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Abstract

Multi-modal logics are among the best tools developed so far to anal-

yse human reasoning and agents’ interactions. Recently multi-modal

logics have found several applications in Artificial Intelligence (AI) and

Computer Science (CS) in the attempt to formalise reasoning about

the behavior of programs. Modal logics deal with sentences that are

qualified by modalities. A modality is any word that could be added to

a statement p to modify its mode of truth. Temporal logics are obtained

by joining tense operators to the classical propositional calculus, giving

rise to a language very effective to describe the flow of time. Epistemic

logics are suitable to formalize reasoning about agents possessing a

certain knowledge. Combinations of temporal and epistemic logics are

particularly effective in describing the interaction of agents through the

flow of time. Although not yet fully investigated, this approach has

found many fruitful applications. These are concerned with the devel-

opment of systems modelling reasoning about knowledge and space,

reasoning under uncertainty, multi-agent reasoning et c.

Despite their power, multi modal languages cannot handle a changing

environment. But this is exactly what is required in the case of human

reasoning, computation and multi-agent environment. For this pur-

pose, inference rules are a core instrument. So far, the research in this

field has investigated many modal and superintuitionistic logics. How-

ever, for the case of multi-modal logics, not much is known concerning

admissible inference rules.

In our research we extend the investigation to some multi-modal propo-
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sitional logics which combine tense and knowledge modalities. As far

as we are concerned, these systems have never been investigated before.

In particular we start by defining our systems semantically; further we

prove such systems to enjoy the effective finite model property and to

be decidable with respect to their admissible inference rules. We turn

then our attention to the syntactical side and we provide sound and

complete axiomatic systems. We conclude our dissertation by intro-

ducing the reader to the piece of research we are currently working on.

Our original results can be found in [9, 4, 11] (see Appendix A). They

have also been presented by the author at some international confer-

ences and schools (see [8, 10, 5, 7, 6] and refer to Appendix B for more

details).

Our project concerns philosophy, mathematics, AI and CS. Modern

applications of logic in CS and AI often require languages able to rep-

resent knowledge about dynamic systems. Multi-modal logics serve

these applications in a very efficient way, and we would absorb and

develop some of these techniques to represent logical consequences in

artificial intelligence and computation.
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Chapter 1

Introduction

Modelling human reasoning and agents’ behaviour in a system is nowadays a

very active area. There are several ways to approach this research field and

multi-modal logics are definitely quite a strong candidate for this purpose.

These logics provide a combination of great expressive power and intuitive

semantic tools and they have already been successfully applied to both Arti-

ficial Intelligence and Computer Science in the attempt to formalise, for in-

stance, reasoning about the behaviour of programs (cf. Goldblatt [27, 26]),

social interactions, games and so on. Multi-modal logics can thus be re-

garded as a very good tool in the analysis of Multi-Agent systems.

Our approach to Multi-Agent reasoning does lay its foundation on multi-

modal propositional logic. We aim at defining some temporal multi-epistemic

logics, focusing on the aspect of admissible inference rules in these systems.

Our starting point is a basic understanding of the problems and the

themes related to Multi-Agent reasoning. This introduction aims at pro-

viding the reader with a concise knowledge base in support of the further

1



2 CHAPTER 1. INTRODUCTION

development of our analysis. We start by explaining the reasons that led us

to our choice of multi-modal languages and logics. We proceed by reviewing

a few representative and successful attempts to systematise the subject. We

turn then our attention to the area of inference rules and we survey the

latest results in the area. Finally we summarise both the content and the

structure of the following chapters.

1.1 Choosing Multi-Modal Languages

The main feature of modal languages is that they enable the switch from

extensionality (the expression of facts, statements which can be either true

or false) to intensionality.

Classical Propositional Logic is, in fact, purely truth-functional : the

truth value of a complex proposition as p∧q is completely dependent on the

truth values of its components p and q. Let us say, for instance, that the

proposition p stands for it is raining whereas q means I take my umbrella.

Then the truth value of the proposition p∧ q would be true if and only if it

is true both that it is raining and that I take my umbrella, i.e. if both the

propositions share the same truth value true.

This approach works fine in any case of assertive speech, whenever we

utter sentences which state facts, statements linked to each other by means

of the classical logical connectives. However as soon as we read what we

write or listen to what we say, we realise that not all the sentences we use

are necessarily so. There are so many sentences that in spite of being both

grammatically correct and meaningful are not suitable to be interpreted us-

ing a truth-functional approach. The classical example of a sentence whose

truth value does not depend only on the truth values of its components is
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provided by Frege [19]. Let us say, for instance, that I know that the morn-

ing star is the planet Venus, although I lack the knowledge of the fact that

the morning star and the evening star are actually the same star, which is

not a star, by the way, but the planet Venus. Thus a proposition as I know

that the morning star is the planet Venus would be true and intuitively a

proposition as I know that the morning star is the evening star would be

false, for I do not possess the latter information. Nevertheless according

to the rules of Classical First Order Logic, the expressions morning star,

evening star and planet Venus are interchangeable by Leibniz’ Law, as they

share the same semantics. Therefore it is clear how a sentence as the one

provided is not truth-functional at all: its truth value does not depend on

the truth values of its component parts. In fact, as soon as we get proposi-

tions qualified by modalities as can, could, might, may, must, know, believe

et c. the truth functionality is no longer applicable. These phrases tell some-

thing more than a pure fact: they say something about the mode of truth

of the sentence itself. Such sentences belong to the realm of modal languages.

In order to construct a modal language we usually add to a classical

boolean language a set of modal operators according to the set and the

quality of sentences we want our language to be able to express. Clearly

the expressive power of a modal language is much greater than the one of

a language which does not contain operators. The modal operator which

is traditionally added to the language of Classical Propositional Calculus

in order to get a new modal language is the box operator 2 (starting from

which its dual, the diamond operator, can be easily defined). Likewise,

multi-modal logics are obtained by adding more than one modal operator

to an existing language.
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Although traditionally read as expressing necessity and possibility, modal

operators may be given potentially endless interpretations. The choice would

be then suggested by the context one is to describe. In the case of tense log-

ics, one can interpret the modal proposition 2p as it will always be the case

that p, and its dual 3p as at some point in the future it will be the case that

p. Such language is, therefore, effective whenever a description of the flow

of time, towards both future and past is needed. Multi-epistemic languages,

on the other hand, are suitable to formalise reasoning about agents not pos-

sessing a complete base of information (see Fagin et al. [17], Rybakov [56]).

However, these languages may suffer of an expressive limitation, for it may

be difficult to deal with modifications in the pieces of information each agent

possesses as well as to give an account of a changing environment. Adding

a dynamic dimension to such languages is therefore almost a necessity. The

most natural way partially to improve on the expressive limitation is adding

a temporal operator to a multi-epistemic one. Hence we would generate a

multi-modal language combining tense and knowledge operators (see Fagin

et al. [17], Halpern et al. [30], C. and Rybakov [9, 4], C. [11]).

1.2 Choosing Multi-Modal Logics

We have seen how versatile multi-modal languages are, but we have not

mentioned yet one of the main reasons that led so many researchers to

use multi-modal logics as tools to build Multi-Agent systems, to investigate

knowledge, to construct models in computer science and so on. The rea-

son is that multi-modal languages can be interpreted in the Possible Worlds
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Semantics, or Kripke Semantics, which is a highly intuitive tool to study

modal logics (cf. Kripke [41, 42, 43]).

Kripke Semantics is based on the idea of dealing with objects interpreted

as possible worlds. Such objects are linked one to each other by some binary

relations. This set of worlds plus the binary relations are a Kripke-frame.

Let us consider for simplicity the traditional case of the necessity operator.

Let us suppose we want to interprete a modal sentence as 2p in this scenario.

Then we could say that in some world in the model, the expression is true

if it is true in all the worlds accessible by it. This is to say that a sentence

as it is necessary that I am reading is true in a world if the fact that I am

reading holds true in all the worlds related to it. It is immediately clear

how versatile this framework is for many purposes. Let us suppose that we

want to interpret some temporal language. Then, we might consider each

world as a moment and we can interpret the binary relation as an order on

moments. Hence a sentence like it will rain eventually is true at a moment

if there is another moment which comes later, i.e. that is related to the

present moment, in which the fact that it is raining holds true1. Likewise

one could interpret an epistemic language in this scenario. In this case we

can interpret the possible worlds as the states of affairs that I consider pos-

sible. In this spirit, a sentence as I know that it is raining in Manchester is

true if I cannot imagine a situation in which Manchester is dry, which is to

say that in all the worlds related to mine, in Manchester it is raining cats

and dogs.

In order to get an even clearer idea of how such semantic tools work, we

1see Prior [50]).
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can read a passage from the already cited book written by Fagin et al., which

we find particularly effective in explaining how Kripke semantics works:

The intuitive idea behind the possible-worlds model is that be-

sides the true state of affairs, there are a number of other pos-

sible states of affairs or worlds. Given his current information,

an agent may not be able to tell which of a number of possible

worlds describes the actual state of affairs. An agent is then

said to know a fact φ if φ is true at all the worlds he considers

possible (given his current information). For example, agent 1

may be walking on the streets of San Francisco. Thus, in all

the worlds that the agent considers possible, it is sunny in San

Francisco. (We are implicitly assuming here that the agent does

not consider it possible that he is hallucinating and in fact it is

raining heavily in San Francisco.) On the other hand, since the

agent has no information about the weather in London, there

are worlds he considers possible in which it is sunny in London,

and others in which it is raining in London. Thus, this agent

knows that it is sunny in San Francisco but he does not know

whether it is sunny in London. Intuitively, the fewer worlds an

agent considers possible, the less his uncertainty, and the more

he knows. If the agent acquires additional information – such

as hearing from a reliable source that it is currently sunny in

London – then he would no longer consider possible any of the

worlds in which it is raining in London2.

Thus if we combine the intuitive tools of Kripke Semantics with the nu-

merous applications Multi-Agent systems have in different areas, it becomes
2Fagin et al. [17] p.16
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clear the reason why so many researchers are currently devoting their stud-

ies to the analysis of this topic.

1.3 Multi-Agent Reasoning

As we have anticipated, multi-modal languages and logics are a very useful

and versatile tool to build up the so called Multi-Agent systems. These

systems are actually rather more useful than the classic investigations on

situations in which only one agent is present in the system:

When trying to understand and analyze the properties of knowl-

edge, philosophers tended to consider only the single-agent case.

But the heart of any analysis of a system is the interaction be-

tween agents.. [. . . ] Our agents may be negotiators in a bargain-

ing situation, communicating robots, or even components such

as wires or message buffers in a complicated computer system.

[. . . ] We are often interested in situations in which everyone in

the group knows a fact. 3

As M. Wooldridge clearly states in the Preface to his book An Introduc-

tion to Multiagent Systems [70]:

Multiagent systems are systems composed of multiple interact-

ing computing elements, known as agents. Agents are computer

systems with two important capabilities. First, they are at least

to some extent capable of autonomous action - of deciding for

themselves what they need to do in order to satisfy their design

3Fagin et al. [17] p.2
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objectives. Second, they are capable of interacting with other

agents - not simply by exchanging data, but by engaging in ana-

logues of the kind of social activity that we all engage in every

day of our lives: cooperation, coordination, negotiation and the

like4.

Thus, typical agents are computer programs which run on some plat-

form, although they may also be seen as buffers and other devices linked

to the realm of Computer Science and Artificial Intelligence. Moreover, one

may also see agents as human beings operating and co-operating in a social

environment in order to reach a common goal. This approach can hence pro-

vide analytical tools to be used in the study of social-economic phenomena

(e.g. game theory, economical analysis of markets, local and global social

interactions). Being a fairly new and active area, the potential applications

one may think of are flexible and potentially infinite.

[. . . ] Multiagent systems seem to be a natural metaphor for un-

derstanding and building a wide range of what we might crudely

call artificial social systems. The ideas of multiagent systems are

not tied to a single application domain, but, like objects before

them, seem to find currency in a host of different application

domains5.

As a matter of fact, systems generated by joining operators representing

both time and knowledge have already proved themselves to be particularly

effective in describing the interaction between agents through the flow of

time (see Fagin et al. [17], Gabbay et al. [21], Halpern et al. [30]).
4Wooldridge [70], p. xi.
5ivi.
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These systems are based on a language which contains two sets of modal-

ities: one to model the flow of time, the other to describe agents’ knowledge.

The interaction of such modalities gives a precise account of the dynamic

development of agents’ knowledge.

The last decades have given birth to many Multi-Agent systems based

on multi-epistemic temporal languages. Several systems have also been de-

veloped and successfully applied both in the study of human reasoning and

in computing (see [17, 26, 28, 71, 30]). These theories are concentrated

on the development of systems modelling reasoning about knowledge and

space, reasoning under uncertainty or with bounded resources, Multi-Agent

reasoning and other aspects of artificial intelligence. Nevertheless we are

talking to a relatively young research area and there is still quite a lot of

work to be done in the filed.

1.4 A brief historical overview

We have seen that the power of a language with interacting temporal multi-

epistemic modalities combined with the tools of Kripke Semantics makes

multi-modal logics quite appealing to researchers willing to investigate the

field of Multi-Agent reasoning. Thus, in order to understand the subject in

a deeper way, we feel that we need some basic notions about the history of

the subject. As we have anticipated, we aim at studying temporal multi-

epistemic logics which are a combination of Temporal Logics and Epistemic

Logics.

The study of Temporal Logics is closely linked to many sciences and we
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could actually say that tense logics may work as a common background:

[...] it is obvious that time plays such a fundamental role in our

thinking that there is a clear need for precise reasoning about it,

such as we see in Physics, formal Linguistics, Computer Science,

and Artificial Intelligence. While these enterprises are not nec-

essarily concerned with the same concept of time, they all could

go under the heading of Temporal Logic6.

Nevertheless, throughout the decades, tense logic has usually been con-

sidered in a more restricted way, as a branch of modal logic. Arthur Prior

(1914-1969) can be considered the founder of modern temporal logic. He

found out that it is possible to relate some of the aspects of Diodorean

Logic to modal logic and he built up a calculus in which the modal oper-

ators were interpreted as representing quantifiers over temporal states or

moments (see Prior [50]).

When it comes to talk about multi-modal logics which combine tense

and epistemic modalities, it is natural to think about the work of Halpern,

Moshe and Vardi (see Halpern et al. [30]). In this paper the authors consider

some previous works written by themselves and by others. They introduce

a general framework to fit all the previously defined logics in and then they

find a complete axiomatisation for several propositional logics which combine

tense and knowledge modalities. In particular the authors take their starting

point from the work of Sato [64], Spaan [66], Fagin et al. [17] and others.

They analyse the work done and manage to fit a significant part of the

previously introduced systems into a more general framework. In particular:

6Venema [69]
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Logics for knowledge and time were categorized along two ma-

jor dimensions: the language used and the assumptions made

on the underlying distributed system. The properties of knowl-

edge in a system turn out to depend in subtle ways on these

assumptions. The assumptions considered in [HV89]7 concern

whether agents have unique initial states, operate synchronously

or asynchronously, have perfect recall, and whether they satisfy

a condition called no learning. There are 16 possible combina-

tions of these assumptions on the underlying system. Together

with 6 choices of language, this gives us 96 logics in all. All

the logics considered in the papers mentioned above fit into the

framework. [...] Of these 96 logics, 48 involve linear time and

48 involve branching time. [...] We focus here on the linear time

logics and provide axiomatic characterizations of all the linear

time logics for which an axiomatization is possible at all (i.e., for

those logics for which the set of valid formulas is r.e.).8

As we shall see in the further chapters, the language adopted by Halpern,

Moshe and Vardi has one more tense operator than the one we adopt. In

particular, concerning the tense modalities, they use the operators until U

and next ©, whereas we use only the operator 24, to be read as true from

now on. Since they do not consider the case of branching time, they do not

take into account the operator ∀©, which is suitable to quantify over all the

possible future paths. Our case involves a linear time line as well, therefore

we do not consider on this particular modality either (although, as we shall

see, we describe a case which simulates branching time while keeping the

7Halpern [31].
8See Halpern et al. [30], page 1.
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actual time line linear). Informally speaking, saying that an agent has per-

fect recall is equivalent to assume that such agent may not forget the piece

of information given at any time. Conversely an agent which does not have

perfect recall is someone who is somehow allowed to forget. In our logics,

we consider this latter case, allowing agents to forget as well as to learn.

The condition of no learning, in fact, implies that agents may not increase

their knowledge base throughout the time. If associated with the condition

of perfect recall, we get a set of agents with a stable knowledge base, which

stays unchanged throughout the flow of time, and this is not the case we

want to model. We believe, in fact, that one of the most useful tools pro-

vided by multi-modal languages and logics is allowing the description of an

environment which may change and affect agents’ knowledge bases, mim-

icking up to some extent what happens to human beings’ knowledge bases

throughout time.

In a system in which several agents are operating, we can imagine that

there is a sort of clock, external to the system itself and that such clock

measures time:

We assume that time is measured on some clock external to the

system. [...] This external clock need not measure real time. [...]

In general, we model the external clock in whatever way makes

it easiest for us to analyze the system9.

Finally, in a synchronous system

[...] we assume that every agent has access to a sort of global

clock that ticks at every instant of time, and the clock reading
9Fagin et al. [17] pp. 112–113
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is part of its state. Thus, in a asynchronous system, each agent

always “knows” the time10.

A standard assumption in many systems is that agents have ac-

cess to a shared clock, or that actions take place in rounds or

steps, and agents know what round it is at all times. Put another

way, it is implicitly assumed that the time is common knowledge,

so that all the agents are running in synchrony. [...] Indeed, al-

though synchrony is not a necessary assumption when modelling

games, it is often assumed by game theorists. When linguists

analyze a conversation, it is also typically assumed (albeit im-

plicitly) that the agents share a clock or that the conversation

proceeds in structured steps. In computer science, many proto-

cols are designed so that they proceed in rounds (where no agent

starts round m + 1 before all agents finish round m)11.

We shall also set agents as operating synchronously. By doing so we aim

at simulating the human condition: many agents operating on the framework

of a shared time line.

1.5 Focusing on Inference Rules

The main results proved by Halpern, Moshe and Vardi is one of greatest in-

terest and, as a matter of fact, it is the starting point of our research. Among

the 96 logics they describe, they consider 48 cases (the ones involving linear

time, as we have seen) and provide an axiomatisation whenever this is pos-

sible. One could then think that another work on multi-modal logics with

10Halpern et al. [30]
11Fagin et al. [17], p.135
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epistemic modalities on a linear time framework is somehow unnecessary or

at least redundant. But although the subject of combined multi-epistemic

tense logics has been fairly widely studied, we think that not enough at-

tention has yet been dedicated to the investigation of admissible inference

rules in this specific area. In fact whereas complete axiomatic systems have

recently been provided for several multi-epistemic temporal logics, many

problems regarding inference rules related to these systems are, as we shall

see later in this Chapter, indeed still open. There are excellent works ori-

ented to the study of wide classes of multi-epistemic temporal logics, as we

have seen, but very few analysing the area of inference rules applied to such

systems. This is the main reason that led us to start our research topic and

it is in this area that we give our main contribution.

The results and techniques related to the study of axiomatic systems and

their complexity work fine in numerous applications, but it is reasonable,

however, to ask whether and how the inference machinery could be enlarged:

inference rules are, as a matter of fact, extremely important in derivations.

But why is it so important to focus on the investigation of inference rules?

First of all, let us introduce the concept of inference rule. An inference rule,

or a logical consequence or else just an argument is a set of formulae called

the premisses of the argument followed by a formula called the conclusion.

It is usually displayed as:

A1

...

An

B

The premisses A1, . . . , An are separated from the conclusion B by a line, indi-

cating that between the two sets of formulae there is some sort of connection.
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This link is the logical entailment: a rule can be read as given the premisses

A1, . . . , An, the conclusion B may be inferred. Clearly this does not hold

true for every rule in every system. The study of the truth of this type

of sentences referred to rules is the core of the research concerning logical

consequences. In particular, one may be interested in finding out whether

a given rule is correct for some logic, which is to say if its conclusion must

hold true whenever its premisses do so. If such relation between premisses

and conclusion holds for a logic, the rule is said to be valid or admissible

for the logic itself. One can say that if a rule is valid for a logic, the truth

of the premisses is transfered to its conclusion12.

Intuitively the set of admissible rules for a logic is the widest class of

rules which can be implemented in the logic itself without altering its set of

theorems: it is the class of all those rules under which the logic is closed.

Finding valid rules for a logic is quite important. For instance, a rule which

has already been checked as valid for a logic can be immediately used in

derivations in order to produce new theorems. Moreover, in modal logics,

rules can describe properties of modal frames in some cases in which using

formulae may be difficult. A good example is Gabbay’s irreflexive rule (cf.

[22]):

ir :=
¬(p → 3p) → A

A

(where p does not occur in the formula A). This rule states that each world of

a model, where A is not valid, should be irreflexive. Admissible consequences

have been deeply investigated for many modal and superintuitionistic logics

(see, for instance, Ghilardi [23, 24, 25], Golovanov et al. [29], Iemhoff [34,

36], Jer̂ábek [38], Rybakov [53, 54, 55]).

12cf Bellissima and Pagli [1].
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Moreover, having a wider set of rules available is very useful in order to

simplify derivations. Once an inference rule has been proven to be admissible

for some logic, it can be used in a derivation with the result of shortening

significantly the whole process. But let us focus on the concept of admissible

rule. When can we say that an inference rule is admissible, rather than just

derivable? Are these two concepts really that different?

The study of classical propositional logic may lead one to think that the

study of admissible rules is very important. But as soon as we move to the

realm of non classical logics, the situation changes substantially. In fact the

definition of admissible rules does not depend on the choice of a specific

axiomatic system. We say that the class of admissible rules is the widest

class of rules which can be applied to a given logic without altering its set of

theorems. This is a very comprehensive notion and should not be confused

with the syntactical concept of derivable rules. A rule is derivable, basically,

if there is a derivation of its conclusions given its premisses as assumptions

in a specific axiomatic system. Therefore it is clear that the collection of

derivable rules in some system depends completely on the specific choice of

the axiomatic system itself. The question which naturally rises at this point

is whether these two concepts, even though characterized in such a different

way, do always have the same extension. A negative answer is given by

Harrop [32]: there are axiomatic systems which can be actually enlarged

by adding rules which are admissible although not syntactically derivable.

In particular, according to Harrop, the intuitionistic propositional logic IPC

admits rules which are not derivable on the system itself. We say that this

logic is not structurally complete, which is to say that it is not, in some sense,

self-contained13. As it usually happens in logic, a negative answer opens a

13cf. Rybakov [55]: p.10
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new field of study and research. In fact in his One Hundred and Two Prob-

lems in Mathematical Logic, Friedman has been led by Harrop’s observation

to ask whether there is a way to establish, given some inference rule, whether

it is admissible or not in IPC14. This question has been solved in a series

of papers by Rybakov (see for instance [51, 52]) and later summarised in a

book [55]. Rybakov has also extended his results to many well known modal

calculi and a robust mathematical theory has been developed15.

More specifically, Rybakov has built an algorithm which is able to check

wether any inference rule is admissible for IPC or not. Moreover he showed

that the Intuitionistic Propositional Calculus itself does not admit any fi-

nite basis. This is to say that there is no finite collection of inference rules

starting from which one can generate all the possible admissible inference

rules. Nevertheless, both de Jongh and Visser have defined a recursively

enumerable set of rules which they conjectured to be an infinite basis for

IPC’s admissible rules. This conjecture has been proved to hold true by

Iemhoff [35, 34, 36, 37] in her Phd thesis. Iemhoff’s results are based both

on Rybakov’s and Ghilardi’s techniques.

Using the techniques developed by Ghilardi and employed by Iemhoff, in

2005 Jer̂ábek provided explicit bases of admissible rules for a representative

class of normal modal logics (including the systems K4, GL, S4,Grz, GL.3)

(see Jer̂ábek [38]). Later on he turned his attention to the problem of com-

plexity when dealing with inference rules [39].

Rybakov has Recently dedicated much of his work to the investigation
14see Friedman [20], problem 40
15For a more detailed historical account see Rybakov [55], Iemhoff [35].
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of admissible inference rules in tense logics. In particular he has examined

the case of intransitive temporal linear logic of finite intervals [61], discrete

linear temporal logic [58, 60], linear temporal logics [57], linear temporal

logics based on integer numbers [62, 63], temporal next-time logic [59], and

other types of tense logics.

However, for the case of multi-modal logics, not much is known con-

cerning admissible inference rules, though there have been some attempts

to approach the problem (see for instance Golovanov et al. [29, 28]).

In our research we aim at going a little deeper towards this direction, fo-

cusing on the aspect of inference rules in some combined multi-modal logics.

Most of the material we are going to present in this dissertation has already

been published in C. and Rybakov [9, 11] and C. [4] and it has also been

presented at several international conferences ([8, 10, 5, 7, 6]). The Reader

may refer to the Appendix for a complete collection of our published works.

1.6 Our research: Objectives, Methodology and

Overview

Our research started in order to achieve three objectives and to give our

contribution to common knowledge in three different ways. (i) We wanted

to build some logical systems suitable to model the behaviour of agents op-

erating on a temporal framework. Since these logics should be applicable

both to Computer Science and to Artificial Intelligence, they ought to en-

joy some specific properties. In particular we wanted to introduce a logic
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decidable with respect to its theorems. (ii) Moreover, in order to master an

infinite number of formulae, we wanted our logics to be generated by a finite

number of axiom schemata. (iii) Finally we wanted to give our theoretical

contribution to a systematic and complete investigation of the problems re-

lated to inference rules applied to multi-modal propositional logic. As we

have seen in this introductory chapter, in fact, the investigation of multi-

modal logics from the perspective of inference rules has begun quite recently

and the results provided are not numerous yet. We would like to give our

contribution to this field by providing some decidability results related to

multi-epistemic temporal logics.

Our work can be seen as a further step towards the investigation of

the wide field of multi-modal logics. Starting from a specific logical system

which combines tense and epistemic modalities, we try to give an answer

to some of the questions we have been introducing so far. In particular, in

our dissertation, we have decided to organize our research in four chapters,

where each of them is devoted to the investigation of a specific problem.

The first two chapters analyse semantic aspects of the problem, whereas the

last section is mostly devoted to a syntactical analysis.

In Chapter 2 we provide a semantic definition of the logic LTK and some

other systems. These logics are introduced as the set of all those formulae

valid in a specific class of multi-modal Kripke-frames. We make here a sub-

stantial use of the so called Possible World Semantics or Kripke-semantics.

As we shall see, the application of the standard techniques implied in this

field is not at all straightforward and it needs to be modified according to our

specific needs. As far as we are concerned our logic are, in fact, original and

they have never been studied before. After describing the intended models
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of the most general of our logics, namely LTK, we prove some basic semantic

properties. In particular we show that the logic LTK has the effective finite

model property and it is hence decidable with respect to its theorems. This

is much more than showing that a logic enjoys only the finite model prop-

erty. In fact if a logic L has the finite model property, then for each formula

A which is not a theorem of L there is a finite model M such that: (i) in

M all the theorems of L are true; (ii) the formula A is not true in M. The

effective finite model property implies something more. It actually adds a

very important condition which makes a great difference. In fact a logic L

has the effective finite model property if it enjoys the finite model property

and (iii) the size of its finite model M is computable and bounded by the

size of A. This means that for each formula A which is not a theorem of L we

can build a model M, whose size is finite and computable from the size of A,

such that it verifies all theorems of L and falsifies A. The two definitions are

deeply different. The last one implies that a logic is decidable with respect

to its theorems, whereas the former one does not. In fact in order to check

whether a formula A is a theorem of a logic L with the finite model property,

we should check if none of the finite models of L falsifies A. This means that

one should check an infinite number of models and this is not possible in

a finite time. On the other hand if L has the efective finite model property,

one has to check if none of the finite models of L whose size is at most n for

some finite n falsifies A. This is quite different, as the number of models one

should check would now be finite. We prove that our logic enjoys this last

property. Therefore for any formula A in the language of our logic LTK, we

can check in a finite number of steps whether A is or is not a theorem of LTK.

In Chapter 3 we turn our attention to the topic of inference rules. We
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construct some special n-characterising models which enable us to show that

one of the systems introduced is decidable with respect to inference rules.

To fulfil this task, we use several semantic techniques introduced by Ry-

bakov [55], modifying them to suite our case. In fact all the logics presented

in [55] are normal 1-modal systems, i.e. systems based on a language con-

taining only one modal operator. The systems we deal with are, on the

other hand, multi -modal, as their language may contain countably many

modal operators. An algorithm designed for a specific 1-modal system can-

not straightforwardly be applied to a multi-modal system without being

deeply modified. In Chapter 3 we generalise the techniques presented in [55]

in order to apply them to the case of our multi-modal systems.

Chapter Chapter 4 is entirely devoted to quest for an axiomatic sys-

tem modelled to capture all and only the theorems of LTK. We provide a

sound and complete axiomatisation for our logic and a generalised version

of it. Here we make a substantial use of well known techniques such as

the filtration one developed by Segerberg [65], finding a way to adapt well

known results in modal logic to our specific case. In fact the application of

the standard techniques is not straightforward and several difficulties arise

whenever one is to prove an axiomatic system to be sound and complete

with respect to a class of multi-modal frames. According to Bennett et al.

[2] and Kurucz [44], if there is no interaction between modalities, a transfer

of properties (such as finite model property, decidability, et c.) from the com-

ponent simple modal logics to the newly generated multi-modal system does

apply. However, as soon as such interaction takes place it is not straight-

forward anymore to prove that the combined system is conservative with

respect to the properties of its components. In some cases the opposite may
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apply. Nevertheless, despite such difficulties, interaction between modalities

is necessary to exploit the power of multi-modal languages. As we shall see

after the introduction of the multi-modal language we adopt, it is impossi-

ble to express concepts as learning and forgetting if the interaction between

different modalities is not allowed. Let us consider, for instance, two modal

operators Ki and 3, to be read as meaning agent i knows . . . and sometimes

in the future it will be true that . . . respectively. Without interaction, one

could only express formulae as KiA or 3A, meaning agent i knows A and

in the future it will be the case that A. On the other hand, as soon as the

interaction is allowed, one could express the following: ¬KiA ∧3KiA, to be

read as agent i does not know A but in the future it will be the case that

he/she will know it. In the example above it is clear how the concept of

learning can be expressed by the interaction of two different modal opera-

tors. The same case happens for the idea of forgetting. An expression as

KiA∧3¬KiA could be interpreted as meaning the agent i knows A but in the

future he/she will forget it. It seems clear that learning and forgetting are

intrinsically temporal: in order to express them one needs both epistemic

and temporal modalities and, most important of all, a way to combine such

modalities. Being able to express concepts as learning and forgetting is very

important. In a language which is not powerful enough to express these

notions, in fact, it would be impossible to handle changing knowledge bases:

each agent would just possess a static piece of information. On the contrary

we aim at describing the specific dynamic aspects of knowledge bases which

may (or may not) change through the flow of time. For this reason we want

a language which can deal with learning and forgetting situations and hence

with changing knowledge bases. The axiom schemata we define in Chapter

4 allow the interaction between modalities and they are, therefore, suitable
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to express both learning and forgetting.

Finally, in Chapter 5 we present both our last result and our current

research topic. We start by proving that the logic LTK1 is not structurally

complete. Intuitively this means that there are inference rules which are

not derivable on the axiomatic system which generates LTK1. These rules,

are, nevertheless, admissible for LTK1. In this Chapter we define an infinite

set of rules with this property. Since all admissible rules can be applied

in derivations without altering the set of theorems of a logic, the class of

admissible and not derivable rules we present here adds new syntactical tools

which can be used in derivations.

Moreover we provide Algebraic Semantics for LTK1. Although Kripke

Semantics is widely used in order to deal with modal logics, Algebraic Se-

mantics is historically the first developed. In this Chapter we introduce

algebraic tools as well as all those results which link Algebraic to Kripke

Semantics. Moreover we translate the results from the previous chapters

into the language of this alternative semantic framework.

Finally, we introduce the further work and the piece of research we are

currently working on. We start to investigate the problem of finding a finite

basis for admissible inference rules. This is to say that we aim at finding a

set of rules to axiomatise all the inference rules admissible for LTK1, i.e. the

smallest set of rules starting from which one can derive all the admissible

rules for LTK1
16. This topic, as we shall see, is rather problematic and it is

currently an open research field. We introduce the reader to the problems

related to such investigation and we show our attempts to solve these prob-

lems.

16Please refer to Chapter 2 and Chapter 3 for a formal definition of the system LTK1.
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Chapter 2

A Semantic Definition of LTK

Multi-modal logics, as we have seen in the introductory chapter of our dis-

sertation, are clearly a powerful tool to deal with multi-agents contexts. In

this chapter we shall introduce in more detail our approach to multi-modal

logics. We shall start by introducing a new multi-modal language and we

shall proceed by defining semantically the set of modal logics we shall work

with in what follows.

Our multi-modal language is a propositional language with some opera-

tors. According to our needs, we shall define the meaning of each operator.

2.1 Syntax: The Language LLTK

A propositional logical language has two components: an alphabet, or sig-

nature, which includes all the symbols one is allowed to use and a series of

formation rules, which gives precise instructions to build grammatical sen-

tences.

25
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The alphabet of the language LLTK includes a countable set of propo-

sitional letters P := {p1, . . . , pn, . . .}, round brackets (, ) and the boolean

operations {→,⊥} as well as a set of modal operators {24,Ke,K1, . . . ,Kk}.

Well formed formulae (wff’s henceforth) are defined as follows: each propo-

sitional letter p ∈ P is a wff and if A is a wff, then so are 24A, KeA, KiA.

We assume 34, 3e and 3i to be abbreviations for ¬24¬, ¬Ke¬ and ¬Ki¬

respectively. The boolean operations ¬,∧,∨ are defined in the usual way

by means of → and ⊥. In paricular > := ⊥ → ⊥ (cf. Rybakov [55] and

Blackburn et al. [3]).

The intended meaning of the modal operators formerly introduced is:

(i) 24A: the fact A is true from now on; (ii) KeA: A is true everywhere in

the environment ; (iii) KiA: the agent i operating in the system knows A in

the current moment in the sense that all the information points accessible

to agent i provide the information A.

Formulae in the language LLTK allow occurrences of temporal operators

in the scope of the epistemic modalities K1, . . . ,Kk, leading to the possibility

of expressing formulae such as Ki34A, interpreted as agent i knows that

eventually it will be the case that A. Sometimes we may not want to be able

to express this kind of expression. In fact, as we shall see later, according

to the kind of semantics we shall further introduce, this might generate

epistemic paradoxes. Suppose, for instance, that a fact A is true at some

point in the future. According to the standard definition of truth in Kripke

Semantics, this implies that each agent would know that such event is bound

to happen eventually. Although this might not create any problem in most

situations, it might sound unnatural in other cases. If one is, for instance,

interested in describing human behaviour, the assumption that agents know
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future events may not result of use. In order to provide tools to describe a

larger number of situations, we can introduce another version of the language

just described. Thus, in order to prevent agents from having pre-knowledge

concerning future events, we introduce a weaker language L−
LTK. Let us

define a formula A local if and only if it does not contain any occurrence

of the modal operator 24, i.e. each propositional letter is local and if A is

local, then so are KeA and KiA for each i. Well formed formulae are defined

as they are in the former case, with the exception of formulae containing a

modal operator Ki for some i: if A is a wff, then KiA is a wff, provided that

A is local.

By the expression Fma(LLTK) we denote the set of all the wff’s on LLTK

and by the term formula we usually refer to a member of Fma(LLTK) unless

otherwise specified. Clearly Fma(L−
LTK) ⊂ Fma(LLTK).

We have suggested that the language L−
LTK may help to solve the prob-

lem of agents having pre-knowledge of future events. But is it really this

the solution to all our problems? Let us assume that we want to model a

situation in which four people are playing poker. Then we would have four

agents and each of these four agents would be in a certain state: each agent

would have some cards, know how much the players playing before him had

bet, have some information about the usual behaviour of the players and

so on. On the other hand, something he definitely would not know is what

kind of cards the other players have, otherwise the game would be pretty

dull. If we try to formalise this situation using our language, then we could

say that each agent in the set {a, b, c, d} has access to a set of information,

whereas the environment collects all those formulae which are true in the

environment. Then if we suppose that the agent a knows that she has cer-
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tain cards (information A), we can formalise this information as KaA and

consequently the formula 3eKaA would be true at any point in the environ-

ment cluster. Therefore we would get Ke3eKaA and so each agent and in

particular b would know this piece of information, i.e. Kb3eKaA. Clearly

this would greatly spoil the game! If we move outside the example of the

poker game, we can see that in many situations it is very unlikely that each

agent is aware of the knowledge base of other agents. Therefore whenever

we deal with such a situation, we may want to use a language which is even

more restricted than L−
LTK. Let us define the language L−−

LTK in the follow-

ing way. We call a formula agent-local if it is local and, if we have a set

{1, . . . , k} of agents, the modal operator Ke does not occur in the scope of

any modal operator Ki. This is to say that a propositional letter p is agent-

local and if A and B are both local and agent-local, then ¬A, A ∧ B, A ∨ B,

A→ B and KiA for each i ∈ {1, . . . , k} are agent-local too. Going back to our

poker example, we can see that the formula Kb3eKaA is no longer gramatical.

We have now defined three different languages which are suitable to

formalise and talk about different situations. Our choice would then be

made according to the specific state of affairs we want to model. Sum-

marising: (i) the language LLTK allows the agents to have pre-knowledge of

future events; (ii) the language L−
LTK forbids agents to have pre-knowledge

of future events; (iii) the language L−−
LTK prevents agents both from having

pre-knowledge and from having access to the knowledge base of any other

agent operating in the same environment at the same moment.

Clearly the set of formulae in any of these three languages is properly in-

cluded in the set of formulae in the more expressive language, LLTK being the

most expressive one and L−−
LTK the least, i.e. Fma(L−−

LTK) ⊂ Fma(L−
LTK) ⊂
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Fma(LLTK).

2.2 Semantics

2.2.1 Key Concepts: Multi-Modal Kripke Semantics

As we have already pointed out in the Introduction, one of the main features

of multi-modal logics is that they have been provided with a very intuitive

set of semantic tools. Although Algebraic Semantics is historically the first

developed, the Possible Worlds Framework, or Kripke Semantics is definitely

the type of semantics which has been adopted more widely (cf. [27]). This

is due to the fact that these tools have an extremely intuitive interpretation

and are flexible enough to be employed in various circumstances without loss

of their intuitive counterpart. This is the reason that leads us to introduce

the Possible Worlds Semantics first. In later chapters, nevertheless, we shall

also use traditional Algebraic Semantics. We shall introduce it in a more

mature stage when many results based on Kripke Semantics are already

stated and described.

As we have anticipated, Kripke Semantics (cf. Kripke [41, 42, 43]) has

a very intuitive interpretation which confers great appeal. The idea behind

it is very simple. It takes its origins in the ideas of Leibniz, who stated that

there is a plurality of possible worlds, and the actual one is nothing but one of

the many possibilities. According to Leibniz, nevertheless, the actual world

is definitely the best one among all the possibilities, chosen by God who has

the capability of searching and choosing the perfect solution. Nowadays,

however, researchers in modal logic tend to bypass these theoretical and

metaphysical aspects while keeping the main idea of Leibniz’s approach.
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For instance, let us suppose that we want to describe any situation which

sees several agents interacting one with each other. Let us suppose that

such agents are, for instance, playing dice. Then whenever the pair of dice

is cast, there are several possible outputs. It is perfectly clear how we can

consider each of the possible outputs as a different world. This may be of

use for instance if we want to make considerations on probability and so on.

Moreover, we may turn our attention to the analysis of agents’ knowledge.

Any fact p is then known by an agent whenever he cannot consider as possible

a state of affairs in which p does not hold.

The intuitive idea behind the possible-worlds model is that be-

sides the true state of affairs, there are a number of other pos-

sible states of affairs or worlds. Given his current information,

an agent may not be able to tell which of a number of possible

worlds describes the actual state of affairs. An agent is then

said to know a fact φ if φ is true at all the worlds he considers

possible (given his current information). For example, agent 1

may be walking on the streets of San Francisco. Thus, in all

the worlds that the agent considers possible, it is sunny in San

Francisco. (We are implicitly assuming here that the agent does

not consider it possible that he is hallucinating and in fact it is

raining heavily in San Francisco.) On the other hand, since the

agent has no information about the weather in London, there

are worlds he considers possible in which it is sunny in London,

and others in which it is raining in London. Thus, this agent

knows that it is sunny in San Francisco but he does not know

whether it is sunny in London. Intuitively, the fewer worlds an

agent considers possible, the less his uncertainty, and the more
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he knows. If the agent acquires additional information – such

as hearing from a reliable source that it is currently sunny in

London – then he would no longer consider possible any of the

worlds in which it is raining in London1.

Although we assume the reader to be familiar with Possible Worlds se-

mantics, we provide few basic definitions necessary to understand the par-

ticular case we shall work with.

Definition 2.2.1 A k-modal Kripke-frame is a tuple F = 〈W,R1, . . . ,Rk〉

where W is a non-empty set of worlds and each Rj is some binary relation

on W ×W . Given a frame F, by WF we denote its base set.

Given a Kripke-frame F, a Kripke-model (or just a model) M on F is a

tuple M = 〈F, V 〉 where V is a valuation mapping the elements of a set

P of propositional letters into the power set of the universe of F, i.e. the

valuation V associates to each propositional letter p a set of worlds from

WF, intuitively those worlds in which p is true.

In what follows we shall use some symbols in our meta-language, namely

the symbols & and ⇒ shall be used in order to shorten the english ex-

pressions and and implies respectively. Moreover we shall use the symbols

(quantifiers) ∀ and ∃ as meaning for all and there exists.

Definition 2.2.2 Given a Kripke-frame F := 〈WF,R1, . . . ,Rk〉, for any Ri,

an Ri-cluster of worlds is a subset CRi
of WF s.t.: ∀w∀z ∈ CRi

(wRiz & zRiw)

and ∀z ∈ WF∀w ∈ CRi
((wRiz & zRiw) ⇒ z ∈ CRi

).

An Ri-cluster is said to be: degenerate if it consists of one single Ri-

irreflexive world; simple if it consists of a single Ri-reflexive world; proper

1Fagin et al. [17] p.16
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if it contains at least two Ri-reflexive worlds.

For any Ri, CRi
(w) is the Ri-cluster s.t. w ∈ CRi

(w). Given two Ri-clusters

Cm and Cj the expression CmRiCj is an abbreviation for ∀w ∈ Cm∀z ∈

Cj(wRiz).

2.2.2 Linear Time and Knowledge structures: LTK-Frames

We use a special kind of multi-modal Kripke frames called LTK-frames,

where the prefix LTK is an acronym for Linear Time and Knowledge. These

structures aim at modelling a set of agents operating in a temporal frame-

work.

Definition 2.2.3 An LTK-frame (Linear Time and Knowledge frame) is

a k+2-modal Kripke-frame F := 〈WF,R4,Re,R1, . . . ,Rk〉, where WF is the

disjoint union of certain non empty sets Cn, for n ∈ N: WF :=
⋃

n∈N Cn.

The binary relations R4, Re, and Rj are as follows:

(i) R4 is the linear, reflexive and transitive relation on WF such that:

∀v∀z ∈ WF(vR4z iff ∃i, j ∈ N ((v ∈ Ci) & (z ∈ Cj) & (i ≤ j)))

(ii) Re is a universal relation on any Ci ∈ WF:

∀v∀z ∈ WF(vRez ⇔ ∃i ∈ N (v ∈ Ci & z ∈ Ci));

(iii) each Rj is some equivalence relation on each Ci.

Each world can be interpreted as a single information point. The linear

temporal relation R4 links such information points so that, given two worlds

v and z, the expression vR4z means either that v and z are both available

at a moment n, or that z will be available in the future with respect to

v. Hence two information points are concurrent if they belong to the same

R4-cluster (time-cluster) and an R4-cluster can be seen as a moment in the

time line. Although time is usually perceived as continuous, it may as well
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Figure 2.1: Scheme of the structure of an LTK-frame: here each big circle
represents both a moment in the time line and an environmental cluster,
whereas each small circle is intended to represent a single information point.
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be thought as discrete.

[. . . ] Although we typically think of time as being continuous, as-

suming that time is discrete is quite natural. Computers proceed

in discrete time steps, after all. Even when analyzing situations

involving human agents, we can often usefully imagine that the

relevant actions are performed at discrete time instances [. . . ]2.

