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Abstract

Fatal crush conditions occur in crowds with tragic frequency. Event orga-

nizers and architects are often criticised for failing to consider the causes

and implications of crush conditions, but the reality is that the prediction

of such conditions offers significant challenges. This thesis investigates the

use of crush metrics in simulation environments, which can be used to help

quantify the danger of crush conditions forming during real life evacuations.

An investigation is carried out in the use of computer models for the

purpose of simulating building evacuation. From this review we identify the

most suitable methodologies for modelling crowd behaviour, and we detail

the specific areas of functionality which must be in place before modellers

can incorporate crush analysis into an evacuation simulation. We find that

full treatment of physical force within crowd simulations is precise but com-

putationally expensive; the more common method, human interpretation

of simulation output, is computationally “cheap” but subjective and time-

consuming.

A technique which admits a low computational cost alternative to the

explicit modelling of physical force, yet still offers a quantitative metric for

the level of force present during an in silico evacuation is proposed. This

technique and the precise manner in which we apply it to the problem of

crush detection is shown and we present the results of initial experiments.

To further test the ability of our technique to identify dangerous evac-

uation conditions, we recreate a well-known historical evacuation. Results

of these experiments show that we do offer an effective and efficient route

towards the low cost automatic detection of crush, and an alternative ap-

proach to traditional methods.
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Chapter 1

Introduction

Overloading pedestrian routes can quickly lead to the development of crush

conditions (the formation of dangerous levels of physical force within a

crowd), as observed in the Hillsborough disaster [136], Station Nightclub

[44] and Saudi Arabian Hajj [52] incidents, as well as the recent Love Parade

tragedy in Germany [6]. Some suggest that approximately two-thousand in-

dividuals per year die as a direct result of crush conditions [56], and that

this figure continues to rise [155]. A more sophisticated understanding of

how crush conditions form is therefore critical for the design of tall buildings

and other highly-populated, contained areas (such as ships, nightclubs and

stadia), as well as for the planning of events and formulation of incident

management procedures. A first step towards this deeper understanding

is a method for detecting the early-stage formation of crush, which is the

problem we address here.

The study of crowd evacuation scenarios has taken on additional signif-

icance in the light of events such as 9/11 . Many tall buildings (such as the

World Trade Centre towers) were designed alongside the assumption that

any necessary evacuation could and would be conducted in a phased manner

(e.g. floor-by-floor). One significant factor in building design is the capacity

of exit routes (such as corridors and stairwells). Capacities are calculated

based on projections of controlled population movement in phased evacua-

tions. If the phased evacuation assumption breaks down (if, for example,

occupants of a specific floor refuse to wait their “turn” for fear of catas-

trophic building failure) then this will have severe implications for overall

safety, as exit routes can become overloaded.
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Computer-based simulation studies are often used to analyse the move-

ment of individuals in various scenarios. Such work encompasses, for ex-

ample, the study of historical events [52], the examination of evacuation

procedures [47], and the design of aircraft [39]. Existing simulation frame-

works include EXODUS [102], PEDFLOW [77] and EVACNET [67] (see [78]

for an extensive review), and these offer a range of “real world” features, in-

cluding exit blockage/obstacles, occupant impatience and route choice [48].

However, the phenomenon of crush is one that has received relatively little

attention from the designers of evacuation simulations. Many simulations

do not explicitly consider the effects of crush, and those that do factor in

crush employ computationally expensive Newtonian force calculations.

The two major problems we address are as follows: firstly, the consid-

eration of crush within existing simulation frameworks requires the use of

computationally expensive Newtonian force calculations. These drastically

slow down simulations, restricting their applicability in the rapid prototyping

of building designs and crowd control procedures. The second problem is

that the monitoring of crush within real crowds is rudimentary, at best, and

relies largely on personal observation and interpretation of crowd patterns

by security professionals [76]. This method of crush detection is inherently

problematic.

We therefore seek a method for the detection of crush conditions that is

relatively “cheap” in terms of computational effort, and which can, in future,

be easily integrated into existing software for crowd monitoring. Such a

method will have a significant impact on both simulation-based evacuation

studies and real-time analysis of video images (facilitating, for example, the

future development of automated crush alarms based on CCTV images).

In essence, we propose that the breakdown of order, i.e. smooth or lami-

nar flow, within an evacuating crowd may be used to metricise the amount of

crush danger that individuals within that crowd may face. As order breaks

down, the predominant behaviour within the crowd will transition to a dis-

ordered phase, in which individuals exhibit competitive behaviours such as

pushing or overtaking. We suggest that the identification of the level of

order may therefore be used as a de-facto measure of the amount of force

that will build within the evacuating crowd.

In this thesis we describe our proposed method, an information theory

based technique which treats the onset of dangerous behaviours during an
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evacuation as a form of phase transition within the evacuating crowd, i.e. an

observable, and measurable, change from one set of exhibited behaviours to

another. We show how our method can be easily integrated into an existing

simulation framework, and test it using details of a historical event. Our

results show that we can provide a robust warning indicator of the emergence

of crush conditions.

1.1 Scope of Study

This study is concerned with the identification of the formation of crush

conditions within in silico evacuations. The analytic technique developed

will therefore focus on the prediction of physical force, or the identification of

known dangers (during our historical recreation), in two-dimensional pedes-

trian evacuation simulations. The precise physical force that an individual

pedestrian is subject to at any one time is not considered.

1.2 Identification of Crush Conditions in in silico

Simulations

To prove the usefulness of our detection methodology we implement our

technique as part of an in silico simulation environment, and test the tech-

nique on a recreation of an historical evacuation where high levels of force

are known to be present. The advantage of using an in silico evacuation is

twofold; firstly, there are a number of simulation environments which offer

the ability to measure the physical forces building within crowds of peo-

ple, which allows for the confirmation of the presence of dangerous levels

of force using our technique. The second advantage of choosing an in silico

environment is that obtaining empirical data relating to high density crowd

situations is notoriously difficult, with good quality video footage being ex-

tremely rare. To mitigate the disadvantages inherent in the use of in silico

data rather than real-life data, we only consider items of performance data

from the in silico evacuations that could feasibly be obtained from the video

feed of a “real-world” crowd event (i.e. variables describing an individual’s

motion, such as density, velocity, or direction). In this way it is anticipated

that the technique will eventually be shown to be applicable to the real time

detection of crush conditions.
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1.3 Contributions

1. To identify factors that contribute to the development of

crush conditions.

We identify multiple contributing factors that lead to the initial for-

mation of crush conditions, and show how they can be used for the

analysis of crush formation in historical events.

2. To review historical incidences of crush.

We review numerous historical incidents in which crush conditions

have been found to have caused serious injury or loss of life. The aim

of this review is the better understanding of the types of situation

which lead to crush, and consequently the difficulties in predicting the

occurrence of crush conditions in some situations. Further analysis

involves the application of the contributing factors to the investigation

of these events.

3. To identify the most suitable methodology for simulating

crush conditions during an evacuation.

The accuracy and integrity of crush simulation will depend greatly

on the specific methodological choices made when designing a simula-

tion environment. To ensure the correct choices are made during this

project certain different methodologies are investigated by means of a

literature review, the results of which will inform our choice of testing

environment in subsequent work.

4. To develop a technique to identify the presence of crush con-

ditions.

The initial aim of this project is to define a technique which can be

used to signal the presence of crush during an in silico evacuation by

means of passive analysis, i.e. without the explicit calculation of the

level of force present within an evacuating population.

5. To test our candidate technique on a simple simulation of

crowd behaviour.

As a proof of concept measure, the analytical technique is tested on

a simplified evacuation, so that its basic operation can be confirmed,

that is, to detect changes in crowd behaviour which can be used as an

identifier of the presence of crush conditions during an evacuation.
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6. To validate the working of our technique by using it to iden-

tify dangerous conditions within the recreation of an histor-

ical emergency.

To show the usefulness of our technique for the measurement of crush

risk within a simulation, an analysis is carried out on a well-known,

and previously investigated, disaster in which crush conditions played

a role.

1.4 Thesis Outline

The intention of this thesis is to lead someone with a basic knowledge of

either evacuation or agent based systems through the process and applica-

tion of our analytic technique to in silico simulations. This thesis is also

intended to be a self-contained document that requires no outside informa-

tion to enable the understanding of its central concepts.

The structure of this thesis is as follows.

Chapter 2 introduces the field of evacuation studies, and defines the real-

world problems with which this work is concerned. Evacuation and crush

conditions are defined, and we identify and define five key factors which can

be shown to contribute to the formation of crush conditions. A number of

historical examples where the presence of crush conditions lead to serious

injury or loss of life are investigated, and analysed using the five factors

identified previously. We conclude with an interesting issue relating to the

post-mortem diagnosis of crush deaths, which suggests that the number of

deaths attributed to crush conditions may often be under-estimated. In

Chapter 3 we establish the state-of-the-art with respect to computational

evacuation models, and investigate the three main modelling techniques rel-

evant to this work. The difference between strict movement models and the

more comprehensive behaviour models are also discussed. We carry out an

investigation into current trends in both evacuation modelling as a field, and

the popularity of specific computational models over the past twenty years.

Previous methodologies for detecting crush are investigated, and the need

for a new method of crush detection is identified. The chapter concludes

with a brief overview of our proposed technique for identifying the onset of

crush conditions within evacuation scenarios. Chapter 4 defines the model

which we have chosen as the initial test bed for our chosen technique, the
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social forces model, and covers the underlying concepts and mathematical

equations by which the model operates. A critical review of the strengths

and weakness of the model is also carried out. In Chapter 5 we investigate

the mathematical techniques which we employ in our crush detection tech-

nique, which originated in the field of Information Theory, and define the

techniques and methods which were employed in later work. A review of

some of the more relevant applications of these techniques is carried out,

and the chapter concludes with a more in-depth discussion on the way that

we apply these techniques to the task of crush detection. The initial proof of

concept is detailed in Chapter 7, where we show that the application of in-

formation theory techniques to an in silico evacuation simulation can detect

changing levels of force within the evacuating crowd. A statistical analysis

is carried out on the data obtained from these experiments and the results

show that there is strong evidence to support our hypothesis. In Chapter 8

we recreate the evacuation of the Station Nightclub, a well-documented ex-

ample of an evacuation in which crush conditions caused serious injury and

loss of life. Our results confirm the findings of the official investigation, and

our technique is shown to adequately distinguish between a safe evacuation

and an evacuation in which the population is put at considerable risk. The

results of these experiments are shown to be highly statistically significant,

and we conclude that our technique does have the ability to metricise the

relative level of threat present in an in silico evacuation. Tests are also

run to ensure that the technique can distinguish between normal pedestrian

movement and evacuation behaviour. Chapter 9 gives a summary of our

findings, and discusses the possibilities for this work going forward.
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Chapter 2

Evacuation and Crush

2.1 Introduction

This Chapter introduces the field of evacuation studies, and defines the real-

world problems with which this work is concerned. We begin by defining

what evacuation is, and also what evacuation is not; the latter includes

the identification of three well-established fallacies of evacuation behaviour

which are so commonly found within the literature that they require nega-

tion. We define and investigate crush conditions, and identify factors that

lead to the formation of these dangerous conditions. Historical examples

of crush disasters are reviewed. We conclude with an interesting issue re-

lating to the post-mortem diagnosis of crush deaths, which suggests that

the number of deaths attributed to crush conditions may be continually

under-estimated.

2.2 What is Evacuation?

Evacuation, with respective to the movement of a person or persons, is the

act of evacuating a person or a place. Evacuate is defined as:

Evacuate, verb, trans.

[To] Remove (inhabitants, inmates, troops), esp. to a place of

safety from a place that has become dangerous. [131]

Dangers which precipitate an evacuation are often caused by fire or toxic

materials, but could equally be related to a natural disaster or an impending
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conflict. This definition of an evacuation is far too broad for our purposes,

encompassing both the evacuation of towns and cities, and the evacuation

of smaller structures with limited spatial constraints.

For the purposes of this work we therefore define evacuation as;

Evacuation

A process caused by the requirement, or perceived requirement,

of a large number of people to effect egress from, or ingress to, a

structure, under strict temporal conditions.

There are numerous distinctions between these two definitions of evacu-

ation, the first being the presence of a hazardous event or threat of such an

event, which we do not consider a requirement. In many cases, large scale

crowd disasters can be found to have no precipitating factor that may be

described as “hazardous” (at least in any traditional sense), and are often

found to be the result of various other factors. Examples of crowd disasters

such as ”The Who Concert Stampede” [64], the Hillsborough disaster (see

Section 2.7.1, or the Hajj pilgrimage [52], involved no actual or perceived

dangers that were not a result of human factors. Factors contributing to

the breakdown of an evacuation, such as spatial constraints and percep-

tual issues, are discussed later, alongside a description of the Hillsborough

Stadium disaster (see Section 2.7.1).

Secondly, the requirement of strict temporal conditions is present in our

redefinition of evacuation. For the purposes of this work we do not consider

the exiting of a building as an evacuation behaviour, and therefore require

there to be either a time limit to be placed upon the population, or for the

population to believe that a time limit has been placed upon them.

Thirdly, we have the caveat that evacuation must consider a large number

of people. This part of the definition is specific to this project, as whilst a

single individual leaving a house due to a fire is technically an evacuation, it

is not in any way useful to this work. The term large is necessarily relative,

a large number of people in a residential house would be different to a large

number of people in a sports stadium. As a guideline, we do not consider

any evacuation during this thesis which involves any less than 200 people.

Finally, we have made the addition of egress from, or ingress to, a struc-

ture to our definition, to ensure that it is both distinct from the case of the

evacuation of a town or city, and also to include both egress and ingress
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within our definition. As is shown later (see Section 2.7), some examples

of large scale crowd disasters exist in which the population concerned were

attempting to enter a structure, rather than to exit, and we will consider

these to be valid cases of evacuation for the purposes of this work.

This is this definition of evacuation that we will be using for the entirety

of this thesis. It should be noted that we are not suggesting that this

definition of evacuation is suitable to describe all situations in which it is

necessary to effect egress from or ingress to an area, or that other definitions

of evacuation are in some way lacking, this is simply the most suitable

definition for the situations in which we are interested.

2.3 The Behaviour of Evacuating Crowds

The behaviour of evacuating crowds has been of interest to researchers for

many years, with the first theories on crowd behaviours appearing in print

during the late nineteenth century [83, 121, 134]. This area of research has

been active ever since, with sociologists, psychologists, and mathematicians

all adding to knowledge of the behaviour of crowds. The history and intri-

cacies of crowd or group psychology are outside the boundaries of this work,

but we briefly address some basic misconceptions of crowd psychology that

may be relevant to the understanding of this thesis.

It is commonly thought that the overriding behaviour exhibited during

an emergency evacuation is that of panic [2], i.e. illogical, irrational, or

crazed behaviour, brought on by a rise in adrenaline caused by the precipi-

tating disaster, but this is far from the case. The proliferation of this point

of view can be seen in the language used to describe many crowd disasters,

such as stampede, frenzy, or simply panic [114], and the point of view itself

can often be seen repeated in sociology or psychology texts. In fact, the

majority of crowd behaviours observable during evacuation scenarios have

been shown to not only be entirely rational, but are the most logical survival

strategy given the circumstances.

2.3.1 Fallacies of Crowd Behaviour

There are many commonly-held fallacies surrounding the behaviour of crowds

or large groups of people. As these fallacies might influence the development

and interpretation of the work reported here, we now briefly address them.
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Panic or Irrationality

The most widely-held, and incorrect, belief concerning the behaviour of

crowds is the phenomenon commonly known as panic [2], which for our

purposes is defined as either a state of mind which may lead people to

(inadvertently) cause injury to themselves or others whilst effecting their

egress, or a highly emotional and irrational state, in which an individual’s

actions are detrimental to themselves or their position. Indeed this second

definition is the more popularly held, and is regularly used by both the

media and academics to describe mass evacuations [114].

All current research suggests that the idea of panic or irrationality in

evacuating crowds is actually exceedingly rare, despite the widespread use

of the term. If irrationality were the norm in a crowd, the entire idea of evac-

uation modelling would become defunct, as each member of an evacuating

crowd would always exhibit entirely random and unstructured behaviour.

In reality, panic type behaviours have not been shown to be the overriding

behaviour, even in the most extreme of emergency situations. An inves-

tigation into the World Trade Centre disaster [100] discovered that panic

behaviour extremely rare

. . . classic panic action or people behaving in an irrational man-

ner was noted in 1
124

th
(0.8%) [of] cases.

Blake et al (2004) [10]

We might ask, “If panic does not exist, then how do people come to

harm during evacuations?”. Research shows that under most circumstances

the crowd is unaware that their actions are causing harm, or the scarcity

(or perceived scarcity) of resources is such that individuals begin to compete

with one another for access to the resources. This behaviour is known as

competitive egress and, unlike panic, has been shown to be both rational

and beneficial to the individual.

An example of this is found, as an analogy, in the Prisoners’ Dilemma as

stated by Brown [13]. The Prisoners’ Dilemma frames a well-known problem

of game theory relating to the reward structure of cooperation and compe-

tition in limited pay-off games. The game begins with two people being

arrested for the same crime, and interrogated separately. Each prisoner has
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A
Cooperate Compete

B
Cooperate A -2, B -2 A -10, B 0
Compete A 0, B -10 A -5, B -5

Table 2.1: Prisoners’ Dilemma payoff matrix

the option of either refusing to talk, or blaming his adversary in the cell

next door, and neither prisoner has any information about the decision that

the other may make. If both prisoners refused to talk, they will both be

sentenced to a short time in prison, but if both blamed the other then this

sentence will be much greater. In the eventuality that one prisoner were to

refuse to talk and the other was willing to lay blame upon him, then the

sentence for the silent man will be great, whereas the man who cooperated

with the police will be set free. These options, with associated sentences,

are detailed in the pay-off matrix shown in Table 2.1.

