in the reactive 

gas flow, leading to irregular rates of TiO2 deposition that did not form a quality film. 
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3.3.2 Raman Spectra 

 

Analysis of Raman spectra involved identifying the key peaks that should be expected to characterize 

the composition. In this section these peaks will be identified as different TiO2 morphologies, whilst 

any other peaks identify impurities or organic interference on the surface of the film. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Raman spectra of sample 3.02.12.1, 2.205 µm thick. 

 

Figure 34 shows a clear peak at 600 cm-1 and 450 cm-1, therefore film mainly consists of rutile TiO2 

however, the peaks are not very sharp indicating the material may not very crystalline and instead 

more granular. This could be due to the angle of the laser. There is also a peak at 175 cm-1 indicating 

a small amount of the anatase form TiO2. 
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Figure 35. Raman spectra of sample 3.02.12.2, 2.356 µm thick. 

 

Figure 35 shows a similar spectrum showing a high rutile peak at 600 cm-1 and 450 cm-1 however a 

small anatase peak can be seen at 175 cm -1. 
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Figure 36. Raman spectra of sample 3.02.12.3, 2.314 µm thick. 

 

Figure 36 shows a poor Raman spectrum showing none of the relevant peaks that would be seen in a 

TiO2 sample. There is only one clear peak at 1100 cm-1 indicating the presence of organic material 

such as residue from touching the surface without gloves, which have likely covered the surface and 

masked the TiO2 crystals. 
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Figure 37. Raman spectra of sample 25.01.12, 1.086 µm thick. 

 

For Figure 37, this sample has a much higher proportion of anatase by the high peak at 128 cm-1. 

There is also some rutile forming peaks at 450 cm-1 and 620 cm-1. This sample therefore has a 

mixture or crystal types, though as both anatase and rutile have strong photocatalytic properties, 

this sample would be expected to possess more activity that others (as described in section 1.3). 

 

These samples show a range of different structures indicating that the sputtering conditions matter 

greatly in producing a high quality film. It is however, important to ensure the film is pristine when 

undergoing Raman spectroscopy to ensure the laser irradiates the Titania sample and not the 

contaminated surface. The organic contamination was likely due to poor handling during any part of 

the sputtering process and when undergoing Raman analysis. Excessive cleaning was avoided due to 
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some films being very fragile. The hardness of films was not investigated, so long as the film was 

intact and exhibited some photocatalytic properties it was used for further testing. 

 3.3.3 SEM Imaging of TiO2 Films 

 

SEM was used to provide a visual analytical tool for examining the surface of TiO2 films. This provides 

information on crystal size, how granular/smooth the surface is and also provides possible insight 

into how the surface looks in relation to its composition and photocatalytic activity. All images 

shown are at x 50,000 magnification. This is the maximum magnification that produced a clear 

image. 

 

 

 

 

 

 

 

 

Figure 38. SEM images of sample 3.02.12.1 (A) 3.02.12.2 (B) 3.02.12.3 (C), 50k 

magnification. 
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Figure 38 shows SEM images of samples A 3.02.12.1, B 3.02.12.2 and C 3.02.12.3. Each sample shows 

different surface morphology, however A 3.02.12.1 and B 3.02.12.2 share similar results from the 

Raman analysis, with C 3.02.12.3 being very different. Interestingly these samples were all sputtered 

at the same time under the same conditions. From Figure 37 A it is evident that this example shows 

uniform surfaces with patches of granular crystals varying in size between 400 nm and 20 nm. 

Although varied, these crystallites increase the surface area for excitation and hence the frequency 

of radical formation. Figure 37 B however shows an almost completely uniform surface however, the 

small granules are typical of a rutile crystal, which is also confirmed by the Raman spectra. The larger 

granules in Figure 38 A are likely to be anatase crystal formations accounting from the small peak in 

the Raman spectra. For Figure 38 B however, the anatase crystals must be smaller and far more 

spread out such as shown in the centre of the image. Figure 38 C however, does not show any large 

crystal formation and appears to be a rougher but with a uniform surface. The Raman analysis of 

these samples showed only a high level of organic contamination however, it is likely to be primarily 

rutile. From the Raman spectra and SEM images it is likely these three 

 films are primarily rutile therefore possessing a moderate amount of photocatalytic activity 

however not the best. 