In this context the property of discreteness means that given any two

distinct points in the time line, there might be only a finite number of mo-

ments between them (though each moment may contain an infinite number

of information points). Therefore the relation R4 is discrete with respect to

time-clusters. This is actually the way in which computers work. Moreover,

the temporal line has a first point starting from which it proceeds towards

the future. The most important assumption is to consider the flow of time

as linear and hence not branching. If we assumed the time to be branching

we might have different possible future paths: among these, only one would

become actual. Conversely, if the time line is assumed as linear, there is

only one possible path towards the future: the actual one. This implies that

we may not quantify over possible, although not actual, temporal paths. In

other words, what is relevant is only the actual path the world goes through.

Such strong theoretical deterministic assumption may be practically justi-

fied by the observation that, in analogy to the human situation, all the

agents operating in the system are not aware of the prefixed unicity of their

temporal path and they act as heading to a not-determined future.

The relation Re is defined at each moment in the time line and it links

all the information points belonging to the same environment or network.

2Fagin et al. [17] page 112.
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Thus, we define an environment as the collection of all the concurrent infor-

mation points which are accessible to a set of agents at a given time. Hence

the environment an agent operates in is nothing but the collection of the

information points potentially available. It represent the informations net-

work each agents operates within. Each agent (see below) may have access

to all, some or none of such information points, nevertheless these points

form the environment this agent lives and operates in. Notice that in the

semantics we have just described a moment and an environment do coin-

cide. In this specific semantics, in fact, only one environment is possible at

each moment and hence time-clusters and environment-clusters do coincide.

We remind the reader to Chapter 4, Section 4 for a more general semantic

definition and further discussion. We shall introduce, in fact, some gen-

eralised Kripke-frames which allow different environments to occur at the

same moment.

The relation Ri links all the information points accessible by agent i in

a given environment. Any information point provides the agents with some

information.

It can be easily noticed that LTK-frames are a suitable tool to interpret

the language L−
LTK and L−−

LTK as well as LLTK. The only difference would be

that in the case of L−
LTK, all the facts available to the agents are local and

therefore do not concern any future event, whereas in the case of L−−
LTK the

piece of information available to the agents is agent local. Nevertheless at

each world a certain number of statements about the future could be true,

but this piece of information would not be available to the agents.

We have now described the intended interpretation of our semantics. Let

us suppose, for instance, that one is to describe a conference with several
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parallel sessions using our semantic tools. The situation would then be

interpreted as follows:

- the base set of the model would be the set of all the sessions (informa-

tion points);

- a moment n would be the collection of all those lectures given at the

time n;

- any person attending the conference would be an agent operating in

the system;

- any agent has access to some information point at any moment.

According to our semantic definition, LTK-frames enjoy some properties

and among these, the most important and peculiar ones are the following:

PM.1: vRez ⇒ (vR4z & zR4v) i.e. the information points available in

the same environment are concurrent

PM.2: vRiz ⇒ vRez i.e. the information points available to agent i

must be in the same environment (hence at the same moment)

PM.3: (vR4z & zR4v) ⇒ vRez i.e. concurrent information points are

in the same environment

A model M on F is a pair 〈F, V 〉, where F is an LTK-frame and V is

a map (valuation) which associates to each propositional letter p ∈ P a set

of worlds from the base set of F. The valuation V can be extended in the

standard way from the set P onto all the well formed formulae built up on

P . In particular, ∀v ∈ WF,

(i) (F, v) 
V p ⇔ v ∈ V (p);

(ii) (F, v) 
V 24A ⇔ ∀z ∈ WF (vR4z ⇒ (F, z) 
V A);

(iii) (F, v) 
V KeA ⇔ ∀z ∈ WF (vRez ⇒ (F, z) 
V A);



2.3. EFFECTIVE FINITE MODEL PROPERTY FOR LTK 37

(iv) For each j, (F, v) 
V KjA ⇔ ∀z ∈ WF (vRjz ⇒ (F, z) 
V A).

If M = 〈F, V 〉 is a model on a frame F, a formula A is said to be true in

the model M at the world v if (F, v) 
V A; A is true in the model M, notation

F 
V A, if ∀v ∈ WF, (F, v) 
V A; A is valid in the frame F, notation F 
 A,

if, for any valuation V for F (that is for any model MF on F), F 
V A.

Given a class of frames F, A is valid on F (and we say A to be F-valid) if

∀F ∈ F, F 
 A.

Definition 2.2.4 Let LTK be the class of all LTK-frames. The logic LTK

is the set of all LTK-valid formulae: LTK := {A ∈ Fma(LLTK) | F 


A & F ∈ LTK}. If A belongs to LTK, then A is a theorem of LTK. Likewise

LTK− := {A ∈ Fma(L−
LTK) | F 
 A & F ∈ LTK} and LTK−− := {A ∈

Fma(L−−
LTK) | F 
 A & F ∈ LTK}.

2.3 Effective finite model property for LTK

The first question we shall give an answer to is whether LTK has the effective

finite model property (efmp). If so, the same property would clearly be

enjoyed by LTK− and LTK−− too.

Showing that a logic has the effective finite model property (efmp) is

quite different from showing that it enjoys only the finite model property. In

fact if a logic L has the finite model property, then for each formula A which

is not a theorem of L there is a finite model 〈F, V 〉 such that:

(i) in 〈F, V 〉 all the theorems of L are true, i.e. for each formula B ∈

L, F 
V B;
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(ii) the formula A is not true in 〈F, V 〉, i.e. F 6
V A.

The effective finite model property implies something more. It actually adds

a very important condition which makes the difference. In fact if a logic L

has the effective finite model property, then for each formula A which is not

a theorem of L there is a finite model 〈F, V 〉 such that:

(i) in 〈F, V 〉 all the theorems of L are true, i.e. for each formula B ∈

L, F 
V B;

(ii) the formula A is not true in 〈F, V 〉, i.e. F 6
V A.

(iii) the size of 〈F, V 〉 is computable and bounded by the size of A, i.e.

‖WF‖ ≤ f(‖A‖), where f is computable.

This means that for each formula A which is not a theorem of L we can

build a model 〈F, V 〉 whose size is finite and computable from the size of A;

this model verifies all theorems of L and falsifies A. The two definitions are

deeply different. The last one implies that a logic is decidable with respect

to its theorems, whereas the former one does not. In fact in order to check

whether a formula A is a theorem of a logic L with the finite model property,

we should check if none of the finite models of L falsifies A. This means that

one should check an infinite number of models and this is not possible in

a finite time. On the other hand if L has the efective finite model property,

we should check if none of the finite models of L whose size is at most n

for some computable and finite n falsifies A. This is quite different, as the

number of models one should check would now be finite.

We shall prove below that LTK has the efmp and hence it is decidable.

Thus for any formula A in the language of our logic LTK, we can check in a

finite number of steps whether A is or is not a theorem of LTK. The result

we show in this Chapter may be found in C. and Rybakov [9].

Definition 2.3.1 Given a Kripke-frame F = 〈W,R1, . . . ,Rk〉 and a world
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w in WF, wRi≤ := {z | wRiz} and wRi< := {z | wRiz & ¬(zRiw)}. Given a

Ri-cluster C, CRi≤ := {Cj | CRiCj} and CRi< := {Cj | CRiCj & ¬(CjRiC)} (In

what follows we shall always use the expression w4 and C4 as abbreviations

for wR4≤ and CR4≤ respectively. We shall also use w< and C< instead of

wR4< and CR4<).

Theorem 2.3.2 (C. and Rybakov [9]) The logic LTK has the efmp and

hence it is decidable with respect to its theorems.

Proof. Take a formula A such that A 6∈ LTK; then there are an LTK-

frame F1 := 〈WF1 ,R
1
4,R1

e ,R
1
1, . . . ,R

1
k〉, a model M1 := 〈F1, V1〉 and a world

w ∈ WF1 such that (F1, w) 6
V1 A. Notice that F1 is infinite by definition.

Starting from this fact, our proof follows 4 steps:

Step 1. We make a filtration on each time cluster, in order to get a

new model 〈F2, V2〉 which contains only time-clusters with a finite number

of worlds. We show that in 〈F2, V2〉 the formula A is still false.

Step 2. We proceed by reducing the number of time-clusters, so that

we can deal with a finite frame. The resulting model 〈F3, V3〉 is based

on a special finite frame which we shall define as a reflexive LTK-balloon.

Moreover in the model 〈F3, V3〉 the formula A is still false.

Step 3. We construct a new model by deleting time-clusters from 〈F3, V3〉.

The resulting model 〈F4, V4〉 has a finite and computable base set. Again,

in 〈F4, V4〉 the formula A is false.

Step 4. We show that since any LTK-balloon (and hence also 〈F4, V4〉)

is the p-morphic image of some LTK-frame, in 〈F4, V4〉 all the theorems of

LTK hold true whereas the formula A does not.

Hence by the end of the fourth step we have a model such that:

(i) all the theorems of LTK are true;
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(ii) the formula A (which is not a theorem of LTK) is false;

(iii) the size of the model is computable from the size of A.

Hence the logic LTK has the efmp and it is decidable with respect to its

theorems.

Take a formula A such that A 6∈ LTK; then there are an LTK-frame F1 :=

〈WF1 ,R
1
4,R1

e ,R
1
1, . . . ,R

1
k〉, a model M1 := 〈F1, V1〉 and a world w ∈ WF1

such that (F1, w) 6
V1 A.

Step 1: Filtering each single time-cluster We start by reducing the

number of worlds belonging to each R1
4-cluster C of worlds from WF1 using

the standard filtration technique, briefly sketched below. Let Sub(A) be the

set of all the sub-formulae of A. Define the equivalence relation ≈ on WF1

as follows:

∀w∀z ∈ WF1(w ≈ z ⇔ wR1
4z & zR1

4w & ∀B ∈ Sub(A) ((F1, w) 
V1

B⇔ (F1, z) 
V1 B))) (Recall that the condition wR1
4z & zR1

4w is equivalent

to ∃i(w ∈ Ci & z ∈ Ci), that is the worlds w and z belong to the same

time-cluster and hence wR1
ez).

Next, define the quotient set of the original model: ∀w ∈ WF1 [w] := {z |

w ≈ z}, ∀n ∈ N [Cn] := {[w] | w ∈ Cn}. Let F2 := 〈WF2 ,R
2
4,R2

e ,R
2
1, . . . ,R

2
k〉

be a frame where:

(i) WF2 :=
⋃

n∈N[Cn];

(ii) [w]R2
4[z] ⇔ wR1

4z;

(iii) [w]R2
e [z] ⇔ wR1

ez;

(iv) ∀i, 1 ≤ i ≤ k [w]R2
i [z] ⇔ ([w] ∈ [Cn] & [z] ∈ [Cn] & ∀KiB ∈

Sub(A)((F1, w) 
V1 KiB⇔ (F1, z) 
V1 KiB)).
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Let M2 := 〈F2, V2〉 be a model on F2 where V2 is defined as:

Dom(V2) := Prop(Sub(A))

∀p ∈ Sub(A) V2(p) := {[w] | w ∈ V1(p)}

Since the model described is the result of a filtration, the standard filtration-

lemma holds:

Lemma 2.3.3 For any formula B ∈ Sub(A), for any world w ∈ W1, (F1, w) 
V1

B⇔ (F2, [w]) 
V2 B.

Corollary 2.3.4 F2 6
V2 A.

Thus the model M2 refutes A as well. Moreover, each R2
4-cluster contains a

finite number of worlds, bounded by the size of A, namely ‖C‖ ≤ 2‖Sub(A)‖

for each R2
4-cluster C. The result of this operation gives still an LTK-frame,

i.e. an R2
4-linear sequence of Re-clusters. The difference is that now each

R2
4-cluster contains a finite number of worlds.

Step 2: Reducing the number of time-clusters We shall reduce, now,

the number of time-clusters (i.e. R2
4-clusters) to a finite one. We need few

preliminary facts and definitions.

Definition 2.3.5 Let M1 := 〈W1,R1, V1〉 and M2 := 〈W2,R2, V2〉 be two

Kipke-models and f be a one-to-one mapping of W1 onto W2. Then M1 and

M2 are isomorphic, in symbols M1
∼= M2, if and only if:

(i) V1 and V2 share the same domain;
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(ii) ∀w, v ∈ W1(wR1v ⇔ f(w)R2f(v));

(iii) ∀w, v ∈ W1(w 
V1 p ⇔ f(w) 
V2 p).

Evidently, the following holds:

Proposition 2.3.6 There is only a finite, computable from the size of A,

number of non-isomorphic w.r.t. Sub(A) time-clusters C from WF2.

Definition 2.3.7 Given an LTK-frame S := 〈WS,R4,Re,R1, . . . ,Rk〉 and

a model M := 〈S, V 〉, an R4-cluster Cs is a stabilising cluster if and only

if for any R4-cluster Ci ∈ C
4
s , for any R4-cluster Cj ∈ C

4
s there is an R4-

cluster Ck ∈ C
4
i such that Cj

∼= Ck, i.e. the sets C
4
s and C

4
i coincide up to

isomorphism between R4-clusters.

Lemma 2.3.8 The model M2 has a stabilising R2
4-cluster Cs.

Proof. By Proposition 2.3.6 the number of non-isomorphic R2
4-clusters C

is finite. Moreover, we have that for any pair of R2
4-clusters Ci, Cj from

WF2 , CiR
2
4Cj ⇒ C

4
i ⊇ C

4
j . Consider the sequence of all the time-clusters

C1,C2, . . .. We construct a subsequence C′n of the sequence Cn, n ∈ N

as follows. Take C1; if C1 is a stabilising cluster, then we stop, and the

subsequence is chosen. Otherwise, assume that a subsequence C′1, . . . ,C
′
n is

chosen. If C′n is not a stabilising cluster, then there is a cluster Ck, where,

up to isomorphism, C
′4
n ⊃ C

4
k . Take the R2

4-smallest Ck with this property

and set C′(n+1) := Ck. Since C
′4
n ⊃ C

′4
(n+1), this procedure must terminate,

and it stops at a stabilising cluster.

Lemma 2.3.9 If Cs is a stabilising cluster, then, for all the R2
4-clusters

Ci, Cj of worlds from WF2 such that CsR
2
4Ci and CsR

2
4Cj, if Ci is isomorphic

to Cj by a mapping f , then

∀B ∈ Sub(A), ∀w ∈ Ci (F2, w) 
V2 B ⇔ (F2, f(w)) 
V2 B.
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Proof. It may be given by an easy induction on the length of B. Both

the basis of the induction and the inductive steps regarding the boolean

operations and the modal operators Ke and Ka are evident. Hence, we turn

our attention only to the case B is 24D, (F2, w) 
V2 24D and w4 ⊂ f(w)4.

It follows that ∀z ∈ w4, (F2, z) 
V2 D. Since for any Ck ∈ ∪C
4
j there

is a C′k in ∪ C
4
i such that Ck

∼= C′k and C′k 
V2 D, it follows that ∀v ∈

f(w)4, v 
V2 D by inductive hypothesis and hence (F2, f(w)) 
V2 24D.

Consider the set C
4
s . We want to reduce the number of its elements to a

finite one. Firstly, we make a partition of this set into equivalence classes.

We take each time-cluster of worlds from C
4
s and we define its equivalence

class w.r.t. isomorphic time-clusters [C]∼= := {Cj | CsR
2
4Cj & C ∼= Cj}.

Then the class [C]∼= contains all those clusters which are both isomorphic

to C and such that they are after the stabilising cluster Cs. Clearly in M2

there is only a finite number m of such equivalence classes, as the domain

of V2 contains a finite number of propositional letters, the ones occurring in

Sub(A). Take and fix for any such equivalence class [Cj ]∼= a representative

element Rep(Cj) ∈ [Cj ]∼= and set REP :=
⋃

1≤j≤m Rep(Cj). Let us introduce

a new frame St := 〈WSt,R
St
4 ,RSt

e ,RSt
1 , . . . ,RSt

k 〉 where:

(i) WSt :=
⋃

C∈REP C

(ii) RSt
4 := WSt ×WSt

(iii) RSt
e := R2

e � WSt (i.e. RSt
e is the restriction of R2

e on WSt.)

(iv) for 1 ≤ a ≤ k, RSt
a := R2

a � WSt

Evidently, the frame St is nothing but an RSt
4 -cluster of RSt

e -clusters. We

consider, now, the linear part of M2 up to the stabilising cluster Cs and we

define a subframe Fl v F2, Fl := 〈Wl,R
l
4,Rl

e,R
l
a〉, where WFl

:= WF2 −⋃
C

4
s . The LTK-frame F3 := 〈WF3 ,R

3
4,R3

e ,R
3
1, . . . ,R

3
k〉 has the following
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structure (see Figure 2.2):

(i) WF3 := WSt ∪WFl

(ii) R3
4 := RSt

4 ∪ Rl
4 ∪ {〈w, z〉 | w ∈ WFl

& z ∈ WSt}

(iii) R3
e := RSt

e ∪ Rl
e

(iv) for 1 ≤ a ≤ k, R3
a := RSt

a ∪ Rl
a

The kind of frame formerly described, is what we call a reflexive LTK-

balloon, a graphic representation of which may be found depicted in Figure

2.2. Let MF3 := 〈F3, V3〉 be the model in which V3 is the restriction of V2

on WF3 .

Lemma 2.3.10 For any formula B ∈ Sub(A), for any world w ∈ WF3,

(F3, w) 
V3 B⇔ (F2, w) 
V2 B.

Proof. The proof can be given by induction on the length of B. We consider

only the case in which B is 24D, (F3, w) 
V3 24D and w ∈ WSt. This means

that D is true at all those worlds z ∈ WF3 s.t. wR3
4z, i.e. all the worlds

belonging to WSt (recall that RSt
4 is an equivalence relation on WSt). Notice

that the world w belongs to F2 and, by construction of F3, w ∈ ∪C
4
s where

Cs is the R2
4-deepest stabilising cluster in F2. By Inductive Hypothesis

we have that (F2, z) 
V2 D for any z belonging both to WF3 and to WF2 .

Consider a world v ∈ WF2 such that v ∈ C
4
s . We can have two cases: either

v belongs to WSt or v does not. In the former case (F2, v) 
V2 D holds by

Inductive Hypothesis, while in the latter, since v belongs to an R2
4-cluster

isomorphic to an RSt
e -cluster from WSt, (F2, v) 
V2 D holds by Lemma 2.3.9.

Therefore (F2, w) 
V2 24D.
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Figure 2.2: Scheme of the structure of the frame F3, a case of reflexive
LTK-balloon.
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Step 3: Getting a finite and computable number of time-clusters

The base set of MF3 contains a finite number of worlds, but, since we do

not know how many they are, we need to contract it again and we shall do

so by dropping some clusters.

Step 4. For each B ∈ Sub(A), we consider the R3
4-maximal R3

e-cluster C

of worlds from WF3 such that ∃w ∈ C, (F3, w) 
V3 B and we denote it by CB.

Likewise, by C¬B we denote the R3
4-maximal R3

e-cluster containing a world z

refuting B. Then we introduce a new frame F4 := 〈WF4 ,R
4
4,R4

e ,R
4
1, . . . ,R

4
k〉

where:

WF4 :=
⋃

B∈Sub(A)

CB ∪
⋃

B∈Sub(A)

C¬B ∪ WSt

and all the binary relations are the restriction of the ones from F3 on WF4 .

Let M4 := 〈WF4 , V4〉 be a model on F4 where V4 is nothing but the restriction

of V3 on WF4 . Clearly the frame F4 is still a case of reflexive LTK-balloon.

Lemma 2.3.11 For any formula B ∈ Sub(A), for any world w ∈ W4,

(F4, w) 
V4 B⇔ (F3, w) 
V3 B.

Proof. We conduct an easy induction on the length of B, and we illustrate

only the case B is 24D, (F4, w) 
V4 24D and w 6∈ WSt. Suppose (F3, w) 6
V3

24D. Then there is a world z ∈ WF3 such that wR3
4z, (F3, z) 6
V3 D and

z 6∈ WF4 . By construction of MF4 , there must be an R4
4-maximal R4

e-cluster

C¬D in F4 such that there exists a world v ∈ C¬D, (F4, v) 6
V4 D. Since

C¬D is R4
4-maximal, we also have wR4

4v. This is a contradiction, hence

(F3, w) 
V3 24D.

Now the number of worlds from WF4 is finite and it is f(‖A‖), where f
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is a computable function and f(‖A‖) ≤
(
2‖Sub(A)‖(2‖Sub(A)‖+ 22‖Sub(A)‖

)
)
.

Step 4: Defining a p-morphic image. Our final step is to show that

F4 is the p-morphic image of an LTK-frame and hence ∀B ∈ LTK, F4 
 B.

After doing so, we shall be able to show a more general result, namely that

any reflexive LTK-balloon may be unraveled in order to get an LTK-frame

which is a p-morphic image of the original frame. Let us start by defining a

p-morphism (pseudo-epimorphism):

Definition 2.3.12 Let f be a mapping of a frame S1 := 〈S1,R1〉 into a

frame S2 := 〈S2,R2〉. The mapping f is called a p-morphism if:

(i) ∀w, v ∈ S1(wR1v ⇒ f(w)R2f(v))

(ii) ∀w, v ∈ S1(f(w)R2f(v) ⇒ ∃t ∈ S1(wR1t & f(t) = f(v)))

The frame S2 is also said to be a p-morphic image of S1.

Definition 2.3.13 Given two models M1 := 〈S1, V1〉 and M2 := 〈S2, V2〉, a

mapping f is a p-morphism of M1 into M2 if and only if:

(i) f is a p-morphism of S1 into S2;

(ii) the valuations V1 and V2 share the same domain;

(iii) ∀p ∈ Dom(V1),∀w ∈ W1(w 
V1 p ⇔ f(w) 
V2 p).

Theorem 2.3.14 If f is a p-morphism of a Kripke-model M1 := 〈W1,R1, V1〉

onto a Kripke-model M2 := 〈W2,R2, V2〉, then for any formula A which is

built up on letters from the domain of the valuation V1, ∀w ∈ W1(w 
V1

A⇔ f(w) 
V2 A).

Let CSt
1 , . . . ,CSt

i be an enumeration of all the R4
e-clusters of worlds from

WSt and let F5 := 〈WF5 ,R
5
4,R5

e ,R
5
1, . . . ,R

5
k〉 be a frame such that:
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(i) WF5 :=
⋃

1≤j≤i C
St
j

(ii) ∀w∀z ∈ WF5 (wR5
4z ⇔ (w ∈ CSt

j & z ∈ CSt
k & j ≤ k))

(iii) ∀w∀z ∈ WF5 (wR5
ez ⇔ wR4

ez)

(iv) for 1 ≤ a ≤ k, ∀w∀z ∈ WF5 (wR5
az ⇔ wR4

az)

Let F∞ = 〈WF∞ ,R∞4 ,R∞e ,R∞1 , . . . ,R∞k 〉 be an LTK-frame consisting of an

infinite repetition of F5 and let F6 = 〈WF6 ,R
6
4,R6

e ,R
6
1, . . . ,R

6
k〉 be a subframe

of F4 such that WF6 = WF4 −
⋃

C<
s (recall that Cs is the stabilising cluster

of F4). Let F = 〈WF,R4,Re,R1, . . . ,Rk〉 be an LTK-frame such that:

(i) W = WF∞ ∪W6

(ii) R4 = R∞4 ∪ R6
4 ∪ {〈w, z〉 | w ∈ WF6 & z ∈ WF∞}

(iii) Re = R∞e ∪ R6
e

(iv) for 1 ≤ a ≤ k, Ra = R∞a ∪ R6
a.

It is easy to see that F4 is a p-morphic image of F.

Notice that in this proof we have examined only the general case in which

the formula A is not valid in an infinite LTK-frame. If such frame is a finite

one, we do not need to go through steps 2, 3 and 5.

Corollary 2.3.15 Any reflexive LTK-balloon has a p-morphic image which

is an infinite LTK-frame.

We can then conclude that for any formula A, if A is not a theorem of

LTK, then there is a finite reflexive LTK-balloon which refutes A and whose

size is computable and bounded by A.
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2.4 Kripke Semantics: On the Ontology of Possi-

ble Worlds

Attempts to give a semantical explanation of quantified modal logics start

around the mid Forties with the work by Rudolf Carnap [12]. During the

Fifties, new semantics for modalities in the predicative case are developed

by Kanger [40], Montague [45] and Kripke, but it is only during the Sixties

that such theories become systematic and general, thank to the work by

Jakko Hintikka [33] and Saul Kripke.

Kripke’s work in 1963 [42] is the most influential piece of research in

the field. It presents a general semantics for quantified modal logics which

extends the Tarskian semantics for classical logic. This is one of the main

reasons of its great success: it allows us to deal with modal logics with the

same techniques developed in model theory applied to extensional logics (cf.

Corsi [13, 14]).

The key concept in this new semantical approach is the one of possible

worlds. Although in computational and multi-agent approaches, possible

worlds are generally considered only as descriptive tools to talk about pre-

cise states of a machine or social situations, there is, nevertheless, a debate

which is going on in the philosophical community on the ontological status

to be given to possible worlds. The ontological status of such objects is, in

fact, quite controversial. Although we are little concerned with philosophical

and metaphysical issues in this dissertation, we have nevertheless decided

to provide the reader with a very brief introduction to the subject, just to

give the flavour of the problems related to modal logic in other fields. Logic
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is, in fact, an intrinsically multi-disciplinary subject and being so it can be

analysed using the tools of various disciplines together (mathematics, com-

puter science, philosophy).

We would like to present two different positions about the ontological

status of possible worlds. First we shall see Kripke’s and then Plantinga’s.

This will show the core of the discussion on such matters and it will also

give a deeper understanding of some of the expressions one may find, or has

already found, in our dissertation.

As a start, we shall point out one of the most famous objections to Possi-

ble Worlds Semantics. The point is that whenever we want to interpret the

diamond modal operator 3 (in its historical acception as meaning possibil-

ity) in the possible worlds framework, we should read an expression as 3p

as there is a possible world in which p holds true and there is, therefore, an

existential quantification over possible worlds. There is no problem as long

as we aim at talking about actual situations. The scenario changes whenever

we aim at talking about a situation which is merely possible. In this case we

are forced to accept the existence of possible objects which are not actual:

we should accept in our ontology not only real things, but possibilia as well.

Melvin Fitting [18] underlines that the same situation happens in the se-

mantics for Classical Propositional Calculus: we take under consideration,

in fact, all the possibilities, i.e. all the lines of a truth table, and such pos-

sibilities cannot happen simultaneously.

Kripke’s answer is that the problem comes from a wrong use of the term
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possible world : if we clarify this notion giving it a fixed and formal mean-

ing, one realises that there is nothing wrong in considering possible worlds

for philosophical or technical purposes as abstract entities (cf Kripke [43]).

Possible worlds should not be considered as far away planets which come

into existence in some other dimension. In order to avoid this kind of confu-

sion, Kripke states that it would be better to change terminology: instead of

speaking of possible worlds, it would be better to talk about possible states

or stories of the world.

In order to understand his acception of possible worlds, Kripke asks us

to consider two common six faced dice: dice A and dice B. If we cast them,

we would get 36 possible combinations for the couple: for each dice there are

six possible outputs. These 36 combinations are literally 36 possible worlds:

we completely ignore the rest of the world but the two dice and the faces

they show. Only one of these 36 worlds is the actual one, but it is inter-

esting, however, to consider also the others whenever we ask counterfactual

questions. When we talk about the 36 possible combinations there is no

need to assume the existence of other 35 entities in some other dimension

which correspond to the physical object we face. A possible world is not

a far away country we visit or see through a telescope. A possible world

is given by its descriptive conditions. Possible worlds are stipulated, not

found (cf. Kripke [43]). Kripke provides us with this definition of possible

worlds in order to correct a frequent philosophical mistake which is caused

by a wrong use of the terms involved. It is a classical problem of quantified

modal logics and modal logics in general.

Alvin Plantinga [47, 46] has a similar position concerning the ontological
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status of possible worlds. He defines them as states of affairs possible and

maximal. He thinks, moreover, that talking about possible worlds is neces-

sary and not a mere speculation. There are, in fact, linguistic ambiguities

which can be cured and understood only if we refer to the possible worlds

semantics.

In order to understand Plantinga’s view point, it is necessary to intro-

duce the de dicto versus de re distinction, which is typical of the quantified

approach to modal logic.

A modal sentence is a de dicto modality whenever a modal property is

associated to a dictum or sentence, as in the phrase it is necessary that

all men are mortal, where the necessity operator is applied to the sentence

all men are mortal. On the other hand we call a sentence a de re modal-

ity if the modal property is given to an object, as in the phrase all men

are necessarily mortal, in which the property being necessarily mortal is ap-

plied to all mankind. It is clear that such a distinction is lost whenever we

lose the expressive power of predicate logics in order to analyse the case of

propositional calculus. A classical example to explain the necessity of possi-

ble worlds is provided by Thomas Aquinas3. In his Summa contra Gentiles

Thomas Aquinas considers the problem of God’s pre-knowledge. God can,

according to the philosopher, see the action which is taking place. This

is coherent with human freedom. In fact consider the truth value of the

following sentence:

(1) If I see someone sitting, he is necessarily sitting.

This is clearly true if read in the de dicto way:
3Thomas Aquinas, Summa de veritate catholicae fidei contra Gentiles [1259-1264],

Roma: edizione Leonina, 1918-1930, voll. XIII-XV.
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(2) It is necessary that if I see someone sitting, that person is sitting.

which is to say:

(2∗) In every possible world if I see someone sitting, that person is sitting.

The sentence nevertheless ceases to hold true as soon as we apply the de

re reading:

(3) If I see someone sitting, such person has the necessary property of

being sat

i.e. (3∗) If I see someone sitting, in every possible world that person is

sitting

which is clearly false.

It would not be possible, according to Plantinga, to understand such a

distinction if we cease to use the possible worlds framework. Just another

example to understand such distinction is provided by Fitting4. Consider

the sentence The number of planets is necessarily odd. A de re reading

would suggest that the number of planets in the solar system is odd in every

possible world. Any person without radically deterministic philosophical

views would then disagree with it being true. On the other hand its de re

interpretation proves to be true: in every possible world it is true that in the

actual world the number of planets is odd.

4Fitting [18], p. 86
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Leaving planets and men sitting necessarily or not and moving to some-

thing more useful in our everyday life, Thomason [67] shows how such a

distinction may help in remove the ambiguity in some english expression as

any and some. Consider the following couple of sentences:

a. Everyone can come along with us.

b. Anyone can come along with us.

In fact the sentence a. could be read as It is possible that all come with

us, i.e. 3∀xCome(x, us), whereas b. would be All can possibly come with

us, i.e. ∀x3Come(x, us). As soon as we formalise them, we realise how the

syntactic difference of the two is actually linked to a different scope of the

universal quantifier and this can help in understanding the difference in the

use of any and some in the english language.

If we consider the modal operators as quantifiers over possible worlds,

the distinction we are talking about becomes the problem of the swap of the

two types of quantifiers.

Going back to Plantinga’s position, we have stated that he accepts the

necessity of the use of the possible worlds. The problems start when he also

states to be an actualist, someone who does not accept anything which is

merely possible. Possible worlds must, therefore, exist in some way. But

which way? A possible world is according to Plantinga an abstract ob-

ject which is capable of action and causal relations. For instance being for

Socrates shorter than Plato is a state of affairs and it is actual only if Socrates

is actually shorter than Plato. On the other hand being for Socrates able to

play the violin is a state of affairs which exists but is not actual. We find
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this last statement a contradiction with Plantinga’s actualism.

From our point of view, we find hard to believe in the actual existence of

possible worlds and whenever we shall use such expression in what follows

we shall refer to its mathematical acception, i.e. as an object in a model the-

oretical structure. We shall not make any ontological assumption, although

we are prone to consider possible worlds as the interpretation provided by

Kripke: we believe them to be mere counterfactual situations which are

useful to describe some aspects of the world.
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Chapter 3

Admissible Rules in LTK1:

Decidability

We shall now start the analysis of one of the main topics of our dissertaion,

i.e. the investigation of inference rules in the logic we formerly defined. An

inference rule, or a logical consequence or else just an argument, is a set of

formulae called the premisses of the argument followed by a formula called

the conclusion. It is usually displayed as:

A1

...

An

B

The premisses A1, . . . , An are separated from the conclusion B by a line, indi-

cating that between the two sets of formulae there is some sort of connection.

This link is the logical entailment: a rule can be read as given the premisses

A1, . . . , An, the conclusion B may be inferred. Clearly this does not hold true

for every rule in every system. The study of the truth of this type of sentence

57
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referring to rules is the core of the research concerning logical consequences.

In particular, one may be interested in finding out whether a given rule is

correct for some logic, which is to say if its conclusion must hold true when-

ever its premisses do so. If such relation between premisses and conclusion

holds for a logic, the rule is said to be valid or admissible for the logic itself.

One can say that if a rule is valid for a logic, the truth of the premisses is

transfered to its conclusion1. In the light of what we have just said, one can

state that in order for a rule to be valid for a logic, it is necessary to fulfill

the following two conditions:

(i) If the premisses are theorems, so is the conclusion;

(ii) The validity of the conclusion depends only on the logical structure

of the premisses .

It is well known, in fact, that there might be arguments with true pre-

misses and a true conclusion which are, nevertheless, not valid. In order to

catch the intuition behind these concepts, let us consider few examples in

a natural language taken from common situations. Consider the following

argument:

Some women are philosophers

Some philosophers are lecturers

Therefore some lecturers are women.

In this example although both premisses and conclusion are true in the

model represented by England in 2008, the argument is not valid. On the

other hand, we can also have valid arguments with false conclusions:

All men are honest

All politicians are men
1cf Bellissima and Pagli [1].
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Therefore all politicians are honest2.

In spite of the falsity of its conclusion the argument is, nevertheless,

valid. It is its logical skeleton which matters here, not the content of what

it is said. This argument stays true no matter what terms we (uniformely)

substitue to it.

But one could still argue why it is so important to find valid arguments.

Being able to recognise admissible inference rules is actually a very useful

tool at this stage of our research. Rules are, in fact, the dynamic engine

of a logic. Theorems are static in a way: one can find a formula which is

actually a theorem in a given logic and then the game is over, for nothing

new can be generated by this information. On the other hand, whenever

a rule is checked and recognised as admissible, it is immediately available

to us in order to find other new theorems. We have not defined our logic

syntactically yet. What we have at this point is just a decidable set of for-

mulae. Finding admissible rules is, therefore, of crucial importance.

In this chapter we carry out the work started in Chapter 2 concerning

decidability. In Chapter 2, in fact, we found an algorithm to check whether

a given formula is a theorem of the logic LTK or not. In the same spirit

the task we have now is to build a new algorithm whose goal is to check

whether a given rule in the language of LTK1 is admissible (or valid) for the

logic LTK1
3. The logic LTK1 is nothing but a particular case of LTK, namely

a system in which only one agent is operating on a temporal framework.

Hence, a Kripke-frame for this logic is a tuple of type 〈W,R4,Re,Ra〉 where

2This is a typical example of a barbara syllogism, according to the Mediaeval Aris-
totelian terminology, in which both premisses and conclusion are in affermative universal
form.

3it is clear how this result can be easily extended to the case of LTK1
− and LTK1

−−.
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the relation Ra is intended to represent all the worlds visible from the agent’s

point of view.

Scheme and Methodology. The results presented in this Chapter may

be found in C. [4]. The techniques employed here are largely taken by Ry-

bakov’s methods as presented in [55].

In Section 3.1 we introduce some basic semantic definitions and oper-

ations on Kripke-frames. This is propaedeutical to the construction which

follows. We define special Kripke models called n-characterising. This con-

struction will prove to be the core of the whole chapter. After doing so, we

prove that the model defined is n-characterising for LTK1.

In Section 3.2 we prove several technical lemmas, in particular we show

that our n-characterising model has a very interesting property: for each

world in its base set there is a formula which is true at that world and only

at that world. In other words, each point in this model is definable. This is

done by means of Jankov Formulae, i.e. special formulae on LLTK intended

to be true at a single world in the model we work with. After introducing

these formulae, we show that the definition is a correct one and therefore

each world in the model is definable.

Finally, in Section 3.3, we present the main results. We show that an

inference rule r is admissible in LTK1 if and only if it is valid in all the frames

of a special kind, whose size is computable and bounded by the size of r.

As it will be clear later, these frames are a variant of the reflexive balloon

as described in Chapter 2. Hence, we prove that LTK1 is decidable w.r.t.

inference rules.
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3.1 Construction of ChLTK1
(n)

In this section we shall construct special countable n-characterizing models

for the logic LTK1 (see Definition 3.1.1) based on the tecniques presented by

Rybakov [55]. This construction is the ground on which we shall base our

main result. The intuition behind it is to construct a model in which only

and all the theorems of LTK1 built up on a finite number n of propositional

letters hold true. More technically:

Definition 3.1.1 (n-Characterising Model) Given a logic L, a Kripke-

model M := 〈F, V 〉 is an n-characterizing model for L iff:

(i) Dom(V ) := {p1, . . . , pn}

(ii) for any formula A built up from Dom(V ), F 
V A ⇔ A ∈ L.

Let us introduce few definitions and basic operations on Kripke-frames

and models. Given an LTK-frame F := 〈WF,R4,Re,Ra〉, a world w (or an

R4-cluster C) from WF has R4-depth n, in symbols depthR4
(w) = n, if the

number of R4-clusters in CR4
(w)4 is n (in what follows, we shall always

use the expression depth instead of R4-depth or depthR4
). The expression

Sln(F) denotes the n-slice of F, i.e. the family of all the elements of depth n

from WF. Sn(F) is the set of all the elements from WF with depth at most

n. Given a model M := 〈F, V 〉 and a world w ∈ WF, by V alV (w) we shall

denote the set {pi | w 
V pi}. For any valuation V , Dom(V ) denotes the

domain of V .

A very well known truth preserving operation on Kripke-structures and

models in the disjoint union of different frames. Since we shall use it in the

following construction, we define it as follows:

Definition 3.1.2 (Disjoint Union) Let Fi = 〈WFi
,Ri

1, . . . ,R
i
k〉, for i ∈ I,

be a family of k-modal Kripke-frames with pairwise disjoint base sets, i.e.
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WFi
∩WFj

= ∅ for each i, j ∈ I. The disjoint union of Fi is the frame:

⊔
i∈I

Fi = 〈
⋃
i∈I

WFi
,
⋃
i∈I

Ri
1, . . . ,

⋃
i∈I

Ri
k〉

Given a family Mi = 〈Fi, Vi〉 of Kripke-models on the family of frames Fi,

the disjoint union of Mi is the model:

⊔
i∈I

Mi = 〈
⊔
i∈I

Fi,
⋃
i∈I

Vi〉

Theorem 3.1.3 (i) Let
⊔

i∈I Fi = 〈
⋃

i∈I WFi
,
⋃

i∈I Ri
1, . . . ,

⋃
i∈I Ri

k〉 be

the disjoint union of some Kripke-frames Fi, i ∈ I. Then for any formula A

(
⊔

i∈I Fi 
 A⇔ ∀i ∈ I(Fi 
 A));

(i) Let
⊔

i∈I Mi = 〈
⊔

i∈I Fi, V 〉 be the disjoint union of models on a

family of frames Fi, i ∈ I. Then for any formula A built up on propositional

letters from V , (
⊔

i∈I Fi 
V A⇔ ∀i ∈ I(Fi 
Vi A)).

We are now ready to start our construction of an effective n-characterising

model for LTK1.

Step 1: the first slice of ChLTK1(n). Let F be a class of finite LTK-

frames (i.e. LTK-frames whose base sets are finite) such that, for any frame

F ∈ F, ∀w∀z ∈ WF(wR4z & wRez). Let C(F)n be the class of all the

possible different, non isomorphic models C := 〈F, V 〉, where:

(i) F ∈ F;

(ii) Dom(V ) = {p1, . . . , pn};

(iii) ∀w∀z ∈ WF

((
(V alV (w) = V alV (z))&({V alV (w′) | wRaw

′} = {V alV (z′) |

zRaz
′})

)
⇒ (w = z)

)
.
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It is easy to notice that the size of C(F)n is computable and bounded by n.

Let P(C(F)n) be the set of all the subsets of C(F)n.

Given a set S = {C1, . . . ,Cj} from P(C(F)n), for each Ci ∈ S, we display the

model Ci as Ci := 〈Wi,R
i
4,Ri

e,R
i
a, Vi〉.

For any set S = {C1, . . . ,Cj} from P(C(F)n), TS is the Kripke-model TS :=

〈WS,R4,Re,Ra, V 〉, where:

(i) WS :=
⋃

1≤i≤j Wi

(ii) R4 := WS ×WS

(iii) Re :=
⋃

1≤i≤j Ri
e

(iv) Ra :=
⋃

1≤i≤j Ri
a

(v) Dom(V ) := {p1, . . . , pn}

(vi) ∀p ∈ Dom(V )(V (p) :=
⋃

1≤i≤j Vi(p))

Since the temporal relation R4 is universal, each TS is an R4-cluster of

Re-clusters.

Let S1(ChLTK1(n)) :=
⊔

S∈P(C(F)n) TS.

Hence the first slice contains a finite number of pairwise disjoint models,

where each model is an R4-cluster of Re-clusters.

Step 2: the second slice. Consider any TS from S1(ChLTK1(n)), and any

Re-cluster Ci from C(F)n s.t. ∀C ∈ TS, Ci is not isomorphic to a submodel

of C.
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For any TSi from S1(ChLTK1(n)) we adjoin a copy of each Cj ∈ C(F) pro-

vided that ∀Ck ∈ TSi , Cj 6∼= Ck. We set Cj to be an immediate R4=predecessor

of TSi . The resulting model is defined as S2(ChLTK1(n)).

Step 3: the i + 1th slice. Suppose we have already constructed the

model Si(ChLTK1(n)) for i ≥ 2 such that its frame is a frame for LTK1 and

given two different R4-clusters Cj , Ck from this frame, if Cj is an immediate

R4-predecessor of Ck, then Cj is not isomorphic to a submodel of Ck. To

construct Sli+1(ChLTK1(n)) we add Re-clusters from C(F)n in the following

way. We take each Re-cluster C of depth i and we add as its immediate R4-

predecessors all the possible different Re-clusters Cj from C(F)n, but only

provided that Cj is not isomorphic to a submodel of C.

Let Si+1(ChLTK1(n)) be the model resulting from all such additions. The

frame of the resulting model is again a frame for LTK1.

Step 4: the final model. The final model ChLTK1(n) := 〈WCh(n),R4,Re,Ra, V 〉

is given by ⋃
i∈N

Si(ChLTK1(n))

We call Ch(n) the frame on which ChLTK1(n) is based.

Clearly what we need now is to prove that the model defined is really

n-characterising for LTK1. To do so, we prove the following lemma:

Lemma 3.1.4 The model ChLTK1(n) = 〈Ch(n), V 〉 is n-characterizing for

LTK1.
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Proof. Since Ch(n) 
 LTK1 by construction, the claim A ∈ LTK1 ⇒ Ch(n) 
V

A, for any formula A built up from the propositional letters p1, . . . , pn, follows

immediately.

Suppose there is a formula A built up from p1, . . . , pn s.t. A 6∈ LTK1. In

order to prove that A is not true in ChLTK1(n), we will construct a model

refuting A, which is isomorphic to an open submodel of ChLTK1(n).

By Theorem 2.3.2, there is a finite LTK1-reflexive balloon F1 = 〈WF1 ,R
1
4,R1

e ,R
1
a〉

(whose size is computable and bounded by the size of A) and a model

M1 := 〈F1, V1〉 such that F1 6
V1 A. For any R1
e-cluster C from WF1 ,

∀w, z ∈ ∪C, if the following two conditions hold:

(i) V alV1(w) = V alV1(z)

(ii) {V alV1(w
′) | wR1

aw
′} = {V alV1(z

′) | zR1
az

′}

then we delete either w or z. The resulting model M2 := 〈F2, V2〉 is a p-

morphic image of M1 := 〈F1, V1〉, thus it still refutes A.

Let St1 be the set of R1
e-clusters of depth 1 from F1, and let St2 be the

set of R2
e-clusters of depth 1 from F2 (cf. Section 2.3 and Figure 2.2). We

delete R2
e-clusters from St2 as follows: for any C1, C2 from St2 s.t. C1 6= C2,

if C1 is a submodel of C2, then we delete C1. Let M∗
1 be the resulting model.