Brown theorised that this situation is wholly analogous to the problem

of evacuation where, in a cooperative crowd, any individual can increase

their chances of escape, and minimise their own evacuation time, by com-

peting. No matter how large an evacuation, if people are cooperating it is

always possible to improve one’s current situation by making the decision to

compete. This analysis of the evacuation problem is widely accepted, and

there are many studies into in silico evacuation which treat the evacuation

scenario as a game theoretic problem [7, 13, 31].

This simple analogy shows that, under any circumstances, an individual

taking part in an evacuation can increase their chances of escape by com-

peting with those around them. In a situation where ample time is given for

evacuation, and no additional stresses are placed upon the population (i.e.

no visible fire or smoke, little perceived threat of structural collapse) per-

ceived benefit of competition can appear quite low, but as time frames are

shortened or the perceived level of threat rises, the benefits of competition

can begin to outweigh that of cooperation.

We see then an example of what is termed “non-adaptive” group be-

haviour (or panic behaviour), that may initially seem irrational, but which

can be shown to be the best option available to the individual.
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Homogeneity

This belief can be traced back throughout the field of crowd psychology,

right back to the earliest works of Freud [36], McDougall [93], Sighele [121]

and Le Bon [83]. The idea of the crowd becoming homogeneous, either in

thought or in action, is less often perpetuated than the myth of panic, yet

it is still present in many modern sociology texts [118].

The idea that a crowd may be thought of as unanimous in thought

and action has been refuted by many, including Turner and Killian, who

debunk the idea as “the illusion of unanimity” [144], and offer the theory

that crowd thought and action is governed by differential expression in place

of a supposed state of homogeneity brought about by the mere fact that one

has become part of a crowd.

This is not to say that members of a crowd do not take cues from those

around them, or are unlikely to imitate other members of the crowd, but

it is generally believed that individuals within a crowd continue to exhibit

individual thought and action.

Anonymity

The idea of the anonymity in a crowd is a long held belief of crowd psychol-

ogy, and has been used to explain the “tendency” of crowds toward violence

[36, 83, 93, 103, 135]. The theory is that the anonymity felt by members of

the crowd, due to their number, allows the crowd to act without the usual

fear of accountability, and possible retribution, that they may experience if

acting as individuals.

This sense of anonymity has often been associated with the formation of

dangerously competitive evacuations, the reasoning being that the removal

of any consequences for ones actions allow people to compete for evacua-

tion capacity in a more aggressive manner, which can lead directly to the

formation of crush conditions. This has rarely been found to be the case,

and in fact in most situations in which serious injury has been caused in

dense crowd situations, the devastation caused by people’s actions are not

known to them. A good example of this is the Hillsborough disaster (see

Section 2.7.1), where the people entering were completely unaware of the

crush forming within the stands.

Recent research into communication within crowds also supports this
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argument, showing that under high-density situations the communication

between individuals at the front of the crowd and those at the rear (known

as “front to back communication” [104]) is limited to very short distances

[54]. This evidence shows that in many situations where individuals are

compounding the problems suffered by a different part of the crowd, it is

highly likely that the consequences of their actions are completely unknown

to them at the time.

2.4 What are Crush Conditions?

An informal definition of crush conditions, with reference to evacuation sce-

narios, can be considered as the point at which the build up of physical

force within a crowd of people reaches levels likely to cause serious injuries

or death. Yet the simplicity of this definition can serve to obscure the true

complexity of the phenomenon.

The majority of deaths or injuries caused by crush conditions are at-

tributed to compressive asphyxia (or simply asphyxia [50]), commonly known

as chest compression, which is the posterior compression of the torso to the

point at which it effects breathing, leading to hypoxia [50] (partial depri-

vation of oxygen to the body), anoxia [50] (the extremity of hypoxia), and

hypercapnia [50] (raised levels of carbon dioxide in the blood). The term

traumatic asphyxia [2] is also regularly used to describe this phenomenon,

but in some areas is reserved for specific uses, e.g. much of the evacuation

literature uses these terms interchangeably, but it can often be found that

the term traumatic asphyxia is reserved for the use of describing cases of

asphyxia resulting solely from sudden and severe trauma to the upper body.

For the purposes of this work we make no distinction between compressive

and traumatic asphyxia caused by crush conditions.

The term crush conditions should not be confused with the medical con-

ditions known as crush syndrome (also known as Bywater’s syndrome or

Rhabdomyolysis) [2, 8, 50] which is a condition caused by an extreme pres-

sure being placed and held on human tissue, and then subsequently released.

The condition is common in situations such as earthquakes and structural

collapses, which is why the appearance of crush syndrome is common across

much of the evacuation literature, and therefore the reason that this impor-

tant distinction has to be made.
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2.5 What Causes Crush?

Having discussed the medical factors relating to crush injuries, it is useful

to define the human factors which lead to the build up of sufficient levels of

force within an evacuation to cause injury or death. Whilst no one suggests

that the formation of crush conditions can be reliably defined in all circum-

stances, there are certain factors that can be shown to contribute to the

likelihood of the formation of crush in emergency situations. We classify the

main factors that lead to the initial formation of crush conditions under the

broad headings of spatial, temporal, perceptual, procedural, and cognitive

components.

2.5.1 Spatial

The spatial components of crush conditions are the simplest to quantify.

They relate to the ratio of space available for egress to the number of persons

that are expected to use the escape routes. It is obvious that if the density

of a crowd does not reach a critical level, then the formation of crush is an

impossibility, but density measured at two different points within the same

crowd can vary greatly (i.e. the density distribution in crowds is rarely

uniform).

Fruin devised a general metric with which to classify different degrees of

crowd density. He termed these the levels of service [37], and highlighted

the level at which the population density has the potential to facilitate the

formation of crush as “Level of Service F” (see Table 2.2), which is the

density at which a single individual has, on average, less than 0.46m2 of

space available to them. It has never been suggested that the level of service

F will definitely lead to the formation of crush, but Fruin suggests that

if an emergency situation were to occur and an evacuation were to reach

this density, then it is likely that injury will be caused to the evacuating

population.

It should also be noted that whilst these levels of service are widely

regarded as a reliable metric to describe immediate spatial concerns of an

evacuating population, there are other criteria which are used in different

circumstances. An example of this is the guidelines of the International

Maritime Organisation (IMO), who consider an evacuation to be unsafe if,

for 10% of the overall evacuation time, the density of the evacuating popu-
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Level of Service Walkway (m2p−1) Stairs (m2p−1) Queue (m2p−1)

A s > 3.42 s > 1.85 s > 1.21
B 3.24 ≤ s < 2.32 1.85 ≤ s < 1.39 1.21 ≤ s < 0.93
C 2.32 ≤ s < 1.39 1.85 ≤ s < 0.93 0.93 ≤ s < 0.65
D 1.39 ≤ s < 0.93 0.93 ≤ s < 0.65 0.65 ≤ s < 0.28
E 0.93 ≤ s < 0.46 0.65 ≤ s < 0.37 0.28 ≤ s < 0.19
F s ≤ 0.46 s ≤ 0.37 s ≤ 0.19

Table 2.2: Pedestrian Levels of Service (LoS). Available space (s) is measured
in m2 per person [37].

lation reaches 4 persons per square metre [58]. This is due to the fact that,

even at relatively low levels of force, prolonged exposure to “light” crush

conditions can still cause serious injury or death, and when dealing with an

environment in which physical space is already highly constrained (e.g. a

seagoing vessel) additional precautions must be taken to avoid overcrowding

during evacuation scenarios.

It may seem logical that the main factors determining the probability of

crush conditions forming are spatial, but this is not strictly the case. There

are numerous counter examples, situations in which there are known to be

very high crowd densities, yet have regularly shown to present relatively low

risk to the population. These situations will be familiar to those who used

to attend sporting events in the U.K., previous to the introduction of laws

which prohibit the provision of standing tickets, where the crowd densities

regularly reached such levels that members of the crowd were physically

lifted off their feet by the force of the crowd. Crowd density in these situ-

ations, or in other large scale events such as concerts, rallies and religious

festivals can often reach levels that are considered to be highly dangerous,

yet they are held on a regular basis without incident. This suggests that

spatial considerations alone cannot be used as a measure of danger present

in all situations, there must be further factors which can cause a situation

to transition from high density conditions to dangerous conditions.

2.5.2 Temporal

Temporal factors of egress vary, and depend heavily upon the rate at which

conditions change. The traditional metrics used to evaluate the time that

an evacuation will take are the RSET (Required Safe Egress Time); defined
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as the elapsed time between the initialisation of an evacuation and the final

evacuee reaching safety [122], i.e. the time required for a complete evacua-

tion under ideal circumstances, and the ASET (Available Safe Egress Time),

defined as the total time available for evacuation [122].

ASET and RSET calculations are strictly defined measures. The ASET

metric is defined as the amount of time between ignition to the moment

at which the conditions within the structure become so severe that further

evacuation becomes an impossibility. The RSET metric is defined as the

amount of time between ignition and the time at which the last occupant has

exited the structure and is in no further danger. In addition to this amount

of time the RSET metric must also include a “safety margin”, an additional

amount (or proportion) of time included in the metric to ensure the safety

of the population. The RSET metric can be further subdivided into more

fine-grained time measurements. As an example of how this calculation

could be further fine-grained, we could divide the RSET into the amount of

time between ignition to detection (how long it takes to discover the fire),

the amount of time between detection to raising the alarm, the amount of

time between raising the alarm and the beginning of the evacuation (known

as “pre-movement time”) and the amount of time between the end of pre-

movement and the last evacuee reaching safety. As can be seen from this

subdivision of the RSET calculation there may be specific time delays in each

one of these measurements, and engineers err on the side of caution when

working with these calculations, always considering the worst-case scenario.

Traditionally, the RSET and ASET metrics are used to determine whether

or not the occupants of a building are able to evacuate safely under specific

conditions. Generally, a structure can be considered “safe” if the ASET

value exceeds that of the RSET by an acceptable margin, i.e. there is suffi-

ciently more time available for an evacuation than would be required. The

margin by which the ASET value should exceed the RSET value is usually

decided on a structure-by-structure basis, and will vary greatly depending

on factors such as building size, capacity, occupant familiarity, etc.

The rate at which conditions change can compound time constraints.

As events unfold during an evacuation, the perceived time-scales within

which occupants believe that they must escape will change dynamically,

i.e. conditions which change the available escape time, such as exits be-

coming unusable, visibility becoming reduced, and the evacuation capacity
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exit structures becoming overwhelmed, all lead to immediate changes in the

evacuees “perceived available escape time”. The Rhode Island Nightclub

fire (see Section 2.7.2), is a good example of this, and shows how the rapid-

ity with which an incident escalates can place severe additional and novel

time constraints on the evacuating population. Whilst modern evacuation

analysis does allow for the simulation of an unlimited number of different

evacuation scenarios from a single structure, real world constraints make the

testing of all of these a physical impossibility, a prioritisation process which

selects an adequate subset of these events is therefore employed.

2.5.3 Perceptual and Cognitive Factors

Perceptual and cognitive factors that lead to the formation of crush condi-

tions are intrinsically linked, as an individual must rely on their perception

of events in order to decide upon a course of action. The individuals’ per-

ceived level of threat plays a large part in this, as it has the most direct effect

on the decision making process [27], as this can lead people to instigate sud-

den movement from within a crowded situation, producing rapid changes in

local densities. An additional side-effect cause by perceptual factors is the

frustration caused to pedestrians when their objectives are continually not

met [142], this can increase the probability of competitive egress behaviour

within a crowd. Whilst the perception of threat plays a great part in the

decision making process, one might assume it provides a good indicator of

outcome, i.e. the greater the perception of threat the more likely that an

individual would exhibit non-adaptive evacuation behaviour. However in

reality the relationship between perception and cognition is highly complex,

and can result in individuals displaying a wide range of behaviour, from

the altruistic at one end of the scale, through to highly competitive egress

behaviour.

The perception of information also plays a key part in the formation

of crush. During emergency situations, it is often found that information

relating to the current conditions is slow to propagate throughout a crowd

of people, for example evacuees that are placed further back in a crowd may

not necessarily be aware of the conditions further ahead [105]. This has

been found in many situations, such as the Hillsborough disaster (see Sec-

tion 2.7.1), where the people attempting to enter a structure were unaware

of the already dangerously overcrowded conditions that existed inside, and
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were effectively exacerbating the situation. In these cases the persons at

the rear of a crowd can compound the situation by producing additional

force that will propagate forward through the crowd, and also by limiting

the extent to which the pressure might be alleviated, by inadvertently and

unknowingly blocking the most immediate exit routes.

Work has been done on the propagation of information throughout a

crowd of people, and has found that the process of passing information from

the front of a crowd to the back is extremely ineffective [54].

2.5.4 Procedural

The procedural components of crush centre around the procedural failings

of crowd management. As is shown during the investigations into historical

events (see Section 2.7), many crowd disasters have serious procedural fac-

tors which contribute to their severity. Failures to plan effective evacuation

strategies, to provide enough persons in a crowd management capacity, and

to meet the local requirements for building and event management can all

be seen to play a role in either causing or compounding crowd disasters.

Another procedural factor found to be commonplace is the inability of

evacuees to follow strict evacuation plans in emergency situations, either

due to the perceived level of threat being too great, or due to the conditions

during the evacuation making following evacuation procedures impossible.

This is not to say that the individuals involved are at fault, but that in

extreme situations decision making processes are shortened, and therefore

may not represent an optimal evacuation strategy.

This type of problem is extremely common in public buildings, where

a great number of the occupants will be unfamiliar with the structure and

have little, or no, knowledge of the evacuation plans, e.g. hospitals, town

halls, museums, stadia, etc. When an evacuation takes place under these

circumstances, the crowd often leaves by the most familiar route, gener-

ally the route by which they entered, even though there may be exits in

closer proximity. An example of this type of behaviour can be found in the

Rhode Island Nightclub incident (see Section 2.7.2), where the majority of

the crowd converged at just one point of escape, the main entrance to the

building, even though there were numerous other exits available.
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2.5.5 Structural

Structural factors effecting crush may initially seem to be an extension of

the spatial constraints, but there are distinct differences between the two

categories. Structural design decisions can have a great effect on the safe

evacuation of a structure; simple design decisions such as spacing emergency

exits a sufficient distance apart can avoid the build up of a large crowd at a

single exit, and aid the safe evacuation of the entire population. Examples

of good design practice can be found in much of the engineering and design

literature, and a graphic example of a small structural change which can

make a large difference in the evacuation of a structure may be seen in

Section 2.7.2.

2.6 Types of Force in Evacuation Scenarios

With respect to evacuation and crowd dynamics, there are three distinct

types of force, or more properly force propagation, which are commonly

seen, we will term these as pushing, leaning, and stacking. These types of

force can, and do, lead to the formation of dangerous levels of force, but

they are distinct in their physical mechanics and therefore in the modelling

methods used to recreate these dynamics computationally. There follows

a discussion on the specifics of these forces, with examples to models, or

methods, by which they are investigated.

2.6.1 Pushing

Pushing force is the most commonly modelled of forces, and is the force with

which we primarily address in this thesis. The term pushing force, as used

here, defines the specific situation in which force is exerted by one individual

upon the body of another individual whilst both individuals are standing.

The criteria that both individuals are standing is most important in this

situation, as it allows the modelling of this force in two-dimensions, e.g. on

a Cartesian plane.

In large-scale crowd scenarios, the propagation of pushing force through-

out the crowd has a summative effect, which can lead to members of a crowd

being subject to high levels of physical force. In the most extreme of cases

the propagation of pushing force alone can cause serious physical injury due
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to compressive asphyxia, but it is often the side-effects of the pushing force

building up with a crowd which causes the most serious issues.

There are issues surrounding the classification of injuries caused by push-

ing force (see Section 2.8), and commonly a large number of crowd tragedies

are incorrectly attributed to trample injuries, especially by the media. In

the words of John Fruin “Virtually all crowd deaths are due to compressive

asphyxia and not the“trampling” reported by the news media. Evidence

of bent steel railings after several fatal crowd incidents show that forces of

more than 4500N (1,000lbs) occurred” [38].

The presence of high levels of pushing force has, in itself, shown to be

a serious danger to a crowd, but there are are additional side-effects of this

type of force which present additional dangers. The presence of pushing

force within an evacuating crowd has been repeatedly shown to increase

the evacuation time of the crowd [65], a phenomenon know as the faster-is-

slower effect [51]. The cause of this increase in evacuation time is due to

the friction which builds within a crowd when physical force is present. As

friction builds between individuals within a crowd their overall movement

speed decreases, which will effectively increase the RSET of that evacuation.

It may be argued that the friction effects caused by the presence of pushing

forces within a crowd are far more dangerous than the level of physical force

itself, as an increase in RSET in situations where smoke or toxins are present

in the environment leads to increased exposure, but this risk is difficult to

quantify.

The modelling of pushing force, and it’s frictional component, is not

too uncommon in evacuation simulations, with both the Helbing model (see

Chapter 4) and the Fire Dynamics Simulator (see Chapter 8) incorporating

the modelling of pushing force and friction into their evacuation simulations.

A notable set of evacuation models which partially include these factors are

CAFE models (Cellular Automata with Force Essentials) [65, 126], which

ignore the propagation of force within a crowd, but include methods by

which the friction between evacuees may be modelled (see Section 3.2.1).