 

 

Figure 39. SEM images of samples (A) 25.01.12 (B) 26.01.12 x 50,000 magnification. 
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Figure 39 A shows sample 25.01.12, which showed a very high level of anatase crystals as confirmed 

in the Raman spectra. This becomes clearer in this SEM image where there are an abundance of 

anatase crystals present as opposed to just a few in Figure 38 A. This sample is likely to possess high 

levels of photocatalytic activity. Sample 26.01.12 however, is nearly the complete opposite with an 

extremely smooth surface with a few crystal formations. The Raman spectra did not however, show 

what this sample composed of due to high levels of organic contamination. Compared to other film 

samples it is likely to be a rutile film but this cannot be certain. 

.  

3. 4. Photocatalysis Results 

To verify the excitation wavelength required the absorbance of RhB isothiocyanate was measured.  

This measurement coincides with the wavelength required to excite the electrons within the dye 

molecule. This was measured by UV-VIS spectroscopy. The peak absorbance was found to be 560 nm 

as seen on Figure 40 so to fluoresce the dye a light beam of 550-560 nm was used. 

 

 

 

 

 

 

 

 

 

 

Figure 40. UV-VIS absorbance of rhodamine B isothiocyanate (9.66 x1020 molecules). 
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3.4.1 Plasmon Boosting of Photocatalysis by Gold Nanoparticles in Suspension 

 

This section presents the results for photocatalytic breakdown of rhodamine B with a TiO2 film under 

UV light with and without the addition of gold nanoparticle (9.66 x 1020 molecules) 

 

Figure 41. A, Family of UV-Vis spectra for Rhodamine B after irradiation with UV light with 

the addition of 2 ml Au nanoparticle suspension and B, Absorbance of 560 nm versus 

irradiation time. 

 

Figure 41 A shows the absorbance spectra of RhB under UV light (360 W) in the presence of a TiO2 

film and 2 ml of gold suspension. Note that the peak for absorbance is approximately 560 nm which 

coincides with the initial absorbance reading. The peak absorbance at 560 nm is plotted against 

irradiation time (Figure 41 B) to show the decay in absorbance. The gradient of the graph is equal to 

the absorbance decay rate, which in the above case is 0.114 AU/hour.  
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The following table shows the rates of decay for the other decay experiments performed 

Table 10. Decay Rates of gold enhanced photocatalytic samples. 

Sample Decay rate (abs/hr) 

Rhodamine B control (no TiO2 or Au) -0.0046 

Au 1 -0.0114 

Au 2 -0.0105 

No Au 1 -0.0056 

No Au 2 -0.0047 

 

 

Figure 42. Bar Chart of sample decay rates. 

 

The results from Figure 42 show that there is an effect of introducing gold nanoparticles to TiO2 to 

enhance photocatalysis. By calculating the means of each set of results, the enhancement is a factor 

of x2.13. There was no set limit to how much gold suspension to add however, sufficient gold was 

added in the same range as nanoparticles contained in previous tests. Additional gold could 
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therefore be used and provide a greater result however, the base and maximum amount has not 

been investigated. It is possible to reach a saturation point where additional gold will not provide 

any additional effect or reduce effectiveness. Only 2 tests were performed leaving the value of 

enhancement inaccurate. 