Clearly, M∗
1 is a p-morphic image of both St1 and St2 and, moreover, it is

also isomorphic to an open submodel of ChLTK1(n).

Suppose we have already constructed the model M∗
i := 〈F∗

i , V
∗
i 〉 s.t.:

(i) ∀w ∈ WF∗i
, depth(w) ≤ i

(ii) M∗
i is a p-morphic image of the open submodel of M2 generated by

the set
⋃

C4, where C is an R2
4-cluster of depth i.

(iii) M∗
i is isomorphic to some open submodel of ChLTK1(n).

The following procedure will explain how to obtain the model M∗
i+1. Let
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C be the R∗4-deepest R∗4-cluster in M∗
i . Consider the R2

4-cluster Ci+1 in

M2 of depth i + 1. If Ci+1 is not a submodel of C, then we adjoin Ci+1

as the immediate R∗4-predecessor of C, otherwise we do not add anything.

This procedure ends when we reach the R2
4-deepest R2

4-cluster C in M2. We

denote the resulting model by M∗. Clearly, M∗ is a p-morphic image of the

original model M1, therefore it refutes A. Since M∗ is also isomorphic to

some open submodel of ChLTK1(n), it follows Ch(n) 6
V A.

3.2 Definability of worlds

We have seen that there is a procedure to build n-characterising models for

LTK1 for any finite n. What we want to show now is that such models enjoy

a very interesting property. In fact we can prove that each world in the base

set of these kind of models is definable. This means that given any world w

we are able to construct a formula such that it is true at w and only at w.

This gives us a powerful tool to achieve our goal of proving decidability for

inference rules. In fact, as we shall see in the last section of this chapter,

this is a fundamental condition for our main results.

Let us first give a precise definition of definability:

Definition 3.2.1 Given a model M = 〈F, V 〉, a world w ∈ WF is definable

if and only if there is a formula β(w) such that:

(i) (F, w) 
V β(w);

(i) ∀z ∈ WF ((F, z) 
V β(w) ⇒ (w = z)).

In other words, we say a world w definable if and only if there is a

formula β(w) whose valuation is the set containing w as its only member:
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V (β(w)) = {w}.

In order to construct our defining formulae, we shall use the abbreviation

Si for Si(ChLTK1(n)). If depth(w) = 1, the expression TS(w) will denote the

R4-circle of Re-clusters to which w belongs.

Step 1: Defining a world of depth 1. We start by analysing the case

depth(w) = 1, that is w belongs to some TS(w) ∈ S1(ChLTK1(n)). we shall

use the following formulae:

α(w) :=
∧

w∈V (pi)

pi ∧
∧

w 6∈V (pi)

¬pi

ρa(w) :=
∧

wRaz

3aα(z) ∧ Ka

∨
wRaz

α(z)

ρe(w) :=
∧

z∈CRe (w)

3e

(
α(z) ∧ ρa(z)

)
∧ Ke

∨
z∈CRe (w)

(
α(z) ∧ ρa(z)

)

ρ4(w) :=
∧

z∈TS(w)

34

(
α(z)∧ρa(z)∧ρe(z)

)
∧24

∨
z∈TS(w)

(
α(z)∧ρa(z)∧ρe(z)

)

ρ<(w) :=
∧

z∈TS(w)

2434

(
α(z) ∧ ρa(z) ∧ ρe(z)

)
We set the formula β(w) to be:

β(w) := α(w) ∧ ρa(w) ∧ ρe(w) ∧ ρ4(w) ∧ ρ<(w) (3.1)
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The intuition behind the formulae just defined is:

(i) ρa(w) specifies the structure of the Ra-cluster generated by w;

(ii) ρe(w) describes the Re-cluster generated by w;

(iii) ρ4(w) indicates all the R4-accessible worlds from w and it also

specifies that they are the only ones R4-seen by w;

(iv) ρ<(w), finally, says that the R4-maximal time-cluster that is R4-

accessible from w consists of all the Re-clusters from TS(w).

Step 2: Defining worlds of depth i + 1. Suppose w is an element of

depth i + 1. The formulae α(w), ρa(w) and ρe(w) are defined in the same

way as the former case. Recall that w< := {z | wR4z & ¬(zR4w)}.

γ(i) :=
∧

z∈Si

¬β(z)

ρ′4(w) :=
∧

z∈w<

34β(z) ∧
∧

z∈Si&z 6∈w<

¬34β(z)

δ(w) := 24

( ∨
z∈w<

β(z) ∨
∨

z∈CR4
(w)

(
α(z) ∧ ρa(z) ∧ ρe(z) ∧ γ(i)

))

We can now define β(w):

β(w) := α(w) ∧ ρa(w) ∧ ρe(w) ∧ ρ′4(w) ∧ γ(i) ∧ δ(w) (3.2)

The formula ρ′(w) says that w R4-sees a specified set of worlds from Si,

while γ(i) avoids the case w ∈ Si. Finally, δ(w) says that if a world z is

R4-seen by w, then either it belongs to the set of all the R4-successors of
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w, or it is in the R4-cluster generated by w.

What we have to show now is that our definition is correct and each

world is actually defined by a formula of the type introduced in 3.1 or 3.2.

Lemma 3.2.2 For any n-characterising model ChLTK1(n), each world w

from WCh(n) is definable.

Proof. Clearly the fact that for each world w, w 
V β(w) follows directly

from the definition of β(w).

Let us show that the second part of Definition 3.2.1 also holds true. We

have to check if for any w, z from ChLTK1(n), the assumption z 
V β(w)

implies that (w = z). There can be two cases:

Case 1. Assume w has depth 1 and suppose there is a point z s.t.

z 
V β(w).

(i) If depth(z) = 1, then the structure of β(w) implies that the R4-open

submodels generated by z and w are isomorphic, so they should coincide.

Hence, by the structure of S1(ChLTK1(n)), we have w = z.

(ii) The case depth(z) = 2 is impossible because ρ<(w) is a conjunct of

β(w).

(iii) If depth(z) > 2, then either zR4w or ¬(zR4w). The case zR4w is

impossible for the structure of S2(ChLTK1(n)) (i.e. there should be an Re-

cluster C s.t. depth(C) = 2, C ∈ CRe(z)4 and C 6∈ CRe(w)4). Since ρ<(w) is

also a conjunct of β(w), the case ¬(zR4w) is impossible as well.

Case 2. Assume w has depth i + 1 and suppose there is a point z

s.t. z 
V β(w). By the structure of the conjunct γ(i) of β(w), we have
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depth(z) > (i + 1). By the conjunct ρ′4 we have ∀v ∈ Si(wR4v ⇒ zR4v).

We can have two cases:

(i) If depth(z) = i + 1, then, by the construction of ChLTK1(n), CR4
(w) =

CR4
(z) and so w = z.

(ii) Suppose depth(z) > i+1; then either zR4w or ¬(zR4w). Assume zR4w;

then there are R4-clusters C1, . . . ,Cm between CR4
(z) and CR4

(w) such that

CR4
(z),C1, . . . ,Cm,CR4

(w) is an R4-chain of R4-clusters (i.e. CR4
(z)R4C1,

CmR4CR4
(w) and for each i, j 1 ≤ i ≤ j ≤ m, CiR4Cj). By the structure of

the conjunct δ(w), each R4-cluster from C1, . . . ,Cm is isomorphic to CR4
(w)

and this is impossible by the construction of ChLTK1(n). Assume ¬(zR4w);

then there are R4-clusters C1, . . . ,Cm such that depth(Cm) = i + 1 and

CR4
(z),C1, . . . ,Cm is an R4-chain. Again, by the structure of δ(w), each

R4-cluster from C1, . . . ,Cm is isomorphic to CR4
(z) and this is impossible

by the construction of ChLTK1(n).

3.3 Decidability for LTK1 with respect to inference

rules

We have now all the tools we need in order to show the main result of this

Chapter. Summarising, we know that for any finite n there is a special

countable n-characterising model for LTK1 and in this model all the worlds

are defined by a finite and constructible formula. These two important prop-

erties enjoyed by our logic shall prove to be of crucial importance for our

next result.

As we have anticipated, we want to show that for the case of LTK1,
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admissibility of inference rules is a decidable property. Let us start by

defining what inference rules are in a more formal fashion:

Definition 3.3.1 (Inference Rule) An inference rule r is an expression

of the form

r :=
A1(p1, . . . , pn), . . . , Am(p1, . . . , pn)

B(p1, . . . , pn)

where any Ai(p1, . . . , pn) and B(p1, . . . , pn) are wff built up from the letters

p1, . . . , pn (in what follows, we shall sometimes use the expression

A1(p1, . . . , pn), . . . , Am(p1, . . . , pn)/B(p1, . . . , pn)).

As we said, an inference rule is basically a set of premisses followed by

a conclusion. Between the premisses and the conclusion, there might be

certain links. For instance, it may be the case that in a class of models the

conclusion holds true whenever the premisses also do so. In this case, we

would call the rule valid or admissible for the logic generated by the set of

models. This is to say that if the premisses of the rule are always theorems

of a logic L, the same should be true for its conclusion. Let us analyse this

concept more formally.

A substitution σ is a map which assigns a formula to each propositional

variable. Given a formula A, σ(A) is the result of the application of σ to A.

Definition 3.3.2 Given a logic L and an inference rule r := A1, . . . , Am/B,

r is said to be admissible for L if and only if for each substitution σ, if

σ(Ai) ∈ L for each i, then σ(B) ∈ L.

Therefore, the greatest class of rules which can be implemented for a

given logic, i.e. which are compatible with the set of its valid formulae, is

the class of its admissible rules: this is the class of all those rules under
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which the theory itself is closed.

A concept of great importance in this scenario is the one of definable

valuation:

Definition 3.3.3 (Definable Valuation) Given a model 〈F, V 〉, a valua-

tion V ′ is definable if and only if ∀p ∈ Dom(V ′) there is a formula αp s.t.

V ′(p) = V (αp).

If we combine an n-characterising model and a definable valuation, we

are immediately able to state an important result. In fact, Theorem 3.3.3

in Rybakov [55] follows immediately:

Lemma 3.3.4 An inference rule r := A1, . . . , An/B is not admissible for

LTK1 iff there is an n-characterising model ChLTK1(n) := 〈Ch(n), V 〉 and a

definable valuation V2 s.t. Ch(n) 
V2

∧
1≤i≤n Ai and Ch(n) 6
V2 B.

In order to apply such result to our specific needs, we have to introduce

some particular Kripke-frames which are a variant of the reflexive balloon

previously defined. These are a special kind of 3-modal Kripke-frames. We

denote them as LSP-frames, the acronym meaning Loop String Point. As

their name suggests, these frames contain three different components. We

can get an intuitive idea if we imagine a reflexive balloon with a hanging

world before each R4-cluster plus a single element R4-maximal cluster. The

structure of an LSP-frame is depicted in Figure 3.1.

Definition 3.3.5 (LSP-frames) Let FL, FS and FP be Kripke-frames with

the following structure:

(i) The frame FL = 〈WFL
,RL

4,RL
e ,R

L
a〉 (LOOP-component) is as follows:

WFL
is a nonempty set of worlds; RL

4 = WFL
×WFL

; RL
e is an equivalence

relation on WFL
; RL

a is some equivalence relation on RL
e -clusters;
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(ii) Let F = 〈WF,R4,Re,Ra〉 be a finite LTK-frame (i.e. it is an LTK-

frame with a finite base set of worlds. See Definition 2.2.3); let C1, . . . ,Ci

be an enumeration of all the R4-clusters of worlds from WF; let Dots :=

{w1, . . . , wi} be a set of worlds such that ∀wj , 1 ≤ j ≤ i(wj 6∈ WF). The

frame FS = 〈WFS
,RS

4,RS
e ,R

S
a〉 (STRING-component) has the following struc-

ture: WFS
= WF ∪ Dots; RS

4 = R4 ∪ {〈wj , z〉 | wj ∈ Dots & z ∈ ∪C
4
j } ∪

{〈wj , wj〉 | wj ∈ Dots}; RS
e = Re ∪ {〈wj , wj〉 | wj ∈ Dots}; RS

a = Ra ∪

{〈wj , wj〉 | wj ∈ Dots}.

(iii) The frame FP := 〈WFP
,RP

4,RP
e ,RP

a 〉 (POINT-component) is such

that its base set contains only one world denoted by @, WFP
:= {@}, and all

the binary relations on WFP
are universal.

An LSP-frame (loop-string-point frame) is a tuple Flsp = 〈Wlsp,R
lsp
4 ,Rlsp

e ,Rlsp
a 〉

where WFlsp
= WFL

∪ WFS
∪ WFP

; Rlsp
4 = RL

4 ∪ RS
4 ∪ RP

4 ∪ {〈w, z〉 | w ∈

WFS
& z ∈ WFL

}; Rlsp
e = RL

e ∪RS
e ∪RP

e ; Rlsp
a = RL

a ∪RS
a ∪RP

a (See Figure 3.1).

As we have anticipated, LSP-frames play a central role in our proof, in

fact we can prove that any inference rule which is not admissible for LTK1

has a finite and countable counter-model based on a frame of this kind. This

is to say that the class of admissible rules for LTK1 is the class of all the

inferences which are valid in all the finite LSP-frames. Since the proof of

this result is quite long and technical, we have decided to break it into two

theorems corresponding to the two directions of the equivalence.

Theorem 3.3.6 If an inference rule

r := A1, . . . , Am/B is not admissible for LTK1, then there is a finite LSP-

frame Flsp, whose size is computable from ‖V ar(r)‖ (where V ar(r) is the

set of all the variables occurring in r), and a model Mlsp = 〈Flsp, V 〉 s.t.

Flsp 
V
∧

1≤i≤n Ai and Flsp 6
V B.
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Figure 3.1: Scheme of the structure of an LSP-frame.
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Proof. Let us suppose that an inference rule r := A1, . . . , Am/B is not

admissible for LTK1 and let p1, . . . , pk be all the letters occurring in r. Hence

there are formulae γ1, . . . , γj , 1 ≤ j ≤ k, s.t.
∧

1≤i≤m Ai(γ1, . . . , γj) ∈ LTK1

and B(γ1, . . . , γj) 6∈ LTK1. Let Prop(γ) be the set of all the propositional

letters occurring in γ1, . . . , γj .

By Lemma 3.3.4 there is an n+1-characterising model ChLTK1(n+1) :=

〈Ch(n+1), V 〉 and a new definable valuation V2 with Dom(V2) := Prop(γ)∪

{pn+1}, where pn+1 6∈ Prop(γ), s. t. Ch(n + 1) 
V2

∧
1≤i≤m Ai(γ1, . . . , γj)

and Ch(n + 1) 6
V2 B(γ1, . . . , γj).

Take a world w ∈ WCh(n+1) such that:

(i) (Ch(n + 1), w) 6
V2 B(γ1, . . . , γj)

(ii) ∀v ∈ w4(v 6∈ V2(pn+1))

(iii) ∀v ∈ WCh(n+1)(((Ch(n + 1), v) 6
V2 B(γ1, . . . , γj) & v4 ∩

V2(pn+1) = ∅) ⇒ ‖w4‖ ≤ ‖v4‖) (i.e. w4 is the smallest set of the

kind v4 containing a world refuting B and such that none of its elements

belongs to V2(pn+1)).

It can be easily noticed that, since the propositional letter pn+1 does not

occur in any γi, such a world w exists in ChLTK1(n + 1).

Let C1, . . . ,Ci be an enumeration of all the R4-clusters of worlds from

w4. Now we take and fix, for each R4-cluster Cj a world wj such that:

(i) wj is an immediate R4-predecessor of Cj , i.e. wjR4Cj , ¬(CjR4wj)

and if there is a world z s.t. wjR4z, zR4Cj and ¬(CjR4z), then z = wj .

(ii) for any k, 1 ≤ k ≤ i, if dp(Ck) > dp(Cj), then ¬(wjR4Ck)

(iii) wj ∈ V2(pn+1)

The existence of such a world for each R4-cluster is guaranteed by the

construction of ChLTK1(n + 1). In fact, since wj ∈ V2(pn+1) while none of

the worlds from any Cj belongs to V2(pn+1), we have that for any j, CR4
(wj)
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is not a submodel of Cj . Let Dots = {w1, . . . , wi} be the set of those worlds

wj . Take and fix a world @ ∈ WCh(n+1) such that:

(i) @ 6∈ w4 ∪ Dots

(ii) @4 = {@}

Let MFlsp
:= 〈Flsp, V2〉 be an open submodel of ChLTK1(n + 1) where

WFlsp
:= w4∪Dots∪{@}. Since MFlsp

is a generated submodel of ChLTK1(n+

1), we have Flsp 
V2

∧
1≤i≤m Ai(γ1, . . . , γj) and Flsp 6
V2 B(γ1, . . . , γj). More-

over, by Definition 3.3.5, Flsp is an LSP-frame. Though Flsp is finite, the

number of worlds from its base set is not known. To reduce such number,

we apply the technique used in the proof of Theorem 2.3.2 in a slightly

different way. Consider the STRING-component FS of Flsp (cf. Definition

3.3.5, item (ii)). For each D ∈ Sub(B), we consider the R4-maximal world

v ∈ WFS
such that (Flsp, v) 
V2 D. We can have two cases: either v ∈ Dots

and hence v = wj for some j, or v ∈ Cj for some j. In both cases, by

CD we denote the set
⋃

Cj ∪ {wj}. Likewise, by C¬D we denote the set⋃
Cj ∪ {wj} such that there is a world v ∈

⋃
Cj ∪ {wj} which is the R4-

maximal world refuting D, i.e. (Flsp, v) 6
V2 D. Then we define a subframe

Flsp′ := 〈WFlsp′
,Rlsp′

4 ,Rlsp′
e ,Rlsp′

a 〉 where:

WFlsp′
:=

⋃
D∈Sub(A)

CD ∪
⋃

D∈Sub(A)

C¬D ∪
⋃

C1 ∪ w1 ∪ {@}

(recall that C1 is the R4-maximal cluster defined in the enumeration

C1, . . . ,Ci and w1 is its dot-world).

Let MFlsp′
:= 〈Flsp′ , V3〉 be a model s.t. V3 = V2 � WFlsp′

. It is easy to

verify that MFlsp′
refutes r and Flsp′ is an LSP-frame. Moreover, the number

of worlds from WFlsp′
is finite and computably bounded by the size of V ar(r)

(cf. item (iii) page 75).
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Theorem 3.3.7 For any inference rule r := A1, . . . , Am/B, if there is a finite

LSP-frame Flsp, whose size is computable from ‖V ar(r)‖ (where V ar(r) is

the set of all the variables occurring in r), and a model Mlsp = 〈Flsp, V 〉 s.t.

Flsp 
V
∧

1≤i≤n Ai and Flsp 6
V B, then r is not admissible for LTK1.

Proof. Suppose that we have an inference rule r := A1, . . . , Am/B, an LSP-

frame Flsp and a model MFlsp
:= 〈Flsp, S〉 such that Flsp 
S

∧
1≤i≤n Ai and

Flsp 6
S B. Let Prop(WFlsp
) := {pw | w ∈ WFlsp

} and VAR := Prop(WFlsp
) ∪

V ar(r). We define a new valuation S2 for Flsp in the following way:

(i) Dom(S2) = VAR

(ii) ∀pw ∈ Prop(WFlsp
)
(
S2(pw) = {w}

)
(iii) ∀x ∈ V ar(r)

(
S2(x) = S(x)

)
Clearly the new model 〈Flsp, S2〉 still refutes B, but not any Ai. We construct,

following the procedure explained in Section 3.1, the model ChLTK1(n) :=

〈Ch(n), V 〉, where n = ‖VAR‖. It is easy to see that the model 〈Flsp, S2〉

formerly defined is (isomorphic to) an open submodel of ChLTK1(n). we

shall construct, now, a new definable valuation V2 for Ch(n) refuting r. The

basic idea is finding a way to extend the valuation S2 from Flsp to the whole

frame Ch(n). Recall that by Lemma 3.2.2 we know that each world from

the base set of ChLTK1(n) is definable (recall that for any world w, by β(w)

we denote that particular formula defining w).

Let @ be the name of that world from WFlsp
such that:

(i) @4 = {@}

(ii) ∀w ∈ WFlsp

(
(wRe@ or wR4@ or wRa@) ⇒ w = @

)
(See Figure

3.2.)
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Figure 3.2: Scheme of the structure of Ch(n) and the sets Entry and notEntry.
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We define the set of all those worlds from WCh(n) that are not R4-related

to any point from [WFlsp
− {@}] (see Figure 3.2), i.e. we set

notEntry := {v | v 6
V 34β(w), ∀w ∈ [WFlsp
− {@}]}

Let Dots be a subset of WFlsp
as defined in Definition 3.3.5, i.e.:

Dots = {wj | wj ∈ [WFlsp
− {@}] & ∀z ∈ WFlsp

(zR4wj ⇒ wj = z)}

Take and fix, for each R4-cluster Cj of worlds from [WFlsp
− {@}] − Dots a

representative world zj belonging to Cj . Let Rep be the set containing all

those representative elements.

For each representative world zj from Rep, we shall define, now, an entry-set

(see Figure 3.2). It contains all those worlds v from WCh(n)−WFlsp
which are

R4-predecessors of zj and such that zj is the R4-deepest world belonging

to [WFlsp
− Dots] which is R4-accesible from v: ∀zj ∈ Rep

Entry(zj) := {w | w 6∈ WFlsp
& w 
V 34β(zj) & ∀v ∈ [WFlsp

−

Dots]
(
(vR4zj & ¬(zjR4v)) ⇒ w 6
V 34β(v)

)
} (See Figure 3.2.)

For each representative world zj from Rep, we define a formula φ(zj) that is

true only at those worlds belonging to Entry(zj). ∀zj ∈ Rep:

φ(zj) :=
∧

v∈WFlsp

¬β(v) ∧34β(zj) ∧
∧

v∈WFlsp
&vR4zj&¬(zjR4v)

¬34β(v)

It can be easily verified that, given a world v, it belongs to Entry(zj),

for some zj ∈ Rep, if and only if φ(zj) is true at v under V . Recall that for

any zj ∈ Rep, by wj we denote the world from Dots such that zj is one of

its immediate R4-successors.
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To define the valuation V2, let Dom(V2) := VAR;

∀p ∈ VAR, V2(p) :=

⋃
v∈WFlsp

&v∈V (p)

V (β(v)) ∪
⋃

v∈notEntry&@∈V (p)

V (β(v)) ∪
⋃

zj∈Rep&zj∈V (p)

V (φ(zj))

Obviously the valuation V2 is definable, in fact, for each p ∈ VAR, there

is a formula αp such that V2(p) = V (αp), namely, ∀p ∈ VAR:

αp :=
∨

v∈WFlsp
&v∈V (p)

β(v) ∨
∨

v∈notEntry&@∈V (p)

β(v) ∨
∨

zj∈Rep&zj∈V (p)

φ(zj)

Next step is to show that the inference rule r is not valid in the new

model 〈Ch(n), V2〉. It is sufficient to show that the following claim holds:

for any formula A on LLTK containing only letters from VAR

Flsp 
S2 A ⇔ Ch(n) 
V2 A.

Notice that the three statements below follow immediately by the definition

of V2:

(i) ∀w ∈ WFlsp
(Ch(n), w) 
V2 A ⇔ (Flsp, w) 
S2 A (the model 〈Flsp, S2〉

being isomorphic to 〈Flsp, V2〉 which is an open submodel of 〈Ch(n), V2〉);

(ii) ∀zi ∈ Rep, ∀v ∈ Entry(zi) (Ch(n), v) 
V2 A ⇔ (Flsp, wi) 
S2 A;

(iii) ∀v ∈ notEntry (Ch(n), v) 
V2 A ⇔ (Flsp,@) 
S2 A.

Since WCh(n) = Wlsp ∪ notEntry ∪
⋃

zj∈Rep Entry(zj), the model 〈Ch(n), V2〉

refutes r.

Corollary 3.3.8 An inference rule r := A1, . . . , Am/B is admissible for LTK1
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if and only if for any LSP-frame F, r is valid in F, i.e. F 
 A1, . . . , Am

implies F 
 B.

Corollary 3.3.9 (C. [4]) The logic LTK1 is decidable with respect to infer-

ence rules.
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Chapter 4

The Axiomatic System ASLTK

This Chapter is entirely devoted to the research of an axiomatic system gen-

erating only those theorems belonging to the logic LTK. The work done in

Chapter 2 and Chapter 3 is mostly semantical. Summarising we have intro-

duced our logic semantically as the set of all the formulae which are valid

in a particular class of frames and proved it to be decidable with respect

both to its theorems and to its admissible inference rules. This means that

given any formula and any inference rule we are now able to check whether

they belong to LTK or else they are admissible to LTK1 respectively. What

we still lack is an automatic method to generate valid formulae. What we

need is a machine which can produce only those formulae which are theo-

rems of LTK. This implies the switch from the study of semantical aspects

to syntactical ones. And this is exactly the task we aim at fulfilling in the

following pages.

It is clear how helpful it could be having an axiomatic system available

for our purposes. However, several difficulties arise whenever one is to prove

an axiomatic system to be sound and complete with respect to a class of

83
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multi-modal frames. According to Bennett et al. [2] and Kurucz [44], if there

is no interaction between modalities, a transfer of properties (such as finite

model property, decidability, etc.) from the component simple modal logics

to the newly generated multi-modal system does apply. However, as soon

as such interaction takes place it is not straightforward anymore to prove

that the combined system is conservative with respect to the properties of

its components. In some cases the opposite may apply. Let us consider, for

instance, our specific case. As it will be clear later in this chapter, in order

to axiomatise the behaviour of the modal operator 24 we use an S4.3 modal

system, known to be sound and complete with respect to the class of lin-

ear frames; regarding our epistemic modalities, we use distinct S5 systems,

complete with respect to the the class of frames in which the relation is an

equivalence over worlds (c.f. [3]). These two well known results do imme-

diately transfer if we do not have any interaction between modal operators,

but it is uncertain whether it holds true in case such interaction happens.

In these circumstances, a specific investigation is needed and this may turn

out not to be trivial. Nevertheless, despite such difficulties, interaction be-

tween modalities is necessary to exploit the power of multi-modal languages.

Scheme and Methodology. This Chapter aims at providing the multi-

modal logic LTK (formerly introduced in Chapter 2) with a finite, sound and

complete axiomatisation with interacting modalities.

In Section 4.1 we introduce a set of axiom schemata and inference rules.

The axioms involved are the classic axioms for the calculi S4.3 (temporal

operator), S5 (epistemic modalities) and a few axioms governing the inter-
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action between modalities. The most peculiar axiom in the latter set is our

multi-modal version of the famous one introduced by Dummett and Lem-

mon [16]. After providing few basic syntactical definitions, we proceed by

providing the reader with a justification and an interpretation of the axioms

chosen.

In Section 4.2 we prove our system to be sound with respect to the class

of LTK-frames, meaning that the theorems generated by the system are

valid in every frame of the class. We carry on this relatively easy proof by

by induction on the length of any deduction in the system.

Section 4.3 is devoted to show our completeness results. Due to its

length, this section is divided in four subsections:

4.3.1 We define and construct an n-canonical model for LTKax in which

all the theorems of LTK built up from letters p1, . . . , pn hold true, whereas a

formula B 6∈ LTKax is false. The frame of such model is not an LTK-frame,

the required type, but it is, nevertheless, our starting point.

4.3.2 Here we apply the truth preserving operation of taking a generated

submodel of the canonical model formerly defined. The resulting model is

linear with respect to the temporal relation R4, although not yet of the

sought kind.

4.3.3 We use the technique of filtration to reduce the number of worlds in

our linear model. This is a technique developed by Segerberg [65]. Further

we prove Lemma 4.3.16, which is the core of the whole work (cf. Goldblatt

[26]) and makes a substancial use of our multi-modal version of the axiom

presented by Dummett and Lemmon [16].

4.3.4 After having proved Lemma 4.3.16, it is possible to apply a variant
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of the well known technique of unraveling. This will generate the intended

frame, namely a finite LTK-frame, which enables us to show our result of

completeness: the logic LTKax is characterised by the class of LTK-frames

and thus it coincides with LTK.

Finally, Section 4.4 presents a generalised case of our logic and axiomatic

system. The idea is that if the multi-modal Dummett Axiom is removed

from our system, the logic generated is a general version of LTK, useful to

describe situations in which more than one environment is possible at each

moment in the time line.

As usual, all the results concerning the logic LTK can be transfered to

the systems LTK1, LTK− and LTK−− too.

4.1 Axioms and Rules of ASLTK (Schemata)

The number of axiom schemata we present is not fixed and depends on the

number of agents operating in the system one is to use. In particular al-

though we have a fixed number of axioms regulating the behaviour of the

temporal operator 24, we have as many groups of axioms for the operators

Ki as many the agents operating in the system are. The same holds for the

axioms regulating the interactions between modalities.

Axioms (Schemata)

Axioms of CPC (classical propositional calculus)

K24 : 24(A→ B) → (24A→ 24B)

T24 : 24A→ A
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424 : 24A→ 2424A

324 : 24(A ∧24A→ B) ∨24(B ∧24B→ A)

KKξ
: Kξ(A→ B) → (KξA→ KξB), ξ ∈ {e, 1, . . . , k}

TKξ
: KξA→ A, ξ ∈ {e, 1, . . . , k}

4Kξ
: KξA→ KξKξA, ξ ∈ {e, 1, . . . , k}

5Kξ
: ¬KξA→ Kξ¬KξA, ξ ∈ {e, 1, . . . , k}

M.1: 24A→ KeA

M.2: KeA→ KiA, 1 ≤ i ≤ k

Dum24 : 24(24(KeA→ 24A) → KeA) → (3424A→ 24A)

Inference Rules of ASLTK :

MP :
A, A→ B

B
Nec :

A

24A

It is easy to notice that we can derive a necessitation rule for the modal-

ities Ke,K1, . . . ,Kk by means of the axioms M.1 - M.2 and the rule Nec.

Definition 4.1.1 (Derivation, Deduction, Theoremhood) A deriva-

tion of a formula α from the premises β1, . . . , βj, in symbols β1, . . . , βj `AS

α in an axiomatic system AS is a finite sequence of formulae α1, . . . , αn, α

s.t. each αi is either a premise, or an instance of an axiom schema from AS

or it has been obtained from a sequence of formulae αk1 , . . . , αkm occurring

before αi via application of an inference rule from AS.

A deduction in AS is a derivation with the empty set of premises.
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A formula α is a theorem in AS, denoted by `AS α, if there is a deduction

of α in AS.

Definition 4.1.2 LTKax := {A ∈ Fma(LLTK) | `ASLTK
A}.

LTK−
ax := LTKax ∩ Fma(L−

LTK).

The Meaning of the Axioms. Our axioms for the time modality 24 give

rise to an S4.3 modal system, known to be sound and complete with respect

to the class of linear orders (see [3]). Formerly we stated that each agent

operating in the system is provided with a a certain knowledge background.

In order to give a simple account of it, we associate each agent to an S5-

modal system. The assumptions we make are the usual ones:

- Agent i knows A whenever the fact A is provided by all the resources

she/he can access. Thus agents may know only those facts which are pro-

vided by all the sources they have access to;

- Positive Introspection: if someone knows something, she/he is also

aware of it;

- Negative Introspection: if someone ignores something, she/he is aware

of it.

Moreover, we assume each agent to be logicallly omniscient (knowing

both all the tautologies and all the consequences implicit in her/his knowl-

edge base).

The same assumptions appear to be more natural when it comes to model

the behaviour of the environment. In our system, the axioms involving

the environment modality play a central role. In the interaction between

different modalities, the operator Ke works like a bridge connecting the

others, which otherwise would not interact at all. The axioms M.1 and

M.2 state that if something is always true toward the future, then it is also
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true at the current moment/environment (M.1) and hence each agent knows

it (M.2).

More specifically, Axiom M.1 aims at achieving property PM.1, whereas

Axiom M.2 is responsable for PM.2. Axiom Dum24 entails the property

PM.3 in a less evident and straightforward way. However, this is probably

the most interesting one, for it is the one regulating the peculiar relation

linking 24 to Ke. Indeed, as it is made clear by Lemma 4.2.1, axiom Dum24

achieves two things:

(i) making temporal and environmental clusters coincide;

(ii) ensuring a discrete order of temporal clusters.

4.2 Soundness

The first thing to verify is to check whether our axiomatic system produces

formulae which are actually true in every LTK-frame. Any axiomatic system

enjoying such property with respect to a class of frames is said to be sound

with respect to the specified class of frames. Thus we start by proving that

the system LTKax is a sound system with respect to the class of LTK-frames:

Theorem 4.2.1 (Soundness) ∀A ∈ Fma(LLTK) (A ∈ LTKax ⇒ A ∈ LTK)

Proof. (by induction on the length of the deduction D = D1, . . . ,Dj of a

theorem A ∈ LTKax). Suppose j = 1, then A is an axiom from ASLTK. We

provide a proof only for the axioms M.1 , M.2 and Dum24 . (a) Suppose

there are an LTK-frame F, a valuation V for F, and a world v ∈ WF such

that (F, v) 1V 24A→ KeA. Then (F, v) 
V 24A and (F, v) 1V KeA. Hence

for each world z ∈ {t | vR4t}, z 
V A but there is a world u ∈ {t | vRet}

such that u 1 A. Since by definition {t | vR4t} ⊇ {t | vRet}, this leads to a
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contradiction. Using a similar argument, it can be easily seen that Axiom

M.2 is valid too.

(b) Suppose that Axiom Dum24 is not valid. Then there are an LTK-

frame F, a valuation V for F, and a world v ∈ WF such that (F, v) 1V

24(24(KeA→ 24A) → KeA) → (3424A→ 24A), and hence:

(F, v) 
V 24(24(KeA→ 24A) → KeA) (4.1)

and

(F, v) 1V (3424A→ 24A) (4.2)

Condition (4.1) implies that ∀z ∈ WF (vR4z ⇒ (F, z) 
V 24(KeA →

24A) → KeA). This means that for each R4-successor z of v, at least one of

the following conditions should hold:

(4.1.1): (F, z) 1V 24(KeA → 24A), then there is a world t such that

zR4t & (F, t) 
V KeA & (F, t) 1V 24A;

(4.1.2): (F, z) 
V KeA.

Let us analise condition (4.2): if (F, v) 1V (3424A→ 24A), we have that

both of the following conditions (4.2.1) and (4.2.2) must hold:

(4.2.1): (F, v) 
V 3424A;

(4.2.2): (F, v) 1V 24A;

From condition (4.2.1) and (4.2.2) it follows that there is a world R4-

accessible from v in which A is not true, while there is another point R4-

accessible from v starting from which A holds true everywhere toward the

future. Since each LTK-frame is a linear and discrete order with respect

to R4-clusters, there is a world v2 such that vR4v2 and (F, v2) 1V A and

for each world z2 such that v2R4z2 & ¬(z2R4v2), (F, z2) 
 A, and hence
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(F, z2) 
 24A. Trivially, condition (4.1.2) does not hold at v2, for Re is

reflexive.

Then condition (4.1.1) should hold. This implies that there is a world t2 such

that v2R4t2, (F, t2) 
V KeA and (F, t2) 1V 24A. Hence t2R4v2 (for, by the

way we chose v2, if v2R4t2 and ¬(t2R4v2), we should have (F, t2) 
V 24A).

Moreover ¬(t2Rev2). However, this is in contradiction with Definition 2.2.3,

for in LTK-frames R4-clusters and Re-clusters should coincide.

Thus, if lg(D) = n + 1, it can be easily shown that each inference rule pre-

serves validity.

4.3 Semantic Completeness

We now know that any formula generated by LTKax is valid in the class of

LTK-frames. Our goal is thus to show that if a formula B is valid in such

class, then it ought to be generated by the axiomatic system as well. An

achievement of this kind would tell us that the axiomatic system we have

described generates all and only the theorems of LTK: in two words, the

system is sound and complete. In order to achieve this task, we use many

well known techniques such as canonical models, generated subframes and

filtration.

4.3.1 Canonical Models

It is a well known result that any consistent normal k-modal logic L has a

model, called its canonical model, which is characterising for L in the sense

that:

Definition 4.3.1 A model M := 〈W,R1, . . . ,Rk, V 〉 is characterising for a

logic L on a lanaguage L if for any formula A ∈ L (A ∈ L ⇔ ∀w ∈ W (w 
V
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A)).

Let us briefly sketch few standard definitions and results.

Definition 4.3.2 Given an axiomatic system AS on a language L, a set

∆ ⊂ Fma(L) is:

(i) AS-consistent iff ∆ 0AS ⊥;

(ii) L-complete iff ∀A ∈ Fma(L) A ∈ ∆ or ¬A ∈ ∆;

(iii) AS-maximal iff ∆ is AS-consistent and L-complete.

Definition 4.3.3 Let L be a consistent normal k-modal logic on a lan-

guage L containing the modal operators 21, . . . ,2k. An n-canonical model

Mc
n = 〈W c

n,Rc
1, . . . ,R

c
k, V

c
n 〉 for L is such that:

(i) W c
n is the set of all the possible L-maximal sets w.r.t. those formulae

built up from the propositional letters p1, . . . , pn;

(ii) ∀v, z ∈ W c
n, vRc

iz ⇐⇒ {A | 2iA ∈ v} ⊆ z, 1 ≤ i ≤ k;

(iii) V c
n (pi) = {v ∈ W c

n | pi ∈ v}, 1 ≤ i ≤ n.

Lemma 4.3.4 Let L be a consistent normal k-modal logic and let Mc
n =

〈W c
n,Rc

1, . . . ,R
c
k, V

c
n 〉 be an n-canonical model for L. Then ∀v ∈ W c

n, ∀A(p1, . . . , pn) ∈

Fma(L) (2iA ∈ v ⇐⇒ ∀z ∈ W c
n(vRc

iz ⇒ A ∈ z)).

Lemma 4.3.5 (Truth Lemma) Let L be a consistent normal k-modal logic

and let Mc
n = 〈W c

n,Rc
1, . . . ,R

c
k, V

c
n 〉 be an n-canonical model for L. Then

∀v ∈ W c
n, ∀A(p1, . . . , pn) ∈ Fma(L)

(Fc
n, v) 
V c

n
A ⇐⇒ A ∈ v

where Fc
n denotes the n-canonical frame on which Mc

n is built.
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Take and fix for the rest of this Chapter a formula B(p1, . . . , pn) 6∈ LTKax.

Hence the set {¬B} is ASLTK-consistent and it follows that there exists an

ASLTK-maximal set w w.r.t. all the formulae built up from p1, . . . , pn such

that B 6∈ w. Therefore there is an n-canonical model Mc := 〈Fc
n, V c

n 〉 for

LTKax (where Fc
n = 〈W c

n,Rc
4,Rc

e,R
c
1, . . . ,R

c
k〉) such that w ∈ W c

n and, by

Lemma 4.3.5, (Fc
n, w) 1V c

n
B. Although this model shows some interesting

properties, it is not built on an LTK-frame.

However, the binary relations in the n-canonical frame have the following

properties:

(i) Rc
e, Rc

i are reflexive, symmetric and transitive.

(ii) Rc
4 is reflexive, transitive and weakly connected.

(iii) ∀v, z ∈ W c
n (vRc

iz ⇒ vRc
ez).

(iv) ∀v, z ∈ W c
n (vRc

ez ⇒ (vRc
4z & zRc

4v)). Notice that the opposite

direction does not hold.

In the following sections, we shall apply several truth preserving oper-

ation in order to transform the canonical model we defined into a model

based on an LTK-frame.

4.3.2 Generated Subframes and Models

The first truth operation we apply to our canonical model is taking a gener-

ated submodel. The idea is to consider the world w which we have formerly

isolated as one world in which B is false and reduce the canonical model to

only those worlds which are related to w by means of any relation. The

resulting model would therefore be rooted in the sense that there would be

a first set of worlds, namely the Rc
4-cluster to which the world w belongs.
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Let us define the operation of taking subframes and submodels more

formally:

Definition 4.3.6 (Subframe) An n-modal K-frame F = 〈WF,R1, . . . ,Rn〉

is a subframe of an m-modal K-frame S = 〈WS,S1, . . . ,Sm〉 if n = m,

WF ⊆ WS and each Ri is the restriction of Si to WF, i.e. Ri = Si � WF.

Definition 4.3.7 (Generated subframes and models) An n-modal K-

frame F = 〈WF,R1, . . . ,Rn〉 is a generated subframe of an m-modal K-

frame S = 〈WS,S1, . . . ,Sm〉 (notation F v S) if F is a subframe of S and

∀v ∈ WF ∀z ∈ WS if there is a relation Sj such that vSjz in S, then

z ∈ WF. A model 〈F, V 〉 is a generated submodel of 〈S, S〉 if F v S and V

is the restriction of S to WF (i.e. V = S � WF).

Lemma 4.3.8 (Generated subframes) If M = 〈F, V 〉 is a generated sub-

model of M2 = 〈F2, V2〉, then ∀v ∈ WF, (F, v) 
V A ⇐⇒ (F2, v) 
V2 A.

Definition 4.3.9 Let F be a Kripke-frame F = 〈WF,S1, . . . ,Sk〉, w a world

w in WF, and Si a partial order on WF. Then the set wSi≤ is the set of all

the worlds Si-accessible from w, i.e. wSi≤ := {z | wSiz}. Likewise the set

wSi< is defined as the set of all the strict successors of w, i.e. wSi< := {z |

wSiz & ¬(zSiw)}.

Given a Si-cluster C, the set of all the Si-clusters it has access to is defined

as CSi≤ := {Cj | CSiCj}. Likewise CSi< := {Cj | CSiCj & ¬(CjSiC)} is the

set of all those Si-clusters which are strictly above with respect to C.

The sets wR4≤ and CR4≤ shall henceforth be referred to as w4 and C4

respectively.

Consider the generated submodel of 〈Fc
n, V c

n 〉 generated by w4 (recall

that w is that world refuting B in the n-canonical model) and denote it by
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〈Fw4 , V c
n 〉. Hence (Fw4 , w) 1V c

n
B which entails Fw4 1 B. As some formerly

observed facts (items iii and iv in Section 4.3.1) make clear, the base set of

w4 contains also all those worlds which are both Rc
e- and Rc

i -related to w.

Being then a real generated submodel of the canonical one, all the general

results concerning generated submodels do apply.

As the following lemma will clarify, the generated submodel 〈Fw4 , V c
n 〉

shows some interesting properties shared with LTK-frames:

Lemma 4.3.10 Fw4 has the following properties:

(i) The relations Rc
e,R

c
1, . . . ,R

c
k are equivalence relations;

(ii) The relation Rc
4 is reflexive, transitive and connected;

(iii) ∀v, z ∈ WF vRc
ez ⇒ (vRc

4z & zRc
4v);

(iv) ∀v, z ∈ WF vRc
iz ⇒ vRc

ez;

Proof. (iii) Suppose ¬(vRc
4z). Then there is a formula 24D ∈ v s.t. D 6∈ z.

By Axiom M.1 it follows KeD ∈ v and hence ¬(vRc
ez). The same case arises if

we assume ¬(zRc
4v). (iv) Suppose ¬(vRc

ez). Then there is a formula KeD ∈ v

s.t. D 6∈ z. By Axiom M.2 it follows KiD ∈ v for each i and hence ¬(vRc
iz)

4.3.3 Filtration

A good way to achieve the required property of discreteness (i.e. given

any two disctint worlds in a model, there could be only a finite amount of

moments between them) is to make a filtration of the base set of the model

in order to have it finite. This technique can be dated back to the work by

Scott and further developed by Segerberg [65]. Although it is a standard

technique, it requires a careful and appropriate selection of the filtration set.