2.6.2 Stacking

Stacking force may be defined as the force produced by one body on another

body when the bodies are vertically stacked. Stacking force is common in

many evacuation scenarios, particularly where the evacuation route requires
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the traversal of stairs (due to the increased risk of trips and falls).

We have seen from Fruin’s Level of Service metrics (see Section 2.5.1)

that the evacuation capacity of a stairway is significantly lower that that of

a walkway of comparable width, which can lead to bottlenecks forming at

the top of flights of stairs. It has also been found that a natural hesitation

as evacuees transfer from walkway to stairway can lead to these bottlenecks

in relatively low-density evacuations [117].

The case of stacking is not to be confused with that of trampling, which

is also often recorded in the literature. Trampling injuries occur when an

individual loses their footing and falls to the ground whilst within a crowd

of people, at high densities it can be difficult, or impossible, to get back to

their feet. This will often lead to the individual being unintentionally or

unavoidably stepped upon by other persons in the crowd. Figure 2.1 shows

examples of both stacking (left) and a trampling (right). We see that in

the event of stacking the distribution of force is more even across the body,

whilst during a trample incident the pressure is focussed on one specific area.

There are also commonly different injuries arising from these situations,

with stacking regularly leading to compressive asphyxia as, though spread

out over a wider area, the force applied is constant, and often prolonged,

whereas in the case of trample injuries it is common to see sharp blunt

injuries as force is concentrated on specific areas of the body.

In the most extreme of cases the stacking of bodies can cause mass injury,

with both the level of force and the prolonged duration of application leading

to large numbers of cases of compressive asphyxia. An example of this effect

can be found in the Ibrox stadium disaster of 1971, in which the stacking

of bodies occurred during the exit from a football stadium. The incident is

thought to have been triggered by a person falling on a large open stairway

[149], which caused a chain reaction of trips and falls which lead to a large-

scale stacking of bodies upon the stairs. In the words of John Fruin;

In the Ibrox Park soccer stadium incident, police reported that

the pile of bodies was 3m (10ft) high. At this height, people

on the bottom would experience chest pressures of 3600-4000N

(800-900lbs), assuming half the weight of those above was con-

centrated in the upper body area.

Fruin (2004) [38]
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Figure 2.1: Left: A visual example of stacking, in which the force of the
person above is distributed across the body of those below. This situation
may well lead to compressive asphyxia, but is unlikely to result in diag-
nosable trample injuries as the weight is more evenly distributed about the
body. Right: A visual example of trampling, in which the entire weight of
the person on top is channelled down through the feet to small portion of
the body underneath. This situation may well lead both trample injuries
and compressive asphyxia, as the person above transmits force to a highly
localised area.
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The dual danger in this situation was not only the level of force, but

also the prolonged period for which this force was applied, and is common

in situations involving crowd stacking. The Ibrox stadium disaster of 1971

lead to the deaths of 66 people and the further serious injury of at least 145.

Many other highly publicised evacuations have lead to injuries and deaths

due to the stacking of bodies after disastrous evacuations through stairwells,

such as the Gothenberg Dancehall evacuation (see Section 2.7.3) , the Beth-

nall Green tube station disaster [28], and the e2 nightclub incident [154].

2.6.3 Leaning

The final type of force propagation which we will address is leaning force,

which is the force propagating through a crowd which are not standing

vertically, i.e. they are leaning either forwards or backward. This type of

force is common in situations in which a high density crowd is standing

on steps, stairs, or sloping ground, as the angle of the incline raises the

probability of the crowd leaning or even falling forward.

This type of force is most commonly recorded in stadia and concert

venues, therefore these are the areas in which it is most often investigated,

but can be found in any situation in which densely packed crowds stand on

uneven ground.

An important example of the disastrous effects of leaning forces can

be found in the Hillsborough disaster (see Section 2.7.1), which saw an

over-crowded terrace in a football stadium lead to the deaths of some 96

spectators. This example is particularly pertinent, and the investigation into

the event saw one of the first instances of a mathematically defined leaning

crowd model being applied to study the effects of these forces. During

the aftermath of the Hillsborough disaster the British government launched

an inquiry into the events, lead by Lord Justice Taylor [138]. The report

included an investigation by Smith and Games [125], into the leaning forces

which may have been present during the disaster itself, and is the first

example of a leaning crowd model being applied in this manner.

The work by Smith and Games considered a single line of individuals

spaced one step (i.e. stair) apart, leaning forward at an angle of θ, and

aimed to calculate the supporting force which would be required to hold

each one of these individuals in place. The supporting force required for the

front most individual in the crowd was then, effectively, used as a metric by
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Figure 2.2: A visual example of the values used in Smith and Games[125]
leaning crowd model. The figure on the right displays the lean angle, θ, the
centre of mass height, H, and the gravitational force acting on the individual,
mg. The figure on the right shows the push height, H ′, and how the push
force, P0...N propagates through a line of people.

which the supporting strength of crowd barriers could be calculated.

In the Smith and Games model, a single line of persons, each with mass

m, are leaning forward at the angle θ on a set of steps of width w and

height h, and they are assumed to be touching. The values of lean and mass

are combined with both the push height, H ′, (i.e. the height at which a

person will push the individual directly in front of them) and the centre of

mass height, H, to provide a geometric progression that describes the force

required to hold the person at the front of the line in place, Pn. A visual

example of the measures and values used in this equation may be seen in

Figure 2.2.

Pn =
mgH sin θ

h

[(
1 +

h

H ′ cos θ

)n
− 1

]
(2.1)
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The result of Smith and Games work, with respect to the Hillsborough

disaster, was the calculation of the force that was applied to a specific crowd

barrier at the Hillsborough stadium, barrier 124a (see Section 2.7.1). Their

calculations showed that the barrier would have been subjected to in excess

of 8000Nm−1, that is 8000N per metre of the barrier length. Assuming

a spectator width of 0.355m, as in Dickie and Wanless [29], this would

equate to an equal and opposite force of approximately 2840N acting on

each individual pressed against the barrier.

Whilst commonly seen in stadia, due to the necessity of having inclined

standing/seating areas, leaning force is found to occur during many other

situations. The Mihong bridge disaster (see Section 2.7.5), during which

the leaning force which built up on a bridge lead to high force propagation

through a densely packed crowd, is another example the devastating effect

of leaning forces.

2.7 Historical Examples of Crush

Here we present case studies of situations where the formation of crush

conditions led to both serious injuries and fatalities. Each case study also

represents some failure within a system (e.g. failure to limit the capacity of

a structure to safe levels, failure to adhere to official guidelines or fire laws,

failure to follow crowd control policies, etc). These types of failure are often

observed in cases where the evacuation of a building leads to the death or

injury of many people. Failures of this kind are common, and we believe

that they should not only be expected, but also be considered during the

design of buildings, the creation of evacuation plans, and especially during

simulated evacuation exercises.

2.7.1 Hillsborough

The Hillsborough disaster [136] (Sheffield, UK), claimed the lives of 96 peo-

ple and caused the hospitalisation of a further 300. The disaster happen at

a football match between Liverpool and Nottingham forest, taking place at

Hillsborough stadium, the home of Sheffield Wednesday, on the 15th April

1989. Due to the heightened public interest in the incident (the match was

scheduled to be transmitted on English television), and also because of the

multiple perceived failures on the part of the authorities, the Hillsborough
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disaster has become one of the most thoroughly investigated crowd disasters

in living memory.

The tragedy at Hillsborough stadium occurred when police stewarding

the match made the decision to open an extra set of gates, intended as an

exit, in order to relieve the extreme levels of congestion that were forming as

the crowds tried to enter the stadium through the turnstiles at the Lepping’s

Lane end of the ground. These gates did not have turnstiles, and the result

was an influx of up to 5, 000 fans through the narrow corridor that lead

into the standing terrace, see Figure 2.4. The sudden arrival of so many

additional fans pushed the capacity of the central pens far above their legal

maximum, and soon a dangerous crush formed at the front of the stands.

Those fans still entering the stadium were unaware of this, and continued to

attempt to enter the stand as the people inside were slowly crushed against

the crowd barriers and fences at the front of the stands. The conditions

at the front of the terrace became so bad that most of the 96 victims died

from asphyxiation, or other crush related injuries, within five minutes of the

game starting.

The maximum capacity of the stands at Hillsborough stadium were a

source of great debate during the aftermath of this tragedy, and factored

heavily in the technical investigation into the disaster. The initial calcu-

lation, made previous to the disaster, had suggested that the two central

pens, pens 3 and 4, had a maximum capacity of 1,200 and 1,000 persons

respectively, but investigations after the tragedy occurred resulted in much

lower figures. If we centre on the capacity of pen 3 we see that the post-

event investigation, in which calculations were made according to existing

official guidelines, estimated the maximum capacity of pen 3 to be just 822

persons, a reduction of 378 people from the original capacity. According to

the report, the recalculation was carried out to

. . . compensate for some departures from the recommendations

of Chapter 9 of the [Guide to Safety at Sports Grounds]. We

therefore calculated capacities for Pens 3 and 4 on the basis of

the areas behind crush barriers and perimeter fences in which a

crowd packing density of 5.4 persons/m2 would be permissible

. . . [20]

A separate strand of the investigation, carried out at the same time,
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aimed to estimate the actual occupancy of these areas during the disas-

ter. Using photographs taken during the event, estimates for the occupancy

of pen 3 were calculated to be up to 1,576 [101], which would make the

actual occupancy 180% of the recommended maximum. At this level the

average crowd density across the entire pen would have been approximately

9.8pm−2. In actuality the empirical observations made from analysis of the

video footage taken during the build-up of the crush suggested that the

crowd density was far from uniform.

Figure 2.3 shows the suggested capacity of pen 3 (bottom), and the ob-

served crowd density across the rows of pen 3 during the disaster (top). The

suggested capacity was calculated as the number of people that could stand

behind each crowd barrier, assuming a maximum density of 5.4 persons per

square metre [20]. The actual occupancy, and therefore crowd density, was

estimated from photographs taken during the disaster, and was calculated

on a row-by-row basis.

The pathologists’ reports into the deaths at Hillsborough [138] found all

but 9 of the victims to have died from the primary cause of compressive

asphyxia. In six of these nine cases the victims were found to have injuries

to the back or chest, one had suffered a ruptured aorta, and the remaining

two had existing medical conditions which were considered to be major con-

tributory factors. None of the pathologists’ reports returned stated trample

injuries as the primary cause of death, although there were 18 cases which

had presented with injuries that may have been indicative of trample injury

[138].

An investigation into the events at the Hillsborough stadium showed that

the level of force present could have reached over 8000Nm−1, which was the

force required to cause the damage observed to crash barriers at the ground.

Figure 2.5 shows the damage caused to barrier 124A at the Lepping’s Lane

terrace of the Hillsborough stadium.

It should be stated that the security and crowd control arrangements

during the Hillsborough stadium tragedy have been a source of controversy

from the date of the event, and this controversy continues to the present day.

Disregarding the political, societal, and security considerations surrounding

the event, it is widely regarded that the security arrangements of the day

compounded the conditions within the stadium.

Later investigations into the disaster, most notably the Taylor report
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Figure 2.3: Bottom: Safe occupancy levels of Pen 3 at Hillsborough stadium.
Top: Estimated actual occupancy and density of Pen 3 at the time of the
disaster. All internal sections represent the crowd barriers in place at the
time.
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Figure 2.4: Diagram showing the route that the influx of supporters took
into the ground, and the routes at which fans already in pens 3 and 4 tried
to take to alleviate the crush inside the pens [5].

Figure 2.5: Barrier 124A at the Lepping’s Lane terrace of Hillsborough
stadium after the crowd crush. Figures estimate the force required to cause
this crush barrier to collapse was in excess of 8kNm−1, or 8000Nm−1 [99].
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[138], have molded the security and policing of all subsequent sporting events

within the U.K. and further afield.

Types of Force Present

During the Hillsborough disaster, the primary type of force present was a

leaning force, a combination of pushing force with the additional effect of

gravity pulling the crowd forward from their pivot points (see Section 2.6.3).

All investigations into the Hillsborough disaster thus far have focussed on

the propagation of force throughout a leaning crowd, with the initial inves-

tigation presenting the first documented example of a mathematical leaning

force model.

The fact that leaning forces were present in situations such as football

stadia was accepted long before the Hillsborough disaster, but true investiga-

tions of its effect had not previously been completed. The presence of crowd

barriers, placed periodically throughout standing terraces, were meant to re-

duce the effects of force propagation by absorbing force propagating forward

through the crowd at strategic points. The failure of this system, in this

specific case, came from the overcrowding of terraces, as the crowd barriers

in place were designed to support a crowd of a density of 5.4pm−2, which

was breached quite severely in this case. This additional force was com-

pounded by the failure of certain crowd barriers, which would have allowed

propagation of more force throughout any person who occupied the space

in front of the collapsed barrier.

Five Factor Analysis

Spatial

The overloading of pens three and four were obviously a direct cause of the

Hillsborough disaster, as it was this extreme density that caused the deaths

and injuries suffered. As has been stated previously, the occupancy of pen

3 at the time of the disaster was greater then 180% of the suggested safe

maximum, and density levels were breaching the 10pm−2 mark. That said,

the overloading of parts of the stadium was the effect of numerous other

failings, rather than a failing in itself. The other factors that lead to the

Hillsborough disaster are discussed below.

Temporal
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The rapidly changing conditions during the incident were a major factor in

the ensuing crowd crush. Late arrivals at the stadium caused high density

conditions leading into the stadium, and the turnstiles at the entrance were

overwhelmed. To ease the crowds conditions outside the stadium, gates that

were intended as an exit were ordered to be opened, and a large number of

additional fans entered the stadium through this route [137](p. 11). The

late influx of fans (some estimate up to 5000) into the central pens of the

Lepping’s Lane Stand caused a sudden increase in the crowd density within

these areas, which lead to massive compressive forces building up at the

front of these stands.

Perceptual/Cognitive

The perceptual factors in this disaster are twofold. Firstly, the fans outside

the stadium were not fully aware of the state of the game, and when cheers

were heard from inside the stadium, the perceived need to effect ingress was

raised significantly. These cheers were not caused by the start of the game,

but instead were for the initial entrance of the teams onto the pitch; the game

itself would have not started for at least 10 minutes so time was still available

for supporters outside to enter through the designated turnstiles into the

correct pens. Secondly, the tunnel through which the supporters eventually

entered was entirely enclosed from the actual stands, so the terrible events

unfolding on the terraces would not have been obvious to those still entering.

It was found that once these fans had gained access to the stands many

attempted to go back, but were not able to do so [137] (p. 13).

Procedural

There are many procedural failings that lead to the Hillsborough disaster,

and they have been extensively documented as a result of numerous inquests

into different aspects of the disaster. The police have been criticised for

the opening of an exit which was not fitted with turnstiles, to alleviate the

pressure building up outside the ground [137] (p. 40). The official report into

the disaster, known as the Taylor Report [138], stated that the cause of the

disaster was a failure of Police control. The start of the match should have

been postponed to allow the influx of fans to be correctly distributed about

the stadium, as it was the majority of fans were directed by existing signage

into pens 3 and 4 only. Other failures have been noted in the handling of

the aftermath of the event [137] (p. 44), such as access to the ground by the

emergency services, but these are outside the scope of this work.
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Structural

Previous to this event the general level of safety at Hillsborough Stadium was

considered good, but criticisms were made of the relatively low number of

turnstiles at the Lepping’s Lane Stand, and of the poor condition of the crush

barriers in place to stop the propagation of force [137] (p. 21-23). Failures

of crush barriers allow the propagation of force throughout a much larger

section of the population, and can compound already hazardous conditions.

Figure 2.5 shows crush barrier 124A of the Lepping’s Lane stand after the

incident; it is estimated that the force required to cause this damage was up

to 8kNm−1, which equates to approximately 3kN of force acting on each

individual in direct contact with the barrier (see Section 2.6.3).

2.7.2 Rhode Island Nightclub

At the Station Nightclub, Rhode Island, on February 20th 2003, a fire during

a rock concert caused 96 fatalities, alongside numerous other serious injuries

[45]. The fire was started when the band’s manager discharged pyrotechnics

which ignited a large section of flammable polyurethane foam, which had

been used to soundproof the drummers’ alcove. The resulting dense, choking

smoke quickly filled the club. The fire spread from the stage, igniting other

portions of the ceiling and wooden structure of the building, and within

five minutes of the initial ignition those outside the club observed flames

breaking through a portion of the roof. Figure 2.6 shows the two ignition

points from which the fire started, and contains clearly marked positions of

all the exits to the club.

Official estimates of the occupancy for the club range between 400-450

patrons on the night of the fire, which is approximately the maximum ca-

pacity for a building of its dimensions. It was the sudden ignition and fast

spread of the fire and smoke which caused such a high density evacuation

with very short time-scales.

As is often found in cases in which the evacuating population is unfa-

miliar with the emergency exits of a structure, the distribution of evacuees

across the possible exits was non-uniform. Despite the existence of four

possible exits at the start of the fire, the majority of the crowd headed for

the most familiar exit: the entrance to the club (it is estimated that up to

two thirds of the patrons attempted to exit via the main door [45]). Inves-

tigations suggest the kitchen door was used by just 12 people throughout
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Figure 2.6: Floor plan of the Station Nightclub. Ignition points mark the
area in which the pyrotechnics were discharged [45].

the evacuation, and that the stage door became impassable (due to the

high levels of heat and smoke) after roughly 30 seconds from the ignition

point. These dynamically changing conditions served to compound the al-

ready overcrowded situation at the main entrance to the club, which was

soon overwhelmed, and people began to trip or fall during their escape.