This coincides with current literature 20 that Au plasmon enhancement of TiO2 photocatalysis occurs 

however, the results show only an x2.1 increase opposed to x66 possibly due to the different 

method used to introduce gold nanoparticles. The authors of reference 20 ensured a maximum 

effect from the gold nanoparticles by coating the surface in a 5 nm layer while in this project the 

gold remained in suspension and had little contact with the TiO2 surface. The enhancement is 

unlikely caused by direct contact of TiO2 and gold nanoparticles and is more likely to be due to 

photon enhancement, however, having gold as close to the particle surface as possible will maximise 

the effect. If it was possible to use a TiO2 film that responds to wavelengths corresponding to visible 

light this will coincide with the absorbance of gold nanoparticles, and therefore give a greater effect.  
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3.4.2 Plasmon Boosting of Photocatalysis by Gold Cores and Gold Seeds 

 

In this section data from an experiment to examine the effects of gold cores coated with a silica-dye 

shell (particle B) on the degradation of dye within the silica matrix (4.83 x1020 molecules) is reported. 

 

 

Figure 43. A, Family of Fluorescent spectra for RhB after irradiation with UV light over time 

(A), plot of  fluorescence peak maxima against over time showing rate of degradation 

gradient (B) 

 

Figure 43 A shows a family of fluorescence spectra of RhB which has been irradiated with UV light for 

different time periods. The peaks were measured from 560 nm and graphed against irradiation time 

and a line of best fit found showing a rate decrease of 1.43 AU per hour as shown by the line of best 

fit, with a gradient representing the rate. This shows that UV light alone causing photobleaching. The 

results for rates of breakdown were recorded by extrapolating the gradient in the same way. 
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Table 11. Results of UV irradiation over time. 

 

Sample Rate of degradation (fluorescence per hour 

Au/hr) 

 RhB in H2O -1.4259 

 RhB in H2O with TiO2 -2.7482  

 RhB+APS with TiO2 - 

SiO2-Dye nanoparticle (A) with TiO2 (1) - 

SiO2-Dye nanoparticle (A) and TiO2 (2) - 

SiO2-Dye nanoparticle (A) and TiO2 (3) - 

 RhB encased in SiO2 with gold core and TiO2 (1) - 

 Gold core Silica-dye shell (B) and TiO2 (2) -0.042 

 Gold core Silica-dye shell (B) and TiO2 (3) -- 

Silica-dye core coated in gold seeds (D) and TiO2 -0.0185 

 

From the results in Table 11, RhB in water and with a TiO2 film degraded the dye resulting in a loss of 

fluorescence and therefore a measurable degradation rate. TiO2 proved effective at boosting the 

photobleaching of RhB shown by an increase in degradation rate by a factor of x1.93. A protective 

element however, can be initially identified at the APS conjugation stage of which showed no loss of 

fluorescence. The APS was sufficient enough to protect the RhB molecule, even while undergoing UV 

irradiation and photocatalysis. Further coating with silica also showed no change in fluorescence as 

expected since additional silica within the matrix provided further protection. The SPR effect of the 

gold core however, provided some enhancement in photobleaching whilst in the nanoparticle 

structure, however, the results are not certain as one result did not fit the trend. The gold seed 

coating gave a similar result of a slight degradation over time. As expected the plasmons on the gold 
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surface enhanced photocatalysis to enable some RhB photobleaching, however, the protective 

properties of silica still played a large part as the rates of decay were still much smaller than when 

the RhB dye was without any protection, i.e. 2.7 to 0.016, this means even without photocatalytic 

enhancement the protective silica can decrease degradation by a factor of x174. This result however, 

is based on only a few tests and needs to be repeated to ensure accuracy, in particular for particle 

type B where the results were too erratic to provide a reliable rate of decay. This was likely due to 

inferior mixing during the irradiation and before testing was made causing the sample being tested 

to vary too much in dye concentration. Such things could be avoided by repeating the test to ensure 

that any change is definite and constant erratic (but small) changes could be taken as zero or a 

negligible change. 

 

4. Conclusion 
 

This project investigates the effect of plasmon boosting of TiO2 photocatalytic films and ways this 

effect can possibly be enhanced through nanoparticle technology. Methods of nanoparticle 

synthesis were used in order to create a model for gold plasmon boosting fluorescent dye emission 

to be most effective. The results concluded that a silica-dye nanoparticle coated in gold seeds sized 

1-3nm in diameter produced a huge increase in fluorescence compared to a silica-dye nanoparticle 

control by a factor of x196, or even compared to the established gold core silica-dye shell 

nanoparticle, which showed only the expected plasmon boosting of a fivefold increase. 