The well known results concerning this method are recalled below and they

would allow us to show the following:
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Lemma 4.3.11 (Filtration Lemma) ∀D ∈ Γ ∀v ∈ W c
n (v 
V c

n
D ⇔ [v] 
V Γ

D)

We start by defining the filtration set Γ as the union of several sets:

- Γ0 := Sub(B), where Sub(B) is the set of all the subformulae of B

- Γ1 := Sub{Dum24(D) | D ∈ Γ0} (where the notation Dum24(D) is

intended to denote the instance of the axiom Dum24 by the formula D)

- Γ2 := {Ke24D | 24D ∈ Γ0 ∪ Γ1}

- Γ3 := {KiKeD | KeD ∈ Γ0 ∪ Γ1 ∪ Γ2} for 1 ≤ i ≤ k

Let the filtration set Γ be the union of the formerly defined sets:

Γ := Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3

Then we define a new relation between worlds as:

∀v, z ∈ W c
n (v ∼ z ⇔ ∀D ∈ Γ(v 
V c

n
D ⇔ z 
V c

n
D))

and we generate equivalence classes with respect to the relation ∼:

[v] := {z | v ∼ z}

The Γ-filtered model MΓ is defined as 〈FΓ, V Γ〉 where FΓ = 〈WΓ,RΓ
4,RΓ

e ,RΓ
1 , . . . ,RΓ

k 〉

and:

(i) WΓ := {[v] | v ∈ W c
n}

(ii) RΓ
e and each RΓ

i are standard S5 filtration relations, i.e.:

[v]RΓ
ξ [z] ⇔ ∀KξD ∈ Γ((Fc

n, v) 
V c
n

KξD ⇔ (Fc
n, z) 
V c

n
KξD) for ξ ∈

{e, 1, . . . , k}
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(iii) RΓ
4 is a standard S4.3 filtration relation, namely:

[v]RΓ
4[z] ⇔ ∀24D ∈ Γ((Fc

n, v) 
V c
n

24D ⇒ (Fc
n, z) 
V c

n
24D)

(iv) ∀pi ∈ {p1, . . . , pn} V Γ(pi) := {[v] | v ∈ V c
n (pi)}

It remains only to show that such model satisfies the two filtration condi-

tions for each binary relation RΓ
ξ :

F1 vRc
ξz ⇒ [v]RΓ

ξ [z], where ξ ∈ {4, e, 1 . . . k};

F2.1 [v]RΓ
ξ [z] ⇒ ∀KξD ∈ Γ(v 
V c

n
KξD ⇒ z 
V c

n
D), for ξ ∈ {e, 1 . . . k};

F2.2 [v]RΓ
4[z] ⇒ ∀24D ∈ Γ(v 
V c

n
24D ⇒ z 
V c

n
D)

Lemma 4.3.12 The following properties hold true in the model MΓ:

(i) The relation RΓ
e satisfies F1 and F2.1.

(ii) Each relation RΓ
i satisfies F1 and F2.1.

(iii) The relation RΓ
4 satisfies F1 and F2.2.

Proof. (i). F1. Suppose there are two worlds v and z such that vRc
ez.

Then v 
V c
n

KeD ⇒ z 
V c
n
D. Since v 
V c

n
KeD → KeKeD we have (v 
V c

n

KeD) ⇒ (v 
V c
n

KeKeD) ⇒ (z 
V c
n

KeD). Suppose (z 
V c
n

KeD). Then

(z 
V c
n

KeKeD). Since Rc
e is symmetric by Lemma 4.3.10, we have zRc

ev and

hence (v 
V c
n

KeD). Therefore, by our definition of RΓ
e , it follows vRΓ

e z.

F2.1. Suppose [v]RΓ
e [z]. Then ∀KeD ∈ Γ (v 
V c

n
KeD ⇔ z 
V c

n
KeD). Since

z 
V c
n

KeD→ D we have z 
V c
n
D.

The proof of cases (ii) and (iii) is similar.
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Hence by the standard results concerning filtrations, we can state the

following:

Lemma 4.3.13 ∀D ∈ Γ ∀v ∈ W c
n ((Fc

n, v) 
V c
n
D ⇔ (FΓ, [v]) 
V Γ D).

Corollary 4.3.14 (FΓ, [w]) 1V Γ B.

Once more again, we can show that our current Γ-filtered model MΓ is

conservative with respect to the properties stated by Lemma 4.3.10.

Lemma 4.3.15 In the model MΓ the following holds:

(i) RΓ
e and each RΓ

i are reflexive, symmetric and transitive.

(ii) RΓ
4 is reflexive, transitive and connected.

(iii) ∀[v], [z] ∈ WΓ ([v]RΓ
e [z] ⇒ ([v]RΓ

4[z] & [z]RΓ
4[v])).

(iv) ∀[v], [z] ∈ WΓ ([v]RΓ
i [z] ⇒ [v]RΓ

e [z]).

Proof. (i) Trivially (v 
V c
n

KeD) ⇔ (v 
V c
n

KeD). Hence [v]RΓ
e [v] and RΓ

e

is reflexive.

Suppose [v]RΓ
e [z] and [z]RΓ

e [u]. Hence (v 
V c
n

KeD) ⇔ (z 
V c
n

KeD) and

(z 
V c
n

KeD) ⇔ (u 
V c
n

KeD), which entails (v 
V c
n

KeD) ⇔ (u 
V c
n

KeD).

Hence [v]RΓ
e [u].

Suppose [v]RΓ
e [z]. Then (v 
V c

n
KeD) ⇔ (z 
V c

n
KeD) and hence (z 
V c

n

KeD) ⇔ (v 
V c
n

KeD) which means [z]RΓ
e [v].

(ii) For the properties of reflexivity and transitivity see the previous case.

Since by F1 (vRc
4z) implies ([v]RΓ

4[z]) and Rc
4 is connected (see Lemma

4.3.15), it follows that RΓ
4 is connected.

(iii) Suppose [v]RΓ
e [z] and either ¬([v]RΓ

4[z]) or ¬([z]RΓ
4[v]). If ¬([v]RΓ

4[z]),

then there is a formula 24D ∈ Γ such that v 
V c
n

24D and z 1V c
n

24D.

By Axiom 424 it follows v 
V c
n

2424D, hence by Axiom M.1 we have
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v 
V c
n

Ke24D. But Ke24D ∈ Γ by construction1, therefore since [v]RΓ
e [z] we

have z 
V c
n

Ke24D and, by reflexivity, z 
V c
n

24D, which is a contradiction.

We reach a similar contradiction if we assume ¬([z]RΓ
4[v]).

(iv) Suppose [v]RΓ
i [z] for some i and ¬([v]RΓ

e [z]). Then there is a formula

KeD ∈ Γ s.t. v 
V c
n

KeD and z 1V c
n

KeD. Again, by the axioms 4Ke and M.2

we obtain v 
V c
n

KiKeD. The formula KiKeD belongs to Γ by construction2,

therefore, given [v]RΓ
i [z], we have z 
V c

n
KiKeD and, by reflexivity, z 
V c

n
KeD,

which gives rise to a contradiction.

Properties of filtered relations. From Lemma 4.3.15 follows that the

new binary relations possess certain properties, namely all the knowledge

modalities are reflexive, symmetric and transitive, whereas the time relation

is connected as well as reflexive and transitive.

Both properties PM.1 and PM.2 hold true:

∀v, z ∈ WΓ (vRΓ
e z ⇒ (vRΓ

4z & zRΓ
4v))

which means that two information points (worlds) are simultaneous when-

ever they are from the same environment. But this is something we were

able to state even in the previous stages of our construction. The main

achievement is that now we have a very important property. In fact, since

the base set of the filtered frame is finite, trivially the time relation RΓ
4 gives

rise to a discrete linear order of temporal (RΓ
4-) clusters, which in this con-

text means that given any two distinct worlds, there is only a finite number

1 Indeed if 24D ∈ Γ, then there are only two possibilities: either 24D ∈ Γ0 or 24D ∈ Γ1

and in both cases Ke24D ∈ Γ2 and hence it belongs to Γ as well.
2 IIn fact if KeD ∈ Γ, then either KeD ∈ Γ0 or KeD ∈ Γ1 or else KeD ∈ Γ2; hence

KiKeD ∈ Γ3 and it belongs to Γ as well.
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of moments between them.

However we do not have the property PM.3 yet:

∀v, z ∈ WΓ ((vRΓ
4z & zRΓ

4v) ⇒ vRΓ
e z)

In other words in this frame we may have RΓ
4-proper clusters of RΓ

e -clusters,

which in our intended interpretation means that it can be the case that

two points, though at the same moment of the flow of time could belong

to different environments (see Figure 4.1). Unfortunately, this is not the

case for LTK-frames, therefore another transformation seems to be neces-

sary to prove our axiomatic system to be complete with respect to these

structures. To achieve this goal, we will construct another frame. The idea

is to unravel each RΓ
4-proper cluster, without using the standard technique

of bulldozing, which would give rise to an infinite, but not discrete (with

respect to temporal clusters) frame (cf. Blackburn et al. [3], pages 220–222

and Segerberg [65]). In other words we will define a well ordering on RΓ
e -

clusters inside each RΓ
4-proper cluster, in order to construct a new frame.

Such frame will be obtained by substituting each RΓ
4-proper cluster with the

finite ordered line formerly defined. The only troubling case is for formulae

of the form 24D from Sub(B). There could be, for example, a world v in an

RΓ
4-proper cluster such that it falsifies 24D and another world, say z which

is the only point RΓ
4-accessible from v falsifying D. If such world z belonged

to the same RΓ
4-proper cluster as v and it were not RΓ

4-accessible from v

in the new unravelled frame, then we would have a lack of truth values for

formulae from Sub(B). However this situation is made impossible by the

subsequent lemma, stating that whenever a world v in an RΓ
4-proper cluster
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falsifies 24D, D is falsified either in the same environment-cluster to which

v belongs, or in another world z which is strictly above with respect to v,

i.e. vRΓ
4z & ¬(zRΓ

4v).

Lemma 4.3.16 ∀24D ∈ Sub(B)∀v ∈ WΓ if v 1V Γ 24D and v is not final,

then there is a world z ∈ WΓ s.t. vRΓ
4z, z 1V Γ D and either vRΓ

e z or

¬(zRΓ
4v).

Proof. Suppose there are a formula 24D ∈ Sub(B) and a non final world

v such that v 1V Γ 24D. There are only two possible cases.

Case 1. v 
V Γ 3424D. Hence, since the instance of Axiom Dum24

with respect to the formula D is true in the model MΓ (for the way we defined

Γ, and in particular Γ1), we have v 1V Γ 24(24(KeD→ 24D) → KeD), and

then v 
V Γ 34(24(KeD→ 24D) ∧3e¬D).

Therefore there exists a world z such that:

(vRΓ
4z) & (z 
V Γ 24(KeD→ 24D) ∧3e¬D) (4.3)

Let us suppose by contradiction that

(i) The formula D is true in each world from the RΓ
e -cluster of v, i.e.

∀t ∈ WΓ (vRΓ
e t ⇒ t 
V Γ D).

(ii) There is not any world strictly above w.r.t. v in which D is false, i.e.

∀t ∈ WΓ (vRΓ
4t & ¬(tRΓ

4v) ⇒ t 
V Γ D).

From (b) and (4.3) follows that zRΓ
4v. By (4.3) we also have z 
V Γ

24(KeD → 24D), hence v 
V Γ KeD → 24D. But from (a) follows that

v 
V Γ KeD, therefore v 
V Γ 24D, which is a contradiction.

Case 2. v 1V Γ 3424D. Hence v 
V Γ 2434¬D. This implies that D
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Figure 4.1: Scheme of the structure of the frame FΓ: a finite generalised
reflexive LTK-balloon.
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is false at least in some world from the final RΓ
4-cluster and such world is

strictly above w.r.t. v, which is non final by assumption.

4.3.4 Completeness

We are now approaching the final step of our proof. Consider the frame FΓ.

(i) Fix a well ordering C1, . . . ,Cf among RΓ
4-clusters such that i < l if

and only if (CiR
Γ
4Cm)&¬(CmRΓ

4Ci).

(ii) Fix some well ordering among RΓ
e -clusters inside any RΓ

4-cluster, so

that each RΓ
e -cluster would be taken once and only once.

Hence each single world from the base set of FΓ would be displayed as 〈vj , i〉,

meaning that v belongs to the j-th RΓ
e -cluster inside the i-th RΓ

4-cluster.

Given that the number of RΓ
4-clusters is f , we stipulate that the index f

denotes that a world 〈vj , f〉 belongs to the final RΓ
4-cluster Cf .

(iii) Define a new frame S = 〈WS,S4,Se,S1, . . . ,Sk〉 in the following

way:

- WS =
⋃

v∈WΓ〈vj , i〉;

- 〈vj , i〉Sξ〈zm, l〉 ⇐⇒ vRΓ
ξ z, for 1 ≤ ξ ≤ k;

- 〈vj , i〉Se〈zm, l〉 ⇐⇒ i = l & j = m;

- 〈vj , i〉S4〈zm, l〉 ⇐⇒ (j ≤ m & i = l) or i < l or l = f, i.e. z is RΓ
4-final;

(iv) Let MS = 〈S, V S〉 be a model such that ∀p ∈ {p1, . . . , pn} V S(p) =

{〈vj , i〉 | v ∈ V Γ(p)}. Then clearly the following holds:
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Lemma 4.3.17 ∀D ∈ Sub(B)∀v ∈ WΓ ((FΓ, v) 
V Γ D ⇔ (S, 〈vj , i〉) 
V S

D).

Proof. (i) (By induction on the length of D). Trivially, if lg(D) = 1, D

has the form p, v ∈ V Γ(p) and hence 〈vj , i〉 ∈ V S(p). Therefore 〈vj , i〉 
V S p.

Suppose D has the form KeA. Then v 
V Γ KeA if and only if ∀z ∈ WΓ (vRΓ
e z ⇒ z 
V Γ

A). By inductive hypothesis (IH) for any z such that vRΓ
e z we have 〈zm, l〉 
V S

A. Since vRΓ
e z implies that both v and z belong to the same RΓ

4- and RΓ
e -

clusters, it follows i = l and j = m, and hence 〈vj , i〉Se〈zm, l〉, which means

〈vj , i〉 
V S KeA.

Suppose 〈vj , i〉 1V S 24A. Then there is a world 〈zm, l〉 such that 〈vj , i〉S4〈zm, l〉

and 〈zm, l〉 1V S A. This means that either i < l, or (i = l & j ≤ m) or

else l = f. Each of these cases implies vRΓ
4z. By IH we have z 1V Γ A and

therefore v 1V Γ 24A.

(ii) Assume v 1V Γ 24A. Suppose v is not RΓ
4-final. Then, by lemma

4.3.16, there is a world z such that vRΓ
4z, z 1V Γ A and either vRΓ

e z or

¬(zRΓ
4v). If vRΓ

e z, it follows that both v and z have the same indices for

the RΓ
4- and RΓ

e -clusters they belong to, i.e. they are displayed as 〈vi, j〉 and

〈zi, j〉. Hence 〈vi, j〉S4〈zi, j〉. By IH 〈zi, j〉 1V S A and therefore 〈vi, j〉 1V S

24A. Else if ¬(zRΓ
4v), given that the worlds v and z are displayed as 〈vj , i〉

and 〈zm, l〉, it follows that i < l, and hence 〈vj , i〉S4〈zm, l〉. Again, by IH

we have 〈zm, l〉 1V S A and therefore 〈vj , i〉 1V S 24A. Finally suppose v is

RΓ
4-final. Then there is a world z which is RΓ

4-final as well and it is such

that vRΓ
4z and z 1V Γ A. Since z is displayed as 〈zm, f〉, it follows that

〈vj , f〉S4〈zm, f〉. By IH 〈zm, f〉 1V S A and therefore 〈vj , f〉 1V S 24A.



4.3. SEMANTIC COMPLETENESS 105

Corollary 4.3.18 S 1V S B

The frame S has the structure depicted in Figure 4.2. This frame has

the structure of a reflexive LTK-balloon.

Whenever the S4-final cluster of our model is an S4-proper cluster of

Se-clusters (i.e. not simple), the frame we have obtained is not an LTK-

frame. We recall that these frames have no S4-proper clusters of Se-clusters

inside, and hence our final construction cannot be considered as a member

of such class. However, this is not a problem, for it follows from [4] and [9]

that these structures are nothing but p-morphic images of LTK-frames.

Nevertheless, for the sake of completeness, we present an explicit way

to turn our formerly obtained frame to an LTK-frame. This will be done

by applying a variant of the well known bulldozing technique developed by

Segerberg in [65]. We aim at substituting the final S4-proper cluster with

an infinite, linear and discrete sequence of Se-clusters in a truth preserving

way.

We proceed as follows:

(i) Define for each world 〈vj , i〉 a new collection of worlds as follows,

where Ci denotes the S4-cluster generated by 〈vj , i〉:

〈vj , i〉+ :=

 {〈vj , i, ∅〉} if Ci is simple w.r.t. Se-clusters

{〈vj , i, h〉 | h = 1, 2, . . .} otherwise

Notice that if if Ci is simple w.r.t. Se-clusters, it contains at most 1 Se-

cluster and hence it is not S4-final.
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Figure 4.2: Scheme of the structure of S: a case of reflexive LTK-balloon.
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(ii) Define a new frame F := 〈WF,R4,Re,R1, . . . ,Rk〉 as:

- WF :=
⋃
〈vj ,i〉∈WS

∪〈vj , i〉+

- 〈vj , i, h〉Rξ〈zm, l〉 ⇐⇒ (j = m) & (i = l) & (h = o) & 〈vj , i〉Sξ〈zm, l〉,

for 1 ≤ ξ ≤ k

- 〈vj , i, h〉Re〈zm, l, o〉 ⇐⇒ (j = m) & (i = l) & (h = o)

- 〈vj , i, h〉R4〈zm, l, o〉 ⇐⇒



(j ≤ m) & (i = l) & (h = o) or

(h, o 6= ∅) & (h < o) or

(h = o = ∅) & (i < l) or

(h = ∅) & (o 6= ∅)

(iii) Define a new model M := 〈F, V 〉 with the following valuation V :

∀p ∈ {p1, . . . , pn} V (p) := {〈vj , i, h〉 | 〈vj , i〉 ∈ V S(p)}.

This operation is clearly truth preserving, and therefore we can state the

following:

Theorem 4.3.19 ∀B ∈ Fma(LLTK) if B 6∈ LTKax then there is an LTK-

frame F such that F 1 B.

Corollary 4.3.20 (Soundness and Completeness, C. and Rybakov [11])
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(i) LTKax = LTK

(ii) LTK−
ax = LTK−

(iii) LTK−−
ax = LTK−−

Corollary 4.3.21 LTK1
ax (the version of LTKax with only one agent operat-

ing in the system) has the effective finite model property and it is decidable

w.r.t. admissible inference rules.

4.4 A General Case: GLTK

So far we have presented a semantic framework for reasoning about time and

knowledge which can be useful whenever the flow of time is considered as

linear and discrete and only one situation (environment) is possible at each

moment. However, we might be interested in generalising such an approach

and presenting a system based on more general theoretical assumptions. A

generalised LTK-frame can be thought as a structure which is identical to an

LTK-frame except for the fact that it allows distinct environment-clusters to

be concurrent (see Figure 4.3)3. This aspect may result of use whenever we

aim at reasoning about simultaneous alternatives to a given state of affairs

without assuming the time as branching.

The logic GLTK generated by this class of generalised frames can be

easily proven to be decidable with respect to its theorems.

To prove this claim it is sufficient merely to modify our previous proof

in the following way:

(i) Let ASGLTK be an axiomatic system obtained by deleting Axiom

Dum24 from ASLTK and let GLTKax be the set of theorems generated by

3Following the terminology previously used, a generalized LTK-frame can be under-
stood as an LTK-frame lacking the property PM.3.
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ASGLTK.

(ii) Trivially, delete part (b) from Theorem 4.2.1;

(iii) Change the filtration set Γ to Γ− := Γ0 ∪ Γ−2 ∪ Γ−3 where:

- Γ0 := Sub(B)

- Γ−2 := {Ke24D | 24D ∈ Γ0}

- Γ−3 := {KiKeD | KeD ∈ Γ0 ∪ Γ−2 } for 1 ≤ i ≤ k

At the end of the process of filtration, we obtain a model based on a

finite generalised LTK-frame.
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Figure 4.3: Scheme of the structure of a generalized LTK-frame.



Chapter 5

Rules in LTK1: Structural

Incompleteness

In this last Chapter we shall analyse both syntactical and semantic aspects

of inference rules. From the results presented in the previous chapters, it

follows that we are now able to recognise both theorems and admissible in-

ference rules for the logic LTK1. In this Chapter we shall describe our last

result, namely that the logic LTK1 is not structurally complete. Intuitively

this means that there are rules which are not syntactically derivable, but

these same rules are, nevertheless, admissible. Thus, there are rules which

are valid in LTK1 even though it is not possible to derive them in its ax-

iomatic system. Moreover, there is an infinite number of these rules. We

shall define an infinite class of admissible and not derivable rules. This re-

sult is important in order to shorten derivations in LTK1
ax. In fact since all

these rules are valid, they may be applied in syntactical derivations without

altering the set of theorems of LTK1.

In the previous chapters, we used only Kripke (or Relational) Semantics.

As we have pointed out in Chapter 2, however, this is not the only semantic

111
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tool developed for modal logics. Historically it is Algebraic Semantics, in

fact, the first semantic framework which has been introduced. The algebraic

analysis of modal logics provides many well known results which can be

also applied to our specific case. We shall therefore introduce algebraic

semantics tools in order to translate the results we have obtained in this

new framework. Moreover we shall clarify all the links which occur between

Algebraic and Relational semantics. This shall put our results on a wider

framework.

In this Chapter we shall use all the results described in the previous

chapters, which are briefly summarised below:

- Chapter 2. The logic LTK has the effective finite model property (cf.

Theorem 2.3.2). This means that both LTK and LTK1 are decidable with

respect to their theorems. In fact, given any formula in the language of these

two logics, if this formula is not a theorem, then this formula is not valid in

some finite model whose size is computable. As we shall see further in this

Chapter, this result shall be used in order to check whether some rules are

derivable in LTK1
ax.

- Chapter 3. We designed an algorithm to recognise admissible inference

rules. In particular for any inference rule which is not admissible for LTK1

there is a finite and computable counter-model (Theorem 3.3.6). We shall

use this result in order to check whether some of the rules we shall introduce

in this Chapter are admissible or not.

- Chapter 4. We provided a sound and complete axiomatic system for

both LTK and LTK1 (Theorem 4.3.19). This result shall be always used in

this Chapter, as we shall describe the links occurring between syntax and

semantics concerning inference rules.
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Summary and Methodology. This Chapter is divided in three sections.

Section 5.1 Derivable and Admissible rules. Here we formally de-

fine the notion of derivability related to inference rules. A rule is derivable

inside an axiomatic system whenever one can derive its conclusion assuming

its premisses. For any logic, derivability implies admissibility, whereas the

converse does not always apply. We shall define an infinite class of admis-

sible though not derivable rules for our logic LTK1. Thus in our case the

set of derivable rules is a proper subset of the one of admissible rules. This

implies that LTK1 is structurally incomplete. In order to show this result we

shall first define recursively an infinite class of rules. Then, in Lemma 5.1.4,

we show that all the rules just introduced are admissible for LTK1. We show

this by using the results provided in Chapter 3, Theorem 3.3.6. Further, we

define a specific reflexive LTK1-balloon. We use this model to prove all the

lemmas which follow. In particular, in Lemma 5.1.8 we show that none of

the rules introduced is derivable on LTK1
ax. From this Lemma and Lemma

5.1.4 we can conclude that LTK1 is not structurally complete.

Section 5.2 Algebraic Semantics. Since Algebraic Semantics is his-

torically the first type of semantics which has been developed to deal with

modal logics, this Section is devoted to the analysis of the tools and results

it provides.

- We shall first touch upon the basic concepts of algebraic semantics for

propositional multi-modal logics by providing the basics of algebraic seman-

tics, as the concepts of algebra, matrixes, valuations et c..

- We turn then our attention to the definition of the so called Tarski-

Lindenbaum algebras, special algebraic constructions which play a role anal-

ogous to canonical models in Kripke Semantics. In order to do so, we start

by giving definitions and defining truth preserving operations on algebras,
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i.e. homomorphisms, isomorphisms, generated subalgebras and the relations

occurring between such constructs.

- Here we introduce the Stone’s Representation theorems which link Kripke-

frames to algebraic structures and vice versa. In order to do so the definitions

of lattices, filters and ultrafilters plus some additional well known results are

needed.

- Finally we introduce some well known results which link inference rules to

quasi-identities and we apply these results to our case.

Section 5.3 Further work. We shall describe here the piece of re-

search we are currently working on. We start to investigate the problem of

finding a finite basis for admissible inference rules. In fact, we aim at find-

ing a set of rules to axiomatise all the inference rules admissible for LTK1,

i.e. the smallest set of rules starting from which one can derive all the ad-

missible rules for LTK1. This topic, as we shall see, is rather problematic

and it is currently an open research field. We introduce the reader to the

problems related to such investigation and we show our attempts to solve

these problems.

5.1 Derivable and Admissible Rules

When facing an axiomatic system, one is usually interested in varying either

its axioms or its inference rules while keeping the set of generated theorems

consistent. The problem of how to vary the set of inference rules, however,

does not admit a general and straightforward solution. Nevertheless having

a larger number of applicable inference rules is extremely useful in order to

shorten derivations.

In Chapter 3 we have designed an algorithm which recognises admissible
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rules for the logic LTK1. In this Chapter we would rather turn our attention

to some syntactic aspects related to the study of inference rules. As we

have already seen in Chapter 3, the class of admissible rules is the set of

all those inferences under which a logic is closed, i.e. the set of all those

rules which can be implemented for a given logic without altering its set

of theorems. Thus the notion of admissible rules of a logic is invariant in

the sense that it does not depend on the choice of the axiomatic system one

uses. This notion is extremely general and comprehensive and should not be

confused with the syntactical concept of derivable rules. From an intuitive

point of view, a rule is derivable in an axiomatic system whenever there is a

derivation of its conclusions given its premisses as assumptions. This means

that a rule is derivable in the axiomatic system AS of a logic L if:

(i) there is a derivation of its conclusion assuming its premisses

(ii) the derivation is carried out using only axioms and rules from the

axiomatic system itself. More formally this is:

Definition 5.1.1 (Derivability) Given a logic L generated by the axiomatic

system AS, an inference rule r = A1, . . . , An/B is derivable in AS (in symbols

`AS r) if A1 ∧ . . . ∧ An `AS B.

The collection of all the rules derivable in a logic depends on the choice

of the axiomatic system one uses. In fact the set of derivable rules of a

logic changes according to which axiomatic system one choses in order to

axiomatise the logic itself. Clearly each derivable rule is also admissible by

definition. On the other hand the set of admissible rules for a logic contains

all the rules under which the logic itself is closed. The set of derivable rules

of a logic is, therefore, a subset of the class of all the rules admitted by the

logic itself. Hence derivability implies admissibility, whereas the converse
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might not apply.

In some systems the set of derivable rules and the one of admissible rules

coincide. We call these logics structurally complete as they are, in some

sense, self contained. If a logic is structurally complete, then any admissible

rule can be derived in its axiomatic system. More formally this is:

Definition 5.1.2 A logic L generated by an axiomatic system AS is struc-

turally complete if and only if for any inference rule r which is admissible

for L, `AS r.

For many logics, however, the set of derivable rules is a proper subset

of the class of admissible rules. These logics admit rules which are not

syntactically derivable. For instance Harrop (see [32]) discovered that the

Intuitionistic Propositional Calculus IPC admits rules which are not deriv-

able in the system itself: this system is not structurally complete. This

extremely interesting result led a great deal of research in the area.

In this Chapter we shall give an answer to the question whether LTK1 is

structurally complete.

As we have anticipated, many well known logics admit rules which are

not derivable in their axiomatic systems. We shall show that the system

LTK1 is no exception and that it actually admits an infinite number of

rules which are not derivable in its axiomatic system. Before turning our

attention to the analysis of these rules, however, we would provide some

technical details we shall use in what follows. The following Lemma shows

that if a rule has the specific structure described below, than such a rule is

admissible for LTK1.

Lemma 5.1.3 Any inference rule with a structure as 34x → (3ey∧3e¬y)/¬x

is admissible for LTK1.
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Proof. Suppose by contradiction that a rule r := 34x → (3ey∧3e¬y)/¬x

is not admissible for LTK1. Then by Theorem 3.3.6 there is a finite LSP-

frame F (cf. Definition 3.3.5), a valuation V for F and a world v such that

F 
V 34A → (3eB ∧ 3e¬B) and (F, v) 6
 ¬A, i.e. (F, v) 
 A. Since the

dot-world d associated to v is R4-related to v, it follows that (F, d) 
V 34A

and therefore (F, d) 
 3eB ∧3e¬B. Since, by definition of F, the world d is

a single element Re-cluster, we reach a contradiction.

We shall now recursively define an infinite class of rules in the language

of LTK1. For any n ∈ N, let φ(n) be the following formula:

1. φ1 := x1 ∧34(24¬x1)

2. φn+1 := xn+1 ∧34(24¬xn+1 ∧ φn)

Let

r0 :=
24(34Kex0 ∧34Ke¬x0) → (3ey ∧3e¬y)

¬24(34Kex0 ∧34Ke¬x0)

rn :=
34φn → (3ey ∧3e¬y)

¬φn

Let R := {r0} ∪ {rn | n ∈ N}.

Lemma 5.1.4 Any inference rule from the set R is admissible in LTK1.

Proof. According to Theorem 3.3.6 (page 73), an inference rule r = A1, . . . , An/B

is admissible in LTK1 if and only if for any model M based on a finite LSP-

frame the following implication holds: if M 
 A1, . . . , An then M 
 B.

(i) Suppose by contradiction that r0 is not admissible for LTK1. From

Theorem 3.3.6 it follows that there are a finite LSP-frame F, a valuation V for

F and a world v such that F 
V 24(34Kep0 ∧34Ke¬p0) → (3et ∧3e¬t)

and (F, v) 6
 ¬24(34Kep0 ∧ 34Ke¬p0). The last condition implies that
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(F, v) 
 24(34Kep0 ∧34Ke¬p0). In particular in the maximal R4-cluster

(of depth 1) there ought to be two Re-clusters C1 and C2 such that C1 


Kep0 and C2 
 Ke¬p0. If d is the name of the dot-world associated to v

(i.e. that single element Re-cluster which is an immediate R4-predecessor of

v), it follows that (F, d) 
V 24(34Kep0 ∧ 34Ke¬p0) and since (F, d) 
V

24(34Kep0∧34Ke¬p0) → (3et∧3e¬t) we obtain (F, d) 
V (3et∧3e¬t),

which is contradictory to the fact that d is a single-element Re-cluster.

(ii) Any rule rn ∈ R has a structure like the one described in Lemma

5.1.3 and it is, therefore, admissible for LTK1.

We shall now construct a specific LTK1-balloon we shall use in the fol-

lowing lemmas. Let F be any finite LTK1-balloon such that:

(i) dp(F) = 2n + 1 for some n ≥ 1;

(ii) ∀w ∈ |F| if dp(w) is EVEN, then Ce(w) := {w};

(iii) ∀w ∈ |F| if dp(w) is ODD, then ‖
⋃

Ce(w)‖ ≥ 2;

(iv) There are at least 2 Re-clusters of depth 1.

Let C1
1, . . . ,C

1
m be an enumeration of all the Re-cluster of depth 1. For

each Re-cluster C1
i of depth 1, let wi(1, 1), . . . , wi(1, l) be an enumeration of

all the worlds it contains.

For any Re-cluster whose depth is i, where i ≥ 2, define a well ordering of

the worlds it contains. Display any world as w(i,m), meaning that w(i,m)
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is the m-th world of depth i.

Let t, p0, p1, . . . , pn be some propositional letters.

Define a model on F as follows:

• V (t) := {w(i, m) | i and m are ODD }

• V (p0) := {w | dp(w) = 1 & w ∈ C1
1}

• ∀i, 1 ≤ i ≤ n V (pi) := {w | dp(w) = 2i + 1}

The variable occurring in the rule rn from R are exactly y, x0, x1, . . . , xn.

Fix a mapping f : V ar(rn) 7→ {t, p0, p1, . . . , pn} such that:

• f(y) = t

• f(xi) = pi for 0 ≤ i ≤ n.

Please refer to Figure 5.1 for a graphical representation of this model.

Lemma 5.1.5 In the model 〈F, V 〉 as depicted in Figure 5.1 the following

holds:

∀m∀w w 
V φm ⇔ dp(w) = 2m + 1

Proof. (i) The right direction of the implication is easy. Suppose w 
V

φm; it follows that w 
V pm ∧ 34(24¬pm ∧ φm−1). This implies that

w ∈ V (pm) and hence dp(w) = 2m + 1 by definition of V .

(ii) Suppose dp(w) = 2m + 1. By induction on m:
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Figure 5.1: Scheme of the model 〈F, V 〉 based on a LTK1-balloon used in Lemmas 5.1.5,
5.1.6, 5.1.8 and 5.1.7.
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(a) m = 1. Then dp(w) = 3 and w 
V p1. Moreover, by construction,

w 
V 3424¬p1 and therefore w 
V φ1.

(b) m = j + 1. Then dp(w) = 2(j + 1) + 1 = 2j + 3. By definition of

V we get w 
V pj+1 and for any world v such that wR4v and ¬(vR4w)

(i.e. dp(w) > dp(v)) we have v 
V 24¬pj+1. By assumption we have that

dp(w) ≥ 5 and then by IH there is a world z such that dp(z) = 2j + 1,

dp(z) ≥ 3 and z 
V φj . Since dp(z) < dp(w) (i.e. wR4z) it follows that

z 
V φj ∧ 24¬pj+1 and hence w 
V 34(φj ∧ 24¬pj+1). Therefore w 
V

φj+1

Lemma 5.1.6 In the model 〈F, V 〉 as depicted in Figure 5.1 the following

holds: ∀w∀z if dp(w) = 2m + 1 and dp(z) ≥ 2m + 1 then z 
V 34φm.

Lemma 5.1.7 In the model 〈F, V 〉 as depicted in Figure 5.1 the following

holds: for any subframe Fi generated by a world w such that dp(w) = i and

i is even Fi 
 I(σ(rm)) for any m.

Proof. By induction on n.

(i) n = 1, then the depth of Fi is 3. Hence the only possible case is the

frame F2 generated by a world w of depth 2. By induction on m.

(a) m = 1. Suppose F2 6
 I(σ(r1)), then there are a valuation S and a world

w such that F2 
S 24(34φ1 → (3et ∧ 3e¬t)) and (F2, w) 6
S ¬φ1. Then

w 
S φ1 and by Lemma 5.1.5 we have dp(w) = 3 which is in contradiction

with the assumption that F has depth 2.

(b) m = k + 1. Suppose F2 6
 I(σ(rk+1)). Again this implies that there are

a valuation S and a world w such that F2 
S 24(34φk+1 → (3et∧3e¬t))

and (F2, w) 6
S ¬φk+1. Then w 
S φk+1 and by Lemma 5.1.5 we have
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dp(w) = 2k+3. Since 2k+3 ≥ 5, this is in contradiction with the assumption

that F has depth 2.

(ii) n = j +1. We consider here only the subframe generated by a world

w of depth 2j +2 as the other cases can be easily shown using our inductive

hypothesis.

By induction on m.

(a) m = 1. Suppose F2j+2 6
 I(σ(r1)), then there are a valuation S and a

world w such that F2j+2 
S 24(34φ1 → (3et∧3e¬t)) and (F2, w) 6
S ¬φ1.

Then w 
S φ1 and by Lemma 5.1.5 we have dp(w) = 3. Since F2j+2 is

deep at least 4, there is a world v of depth 4 wich is, by construction,

a single element Re-cluster. Clearly v 
S 34φ1 and v 6
S (3et ∧ 3e¬t)

which is in contradiction with the assumption that F2j+2 
S 24(34φ1 →

(3et ∧3e¬t)).

(b) m = k + 1. Suppose F2j+2 6
 I(σ(rk+1)), then there are a valuation

S and a world w such that F2j+2 
S 24(34φk+1 → (3et ∧ 3e¬t)) and

(F2, w) 6
S ¬φk+1. Then w 
S φk+1 and by Lemma 5.1.5 we have dp(w) =

2k+3, meaning that w is odd. Since F2j+2 is generated by an even world, this

means that there must be a world of depth 2k + 4 which is an immediate

R4-predecessor of w and whose depth is even. Again, consider such v:

this world generates, by construction, a single element Re-cluster. Clearly

v 
S 34φk+1 and v 6
S (3et ∧ 3e¬t) which is in contradiction with the

assumption that F2j+2 
S 24(34φk+1 → (3et ∧3e¬t)).

Remark. In the light of Definition 5.1.1, we can derive the following dou-

ble implication: for any inference rule r := A1, . . . , An/B, for any logic L
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generated by the axiomatic system AS,

`AS r ⇔ (A1 ∧ . . . ∧ An) `AS B

In any normal modal logic, this means that r is derivable if and only if the

implication 2(A1 ∧ . . . ∧ An) → B is a theorem of the logic itself1. In the

case of LTK1, this implication would be just 24(A1 ∧ . . . ∧ An) → B as the

modal operator 24 is the strongest modality as defined by the axioms2.

Given a rule r := A1, . . . , An/B, we shall henceforth refer to the implication

24(A1 ∧ . . . ∧ An) → B as I(r)3. The implication I(r) is hence the implica-

tion associated to r. This implies that in LTK1 in order to prove that an

inference rule is derivable it is sufficient to show that the implication I(r) is

a theorem of LTK1. As LTK1 has the efmp (see Chapter 2, Theorem 2.3.2),

it is enough to show that the assumption that I(r) is falsified by some finite

reflexive LTK1-balloon leads to a contradiction.

Lemma 5.1.8 In the model 〈F, V 〉 as depicted in Figure 5.1 the following

holds: for any submodel 〈Fi, V 〉 generated by a world w such that dp(w) = i

and i is odd, (Fi, w) 6
V I(σ(rm)) for m = i−1
2 .

Proof. By induction on n where 2n + 1 is the depth of the frame F.

(i) n = 1, then F has depth 3. We can have only two cases: the submodel

generated by a world of depth 1 and the one generated by a world of depth

3. For both cases we should show that Fi 6
V I(σ(rm)) for m = i−1
2 .

1cf. Troelstra and Schwichtenberg [68], page 285.
2As we have stated in Chapter 4, page 87, necessitation rules for the modal operators

Ke, Ka can be derived by means of the necessitation rule for 24 and the axioms M.1 and
M.3.

3Notice that in following lemmas we might sometimes use I(σ(r)). This means that
we take under consideration the implication associated to the inference rule r under the
substitution σ.
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(a) dp(F1) = 1. Clearly we only have to show that I(σ(r0)) := 24(24(34Kep0∧

34Ke¬p0) → (3et ∧ 34¬t) → ¬24(34Kep0 ∧ 34Ke¬p0)) does not hold.

Notice that 〈F1, V 〉 is the R4-maximal part of 〈F, V 〉. Trivially F1 
V

3et ∧ 34¬t by construction, then F1 
V 24(24(34Kep0 ∧ 34Ke¬p0) →

(3et ∧ 34¬t)) holds. Moreover F1 
V 34Kep0 ∧ 34Ke¬p0, then F1 
V

24(34Kep0∧34Ke¬p0) and hence F1 6
V ¬24(34Kep0∧34Ke¬p0); there-

fore F1 6
V I(σ(r0)).

(b) dp(F3) = 3. We should now show that I(σ(r1)) does not hold in the

model, where I(σ(r1)) := 24(34φ1 → (3et ∧ 3e¬t)) → ¬φ1. By Lemma

5.1.5 it follows that for any world w in the base set of F3, dp(w) = 3 ⇔ w 
V

φ1. Consider a world w of depth 3, clearly w 6
V ¬φ1 and hence, by reflexiv-

ity, w 
V 34φ1. Moreover dp(w) is odd, and then by construction we have

w 
V 3et∧3e¬t and for any world v such that wRev (i.e. w, v have the same

depth) we have v 
V 3et∧3e¬t and hence v 
V 34φ1 → (3et∧3e¬t). Con-

sider now any world z such that dp(z) < dp(w) (i.e. wR4z and ¬(zR4w));

clearly z 6
V 34φ1 and hence z 
V 34φ1 → (3et∧3e¬t) holds true. From

these observations it follows that w 
V 24(34φ1 → (3et ∧ 3e¬t)) which

with w 6
V ¬φ1 implies w 6
V I(σ(r1)).

(ii) n = j+1, then the depth of F is 2(j+1)+1 = 2j+3. We should show

that for any submodel of 〈F2j+3, V 〉 generated by an odd world w of depth

i, Fi 6
V I(σ(rm)) for m = i−1
2 . By induction hypothesis we can state that

the claim holds for any submodel generated by an odd world from 〈Fi, V 〉

where i ≤ 2j + 1 i.e. n ≤ j. Hence we must show only that in the model

〈F2j+3, V 〉 the implication I(σ(rm)) is not true, where m = 2j+3−1
2 = j + 1.

Recall that I(σ(rj+1)) := 24(34φj+1 → (3et∧3e¬t)) → ¬φj+1. Consider

a root-world, i.e. a world w such that dp(w) = 2j + 3; by Lemma 5.1.5 we
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have w 6
V ¬φj+1. Although by reflexivity we have that w 
V 34φj+1,

by construction it holds w 
V 3et ∧ 3e¬t and hence w 
V 34φj+1 →

(3et∧3e¬t). For any world v such that wRev (i.e. w, v have the same depth)

we have v 
V 3et∧3e¬t and hence v 
V 34φj+1 → (3et∧3e¬t). Consider

now any world z such that dp(z) < dp(w) (i.e. wR4z and ¬(zR4w)); clearly

z 6
V 34φj+1 and hence z 
V 34φj+1 → (3et ∧ 3e¬t) holds true. From

these observations it follows that w 
V 24(34φj+1 → (3et∧3e¬t)) which

with w 6
V ¬φj+1 implies w 6
V I(σ(rj+1)).

The structure depicted in Figure 5.1 is a case of reflexive LTK1-balloon.

In Lemma 5.1.8 we have showed that for any rule rn in the class R there

is a finite reflexive LTK1-balloon in which the antecedent of I(rn) is valid

whereas the consequent is not. From this observation and the Remark on

page 122 it follows that none of the rules in R is derivable in LTK1
ax.

Corollary 5.1.9 (Structural Incompleteness) All the rules from R are

admissible but not derivable in LTK1, therefore the logic LTK1
ax is not struc-

turally complete.

5.2 Algebraic semantics for LTK1

The Possible Worlds Framework, or Kripke Semantics, provide intuitive

tools and it is widely adopted. Nevertheless, as we highlighted in Chapter

??, Section 2.2.1, Algebraic Semantics is historically the first type of se-

mantics which has been developed to deal with modal logics (cf. Goldblatt

[27]). Understanding algebraic semantics and its links with Kripke Seman-

tics can give a wider perspective on the topic. We have therefore decided

to dedicate this Section to the analysis of Algebraic Semantics and to some
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results which are of use in our research. Moreover, Algebraic structures shall

prove themselves of use in order to highlight the semantic counterpart of the

notion of derivability. All the standard results and definitions presented in

this Section are taken from Blackburn et al. [3], Chapter 5, Rybakov [55],

Chagrov and Zakharyaschev [72].

5.2.1 Basic Definitions

In order to define Algebraic Semantics for LTK1, we need some basic defini-

tions and Lemmas.

Definition 5.2.1 (Algebra) An algebra is a structure of the form A =

〈A, f1, . . . , fn〉 where A is a set, called base set or universe, and f1, . . . , fn

are operations on A.

An algebra is finite if its universe contains a finite number of elements.

Given a propositional language L, an L-algebra is an algebra A =

〈A, f1, . . . , fn〉 such that the operations f1, . . . , fn correspond to the logi-

cal connectives in L.

Given an L-algebra A = 〈A, f1, . . . , fn〉, a valuation (assignment)

is a mapping V : Fma(L) 7→ A such that for each propositional letter

p ∈ P , V (p) ∈ A and, given a formula A(p1, . . . , pn), V (A(p1, . . . , pn)) =

A(V (p1), . . . , V (pn)).

Given an L-algebra A = 〈A, f1, . . . , fn〉 and a non-empty subset ∆ of

A, the pair 〈A,∆〉 is called an L-matrix and ∆ is the set of distinguished

elements. Less formally, the universe A is the set of all the possible truth

values, whereas ∆ is the set of all the true, or designated, truth values.
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Given an L-matrix 〈A,∆〉, a formula A ∈ Fma(L) is:

true in 〈A,∆〉 under the valuation V , in symbols 〈A,∆〉 �V A(p1, . . . , pn),

iff V (A(p1, . . . , pn)) ∈ ∆;

valid in 〈A,∆〉, in symbols 〈A,∆〉 � A(p1, . . . , pn) iff for each valuation V ,

〈A,∆〉 �V A(p1, . . . , pn).

In what follows, we shall always be dealing with algebras with only one

designated truth value, i.e. the element >, and we will denote an L-matrix

simply as A = 〈A, f1, . . . , fn,>〉. We shall also use the abbreviation A �V A

instead of 〈A,>〉 �V A. Clearly for any formula A, A �V A if and only if

A = > holds under V .