Figure 2.7, compiled by the West Warwick Rhode Island Police Depart-

ment, shows the location of the deceased victims in the aftermath of the

Station Nightclub fire. We see that the majority of victims were found

around the main entrance, with most of the rest of the victims being found

at the rear of the building, where it was assumed they had retreated to

in an attempt to find another exit. The seven victims marked as being

found outside the club were deaths due to smoke inhalation after leaving

the building.

The official time-line of the fire (compiled by NIST [45]), states that just

1 minute and 42 seconds after the start of the fire, there existed a “pile” of

people in the entrance corridor, blocking the main escape route and making

further egress via this route impossible.
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Figure 2.7: Diagram showing the location of the deceased in the aftermath of
the Station Nightclub fire. This diagram was compiled by the West Warwick,
Police Department (Rhode Island), and was released during the investigation
into the incident.
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There were many factors which contributed to the scale of the tragedy at

the Station nightclub, but the two primary factors were the speed at which

the fire spread (mainly due to the highly flammable nature of the ignition

material) and the subsequent overloading of exit routes. The occupancy

of structures of this type are calculated according to floor space and exit

capacity, yet in the case of the Station nightclub the latter was severely

affected during this incident. The main entrance of the Station nightclub

was approximately two metres wide, yet within the entrance corridor was a

opening of just one metre, which is an effective halving of the exit capacity

of the venue. When this is considered alongside the under-utilisation of the

kitchen exit, and the stage door becoming impassable within thirty seconds

of ignition, we can see that the effective exit capacity of the venue during

the fire was less than half that which would have been considered during the

occupancy calculations.

The structural failure point of the Station Nightclub was arguably the

configuration of the main entranceway. As we can see from Figures 2.6

and 2.7, the route from the inside of the club into the main entrance lobby

had two openings, of approximately 1m in width each, with an exit at the

end of the lobby of 2m in width. Between these two points there was an

opening of just 1m in width, which acted as a bottleneck to those attempting

to effect egress via this route. It is easy to imagine that were an evacuee

to be attempting to exit via the door from the bar, that upon finding the

main entrance inaccessible they could easily exit through the bar door at the

other side of the room. Were an evacuee to be attempting to exit from the

dancefloor or sunroom via the main entrance there would be no other visible

exits available to them, so they would have no choice but to continue to

effect egress via the main entrance, no matter how congested this route had

become. In the case of the Station Nightclub numerous evacuees managed

to escape by breaking the large front windows of the sunroom and using

these as exits, reports suggest that up to 79 people may have escaped via

the windows in the main bar and sunroom. Many of the people escaping via

the windows did so aided by the emergency services [45].

Simulations of the fire that consumed The Station Nightclub showed

that, at approximately 90 seconds after the initial ignition point, the temper-

ature in the club during the evacuation reached levels of up to 1, 000◦C. To

put this figure in perspective, the melting point of iron is roughly 1, 375◦C.

35



The Station Nightclub disaster contains archetypal examples of evacuees

displaying both adaptive and non-adaptive evacuation behaviours in their

attempts to effect egress. The crowding at the main exit, and the resulting

crush, is an example of non-adaptive behaviour, as at finding a large mass of

persons at the main exit and adaptive choice would have been to search for

another exit route. This type of behaviour is both common and understand-

able in high stress situations, as a people under stress often exhibit highly

shortened decision making processes, making them less likely to consider the

possibility of other options. That said, there were individuals whom showed

adaptive behaviours, by effecting egress through the large windows present

in both the sun room and the main bar, some later aided by the police and

fire services.

The Station Nightclub evacuation is investigated further in Chapter 8,

where we also detail the results of our own simulations of the event.

Types of Force Present

The primary type of force present during the Station Nightclub disaster was

pushing force, as the crowd overwhelmed the main entrance and a crowd

crush occurred. As with many situations such as this, there is the inherent

presence of stacking force also, as the severe levels of crowd density occurring

at and about the main entrance increases the probability of trips and falls.

In these situations it is not uncommon for the presence of high levels of

pushing force to cause localised stacking behaviour within and around exit

structures, as the presence of fallen evacuees further increases the probability

of trips and falls until a large number of individuals to “stack”, and in some

cases this will entirely block an exit route.

There is definite evidence of this type of pushing-to-stacking phenomenon

occurring during the Station Nightclub evacuation, as eye witness reports

had stated that within approximately 90 seconds of ignition there existed a

pile of people within the entrance corridor [45].

Five Factor Analysis

Spatial

Accounts suggest that the structural capacity of the Station Nightclub, at

the time of the evacuation, had not been exceeded (according to the Rhode
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Island fire laws in place at the time) [45] (p. 6-25).

Temporal

An extremely fast moving fire caused severe temporal constraints to be

placed on the evacuating population. Investigation suggested that, even

under ideal circumstances (i.e. no blocking of the stage door, and an even

distribution of evacuees across the other exits), the fire would still have

caused significant loss of life and injury to the evacuating crowd [45].

Perceptual/Cognitive

We would not consider that the events at the Station Nightclub were com-

pounded by any perceptual or cognitive factors concerning the evacuating

crowd. The speed at which the fire spread necessitated an extremely fast

evacuation, and the perception of risk was fully justified in this situation.

Procedural

Evacuation plans for buildings such as the Station Nightclub are notoriously

difficult to implement, due to näıve populations (i.e. patrons who would

not necessarily be familiar with the building, or the position of emergency

exits). This said, better usage of the available exits could have distributed

the evacuation more evenly across the structure and reduced egress time.

Structural

Disregarding the installation of sprinklers throughout the building, which

was not a legal requirement for buildings of this type, it has been found

that the minor structural change of removing the smaller interior opening

present in the front entrance/exit corridor (i.e. the “lips” visible in the

entrance corridor on Figure 2.6) [45] (p. 6-26), would have increased the

evacuation capacity of that specific exit, from approximately one metre of

evacuation space to two metres.

2.7.3 Gothenburg Dancehall

When fire broke out in a crowded dance hall in Gothenburg, Sweden, on

October 28th 1998, it claimed the lives of 63 people and injured over 200

others [21]. The first floor venue in question was packed to nearly triple

its 150 capacity, with officials estimating that there were over 400 people

in attendance. Eye-witness accounts of the incident state that population

density prior to the start of the fire was already at dangerously high levels,

with a number of the occupants observing that there were so many people

present that they were barely able to move [21].
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Figure 2.8 shows the floor plan of the buidling (second floor only). The

ignition point, in the East staircase, is clearly marked.
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Figure 2.8: Top: Representation of the dancehall in Gothenburg [15]. Bot-
tom: More detailed floorplan showing the first floor of the building, the
stairwell at the south-west of the structure lead down to the only available
exit. The similar stairwell at the east of the structure marks the ignition
point of the fire, and was also blocked as it had been used to store furniture
not in use during that night’s festivities.

Shortly before midnight, the DJ playing at the event discovered that a

stack of chairs stored in one of the only two stairways leading out of the

first floor dance hall had been ignited. The fire had already reached an

advanced stage, so he proceeded to inform the authorities and to make his
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escape rather than to attempt to extinguish the blaze. Finding that the

crowd density had reached such levels that crossing the dancefloor to make

his escape was an impossibility, he decided to make his escape via a window

and across the adjoining roof.

Announcements had been made to the occupants, but it is suggested

that as little as 50% of the occupants made attempts to exit the building at

this early stage [15]. Some survivors who had been at the far end of the hall

when the fire was initially discovered stated that they smelled smoke but

had believed it to be cigarette smoke and therefore felt no need to evacuate.

Other eye-witnesses stated that they had gone towards the emergency exit

to investigate the fire, and that the emergency exit door may have opened

“multiple times” by persons wishing to take a look at the fire. On the last

occasion the exit door was left open, as it was reported that the handle had

become too hot to be touched, which allowed additional oxygen to the fire.

A report into the incident states;

Shortly after this, lamps located close to the emergency exit

began to explode and thick black smoke entered the dancing

floor. People began running towards the main entrance door

. . . [15]

At this point the major portion of the evacuation began, and the main

exit was quickly overwhelmed. Evacuees took to using the windows, situated

approximately 2m above the floor, as an evacuation route, despite there

being a drop of approximately 6m to the ground below.

Fire-fighters attending the scene attempted to enter the structure through

the front stairwell, yet their progress was hindered by large numbers of

severely injured people whom they had to remove from the stairwell before

continuing upwards. The fire-fighters reported that upon reaching the top

of the stairs they discovered a wall of bodies blocking the entire of the up-

per doorway. These were removed and shortly the evacuation continued,

simultaneously other fire-fighters were trying to facilitate egress of evacuees

through the first floor windows.

There follows a time-line of the events at the Gothenburg dancehall, any

estimated times will be prefixed with “≈”. The horizontal line through the

event time-line marks the point at which conditions within the structure

would have become untenable.
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Time Since Ignition Events

≈ 11:30 0:00 Estimated time of ignition
≈ 11:30 - 11:40 0:00 - 0:10 Fire discovered

11:42 0:12 Emergency services informed
≈ 11:42 0:12 Door to the stairway in which

the fire started was left open
11:44 0:14 Smoke spread throughout the

main room, and evacuation
began

11:45 0:15 Emergency services dis-
patched from station just
2km away

11:47 0:17 Additional units requested
due to severity of fire

11:49 0:19 Fire fighters report people
jumping from the windows of
the building

≈ 11:57 0:27 Fire is fully developed and
flames are visible in all win-
dows of the hall

We can see from this time-line that the the elapsed time between ignition

and the point at which conditions within the structure became untenable

could have been as low as 17 minutes. This however would not represent the

time available for evacuation, as it had been stated that the evacuation did

not begin “in earnest” until approximately 14 minutes after the discovery

of the fire. This leads to the estimation of the ASET for this evacuation as

between 3 to 13 minutes. If we err on the side of caution, and suggest that the

ASET for this evacuation was at the lower bounds of this figure, we have an

ASET time of just 3 minutes. This represents the time between the start of

actual evacuation (11:44) and the time at which the fire brigade dispatched

additional units due to the severity of the situation (11:17). The RSET for

this event can be estimated using the “Maximum specific flow rate” [98], a

rate of flow used to calculate the egress capacity of exit structures. The flow

rate of the 80mm door leading to the stairs is approximately 1.04 persons

per second, whilst the stairway itself (150mm) has a flow rate of 1.41 person

per second. Using the value of the smaller bottleneck, we can estimate the

RSET for 400 people from this building would be approximately 6m 25s

(RSET = Occupancy
Exit Capacity = 400

1.04 ≈ 385s), almost twice the lower boundary of
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the ASET calculation.

We can see from the ASET and RSET figures, calculated above, that

the reduced exit capacity of the structure meant that the single exit had

less than half the required evacuation capacity that would be required for

the safe and timely evacuation of this structure within the given time-frame.

These estimates do not take into account the extreme situations within the

hall, which was reportedly filling with thick smoke at an alarming rate, so

it could be argued that even these figures do not represent the true extent

by which the RSET for this evacuation exceeded the ASET.

Types of Force Present

In the case of the Gothenberg Dancehall fire it is very difficult to ascertain

which was the primary source of force. There was certainly a large element

of stacking force present during this evacuation, as rescue crews arriving on

the scene had to extricate fallen evacuees from a pile of bodies present in

the only accessible stairwell to the structure. There must, however, also

have been a element of pushing force present within the earlier stages of this

evacuation, due to both the extreme number of evacuees present (compared

to the maximum allowable capacity) and the size of the doorway which lead

into the stairwell. As stated previously, the safe exit capacity of this upper

doorway was just 1.04ps−1, which was less than half the capacity which

would have been required to evacuate this number of people in less than

the ASET time for this incident. It would seem that, considering these

factors, the presence of a high level of pushing force through and around

this doorway could not be ruled out.

Five Factor Analysis

Spatial

On the night of the fire the building was severely over capacity, with a total

of approximately 400 persons occupying a venue which was legally allowed

to be occupied by no more than 150 persons at any one time. Crowd density

is difficult to calculate for this event, as the dancehall was separated into

numerous rooms, but an estimate based on the size of the dancefloor suggests

that an occupant may have had as little as 0.37m2 space in which to move

before the evacuation had started. This is comparable to Fruin’s “Level of
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Service” F, and would not be considered a safe density at which to occupy

a structure under even the most ideal of circumstances.

Temporal

In this case the temporal factors were, in our opinion, secondary. There was

obviously insufficient time for the large number of patrons to safely evacuate

the building, but this is due to other factors detailed during this analysis.

Perceptual/Cognitive

Knowledge of the fire was slow to propagate throughout the crowd, which

slowed the initial evacuation down greatly. Interestingly in this case though

is the apparent perception of danger amongst many members of the crowd,

which was far less than was merited by the situation. As mentioned previ-

ously, survivors stated that many people had been unworried by the knowl-

edge that there may have been a fire in the building, and some actively

sought out the blaze rather than effecting egress.

Procedural

The procedural factors facilitating this incident are twofold. Firstly, one

entire exit to the dancehall had been rendered unusable by the placing of a

large number of chairs on the stairwell leading to it. In actuality the stairwell

would not have been of use during the evacuation, as it was the origin of

the fire, but it is a serious procedural failure that would effectively halve

the evacuation capacity of this structure. Secondly, and more importantly,

the extreme breach of the building’s maximum legal capacity (by a factor

of over 260%) was a major factor in the formation of the crush conditions.

Structural

In this case, the structural factors appear to have had little effect on the

overall incident. This can be partially verified by calculating the RSET

for this event were the occupancy to within the suggested maximum for

this venue, which was 150 persons. Using this figure we can estimate that

the time taken to evacuate the venue via the one usable exit (exit capacity

of 1.04 persons per second) would have been approximately 2 minutes 45

seconds (RSET = Occupancy
Exit Capacity = 150

1.04 ≈ 144s), which falls 15 seconds under

the lower bounds of the ASET for this event.

2.7.4 E2 Nightclub Incident

In Chicago’s E2 Nightclub on Feb 17th 2003, the security guards’ use of

pepper spray, to intervene during an altercation, became the catalyst for an
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evacuation that claimed the lives of 21 patrons [127, 154].

The evacuation began after a serious altercation between patrons caused

the security staff to attempt to diffuse the situation by deploying pepper

spray. Unfortunately, the use of pepper spray in such an enclosed space

caused a sense of fear throughout the population as, to the patrons, this

was interpreted as an unknown chemical irritant present in the atmosphere.

The physical effects of the pepper spray on the surrounding crowd being

significant meant that those close to the altercation began to rush toward the

exit to escape the pepper spray, which by this point was already spreading

around the club. As the initial wave of evacuees made their way through

the club, those who had not witnessed the incident began to fear for their

safety, especially as it became obvious that some form of chemical agent was

present.

Within seconds the entire crowd, estimated at over 1,100 people (the

club’s capacity was only 240), rushed towards the main exit. The door to

the street opened inwards, whilst the door leading to the dance floor opened

outwards. As people rushed from the club, the upper door flew outwards,

pushing those on the upper landing down the steep flight of stairs. As

more people exited, they were forced on top of the fallen evacuees, and

the bodies began to “stack up” and block the exit. It was the tremendous

pressure placed upon the fallen evacuees that caused the 21 deaths during

this incident.

Figure 2.9 shows an example of the type of stairway configuration which

was present in the E2 Nightclub. The actual building plans for this structure

are not publicly available, so exact measurements are not shown on this

diagram. We can see that the stairway entrance on the first floor of the

building has an outward opening door, which opens onto a landing leading to

the stairs, whilst the exit to South Michigan Avenue has an inward opening

door, which also opens into a landing at the bottom of the stairway. Eye

witness reports state that as the crowd rushed to exit the first floor of

the building the doors to the upper landing were thrown open, pushing

those who were standing on them down into the stairwell [151]. Reports

suggest that as the evacuation progressed this stacking behaviour on the

upper landing and at the top of the stairs continued until any egress was

impossible. During the court case testimony from the security personnel

working that night suggested that the pile of bodies on the stairwell reached
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E2 Nightclub South Michigan
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Figure 2.9: A representation of the stairway leading from the E2 Nightclub
down to South Michigan Avenue. The first floor doorway (left) opens into
a landing at the top of the stairway, whilst the ground floor door (right)
opens into a similar landing at the bottom of the stairway.

over six feet in height [95], and that attempts to extricate people from this

stack of bodies fast became unsuccessful [55].

This event has been included here for two very important reasons, the

first being that this event did not involve what are traditionally thought of

as an evacuation catalysts (e.g. fire, flood, earthquake, etc), which makes it

an interesting case to investigate. The second reason is that, as there were

no hazardous toxins in the environment (the pepper spray being classed as

non-lethal, and unlikely to cause lasting injury), all deaths in this disaster

were caused by the presence of force, either in the form of crush conditions

or via trampling deaths. Of the 21 fatalities during this disaster, nine of

these were confirmed as crush deaths (compressive or traumatic asphyxia)

at autopsy.

It should be noted that the E2 nightclub had, previous to this event,

been cited numerous times for building code violations, but the club had

remained open regardless. In the aftermath of the event, the club’s owners

were convicted of indirect criminal contempt over repeated failures to close

the club despite specific court orders requiring them to do so [1].

Types of Force Present

The primary type of force present within the E2 Nightclub evacuation was

a stacking force, caused by the large number of people attempting to effect

egress through the sole exit to the structure. On the night of this incident

the occupancy of the E2 Nightclub was at over four times it’s suggested

capacity. The two bottlenecks present in the exit structure were the doors

leading into and out of the stairway, which were approximately 150cm wide,
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and the width of the stairway itself, which was approximately 140cm wide.