TiO2 films were fabricated by magnetron sputtering however these films only reacted to UV light so 

the effect of duel enhancement by both a light source and dye fluorescence emission could not be 

investigated. The effects of the TiO2 films photocatalysis on the nanoparticle models was tested 

showing that they were capable of photobleaching RhB however they were protected once the RhB 

conjugated with APS. This reaction alone was sufficient at protecting the RhB molecule from being 

broken down, however encapsulating in silica also prevented breakdown as expected. The gold core 
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nanoparticle’s (particle B) plasmon effects showed some effect of counteracting the protective 

properties of silica, however this is inconclusive. A more definitive result was found for the gold seed 

coated silica-dye nanoparticle (particle C), which showed a small loss of RhB over time however this 

was 174 times less effective than when RhB was exposed.   

By using gold nanoparticles the rate of RhB breakdown was boosted by x2.13 showing that SPR does 

have an effect on photocatalysis. Other authors have attempted similar methods by coating the film 

surface with a thin layer of gold (5nm) 20, acquiring results of x66 enhancement. By using the model 

nanoparticle on the TiO2 surface as explained in future work (section 4.1), it may be possible to 

achieve this enhancement level when exposed to UV light. 

The accuracy of the results can be considered very low since few repeat results were performed to 

ensure any results were statistically significant. The results in this project must therefore be taken as 

a basic value of increase/decrease/no change in effect, whilst additional testing must be performed 

to provide a more accurate value. 

When considering new methods of water treatment, the materials of treatment themselves must be 

considered. In this project silica and gold nanoparticles, rhodamine B dye and TiO2 films were used. 

Silica itself is non-toxic along with gold and both are being considered for new medical treatments in 

the future. TiO2 would be in the form of a static film however nanoparticle fragments could be 

considered a health risk since TiO2 is a possible carcinogen 47. Rhodamine B would also not be usable 

as a fluorescent molecule being classified as carcinogenic, so a different and non-toxic fluorescent 

molecule must be used. All these factors must be considered in case any parts of the water 

purification system are lost in the water itself over time. If methods of reducing this adequately are 

found then these factors may be bypassed.  

This project has explained and verified some innovative concepts on the cutting edge of nano 

technology and new possibilities in the field of water purification technology, demonstrating 

innovative methods of utilising gold SPR and outlining a possible new system were TiO2 

photocatalysis can be enhanced in the use of effectively breaking down organic pollution of which is 
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a serious and growing environmental problem, which the European Union is tackling directly through 

the water framework directive.  

. 
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4.1 Future Work  

 

Several aspects of gold plasmon boosting of TiO2 films were investigated which leads to possible new 

methods of plasmon boosted TiO2. TiO2 films can me made sensitive to visible light through doping 

with various elements, in particular nitrogen45. This can be easily achieved by introducing nitrogen 

gas to the magnetron sputtering chamber. The amount of nitrogen can be precisely controlled by 

altering the proportion of oxygen and nitrogen gas introduced. In this case nitrogen exists in ionic 

form (N3-) with a small amount as titanium nitride (TiN). The maximum absorption can be altered to 

λ620nm and the band gap to 2eV22.   This could enable the film to activate from both the gold SPR 

enhancement and fluorescence of encapsulated dye with a similar emission wavelength. A system 

could be developed to utilise visible light of which can be obtained artificially (for potentially less 

power than a UV lamp) or from sunlight. To maximise the potential of this system using the results 

from this project, nanoparticles must be fabricated to be as small as possible, be coated in a 

sufficient and even amount of gold seeds as possible, loaded with as much dye the maximum 

amount of dye without the molecules self-quenching. Finally they must be adhered to the TiO2 film 

so that any SPR interactions and fluorescent emissions interact closely and efficiently with the film 

surface. This system will potentially break down organic molecules efficiently, for little or no artificial 

energy input. 
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