Definition 5.2.2 Given a logic L on a language L, an L-matrix, or just an

L-algebra A for simplicity, is characterising for L if and only if for any

formula A, A ∈ L iff A � A.

Definition 5.2.3 (Variety) Given a logic L on the language L, the va-

riety generated by L is the set: V ar(L) := {A | ∀A ∈ L A � A =

> & ∀A∀B ∈ Fma(L)(L ` A↔ B⇒ A � A = B)}.

Definition 5.2.4 Given an inference rule r = A1(pj), . . . , An(pj)/B(pj) in

the language of a logic L:

- r is valid in an algebra A ∈ V ar(L), in symbols A � r, if and only if

for every valuation V of variables from r in A, A � V (B) = > provided that

∀i A � V (Ai) = >;

- r is a semantic corollary of (or it follows semanticly from) a set of

inference rules R, R �L r, if and only if for any algebra A ∈ V ar(L) if
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∀ri ∈ R A �L ri then A �L r.

The following result clarifys the link occurring between the concept of

being derivable and the one of following semanticly from a set of inference

rules: the two notions actually coincide.

Theorem 5.2.5 Let R be a collection of inference rules in the language of

a logic L. Then for any rule r, R `L r if and only if R �L r.

5.2.2 The Tarski-Lindenbaum Construction

In this section we shall introduce special algebraic sructures which play a

key role when dealing with admissible inference rules. These systems are

called free algebras and we shall define them starting from the so called

Tarski-Lindenbaum matrixes.

Let L be a propositional logic in the language L. The Tarski-Lindenbaum

matrix for L is given by: M(L) := 〈Fma(L), Con(L), L〉, where Con(L) is

simply the set of all the logical connectives from L. Clearly the Tarski-

Lindenbaum matrix is characterising for L. Since this kind of semantics

is too general, we shall define another characteristic matrix for L with only

one designated element. Let F(L) := 〈[Fma(L)], Con(L),>〉 be an L-matrix

where:

(i) [A] := {B ∈ Fma(L) | A↔ B ∈ L}

(ii) [Fma(L)] := {[A] | A ∈ Fma(L)}

(iii) for any n-ary connective� from Con(L) (�([A]1, . . . , [A]n) = [�(A1, . . . , An)])

(iv) > := [>] (Recall that > := ⊥ → ⊥).

This definition is correct due to the equivalent replacement theorem.

Theorem 5.2.6 For any algebraic logic L, the algebra F(L) with the single

designated element > is characterising for L.
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Two algebras A = 〈A, f1, . . . , fn〉 and B = 〈B, f ′1, . . . , f
′
m〉 are similar if

n = m and the operations fi and f ′i are of the same arity. In what follows,

when dealing with similar algebras, we shall often denote the operations in

both algebras with the same symbols.

Definition 5.2.7 (Homomorphisms, Isomorphisms, Embeddings) Let

A = 〈A, f1, . . . , fn〉 and B = 〈B, f1, . . . , fn〉 be two similar L-algebras and

let h be a mapping h : A 7→ B into. Then h is a homomorphism if and only

if the following condition holds: for any n-ary operation f from A, for any

n-tuple of elements a1, . . . , an from A

h(f(a1, . . . , an)) = f(h(a1), . . . h(an))

If the homomorphism h is surjective (onto), then h is an embedding;

If h is injective (one-to-one), then h is an isomorphism and B is

an isomorphic image of A;

if h is a bijection (isomorphism onto), then A and B are isomor-

phic, in symbols A ∼= B.

Definition 5.2.8 (subalgebra) Let A = 〈A, f1, . . . , fn〉 and B = 〈B, f1, . . . , fn〉

be two similar L-algebras. We say that A is a subalgebra of B, in symbols

A v B, if the following conditions hold true:

(i) A ⊆ B

(ii) For any n-ary operation f from A and for any n+1-tuple a1, . . . , an, b

of elements from A, A � f(a1, . . . , an) = b ⇔ B � f(a1, . . . , an) = b

Definition 5.2.9 (Generated subalgebras ) Given an algebra A = 〈A, I〉,

the sub-algebra generated by B, A[B] is the smallest subalgebra of A contain-

ing B. The set B is the set of generators of A[B].
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Theorem 5.2.10 Given two algebras A1 and A2, if A1 v A2 then ∀A (A2 �

A⇒ A1 � A).

Definition 5.2.11 (Free Algebras) Given a class of algebras K, Fd is a

free algebra in K if and only if Fd ∈ K and Fd = A[B] for some B such that

for any Ai ∈ K, for any mapping f : B 7→ |Ai|, f can be extended to an

homomorphism |Fd| 7→ |Ai| into.

If A[B] is a free algebra with ‖B‖ = d, then A[B] is of rank d.

Theorem 5.2.12 Given an algebraic logic L, the algebra F(L) is a free al-

gebra of countable rank from the variety V ar(L) with the set {[p1], [p2], . . .}

as the set of generators, where each pi belongs to the set of propositional

letters.

The free algebra of infinite countable rank ω for an algebraic logic L will

henceforth be referred to as Fω(L).

5.2.3 Algebras with operators, Filters and Ultrafilters

The algebraic constructions known as boolean algebras play a central role in

providing multi-modal propositional logics with suitable algebraic semantics.

More specifically, we shall use boolean algebras with operators. In order to

define these systems we need to introduce lattices and distributive lattices:

Definition 5.2.13 (Lattice) A lattice is an algebra A = 〈A,∧,∨〉 where

∧ (meet) and ∨ (join) are two binary operations satisfying the following

conditions. For each element a, b, c from A:

(i) a ∧ a = a; a ∨ a = a (idempotency)

(ii) a ∧ b = b ∧ a; a ∨ b = b ∨ a (commutativity)

(iii) a ∨ (b ∨ c) = (a ∨ b) ∨ c; a ∧ (b ∧ c) = (a ∧ b) ∧ c (associativity)
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(iv) a ∧ (a ∨ b) = a; a ∨ (a ∧ b) = a (absorption)

A lattice is said distributive if a∨ (b∧ c) = (a∨ b)∧ (a∨ c) holds for each

triple of elements.

Definition 5.2.14 (Boolean Algebras) A boolean algebra is an algebra

A = 〈A,∧,∨,¬,⊥,>〉 where:

(i) 〈A,∧,∨〉 is a distributive lattice;

(ii) ⊥ and > are nullary operations on A, i.e. ⊥,> ∈ A;

(iii) ∀a ∈ A ⊥ ∨ a = a and > ∧ a = a;

(iv) ¬ is a unary operation on A;

(v) ∀a ∈ A a ∨ ¬a = > and a ∧ ¬a = ⊥

Definition 5.2.15 An algebra A = 〈A,¬,∧,∨,21, . . . ,2k,>〉 is called a k-

modal algebra if 〈A,¬,∧,∨,>〉 is a Boolean algebra and each 2i is a unary

operation on A satisfying the following conditions:

(i) 2i(a → b) → (2ia → 2ib) = >;

(ii) 2i> = >, 1 ≤ i ≤ k.

Definition 5.2.16 Given a lattice A = 〈A,∧,∨〉, a subset ∇ of A is a filter

on A provided that:

(i) ∀a ∈ A ∀d ∈ ∇ (a ∧ d = d ⇒ a ∈ ∇)

(ii) ∀d1, d2 ∈ ∇ (d1 ∧ d2 ∈ ∇)

A filter ∇ is proper if ⊥ 6∈ ∇. A filter ∇ is maximal if it is proper and

for any proper filter ∇2 on A if ∇ ⊆ ∇2 then ∇ = ∇2.

An ultrafilter on A is a proper filter ∇ such that for each element a ∈ A

either a or ¬a belongs to ∇.

Lemma 5.2.17 Given a boolean lattice A = 〈A,∧,∨〉 the following holds:

(i) Each maximal filter is an ultrafilter and vice versa.
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(ii) If A is either finite or finitely generated, each ultrafilter ∇ has the

form a≤, where a is an element of A.

(iii) (Zorn Lemma) If ∇ is a proper filter on A, then ∇ can be extended

to an ultrafilter ∇∗ on A.

5.2.4 Stone’s Theorems

We are now able to introduce the kind of systems whose definition is due to

Stone. We shall then state few important results linking Kripke-semantics

to algebraic semantics. The main idea is to associate each Kripke-frame

with a special wrapping algebra. Then it can be easily proved that in this al-

gebra the only true formulae are exactly those which are true in the original

Kripke-frame. Likewise one could take any multi-modal algebra and con-

struct its Stone’s representation frame. Again the same result holds: these

two structures share the same set of true formulae. But let us analise these

constructions in more detail.

Definition 5.2.18 (Wrapping Algebras) Given a k-modal Kripke-frame

F = 〈F,R1, . . . ,Rk〉, its Stone’s wrapping algebra is the k-modal algebra

F+ = 〈F+,∨,∧,¬,21, . . . ,2k,⊥,>〉 where F+ = P(F ) (the power set of F ,

i.e. the set of all the subsets of F ), 〈F+,∨,∧,¬,⊥,>〉 is the boolean algebra

of all the subsets of F and 2iA := {v | v ∈ F & ∀x ∈ F (vRix ⇒ x ∈ A)}.

If 〈F, V 〉 is a k-modal Kripke-model with Dom(V ) = P , its wrapping alge-

bra is the algebra F+[{V (p) | p ∈ P}], i.e. the smallest subsystem of F+

containing {V (p) | p ∈ P}.

Definition 5.2.19 (Stone’s Frames) Given a multi-modal algebra A =

〈A,∧,∨,¬,21, . . . ,2k,>〉 its Stone’s representation frame is the k-modal

Kripke-frame A+ = 〈A+,R1, . . . ,Rk〉 where A+ := {∇ | ∇ is an ultrafilter
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on A} and ∇1Ri∇2 iff ∀x ∈ A(2ix ∈ ∇1 ⇒ x ∈ ∇2).

Moreover its Stone’s representation model is given by 〈A+, V 〉 where Dom(V ) =

A and ∀a ∈ A V (a) := {∇ | a ∈ ∇}.

Theorem 5.2.20 (Stone’s Representation Theorem) For any k-modal

algebra A = 〈A,∧,∨,¬,21, . . . ,2k,>〉 the mapping i : A 7→ A++ where

i(a) := {∇ | a ∈ ∇} is an isomorphism, i.e. A v A++. If A is finite, then

A ∼= A++ and for any finite k-modal Kripke-frame F, F ∼= F++.

Notice that given a Kripke-model 〈F, V 〉, by Definition 2.2.1 we know

that V is a mapping which associates to each propositional letter from the set

P a subset of worlds from the universe of F, i.e. V : P 7→ P(WF). Therefore

such valuation V is also a valuation in F+. Moreover when dealing with

Kripke-frames, we say a formula A to be true under a valuation V whenever

A is true in each single world from WF. In algebraic terms this means

that V (A) = F and in F+ we have F = >. This observation plus an easy

induction on the length of the formula A leads to state the following:

Corollary 5.2.21 Given a Kripke-model 〈F, V 〉, for each formula A, F 
V

A iff F+ �V A = >.

The following well known Lemma concerning the interactions between

Kripke-frames and Stone’s algebras will be useful in what follows (cf. Ry-

bakov [55], Lemma 2.5.9):

Lemma 5.2.22 If a frame F1 is a generated subframe of a frame F2, then

there is a homomorphism h from F+
2 onto F+

1 such that ∀A ∈ P(|F2|),

h(A) := A ∩ |F1|.
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5.2.5 Quasi-identities and Inference Rules

We have already provided the necessary tools in order to analyse the concept

of derivability from an algebraic perspective. In particular we shall now

define special algebraic structures, called free algebras.In this Section we

shall clarify the link occurring between free algebras and inference rules. In

order to do so, we need some preliminar definitions.

Definition 5.2.23 (Identities, Quasi-identities)

- A quasi-identity is an expression of the form f1 = g1∧ . . .∧fn = gn ⇒

f = g;

- An identity is a quasi-identity whose set of premisses is empty, i.e.

f = g;

- FmaQ(L), FmaI(L) are the sets of all the quasi-identities, identities

on the language L.

- A variety (quasi-variety) for a set of identities (quasi-identities) Γ on

L is the set V ar(Γ) = {A | ∀A ∈ Γ, A � A}.

Definition 5.2.24 Given a class of algebras K on L

- The elementary theory of K is the set Th(K) = {A ∈ Fma(L) | ∀A ∈

K, A � A}.

- The equational theory of K is ThI(K) = {A ∈ FmaI(L) | ∀A ∈ K, A �

A}.

- The quasi-equational theory of K is ThQ(K) = {A ∈ FmaQ(L) | ∀A ∈

K, A � A}.

Definition 5.2.25 Given a set of quasi-identities Q, a quasi-identity q is

a semantic corollary of Q, in symbols Q � q, if and only if for any algebra
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A the following implication holds: (A � Q ⇒ A � q).

Given a set of quasi-identities Q closed under semantic corollaries, a set of

quasi-identities B is a basis for Q if and only if for any quasi-identity q,

q ∈ Q ⇔ B � q.

Definition 5.2.26 Given an inference rule r = A1(pj), . . . , An(pj)/B(pj) the

quasi-identity associated with it is q(r) := (A1 = > & . . .& An = >) ⇒ (B =

>).

Given a quasi-identity q := f1 = g1 ∧ . . . ∧ fi = gi ⇒ f = g, the rule

associated with it is r(q) := f1 ↔ g1 ∧ . . . ∧ fi ↔ gi/f ↔ g.

The following important results state the link occurring between admis-

sible rules for a given logic and quasi-identities in free algebras: an inference

rules is, in fact, admissible in a logic L exactly when the quasi-identity as-

sociated to it is valid in the Tarski-Lindenbaum algebra of the logic itself.

Likewise a quasi-identity q is valid in the Tarski-Lindenbaum algebra Fω(L)

if and only if the rule associated to it is admissible for L (Please refer to

Rybakkov [55]).

Theorem 5.2.27 For any inference rule r, any quasi-identity q and any

logic L on L:

(i) r ∈ Adm(L) iff Fω(L) � q(r)

(ii) Fω(L) � q iff r(q) ∈ Adm(L).

In the light of this well known Theorem and the results provided in

Chapter 3 we can now state the following:

Corollary 5.2.28 The quasi-equational theory ThQ(LTK1) is decidable.
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5.3 Further work: the research of a finite Basis

In Chapter 3 we designed an algorithm to check whether a given rule is

admissible for LTK1. Nevertheless the set of admissible rules might contain

an infinite number of elements and it could be too complicated for a direct

description. In other words we already have a tool which tells us, given a

rule, if it is admissible or not, but we are still unable to generate the set

of all the admissible inference rules for LTK1. This is the topic on which

our interest is currently focused on and this last Section is devoted to the

analysis of the methodology we are using in order to give this problem an

answer.

Any Hilbert-style axiomatic system usually contains both axiom schemata

and inference rules. As we have seen, there are many cases of axiomatic sys-

tems which are not structurally complete: these system admit rules which

are, nevertheless, not derivable on the system itself. A basis of admissible

rules is nothing but a set of rules which enables the derivation of all the

admissible rules for a given logic. If we add a basis of rules to an axiomatic

system, this would immediately become structurally complete. In fact, a

basis of rules is the smallest set containing those rules which are necessary

in order to derive all the admissible rules for a system.

A formal definition of what we mean by basis of inference rules is the

following:

Definition 5.3.1 Given a set of rules R for a logic generated by a system

AS:

- a rule r = A1(pj), . . . , An(pj)/B(pj) is derivable in AS from R (in sym-

bols R `AS r) if r is derivable in AS⊕R, i.e. if there is a derivation in AS

of B(pj) having Ai(pj) as premisses and using the rules from AS as well as
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the ones from R;

- a set of rules B is a basis for R provided that B ⊆ R and each rule r

in R is derivable from B in AS, i.e. ∀r ∈ R B `AS r.

Definition 5.3.2 (Basis of Inference Rules) A collection of admissible

rules B for a logic L is a basis for all the rules admitted by L if and only if

for every rule r, r ∈ Adm(L) iff B `L r.

We shall now analyse the case of our logic LTK1. As we have anticipated,

we shall not present any result here, but we shall only analyse the track we

are following in order to find a finite basis of rules.

In Chapter 3 we introduced some special n-characterising models called

ChLTK1(n) (see the construction in Section 3.1). In the following Lemma, we

shall use the wrapping algebras associated to these models. We consider for

each natural number n, the particular wrapping algebra generated by the

valuation of the propositional letters p1, . . . , pn in the model 〈ChLTK1(n), V 〉

as defined in Section 3.1 and we prove it to be a free algebra of rank n from

the variety of LTK1.

Theorem 5.3.3 For each n, ChLTK1(n)+[V (p1), . . . , V (pn)] is a free-algebra

of rank n in V ar(LTK1) generated by V (p1), . . . , V (pn).

Proof. Consider ChLTK1(n)+[V (p1), . . . , V (pn)] for some n and some A ∈

V ar(LTK1) and define a mapping h : {V (p1), . . . , V (pn)} 7→ |A| such that

h(V (pi)) = ai for some ai ∈ |A|. We extend such mapping to a homomor-

phism from |ChLTK1(n)+| into A in the following way: for each multi-modal

term t, h(t(V (p1), . . . , V (pn))) = t(h(V (p1)), . . . , h(V (pn))). In order to

prove this definition to be correct (i.e. h is indeed a homomorphism) we want
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to show that given two elements a, b ∈ |ChLTK1(n)+|, h(a) = h(b) whenever

a = b. Suppose that there are two terms t1 and t2 denoting the same element

in ChLTK1(n)+, t1(V (p1), . . . , V (pn)) = t2(V (p1), . . . , V (pn)). Since V is a

valuation on ChLTK1(n)+ as well as the valuation of the model ChLTK1(n), by

definition of valuation, it follows that V (t1(p1, . . . , pn)) = V (t2(p1, . . . , pn)),

thus ChLTK1(n) 
V t1(p1, . . . , pn) ↔ t2(p1, . . . , pn) holds. Since the model

ChLTK1(n) is n-characterising for LTK1, t1(p1, . . . , pn) ↔ t2(p1, . . . , pn) ∈

LTK1. On the other hand, A ∈ V ar(LTK1), therefore A � t1(x1, . . . , xn) =

t2(x1, . . . , xn). In particular this holds for xi = ai, hence

A � t1(h(V (p1)), . . . , h(V (pn))) = t2(h(V (p1)), . . . , h(V (pn))) which by defi-

nition of h means A � h(t1(V (p1), . . . , V (pn))) = h(t2(V (p1), . . . , V (pn))).

Consider now the of Kripke-structures we have introduced in Chapter

3, in Definition 3.3.5. We introduce now some new Kripke-frames which

are very similar to LSP-frames. In fact, they are LSP-frames without the

Point-component (see Figure 5.2).

Definition 5.3.4 Let FL and FS be Kripke-frames with the following struc-

ture:

(i) The frame FL = 〈WFL
,RL

4,RL
e ,R

L
a〉 (LOOP-component) is as follows:

WFL
is a nonempty set of worlds; RL

4 = WFL
×WFL

; RL
e is an equivalence

relation on WFL
; RL

a is some equivalence relation on RL
e -clusters;

(ii) Let F = 〈WF,R4,Re,Ra〉 be a finite LTK-frame (i.e. it is an LTK-

frame with a finite base set of worlds. See Definition 2.2.3); let C1, . . . ,Ci

be an enumeration of all the RS
4-clusters of worlds from WF; let Dots :=

{w1, . . . , wi} be a set of worlds such that ∀wj , 1 ≤ j ≤ i(wj 6∈ WF). The

frame FS = 〈WFS
,RS

4,RS
e ,R

S
a〉 (STRING-component) has the following struc-

ture: WFS
= WF ∪ Dots; RS

4 = R4 ∪ {〈wj , z〉 | wj ∈ Dots & z ∈ Cj} ∪
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{〈wj , wj〉 | wj ∈ Dots}; RS
e = Re ∪ {〈wj , wj〉 | wj ∈ Dots}; RS

a = Ra ∪

{〈wj , wj〉 | wj ∈ Dots}.

An LS-frame (loop-string frame) is a tuple Fls = 〈Wls,R
ls
4,Rls

e ,Rls
a 〉 where

WFls
= WFL

∪ WFS
; Rls

4 = RL
4 ∪ RS

4 ∪ {〈w, z〉 | w ∈ WFS
& z ∈ WFL

};

Rls
e = RL

e ∪ RS
e ; Rls

a = RL
a ∪ RS

a (See Figure 5.2).

In the following Lemma we consider a family of LS-frames such that

each of them is a generated subframe of the frame of ChLTK1(n). Then we

prove that the wrapping algebra of their disjoint union is a subalgebra of

ChLTK1(n)+[V (p1), . . . , V (pn)].

Lemma 5.3.5 For each family of LS-frames (Fi)i∈I such that for each i,

Fi v ChLTK1(n), the following holds: (
⊔

i∈I Fi◦@)+ v ChLTK1(n)+[V (p1), . . . , V (pn)]

(where @ is a single element R4-cluster disjoint from each Fi).

Proof. Let Cj1 , . . . ,Cjm be an enumeration of each R4-cluster from the lin-

ear part of each Fj such that Cjl
R4Cik iff j = 1 and l ≤ k. Let dj1 , . . . , djm−1

be an enumeration of all the dots from Fj where for each k, djk
R4Cjk

,

¬(Cjk
R4djk

) and if l < k then ¬(djk
R4Cjl

).

(1) By Lemma 3.2 each world v from the base set of the model ChLTK1(n)

is definable by a formula β(v). We display each world v from any LS-frame

Fj as vjk
, meaning that v belongs to the k-th R4-cluster of the frame Fj .

For each frame Fj and each dot-world djk
we define a formula γ(djk

) :=

γ1(djk
) ∧ γ2(djk

) ∧ γ3(djk
) where:

(i) γ1(djk
) :=

∧
k<i 34β(vji)

(ii) γ2(djk
) :=

∧
k>i ¬34β(vji)
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Figure 5.2: Scheme of the structure of an LS-frame.
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(iii) γ3(djk
) :=

∧
v∈Cjk

¬β(v)

Notice that for each world v ∈ |ChLTK1(n)|, (Ch(n), v) 
V γ(djk
) whenever

vR4Cjk
and ¬(vR4Cjk−1

).

(2) Since (
⊔

i∈I Fi ◦@) < Ch(n)4, by Lemma 5.2.22 it follows that there

is a homomorphism ChLTK1(n)+ 7→ (
⊔

i∈I Fi ◦ @)+ onto where h(A) :=

A ∩ |(
⊔

i∈I Fi ◦@)+|.

(3) Let B be a generated subalgebra of ChLTK1(n)+ with generators

[{V (γ(dik)) | dik ∈ Dotsi, i ∈ I}, {V (β(z)) | z ∈ |
⊔

i∈I Fi| & z 6∈ Dotsi, i ∈

I}]. Clearly the restriction of the homorphism h to |B| is into. We shall show

that it is also both onto and one to one, i.e. the two algebras are isomorphic.

(4) We start by showing that the homomorphism h is onto. In order to

achieve this we show that each singleton {z} in |(
⊔

i∈I Fi ◦ @)+| has a pro-

image in |B|, i.e. for each world z ∈ |(
⊔

i∈I Fi ◦@)| there is a set of worlds

A ∈ |B| such that h(A) = {z}, which means that A ∩ |(
⊔

i∈I Fi ◦@)| = {z}.

Consider any singleton {z} in |(
⊔

i∈I Fi ◦@)+|. The world z must fulfill one

of the following requirements:

(i) z ∈ Fj for some j and z 6∈ Dotsj ;

(ii) z = @;

(iii) z = djk
for some j and k.

(i) Suppose z ∈ Fj for some j and z 6∈ Dotsj . By definition, V (β(z)) is a

4recall that Ch(n) is the frame on which the model ChLTK1(n) is built
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generator of B and since V (β(z)) = {z} it follows that h(V (β(z))) = {z}.

(ii) Suppose z = @. Since (Ch(n),@) 6
V β(v), for all worlds v 6= @ and

(Ch(n),@) 6
V γ(djk
) for each djk

∈ Dotsj and for each j ∈ I, it follows that

@ ∈ V (
∧

v 6=@ ¬β(v)∧
∧

j∈I ¬γ(djk
)). It is easy to verify that the intersection

of this set and |
⊔

i∈I Fi ◦@| is {@}.

(iii) z = djk
for some j and k. Clearly (Ch(n), djk

) 
V γ(djk
), but for any

world v ∈ |
⊔

i∈I Fi ◦@| such that v 6= djk
, (Ch(n), v) 6
V γ(djk

). Therefore

V (γ(djk
)) ∩ |

⊔
i∈I Fi ◦@| = {djk

}.

(5) We shall prove now that the homomorphism h is one-to-one, by

showing that given any A ∈ |B|, if A 6= ∅, then h(A) 6= ∅.

Each set A ∈ |B| can be represented as t(V (γ(di
jk

)), V (β(ul))) where t is

a multi-modal term applied to the generators V (γ(di
jk

)), V (β(ul)). The set

A is non-empty by assumption and therefore, by definition of valuation,

it follows that V (t((γ(di
jk

)), β(ul))) 6= ∅. Therefore there is a world v ∈

|ChLTK1(n)| such that: (Ch(n), v) 
V t((γ(di
jk

)), β(ul)). Such world v must

satisfy one of the following conditions:

(i) v ∈ |
⊔

i∈I Fi ◦@|;

(ii) v 6∈ |
⊔

i∈I Fi ◦@| and ∀z ∈ |
⊔

i∈I Fi ◦@| (vR4z ⇒ z = @);

(iii) v 6∈ |
⊔

i∈I Fi ◦@| and ∃z ∈ |
⊔

i∈I Fi| vR4z.

(i) If v ∈ |
⊔

i∈I Fi ◦@| then clearly h(A) 6= ∅.

(ii) Suppose that v 6∈ |
⊔

i∈I Fi◦@| and ∀z ∈ |
⊔

i∈I Fi◦@| (vR4z ⇒ z = @).
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Notice that (Ch(n),@) 6
V
∨

j∈I γ(djk
) and (Ch(n),@) 6
V

∨
z∈|

⊔
i∈I Fi| β(z).

Moreover ∀y (@R4y ⇒ ((Ch(n), y) 6
V
∨

j∈I γ(djk
) & (Ch(n), y) 6
V∨

z∈|
⊔

i∈I Fi| β(z))). Since this holds true for v as well, it is easy to verify

that for each multi-modal term t′:

(Ch(n),@) 
V t′((γ(di
jk

)), β(ul)) iff (Ch(n), v) 
V t′((γ(di
jk

)), β(ul)). Hence

@ ∈ V (t((γ(di
jk

)), β(ul))) and h(A) 6= ∅.

(iii) Assume v 6∈ |
⊔

i∈I Fi ◦ @| and ∃z ∈ |
⊔

i∈I Fi| vR4z. Let z be the

R4-deepest world R4-seen by v; then z is not R4-final by construction of

ChLTK1(n) and it belongs to some R4-cluster Cjm . This cluster is associated

to a dot-world djm . The following statements hold true both for v and djm :

(Ch(n), v) 
V γ(djm);

(Ch(n), v) 6
V
∨

u∈|
⊔

i∈I Fi| β(u);

If there is a world y such that either vRey or vRay or else vR4y and

yR4Cjm but y is not in Cjm , then (Ch(n), y) 
V γ(djm) and (Ch(n), y) 6
V∨
u∈|

⊔
i∈I Fi| β(u). Moreover starting from Cjm on, both v and djm have ex-

actly the same R4-successors, therefore for each multi-modal term t′:

(Ch(n), v) 
V t′((γ(di
jk

)), β(ul)) iff (Ch(n), djm) 
V t′((γ(di
jk

)), β(ul)). Hence

djm ∈ V (t((γ(di
jk

)), β(ul))) and h(A) 6= ∅.

Any algebra as the one introduced in Lemma 5.3.6 shows, therefore, an

interesting property: it is the subalgebra of ChLTK1(n)+[V (p1), . . . , V (pn)]

for some finite n. Moreover in the following Lemma we prove such algebras

to have another interesting property, namely that all those formulae which

are valid in all the algebras of kind (
⊔

i∈I Fi ◦@)+ are exactly those which

are valid in the free algebra of infinite countable rank Fω(LTK1).
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Lemma 5.3.6 For any formula A, Fω(LTK1) � A if and only if for any

algebra A of type (
⊔

i∈I Fi ◦@)+ as introduced in Lemma ??, A � A.

Proof. 1. Suppose there is an algebra of kind (
⊔

i∈I Fi ◦ @)+ such that

(
⊔

i∈I Fi ◦@)+ 6� A = > for some formula A. By Lemma 5.3.5 it follows that

for some natural number n, (
⊔

i∈I Fi◦@)+ v ChLTK1(n)+[V (p1), . . . , V (pn)].

Thus, by Lemma 5.2.10, we get ChLTK1(n)+[V (p1), . . . , V (pn)] 6� A and

since ChLTK1(n)+[V (p1), . . . , V (pn)] ∼= Fn(LTK1), we have Fn(LTK1) 6� A

and therefore Fω(LTK1) 6� A.

2. Suppose there is a formula A such that Fω(LTK1) 6� A = >. Such A

can be represented as:

A :=
∧
k

fk = > →
∨
m

24gm = >

Since there is a finite d such that

Fd(LTK1) 6� A = > and Fd(LTK1) ∼= ChLTK1(d)+[V (p1), . . . , V (pd)], it fol-

lows that Ch(d) 
V
∧

k fk and there is a world z ∈ |Ch(d)| such that

(Ch(d), z) 6
V
∨

m 24gm.

Moreover there is by construction a world @ ∈ |Ch(d)| that is a single

element R4-maximal cluster and clearly (Ch(d),@) 
V
∧

k fk.

Take the model 〈(z4◦@), V 〉 (where V is an abbreviation for V � |z4◦@|).

Consider any non final R4-cluster from this model and define a well ordering

where m ≤ n iff CmR4Cn.

For each non-final R4-cluster Cj consider a new world dj and join such

dj to the model 〈(z4 ◦ @), V 〉 as follows: ∀v ∈ C
4
j (djR4v & ¬(vR4dj)),
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djR4dj , djRedj and djRadj .

Extend the valuation V to any new world dj in an arbitrary way and

call the resulting model 〈F, V 〉.

Notice that for each world dj , the frame of d4
j is a frame for LTK1 and

moreover the truth value of formulae of type 24B at any world v would not

be affected by the presence of the new worlds dj . The conjunction
∧

k fk

belongs to LTK1 (recall that such formula is true in Fω(LTK1)), therefore it

is also true at each world dj . Hence F 
V
∧

k fk and (F, z) 6
V
∨

m 24gm.

Clearly F belongs to the class of frames introduced in Lemma ??, therefore

(F)+ 6� A = >.

Lemma 5.3.7 Let A[a1, . . . , an] be a finitely generated algebra from V ar(LTK1)

such that ‖A‖ > 1. Let q := 34x ∧34¬x = > ⇒ y = >. If A � q then A+

has a single element R4-maximal cluster.

Proof. Consider the Stone’s representation frame of A, A+ := 〈A+,R4,Re,Ra〉

as in Definition 5.2.19 and define a valuation V such that Dom(V ) =

{p1, . . . , pn} and V (pi) := {∇ | ai ∈ ∇}. We start by showing that

∀A(p1, . . . , pn),∀∇ ∈ A+ ∇ 
V A(p1, . . . , pn) ⇔ A(a1, . . . , an) ∈ ∇ (5.1)

In fact suppose (by induction on the length of A(p1, . . . , pn)) that A(p1, . . . , pn) =

pi. Then ∇ 
V pi if and only if ∇ ∈ V (pi), which means ai ∈ ∇.

Supose A(p1, . . . , pn) = 24B(p1, . . . , pn). Then ∇ 
V 24B(p1, . . . , pn) if and

only if ∀∇2 ∈ A+(∇R4∇2 ⇒ ∇2 
V B(p1, . . . , pn)). By Inductive Hypoth-

esis (IH henceforth) we have ∀∇2 ∈ A+(∇R4∇2 ⇒ B(a1, . . . , an) ∈ ∇2).

Recall that the mapping i : A 7→ A++ where i(a) = {∇ | a ∈ ∇} is
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an isomorphism from A into A++, therefore B(a1, . . . , an) ∈ ∇2 iff ∇2 ∈

i(B(a1, . . . , an)). Since i(B(a1, . . . , an)) ∈ A++, by Definition 5.2.18 we get

∇ ∈ 24i(B(a1, . . . , an)), and hence ∇ ∈ i(24B(a1, . . . , an)) which implies

24B(a1, . . . , an) ∈ ∇. Clearly the same holds for the modal operators Ke,Ka.

Consider any R4-chain of R4-clusters C := C1R4C2R4 . . .. Since S424 ⊂

LTK1, it follows that ∀∇1∀∇2(∇1R4∇2 ⇒ (24A ∈ ∇1 ⇒ 24A ∈ ∇2)). Let

24Ci := {24A | 24A ∈ ∇, ∀∇ ∈ Ci}, then clearly 24Ci ⊆ {A | Cj 
V A}

whenever CiR4Cj . Let 24C :=
⋃

Ci∈C 24Ci be the union of all the 24Ci

such that Ci is in the chain C. Clearly 24C is consistent and it is also a

subset of the carrier of the algebra A, therefore
∧

24C 6= ∅ in A. The filter

24C≤ is proper and hence by Lemma 5.2.17, (iii) it can be extended to an

ultrafilter ∇∗, which belongs to the base set of A+. Since ∀∇ ∈ C we have

that for any 24A if 24A ∈ ∇, then 24A ∈ ∇∗, it follows that each single

ultrafilter ∇ in C is R4-related to C(∇∗) i.e. the R4-cluster containing ∇∗,

which is, therefore, R4-maximal in C. Hence each R4-chain in A+ has an

R4-maximal cluster.

Since the algebra A is finitely generated by the elements a1, . . . , an,

there are at most 2n ultrafilters on A and then 22n
possible R4-maximal

R4-clusters (i.e. subsets of ultrafilters) in A+. Let C1, . . . ,Ck be all the

R4-maximal R4-clusters in A+ and suppose by contradiction the each Ci

contains more than one ultrafilter, i.e. there are no R4-maximal single-

element R4-clusters.

Take for each cluster Ci a representative ultrafilter ∇i from it and let let

at(∇i) be that element a such that ∇i = a≤ (clearly this elements does not

belong to any other member of Ci). Moreover take for each cluster Cj 6= Ci
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an element 24a(i, j) such that 24a(i, j) ∈
⋃

Ci and 24a(i, j) 6∈
⋃

Cj
5.

Now consider the element b :=
∨

1≤i≤k(at(∇i) ∧
∧

i6=j 24a(i, j)). Suppose

24b 6= ⊥ in A, then there is some ultrafilter ∇ ∈ A+ such that 24b ∈ ∇.

Moreover such ∇ R4-sees some R4-maximal cluster Cm. By assumption

the cluster Cm contains more than one ultrafilter, so there is an ultrafilter

∇l 6= ∇m such that 24b ∈ ∇l. This entails that b ∈ ∇l and hence for some

i (at(∇i)∧
∧

i≤j 24a(i, j)) ∈ ∇l, which means that i = m, at(∇m) ∈ ∇l and

since by assumption ∇m 6= ∇l this leads to a contradiction and 24b = ⊥.

Suppose now that 24¬b 6= ⊥. Again there is some ultrafilter ∇ ∈

A+ such that 24¬b ∈ ∇ and ∇ R4-sees some R4-maximal cluster Cm.

This implies that 24¬b ∈ ∇m as well as ¬b ∈ ∇m. Nevertheless since

at(∇m) ∧m6=j a(m, j), it follows that b ∈ ∇m and then ⊥ ∈ ∇m which is a

contradiction. Therefore 24¬b = ⊥.

From this facts it follows that 34b ∧34¬b = > in A. But A � 34x ∧

34¬x = > ⇒ y = >, hence even in the case y = ⊥, A � y = > holds,

and this is a contradiction. Therefore the frame A+ has at least one single

element R4-maximal R4-cluster.

Our first hypothesis was to show the following:

Conjecture 5.3.8 The set of all the quasi-identities valid in the variety

generated by LTK1, ThQ(V ar(LTK1)) has a finite basis Q∗ which is a basis

for all the axioms from ASLTK1 (i.e. a basis for {A = > | A is an axiom of

LTK1}) plus the quasi-identity q := 34x ∧34¬x = > ⇒ y = >.
5Notice that both these elements do exist for each cluster Ci. In fact any R4-cluster

does not contain duplicate ultrafilters and each ultrafilter ∇ has the form a≤ for some
atom a. Moreover if two clusters are distinct from each other and not related there must
be at least one element 24a which belongs to the intersection of the first cluster but not
to the one of the other.
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We have, however, encountered several difficulties while attempting to

prove this conjecture. The details of the proof we have attempted to provide

follow below.

Recall that the set Q∗ is a basis for ThQ(Fω(LTK1)) if and only if ∀qi(qi ∈

ThQ(Fω(LTK1)) ⇔ Q∗ � qi). This means that we attempt to prove that for

any quasi-identity qi the following holds:

Fω(LTK1) � qi ⇔ ∀A ∈ V ar(LTK1)(A � Q∗ ⇒ A � qi)

Clearly for the left part of the implication above there are no problems.

In fact suppose that ∀A ∈ V ar(LTK1)(A � Q∗ ⇒ A � qi).

Clearly Fω(LTK1) � ThI(Fω(LTK1)). Consider any frame with the same

structure as (
⊔

i∈I Fi◦@) as defined in Lemma ??. Then ((
⊔

i∈I Fi◦@),@) 6


34A∧34¬A for any formula A and any valuation. This implies that for any

algebra of type (
⊔

i∈I Fi ◦ @)+, (
⊔

i∈I Fi ◦ @)+ � 34x ∧ 34¬x 6= > holds

for any value assigned to x. Therefore it follows that (
⊔

i∈I Fi ◦ @)+ � q.

By Lemma 5.3.6, Fω(LTK1) � q. This means that Fω(LTK1) � Q∗, thus

Fω(LTK1) � qi for any qi.

Proving that the right arrow of the implication above holds true shows,

however, several difficulties. We shall sketch the track we have been following

below.

Suppose that there is an algebra A in the variety of LTK1 such that

A � Q∗ and A 6� qi for some quasi-identity qi. The quasi-identity qi can be

represented as
∧

k(fk(x1, . . . , xn) = >) ⇒ g(x1, . . . , xn) = >.
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We should show that Fω(LTK1) 6� qi. In order to do this, we could

proceed as follows:

(i) Find a model based on a finite LTK1-reflexive balloon (as introduced

in Theorem 2.3.2). In this model any formula fi(p1, . . . , pn) from the con-

junction
∧

k(fk(x1, . . . , xn)) in qi is true, whereas the formula g is not;

(ii) Join to such model a single world @ so that in the resulting model

any formula fi(p1, . . . , pn) from qi is still true;

(iii) Join a set of dot-worlds to our latest model keeping the truth value of

any fi(p1, . . . , pn) from qi true. The resulting model would then be based on

an LSP-frame F in which the formula 24
∧

i(fi(p1, . . . , pn)) is true whereas

g is not. Therefore in the algebra F+ the quasi-identity qi would be false

and therefore it would also be falsified by Fω(LTK1).

As it will be clear in the further development of this argument, item (iii)

cannot be easily fulfilled. Let us see why it is so.

(i) We start by finding a model 〈F, V 〉 based on a finite LTK1-reflexive

balloon frame for LTK1 as introduced in Theorem 2.3.2 such that F 
V

24(
∧

k(fk(p1, . . . , pn)) = >) and F 6
V g(p1, . . . , pn) for some n-tuple of

propositional letters p1, . . . , pn.

Clearly the implication 24
∧

f(x1, . . . , xn) → g(x1, . . . , xn) does not belong

to LTK1. Indeed suppose 24
∧

f(x1, . . . , xn) → g(x1, . . . , xn) ∈ LTK1. In

the algebra A from V ar(LTK1) there is by assumption an n-tuple of elements

a1, . . . , an such that A �
∧

k fk(a1, . . . , an) = > and A � g(a1, . . . , an) 6= >.

Since A is a modal algebra, A � 24> = > and therefore we have A �

24
∧

k fk(a1, . . . , an) = > and hence, since the implication 24
∧

k fk(x1, . . . , xn) →

g(x1, . . . , xn) belongs to LTK1 by hypothesis, it follows A � g(a1, . . . , an) =
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> which is, clearly, a contradiction.

By Theorem 2.3.2 the logic LTK1 has the finite model property, there-

fore there is a finite model 〈F, V 〉 where F has the form z4 for some

world z such that (F, z) 6
V 24
∧

k fk(p1, . . . , pn) → g(p1, . . . , pn). Clearly

F 
V 24
∧

k fk(p1, . . . , pn).

(ii) Now we want to join to the formerly defined model 〈F, V 〉 a sin-

gle world @ so that the resulting disjoint union 〈F ◦ @, V 〉 is such that

F ◦@ 
V 24
∧

k fk(p1, . . . , pn) and (F ◦@, z) 6
V g(p1, . . . , pn).

Consider the algebra A from V ar(LTK1) and suppose it is finitely gener-

ated by the elements a1, . . . , an. Take its Stone’s representation model

A+ := 〈A+,R4,Re,Ra, V
+〉 where A+ is the set of all the ultrafilters on

|A|, Dom(V +) := {pi | i ∈ I} and for each pi, V +(pi) := {∇ | ai ∈ ∇}.

From Lemma 5.3.7, 5.1, it follows that ∀A(p1, . . . , pn)∀∇ ∈ A+ (∇ 
V

A(p1, . . . , pn) ⇔ A(a1, . . . , an) ∈ ∇). Since A �
∧

f(a1, . . . , an) = >, we have

A+ 
V +

∧
k fk(p1, . . . , pn).

Since by assumption A+ � q, by Lemma 5.3.7 it follows that A+ has a single

element R4-maximal cluster @ and clearly @ 
V +

∧
f(p1, . . . , pn).

Take the submodel of A+ generated by the set {@}6 and take the disjoint

union model 〈F, V 〉 t 〈@4, V +〉 and denote it by 〈F ◦ @, V 〉 for simplicity.

Clearly (F ◦@) 
V
∧

k fk(p1, . . . , pn) whereas (F ◦@, z) 6
V g(p1, . . . , pn).

6Notice that the universe of this model is just the set {@}.
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(iii) Since the component F of the model we defined formerly is not an

LS-frame (it is just an LTK1-reflexive balloon), our first guess was to join to

F as many dot-worlds as the number of R4-clusters in the frame. This means

that if in the frame there are C1, . . . ,Cn R4-cluster, we would add some new

single element R4-clusters d1, . . . , dn assuming that for each i, 1 ≤ i ≤ n,

d1 is the immediate R4-predecessor of Ci and for each Cj such that j < i,

¬(diR4Cj) and ¬(CjR4di). This turns out, however, to be impossible.

Consider in fact any non final R4-cluster from F and define a well ordering

where m ≤ n iff CmR4Cn. For each non-final R4-cluster Cj consider a new

world dj and join such dj to F◦@ as follows: ∀v ∈ C
4
j (djR4v & ¬(vR4dj)),

djR4dj , djRedj and djRadj .

Extend the valuation V to any new world dj in the following way: for any

propositional letter pi, dj ∈ V (pi) if and only if @ ∈ V (pi).

Denote this model by 〈F′ ◦@, S〉. The frame on which this model is built on

has the same form as the one defined in Lemma 5.3.5. Clearly in the result-

ing model it is still true that z 6
S g(p1, . . . , pn). It is problematic, however,

to show that for any world v ∈ |F′ ◦@| the statement v 
S
∧

k fk(p1, . . . , pn)

holds true.

The presence of the newly added dot-worlds, however, does indeed affect the

truth value of any formula in 〈F ◦@, V 〉. It is therefore impossible to show

the following, i.e. that for any formula fi from
∧

k fk(p1, . . . , pn) and for any

dot-world dj : dj 
S fi ⇔ @ 
V fi.
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Our guess is that we need something more than this set of rules to provide

a basis, namely some quasi-identities Q which can guarantee the property

that given a finitely generated algebra A[a1, . . . , an] from V ar(LTK1) such

that ‖A‖ > 1, there is a quasi-identity q such that if A � q then in A+

each R4-cluster has a single element R4-cluster which is its R4-immediate

predecessor.



Chapter 6

Conclusions

6.1 Summary of the Thesis

In order to have a clear and systematic view of the results provided in the

previous chapters, we would like to provide a summary of our research as

well as to highlight our contributions to common knowledge.