If we assume the lower bounds of the maximum specific flow rate of these

structures [98], was can estimate the outflow through the doorway and stairs

of the E2 Nightclub. The flow rate for a door of 1.5m is approximately

1.97ps−1, whilst a stairway of 1.4 metres is approximately 1.3ps−1. We see

from these figures that the stairway becomes the bottleneck in this situation,

which is not too unusual. What is unusual in this situation is the presence of

a door which opens outwards into the upper landing. As stated by witnesses

to this disaster, the doorway to the upper landing was repeatedly thrown

open as people were attempting to escape, this action exerted an accidental

toppling force on those individuals already on the upper landing, which was

the primary cause of the severe levels of stacking which built up during this

evacuation.

It should be noted that the author accepts that there would also have

likely been both pushing force, and leaning force present in this situation.

Pushing force caused by the large number of people attempting to exit

through the upper landing door at the same time, and leaning force caused

by the toppling of those on the upper landing itself towards the stairway.

Although in this case it is not thought that these forces were a primary

cause of the disaster.

Five Factor Analysis

Spatial

The number of patrons of E2 nightclub, at the time of the incident, was

more than four times it’s suggested capacity of 240 people, with estimated

occupancy figures ranging between 1100 and 1500 patrons. It has been

claimed after the event that the City of Chicago failed to set a maximum

occupancy for the venue, but is widely held that the occupancy levels of

that night could not have been deemed to be reasonable for a building of its

size [24].

Temporal

The speed at which the events unfolded played a large part in the formation

of crush conditions during the E2 Nightclub incident. The release of the

pepper spray caused fear in a large portion of the crowd, and created a high

desire to leave. The ensuing rush toward the main exit overwhelmed the exit

capacity, which would have been insufficient for the population even under
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non-emergency conditions.

Perceptual/Cognitive

The perception of threat in the E2 incident was far greater than the threat

actually present, and this caused an extremely high desire to leave in many

of the club’s occupants. Additional factors may have also played a part

in raising the perception of threat. An example of this can be found in

the reports that one patron was heard to shout “I’ll bet it’s [Osama] Bin

Laden!” during the evacuation [127]. Combined with the unknown (to a

large number of the patrons) chemical substance present in the environment,

it is understandable that the level of fear experienced by some patrons would

have been heightened.

Procedural

The procedural failings found in this case are numerous. Repeated failures to

meet building and fire codes by the owners are the main procedural failures,

which were compounded by the alleged failure of the City of Chicago to

set an adequate maximum capacity to the venue. Also, the release of a

chemical toxin in an enclosed space by the security staff is a major failing,

as this acted as the precipitating factor in this case, leading to the evacuation

taking place.

Structural

According to the City of Chicago and evidence given at trial [24], the E2

Nightclub venue was not fit for purpose, and it had been shown on multiple

occasions that this was the case. Ignoring these past code violations, the

main evacuation issues on this occasion were caused by the inward opening

door at the main exit. Once a number of patrons had come up against this

inward opening door, and others had followed behind them, the exit became

completely impassable, and the build up of forces that resulted were the sole

cause of death in this event which took the lives of 21 people in total.

2.7.5 Mihong Bridge Spring Festival Disaster

The second annual Lantern Exhibition of Miyun county was due to take

place from the 31st January until the 10th February 2004, in Miyun county

China [155]. Organisers expected less than four thousand people per day to

attend, based on the previous year’s figures, and for the first five days of the

exhibition this was shown to the the case, with attendance figures falling

between two and three thousand per day. The sixth day of the festival
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however (5th February), the traditional day on which the Chinese Lantern

Festival itself would have been held, saw attendance levels increase to as

many as forty thousand people, more than ten times that of previous day’s

figures and of official estimates. This increase in attendees alone did not

cause any serious issues, as the festival site was spread out across a large

area, but when fireworks were set off near the river, many within the crowd

headed towards the Rainbow Bridge, which was thought to be the best

position to view the firework display.

It has been estimated that, previous to the fireworks being released, the

number of people on the bridge was less than three hundred, which is well

within the structure’s capacity. The sudden influx of pedestrians caused by

the desire to get a better view of the firework display, caused an overloading

of the bridge’s capacity, and the crush disaster began. Eyewitness accounts

suggest that the crush disaster only lasted between seven and eight minutes,

at which point stewards began to alleviate the situation by guiding people

away from the bridge, but during the short crowd crush thirty-seven people

lost their lives.

Estimates suggest that the number of people on the bridge could have

reached as high as one thousand three hundred people during the period im-

mediately after the fireworks had been released (these estimates are taken

from both survivor accounts and the results of simulations [155]). At this

point the crowd density at some points on the bridge would have reached

over eight persons per square metre (8pm−2), and possibly as high as ten

persons per metre, allowing personal space of just 0.13mp−2, which is lower

than Fruin’s “Level of Service F” for all types of pedestrian situation (i.e.

walkways, stairways, or queues) [37], but less than one-third of LoS F for a

stairway, which is the most comparable pedestrian situation to the Miyun

bridge. The physical situation on the bridge was compounded by the steep-

ness of the sides of the bridge, which were over 31o from the horizontal.

Simulations suggest that the high crowd density combined with the steep

angle of the walkway caused additional injury as such conditions reduce

pedestrians’ ability to remain upright under high density conditions. This

led to increased “leaning force” and also contributed to the presence of

“trample deaths” in which pedestrians lose their footing and fall to the

floor. Surrounding pedestrians, unable to readily effect their own movement

have difficulty in avoiding placing their weight on the fallen pedestrian, and
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Figure 2.10: Top: The Miyun county “Rainbow Bridge”, the scene of the
Miyun bridge disaster of 5th February 2004. Bottom: Diagram showing
dimensions of Miyun bridge (not to scale).

in more extreme densities may not even be aware of their presence. Calcu-

lations ascertained that the leaning force produced by this crowd could have

exceeded 6kNm−1.

The reason for these high levels of leaning force are partially down to the

overcrowding of the bridge, and partially down to the structure of the steps

on the bridge itself. Two of the defining characteristics of steps, mathemat-

ically at least, are rise height, i.e. the difference in height between the top

48



of one step and the top of another, and tread depth, i.e. the actual depth

of each step. The function of the steps should be taken into account during

the design of these two facets, e.g. a structure used for general standing

and milling will have lower rise height and greater tread depth than a set

of stairs designed to transport pedestrians from one level of a structure to

another. The Rainbow bridge had an incline of 31o, a riser height of 25cm,

and a tread depth of 40cm. Compare this to an investigation of football

terracing in the UK, carried out by Dickie and Wanless [29], which consid-

ering the bridge was being used for a viewing area for a fireworks display is

a roughly analogous purpose, and we see that for a milling or viewing area a

reasonably safe configuration could be considered to be a 15o incline, a riser

of 9.5cm, and a tread of 35.5cm. Comparing these two situations it becomes

readily apparent that the steps on the Rainbow bridge were drastically unfit

for purpose.

Simulations of the over-crowding of the bridge were run as part of the in-

vestigation into the disaster. The simulation environment buildingEXODUS

was employed for this, and were initially configured so that they matched

the conditions on the bridge before the influx of persons began, this equates

to approximately 19:20 in real time. The influx of pedestrians was simulated

from this point, and density at different points on the bridge was measured

until conditions became untenable. Snapshots of these simulations may be

seen in Figure 2.11.

The simulation’s start, 0:00, corresponds to the conditions on the bridge

at 19:20, and ends at approximately 15:00, which was when emergency mea-

sures began to be taken to alleviate the crush. We can see from the sim-

ulation results that the conditions on the bridge degraded at an alarming

rate, with each snapshot (approx 3 mins apart) showing marked increase in

higher density sections of the bridge.

Types of Force Present

The primary type of force present during the Mihong Bridge disaster was

that of leaning force, caused by a high density crowd standing on a stepped

area. Investigations into this disaster have suggested that, in the case of the

Rainbow Bridge, the step height of the bridge, which was 25cm, was not

suitable for a venue of public gathering. This step height, whilst considered

within reasonable boundaries for an evacuation route, is not considered suit-
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Figure 2.11: Top down density maps of Mihong bridge at different times
from the start of the incident [155]
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able for an area were pedestrian may gather and “mill”, to put this figure

in perspective the standard step height, also know as rise, of a domestic

stairway would be 15-22cm, whilst the steps at a public venue, e.g. standing

areas at football stadia (a reasonable approximation to the purpose of the

Rainbow Bridge), are found to be closer to 10cm. The steep incline (31o

from the base of the bridge to its summit) and large rise of the steps on

the Mihong bridge was not fit for purpose, and would have increased the

amount of leaning force generated by the densely packed crowd.

Five Factor Analysis

Spatial

The first five days of Festival had seen roughly three thousand tourists per

day visiting the park, but on the day of the disaster this rose dramatically

to approximately forty thousand tourists. This in itself would not have

been a problem, as the festival was held in a large park. The problems

occurred when the occupancy of the bridge showed a sharp rise. Preceding

the disaster, the occupancy of the bridge was estimated at three hundred

people, but the influx of pedestrians caused this figure to rise sharply, and

within minutes the occupancy of the bridge may have reached as high as

one thousand three hundred people. At this level of occupancy the density

of the crowd could have reached as high as 8pm−2 [155] (p. 8).

Temporal

The rapidly changing conditions on the bridge were certainly a factor in the

onset of crush, as little time was available for officials to react. This said,

there were security personnel stationed on or near the bridge at the time,

see Procedural factors, below.

Perceptual/Cognitive

The desire to to get a good view of the fireworks display drew masses of

spectators toward the bridge, although accounts do not suggest a high level

of competition (i.e. pushing, shoving, etc) for places on the bridge. Once

again the inability to perceive the severity of conditions played a large part

in this disaster, as those entering the area would have been unaware of

the conditions ahead, so made no attempt to turn back or to alleviate the

pressure.

Procedural

The procedural factors in this incident were mainly failures of planning.
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The under-estimation of the the crowd levels played a large part but, as the

festival ground was spread out over a large park, was not the main failure.

During the previous year’s event, there had been security staff stationed by

the bridge to limit the flow of pedestrians to a reasonable number. Unfortu-

nately no one had been assigned this duty in 2004 [155] (p. 6). This measure

could have averted the disaster. This was also the finding of the People’s

Procurator, who in 2005 sentenced three officials to prison sentences for their

part in this disaster.

Structural

An important factor in this disaster was the design of the bridge itself,

which was found to have an unacceptable gradient and large step height

[155] (p. 7), see Section 2.6.3 for discussion on leaning forces. Investigations

have shown that this step height (25cm) would have made it exceedingly

hard to keep one’s balance if being pushed from behind. This is thought to

have contributed to the high levels of force present during this disaster due

to “leaning force”, which is the cumulative force created when numerous

pedestrians lean forward at unnatural angles, and often found in stadium or

arena settings.

2.8 A Diagnosis Issue in Crowd Crush Situations

It is known that a problem exists with the classification of crush related

injuries and deaths, namely in the process of posthumous diagnoses (ascer-

taining a cause of death). Firstly, there is the problem with the attribution

of injury to trampling. In the words of Gill and Landi

These deaths often are attributed mistakenly to blunt impacts

from trampling. The autopsy, however, typically finds inconse-

quential blunt injury but does find signs of traumatic asphyxia.

Gill et al (2004) [42]

This problem arises from the level of force present during crush disas-

ters, in short, the high crowd densities found during crush conditions are

known to prevent the victim from falling to the floor, as the compression

that they have been placed under has a tendency to hold them in an upright

position due to friction effects between members of the crowd. It is often
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only after the pressure has subsided slightly that the victim will collapse to

the floor, at which point the fatal injury would have already occurred but

subsequent crowd movement can still cause superficial injuries (termed by

Gill and Landi as “inconsequential blunt injury”) that are normally consis-

tent with a trampling death [42]. In these cases, the attribution of mortality

to compressive or traumatic asphyxia is only possible after a full autopsy

has been carried out.

A similar problem exists when the presence of fire, smoke or other toxins

in the environment has compounded the effects of the compressive asphyxia.

In modern building fires the two main asphyxiant gases present are usu-

ally carbon monoxide (CO) and hydrogen cyanide (HCN). Carbon monoxide

is produced when organic matter undergoes an incomplete combustion due

to a shortage of oxygen, a situation common in building fires where en-

closed spaces cause oxygen supplies to quickly deplete. Hydrogen cyanide

is a common bi-product of the combustion of many synthetically produced

items found in the modern environment. Considered more toxic than CO,

HCN can be found in large quantities wherever man-made synthetics are

burned (especially in low oxygen environments). Whilst it is true that nat-

ural materials such as cotton or paper produce small amounts of HCN the

primary sources in most building fires would be from nylon, polyurethane,

and acrylonitrile, which are commonly found in carpets, foam insulation,

clothing, and plastic products. CO and HCN within the environment fur-

ther increase the risk of asphyxia. If we take the example of a fire, which is

a common cause of evacuations, the combustion process requires both a fuel

(e.g. wood, cloth) and an oxidant (e.g. oxygen, fluorine) to enable continu-

ous burning. This means that any oxidants in the vicinity are likely to be

used up by the fire, and without ventilation this will result in an extremely

low-oxygen environment which is also rich in asphyxiant gases.

As we can see from this example, the major signs of a crush related

death can easily be mimicked by a death in close proximity to fire, smoke,

or other toxins. Byard et al state, in a study spanning 25 years of traumatic

asphyxial mortalities, that

[A diagnosis of] fatal crush asphyxia may have to be a diagnosis

of exclusion, made only when there are characteristic death scene

findings . . .
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Byard et al (2006) [14].

It is also common that the presence of crush, whilst not attributed as

the cause of death at autopsy, has been seen to play a significant part in

the individual’s demise. This is common when in situations where crush

conditions are found to have occurred at the same time as significant smoke

or toxins are prevalent in the environment. In situations such as these, this

forms a dual threat to the individuals’ ability to breathe, with the asphyxia

causing little breath to be taken in whilst any breaths that are taken would

contain an extremely low level of oxygen, a high concentration of toxins, or

both. It seems obvious then that, even when a victim’s cause of death is not

directly attributable to the presence of force within an evacuation, the pres-

ence of force in any evacuation must be considered an exacerbating factor,

and therefore be planned for, and designed against at any opportunity.

2.9 Detecting Crush Conditions via Phase Transi-

tions - An Initial Idea

During the Hajj pilgrimage, Johansson et al observed unusual behaviour

in the crowds of people [63]. The behaviour observed appeared to show

that immediately preceding times of high turbulence within the crowd, a

behavioural phase transition could be seen, which marked the transition

between the smooth laminar flow of an ordered crowd, to a turbulent state

in which the onset of crush conditions could begin.

This type of phase transition can be seen in many kinetic systems, from

Ising-spin systems to theoretical particle systems (see Section 5.10). It has

been found that the point at which the system shifts phase, that is the point

at which the behaviour of the system changes state, can be reliably identified

by mathematical means.

The five factors contributing to the formation of crush conditions (Sec-

tion 2.5) all have the potential to effect the behaviour of pedestrians. Within

a kinetic system, a change in behaviour can often be identified by the subse-

quent change in the movement patterns within that system. Poorly designed

structures, fast changing temporal conditions, procedural issues, tight spa-

tial constraints and perceptual and cognitive factors will all effect the be-

haviour of a pedestrian, and also all contribute to the formation of crush.
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What we suggest then, is that the analysis of movement patterns can be

used to predict the probability of crush formation.

In evacuation terms, and specifically to the evacuations we will consider

in this thesis, the build-up of crush can be considered in a sequence of steps.

At the beginning of an evacuation there will most likely by a number of

people dispersed throughout a structure, who will begin to move towards

the exit. After this stage, when the evacuees get close to the exit the dis-

persal of these individuals will reduce, and the crowd density around the

exit(s) will increase, as per any evacuation. It is at this point that crush

may occur, if the evacuees sense of urgency causes competition for the avail-

able exit, and leads to the sort of non-adaptive crowd behaviour that we

have discussed previously. At this point the interpersonal forces (such as

friction) increase, the net speed of the evacuation is reduced, and physical

force begins to build up within the evacuating crowd. The point which we

would like to identify is that where the usual evacuation pattern of densely

packed but non-competitive evacuees transitions to non-adaptive, competi-

tive behaviour. It is this point where the situation has the potential to lead

to crush conditions.

We propose that by tracking and identifying changes in pedestrian move-

ment patterns, we can identify the probability of crush conditions forming at

any one time. Over the next Chapters, we define the technique, and apply

it to evacuation systems, showing that the level of risk to pedestrians within

an evacuation can be measured in this way.

2.10 Scope of this Study

As we have seen from the material presented in this Chapter there are a

wide range of situations in which the build up of force within a crowd of

people can lead to serious injury or death. The types of force detailed have

all shown the possibility of leading to large scale disaster if present during

an evacuation scenario, but the focus of this thesis going forward will be to

specifically look at the build-up of pushing force within crowds of people as

they evacuate. The reason for this is twofold. Firstly, the examples previ-

ously detailed all contained elements of pushing force within the evacuation,

and by extension the evacuations were hindered by the friction generated

by these forces (see Section 2.6.1). Secondly, the modelling of pushing force
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has been more thoroughly investigated (certainly in the field of agent-based

modelling) than either stacking or leaning forces, although more simula-

tion environments are starting to model the effects of leaning forces as they

become ever increasingly more complex.

Therefore, for the rest of this thesis, when the term force is used with

respect to evacuation it will be used to define the pushing forces within an

evacuating crowd, unless explicitly stated otherwise.

2.11 Summary

We have defined the term evacuation, and how it will be applied during this

research, and briefly summarised the current knowledge of the behaviour of

individuals and crowds during an evacuation. We have addressed popular

myths regarding non-adaptive crowd behaviours, and shown that the de-

cisions and behaviour of evacuees, far from being irrational, is most often

found to be both rational and logical, being based on decision making rather

than blind panic.

Crush conditions have been shown to be possible in any situation in

which large numbers of people gather. We have detailed examples in which

crush conditions presented during emergency evacuations, sporting events,

and religious festivals, but many further examples can be found in the lit-

erature. We have shown that the formation of crush is a complex emergent

phenomenon, which can be difficult to predict and therefore is hard to pro-

tect against.

Considering this, methods by which the evacuation of a structure, and

the danger that the formation of crush presents during this evacuation must

be investigated. In the next Chapter, the use of computational evacuation

models is discussed, and the current state-of-the-art regarding the inclusion

of crush detection measures within these models is investigated.
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Chapter 3

Computational Studies of

Evacuation

3.1 Introduction

To establish the state of computational crush modelling today, we identify

three main methodologies for evacuation modelling found in current circula-

tion, and describe the difference between movement models and behavioural

models. The current trends in evacuation models and evacuation modelling

are investigated, and we track the trends of evacuation models over the past

twenty years.

3.2 Computational Evacuation Modelling

The field of evacuation modelling grew from advances in the field of fire

safety that occurred during the mid stages of the 20th century, and has

evolved from the earliest hand calculations and general design rules into

a field spanning many forms of model, environment, and techniques. The

current state of the field will be discussed in the following section, with

specific reference to the factors and techniques relevant to this work going

forward. We will concern ourselves primarily with computational models,

rather than the theoretic or mathematical models underlying their opera-

tion, unless these factors are of direct importance to later work.

The current state of the field of evacuation modelling contains many

varied and diverse modelling techniques, but for the purposes of this work
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we will divide them into three general categories of approach, these being

network node, cellular automata [148], and continuous field. These three

categories were created for their use in later stages of this project, and

concern the movement of persons through their environment.

3.2.1 Representations of Physical Environment

One of the defining factors of an evacuation model is the way in which it

represents both the agents, individual pedestrians, and the environment in

which they exist, such as the buildings, ships, or stadia. Initial computa-

tional models of evacuation were an extension of the queueing models (which

had been used previous to simulation), systems of connected areas through

which pedestrians may pass to effect egress. As models progressed, further

options became available for these representations, options which define far

more than a simple representation of structure or interactivity. In order to

accurately simulate pedestrian movement the physical environment must be

described. The next sections cover the three main types of physical rep-

resentation in use today, and discuss the strengths and weakness of each

approach.

Network Node Models

The network node models are some of the oldest in the field, yet are still

extensively used for purposes such as shortest/fastest path finding and min-

imum cost network flow. These models originated from research into the

movement of pedestrians in public spaces by academics such as Fruin [37],

Pauls [105, 106], and Predtetchenski and Milinski [109]. These models op-

erate by reducing architectural structures to their base components, which

can then be visualised as vertices within a graph, which each have an as-

sociated weighting which represent the time that it would take the average

evacuees to traverse it. This time varies with current capacity, or by means

of an additional traversal weighting equation representing differing condi-

tions during an evacuation. These timings and weighting are mostly based

on traditional hand calculations that were used for evaluation of evacuation

times, and have been shown to remain reasonably accurate in their predic-

tions [87, 126].

The main advantage of these models is that they are extremely fast run-
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ning, relative to those implemented using either cellular automata or contin-

uous field approaches, as the minimum amount of computing power is used

to calculate the actual traversal of the structure. The higher computational

overhead is found in the optimal route findings algorithms implemented in

these models, which can enable evacuees to calculate their escape path.

However, even when this is considered, these type of models still simulate

evacuations at much reduced computational cost relative to models based

on other approaches.

The principle of these models is mathematically sound, with many of

them employing techniques from the fields of queueing theory and graph the-

ory [17, 123], and having been tested over many years by validation against

empirical data. Yet there are many situations in which the network node

approach cannot be employed, for example an engineer modelling the effects

that interactions between individuals during an evacuation has on the overall

egress time, or the modelling of crush conditions such as we deal with dur-

ing this project. A problem is also presented when modelling non-standard

evacuation topologies that do not lend themselves to being rendered in the

traditional room-corridor-stairwell-corridor fashion that is required for the

network node approach to be effective.

In short, the network-node modelling approach has a tendency to ma-

nipulate the complex, real-world design of buildings into structures that are

well represented by a network graph. This is not a problem with smaller,

more traditional structures, but larger and more complex structures present

significant difficulties.

Many examples of this type of simulation environment remain in dis-

tribution and are still utilised to great effect within the field, models of

particular note are; EVACNET4 [67] and EXIT89 [33].

Strengths

• Lower run-times per simulation than either cellular automata or con-
tinuum models.

• Allows the simple inclusion of advanced route finding algorithms.

• Ideally suited to the calculation of ASET and RSET times across a
large number of eventualities.
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• The simplicity of the models require less variables to be supported
with empirical data.

Weaknesses

• Poor physical representations of pedestrians.

• Heavy reliance on statistical data, which can make them unsuitable
for previously untested topologies.

• Limited ability to model inter-personal communication.

Cellular Automata

The Cellular Automata (CA) [148] approach (also referred to as fine grid,

course grained, or discrete floor field) subdivides the evacuation grid into a

finite number of discrete cells which the occupants transition to and from

directly as they effect egress. These models allow the simulation of indi-

viduals in a more realistic manner than is possible using the network node

modelling approach, and have a number of advantages. Firstly, as an indi-

vidual is represented in a more accurate manner than in the network node

models (i.e. having physical dimensions, able to effect movement in two di-

mensions rather than just one, etc.) the reliance on statistical data regarding

pedestrian flow is partially removed.

An example of this can be found by comparing the modelling of an open

space in hypothetical network node and cellular automata models. Consider

a square atrium, such as that found in structures like hotels, apartment

buildings, or offices, with four possible entrances/exits. Using a network

node model, the atrium will be filled according to the capacity defined during

its specification, and pedestrians are allowed to pass through this space in

a predefined time. The approach is not in any way incorrect, as in low

density situations the amount of time taken to cross the atrium will remain

reasonably stable, but if we consider the case of a higher density situation

in which the population are attempting to evacuate, we must consider the

possibility that pedestrian flow may reduce the time required to pass through

this space in unforeseen ways. Consider Figure 3.1, which shows the influx
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Figure 3.1: An atrium as may be found in large buildings, during evacuation
inflow will occur at North, East, and West intakes, whilst exit will occur at
the South.

of pedestrians from the North, West, and East intakes, who are attempting

to exit the atrium via the South exit. At low densities the time taken to

cross this atrium will be roughly the same as the time taken by someone

to cover the same distance at average walking speed. At higher densities

however, the interactions between evacuees can cause unpredicted conflicts

that will increase the evacuation time per person, as different streams of

people must make their way through the structure.

A cellular automata model allows the more fine grained simulation of

pedestrian movement, and can also model complex behaviours such as per-

son to person interactions and obstacle avoidance. They are considered

by many to offer more accurate simulation of occupant movement than is

possible with the network node technique [126].

The computation speed of these models is far slower than that of the

network node models as this is an entirely agent based approach, which

means each pedestrian is modelled as an individual discrete unit. Applying

a CA approach to modelling allows significant optimisations to be made to

many parts of a model, most notably by applying the floor field technique

[66] which associates certain evacuee variable values with the grid structure,

rather than requiring the calculation of each value for each evacuee at every

time-step. Direction finding for example may be calculated once per each

discrete element of the floor field, the variable value being assigned as the

vector pointing directly towards the nearest exit, or away from the nearest
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obstacle. The savings afforded by this type of modelling are many, but the

grid structure presents problems when modelling crush conditions within an

evacuation. The two most pertinent problems are the modelling of force and

friction between evacuees, which arise from the reduction of the evacuation

grid limiting the level of interaction and movement of evacuees. Commonly,

evacuees are able to traverse the grid in just 4, 6, or 8 possible directions, as

opposed to the (effectively) infinite number of possible headings allowable

in a continuum model. This reduces the effects that interpersonal friction, a

force that inhibits free movement in other models, has within a simulation

and has traditionally restricted some of the behaviours that can be recreated

using this approach. A solution to this problem is found in certain CAFE

models (Cellular Automata with Force Essentials) which apply conflict res-

olution algorithms to evacuees attempting to move into the same grid cell.

These algorithms can be as simple as a dice rolling solution in which two or

more agents who are attempting to move into the same cell are required to

resolve the conflict via random number generation, the conflict is resolved

only when one agent “rolls a six”. This approach is taken in [66], and has

been shown to partially mimic the effects of inter-personal friction seen in

continuum models [126, 150]. These type of models are used extensively

within the field, and have been shown to produce accurate results across

many scenarios.

Popular examples of environments which utilise the cellular automata

approach are SGEM [86] and buildingEXODUS [102].

Strengths

• Lower run-times per simulation than continuum models.

• Able to model non-adaptive group behaviours and competitive egress.

• Low reliance on statistical data during operation.

• Allows the inclusions of more accurate environmental conditions (fire,
smoke, toxins, etc).
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Weaknesses

• Higher run-times per simulation than network-node models.

• Unable to reliably model physical inter-personal contact.

• Larger cells (a more coarse-grained environment) can effect physical
realism of movement.

• Cannot model inter-personal friction, although there are ways to sim-
ulate this factor.

Continuum

The final form of grid structure in use today is the Continuous floor (or

Continuum model), in which the evacuation grid is represented as a contin-

uous plane, separated only by obstacles and the form of the architectural

structure. Continuum models allow movement throughout the evacuation

grid at a highly accurate level, with evacuees able to assume any heading

and to take steps in any valid direction. Due to this continuous nature,

these models must include collision detection algorithms to ensure that the

evacuees physical form is accurately represented at all times, which adds an-

other significant computational overhead. The continuous evacuation grid

also hinders the use of floor fields within most models, forcing the calcu-

lation of many variables at each time-step, although for certain evacuation

parameters floor fields can still be implemented, FDS [74] implements their

path finding algorithm using a CA style floor field approach (see Chapter 8).

The continuum models have been shown to offer a great level of realism

when modelling the movements of pedestrians throughout a structure, but

the additional computational expense of continuous floors and physical con-

tact often means that complex behavioural models are not included within

these simulations.

A popular example of this type of model is the Fire Dynamics Simulator,

which we discuss further in Chapter 8.
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Strengths

• Able to model physical movements to a near real-life accuracy

• Can accurately model physical inter-personal contact (force and fric-
tion)

• Allows greater physical diversities within pedestrian population (height,
weight, etc)

• Most accurate representation of human form of all methodologies

Weaknesses

• Higher run-times per simulation than either network-node or cellular
automata models.

Critical Analysis

The different approaches to floor field representation each have their own

strengths and weaknesses, and examples of each type of model are still in

use to this day. This can be seen in Section 3.3.1, where out of the eight

most popular evacuations models in use during the past ten years, there can

be found at least one example of each of these methodological approaches.

The choice of differing floor field representations with evacuation models

depends on the desired use of the model, as the floor field representation can

have a great effect on the strengths and weaknesses that a model may exhibit.

We have seen, for example, that the network-node approach to modelling

allows for extremely fast computation times, which means that large num-

bers of distinct evacuation scenarios could be tested in very little time. This

could allow for Monte-Carlo modelling of all predictable eventualities, an

option that would be cumbersome to achieve using a model which incurred

a higher computational cost. Equally, incorporating advanced behavioural

models within a network-node simulation presents myriad problems, as inter-

personal interaction is difficult to define, so designers considering this type
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of additional functionality would be inclined to choose a cellular automata

or continuum approach.

The modelling of crush, covered in more detail in Section 3.4, presents

a more serious decision to modellers, this being that the inclusion of crush

measurement techniques have traditionally required the use of a continu-

ous floor model, which necessitates a large computational overhead. The

requirement of the continuous approach for crush modelling is due to the

inter-personal friction required for the modelling of high density pedestrian

situations, which is not easily achieved using cellular automata or network-

node approaches.

We propose applying a technique which can assign a metric to the forma-

tion of dangerous crush conditions, which would not require the calculation

of physical force levels. If such a technique were to be successful, it would

allow the inclusion of a crush detection metric within a cellular automata

model, and negate the need for computational expensive physical force cal-

culations. Over the next chapters we introduce further elements leading to

the application of this technique, and show that it is possible to identify be-

haviours which are likely to lead to the formation of crush using movement

variables alone.

3.2.2 Behavioural/Movement Modelling

There is a distinction between the modelling of behaviour and the modelling

of movement, which can often become blurred in the literature. There are

a large number of particle or fluid models which ostensibly model the be-

haviour of evacuees, but on inspection they are more strictly modelling their

movement. We next define and contrast the two techniques of modelling

human movement generally taken when designing/specifying an evacuation

simulation.

Behaviour Models

Comprehensive behavioural models are now included in many evacuation

simulations [35, 84, 102, 140], and are being used to model a far greater

number of behaviours than have previously been possible. An example of a

behavioural model that may be used in an evacuation simulation is shown

in Figure 3.2, which shows a subset of the interactions that can occur as
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Figure 3.2: Example of a cognitive behavioural model

part of the decision making process.

The underlying computation in these systems can work in many ways,

and common implementations range from probabilistic rule-based models

through to the more complex systems implementing Artificial Intelligence

(AI) techniques to create realistic human decision making processes. Well

known examples of such models are VEgAS [62] and Legion [22]. For an

overview of models in circulation, including a breakdown of types of be-

havioural models, see Kuligowski and Peacock [79].

Movement Models

A classic example of a movement model is the Social Forces model (SFM)

[51], examined more thoroughly in Chapter 4, in which evacuees are repre-

sented as particles subject to forces around them, and able to exert force

to drive them toward the exit. The movement model present in the SFM is

visualised in Figure 3.3. We see that the model present in the SFM is highly

simplified when compared to the example behavioural model, taking into

account just the immediate surroundings of the evacuee in question. This

models only the movement of the evacuee, and cannot take into account fac-

tors such as inter-personal relationships, knowledge of the structure to be
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Figure 3.3: Example Movement Model. Based on Helbing’s pedestrian
model

evacuated, availability of additional information in the form of exits signs,

perception of risks, etc.

As can be seen when comparing the movement and behavioural pro-

cesses, a movement model utilises just a fraction of the decision making

parameters present in the behavioural model, yet can still accurately repre-

sent many situations to a great degree of accuracy.

3.3 Recent Trends in Research Activity

To investigate the popularity of computational evacuation modelling, a pub-

lication review was carried out to assess the varying level of interest these

models have been achieving in the field over the past twenty years (1991

to 2010 inclusive). Three journal indexing sites were identified for data

collection, these being Science Direct [32], IEEE Xplore [57] and Web of

Knowledge [141]. These sites were chosen both for the known inclusion of

evacuation materials (from personal experience) but also for their accuracy

of their search functionality (i.e. the correctness of the results returned com-

pared with the exact terms searched). The terms chosen for these searches,

and the way in which they were searched for, is shown below:

(evacuation∨ egress∨ ingress)∧ (model∨models∨modelling∨modeling)
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The data obtained may be seen in Figure 3.4.

 0

 50

 100

 150

 200

 250

 300

 1992  1994  1996  1998  2000  2002  2004  2006  2008  2010

P
ap

er
s

Year

Science Direct
Web of Knowledge

IEEE Xplore

Figure 3.4: Publications on evacuation modelling over the last twenty year
period.

As we observe from the data, there has been a continual growth in in-

terest in computational evacuation over the twenty year period in question.

The years 1991 to 2000 show a steady, yet slow, growth in the number of

articles across all three of the data sources, but the rate of growth increases

noticeably in the period 2000 to 2010. This increased rate of growth could

be attributed to many factors, such as the increasing power of personal com-

puters allowing for more complex functionality to be added to models, or

increased interest in the field after numerous high-profile events which in-

volved the fast evacuation of people (i.e. the World Trade Centres attack

[100] and the London Underground bombings [145]). It could be said that

the trends are indicative of the rise in output seen across all sciences over

the past twenty to forty years, but estimates suggest that this rise is likely

to be in the region of 2.5% per annum [97]. This is significantly less than

the trends seen here between 2001 and 2010, which was an approximate

24% increase per annum (data taken from “Science Direct” and averaged

across the 10 year period from 2001). This does show that the increase in

output across the field of evacuation modelling cannot solely be ascribed to

an increase in output across academia in general.

Whatever the cause of this increased growth, the rising popularity of
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computational evacuation has caused the field to become a more “main-

stream” discipline, and the computational modelling of evacuations is now

often found to be carried out routinely during the design and planning stages

of large building projects.

3.3.1 Trends in Model Usage

We have seen that the research area has been in ascendancy for the last two

decades, but this doesn’t tell us much about the popularity of the specific

models that people have been using across this time. We can apply a similar

method to that used previously, to assess the popularity of specific models.

For this we will focus on the last decade (2000 to 2010), as this is where the

most pronounced growth in the field was identified, and collect data on the

number of journal papers which directly employ specific models.