Chapter 1. Introduction. We introduced our research topic and clar-

ified the reasons that led us to work with multi-modal logics. We explained

why we decided to adopt multi-modal languages and logics in order to deal

with multi-agent reasoning. We surveyed briefly some major contributions

in the field and then turned our attention to the problem of inference rules,

which are the core of our whole research.

Chapter 2. A Semantic Definition of LTK. We provided a seman-

tic definition of some multi-modal propositional systems. In particular we

introduced the logic LTK. We used a semantic approach. In fact we have

started our research by defining a set of Kripke frames. These structures are

useful whenever one is to model the behaviour of a set of agents operating

on a temporal framework. Thus we defined our logics as the set of all those

153
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formulae which are valid in this class of frames. We made a substantial use

of the so called Possible World Semantics or Kripke-semantics. Further,

we showed that the logic LTK has the effective finite model property and it

is hence decidable with respect to its theorems. This means that for each

formula A which is not a theorem of L we can build a model M whose size

is finite and computable from the size of A such that it verifies all theorems

of L and falsifies A. Hence the logic LTK is decidable with respect to its

theorems. In fact in order to check whether a formula is a theorem it is

enough to check only those models which are smaller than a certain finite

number n which can be calculated from the size of the formula itself.

Chapter 3. Admissible Rules in LTK1: Decidability. In Chapter 3

we started our semantic analysis of logical consequences. We defined the set

of admissible inference rules as the class containing all those rules which can

be applied to a given logic without altering its set of theorems. We designed

an algorithm which can check, given any inference rule, if this rule is or is

not admissible for LTK1.

Chapter 4. The Axiomatic System ASLTK. In Chapter 4 we pro-

vided some axiom schemata and rules which allow the interaction between

modalities. As we saw, this is a useful tool in order to deal with the concepts

of learning and forgetting. A language that lacks the power to combine dif-

ferent modalities is, in fact, useless in order to deal with both learning and

forgetting and it cannot handle, therefore, changing knowledge bases. On

the other hand, proving that an axiomatic system with combined modalities

is sound and complete with respect to a class of frames is neither easy, nor

straightforward. Nevertheless we provided a sound and complete axiomati-

sation with combined modalities.

Chapter 5. Rules in LTK1: Structural Incompleteness. Finally,
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in Chapter 5 we presented both our latest results and our current research

topic. We started by proving that the logic LTK1 is not structurally com-

plete. This means that there are inference rules which are not derivable on

the axiomatic system which generates LTK1. These rules, are, nevertheless,

admissible for LTK1. In this Chapter we define an infinite set of rules with

this property. Since all admissible rules can be applied in derivations with-

out altering the set of theorems of a logic, the class of admissible and not

derivable rules we present here adds new syntactical tools which can be used

in derivations.

Then we provided Algebraic Semantics for LTK1 and, finally, we introduced

the further work and the piece of research we are currently working on. We

started to investigate the problem of finding a finite basis for admissible in-

ference rules. We aim at finding a set of rules to axiomatise all the inference

rules admissible for LTK1, i.e. the smallest set of rules starting from which

one can derive all the admissible rules for LTK1.

6.2 Contributions

We have introduced some new logical systems which are useful whenever

one is to model a situation with several agents operating in a temporal

framework. As we have seen in Chapter 1, typical agents may be computer

programs running in parallel on some platform or buffers and other devices.

Nevertheless, agents may also be seen as players in some strategic game,

human beings operating and co-operating in a social environment in order

to reach a common goal. Our results can hence provide analytical tools to

be used in several fields. Besides Computer Science and Artificial Intelli-

gence, one may apply our logics to the study of social-economic phenomena
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(e.g. game theory, economical analysis of markets, local and global social

interactions).

Besides the interpretation provided and the possible contingent applica-

tions, however, we want to highlight the theoretical relevance of our research.

We have analysed some logical systems and we have provided some intended

models, as the multi-agent framework and the temporal multi-epistemic ap-

proach. On the theoretical side, however, we have described some new logics

and we have analysed them from a perspective that, as far as we are con-

cerned, has never been considered before. In particular we have built a

multi-modal system with combined modalities, LTK1, which is the result of

the fusion and the interaction of three distinct modal systems, namely two

S5 systems and one S4.3. We have showed that this logic is:

(i) Decidable with respect to its theorems;

(ii) Decidable with respect to its inference rules;

(iii) Generated by a finite axiomatic system;

(iv) Structurally incomplete.

Thus, these results are available to any researcher willing to model a logical

system with the properties we have described. Anyone can chose both the

interpretation of the modal operators and the intended models most suitable

for his/her purposes.

Moreover, we have analysed our systems from the point of view of in-

ference rules, contributing our decidability results to the field. The study

of inference rules applied to multi-modal logics has, in fact, started only

recently and there is still much work to be done. Our decidability results

are, therefore, a further step towards a systematic and complete analysis of

the wide field of inference rules applied to multi-modal propositional logics.
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E.Calardo

V.Rybakov

Combining Time and Knowledge,
Semantic Approach

Abstract

The paper investigates a semantic approach for combining
knowledge and time. We introduce a multi-modal logic L(TK)
containing modalities for knowledge and time in a semantic way,
as the set of all TK-valid formulae for a class of special frames
TK. The main result of our paper is the theorem stating that
L(TK) is decidable and giving a resolving algorithm. The result
is proven by using standard tools: filtration, bulldozing and
contracting p-morphisms.

1 Introduction

The paper is devoted to study a semantic approach to model knowl-
edge and time. Study of time and knowledge within framework of
modal logic is an active area nowadays (cf. [2, 3, 4, 6] and references
therein). Sound and complete axiomatizations for a number of different
logics involving modalities for knowledge and time are found in [4]. Our
approach, in a sense, is from an opposite site: we generate a logic com-
bining knowledge and time in a semantic manner, via a class of frames
which defines such a logic. Our aim is to study the question about
decidability. We would like to investigate to which extend a standard
technique of modal logic works, we like to construct a deciding algo-
rithm using only standard technique of modal logics without involving
heavy technique as automatons or the Rabin theorem.

We model the time as a linear discrete sequence of time states, and
the knowledge is represented by a tuple of modal-like operations Ki

(imitating knowledge of agents) which operates in time states contain-
ing a set of information nodes. We start by introduction of a certain
class of multi-modal Kripke frames which have the structure described
above and generate the logic L(TK) as the set of all formulae which are

1



true in these frames. We assume time flow to be linear and discrete and
agents operating synchronously: they have access to a sort of shared
clock 1, each agent knowing what time it is and distinguishing present
from future time. The main result of our paper is the theorem stating
that L(TK) is decidable and giving a resolving algorithm.

2 Notation, Definitions

General notation and definitions concerning modal logics which we will
use can be found, or instance, in [1, 5]. To study the combination
of knowledge and time we will use the language of multi-modal logic.
Our language LTK is chosen as follows: the alphabet of LTK contains
propositional letters P := {p1, ..., pn, ...}, round brackets (, ), standard
boolean operations, and the set of modal operations {24, 2∼, {Ki | i ∈
I := {1, ..., k}}. Well formed formulae (wff) are defined in the standard
way, in particular, if A is a wff, than 24A, 2∼A, KiA, for all i ∈ I, are
wff. Fma(L) is the set of all well formed formulae of LTK . The informal
meaning of the modal operations is as follows. The set I := {1, ..., k}
indicates k distinct agents. 24A means: the formula A always will
be true; KiA: the agent i knows A in the current time state and the
current information node; 2∼A: the wise agent knows A in the current
time state and current information node.

Semantics for this language is based on linear and discrete time
flow, associating a time point with any natural number n. As se-
mantic tools we will use the following Kripke-Hintikka frames: TK :=
〈WTK , R4, R∼, R1, ..., Rk〉, where the base set of TK is the disjoint union
of sets Cn, WTK :=

⋃
n∈N Cn,. Binary relations R4, R∼, and R1, ..., Rk

are as follows: R4 is the following linear, reflexive and transitive rela-
tion on WTK ×WTK :

∀x, y ∈ WTK(xR4y iff ∃n1, n2 ∈ N ((x ∈ Cn1)&
& (y ∈ Cn2) & (n1 ≤ n2)));

R∼ is the equivalence relation on any Cn ∈ WTK :
∀x, y ∈ WTK(xR∼y iff ∃n ∈ N (x ∈ Cn & y ∈ Cn);
Any Ri is some equivalence relation on any Cn.

1See Fagin et al., [2], pp. 127-128.
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The informal meaning of these frames is as follows. Any cluster Cn

contains a set of information nodes available at the time point n. The
relation R4 is the connection of the information nodes by time current:
xR4y indicates that the node y is a node available in the same time
as x, or y is an information node in a future time point. xR∼y says
that x and y are nodes in the same time point, and xRiy indicates
that in the current time point y is accessible from x by of the agent i
authorities. A model MTK on TK is a tuple MTK = 〈TK, V 〉 where V
is a valuation of a set P of propositional letters in TK. That is, for any
pi ∈ P V (pi) ⊆ WTK .

The valuation V can be extended from the set P onto all wff’s
constructed from P in the standard way. In particular, ∀x ∈ WTK ,

x 
V 24A iff ∀y ∈ WTK (xR4y =⇒ y 
V A);
x 
V 2∼A iff ∀y ∈ WTK (xR∼y =⇒ y 
V A);
x 
V KiA iff ∀y ∈ WTK (xRiy =⇒ y 
V A).
Let MTK := 〈TK, V 〉 be a model on a frame TK; a formula A ∈

Fma(LTK) is said to be true in MTK at the point a ∈ WTK if a 
V A.
A formula A is true in the model MTK , notation MTK 
 A, if ∀a ∈
WTK , a 
V A. A is valid in the frame TK, notation TK 
 A, if, for
any model MTK on TK, MTK 
 A.

Definition 2.1 The logic L(TK) is the set of all TK-valid formulae:
L(TK) := {A ∈ Fma(LTK) | TK 
 A, ∀ TK-frame}

3 Decidability

The aim of our paper is to prove that the logic L(TK) is decidable.
Initially we will show that any formula A which is not a theorem of
L(TK) can be refused by a frame similar to f TK but of a finite size
computable from the length of A. Consider and fix for the rest of this
paper a formula A such that A 6∈ L(TK). Then there is a frame TK and
a model MTK := 〈TK, V 〉 based on this frame such that, ∃a ∈ WTK ,
(MTK , a) 6
V A. Firstly we reduce the number of elements in any Cn

to a finite number of ones effectively bounded from size of A. This
can be easy done by a standard filtration on any separate Cn. Below
we briefly sketch this technique. Let Sub(A) be the set of all the sub-
formulae of A. Define the equivalence relation ≈ on WTK as follows:
∀a, b ∈ WTK [a ≈ b iff ∃n ∈ N (a, b ∈ Cn & ∀β ∈ Sub(A) (a 
V
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β iff b 
V β))]. Next, define the quotient set of the original model:
∀a ∈ WTK [a]≈ := {b | a ≈ b}, ∀n ∈ N Cn

≈ := {[a]≈ | a ∈ Cn},
W≈

TK :=
⋃

n∈N Cn
≈.

The model resulting from this filtration is based on this quotient
set and looks as follows: M≈

TK := 〈W≈
TK , R≈

4, R≈
∼, R≈

1 , ..., R≈
k , V ≈〉 where:

∀p ∈ Sub(A), V ≈(p) := {[a]≈ | a ∈ V (p)}; ∀[a]≈, [b]≈ ∈ W≈
TK ,

[a]≈R≈
4[b]≈ iff ∃n,m ∈ N ([a]≈ ∈ Cn

≈ & |b|≈∈ Cm
≈ & n ≤ m);

[a]≈R≈
∼[b]≈ iff ∃n,m ∈ N ([a]≈ ∈ Cn

≈ & [b]≈ ∈ Cm
≈ & n = m);

∀i ∈ I [a]≈R≈
i [b]≈ iff ∃n ∈ N ([a]≈, [b]≈ ∈ Cn

≈ &
&∀Kiβ ∈ Sub(A) ((MTK , a) 
V Kiβ iff (MTK , b) 
V Kiβ)).
Since the model described is a result of filtration the standard

filtration-lemma holds:

Lemma 3.1 For any formula β ∈ Sub(A), for any element a ∈ WTK
(MTK , a) 
V β ⇔ (M≈

TK , [a]≈) 
V ≈ β.

Corollary 3.2 M≈
TK 6
 A.

Lemma 3.3 If ‖Sub(A)‖ := m, then ∀n ∈ N, ‖Cn
≈‖ is at most 2m.

Thus the model M≈
TK refutes A and has clusters Cn of effectively

bounded size. Using M≈
TK we will construct a finite model refusing A.

The clusters Cn
≈ and Cj

≈ are isomorphic (we will use in the sequel nota-
tion: Cn

≈
∼= Cj

≈) if and only if there is a function f s.t.: f : Cn
≈ −→ Cj

≈,
(1) f is a bijection, (2) ∀ξ ∈ {4,∼, 1, ..., k}, ∀a, b ∈ Cn

≈ (aR≈
ξ b

iff f(a)R≈
ξ f(b)), (3) ∀p ∈ Sub(A), ∀a ∈ Cn

≈ (a ∈ V ≈(p) iff
f(a) ∈ V ≈(p)). By Lemma 3.3 we conclude

Proposition 3.4 There is only a finite, computable from A, number
of non-isomorphic time-clusters Cn

≈ ∈ W≈
TK.

For any time cluster Cn
≈, Cn4

≈ is the set of all the 4-successor clusters
of Cn

≈ : ∀ Cn
≈ ∈ W≈

TK , Cn4
≈ := {Cj

≈ | n ≤ j}, and Cn+
≈ :=

⋃
Cn4
≈ . In

the sequel, Cn+
≈ (M) or Cn4

≈ (M) are described sets from a frame M (we
will alter these frames M).

Definition 3.5 The time-cluster Cn
≈ is a stabilizing cluster if and only

if for any Cj
≈, where n ≤ j, the sets Cn4

≈ and Cj4
≈ coincide up to

isomorphism of clusters.
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Lemma 3.6 The model M≈
TK has a stabilizing cluster Cs.

Proof. By Proposition 3.4 the number of non-isomorphic time-
clusters Cn

≈ ∈ W≈
TK is finite. The following also holds: ∀n, j ∈ N, n ≤

j =⇒ Cn4
≈ ⊇ Cj4

≈ . Consider the sequence of all the time-clusters
C1
≈, C2

≈, ... . We construct a subsequence Cn′
≈ of the sequence Cn

≈, n ∈ N
as follows. Take C1

≈; if C1
≈ is a stabilizing cluster, then we stop, and the

subsequence is chosen. Assume a subsequence C1′
≈ , ..., Cn′

≈ is chosen. If
Cn′
≈ is not a stabilizing cluster, then there is a cluster Ck

≈, where, up to
isomorphism, Cn′4

≈ ⊃ Ck4
≈ . Take the 4-smallest Ck

≈ with this property

and set C
(n+1)′

≈ := Ck
≈. Since Cn′4

≈ ⊃ C
(n+1)′4
≈ , this procedure must

terminate, and it terminates at a stabilizing cluster. �

We denote by Cs the 4-smallest stabilizing cluster.

Lemma 3.7 If Cs is a stabilizing cluster, then ∀n, j ∈ N, where
n, j ≥ s, the following holds. If Cn

≈ is isomorphic to Cj
≈ by a mapping

f , then ∀β ∈ Sub(A), ∀a ∈ Cn
≈

((Cn+
≈ , a) 
V ≈ β iff (Cj+

≈ , f(a)) 
V ≈ β).

Proof may be given by induction on the length of β. The only non-
trivial steps are the ones for the modal operations. If β is 2∼B or KiB
for i ∈ I the claim holds by the induction hypotheses and the definition
of isomorphism. Let β be 24B. Assume (Cn+

≈ , a) 
V ≈ 24B. We can
have 3 cases: (i) n = j where the proof is trivial, (ii) n < j, and (iii) n >
j. If n < j, (Cn+

≈ , a) 
V ≈ 24B implies that for any b ∈ Cn+
≈ (b 
V ≈ B).

Since n < j, Cn+
≈ ⊇ Cj+

≈ holds and ∀c ∈ Cj+
≈ , (M≈

TK , c) 
V ≈ B.

Consequently (M≈
TK , f(a)) 
V ≈ 24B and (Cj+

≈ , f(a)) 
V ≈ 24B. The
proof of the converse is similar to the case (iii) below. Consider the
case (iii) when n > j. Assume (Cn+

≈ , a) 
V ≈ 24B. This implies
that, for any b ∈ Cn+

≈ , ((M≈
TK , b) 
V ≈ B). Since n, j ≥ s and Cs is

the stabilizing cluster, for any Cm
≈ ∈ Cj4

≈ there is some Cm′
≈ ∈ Cn4

≈
such that Cm

≈
∼= Cm′

≈ . Therefore by induction hypothesis we conclude
∀Cm

≈ ∈ Cj4
≈ , ∀c ∈ Cm

≈ (Cm+
≈ , c) 
V ≈ B. Then (M≈

TK , f(a)) 
V ≈ 24B

and (Cj+
≈ , f(a)) 
V ≈ 24B. The proof of the converse is similar to the

previous case. �

For any time-cluster Cn
≈, where n ≥ s, [Cn

≈]∼= is the set of all the
time-clusters isomorphic to Cn

≈: ∀n, j ≥ s [Cn
≈]∼= := {Cj

≈ | Cn
≈
∼= Cj

≈}.
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Take and fix, for any [Cn
≈]∼= a unique representative cluster C∗

n. Let
St :=

⋃
n≥s C∗

n be the set of all the elements of such clusters. We define

a new finite model as follows: MB
TK := 〈WB

TK , RB
4, RB

∼, RB
1 , ..., RB

k , V B〉,
where WB

TK := {C1
≈, C1

≈, ..., Cs, St}, ∀p ∈ Sub(A) V B(p) := {a ∈ WB
TK |

a ∈ V ≈(p)}, ∀a, b ∈ WB
TK ∀n, j ≤ s ((a ∈ Cn

≈ & b ∈ Cj
≈) =⇒ (aRB

4b
iff aR≈

4b)), otherwise, if n, j > s, RB
4 is a universal relation on St:

∀a, b ∈ St (aRB
4b). And aRB

∼b iff aR≈
∼b, ∀i ∈ I aRB

i b iff aR≈
i b.

Lemma 3.8 For any formula β ∈ Sub(A) and, for any a ∈ WB
TK,

(M≈
TK , a) 
V ≈ β iff (MB

TK , a) 
V B β.

Proof is given by induction on the length of β. The steps for the
boolean operations are standard. Let β be 24B. Assume (M≈

TK , a) 
V ≈

24B. Since a ∈ Cn
≈ for some n ∈ N, we have 2 cases: (A): n ≤ s and

(B): n > s.
Consider (A). Then (M≈

TK , a) 
V ≈ 24B implies that for all elements
b ∈ Cn+

≈ (M≈
TK , b) 
V ≈ B. Cn

≈ belongs to MB
TK by assumption. Let

Cn+
≈ (M≈

TK) be the set of all 4-successors of Cn
≈ in M≈

TK and Cn+
≈ (MB

TK)
be the set of all 4-successors of Cn

≈ in MB
TK . Then Cn+

≈ (M≈
TK) ⊇

Cn+
≈ (MB

TK)). Therefore by IH we have ∀c ∈ Cn+
≈ (MB

TK), (MB
TK , c) 
V B

B, and so it follows (MB
TK , a) 
V B 24B.

Consider the case (B): n > s. Then (M≈
TK , a) 
V ≈ 24B implies that

∀b ∈ Cn+
≈ (M≈

TK , b) 
V ≈ B. Consider all the clusters between Cs and
C≈

n : by the definition of stabilizing cluster, each of them is isomorphic
to some cluster belonging to Cn4

≈ . Therefore, by Lemma 3.7 we have
that ∀c ∈ Cj

≈ (s ≤ j ≤ n =⇒ (M≈
TK , c) 
V ≈ B). So we have ∀b ∈

Cs4 ((M≈
TK , b) 
V ≈ B). Since St ⊆ Cs+, ∀c ∈ St ((M≈

TK , b) 
V ≈ B)
holds. Applying IH we conclude ∀c ∈ St (MB

TK , b) 
V B B and it follows
(MB

TK , a) 
V B 24B.
Assume now that (MB

TK , a) 
V B 24B. Since a ∈ Cn for some
n ∈ N, we still have 2 cases: (C): n ≤ s and (D): n > s. In
the case (C), when n ≤ s, (MB

TK , a) 
V B 24B implies that ∀b ∈
Cn+
≈ (MB

TK), (MB
TK , b) 
V B B. Since up to the stabilizing cluster Cs,

M≈
TK and MB

TK have exactly the same clusters, applying the induction
hypotheses we have ∀c ∈ Cm

≈ (n ≤ m ≤ s =⇒ (M≈
TK , c) 
V ≈ B).

We have now to analyze the case when c ∈ St. First, B is true
w.r.t. V B in any element C∗

j ∈ St. Any C∗
j belongs to M≈

TK as well,
and applying the induction hypotheses we conclude: ∀C∗

j ∈ St ∀b ∈

6



C∗
j (M≈

TK , b) 
V ≈ B. By Lemma 3.7, we have ∀Cm
≈ ∈ [C∗

j ]∼= ∀c ∈
Cm
≈ , (M≈

TK , c) 
V ≈ B and so we can conclude ∀c ∈ Cs+, (M≈
TK , c) 
V ≈

B. Consequently (M≈
TK , a) 
V ≈ 24B.

Consider now the case (D): n > s. (MB
TK , a) 
V B 24B implies that

∀b ∈ St (MB
TK , b) 
V B B, because RB

4 is an equivalence relation on
St × St. The rest of the proof for this case is similar to the final part
of the case (C).

The inductive step for the case when β is 2∼B or β is KiB , i ∈ I
is immediate because the relations R≈

∼ (R≈
i ) and RB

∼ (RB
i ) are the same

in M≈
TK and MB

TK . �

Thus, by this lemma, the model, MB
TK , is finite and refuses the

formula A. Since the number of elements in this model is not effectively
bounded, we do not have yet decidability of the logic L(TK). Below we
will construct a new model by dropping some 4-clusters from MB

TK .
For any sub-formula β of A, Cβ is the 4-maximal 4-cluster among

C1
≈, C2

≈, ..., Cs
≈ s.t. ∃b ∈ Cβ(MB

TK , b) 
V B β, if such clusters exists. C¬β

is the analogous cluster for ¬β. The new model is as follows:

WF
TK :=

⋃
β∈Sub(A)

Cβ ∪
⋃

β∈Sub(A)

C¬β ∪ St,

MF
TK := 〈WF

TK , RF
4, RF

∼, RF
1 , ..., RF

k , V F〉

where: ∀p ∈ Sub(A) V F(p) := {a ∈ WF
TK | a ∈ V B(p)}, ∀a, b ∈

WF
TK , ∀Rξ ∈ {R4, R∼, R1, ..., Rk}, aRF

ξ b iff aRB
ξ b.

Lemma 3.9 For any formula β ∈ Sub(A), for any element a ∈ WF
TK,

(MF
TK , a) 
V F β iff (MB

TK , a) 
V B β.

Proof is by induction on the length of β. Evidently we only need
to consider the steps for modal operations. If β is 2≈B or β is KiB,
the steps are evident because all the relations RF

∼ and RF
i are the same

in MF
TK and MB

TK . Consider the case when β is 24B. If (MB
TK , a) 
V B

24B then ∀b ∈ WB
TK (aR4b =⇒ (MB

TK , b) 
V B B). Since WF
TK ⊆ WB

TK ,
by induction hypothesis we have ∀c ∈ WF

TK (aR4b =⇒ (MF
TK , b) 
V F

B) and so (MF
TK , a) 
V F 24B.

If (MB
TK , a) 6
V F 24B then there is an element b ∈ WB

TK such that
aR4b and (MB

TK , b) 6
V B B.

7



If b ∈ St, then clearly (MF
TK , b) 6
V F B and (MF

TK , a) 6
V F 24B.
Otherwise there is an R4-maximal cluster C¬B among C1

≈, C2
≈, ..., Cs

≈
and a c ∈ C¬B s.t. (MB

TK , c) 6
V B B. Since C¬B belongs to WF
TK by

IH we conclude (MF
TK , c) 6
V F B. Since aR4b, it follows (MF

TK , a) 6
V F

24B. �

So, by this lemma A is refused by the model MF
TK with effectively

bounded size. Take an arbitrary frame F with the structure as the
frame of a model MF

TK . It is easy to show that F is a p-morphic image
of a frame TK based on ∼-clusters from the 4-linear part of F which
4-followed by infinite chain of ∼-clusters subsequently doubling the
remaining part of ∼-clusters from F . Therefore all theorems of L(TK)
are true in F , and we have the following

Theorem 3.10 The logic L(TK) has the finite model property with
computable size of refusing models, and hence L(TK) is decidable.
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Abstract

The paper investigates admissible inference rules for the multi-modal logic LTK, which describes a

combination of linear time and knowledge. This logic is semantically defined as the set of all LT K-
valid formulae, where LT K-frames are multi-modal Kripke-frames combining a linear and discrete

representation of the flow of time with special S5-like modalities, defined at each time cluster and

representing knowledge. We start by revising the effective finite model property in this particular
case, while the central part of the paper is devoted to constructing special n-characterising models

for LTK. Such structeres allow us to find an algorithm determining admissible inference rules in LTK;
the main result of this work is that LTK is decidable with respect to inference rules.

Keywords: Modal logic, Multi-modal logic, Epistemic logic, Tense logic, Inference rules, Admissible

rules

1 Introduction

Modal and multi-modal propositional logics are among the most promising
tools that have been developed so far to describe human reasoning. Modalities
have been investigated since the dawn of philosophical and logical research.
They are flexible by nature: modal operators can be interpreted in many ways.
Depending on the chosen interpretation, we can generate different languages
which are useful to describe distinct aspects of human reasoning. It is well
known that the combination of temporal and knowledge modalities provides an
highly expressive language, (cf. Fagin et al. [3], Thomason [23]). Multi-modal
logics generated by adjoining operators representing time and knowledge to the
classical propositional calculus PC are particularly effective for representing a
state in which agents, who possess a certain knowledge, are operating in the
flow of time (see for instance Dixon et al. [2], Fagin et al. [3], Gabbay et al.
[5], Halpern et al. [12], Thomason [23], Wooldridge and Lomuscio [24]). These
logics have many applications both in AI and in CS.

Although such techniques work fine in numerous applications, it is reason-
able to ask whether and how the inference machinery could be enlarged. Many
variations of axiomatic systems have been presented so far (see for instance

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–21 0000 c© Oxford University Press



2 Admissible Inference Rules in LTK

Halpern et al. [12]). But there are also other important components in deriva-
tions: inference rules.

Inference rules, or logical consecutions, are an important instrument of non-
standard logics. For instance, rules can describe properties of modal frames
in some cases in which using formulae may be difficult. A good example is
Gabbay’s irreflexive rule (cf. [6]):

ir :=
¬(p → ♦p) → A

A

(where p does not occur in the formula A). This rule states that each world of a
model, where A is not valid, should be irreflexive. Admissible consecutions have
been deeply investigated for many modal and superintuitionistic logics (see, for
instance, Ghilardi [7, 8, 9], Golovanov et al. [11], Iemhoff [15, 16], Jer̂ábek [17],
Rybakov [20, 21, 22]). Their investigation began with Harrop’s observation
(cf. [13]) that we can enlarge an axiomatic system by adding admissible,
though not derivable, inference rules.This approach led Friedman (see [4]) to
ask whether there is an algorithm to recognise the rules admissible in IPC, the
intuitionistic propositional calculus. This question and its analogues for modal
logic has been solved by Rybakov [18, 19, 22], and a robust mathematical
theory has been developed1.

However, for the case of multi-modal logics, not much is known concerning
admissible inference rules, though there have been some attempts to approach
the problem (cf. for instance Golovanov et al. [10]). Nowadays, logics of this
kind are an active research area and the axiomatic systems that have been
constructed and examined are numerous (cf. Halpern et al. [12]). In our
paper, we extend the investigation of this area to a multi-modal logic, LTK
(Linear Time and Knowledge), which combines tense and knowledge modali-
ties. This logic is semantically defined as the set of all LT K-valid formulae,
where LT K-frames are multi-modal Kripke-frames combining a linear and dis-
crete representation of the flow of time with special S5-like modalities, defined
at each time cluster and representing knowledge.

The aim of this paper is to show that LTK is decidable with respect to
admissible inference rules, i.e. to find an algorithm which recognises, given a
rule r, if r is admissible for LTK. We start by proving that LTK has the effective
finite model property and hence it is decidable with respect to theorems (cf.
Section 3). Although this result follows from Calardo and Rybakov [1], we
will briefly sketch the proof in Section 3, because in the sequel we will need
the techniques used. Section 4 is the core of this work and it is devoted to the
construction of special countable n-characterising models for LTK. In Section

1For a more detailed historical account see Rybakov [22], Iemhoff [14].
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5 we prove several technical lemmas. Finally, in Section 6, we present the main
contribution of this paper. We show that an inference rule r is admissible in
LTK if and only if it is valid in all the frames of a special kind, whose size
is computable and bounded by the size of r. Hence, we prove that LTK is
decidable w.r.t. inference rules.

2 Preliminaries

Before presenting our account of the semantic tools we will use in this paper,
we recall some necessary basic definitions, so that this paper will be largely
self contained.

The language LLTK is as follows: its alphabet consists of a countable set of
propositional letters P := {p1, . . . , pn, . . .}, round brackets (, ), the standard
boolean operations and the set of modal operations {�4,Ke,Ka}. Well formed
formulae (wff’s) are defined in the standard way, in particular, if A is a wff,
than �4A, KeA, KaA are wff’s; Fma(LLTK) is the set of all the wff’s of LLTK

(in the rest of the paper, by the expression formula we always refer to a
formula from Fma(LLTK)). The intended meaning of the modal operations is:
(a) �4A means that the formula A will always be true; (b) KaA stands for the
agent operating in the system knows A in the current moment ; (c) KeA means
that A is known everywhere in the present time-cluster (i.e. A is part of the
environmental knowledge).

Definition 2.1
A k-modal Kripke-frame is a tuple F = 〈WF ,R1, . . . ,Rk〉 where WF is a non-
empty set of worlds and each Ri is some binary relation on WF . Given a frame
F , by WF we denote its base set.

Definition 2.2
Given a Kripke-frame F := 〈WF ,R1, . . . ,Rk〉, for any Ri, an Ri-cluster of
worlds is a subset CRi

of WF s.t.: ∀w∀z ∈ CRi
(wRiz & zRiw) and ∀z ∈

WF∀w ∈ CRi
((wRiz & zRiw) ⇒ z ∈ CRi

). For any Ri, CRi
(w) is the Ri-cluster

s.t. w ∈ CRi
(w). Given two Ri-clusters Cm and Cj the expression CmRiCj is an

abbreviation for ∀w ∈ Cm∀z ∈ Cj(wRiz).

Semantics for the language LLTK is based on a linear and discrete flow of
time, associating a time point with any natural number n. The semantic tools
we will use are a particular kind of 3-modal Kripke-frames:

Definition 2.3
An LT K-frame (Linear Time and Knowledge frame) is a 3-modal Kripke-
frame F := 〈WF ,R4,Re,Ra〉, where WF is the disjoint union of certain non
empty sets Cn, for n ∈ N: WF :=

⋃
n∈N Cn. The binary relations R4, Re, and

Ra are as follows:
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(a) R4 is the linear, reflexive and transitive relation on WF such that:
∀w∀z ∈ WF (wR4z iff ∃i, j ∈ N ((w ∈ Ci) & (z ∈ Cj) & (i ≤ j)))

(b) Re is a universal relation on any Ci ∈ WF :
∀w∀z ∈ WF (wRez ⇔ ∃i ∈ N (w ∈ Ci & z ∈ Ci));

(c) for all i, Ra is some equivalence relation on Ci.

The number of sets Cn can be either finite or infinite. The intended meaning
of these frames is to represent a situation in which one agent, having a certain
knowledge background at any moment, is operating in the linear flow of time.
Each time-cluster (i.e. an R4-cluster) Cn consists of a set of information points
that are available at the moment n. The relation R4 is the connection of such
information points by the flow of time, that is, given two information points
w and z, the expression wR4z means either that w and z are both available
at a moment n, or that z will be available in the future with respect to w.
Since the relation Re connects all the information-points available at the same
moment, it is intended to represent a sort of environmental knowledge, that
is the whole information potentially available for the agent at a given time.
Moreover Ra says which information points are effectively available for the
agent: it specifies the piece of information the agent has access to at any given
moment.
Definition 2.4
Given a Kripke-frame F , a model MF on F is a tuple MF = 〈F , V 〉 where V
is a valuation of a set P of propositional letters in F . That is, for any p ∈ P
(V (p) ⊆ WF ).

Given a model M = 〈F , V 〉, where F is an LT K-frame, the valuation V can
be extended in the standard way from the set P onto all well formed formulae
constructed from P . In particular, ∀w ∈ WF ,

(a) (F , w) 
V p ⇔ w ∈ V (p);
(b) (F , w) 
V �4A ⇔ ∀z ∈ WF (wR4z ⇒ (F , z) 
V A);
(c) (F , w) 
V KeA ⇔ ∀z ∈ WF (wRez ⇒ (F , z) 
V A);
(d) (F , w) 
V KaA ⇔ ∀z ∈ WF (wRaz ⇒ (F , z) 
V A).

Definition 2.5
If M = 〈F , V 〉 is a model on a frame F , a formula A is said to be true in
the model M at the world w if (F , w) 
V A; A is true in the model M,
notation F 
V A, if ∀w ∈ WF , (F , w) 
V A; A is valid in the frame F , no-
tation F 
 A, if, for any valuation V for F (that is for any model MF on
F), F 
V A. Given a class of frames F, A is valid on F (and we say A to be
F-valid) if ∀F ∈ F, F 
 A. The expression V (A) is an abbreviation for the set
{w | w 
V A}.

Definition 2.6
Let LT K be the class of all LT K-frames. The logic LTK is the set of all LT K-
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valid formulae: LTK := {A ∈ Fma(LLTK) | F 
 A & F ∈ LT K}. If A belongs
to LTK, then A is a theorem of LTK.

3 Effective finite model property for LTK

The first question we will give an answer to is whether LTK has the effective
finite model property (efmp). A logic L has the efmp if for every formula A 6∈ L
there is a finite model 〈F , V 〉 such that F 
V B for each B ∈ L, F 6
V A and
‖WF‖ ≤ f(‖A‖), where f is computable. We will prove below that LTK has
the efmp and hence it is decidable. Though this result follows from Calardo
and Rybakov [1], we will give an enlightened version of the proof, because we
will need such technique in the sequel.

Definition 3.1
Given a Kripke-frame F = 〈W,R1, . . . ,Rk〉 and a world w in WF , wRi≤ :=
{z | wRiz} and wRi< := {z | wRiz & ¬(zRiw)}. Given a Ri-cluster C, CRi≤ :=
{Cj | CRiCj} and CRi< := {Cj | CRiCj & ¬(CjRiC)} (In what follows we will
always use the expression w4 and C4 as abbreviations for wR4≤ and CR4≤

respectively. We will also use w< and C< instead of wR4< and CR4<).

Theorem 3.2
The logic LTK has the efmp and hence it is decidable.

Proof. Take a formula A such that A 6∈ LTK; then there are an LT K-frame
F1 := 〈WF1 ,R

1
4,R1

e .R
1
a〉, a model M1 := 〈F1, V1〉 and a world w ∈ WF1 such

that (F1, w) 6
V1 A. Suppose F1 is infinite.

Step 1. We start by reducing the number of worlds belonging to each R1
4-

cluster C of worlds from WF1 using the standard filtration technique, briefly
sketched below. Let Sub(A) be the set of all the sub-formulae of A. Define the
equivalence relation ≈ on WF1 as follows:
∀w∀z ∈ WF1(w ≈ z ⇔ wR1

4z & zR1
4w & ∀B ∈ Sub(A) ((F1, w) 
V1 B ⇔

(F1, z) 
V1 B))) (Recall that the condition wR1
4z & zR1

4w is equivalent to
∃i(w ∈ Ci & z ∈ Ci), that is the worlds w and z belong to the same time-
cluster and hence wR1

ez).

Next, define the quotient set of the original model: ∀w ∈ WF1 [w] := {z |
w ≈ z}, ∀n ∈ N [Cn] := {[w] | w ∈ Cn}. Let F2 := 〈WF2 ,R

2
4,R2

e ,R
2
a〉 be a

frame where:
(a) WF2 :=

⋃
n∈N[Cn];

(b) [w]R2
4[z] ⇔ wR1

4z;
(c) [w]R2

e [z] ⇔ wR1
ez;

(d) [w]R2
a[z] ⇔ ([w] ∈ [Cn] & [z] ∈ [Cn] & ∀B ∈ Sub(A)((F1, w) 
V1 KaB ⇔

(F1, z) 
V1 KaB)).
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Let M2 := 〈F2, V2〉 be a model on F2 where V2 is defined as:

∀p ∈ Sub(A) V2(p) := {[w] | w ∈ V1(p)}

Since the model described is the result of a filtration, the standard filtration-
lemma holds:

Lemma 3.3
For any formula B ∈ Sub(A), for any world w ∈ W1, (F1, w) 
V1 B ⇔
(F2, [w]) 
V2 B.

Corollary 3.4
F2 6
V2 A.

Thus the model M2 refutes A as well. Moreover, each R2
4-cluster contains a

finite number of worlds, bounded by the size of A, namely ‖C‖ ≤ 2‖Sub(A)‖ for
each R2

4-cluster C.

Step 2. We will reduce, now, the amount of time-clusters (i.e. R2
4-clusters)

to a finite one. We need few preliminary facts. Evidently, the following holds:

Proposition 3.5
There is only a finite, computable from the size of A, number of non-isomorphic
w.r.t. Sub(A) time-clusters C from WF2.

Definition 3.6
Given an LT K-frame F := 〈WF ,R4,Re,Ra〉 and a model M := 〈F , V 〉, an
R4-cluster Cs is a stabilizing cluster if and only if for any R4-cluster Ci ∈ C4

s ,
for any R4-cluster Cj ∈ C4

s there is an R4-cluster Ck ∈ C4
i such that Cj

∼= Ck,
i.e. the sets C4

s and C4
i coincide up to isomorphism between R4-clusters.

Lemma 3.7
The model M2 has a stabilizing R2

4-cluster Cs.

Proof. By Proposition 3.5 the number of non-isomorphic R2
4-clusters C is

finite. Moreover, we have that for all the R2
4-clusters Ci, Cj from WF2 ,

CiR
2
4Cj ⇒ C4

i ⊇ C4
j . Consider the sequence of all the time-clusters C1, C2, . . ..

We construct a subsequence C′n of the sequence Cn, n ∈ N as follows. Take
C1; if C1 is a stabilizing cluster, then we stop, and the subsequence is cho-
sen. Otherwise, assume that a subsequence C′1, . . . , C′n is chosen. If C′n is not
a stabilizing cluster, then there is a cluster Ck, where, up to isomorphism,
C′4n ⊃ C4

k . Take the R2
4-smallest Ck with this property and set C′(n+1) := Ck.

Since C′4n ⊃ C′4(n+1), this procedure must terminate, and it stops at a stabilizing
cluster.
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Lemma 3.8
If Cs is a stabilizing cluster, then, for all the R2

4-clusters Ci, Cj of worlds from
WF2 such that CsR

2
4Ci and CsR

2
4Cj, if Ci is isomorphic to Cj by a mapping f ,

then ∀B ∈ Sub(A), ∀w ∈ Ci (F2, w) 
V2 B ⇔ (F2, f(w)) 
V2 B.

Proof. It may be given by an easy induction on the length of B. Both the
basis of the induction and the inductive steps regarding the boolean opera-
tions and the modal operators Ke and Ka are evident. Hence, we turn our
attention only to the case B is �4D, (F2, w) 
V2 �4D and w4 ⊂ f(w)4. It
follows that ∀z ∈ w4, (F2, z) 
V2 D. Since each R2

4-cluster from f(w)4 is
isomorphic to some R2

4-cluster from w4, by Inductive Hypothesis, we have
∀v ∈ f(w)4, (F2, v) 
V2 D, therefore (F2, f(w)) 
V2 �4D.

Step 3. Consider the set C4
s . We want to reduce the number of its elements

to a finite one. Firstly, we make a partition of this set into equivalence classes.
We take each time-cluster of worlds from C4

s and we define its equivalence
class w.r.t. isomorphic time-clusters [C]∼= := {Cj | CsR

2
4Cj & C ∼= Cj}. We take

and fix, for each R2
4-cluster C from C4

s , a representative R2
4-cluster Rep(C) ∈

[C]∼=. Next we set REP :=
⋃
C∈C4

s
Rep(C). Now we introduce a new frame

St := 〈WSt,R
St
4 ,RSt

e ,RSt
a 〉 where:

(a) WSt :=
⋃
C∈REP C

(b) RSt
4 := WSt ×WSt

(c) RSt
e := R2

e � WSt (i.e. RSt
e is the restriction of R2

e on WSt.)
(d) RSt

a := R2
a � WSt

We consider, now, the linear part of M2 up to the stabilising cluster Cs and
we define a subframe Fl v F2, Fl := 〈Wl,R

l
4,Rl

e,R
l
a〉, where WFl

:= WF2 −⋃
C4

s . The LT K-frame F3 := 〈WF3 ,R
3
4,R3

e ,R
3
a〉 has the following structure

(see Figure 1):
(a) WF3 := WSt ∪WFl

(b) R3
4 := RSt

4 ∪ Rl
4 ∪ {〈w, z〉 | w ∈ WFl

& z ∈ WSt}
(c) R3

e := RSt
e ∪ Rl

e

(d) R3
a := RSt

a ∪ Rl
a

Let MF3 := 〈F3, V3〉 be the model in which V3 is the restriction of V2 on WF3 .

Lemma 3.9
For any formula B ∈ Sub(A), for any world w ∈ WF3, (F3, w) 
V3 B ⇔
(F2, w) 
V2 B.

Proof. The proof can be given by induction on the lenght of B. We consider
only the case in which B is �4D, (F3, w) 
V3 �4D and w ∈ WSt. This means
that D is true at all those worlds z ∈ WF3 s.t. wR3

4z, i.e. all the worlds
belonging to WSt (recall that RSt

4 is an equivalence relation on WSt). By
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Fig. 1. Scheme of the structure of the frame F3.

Inductive Hypothesis we have that (F2, z) 
V2 D for any z belonging both
to WF3 and to WF2 . Consider a world v ∈ WF2 such that v ∈ C4

s . We
can have two cases: either v belongs to WSt or v does not. In the former
case (F2, v) 
V2 D holds by Inductive Hypothesis, while in the latter, since v
belongs to an R2

4-cluster isomorphic to an RSt
e -cluster from WSt, (F2, v) 
V2 D

holds by Lemma 3.8. Therefore (F2, w) 
V2 �4D.

The base set of MF3 contains a finite number of worlds, but, since we do not
know how many they are, we need to contract it again.

Step 4. For each B ∈ Sub(A), we consider the R3
4-maximal R3

e-cluster C of
worlds from WF3 such that ∃w ∈ C, (F3, w) 
V3 B and we denote it by CB.
Likewise, by C¬B we denote the R3

4-maximal R3
e-cluster containing a world z

refuting B. Then we introduce a new frame F4 := 〈WF4 ,R
4
4,R4

e ,R
4
a〉 where:

WF4 :=
⋃

B∈Sub(A)

CB ∪
⋃

B∈Sub(A)

C¬B ∪ WSt

and all the binary relations are the restriction of the ones from F3 on WF4 .
Let M4 := 〈WF4 , V4〉 be a model on F4 where V4 is nothing but the restriction
of V3 on WF4 .

Lemma 3.10
For any formula B ∈ Sub(A), for any world w ∈ W4, (F4, w) 
V4 B ⇔
(F3, w) 
V3 B.

Proof. We conduct an easy induction on the length of B, and we illustrate
only the case B is �4D, (F4, w) 
V4 �4D and w 6∈ WSt. Suppose (F3, w) 6
V3

�4D. Then there is a world z ∈ WF3 such that wR3
4z, (F3, z) 6
V3 D and
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z 6∈ WF4 . By construction of MF4 , there must be an R4
4-maximal R4

e-cluster
C¬D in F4 such that there exists a world v ∈ C¬D, (F4, v) 6
V4 D. Since C¬D is R4

4-
maximal, we also have wR4

4v. This is a contradiction, hence (F3, w) 
V3 �4D.