The specific models included in this research have been compiled during

the course of the work, and are not meant to represent a comprehensive

list of all evacuation models available. The list of models which have been

encountered during this work are listed in Table 3.1. The models listed in

Table 3.1 do not represent a comprehensive list of all available evacuation

models. The list was compiled throughout this research, and includes any

model that has been included in the available literature, alluded through

external sources, or found during the review process. This does not imply

that a model listed is in current use or is being actively developed at the

time of writing. A community updated list of known models can be found

at evacmod.net (http://www.evacmod.net), and lists of models in active

use can be obtained from the NIST website (http://www.nist.gov).

The data for the IEEE Xplore engine was not included in this section of

the research as there were very few publications on the subject of evacuation

included in their journals between the years 2000 to 2010 (compared with the

other two sources). We have therefore analysed the activity using Science

Direct and Web of Knowledge only, results are shown in Figure 3.5.

Discussion

As we can see from the data obtained from both sources, the models which

currently dominate the field, as far as research is concerned, have been

FDS+Evac, buildingEXODUS, Simulex, and the Social Forces model. Of
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Model Name

AENEAS Allsafe ASERI
ASET / ASET-B BFIRES-2 BGRAF
BuildGEM BUMMPEE Cube Avenue
buildingEXODUS CRISP DBES
EARM EESCAPE EGRESS
Egress Complexity Model EgressPro ELVAC
ENTROPY EPT ERM
E-SCAPE ESM EVACNET4/EVACNET+
EVACS EVACSIM EvacuationNZ
Evi EXIT89 EXITT
FAST FDS+Evac Firescap
FlowTech FPETool GridFlow
Helios Legion Studio MA&D
MAGNETIC Model maritimeEXODUS MASCM
MASSEgress MASSIVE Software MASSMotion
Myriad II Nomad PathFinder
PEDFLOW PedGo PEDROUTE / PAXPORT
PedSim S-Cape SEVE P
SGEM SimPed Simulex
SimWalk Social Forces Model SMART Move
SpaceSensor STEPS Takahashi’s Fluid Model
TIMTEX TSEA VEgAS
VISSIM WAYOUT ZET

Table 3.1: List of Evacuation models considered during literature review.
Note: A model’s inclusion in this table does not imply that it is widely used
or actively developed, just that research papers exist which have explicitly
referenced the model in question.
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Figure 3.5: Number of papers published each year in which the evacuation
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(top), and from Thompson Reuters Web of Knowledge [141] (bottom).
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these four models, the cellular automata approach is employed in buildingEX-

ODUS and Simulex, whilst the continuum approach has been employed in

FDS+Evac and the Social Forces model.

Obviously the age of these evacuation models may have an impact on

the amount of interest shown in them. Figure 3.6 shows the time-line of

model release of all the models investigated previously. Model appearance

is defined by the first instance of their reference within a published research

paper.

We can see from the time-line that the older models, pre-1990, have re-

mained at a reasonably static rate of reference over the past ten years, albeit

a closer look at the manner of their reference shows that they are most reg-

ularly used as benchmarking tools for the newer generation of model. If we

take the case of EXIT89 as an example, this was directly referenced in six

papers published through journals indexed by “Science Direct” in the five

years from 2003, but in each of these papers they were used only as com-

parative models, and none contained new results from in silico evacuations

modelled using the simulation environment.

These trends do show that the field in general is moving toward a more

“agent based” approach to the modelling of evacuation, which naturally

favours the techniques of the CA and continuum model over that of the

older network node approach. This said, the network-node models included

in this survey (EVACNET+, EXIT89, etc) are still actively referenced by

many researchers within the community, and may be prevalent within cer-

tain sectors of industry.

3.4 Modelling of Crush

In general, each crush detection method that has been used to date can

be classified into one of two generic groups; explicit methods and implicit

methods. These two generic methodologies are outlined below, along with

a brief discussion of their relative strengths and weaknesses.

3.4.1 Implicit

The implicit methodology is the original crush detection approach, and is

still highly popular, being used in a large number of simulation models [79].

This methodology relies on the expert analysis of factors such as population

72



1
9
8
0

1
9
9
0

2
0
0
0

2
0
1
0

EV
AC
NE
T

EX
IT8

9

EX
ITT

CR
ISP

bui
ldin

gE
XO

DU
S

Ev
acs

im

FD
S+
Ev
ac

SG
EM

Sim
ule
xSF

M

1
9
8
5

1
9
9
5

2
0
0
5

Figure 3.6: Time-line showing the release of evacuation models included in
our survey.

73



density (see Section 2.5.1), behavioural analysis, and environmental consid-

erations. The analysis of conditions within these models, therefore, is left

to the engineer, who interprets the output of the simulation to determine

whether crush conditions have occurred.

Implicit modelling does not take into account the possibility that evac-

uees exhibit any competitive egress behaviours, such as pushing, as there

is no accurate method for simulating these behaviours without the inclu-

sion of force calculations. This makes it best suited for general evacuation

simulations; i.e. timely evacuations under “ideal” conditions.

As the exact force being exerted upon individuals is never calculated, the

precise physical danger that exists in the evacuation can never be quantified.

The only assertion that can be made, based on an implicit analysis, is that

crush conditions are likely to form during the evacuation in question. The

benefit of this approach is that, as the physical force calculation are not

performed, it requires far less processing power than other methods.

Among many factor’s that may be considered during an implicit analysis

are crowd density and flow rate. Measurement of crowd density can provide

a good indicator of the danger present from crush during a simulation but it

can only be confidently employed as an indicator that crush conditions are

not present. If we take sports stadia as an example, the density of persons

at post-war football matches in the UK has been empirically observed to

have reached at least 10 persons per square metre under relatively standard

conditions [29], at which point there were still no injuries recorded to the

persons in question. A similar example can be found during the Saudi

Arabian Hajj, where it is not uncommon to find similar densities of 10

persons per square metre. This is not to say that these situations should be

considered “safe”, far from it, but the mere presence of high density crowds

does not in itself signify the presence of dangerous crush conditions within

a crowd.

There are too many implementations of the implicit methodology to list

here but a popular, well documented example is Simulex [139], from Crowd

Dynamics Ltd.

3.4.2 Explicit

The explicit modelling of crush conditions incorporates an assessment of

crush into the model itself, and therefore requires less user analysis than the
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implicit approach. Often based on the calculation of Newtonian force values,

and generally operating in two-dimensional space, explicit methodologies

can be used to detect the presence of crush conditions much more precisely

than is possible with implicit modelling techniques. By simulating the exact

forces being exerted by each individual, and enabling the propagation of

forces throughout a crowd, the explicit methodology can be used to measure

the exact amount of force that any individual is subject to. This, therefore,

offers the possibility of quantifying the dangers that individuals face, which

is not possible using the implicit modelling techniques.

Whilst the explicit methodologies offer an accurate measure of the forces

acting within a crowd, the calculations needed to measure force require much

more processing power than an implicit implementation, so there exists a

definite trade-off between the two techniques.

The most well-known implementation of this methodology is the Social

Forces Model [51] (see Chapter 4), which combines the force equations men-

tioned above with the modelling of the social forces acting within crowds.

Although the original Social Forces Model was created as a research exercise,

rather than a full-featured simulation environment, the model has appeared

in many variations since its first appearance [110, 113], and has recently

been incorporated into the FDS environment [73], a popular model of fire,

smoke, and pedestrian flow.

3.5 Difficulties in Modelling Injuries Caused by

Force

The final factor relating to the modelling of crush conditions is the difficulties

that modellers and engineers have found in establishing exactly how much

physical force is required before it becomes apparent that crush has occurred.

There are many different metrics that are used to quantify the force affecting

a single evacuee, or a cluster of evacuees, none of which have proven faultless.

The evidence of the amount of force suffered by some individuals during the

Hillsborough stadium disaster for example, suggests that forces within the

crowd had breached levels of 4400N [29] but it is unknown what, if any,

direct injuries (e.g. the breaking or fracturing of bones) can be caused by

such force. Moreover, it is not known exactly how prolonged an exposure to

this level of force would need to be to result in the presence of suffocation
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injuries (e.g. compressive or traumatic asphyxia).

Different environments, models and researchers state their assertions on

the levels of force required for injuries of varying levels. Fruin [37] suggests

that physical injuries begin to occur at levels approaching 1500N suffered by

an individual, whereas Helbing et al use the more malleable metric of a radial

force acting about the circumference of an individual exceeding 400Nm−1.

Conversely, the more implicit approach taken by the International Maritime

Organisation (IMO) [58] is to measure the danger present in any situation

using a relative metric associating the time-span of the evacuation to the

crowd density at all times, and therefore states that an evacuation must be

considered unsafe if the crowd density exceeds 4pm−1 for 10% of the overall

evacuation time.

As we can see from these three examples, there still exists a great deal

of uncertainty within the community on exactly how to metricise the dan-

gers to individual crowd members that crush conditions cause. Notably,

the Fire Dynamics Simulator (FDS), which includes injury behaviour from

fire, smoke, and toxin exposure, does not include any criteria by which an

individual may succumb to crush related injuries, and instead the force that

individuals are subject to is presented to the user for later analysis.

Considering the difficulties in establishing the presence of injuries due

to the formation of crush, it has been decided that during this work we will

not use injury itself as a primary identifying factor of the relative danger of

an evacuation. We instead opt for the measurement of either the maximum

amount of force that any individual in an evacuation is placed under at

any one time, or an average (arithmetic mean) measure of the force across

the population at any one time. It is hoped that circumventing the actual

classification of crush injury during this work will lead to a more robust and

straightforward analytical methodology, that can be applied regardless of

the exact manner in which injury metrics are carried out in the future.

3.6 Our Proposed Approach

We propose a new approach to the identification of crush conditions within

evacuation scenarios. By identifying the underlying behavioural patterns

that lead an evacuation towards the formation of crush, we aim to ascertain

the relative likelihood of crush forming in a given evacuation.
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Figure 3.7: Figure A shows laminar flow, where the exit capacity appears
sufficient for egress. Figure B shows the reduction of exit capacity inducing
a transition into turbulent flow.

The behaviours within an evacuation that we would like to identify mark

the transition between laminar flow (smooth and uninterrupted) and tur-

bulent flow (haphazard and disjointed movement of evacuees), examples of

which may be seen in Figure 3.7.

At its simplest, this technique will require the identification of large-

scale, non-adaptive evacuation behaviours from the output of a simulation

environment, which would suggest presence of high levels of physical force.

The suggested approach applies mutual information (MI), a statistical mea-

sure of the interdependence of two signals (see Chapter 7), to the movement

data taken from an evacuation simulation. We suggest that the MI of the

system can then be used as a quantification of the amount of order within

that evacuation, i.e. high MI suggests a well ordered laminar flow of pedes-

trians, whereas low MI suggests the breakdown of order and the onset of

crush formation.

3.7 Summary

In this Chapter we described and summarised the details of two relevant

methodological choices made in evacuation models, these being the repre-

sentation of the physical environment and the choice between behavioural

modelling and movement modelling. It should be noted that these classi-

fications were designed for their relevance to the formation of crush con-

ditions. In general, the most popular CA models include a greater depth

of behavioural model than that found in continuum models, which tend to

favour the movement modelling approach which allows very accurate contin-
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uous movement. Our proposed technique enables the measurement of crush

conditions via the analysis of movement data, available from both CA and

continuum models. In this respect the technique can allow the inclusion of a

crush measurement system within a CA model, allowing a model that runs

at speed to have an indicator of crush that was previously only possible in

the more computationally expensive continuum models.

We have seen that there has been a growing interest in the field of evac-

uation modelling over the past twenty years, and it is currently a highly

active field of research.

During the next two chapters we outline both the test bed for our chosen

technique, the social forces model (Chapter 4), and the mathematical basis

of the proposed technique, MI (Chapter 5).
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Chapter 4

Social Forces Model

4.1 Introduction

In this section we describe the history and working of our chosen test model

for the crush detection technique, the Social Forces Model [51, 53], and

examine its strengths and weaknesses in relation to both the modelling of

evacuation behaviour and the calculation of physical force. The model is

examined in depth as it not only forms the test bed for our technique, where

we show that MI is suitable for the measurement of force within a simulation,

but it was also used as the mathematical basis of the pedestrian movement

within the evacuation simulation which we employ later in the project (see

Chapter 8).

During this section we refer to two different versions of the Social Forces

Model. The first was presented by Helbing et al in 1995, and did not model

the physical force between pedestrians during an evacuation [53]. This will

always be referred to as the original social forces model, or original SFM, in

this Chapter. The second model was presented in 2000 [51] and extended

the original SFM to include the calculation of physical forces, and it is this

model which will be referring to as the social forces model or SFM.

4.2 Background

The original social forces model was introduced by Helbing et al in 1995

[53], and initially did not include the ability to calculate the physical forces

between pedestrians which this project is most concerned with. The forces
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referred to in the title of the model were therefore strictly social forces,

which were defined as the sociological forces which drive pedestrians to

both remain at a reasonable distance away from others (retaining personal

space), and also to remain within a reasonable proximity of them (increas-

ing the chances of successful exit/evacuation from a building). The other

forces included within the original SFM are the psychological forces which

repel pedestrians to a comfortable distance away from walls and bound-

aries (again, to retain personal space), and the driving force which attracts

pedestrians toward their desired goal (usually the exit to the structure). The

use of these forces within the original SFM enabled the model to recreate

many empirically observed evacuation phenomena that are known to exists

in real-life evacuations, such as natural pedestrian lane formation and the

faster-is-slower-effect.

The updated SFM, hereby referred to as simply the SFM, was presented

by Helbing et al in 2000 [51], included the addition of force and friction

effects to the original model. This updated version was able to recreate

additional phenomena observed in the field, including arching behaviour at

exits (see Figure 4.5) in which the friction between pedestrians causes a solid

arch-like structure about an exit, and exiting bursts in which the outflow of

pedestrians turns from a uniform flow into a more turbulent and uneven

exiting pattern under higher densities.

4.3 Description

The SFM operates under simple to understand principles. A pedestrian’s

movement at every time step is an accumulation of simple decisions regard-

ing their current situation and their desired goals. In short, a pedestrian will

move away from other pedestrians or obstacles if they are “too close”, and

will move towards the exit. In this way a pedestrian is able to avoid walls

and obstacles whilst moving closer to their desired goal at every time-step,

thus effecting egress.

The “urgency level” in the social forces model, i.e. the level of the per-

ceived threat, is controlled by a parameter which defines the pedestrian’s

desired escape velocity. In simple terms this parameter defines the walk-

ing/running speed that a pedestrian would attempt to reach were there no

obstacles, such as walls, pillars, or other pedestrians blocking their path. As
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will be shown by the mathematical definition of the model, the “desire to

leave” is integral to the working of the SFM, as it will effect not just the

speed at which a pedestrian will travel, but also effects the distance that

they will keep from other pedestrians. In this way, a high desire to leave,

combined with an insufficient exit capacity, will lead to high competition for

the exit, increased crowd densities, and the build-up of physical force within

the crowd. It is by increasing the value of a pedestrian’s desire to leave that

crush conditions within the social forces model may be simulated.

An example of how changing the pedestrians’ desire to leave within a

simulation will effect the crowding behaviour exhibited by the pedestrian

may be seen in Figure 4.7.

P0

P2

P1

P3
f2

f1

f1

f2 f1 f2m0 = +

R0

Figure 4.1: Visualisation of interaction between four pedestrians. Forces f1
and f2 show the social force exerted on p0 by p1 and p2 respectively. Pedes-
trian p3 does not contribute to movement, as they lie outside the interaction
area R0 of p0. Vector m0 shows the final movement of p0, away from p1 and
p2 and a rate inversely proportional to their proximity.

4.4 Mathematical Definition

The Social Force Model consists of five interacting forces, these being; re-

pulsive social force, repulsive boundary force, repulsive psychological force,

body force, and sliding friction force. The equations governing the forces

within the model are defined below.
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4.4.1 Movement

m
dvi(t)

dt
= m

v0ei − vi(t)
τ

+
∑

j 6=i
fij +

∑

W

fiW (4.1)

Where:

• v, and m represent the velocity, and mass of pedestrian i

• v0 is desired velocity of i, also used here to assign the level of desire,
or urgency, the pedestrian has to exit the structure.

• ei is the direction in which the pedestrian would, if unimpeded, desire
to travel. In the case of an evacuation this is likely to be the direction
to the closest exit.

• τ is the relaxation parameter. This governs the acceleration and decel-
eration of pedestrians, and acts as a form of damping force to prevent
extraordinary movements.

• fij is the repulsive social force acting between pedestrian i and j, or
between pedestrian i and obstacle j. In the original experiments the
obstacles were circular pillars, analogous to the representation of the
evacuees, hence including the repulsive obstacle force in the person-
person interaction force equation.

• fiW is the repulsive boundary force of boundary W acting on pedes-
trian i.

4.4.2 Social Force

The movement that the SFM produces in an evacuee is therefore a summa-

tion of the vectors returned by the functions ei, fij , and fiW , with the value

of ei being a vector pointing toward the nearest exit.

fij = [Ae(rij−dij)
−B+kg(rij−dij) + κg(rij − dij)]nij∆vjitij (4.2)

Where:

• A, B, k, and κ are mathematical constants.
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• dij is distance between pedestrian i and j.

• rij is the sum of the radii of pedestrian i and pedestrian j ∴ rij = ri+rj

• g(x) is a function which returns zero if rij < dij (i.e. pedestrians have
no physical contact) returns x otherwise.
• nji is the normalised 2-dimensional vector pointing from pedestrian j

to pedestrian i.

• tij is the tangential direction vector between pedestrian i and pedes-
trian j

• ∆vji is the tangential velocity difference between the two pedestrians

• kg(rij − dij) represents the body force, which counteracts the pressure
placed on a pedestrian’s body. Scaling the constant k effects the exact
level of body force present in specific simulations.