Now the number of worlds from WF4 is finite and it is f(‖A‖), where f is a
computable function and f(‖A‖) ≤ (2‖Sub(A)‖(2‖Sub(A)‖+ 22‖Sub(A)‖

)).

Step 5. Our next step is to show that F4 is the p-morphic image of an
LT K-frame and hence ∀B ∈ LTK, F4 
 B. Let CSt

1 , . . . , CSt
i be an enumeration

of all the R4
e-clusters of worlds from WSt and let F5 := 〈WF5 ,R

5
4,R5

e ,R
5
a〉 be a

frame such that:
(a) WF5 :=

⋃
1≤j≤i CSt

j

(b) ∀w∀z ∈ WF5 (wR5
4z ⇔ (w ∈ CSt

j & z ∈ CSt
k & j ≤ k))

(c) ∀w∀z ∈ WF5 (wR5
ez ⇔ wR4

ez)
(d) ∀w∀z ∈ WF5 (wR5

az ⇔ wR4
az)

Let F∞ = 〈WF∞ ,R∞4 ,R∞e ,R∞a 〉 be an LT K-frame consisting of an infinite
repetition of F5 and let F6 = 〈WF6 ,R

6
4,R6

e ,R
6
a〉 be a subframe of F4 such

that WF6 = WF4 −
⋃
C<

s (recall that Cs is the stabilizing cluster of F4). Let
F = 〈WF ,R4,Re,Ra〉 be an LT K-frame such that:

(a) W = WF∞ ∪W6

(b) R4 = R∞4 ∪ R6
4 ∪ {〈w, z〉 | w ∈ WF6 & z ∈ WF∞}

(c) Re = R∞e ∪ R6
e

(d) Ra = R∞a ∪ R6
a.

It is easy to see that F4 is a p-morphic image of F .

Notice that in this proof we have examined only the general case in which
the formula A is not valid in an infinite LT K-frame. If such frame is a finite
one, we do not need to go through steps 2, 3 and 5.

4 Construction of ChLTK(n)

In this section we will construct special countable n-characterizing models for
the logic LTK (see Definition 4.2) based on the tecniques presented in Rybakov
[22]. This construction is the ground on which we will base our main result.

Given an LT K-frame F := 〈WF ,R4,Re,Ra〉, a world w (or an R4-cluster
C) from WF has R4-depth n, in symbols depthR4(w) = n, if the number of
R4-clusters in CR4(w)4 is n (in what follows, we will always use the expression
depth instead of R4-depth or depthR4). The expression Sln(F) denotes the
n-slice of F , i.e. the family of all the elements of depth n from WF . Sn(F)
is the set of all the elements from WF with depth at most n. Given a model
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M := 〈F , V 〉 and a world w ∈ WF , by V alV (w) we will denote the set
{pi | w 
V pi}. For any valuation V , Dom(V ) denotes the domain of V .

Definition 4.1
Let Fi = 〈WFi ,R

i
1, . . . ,R

i
k〉, for i ∈ I, be a family of k-modal Kripke-frames

with pairwise disjoint base sets, i.e. WFi ∩ WFj = ∅ for each i, j ∈ I. The
disjoint union of Fi is the frame:⊔

i∈I

Fi = 〈
⋃
i∈I

WFi ,
⋃
i∈I

Ri
1, . . . ,

⋃
i∈I

Ri
k〉

Given a family Mi = 〈Fi, Vi〉 of Kripke-models on the family of frames Fi,
the disjoint union of Mi is the model:⊔

i∈I

Mi = 〈
⊔
i∈I

Fi,
⋃
i∈I

Vi〉

Definition 4.2
Given a logic L, a Kripke-model M := 〈F , V 〉 is an n-characterizing model
for L iff: (a) Dom(V ) := {p1, . . . , pn} (b) for any formula A built up from
Dom(V ), F 
V A ⇔ A ∈ L.

Let F be a class of finite LT K-frames (i.e. LT K-frames whose base sets are
finite) such that, for any frame F ∈ F, ∀w∀z ∈ WF (wR4z & wRez). Let C(F)n

be the class of all the possible different, non isomorphic models C := 〈F , V 〉,
where:

(a) F ∈ F;
(b) Dom(V ) = {p1, . . . , pn};
(c) ∀w∀z ∈ WF

(
((V alV (w) = V alV (z))&({V alV (w′) | wRaw

′} = {V alV (z′) |

zRaz
′})) ⇒ (w = z)

)
.

It is easy to notice that the size of C(F)n is computable and bounded by n.

Step 1. Let P(C(F)n) be the set of all the subsets of C(F)n.

Given a set S = {C1, . . . , Cj} from P(C(F)n), for each Ci ∈ S, we display the
model Ci as Ci := 〈Wi,R

i
4,Ri

e,R
i
a, Vi〉.

For any set S = {C1, . . . , Cj} from P(C(F)n), TS is the Kripke-model TS :=
〈WS,R4,Re,Ra, V 〉, where:

(a) WS :=
⋃

1≤i≤j Wi

(b) R4 := WS ×WS
(c) Re :=

⋃
1≤i≤j Ri

e

(d) Ra :=
⋃

1≤i≤j Ri
a
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(e) Dom(V ) := {p1, . . . , pn}
(f) ∀p ∈ Dom(V )(V (p) :=

⋃
1≤i≤j Vi(p))

Since the temporal relation R4 is universal, each TS is an R4-cluster of
Re-clusters.
Let S1(ChLTK(n)) :=

⊔
S∈P(C(F)n) TS.

Hence the first slice contains a finite number of pairwise disjoint models,
where each model is an R4-cluster of Re-clusters.

Step 2. Consider any TS from S1(ChLTK(n)), and any Re-cluster Ci from
C(F)n s.t. ∀C ∈ TS, Ci is not isomorphic to a submodel of C.

We adjoin all such models Ci to S1(ChLTK(n)) assuming Ci to be the im-
mediate R4-predecessor of all the Re-clusters from TS. The resulting model is
defined as S2(ChLTK(n)).

Step 3. Suppose we have already constructed the model Si(ChLTK(n)) for
i ≥ 2 such that its frame is an LT K-frame and given two different R4-clusters
Cj , Ck from this frame, if Cj is an immediate R4-predecessor of Ck, then Cj

is not isomorphic to a submodel of Ck. To construct Sli+1(ChLTK(n)) we add
Re-clusters from C(F)n in the following way. We take each Re-cluster C of
depth i and we add as its immediate R4-predecessors all the possible different
Re-clusters Cj from C(F)n, but only provided that Cj is not isomorphic to a
submodel of C.
Let Si+1(ChLTK(n)) be the model resulting from all such additions.

The final model ChLTK(n) := 〈WCh(n),R4,Re,Ra, V 〉 is given by⋃
i∈N

Si(ChLTK(n))

Let Ch(n) be the name for the frame on which ChLTK(n) is based.

Lemma 4.3
The model ChLTK(n) = 〈Ch(n), V 〉 is n-characterizing for LTK.

Proof. Since Ch(n) 
 LTK by construction, the claim A ∈ LTK ⇒ Ch(n) 
V

A, for any formula A built up from the propositional letters p1, . . . , pn, follows
immediately.

Suppose there is a formula A built up from p1, . . . , pn s.t. A 6∈ LTK. In order
to prove that A is not true in ChLTK(n), we will construct a model refuting A,
which is isomorphic to an open submodel of ChLTK(n).
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By Theorem 3.2, there are a finite frame F1 = 〈WF1 ,R
1
4,R1

e ,R
1
a〉 (whose size

is computable and bounded by the size of A) and a model M1 := 〈F1, V1〉 such
that F1 6
V1 A. ∀w, z ∈ C, if the following two conditions hold:

(a) V alV1(w) = V alV1(z)
(b) {V alV1(w

′) | wR1
aw

′} = {V alV1(z
′) | zR1

az
′}

then we glue w and z together. The resulting model M2 := 〈F2, V2〉 is a
p-morphic image of M1 := 〈F1, V1〉, thus it still refutes A.

Let St1 be the set of R1
e-clusters of depth 1 from F1, and let St2 be the set

of R2
e-clusters of depth 1 from F2 (cf. Section 3 and Figure 1). We delete

R2
e-clusters from St2 as follows: for any C1, C2 from St2 s.t. C1 6= C2, if C1 is a

submodel of C2, then we delete C1. Let M∗
1 be the resulting model. Clearly,

M∗
1 is a p-morphic image of St1 and it is also isomorphic to an open submodel

of ChLTK(n).
Suppose we have already constructed the model M∗

i := 〈F∗i , V ∗
i 〉 s.t.:

(a) ∀w ∈ WF∗i , depth(w) ≤ i
(b) M∗

i is a p-morphic image of the open submodel of M2 generated by the
set

⋃
C4, where C is an R2

4-cluster of depth i.
(c) M∗

i is isomorphic to some open submodel of ChLTK(n).
The following procedure will explain how to obtain the model M∗

i+1. Let C
be the R∗4-deepest R∗4-cluster in M∗

i . Consider the R2
4-cluster Ci+1 in M2 of

depth i+1. If Ci+1 is not a submodel of C, then we adjoin Ci+1 as the immediate
R∗4-predecessor of C, otherwise we do not add anything. This procedure ends
when we reach the R2

4-deepest R2
4-cluster C in M2. We denote the resulting

model by M∗. Clearly, M∗ is a p-morphic image of the original model M1,
therefore it refutes A. Since M∗ is also isomorphic to some open submodel of
ChLTK(n), it follows Ch(n) 6
V A.

5 Definability of worlds

Definition 5.1
Given a model M = 〈F , V 〉, a world w ∈ WF is definable if and only if there
is a formula β(w) such that ∀z ∈ WF ((F , z) 
V β(w) ⇔ w = z).

Lemma 5.2
For any n-characterising model ChLTK(n), each world w from WCh(n) is de-
finable.

Proof. We will use the following abbreviations: Si for Si(ChLTK(n)); ♦4

for ¬�4¬ and ♦e, ♦a for ¬Ke¬, ¬Ka¬ respectively. If depth(w) = 1, the
expression TS(w) will denote the R4-circle of Re-clusters to which w belongs.

Step 1. We start by analysing the case depth(w) = 1, that is w belongs to
some TS(w) ∈ S1(ChLTK(n)). We will use the following formulae:
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α(w) :=
∧

w∈V (pi)

pi ∧
∧

w 6∈V (pi)

¬pi

ρa(w) :=
∧

wRaz

♦aα(z) ∧ Ka

∨
wRaz

α(z)

ρe(w) :=
∧

z∈CRe (w)

♦e

(
α(z) ∧ ρa(z)

)
∧ Ke

∨
z∈CRe (w)

(
α(z) ∧ ρa(z)

)

ρ4(w) :=
∧

z∈TS(w)

♦4

(
α(z) ∧ ρa(z) ∧ ρe(z)

)
∧�4

∨
z∈TS(w)

(
α(z) ∧ ρa(z) ∧ ρe(z)

)

ρ<(w) :=
∧

z∈TS(w)

�4♦4

(
α(z) ∧ ρa(z) ∧ ρe(z)

)
We set the formula β(w) to be:

β(w) := α(w) ∧ ρa(w) ∧ ρe(w) ∧ ρ4(w) ∧ ρ<(w)

The intended meaning of the defined formulae is:
(a) ρa(w) specifies the structure of the Ra-cluster generated by w;
(b) ρe(w) describes the Re-cluster generated by w;
(c) ρ4(w) indicates all the R4-accessible worlds from w and it also specifies

that they are the only ones R4-seen by w;
(d) ρ<(w), finally, says that the R4-maximal time-cluster that is R4-accessible

from w consists of all the Re-clusters from TS(w).

Step 2. Suppose w is an element of depth i + 1. The formulae α(w),
ρa(w) and ρe(w) are defined in the same way as the former case. Recall that
w< := {z | wR4z & ¬(zR4w)}.

γ(i) :=
∧

z∈Si

¬β(z)

ρ′4(w) :=
∧

z∈w<

♦4β(z) ∧
∧

z∈Si&z 6∈w<

¬♦4β(z)
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δ(w) := �4

( ∨
z∈w<

β(z) ∨
∨

z∈CR4
(w)

(
α(z) ∧ ρa(z) ∧ ρe(z) ∧ γ(i)

))

We can now define β(w):

β(w) := α(w) ∧ ρa(w) ∧ ρe(w) ∧ ρ′4(w) ∧ γ(i) ∧ δ(w)

The formula ρ′(w) says that w R4-sees a specified set of worlds from Si,
while γ(i) avoids the case w ∈ Si. Finally, δ(w) says that if a world z is
R4-seen by w, then either it belongs to the set of all the R4-successors of w,
or it is in the R4-cluster generated by w. Now, we will show that, for any w, z
from ChLTK(n), if z 
V β(w), then (w = z). We can have two cases.

Case 1. Assume w has depth 1 and suppose there is a point z s.t. z 
V

β(w).
(a) If depth(z) = 1, then the structure of β(w) implies that the R4-open
submodels generated by z and w are isomorphic, so they should coincide.
Hence, by the structure of S1(ChLTK(n)), we have w = z.
(b) The case depth(z) = 2 is impossible because ρ<(w) is a conjunct of β(w).
(c) If depth(z) > 2, then either zR4w or ¬(zR4w). The case zR4w is im-
possible for the structure of S2(ChLTK(n)) (i.e. there should be an Re-cluster
C s.t. depth(C) = 2, C ∈ CRe(z)4 and C 6∈ CRe(w)4). Since ρ<(w) is also a
conjunct of β(w), the case ¬(zR4w) is impossible as well.

Case 2. Assume w has depth i + 1 and suppose there is a point z s.t.
z 
V β(w). By the structure of the conjunct γ(i) of β(w), we have depth(z) >
(i + 1). By the conjunct ρ′4 we have ∀v ∈ Si(wR4v ⇒ zR4v). We can have
two cases:
(a) If depth(z) = i + 1, then, by the construction of ChLTK(n), CR4(w) =
CR4(z) and so w = z.
(b) Suppose depth(z) > i + 1; then either zR4w or ¬(zR4w). Assume zR4w;
then there are R4-clusters C1, . . . , Cm between CR4(z) and CR4(w) such that
CR4(z), C1, . . . , Cm, CR4(w) is an R4-chain of R4-clusters (i.e. CR4(z)R4C1,
CmR4CR4(w) and for each i, j 1 ≤ i ≤ j ≤ m, CiR4Cj). By the struc-
ture of the conjunct δ(w), each R4-cluster from C1, . . . , Cm is isomorphic to
CR4(w) and this is impossible by the construction of ChLTK(n). Assume
¬(zR4w); then there are R4-clusters C1, . . . , Cm such that depth(Cm) = i + 1
and CR4(z), C1, . . . , Cm is an R4-chain. Again, by the structure of δ(w), each
R4-cluster from C1, . . . , Cm is isomorphic to CR4(z) and this is impossible by
the construction of ChLTK(n).
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6 Decidability for LTK with respect to inference rules

Definition 6.1
An inference rule r is an expression of the form

r :=
A1(p1, . . . , pn), . . . , Am(p1, . . . , pn)

B(p1, . . . , pn)

where any Ai(p1, . . . , pn) and B(p1, . . . , pn) are wff built up from the letters
p1, . . . , pn (in what follows, we will sometimes use the expression
A1(p1, . . . , pn), . . . , Am(p1, . . . , pn)/B(p1, . . . , pn)).

A substitution σ is a map which assigns a formula to each propositional
variable. Given a formula A, σ(A) is the result of the application of σ to A.

Definition 6.2
Given a logic L and an inference rule r := A1, . . . , Am/B, r is said to be admis-
sible for L if and only if for each substitution σ, if σ(Ai) ∈ L for each i, then
σ(B) ∈ L.

Therefore, the greatest class of rules which can be implemented for a given
logic, i.e. which are compatible with the set of its valid formulae, is the class of
its admissible rules: this is the class of all those rules under which the theory
itself is closed.

Definition 6.3
Given a model 〈F , V 〉, a valuation V ′ is definable if and only if ∀p ∈ Dom(V ′)
there is a formula αp s.t. V ′(p) = V (αp).

From the general result stated by Theorem 3.3.3 in Rybakov [22], it follows
immediately:

Lemma 6.4
An inference rule r := A1, . . . , An/B is not admissible for LTK iff there is an
n-characterising model ChLTK(n) := 〈Ch(n), V 〉 and a definable valuation V2

s.t. Ch(n) 
V2

∧
1≤i≤n Ai and Ch(n) 6
V2 B.

Now, we introduce a special kind of 3-modal Kripke-frames, which will play
a central role in the proof of our main result. The structure of such frame is
depicted in Figure 2.

Definition 6.5
Let FL, FS and FP be Kripke-frames with the following structure:

(a) The frame FL = 〈WFL
,RL

4,RL
e ,R

L
a〉 (LOOP-component) is as follows:

WFL
is a nonempty set of worlds; RL

4 = WFL
× WFL

; RL
e is an equivalence

relation on WFL
; RL

a is some equivalence relation on RL
e -clusters;
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Fig. 2. Scheme of the structure of an LSP-frame.

(b) Let F = 〈WF ,R4,Re,Ra〉 be a finite LT K-frame (i.e. it is an LT K-
frame with a finite base set of worlds. See Definition 2.3); let C1, . . . , Ci be an
enumeration of all the RS

4-clusters of worlds from WF ; let Dots := {w1, . . . , wi}
be a set of worlds such that ∀wj , 1 ≤ j ≤ i(wj 6∈ WF ). The frame FS =
〈WFS

,RS
4,RS

e ,R
S
a〉 (STRING-component) has the following structure: WFS

=
WF ∪Dots; RS

4 = R4∪{〈wj , z〉 | wj ∈ Dots & z ∈ Cj}∪{〈wj , wj〉 | wj ∈ Dots};
RS

e = Re ∪ {〈wj , wj〉 | wj ∈ Dots}; RS
a = Ra ∪ {〈wj , wj〉 | wj ∈ Dots}.

(c) The frame FP := 〈WFP
,RP

4,RP
e ,RP

a 〉 (POINT-component) is such that
its base set contains only one world denoted by @,WFP

:= {@}, and all the
binary relations on WFP

are universal.
An LSP-frame (loop-string-point frame) is a tuple Flsp = 〈Wlsp,R

lsp
4 ,Rlsp

e ,Rlsp
a 〉

where WFlsp
= WFL

∪WFS
∪WFP

; Rlsp
4 = RL

4∪RS
4∪RP

4∪{〈w, z〉 | w ∈ WFS
& z ∈

WFL
}; Rlsp

e = RL
e ∪ RS

e ∪ RP
e ; Rlsp

a = RL
a ∪ RS

a ∪ RP
a (See Figure 2).

Theorem 6.6
An inference rule r := A1, . . . , Am/B is not admissible for LTK if and only
if there is a finite LSP-frame Flsp, whose size is computable from ‖V ar(r)‖
(where V ar(r) is the set of all the variables occurring in r), and a model
Mlsp = 〈Flsp, V 〉 s.t. Flsp 
V

∧
1≤i≤n Ai and Flsp 6
V B.
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Proof. (⇒) Suppose that an inference rule r := A1, . . . , Am/B is not admis-
sible for LTK and let p1, . . . , pk be all the letters occurring in r. Hence there
are formulae γ1, . . . , γj , 1 ≤ j ≤ k, s.t.

∧
1≤i≤m Ai(γ1, . . . , γj) ∈ LTK and

B(γ1, . . . , γj) 6∈ LTK. Let Prop(γ) be the set of all the propositional letters
occurring in γ1, . . . , γj .

By Lemma 6.4 there is an n + 1-characterising model ChLTK(n + 1) :=
〈Ch(n + 1), V 〉 and a new definable valuation V2 with Dom(V2) := Prop(γ) ∪
{pn+1}, where pn+1 6∈ Prop(γ), s. t. Ch(n+1) 
V2

∧
1≤i≤m Ai(γ1, . . . , γj) and

Ch(n + 1) 6
V2 B(γ1, . . . , γj).
Take a world w ∈ WCh(n+1) such that:
(a) (Ch(n + 1), w) 6
V2 B(γ1, . . . , γj)
(b) ∀v ∈ w4(v 6∈ V2(pn+1))
(c) ∀v ∈ WCh(n+1)(((Ch(n + 1), v) 6
V2 B(γ1, . . . , γj) & v4 ∩

V2(pn+1) = ∅) ⇒ ‖w4‖ ≤ ‖v4‖) (i.e. w4 is the smallest set of the kind
v4 containing a world refuting B and such that none of its elements belongs
to V2(pn+1)).

It can be easily noticed that, since the propositional letter pn+1 does not
occur in any γi, such a world w exists in ChLTK(n + 1).

Let C1, . . . , Ci be an enumeration of all the R4-clusters of worlds from w4

such that depth(Cj) ≥ 2. Now we take and fix, for each R4-cluster Cj a world
wj such that:

(a) wj 6∈ Cj

(b) w4
j = {wj} ∪

⋃
C4

j

(c) wj ∈ V2(pn+1)
The existence of such a world for each R4-cluster is guaranteed by the

construction of ChLTK(n + 1). In fact, since wj ∈ V2(pn+1) while none of the
worlds from any Cj belongs to V2(pn+1), we have that for any j, CR4(wj) is
not a submodel of Cj . Let Dots = {w1, . . . , wi} be the set of those worlds wj .
Take and fix a world @ ∈ WCh(n+1) such that:

(a) @ 6∈ w4 ∪ Dots
(b) @4 = {@}
Let MFlsp

:= 〈Flsp, V2〉 be an open submodel of ChLTK(n+1) where WFlsp
:=

w4 ∪ Dots ∪ {@}. Since MFlsp
is a generated submodel of ChLTK(n + 1), we

have Flsp 
V2

∧
1≤i≤m Ai(γ1, . . . , γj) and Flsp 6
V2 B(γ1, . . . , γj). Moreover, by

Definition 6.5, Flsp is an LSP-frame. Though Flsp is finite, the number of
worlds from its base set is not known. To reduce such number, we apply
the technique used in the proof of Theorem 3.2 in a slightly different way.
Consider the STRING-component FS of Flsp (cf. Definition 6.5, item (b)).
For each D ∈ Sub(B), we consider the R4-maximal world v ∈ WFS

such that
(Flsp, v) 6
V2 D. We can have two cases: either v ∈ Dots and hence v = wj

for some j, or v ∈ Cj for some j. In both cases, by CD we denote the set⋃
Cj ∪ {wj}. Likewise, by C¬D we denote the set

⋃
Cj ∪ {wj} (such that there
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Fig. 3. Scheme of the structure of Ch(n) and the sets Entry and notEntry.

is an R4-maximal world v refuting D and either v ∈ Cj or v = wj). Then we
define a subframe Flsp′ := 〈WFlsp′ ,R

lsp′

4 ,Rlsp′
e ,Rlsp′

a 〉 where:

WFlsp′ :=
⋃

B∈Sub(A)

CD ∪
⋃

B∈Sub(A)

C¬D ∪ WFL
∪ {@}

Let MFlsp′ := 〈Flsp′ , V3〉 be a model s.t. V3 = V2 � WFlsp′ . It is easy to verify
that MFlsp′ refutes r, Flsp′ is an LSP-frame. Moreover, the number of worlds
from WFlsp′ is finite and computably bounded by the size of V ar(r) (cf. item
(c) page 17). Therefore part (⇒) of the theorem has been proved.

(⇐) Suppose that we have an inference rule r := A1, . . . , Am/B, an LSP-frame
Flsp and a model MFlsp

:= 〈Flsp, S〉 such that Flsp 
S
∧

1≤i≤n Ai and Flsp 6
S B.
Let Prop(WFlsp

) := {pw | w ∈ WFlsp
} and VAR := Prop(WFlsp

) ∪ V ar(r). We
define a new valuation S2 for Flsp in the following way:

(a) Dom(S2) = VAR
(b) ∀pw ∈ Prop(WFlsp

)(S2(pw) = {w})
(c) ∀x ∈ V ar(r)(S2(x) = S(x))
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Clearly the new model 〈Flsp, S2〉 still refutes B, but not any Ai. We con-
struct, following the procedure explained in Section 4, the model ChLTK(n) :=
〈Ch(n), V 〉, where n = ‖VAR‖. It is easy to see that the model 〈Flsp, S2〉
formerly defined is (isomorphic to) an open submodel of ChLTK(n). We will
construct, now, a new definable valuation V2 for Ch(n) refuting r. The basic
idea is finding a way to extend the valuation S2 from Flsp to the whole frame
Ch(n). Recall that by Lemma 5.2 we know that each world from the base set
of ChLTK(n) is definable (recall that for any world w, by β(w) we denote that
particular formula defining w).
Let @ be the name of that world from WFlsp

such that:
(a) @4 = {@}
(b) ∀w ∈ WFlsp

((wRe@ or wR4@ or wRa@) ⇒ w = @) (See Figure 3.)

We define the set of all those worlds from WCh(n) that are not R4-related to
any point from [WFlsp

− {@}] (see Figure 3), i.e. we set
notEntry := {v | v 6
V ♦4β(w), ∀w ∈ [WFlsp

− {@}]}
Let Dots be a subset of WFlsp

as defined in Definition 6.5, i.e.:
Dots = {wj | wj ∈ [WFlsp

− {@}] & ∀z ∈ WFlsp
(zR4wj ⇒ wj = z)}

Take and fix, for each R4-cluster Cj of worlds from [WFlsp
− {@}]−Dots such

that depth(Cj) ≥ 2, a representative world zj belonging to Cj . Let Rep be the
set containing all those representative elements.
For each representative world zj from Rep, we shall define, now, an entry-set
(see Figure 3). It contains all those worlds v from WCh(n) −WFlsp

which are
R4-predecessors of zj and such that zj is the R4-deepest world belonging to
[WFlsp

− Dots] which is R4-accesible from v: ∀zj ∈ Rep

Entry(zj) := {w | w 6∈ WFlsp
& w 
V ♦4β(zj) & ∀v ∈ [WFlsp

− Dots]((vR4zj

& ¬(zjR4v)) ⇒ w 6
V ♦4β(v))} (See Figure 3.)
For each representative world zj from Rep, we define a formula φ(zj) that is
true only at those worlds belonging to Entry(zj). ∀zj ∈ Rep:

φ(zj) :=
∧

v∈WFlsp

¬β(v) ∧ ♦4β(zj) ∧
∧

v∈WFlsp
&vR4zj&¬(zjR4v)

¬♦4β(v)

It can be easily verified that, given a world v, it belongs to Entry(zj), for
some zj ∈ Rep, if and only if φ(zj) is true at v under V . Recall that for any
zj ∈ Rep, by wj we denote the world from Dots such that zj is one of its
immediate R4-successors.

To define the valuation V2, let Dom(V2) := VAR;
∀p ∈ VAR, V2(p) :=
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⋃
v∈WFlsp

&p∈V (v)

V (β(v)) ∪
⋃

v∈notEntry&@∈V (p)

V (β(v)) ∪
⋃

zj∈Rep&zj∈V (p)

V (φ(zj))

Obviously the valuation V2 is definable, in fact, for each p ∈ VAR, there is
a formula αp such that V2(p) = V (αp), namely, ∀p ∈ VAR:

αp :=
∨

v∈WFlsp
&p∈V (v)

β(v) ∨
∨

v∈notEntry&@∈V (p)

β(v) ∨
∨

zj∈Rep&zj∈V (p)

φ(zj)

Next step is to show that the inference rule r is not valid in the new model
〈Ch(n), V2〉. It is sufficient to show that the following claim holds: for any
formula A on LLTK containing only letters from VAR

Flsp 
S2 A ⇔ Ch(n) 
V2 A.

Notice that the three statements below follow immediately by the definition
of V2:

(a) ∀w ∈ WFlsp
(Ch(n), w) 
V2 A ⇔ (Flsp, w) 
S2 A (the model 〈Flsp, S2〉

being isomorphic to 〈Flsp, V2〉 which is an open submodel of 〈Ch(n), V2〉);
(b) ∀zi ∈ Rep, ∀v ∈ Entry(zi) (Ch(n), v) 
V2 A ⇔ (Flsp, wi) 
S2 A;
(c) ∀v ∈ notEntry (Ch(n), v) 
V2 A ⇔ (Flsp,@) 
S2 A.

Since WCh(n) = Wlsp ∪ notEntry ∪
⋃

zj∈Rep Entry(zj), the model 〈Ch(n), V2〉
refutes r.
Corollary 6.7
The logic LTK is decidable with respect to inference rules.

The author would like to thank Vladimir V. Rybakov for his scientific ad-
vising and the numerous improvements he suggested.
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Abstract

The paper aims at providing the multi-modal propositional logic LTK with a sound and complete axiomatisation.
This logic combines temporal and epistemic operators and focuses on modeling the behaviour of a set of agents

operating in a system on the background of a temporal framework. Time is represented as linear and discrete,

whereas knowledge is modeled as an S5-like modality. A further modal operator intended to represent environment

knowledge is added to the system in order to achieve the expressive power sufficient to describe the piece of
information available to the agents at each moment in the flow of time.

Keywords: Modal logic, Multi-modal logic, Temporal logic, Epistemic logic, Combined logics.

1 Introduction

Nowadays research that focuses on modelling human reasoning and agents’ behaviour in a
system is a very active area.Multi-modal languages provide a combination of highly expressive
power and intuitive semantic tools and they are, therefore, widely used in the field. Recently
they have also been applied in Artificial Intelligence and Computer Science in the attempt to
formalise, for instance, reasoning about the behaviour of programs (cf. Goldblatt [9, 8]).

The main feature of modal logics is that they enable the switch from extensional languages
(expressing only facts, statements which can be either true or false) to intensional ones.
Modal logics deal with sentences that are qualified by modalities such as can, could, might,
may, must etc. and they are often constructed by adding one or more modal operators
(usually œ and s) to a classical propositional system. Likewise, multi-modal logics are
obtained by adding more than one modal operator to an existing logical system.

Although traditionally read as expressing necessity and possibility, modal operators have
numerous possible interpretations. The choice would then be suggested by the context one
is to describe. In the case of tense logics, one can interpret the modal propositionhp as it will
always be the case that p, and its dual ep as at some point in the future it will be the case
that p. Such language is, therefore, effective whenever a description of the flow of time,
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towards both future and past is needed. Epistemic logics, on the other hand, are suitable to
formalize reasoning about agents not possessing complete information (see Fagin et al. [5],
Rybakov [12]). However, such systems may have an expressive limitation, for it may be
difficult to deal with modifications in the pieces of information each agent possesses as well
as to give an account of a changing environment. Adding a dynamic dimension to such
systems is therefore almost a necessity. The most natural way partially to improve on such
a deficiency is to insert epistemic logics in a temporal framework. Hence we would
generate a multi-modal system combining tense and knowledge operators (see Fagin et al. [5],
Halpern et al. [10]).

Moreover, systems generated by joining operators representing both time and knowledge
have already proved themselves to be particularly effective in describing the interaction
between agents through the flow of time (see Fagin et al. [5], Gabbay et al. [6], Halpern et al.
[10], [3, 2]). These systems are generated by adding to an existing propositional system two
sets of modalities: one to model the flow of time, the other to describe the agents’ knowledge.
The interaction of such modalities gives a precise account of the dynamic development
of agents’ knowledge. Though interesting and promising, this approach has not yet been
fully investigated, due to the complexity and the extent of the subject. Nevertheless,
in the last decade, the theories developed have have been successfully applied both in the
study of human reasoning and in computing. These theories are concentrated on the
development of systems modelling reasoning about knowledge and space, reasoning
under uncertainty or with bounded resources, multi-agent reasoning and other aspects of
artificial intelligence.

However, several difficulties arise whenever one is to prove an axiomatic system to be
sound and complete with respect to a class of multi-modal frames. According to Bennett
et al. [1] and Kurucz [11], if there is no interaction between modalities a transfer of properties
(such as finite model property, decidability, etc.) from the component simple modal logics to
the newly generated multi-modal system does apply. However, as soon as such interaction
takes place it is not straightforward anymore to prove that the combined system is
conservative with respect to the properties of its components. In some cases the opposite may
apply. Nevertheless, despite such difficulties, interaction between modalities is necessary
fully to exploit the power of multi-modal languages.

This paper aims at providing the multi-modal logic LTK (formerly introduced in [3] and
[2]) with a finite, sound and complete axiomatisation with interacting modalities. In our
previous works this logic has been defined semantically and proved to be decidable with
respect to its theorems [3], whereas a weaker version of it is also decidable with respect to its
admissible inference rules [2]. We start by recalling the semantic framework of our work
introducing a special kind of multi-modal Kripke-frames aiming at modelling a set of agents
operating in a system where the time is considered as linear and discrete. Besides a temporal
operator and a knowledge operator for each agent operating in the system, our language
provides a further epistemic modality, which is intended to represent environmental
knowledge, i.e. a modality which makes our logic sufficiently powerful to express the piece of
information available to the agents at each moment in the flow of time. We provide a sound
axiomatic system and we proceed by following the standard approach of constructing
canonical models, generated submodels and making filtration (see Gabbay [7]). Since
standard tools are not sufficient to show completeness, in Section 3 we prove Lemma 3.15,
which is the core of the whole work (cf. Goldblatt [8]) and makes a substancial use of our
multi-modal version of the axiom presented by Dummett and Lemmon [4].
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2 Syntax and Semantics

The alphabet of the language LLTK includes a countable set of propositional letters
P :¼ fp1, . . . , pn, . . .g, round brackets ð, Þ and the boolean operations f! ,?g as well as a set of
modal operators fh4,Ke,K1, . . . ,Kkg. Well formed formulae (wff’s) are defined as follows:
each propositional letter p 2 P is a wff and if A is a wff, then so are h4A,KeA,KiA. We assume
e4, ee and si to be abbreviations for :h4:, :Ke: and :Ki: respectively. The boolean
operations :,^,_ are defined in the usual way by means of ! and ?.

The intended meaning of the modal operators formerly introduced is: (a)h4A: the fact A is
true from now on; (b) KeA: A is true everywhere in the environment; (c) KiA: the agent i
operating in the system knows A in the current moment in the sense that all the information
points accessible to agent i provide the information A.

Formulae in the language LLTK allow occurrences of temporal operators in the scope of the
epistemic modalities K1, . . . ,Kk , leading to the possibility of expressing formulae such as
Kie4A, interpreted as agent i knows that eventually it will be the case that A. To prevent
agents from having pre-knowledge concerning future events we introduce a weaker language
L�
LTK. A formula A is local if and only if it does not contain any occurrence of the modal

operator h4, i.e. each propositional letter is local and if A is local, then so are KeA and KiA for
each i. Well formed formulae are defined as they are in the former case, with the only
exception of formulae containing a modal operator Ki for some i: if A is a wff, then KiA is a wff,
provided that A is local.

By the expression FmaðLLTKÞ we denote the set of all the wff’s on LLTK and by the term
formula we always refer to a member of FmaðLLTKÞ. Clearly FmaðL�

LTKÞ � FmaðLLTKÞ.
Although we assume the reader to be familiar with possible world semantics, we provide

few basic definitions necessary to understand the particular case we will work with.

DEFINITION 2.1
A k-modal Kripke-frame is a tuple F ¼ hW ,R1, . . . ,Rki where W is a non-empty set of
worlds and each Rj is some binary relation on W �W . Given a frame F , by WF we denote
its base set.

Given a Kripke-frame F , a model M on F is a tuple M ¼ hF ,V i where V is a valuation of
a set P of propositional letters in F .

DEFINITION 2.2
Given a Kripke-frame F :¼ hWF ,R1, . . . ,Rki, for any Ri, an Ri-cluster of worlds is a subset
CRi

of WF s.t.: 8w8z 2 CRi
ðwRiz & zRiwÞ and 8z 2 WF8w 2 CRi

ððwRiz & zRiwÞ) z 2 CRi
Þ.

An Ri -cluster is said to be: degenerate if it consists of one single Ri -irreflexive world;
simple if it consists of a single Ri -reflexive world; proper if it contains at least two
Ri -reflexive worlds.

For any Ri, CRi
ðwÞ is the Ri-cluster s.t. w 2 CRi

ðwÞ. Given two Ri -clusters Cm and Cj the
expression CmRiCj is an abbreviation for 8w 2 Cm8z 2 Cj ðwRizÞ.

We use a special kind of multi-modal Kripke frames called LT K-frames, where the prefix
LT K is an acronym for Linear Time and Knowledge. These structures aim at modelling a set
of agents operating in a temporal framework.

DEFINITION 2.3
An LT K-frame (Linear Time and Knowledge frame) is a kþ2-modal Kripke-
frame F :¼ hWF ,R4,Re,R1, . . . ,Rki, where WF is the disjoint union of certain
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non empty sets Cn, for n 2 N: WF :¼
S

n2N Cn. The binary relations R4, Re, and Rj are
as follows:

(a) R4 is the linear, reflexive and transitive relation on WF such that: 8v8z 2 WF ðvR4z iff
9i, j 2 Nððv 2 CiÞ & ðz 2 Cj Þ & ði � jÞÞÞ

(b) Re is a universal relation on any Ci 2 WF : 8v8z 2 WF ðvRez,9i 2 Nðv 2 Ci & z 2 CiÞÞ;
(c) each Rj is some equivalence relation on each Ci.

Each world can be interpreted as a single information point. The linear temporal relation
R4 links such information points so that, given two worlds v and z, the expression vR4z
means either that v and z are both available at a moment n, or that z will be available in the
future with respect to v. Hence two information points are concurrent if they belong to the
same R4-cluster (time-cluster) and an R4-cluster can be seen as a moment in the time line
(cf. Figure 1). Although time is usually perceived as continuous, it may as well be thought as
discrete. In this context the property of discretenss means that given any two distinct points
in the time line, there might be only a finite amounts of moments between them (though each
moment may contain an infinite amount of information points). Therefore the relation R4 is
discrete with respect to time-clusters. This is actually the way in which computers work.
Moreover, the temporal line has a first point starting from which it proceeds towards the
future. The most important assumption is to consider the flow of time as linear and hence not
branching. This implies that we may not quantify over possible though not actual temporal
paths. In other words, what is relevant is only the actual path the world goes through.
Such strong theoretical deterministic assumption may be practically justified by the
observation that, in analogy to the human situation, all the agents operating in the
system are not aware of the prefixed unicity of their temporal path and they act as heading
to a not-determined future.

The relation Re is defined at each moment in the time line and it links all the information
points belonging to the same environment. In our specific interpretation, only one
environment is possible at each moment and hence time-clusters and environment-clusters
do coincide (see the Appendix for the general case of multiple concurrent environments
and further discussion).

The relation Ri links all the information points accessible by agent i in a given
environment. Any information point provides the agents with some information.
LT K-frames are a suitable tool to interpret the language L�

LTK as well as LLTK. The only
difference would be that in the case of L�

LTK, all the facts available to the agents are local
and therefore do not concern any future event. Nevertheless at each world a certain number
of statements about the future could be true, but this piece of information would not be
available to any agent.

FIG. 1. Scheme of the structure of an LT K-frame: here each big circle represents both a
moment in the time line and an environmental cluster, whereas each small circle is intended
to represent a single information point.

242 An Axiomatisation for LTK



Besides the standard ones, the main features of LT K-frames are the following properties:
PM.1: vRez ) ðvR4z & zR4vÞ i.e. the information points available in the same

environment are concurrent
PM.2: vRiz ) vRez i.e. the information points available to agent i must be in the same

environment (hence at the same moment)
PM.3: ðvR4z & zR4vÞ ) vRez i.e. concurrent information points are in the same

environment
A model M on F is a pair hF ,V i, where F is an LT K-frame and V is a map (valuation)

which associates to each propositional letter p 2 P a set of worlds from the base set of F .
The valuation V can be extended in the standard way from the set P onto all the well formed
formulae built up on P. In particular, 8v 2 WF ,

(a) ðF , vÞ�V p , v 2 V ðpÞ;
(b) ðF , vÞ�V h4A , 8z 2 WF ðvR4z ) ðF , zÞ�V AÞ;
(c) ðF , vÞ�V KeA , 8z 2 WF ðvRez ) ðF , zÞ�V AÞ;
(d) For each j, ðF , vÞ�V KjA , 8z 2 WF ðvRj z ) ðF , zÞ�V AÞ.

IfM ¼ hF ,V i is a model on a frame F , a formula A is said to be true in the modelM at the
world v if ðF , vÞ�V A; A is true in the model M, notation F �V A, if 8v 2 WF , ðF , vÞ�V A; A is
valid in the frame F , notation F �A, if, for any valuation V for F (that is for any model
MF on F ), F �V A. Given a class of frames F, A is valid on F (and we say A to be F-valid)
if 8F 2 F,F �A.

DEFINITION 2.4
Let LT K be the class of all LT K-frames. The logic LTK is the set of all LT K-valid formulae:
LTK :¼ fA 2 FmaðLLTKÞ j F �A & F 2 LT Kg. If A belongs to LTK, then A is a theorem of
LTK. Likewise LTK� :¼ fA 2 FmaðL�

LTKÞ j F �A & F 2 LT Kg

Axioms of ASLTK (Schemata)
Axioms of CPC (classical propositional calculus)
Kh4

: h4ðA ! BÞ ! ðh4A ! h4BÞ

Th4
: h4A ! A

4h4
: h4A ! h4h4A

3h4
: h4ðA^h4A ! BÞ _h4ðB^h4B ! AÞ

KK�
: K�ðA ! BÞ ! ðK�A ! K�BÞ, � 2 fe, 1, . . . , kg

TK�
: K�A ! A, � 2 fe, 1, . . . , kg

4K�
: K�A ! K�K�A, � 2 fe, 1, . . . , kg

5K�
: :K�A ! K�:K�A, � 2 fe, 1, . . . , kg

M :1 : h4A ! KeA

M :2 : KeA ! KiA, 1 � i � k
Dumh4

: h4ðh4ðKeA ! h4AÞ ! KeAÞ ! ðe4h4A ! h4AÞ

Inference Rules of ASLTK :

MP :
A, A ! B

B
Nec :

A

h4A

It is easy to notice that we can derive a necessitation rule for the modalities Ke,K1, . . . ,Kk

by means of the axioms M.1 - M.2 and the rule Nec .
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DEFINITION 2.5
A deduction D in an axiomatic system AS is a finite sequence of formulae A1, . . . , An s.t.
each Ai is either an instance of an axiom schema from AS or it has been obtained from a
sequence of formulae B1, . . . , Bk occurring before A in D via application of an inference rule
from AS. A formula A is a theorem in AS, denoted by ‘AS A, if there is a deduction
D ¼ D1, . . . ,Dk with Dk ¼ A.

DEFINITION 2.6
LTKax :¼ fA 2 FmaðLLTKÞ j ‘ASLTK

Ag.
LTK�

ax :¼ LTKax \ FmaðL�
LTKÞ.

Our axioms for the time modality h4 give rise to an S4:3 modal system, known to be
sound and complete with respect to the class of linear orders. Formerly we stated that
each agent operating in the system is provided with a certain knowledge background.
In order to give a simple account of it, we associate each agent to an S5-modal system.
The assumptions we make are the usual ones:

– If agent i knows A, then the fact A is provided by all the resources she/he has access to;
– Positive Introspection: if someone knows something, she/he is also aware of it;
– Negative Introspection: if someone ignores something, she/he is aware of it.

Moreover, we assume each agent to be logicallly omniscient (knowing both all the
tautologies and all the consequences implicit in her/his knowledge).

The same assumptions appear to be more natural when it comes to model the
behaviour of the environment. In our system, the axioms involving the environment
modality play a central role. In the interaction between different modalities, the operator
Ke works like a bridge connecting the others, which otherwise would not interact at all.
The axioms M.1 and M.2 state that if something is always true toward the future,
then it is also true at the current moment/environment (M.1) and hence each agent
knows it (M.2).

More specifically, Axiom M.1 aims at achieving property PM.1, whereas Axiom M.2 is
responsable for PM.2. Axiom Dumh4

entails the property PM.3 in a less evident and
straightforward way. However, this is probably the most interesting one, for it is the one
regulating the peculiar relation linking h4 to Ke. Indeed, as it is made clear by Lemma 2.7,
axiom Dumh4

achieves two things:

(a) making temporal and environmental clusters coincide;
(b) ensuring a discrete order of temporal clusters.

THEOREM 2.7 (Soundness)
8A 2 FmaðLLTKÞ ðA 2 LTKax ) A 2 LTKÞ

PROOF. (by induction on the length of the deduction D ¼ D1, . . . ,Dj of a theorem A 2 LTKax).
Suppose j¼ 1, then A is an axiom from ASLTK. We provide a proof only for the axioms M.1,
M.2 and Dumh4

. (a) Suppose there are an LT K-frame F , a valuation V for F , and a world
v 2 WF such that ðF , vÞ 1V h4A ! KeA. Then ðF , vÞ�V h4A and ðF , vÞ 1V KeA. Hence for
each world z 2 ft j vR4tg, z �V A but there is a world u 2 ft j vRetg such that u 1 A. Since by
definition ft j vR4tg � ft j vRetg, this leads to a contradiction. Using a similar argument,
it can be easily seen that Axiom M.2 is valid too.
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(b) Suppose that Axiom Dumh4
is not valid. Then there are an LT K-frame F , a valuation

V for F , and a world v 2 WF such that ðF , vÞ 1V h4ðh4ðKeA ! h4AÞ ! KeAÞ !

ðe4h4A ! h4AÞ, and hence:

ðF , vÞ�V h4ðh4ðKeA ! h4AÞ ! KeAÞ ð2:1Þ

and

ðF , vÞ 1V ðe4h4A ! h4AÞ ð2:2Þ

Condition (2.1) implies that 8z 2 WF ðvR4z ) ðF , zÞ �V h4ðKeA ! h4AÞ ! KeAÞ. This
means that for each R4-successor z of v, at least one of the following conditions should hold:

(2.1.1).: ðF , zÞ 1V h4ðKeA ! h4AÞ, then there is a world t such that zR4t &
ðF , tÞ�V KeA & ðF , tÞ 1V h4A;

(2.1.2).: ðF , zÞ �V KeA.
Let us analise condition (2.2): if ðF , vÞ 1V ðe4h4A ! h4AÞ, we have that both of the

following conditions (2.2.1) and (2.2.2) must hold:
(2.2.1): ðF , vÞ �V e4h4A;
(2.2.2): ðF , vÞ 1V h4A;
From condition (2.2.1) and (2.2.2) it follows that there is a world R4-accessible from v in

which A is not true, while there is another point R4-accessible from v starting from which A

holds true everywhere toward the future. Since each LT K-frame is a linear and discrete
order with respect to R4-clusters, there is a world v2 such that vR4v2 and ðF , v2Þ 1V A and
for each world z2 such that v2R4z2 & :ðz2R4v2Þ, ðF , z2Þ � A, and hence ðF , z2Þ�h4A.
Trivially, condition (2.1.2) does not hold at v2, for Re is reflexive.

Then condition (2.1.1) should hold. This implies that there is a world t2 such that v2R4 t2,
ðF , t2Þ�V KeA and ðF , t2Þ 1V h4A. Hence t2R4 v2 (for, by the way we chose v2, if v2R4 t2
and :ðt2R4v2Þ, we should have ðF , t2Þ �V h4A). Moreover :ðt2Rev2Þ. However, this is in
contradiction with Definition 2.3, for in LT K-frames R4-clusters and Re-clusters should
coincide.

Finally, if lgðDÞ ¼ n þ 1, it could be easily shown that each inference rule preserves
validity. g

3 Canonical models and Generated subframes

We briefly recall few standard definitions and results concerning canonical models and
generated submodels.

DEFINITION 3.1
Given an axiomatic system AS on a language L, a set � � FmaðLÞ is:

(a) AS-consistent iff � 0AS?;
(b) L-complete iff 8A 2 FmaðLÞ A 2 � or :A 2 �;
(c) AS-maximal iff � is AS-consistent and L-complete.

DEFINITION 3.2
Let L be a consistent normal k-modal logic on a language L containing the modal operators
h1, . . . ,hk . An n-canonical model Mc

n ¼ hW c
n ,R

c
1, . . . ,R

c
k ,V

c
n i for L is such that:

(a) W c
n is the set of all the possible L-maximal sets w.r.t. those formulae built up from the

propositional letters p1, . . . , pn;
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(b) 8v, z 2 W c
n , vRc

i z () fA j hiA 2 vg � z, 1 � i � k;
(c) V c

n ðpiÞ ¼ fv 2 W c
n j pi 2 vg, 1 � i � n.

LEMMA 3.3
Let L be a consistent normal k-modal logic and let M

c
n ¼ hW c

n ,R
c
1, . . . ,R

c
k ,V

c
n i be an

n-canonical model for L. Then 8v 2 W c
n , 8Aðp1, . . . , pnÞ 2 FmaðLÞðhiA 2 v ()

8z 2 W c
n ðvR

c
i z) A 2 zÞÞ.

LEMMA 3.4 (Truth Lemma)
Let L be a consistent normal k-modal logic and let M

c
n ¼ hW c

n ,R
c
1, . . . ,R

c
k ,V

c
n i be an

n-canonical model for L. Then 8v 2 W c
n , 8Aðp1, . . . , pnÞ 2 FmaðLÞ

ðF c
n, vÞ �V c

n
A () A 2 v

where F c
n denotes the n-canonical frame on which M

c
n is built.

Take and fix for the rest of the paper a formula Bðp1, . . . , pnÞ 62 LTKax. Hence the set f:Bg is
ASLTK-consistent and it follows that there exists an ASLTK-maximal set w w.r.t. all the
formulae built up from p1, . . . , pn such that B 62 w. Therefore there is an n-canonical model for
M

c
¼ hF c

n,V
c
n i for LTKax (where F c

n ¼ hW c
n ,R

c
4
,Rc

e,R
c
1, . . . ,R

c
ki) such that w 2 W c

n and,
by Lemma 3.4, ðF c

n,wÞ 1V c
n
B. Although this model shows some interesting properties,

it is not built on an LT K-frame.
However, the binary relations in the n-canonical frame have the following properties:

(a) Rc
e, Rc

i are reflexive, symmetric and transitive.
(b) Rc

4
is reflexive, transitive and weakly connected.

(c) 8v, z 2 W c
n ðvRc

ez)ðvRc
4
z & zRc

4
vÞÞ. Notice that the opposite direction does not hold.

DEFINITION 3.5
An n-modal K-frame F ¼ hWF ,R1, . . . ,Rni is a subframe of an m-modal K-frame
S ¼ hWS,S1, . . . ,Smi if n¼m, WF � WS and each Ri is the restriction of Si on WF , i.e.
Ri ¼ Si �WF .

DEFINITION 3.6
An n-modal K-frame F ¼ hWF ,R1, . . . ,Rni is a generated subframe of an m-modal
K-frame S ¼ hWS,S1, . . . ,Smi (notation F v SÞ if F is a subframe of S and
8v 2 WF 8z 2 WS if there is a relation Sj such that vSj z in S, then z 2 WF . A model
hF ,V i is a generated submodel of hS,Si if F v S and V is the restriction of S on WF

(i.e. V ¼ S �WF ).

LEMMA 3.7 (Generated subframes)
If M ¼ hF ,V i is a generated submodel of M2 ¼ hF 2,V2i, then 8v 2 WF ,
ðF , vÞ�V A () ðF 2, vÞ �V2

A.

DEFINITION 3.8
Given a Kripke-frame F ¼ hWF ,R1, . . . ,Rki and a world w in WF , w

Ri� :¼ fz j wRizg and
wRi< :¼ fz j wRiz & :ðzRiwÞg. Given a Ri-cluster C, C

Ri� :¼ fCj j CRiCjg and
C
Ri< :¼ fCj j CRiCj & :ðCjRiCÞg (wR4� and C

R4� shall henceforth be referred to as w4

and C
4 respectively).
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Consider the generated submodel of hF c
n,V

c
n i generated by w4 (recall that w is that

world refuting B in the n-canonical model) and denote it by hFw4 ,V c
n i. Hence ðFw4 ,wÞ 1V c

n
B

which entails Fw4 1 B.
As the following lemma will clarify, the generated submodel hFw4 ,V c

n i shows some
interesting properties shared with LT K-frames:

LEMMA 3.9
Fw4 has the following properties:

(a) The relations Rc
e,R

c
1, . . . ,R

c
k are equivalence relations;

(b) The relation Rc
4
is reflexive, transitive and connected;

(c) 8v, z 2 WF vRc
ez ) ðvRc

4
z & zRc

4
vÞ;

(d) 8v, z 2 WF vRc
i z ) vRc

ez;

PROOF. (c) Suppose :ðvRc
4
zÞ. Then there is a formula h4D 2 v s.t. D 62 z. By Axiom M.1 it

follows KeD 2 v and hence :ðvRc
ezÞ. The same case arises if we assume :ðzRc

4
vÞ. (d) Suppose

:ðvRc
ezÞ. Then there is a formula KeD 2 v s.t. D 62 z. By Axiom M.2 it follows KiD 2 v for

each i and hence :ðvRc
i zÞ g

A good way to achieve the required property of discreteness (i.e. given any two disctint worlds
in a model, there could be only a finite amount ofmoments between them) is to make a filtration
of the base set of the model in order to have it finite. Although it is a standard technique, it
requires a careful and appropriate selection of the filtration set. The well known results
concerning this method are recalled below and they would allow us to show the following:

LEMMA 3.10 (Filtration Lemma)
8D 2 � 8v 2 W c

n ðv �V c
n
D , ½v��V � DÞ

We start by defining the filtration set � as the union of several sets:

– �0 :¼ SubðBÞ, where SubðBÞ is the set of all the subformulae of B
– �1 :¼ SubfDumh4

ðDÞ j D 2 �0g (where the notation Dumh4
ðDÞ is intended to denote the

instance of the axiom Dumh4
by the formula D)

– �2 :¼ fKeh4D j h4D 2 �0 [ �1g

– �3 :¼ fKiKeD j KeD 2 �0 [ �1 [ �2g for 1 � i � k

Let the filtration set � be the union of the formerly defined sets:

� :¼ �0 [ �1 [ �2 [ �3

Then we define a new relation between worlds as:

8v, z 2 W c
n ðv � z , 8D 2 �ðv �V c

n
D , z �V c

n
DÞÞ

and we generate equivalence classes with respect to the relation �:

½v� :¼ fz j v � zg

The �-filtered model M� is defined as hF�,V�i where F� ¼ hW�,R�
4
,R�

e ,R
�
1 , . . . ,R

�
k i and:

(a) W� :¼ f½v� j v 2 W c
n g

(b) R�
e and each R�

i are standard S5 filtration relations, i.e.:
½v�R�

� ½z� , 8K�D 2 �ððF c
n, vÞ �V c

n
K�D , ðF c

n, zÞ �V c
n
K�DÞ for � 2 fe, 1, . . . , kg
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(c) R�
4
is a standard S4:3 filtration relation, namely:

½v�R�
4
½z� , 8h4D 2 �ððF c

n, vÞ �V c
n
h4D ) ðF c

n, zÞ �V c
n
h4DÞ

(d) 8pi 2 fp1, . . . , png V
�ðpiÞ :¼ f½v� j v 2 V c

n ðpiÞg

It remains only to show that such model satisfies the two filtration conditions for each binary
relation R�

� :

F1 vRc
�z ) ½v�R�

� ½z�, where � 2 f4, e, 1. . . kg;
F2.1 ½v�R�

� ½z� ) 8K�D 2 �ðv �V c
n
K�D ) z �V c

n
DÞ, for � 2 fe, 1. . . kg;

F2.2 ½v�R�
4
½z� ) 8h4D 2 �ðv �V c

n
h4D ) z �V c

n
DÞ

LEMMA 3.11
The following properties hold true in the model M�:

(a) The relation R�
e satisfies F1 and F2:1.

(b) Each relation R�
i satisfies F1 and F2:1.

(c) The relation R�
4
satisfies F1 and F2:2.

PROOF. (a) F1. Suppose there are two worlds v and z such that vRc
ez. Then

v �V c
n
KeD ) z �V c

n
D. Since v �V c

n
KeD ! KeKeD we have ðv �V c

n
KeDÞ )

ðv �V c
n
KeKeDÞ ) ðz �V c

n
KeDÞ. Suppose ðz �V c

n
KeDÞ. Then ðz �V c

n
KeKeDÞ. Since Rc

e is
symmetric by Lemma 3.9, we have zRc

ev and hence ðv �V c
n
KeDÞ. Therefore, by our definition

of R�
e , it follows vR

�
ez.

F2.1. Suppose ½v�R�
e ½z�. Then 8KeD 2 � ðv �V c

n
KeD , z �V c

n
KeDÞ. Since z �V c

n
KeD ! D

we have z �V c
n
D. g

The proof of cases (b) and (c) is similar.

Hence by the standard results concerning filtrations, we can state the following:

LEMMA 3.12
8D 2 � 8v 2 W c

n ððF c
n, vÞ �V c

n
D , ðF�, ½v�Þ �V � DÞ.

COROLLARY 3.13
ðF�, ½w�Þ 1V � B.

Once more again, we can show that our current �-filtered model M� is conservative with
respect to the properties stated by Lemma 3.

LEMMA 3.14
In the model M� the following holds:

(a) R�
e and each R�

i are reflexive, symmetric and transitive.

(b) R�
4
is reflexive, transitive and connected.

(c) 8½v�, ½z� 2 W � ð½v�R�
e ½z� ) ð½v�R�

4
½z� & ½z�R�

4
½v�ÞÞ.

(d) 8½v�, ½z� 2 W� ð½v�R�
i ½z� ) ½v�R�

e ½z�Þ.

PROOF. (a) Trivially ðv �V c
n
KeDÞ , ðv �V c

n
KeDÞ. Hence ½v�R�

e ½v� and R�
e is reflexive.

Suppose ½v�R�
e ½z� and ½z�R�

e ½u�. Hence ðv �V c
n
KeDÞ , ðz �V c

n
KeDÞ and ðz �V c

n
KeDÞ ,

ðu �V c
n
KeDÞ, which entails ðv �V c

n
KeDÞ , ðu �V c

n
KeDÞ. Hence ½v�R�

e ½u�.
Suppose ½v�R�

e ½z�. Then ðv �V c
n
KeDÞ , ðz �V c

n
KeDÞ and hence ðz �V c

n
KeDÞ , ðv �V c

n
KeDÞ

which means ½z�R�
e ½v�.
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(b) For the properties of reflexivity and transitivity see the previous case. Since by
F1 ðvRc

4
zÞ implies ð½v�R�

4
½z�Þ and Rc

4
is connected (see Lemma 3.14), it follows that R�

4

is connected.
(c) Suppose ½v�R�

e ½z� and either :ð½v�R�
4
½z�Þ or :ð½z�R�

4
½v�Þ. If :ð½v�R�

4
½z�Þ, then there is a

formula h4D 2 � such that v �V c
n
h4D and z 1V c

n
h4D. By Axiom 4h4

it follows
v �V c

n
h4h4D, hence by Axiom M.1 we have v �V c

n
Keh4D. But Keh4D 2 � by construc-

tion1, therefore since ½v�R�
e ½z� we have z �V c

n
Keh4D and, by reflexivity, z �V c

n
h4D, which is a

contradiction. We reach a similar contradiction if we assume :ð½z�R�
4
½v�Þ.

(d) Suppose ½v�R�
i ½z� for some i and :ð½v�R�

e ½z�Þ. Then there is a formula KeD 2 � s.t.
v �V c

n
KeD and z 1V c

n
KeD. Again, by the axioms 4Ke

and M.2 we obtain v �V c
n
KiKeD.

The formula KiKeD belongs to � by construction2, therefore, given ½v�R�
i ½z�, we have

z �V c
n
KiKeD and, by reflexivity, z �V c

n
KeD, which gives rise to a contradiction. g

Properties of filtered relations. From Lemma 3.14 follows that the new binary
relations possess certain properties, namely all the knowledge modalities are reflexive,
symmetric and transitive, whereas the time relation is connected as well as reflexive and
transitive.

Both properties PM.1 and PM.2 hold true:

8v, z 2 W� ðvR�
ez ) ðvR�

4
z & zR�

4
vÞÞ

which means that two information points (worlds) are simultaneous whenever they are from
the same environment. But this is something we were able to state even in the previous stages
of our construction. The main achievement is that now we have a very important property.
In fact, since the base set of the filtered frame is finite, trivially the time relation R�

4
gives rise

to a discrete linear order of temporal (R�
4
-) clusters, which in this context means that given

any two distinct worlds, there is only a finite number of moments between them.
However we do not have the property PM.3 yet:

8v, z 2 W� ððvR�
4
z & zR�

4
vÞ ) vR�

ezÞ

In other words in this frame we may have R�
4
-proper clusters of R�

e -clusters, which in our
intended interpretation means that it can be the case that two points, though at the same
moment of the flow of time could belong to different environments (see Figure 2).
Unfortunately, this is not the case for LT K-frames, therefore another transformation seems
to be necessary to prove our axiomatic system to be complete w.r.t. this kind of structures.
To achieve this goal, we will construct another frame. The idea is to unravel each R�

4
-proper

cluster, without using the standard technique of bulldozing, which would give rise to an
infinite, but non discrete (with respect to tempooral clusters) frame. In other words we will
define a well ordering on R�

e -clusters inside each R�
4
-proper cluster, in order to construct a

new frame. Such frame will be obtained by substituting each R�
4
-proper cluster with the

1Indeed if h4D 2 �, then there are only two possibilities: either h4D 2 �0 or h4D 2 �1 and in both cases
Keh4D 2 �2 and hence it belongs to � as well.

2IIn fact if KeD 2 �, then either KeD 2 �0 or KeD 2 �1 or else KeD 2 �2; hence KiKeD 2 �3 and it belongs to �

as well.
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finite ordered line formerly defined. The only troubling case is for formulae of the form h4D

from SubðBÞ. There could be, for example, a world v in an R�
4
-proper cluster such that it

falsifies h4D and another world, say z which is the only point R�
4
-accessible from v falsifying

D. If such world z belonged to the same R�
4
-proper cluster as v and it were not R�

4
-accessible

from v in the new unravelled frame, then we would have a lack of truth values for formulae
from SubðBÞ. However this situation is made impossible by the subsequent lemma, stating
that whenever a world v in an R�

4
-proper cluster falsifies h4D, D is falsified either in the

same environment-cluster to which v belongs, or in another world z which is strictly above
with respect to v, i.e. vR�

4
z & :ðzR�

4
vÞ.

LEMMA 3.15
8h4D 2 SubðBÞ8v 2 W � if v 1V � h4D and v is not final, then there is a world z 2 W� s.t.
vR�

4
z, z 1V � D and either vR�

ez or :ðzR�
4
vÞ.

PROOF. Suppose there are a formula h4D 2 SubðBÞ and a non final world v such that
v 1V �h4D. There are only two possible cases.

Case 1. v �V �e4h4D. Hence, since the instance of Axiom Dumh4
with respect to the

formula D is true in the model M� (for the way we defined �, and in particular �1), we have
v 1V� h4ðh4ðKeD ! h4DÞ ! KeDÞ, and then v �V � e4ðh4ðKeD ! h4DÞ^ee:DÞ.

Therefore there exists a world z such that:

ðvR�
4
zÞ & ðz �V� h4ðKeD ! h4DÞ^ee:DÞ ð3:1Þ

Let us suppose by contradiction that

(a) The formula D is true in each world from the R�
e -cluster of v, i.e. 8t 2 W �

ðvR�
e t ) t �V � DÞ.

(b) There is no world strictly above w.r.t. v in which D is false, i.e. 8t 2 W �

ðvR�
4
t & :ðtR�

4
vÞ ) t �V � DÞ.

From (b) and (3.1) follows that zR�
4
v. By (3.1) we also have z �V�h4ðKeD ! h4DÞ, hence

v �V � KeD ! h4D. But from (a) follows that v �V � KeD, therefore v �V � h4D, which is a
contradiction.

Case 2. v 1V � e4h4D. Hence v �V� h4e4:D. This implies that D is false at least in some
world from the final R�

4
-cluster and such world is strictly above w.r.t. v, which is non final by

assumption. g

FIG. 2. Scheme of the structure of the frame F�.
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4 Completeness

Consider the frame F�.

(a) Fix a well ordering C1, . . . , Cf among R�
4
-clusters such that i < l if and only if

ðCiR
�
4
CmÞ&:ðCmR

�
4
CiÞ.

(b) Fix some well ordering among R�
e -clusters inside any R�

4
-cluster, so that each R�

e -cluster
would be taken once and only only once.

Hence each single world from the base set of F� would be displayed as hvj , ii, meaning
that v belongs to the j -th R�

e -cluster inside the i-th R�
4
-cluster.

Given that the number of R�
4
-clusters is f, we stipulate that the index f denotes that

a world hvj , fi belongs to the final R�
4
-cluster Cf.

(c) Define a new frame S ¼ hWS,S4,Se,S1, . . . ,Ski in the following way:

– WS ¼
S

v2W �hvj , ii;
– hvj , iiS�hzm, li () vR�

� z, for 1 � � � k;
– hvj , iiSehzm, li () i ¼ l & j ¼ m;
– hvj , iiS4hzm, li () ðj � m & i ¼ l Þ or i< l or l ¼ f, i.e. z is R�

4
-final;

(d) Let MS ¼ hS,V Si be a model such that 8p 2 fp1, . . . , png V
SðpÞ ¼ fhvj , ii j v 2 V �ðpÞg.

Then clearly the following holds:

LEMMA 4.1
8D 2 SubðBÞ8v 2 W � ððF�, vÞ �V � D , ðS, hvj , iiÞ �V S DÞ.

PROOF. (a) (By induction on the length of D). Trivially, if lgðDÞ ¼ 1, D has the form p,
v 2 V �ðpÞ and hence hvj , ii 2 V SðpÞ. Therefore hvj , ii�V Sp.

Suppose D has the form KeA. Then v �V � KeA if and only if 8z 2 W� ðvR�
ez ) z �V � AÞ.

By inductive hypothesis (IH) hzm, li �V S A. Since vR�
ez implies that both v and z belong to

the same R�
4
- and R�

e -clusters, it follows i¼ l and j¼m, and hence hvj , iiSehzm, li, which
means hvj , ii �V S KeA.

Suppose hvj , ii 1V Sh4A. Then there is a world hzm, li such that hvj , iiS4hzm, li and
hzm, li 1V SA. This means that either i< l, or ði ¼ l & j � mÞ or else l ¼ f. Each of these
cases implies vR�

4
z. By IH we have z 1V �A and therefore v 1V�h4A.

(b) Assume v 1V� h4A. Suppose v is not R
�
4
-final. Then, by lemma 3.15, there is a world z

such that vR�
4
z, z 1V� A and either vR�

ez or :ðzR�
4
vÞ. If vR�

ez, it follows that both v and z
have the same indices for the R�

4
- and R�

e -clusters they belong to, i.e. they are displayed as
hvi, ii and hzi, ii. Hence hvi, iiS4hzi, ii. By IH hzi, ii 1V SA and therefore hvi, ii 1V S h4A. Else if
:ðzR�

4
vÞ, given that the worlds v and z are displayed as hvj , ii and hzm, li, it follows that i < l,

and hence hvj , iiS4hzm, li. Again, by IH we have hzm, li 1V S A and therefore hvj , ii 1V S h4A.
Finally suppose v is R�

4
-final. Then there is a world z which is R�

4
-final as well and it is such

that vR�
4
z and z 1V� A. Since z is displayed as hzm, fi, it follows that hvj , fiS4hzm, fi. By IH

hzm, fi 1V S A and therefore hvj , fi 1V Sh4A.

COROLLARY 4.2
S 1V S B

The frame S has the structure depicted in Figure 3. If we regard environment-clusters
(Se-clusters) as single worlds, this frame has the structure of a reflexive balloon.
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Whenever the S4-final cluster of our model is an S4-proper cluster of Se-clusters (i.e. not
simple), the frame we have obtained is not an LT K-frame. We recall that these frames
have no S4-proper clusters of Se-clusters inside, and hence our final construction cannot be
considered as a member of such class. However, this is not a problem, for it follows from [2]
and [3] that these structures are nothing but p-morphic images of LT K-frames.

Therefore we can state the following:

THEOREM 4.3
8B 2 FmaðLLTKÞ if B 62 LTKax then there is an LT K-frame F such that F 1 B.

COROLLARY 4.4. (Soundness and Completeness)

(a) LTKax ¼ LTK
(b) LTK�

ax ¼ LTK�

COROLLARY 4.5
LTK1

ax (the version of LTKax with only one agent operating in the system) has the effective
finite model property and it is decidable w.r.t. admissible inference rules.

Appendix

So far we have presented a semantic framework for reasoning about time and knowledge
which can be useful whenever the flow of time is considered as linear and discrete and only
one situation (environment) is possible at each moment. However, we might be interested in
generalising such approach and presenting a system based on more general theoretical
assumptions. A generalised LT K-frame can be thought as a structure which is identical to an
LT K-frame except for the fact that it allows distinct environment-clusters to be concurrent
(see Figure 4)3. This aspect may result of use whenever we aim at reasoning about
simultaneous alternatives to a given state of affairs without assuming the time as branching.

FIG. 3. Scheme of the structure of S: a particular case of reflexive balloon.

3Following the terminology previously used, a generalized LT K-frame can be understood as an LT K-frame

lacking the property PM.3.
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The logic GLTK generated by this class of generalised frames can be easily proven to be
decidable with respect to its theorems.

To prove this claim it is sufficient merely to modify our previous proof in the following way:

(a) Let ASGLTK be an axiomatic system obtained by deleting Axiom Dumh4
from ASLTK and

let GLTKax be the set of theorems generated by ASGLTK.
(b) Trivially, delete part (b) from Theorem 2.7;
(c) Change the filtration set � to �� :¼ �0 [ ��

2 [ ��
3 where:

– �0 :¼ SubðBÞ
– ��

2 :¼ fKeh4D j h4D 2 �0g

– ��
3 :¼ fKiKeD j KeD 2 �0 [ ��

2 g for 1 � i � k

At the end of the process of filtration, we obtain a model based on a finite generalised
LT K-frame.
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Combining Time and Knowledge, A Semantic Approach

Erica Calardo and Vladimir V. Rybakov
Department of Computing and Mathematics, Manchester Metropolitan University,

All Saints, Oxford Rd., M15 6BH Manchester, UK
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The language of multi-modal logic is a good tool to study the interaction of agents’ knowledge
in the flow of time. Many different axiomatic systems for multi-modal propositional logics involving
time and knowledge modalities have been introduced. We study a logic of this kind, but generated
in a semantic way by introducing a certain class TK of multi-modal frames, called LT K-frames. In
these frames the flow of time is linear and agents are operating synchronously. One agent - the wise
agent - plays a special role: the wise agent knowledge is the universal modality on time clusters in
these frames. The multi-modal logic LTK is the set of all LT K-valid formulae. It has been already
proved by us that LTK has the fmp, and hence LTK is decidable.

Our present research is devoted to extending this result to admissible inference rules. We
consider the logic LTK1, a weaker variant of LTK, with only one agent besides the wise agent.
Our approach involves the construction of n-characterising models ChLTK(n) for LTK1 and the
description of free temporal algebras Fw(LTK1) by means of these models. A rule r is admissible
in LTK1 if and only if r is valid in the models ChLTK(n) with respect to all definable valuations.
Using this approach we prove

Theorem 1 The logic LTK1 is decidable w.r.t. admissible inference rules.

Corollary 2 The quasi-equational theory of free temporal algebra Fw(LTK1) is decidable.
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1 Background

How do human beings reason? How do they
interact? There will never be, probably, a fully
satisfactory answer to such questions, but if we
were to enumerate the tools developed so far to
try to give an answer, we would find that Modal
and Multi-modal logics are doubtless among the
best ones. Since they combine a highly expressive
power with several handle semantic tools (as the
easily understandable Possible World Semantics
[1]), they suddenly become far more effective than
classical propositional systems for this purpose.
Propositional modal logic have been investigated
since the dawn of philosophical, hence logical,
research. The study of modal logic began with
Aristotle and his attempt to analise statements
containing words like possible and necessary. Re-
cently modal logics have found several applications
in Artificial Intelligence and Computer Science in
the attempt to formalise, for instance, reasoning
about the behavior of programs (cf [2]).

The main feature of modal logics is that they
enable to switch from extensional languages (ex-
pressing only facts, statements which can be either
true or false) to intensional ones. Modal logics deal
with sentences that are qualified by modalities such
as can, could, might, may, must et c. A modality
is, therefore, any word that could be added to a
statement p to modify it: the new statement says
something about the mode of truth of the old one (cf
[2]). Modal logics are often constructed by adding
one or more sentential operators (usually 2 and 3)
to a classical propositional system. Likewise, multi-
modal logics are obtained by adding more than one

modal operator to an existing logical system.

Traditionally the modal operators 2 and 3 are
interpreted as expressing necessity and possibility
respectively, so that an expression like 2p would
be read as it is necessary that p. But this is only
one of the many possible interpretations: modal
languages are extremely flexible. Our choice
would then be suggested by the context we are
to describe. Temporal logics, for instance, are
obtained by joining tense operators to an existing
logic, usually the classical propositional calculus
(cf. [3]). In the case of temporal logics, we can
interpret the modal proposition 2p as it will
always be the case that p, and its dual 3p as at
some point in the future it will be the case that
p. Therefore, the language of temporal logic is
particularly effective when we want to describe
the flow of time, towards both future and past.
Epistemic logics, on the other hand, are suitable
to formalize reasoning about agents not possessing
a complete information. They interpret modal
operators in terms of knowledge (the expression
Kap standing for the agent a knows that p, see [4]).
However, such systems have an expressive limi-
tation. They cannot handle modifications in the
pieces of information each agent possess, nor can
they give an account of a changing environment.
Adding a dynamic dimension to such systems is
therefore almost a necessity. The most natural
way to partially fix such deficiency is to insert
epistemic logics in a temporal framework. Hence
we would generate a multi-modal system.

Moreover systems generated by joining op-
erators representing both time and knowledge
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have already proved themselves to be particularly
effective in describing the interaction of agents
through the flow of time ([4, 5, 6, 7, 8]). They are
generated by adding to an existing propositional
system two sets of modalities: one to model the
flow of time, the other to describe agents’ knowl-
edge. The interaction of such modalities gives a
precise account of the dynamic development of
agents’ knowledge. Though highly interesting and
fascinating, this approach has not yet been fully
investigated, due to the complexity and the extent
of the subject. Nevertheless, in the last decade,
the theories developed have found many fruitful
applications in the study of human reasoning
and computing. These are concerned with the
development of systems modelling reasoning about
knowledge and space, reasoning under uncertainty
or with bounded resources, multi-agent reasoning
and other aspects of artificial intelligence.

However, despite the power of multi-modal
propositional logics, multi modal languages can
only express formulae which are static in a way:
the statements only fix a fact, and cannot handle a
changing environment. But this is exactly what is
required in the case of human reasoning, computa-
tion and multi-agent environment. In fact, we are
usually more interested in deducing what follows
logically given some premises, rather than knowing
logical truths. For this reason, inference rules, or
logical consecutions, are a core instrument.

For instance, rules can describe properties of
modal frames in some cases in which using formu-
lae may be difficult. A good example is Gabbay’s
irreflexive rule (cf. [9]):

ir :=
¬(p → 3p) → A

A

(where p does not occur in the formula A). This
rule states that each world of a model, where A is
not valid, should be irreflexive.

The greatest class of rules that can be applied
to a certein logic is that of admissible consecutions.
Such a class contains all those rules under which
the logic itself is closed, i.e. all those rules that
can be applied to a given logic while preserving its
set of theorems. So far, the research in this field
has investigated many modal and superintuitionis-
tic logics (see, for instance, Ghilardi [10, 11, 12],
Golovanov et al. [13], Iemhoff [14, 15], Jer̂ábek

[16], Rybakov [17, 18, 19]). The investigation be-
gan with Harrop’s observation (cf. [20]) that we
can enlarge an axiomatic system by adding admis-
sible, though not derivable, inference rules.This ap-
proach led Friedman (see [21]) to ask whether there
is an algorithm to recognise the rules admissible in
IPC, the intuitionistic propositional calculus. This
question and its analogues for modal logic has been
solved by Rybakov [19, 22, 23], and a robust math-
ematical theory has been developed1.

However, for the case of multi-modal logics, not
much is known concerning admissible inference
rules, though there have been some attempts to
approach the problem (cf. for instance Golovanov
et al. [25]). Nowadays, logics of this kind are an
active research area and the axiomatic systems
that have been constructed and examined are
numerous (cf. Halpern et al. [8]).

2 Our research

In our research, we would like to extend the inves-
tigation to a multi-modal propositional logic, LTK
(Linear Time and Knowledge), which combines
tense and knowledge modalities. This logic is
semantically defined as the set of all LT K-valid
formulae, where LT K-frames are multi-modal
Kripke-frames combining a linear and discrete
representation of the flow of time with special
S5-like modalities, defined at each time cluster
and representing knowledge. Initial results of
our research have been published in [5] and a
more comprehensive paper has been accepted for
publication ([6]). They have also been presented
by the author at European Logic Colloquium 2005
(Athens).

So far the aim of our research has been to show
that the multi-modal propositional system LTK is
decidable with respect to admissible inference rules,
i.e. we have found an algorithm which, given a rule
r, checks if r is admissible for LTK. This have been
proved in the following way:

a. we start by showing that LTK has the effective
finite model property and hence it is decidable with
respect to theorems;

b. we construct special countable n-

1For a more detailed historical account see Rybakov [19],
Iemhoff [24].
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characterising models for LTK;
c. we show that an inference rule r is admissible

in LTK if and only if it is valid in all the frames of a
special kind, whose size is computable and bounded
by the size of r. Hence, we prove that LTK is de-
cidable w.r.t. inference rules.

3 Further Work

In the light of the results obtained, we plan to ex-
tend our research to finding a sound and complete
axiomatisation for our logic system LTK. Although
many axiomatic system have been presented in [8],
we remind the reader that such system is original
and as far as we are concerned it has never been
investigated.

This would enable us to prove several more
important properties, especially Kripke Com-
pleteness, and it would confer more generality to
the work done up to now. We would approach
the matter with both standard tools (as canon-
ical models, filtration and unravelling) and new
methods. The idea is to model each knowledge
modality as an S5-modal system, while the time
would be represented as an S4.3-system. Several
new axioms mixing and modelling the interactions
among modalities would be introduced.
construct an algorithm recognising admissibility
for inference rules with meta-variables.

This would enable us to prove several more im-
portant properties, especially Kripke Complete-
ness, and it wuld confer more generality to the work
done up to now. We would approach the matter
with both standard tools (as canonical models, fil-
tration and unravelling) and new methods. The
idea is to model each knowledge modality as an S5-
modal system, while the time would be represented
as an S4.3-system. Several new axioms mixing and
modelling the interactions among modalities would
be introduced.

Methodology. More specifically, the structure of
our proof and the techniques involved would be as
follows.

a. Syntax. Introduction of our Hilbert-style ax-
iomatic system: language, axiom schemata, rules
and syntactical definitions.

b. n-Canonical Model.
c. Open submodels.

d. Filtration. This technique is used to reduce
the amount of worlds in an infinite frame to a fi-
nite number. It is particularly effective when the
canonical frame of a given logic system does not
have the required properties, like our case. Apply-
ing this technique we would prove the fmp (finite
model property).

e. Unravelling. This is a transformation
which would very likely help us reaching our
goal. It unravels all the loops inside our model, so
that the final construct is finite, linear and discrete.

Moreover we are planning to extend our research
to finding a basis fpr admissible inference rules in
LTK. A basis can be understood as the smallest set
of rules from which we can derive all vthe admissi-
ble consecutions. More formally, we say:

Definition 3.1 A collection B of admissible infer-
ence rules for some logic L is said to be a basis for
all admissible rules of L iff every rule r is admissi-
ble for L if and only if r is a consequence of B in
L.

There are several difficulties hidden in the
scheme presented. If in a multi-modal system
there are no interactions between modalities, many
important properties do transfer, like decidability
and finite model properties. As soon as we have in-
teraction between modalities, this is no longer true
(see [26]). It might happen that such combined
logics turned out to be undecidable, hence useless
from the computational and knowledge representa-
tion point of view. That is why it is so important
a deep and precise analysis of combination and in-
teractions between modalities. Multi-modal logics
are powerful and useful and in order to be applied
to Computer Science and Artificial Intelligence
need to be investigated deeply and carefully. Our
result is therefore original and it allows a little
step towards a complete investigation of the area.

The interdisciplinary nature of our project is
clear. It concerns philosophy, knowledge repre-
sentation, mathematics, artificial intelligence and
computation as well. Modern applications of logic
in computer science and artificial intelligence of-
ten require languages able to represent knowledge
about dynamic systems (such as program execu-
tions, information flows, expert, distributed and
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multi-agent systems, temporal databases, consult-
ing by Web, et c.). Distinct designed logics, e.g.
modal and temporal logics for multi-agent reason-
ing, serve these applications in a very efficient way,
and we would absorb and develop some of these
techniques to represent logical consequences in ar-
tificial intelligence and computation.
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A SOUND AND COMPLETE AXIOMATIZATION FOR THE LINEAR
LOGIC OF KNOWLEDGE AND TIME LTK

ERICA CALARDO

The multi-modal propositional logic LTK combines linear time and
knowledge and is semantically defined as the set of all the formulae valid
on LT K-frames, the prefix LT K standing for Linear Time and Knowl-
edge. LT K-frames are multi-modal Kripke-frames that combine a linear
and discrete representation of the flow of time with special S5-like modal-
ities, defined at each time cluster and representing agents’ knowledge.

The logic LTK has already been proved to be decidable with respect
both to its theorems and to its admissible inference rules (see [2, 1]).

Our research aims at finding a sound and complete axiomatization of
LTK. We have developed an axiomatic system ASLTK in which the axioms
describing the flow of time give rise to an S4.3 modal system, whereas the
ones intended to describe agents’ knowledge produce a series of S5 modal
systems. Moreover, several axioms have been added to the system in order
to regiment the interactions between distinct modalities. This is the most
important part of our approach because there are several problems behind
the interactions of different modalities. However, we proved the following
result:

Theorem 1. LTK = LTKax.
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Section A.2 Philosophical and applied logics

Basis of Admissible rules for the multi modal logic of knowledge

and time LTK1

Erica Calardo

e.calardo@gmail.com

Manchester Metropolitan University, Dep. of Computing and Mathematics
Chester Street, Manchester M1 5GD, UK

Multi-modal propositional systems generated by joining operators representing both time and knowl-
edge have already proved themselves to be particularly effective in describing the interaction of agents
through the flow of time ([2, 1, 3, 4, 6]). These logics are generated by adding to an existing propositional
system two sets of modalities: one to model the flow of time, the other to describe agents’ knowledge.
The interaction of such modalities gives a precise account of the dynamic development of agents’ knowl-
edge.
However, despite the power of multi-modal propositional logics, multi modal languages can only express
formulae which are static in a way: the statements only fix a fact, and cannot handle a changing environ-
ment. But this is exactly what is required in the case of human reasoning, computation and multi-agent
environment. In fact, we are usually more interested in deducing what follows logically given some
premises, rather than knowing logical truths. For this reason, inference rules, or logical consecutions,
are a core instrument.

Our research aims at investigating a multi-modal propositional logic, LTK1 (Linear Time and Knowl-
edge), which combines tense and knowledge modalities. This logic is semantically defined as the set
of all LTK-valid formulae, where LTK-frames are multi-modal Kripke-frames combining a linear and
discrete representation of the flow of time with special S5-like modalities, defined at each time cluster
and representing agents’ knowledge.

So far we have proved that the logic LTK1 (i) has the finite model property [2]; (ii) is decidable with
respect to its admissible inference rules [1]; (iii) has a finite axiomatisation1.

Our latest results is to show that LTK1 has a finite basis for admissible inference rules, i.e. all those
rules under which the logic itself is closed.
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Admissible rules in the multi modal logic of knowledge

and time LTK

Erica Calardo

e.calardo@gmail.com
Manchester Metropolitan University, Dep. of Computing and Mathematics

Chester Street, Manchester M1 5GD, UK

Multi-modal logics are one of the best tools developed so far to describe the
behaviour of agents throughout the flow of time. Since they combine their highly
expressive power and flexibility with several handle semantic tools (as the Pos-
sible World Semantics), they are far more effective than classical propositional
systems for this purpose.

Multi-modal logics are obtained by adding more than one modal operator to
an existing logical system. This feature guarantees flexibility in the sense that the
interpretation of the modal operators can be chosen according to the situation
to be described. In our research we join tense and knowledge operators to the
classical propositional calculus. The interaction of these two sets of modalities
gives a precise account of the dynamic development of agents’ knowledge (see
[1, 2, 3], Fagin et al. [4], Gabbay et al. [5], Halpern et al. [6]).

Although highly interesting and expressive, combined modal logics, however,
present several difficulties if seen as a class. It is known, in fact, that if there is
no interaction between modalities a transfer of properties (such as finite model
property, decidability, etc.) from the component simple modal logics to the newly
generated multi-modal system does apply. But as soon as such interaction takes
place it is no longer straightforward to prove that the combined system is conser-
vative with respect to the properties of its components (see Bennett et al. [7] and
Kurucz [8]). Indeed, in some cases the opposite may apply. Nevertheless, despite
such difficulties, interaction between modalities is necessary fully to exploit the
power of multi-modal languages.

Moreover, although highly expressive, multi-modal languages have a limita-
tion. The formulae which are expressible by means of multi modal languages
are static: they can only state facts and hence they cannot handle a changing
environment. But this is exactly what is required in the case of human reason-
ing, computation and multi-agent environment. In fact, we are usually more
interested in discovering what follows given some premises, rather than deducing
logical truths. For this reason, inference rules, or logical consecutions, are a core
instrument.
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An admissible consecution for a given logic is a rule which can be applied to
the logic itself while preserving its set of theorems. So far, the research in this
field has investigated many modal and superintuitionistic logics. The investiga-
tion began with Harrop’s observation that we can enlarge an axiomatic system
by adding admissible, though not derivable, inference rules. This approach led
Friedman to ask whether there is an algorithm to recognise the rules admissible
in IPC, the intuitionistic propositional calculus. This question and its analogues
for modal logic has been solved by Rybakov [9], and a robust mathematical the-
ory has been developed.

However, for the case of multi-modal logics, not much is known concerning
admissible inference rules, although there have been several attempts to approach
the problem.

In our research we extend the investigation concerning admissible inference
rules to a multi-modal propositional logic, LTK (Linear Time and Knowledge),
which combines tense and knowledge modalities and which allows interactions
between modal operators. This logic is semantically defined as the set of all
LTK-valid formulae, where LTK-frames are multi-modal Kripke-frames combin-
ing a linear and discrete representation of the flow of time with special S5-like
modalities, defined at each time cluster and representing agents’ knowledge.

So far we have proved that LTK is decidable with respect both to its theorems
[1], and to its admissible inference rules [2]. Moreover, LTK has been proved to
have a finite, sound and complete axiomatisation [3]. Our latest result is that
LTK has a finite basis for admissible inference rules.

References

[1] Erica Calardo and Vladimir V. Rybakov. Combining time and knowledge, semantic ap-
proach. Bulletin of the Section of Logic, 34(1):13–21, 2005.

[2] Erica Calardo. Admissible inference rules in the linear logic of knowledge and time LTK.
Logic Journal of the IGPL, 14(1):15–34, 2006.

[3] Erica Calardo and Vladimir V. Rybakov. An axiomatisation for the multi-modal logic of
knowledge and linear time LTK. Logic Journal of the IGPL, (to appear).

[4] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995.

[5] Dov Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications, volume 148 of Studies in Logic and the Foundations
of Mathematics. Elsevier, North-Holland, New York - Amsterdam, 2003.

[6] Joseph Y. Halpern, Ron Van Der Meyden, and Moshe Y. Vardi. Complete axiomatization
for reasoning about knowledge and time. SIAM Journal on Computing, 33(3):674–703, 2004.

[7] Brandon Bennett, Clare Dixon, Michael Fisher, Enrico Franconi, Ian Horroks, and Maarten
De Rijke. Combination of modal logics. Artificial Intelligence Review, 17:1–20, 2002.

[8] Agi Kurucz. Combining modal logics. In Handbook of Modal Logic, volume 3. Elsevier, 2006.

[9] Vladimir V. Rybakov. Admissible Logical Inference Rules, volume 136 of Studies in Logic
and the Foundations of Mathematics. Elsevier, North-Holland, New York - Amsterdam,
1997.

2



216APPENDIX B. INTERNATIONAL CONFERENCES (CONTRIBUTED PAPERS)



Bibliography

[1] Fabio Bellissima and Paolo Pagli. La Veritá Trasmessa. Sansoni, 1993.
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