• κg(rij − dij)∆vjitij represents the friction force between i and j, which
impedes the tangential motion of pedestrian i according to the mag-
nitude of κ.

The social force equation governs the desire which an agent has to cre-

ate space between themselves and any other agents within their interaction

radius R. The output from fij , across the range 0 ≥ R ≤ 2 (the default

interaction radius within the SFM), is displayed in Figure 4.2.

At values of rij − dij < 0, the friction co-efficient κ begins to effect

agent movement. When the function g(rij − dij) returns a figure lower than

zero, the agent’s movement begins to be hampered by the tangential friction

acting between pedestrians i and j, which restricts movement in the x and y

plane. The default value for the friction co-efficient from the original model

is set at κ = 3000. Figure 4.3 shows the effect of the friction parameter κ

when a pedestrian’s proximity to another pedestrian is less than zero, i.e.

the formation of crush occurs.

The effective overlapping of agents’ physical representations that is re-

quired for the friction co-efficient to begin to hamper movement has been

questioned by some (see Section 4.6.1), as the amount of additional com-

pression suffered by the evacuees has not been either strictly defined nor

empirically tested. There are extensions to the original model which effec-
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Figure 4.2: The changing desire of agent i to decrease their proximity to
agent j, shown across the entire interaction radius (0m ≥ R ≤ 2m).
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Figure 4.3: The effect of the force co-efficient κ on agent movement at very
high density. At proximities less than zero, the agents body representations
are effectively overlapping.
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tively remove this behaviour and replace it with a more traditional collision

detection method which prevents the overlapping of agent forms [81].

4.4.3 Boundary Force

The equation modelling the interactions between pedestrians and boundaries

is similar to the equation governing the social force (Equation 4.2), and

contains many of the same component variables.

fiW = [Ae(ri−diW )−B+kg(ri−diW )+κg(ri−diW )]niW−κg(ri−diW )(vi ·tiW )tiW

(4.3)

Where:

• niW is the perpendicular vector from pedestrian i and boundary W.

• tiW is the tangential direction vector between pedestrian i and bound-
ary W .

4.4.4 Goal Finding

The goal finding behaviour within the SFM is governed by an equation

returning the unit vector pointing directly at the agents’ desired goal.

ei =
x0i − xi(t)
||x0i − xi(t)||

(4.4)

Where:

• x0
i is the position of the desired goal.

• xi(t) is the position of agent i at time t.

4.5 Visual Example

To understand the operation of the SFM, it is often best to view the inter-

acting forces graphically. The equations that model movement in the SFM
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Figure 4.4: Graphical example of movement vectors within the SFM. Figure
One shows the component vector leading an agent away from walls and
towards the goal, Figure Two shows the resultant movement vector.

return vectors which either repulse (guide away from) or attract (pull to-

ward) certain points of the evacuation space. It is the summation of these

vectors which determines the direction in which the agent will travel at each

time-step, and the acceleration equation which determines at exactly what

speed.

The simplest visual example of the operation of the SFM’s movement

model can be seen during the unimpeded travel of a pedestrian. At low

density the main forces which will act on the pedestrian are the repellent

boundary forces (Equation 4.3) which act to steer the pedestrian a comfort-

able distance away from walls, and the attractive force of the pedestrian’s

desired goal (Equation 4.4). Under these conditions a pedestrian will steer

away from walls, whilst making steady progress toward their goal.

We can see from Figure 4.4 that the result of force additions from FiW

and e give the direction of travel of the agent at the next time-step, tn+1.

The strength of repulsion is inversely proportional to the distance between

the agent and the boundary in question, e.g. repulsion from boundary A

is significantly greater than that of boundary B, which roughly models the

priorities of the agent with consideration of personal space. The vector e

draws the agent toward the exit, ensuring that movement is never severely

detrimental to the progress of the agent toward their desired goal.
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Figure 4.5: The arching behaviour about the exit can clearly be seen during
this simulation.

4.6 Critical Analysis

The Helbing model is highly regarded as a microscopic model of pedestrian

movement, and has been shown to recreate many of the behaviours present

during evacuations, such as exiting bursts and the faster-is-slower effect

[51, 53]. The SFM, or variations of the classic model, are currently being

incorporated into many environments, and it has been shown to provide

accurate results across a number of evacuation scenarios.

Most of the strengths of the SFM stem from the inclusion of force and

friction within the simulation. That said, the original social forces model

[53] was notable for its recreation of numerous evacuation behaviours despite

the fact that it included no physical force calculations. The version of the

SFM which we utilise as our test bed has numerous strengths above and

beyond the ability to quantify the level of physical force, a number of which

are defined below.

The inclusion of inter-personal friction within the SFM allowed the model

to recreate the observed phenomena of arching, in which the evacuating

crowd cause an arch-like structure to form in front of the main evacuation

route (Figure 4.5), which has only been accurately recreated, in an in silico

environment, by including inter-personal friction forces.

We can see that the pedestrians have formed a semi-circle around the

exit, which is held tight by the friction acting between their bodies, in the

same way that stone arches can be held upright due to the friction acting be-
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tween blocks. Some cellular automata (CA) models recreate this behaviour

by employing measures such as friction probability, which disables a pedes-

trian from moving to a new position if another pedestrian is trying to move

into that position at the same time by implementing a probabilistic conflict

determination [150]. This technique has shown results which are qualita-

tively similar to those achieved by the SFM, but requires correct parametri-

sation to operate, unlike the SFM which relies on strict motion equations to

calculate the resolution of conflicts.

The counterpoint to the arching phenomenon is that of exit bursts, which

are often observable immediately after the natural breakdown of an “arch”.

At the point at which a single evacuee manages to break free of an arch, the

pressure placed on those immediately surrounding them is released, and a

number of other evacuees are often able to clear the congested area before

the pressure becomes too great and a second arch is formed in place of the

first.

This said, the usefulness of particle simulations in general is being ques-

tioned by some, and there are specific areas in which the SFM has been

found to be lacking. A critical analysis of the SFM follows, in which a

number of the limitations of the SFM are addressed.

4.6.1 Limitations

Despite the strengths of the SFM, it was originally built as a toy model (i.e.

as a tool for investigation rather than for commercial use), and was designed

as a means to investigate high density pedestrian movement, interaction

and the formation of physical force, rather than as a means to simulate the

evacuation of a building. As such, there are many areas in which the model

could be improved. Below we list the areas identified by ourselves and others

which are considered weaknesses of the SFM, and look at the improvements

currently being made by researchers in the field to update the model and to

expand its use.

Representation of Agents

The traditional SFM represented agents with a perfectly spherical two-

dimensional shape, accounting for the body mass of the pedestrian. This re-

duces the maximum observable density within the simulation, by effectively
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Figure 4.6: Body representation similar to that suggested by Thompson
and Marchant [140], where Rt and Rs represent the radius of the torso and
shoulders respectively, whilst Rd represents the radius of the body at its
greatest point.

reducing the number of agents which could conceivably be compressed into

a space of 1m2. A more accurate representation of agents was suggested by

Fruin [37], later expanded by Thompson and Marchant [140], and utilises

three overlapping circles to better represent the torso and shoulders of a

pedestrian, see Figure 4.6.

At each shoulder, the radius of the agent is Rd, but at the torso section

the body radius is Rt, significantly smaller. This elliptical footprint allows

simulations to reach much greater densities than is possible using the circular

representation. Our simulations with the Fire Dynamics Simulator (see

Chapter 8) have shown that the elliptical shape allows crowd density to

reach a maximum of 10pm−2, whereas the maximum density measured in

the SFM was only 6pm−2.

This configuration gives the overall representation of an agent a roughly

elliptical footprint, which it is argued can offer both more accurate visu-

alisations of crowd movement and more accurate simulation results when

compared to empirical data [81].

Lack of a Behavioural Model

As has been stated previously, the SFM acts as an excellent descriptor of hu-

man movement under certain environmental conditions. However it cannot

be said that the SFM accurately models human behaviour or decision mak-

ing in the same manner as other simulation environments (see Section 3.2.2).
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Movement in the SFM is governed by attractive and repulsive forces

acting against each other, and in this way the model considers only the

minimum number of factors with which an evacuation can be represented.

The complexity of human interactions within their environment, and with

other human beings, makes the evacuation process itself a highly complex

and intricate task. A full behavioural model would include tasks under-

taken during the preparation to evacuate e.g. gathering knowledge from the

immediate environment (some of this knowledge may be correct, but this

is not necessarily the case), assessing the most immediate factors relevant

to successful egress, judging the expected time-scales necessary to complete

certain tasks, the sharing of information with other evacuees, and the evalua-

tion of past experiences of such events, before making decisions on their best

course of action. The social forces model only accounts for the most imme-

diate threats with the environment, so cannot be considered a behavioural

model in the true sense of the term.

Required Damping Force

The presence of a damping parameter is standard across many physical

simulations. A damping force allows a body to settle into a state of rest,

and reduces the tendency of a system to oscillate. Its use in evacuation

simulations allows better modelling of the absorption of force at the point of

contact between two pedestrians, and has been shown to reduce the effects

of modelling humans as solid structures rather than deformable bodies. The

work of Langston [81] introduced the use of a damping parameter to models

similar to the SFM, and experimental results show that the addition has a

positive effect on the modelling of evacuation.

The FDS simulation environment, which we will use for later testing,

does include a damping parameter when implementing the SFM’s physical

force equation, as can be seen below

f cij = (k(dij − rij) + Cdδvij
n)nij + κ(dij − rij)δvtijtij (4.5)

The size of the damping parameter Cd is implementation specific, but

the FDS default value is set at 500Kgs−1. Note that damping is usually

measured in Newton-seconds per meter (Nsm−1), which sets the FDS pa-
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Figure 4.7: SFM agent distributions at differing values of desired velocity
(V0). Top: V0 = 0.5ms−1. Bottom: V0 = 5.0ms−1

rameter at a value of Cd ≈ 4905Nms−1.

Operation Under Non-emergency Conditions

The SFM contains no defined queueing behaviour, which means that an

agent cannot wait or allow someone ahead of them. This lack of queueing

behaviour creates a slightly unrealistic behaviour when an evacuation is

attempted in which there is a relatively low desire to leave. Rather than

a queue forming for the exit, or even agents making the decision not to

progress toward the exit, the evacuation will take place in exactly the same

manner as an emergency evacuation. This means that the behaviour in the

SFM at emergency and non-emergency conditions are qualitatively similar,

as seen in Figure 4.7.

As we can see from these figures, the distribution of agents at low veloci-
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ties in the SFM is qualitatively similar to the distribution at higher velocities.

This is to be expected, as the SFM implements exactly the same movement

equations for any desired velocity, but it does mean that non-emergency

usage of a structure cannot be modelled using the traditional SFM. An ex-

ample of this is queueing behaviour, in which a system of pedestrians will

organise themselves into informal queues during their egress from a build-

ing (or other analogous situation). During queueing behaviour, people will

often exhibit behaviour such as low-level altruism (i.e. common courtesy)

in allowing others to pass, and regularly use verbal and non-verbal cues to

enforce this societal norm.

The SFM takes an approach more akin to game theory in its prescription

of evacuation behaviour, in that at any one point a pedestrian will make

the movement that minimises their net distance to their goal and maximises

their distance to another pedestrian, wall, etc. In this respect, the SFM fails

to recreate many basic behaviours that can be seen during non-emergency

usage of structures, and we conclude that it is unfit for purpose were it to

be applied to any non-emergency evacuation.

Physical Compression

The SFM allows a manner of body compression, but this compression is not

strictly defined within the parameters of the model. If we look at Figure 4.3,

we can see that when dij − rij < 0 the friction parameter begins to affect

the movement of the pedestrians, but at these distances the compression

of evacuees is more akin to overlap rather then the physical force of com-

pressing a body. Whilst there has been some work into the modelling of

compressive forces acting within crowds [18], which suggested that the addi-

tion of compressive force has beneficial results in respect of the modelling of

evacuation, the strictly defined compression criteria detailed therein has not

yet been included in a mature simulation environment. Some argue that if

the overlapping or compression of pedestrians has not been strictly defined

then it is wise to remove the ability for bodies to overlap from simulations

entirely, or for it to be replaced with a more rigid collision detection method

that will enforce a strict adherence to the agents’ physical proportion [80].
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Force Feedback

Under high density crowd conditions, it is known that individuals are often

found to lose the ability to control their own actions, this can be found in the

reports into the Hillsborough disaster [136], in which it was known that the

pressure placed upon people in the crowd was enough to lift them off their

feet. At this point, their movement was wholly controlled by the pressures

around them, rather than by their own desired direction of movement. This

is not modelled, or accounted for, in the SFM, as the friction effects of

this type of situation are extremely high, and difficult to model in two-

dimensions.

Criteria for Injury

The criteria by which an evacuee is considered to have succumbed to injury

within the original work is very strict, and follows engineering guidelines

which suggest that a pedestrian may become injured if the sum of the mag-

nitudes of the radial forces acting on them, divided by their circumference,

exceeds a pressure of 1600Nm−1 [124].

There is still a great deal of debate over the levels of force that are likely

to cause crush related injuries (see Section 3.5). High levels of force are

known to cause serious physical trauma and serve to incapacitate individ-

uals unfortunate enough to be subject to them. The medical term for this

is traumatic asphyxia. Likewise, lower levels of force that are applied for a

prolonged period of time can lead to similar incapacitation due to suffoca-

tion. Reflecting this, the International Maritime Organisation (IMO) have,

when setting their standard for a safe evacuation, included the dangers of

prolonged exposure to lower amounts of force; stating that an evacuation

may be considered unsafe if the local population density of the structure

(ship) exceeds 4 persons per metre for over 10% of the overall evacuation

time [58].

It can be said that the criteria for injury used in the SFM models the

effects of sudden traumatic asphyxia, as the pedestrian is considered injured

if the level of force they are subject to breaches a maximum limit for any

amount of time but were a pedestrian subject to fractionally less force for a

prolonged periods they will not suffer any injury, which is counter-intuitive.

This is not a specific failing of the SFM, as there is much still to learn

93



Figure 4.8: Barricading behaviour of the SFM. Injured pedestrians (Red)
become immovable obstacles, which the active pedestrians (Green) are un-
able to circumvent. The system will remain in this state permanently once
this behaviour has been established.

about the levels of force that cause death or serious injury, and these are

further complicated by the uniqueness of individuals, i.e. height, weight, age,

existing medical conditions. It is clear that there is still much to learn about

the complex relationships between the conditions placed on the human body

and the likelihood of these conditions leading to serious injury or death.

Behaviour of Injured Pedestrians

The behaviour of an injured pedestrian within the traditional SFM is an-

other point of interest. At the point at which a pedestrian becomes injured,

the pedestrian immediately becomes unable to affect movement, but also

becomes a solid unmovable mass, remaining in the same position for the

remainder of the simulation.

The effects of this injury behaviour on the remaining evacuees can be

seen in Figure 4.8, which shows the injured pedestrians (red) blocking the

route to the exit for the remaining pedestrians in the room (green). The

exact simulation from which this graphic was taken was carried out using the

SFM default parameters for all variables except the desired velocity, which

was set to a value of 5ms−1.
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4.7 Time-lapsed Visual Example

A visual example of a single run of the social forces model may be found in

Figure 4.9. Images were recorded at intervals of 0.1s throughout an entire

simulation, and relevant frames were then selected by hand. Experimental

parameters used were those presented in the original literature [51] and the

desired escape velocity, V0, was set to V0 = 5ms−1, as this is the first point

at which injuries are found to occur. In addition to this the injury criteria of

the SFM has been switched off during this simulation, so agents can continue

to function regardless of the amount of force that they are subject to.

4.8 Differences in the FDS+Evac Implementation

Later in this thesis the Fire Dynamics Simulator is used to recreate a his-

toric example of a crush disaster (see Chapter 8), more specifically it is the

FDS+Evac module which is used to model human evacuation from a struc-

ture. The FDS+Evac module uses an implementation of the social forces

model as a basis for evacuee movement, and whilst the implementation is

similar to the original model there are a number of small differences. The

most important deviations from the original model are discussed below, with

reference to the material presented previously.

1. Agent Representation

As stated previously (see Section 4.6.1), the traditional SFM repre-

sented agents as a perfect circle, which sufficed as an initial approxi-

mation but is not a reasonable fit to the actual frame of a pedestrian.

The FDS+Evac module models pedestrians in a slightly more accu-

rate manner, by representing the body and shoulders as three con-

nected circles. The FDS representation is more akin to that suggested

by Thompson and Marchant (see Figure 4.6) than that employed by

the original SFM, and the additional granularity allows more complex

behaviours. An example of this is the pivoting behaviour that may

happen if a person is being subject to a force on just one side of their

body, forcing them turn about their centre and change the direction

they face. The modelling of this behaviour was not possible in the

original SFM, but can be seen in the FDS+Evac implementation.
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Figure 4.9: Example visual output at different times during a single evac-
uation using the social forces model, V0 = 5ms−1, N = 200. Force listed
as per the traditional Helbing model, i.e. radial force about the specific
circumference of each evacuee.
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2. Inclusion of Collision Detection

The possibility of pedestrian overlap behaviour described previously

(see Section 4.6.1) has been removed from the FDS+Evac movement

model. In the traditional SFM it was possible, under some circum-

stances, for pedestrians bodies to “overlap”, that is two or more pedes-

trians could partially inhabit the exact same physical space at the same

time. This behaviour is a result of the movement equations used to de-

fine the friction force between two pedestrians, but the behaviour was

not based on empirical observations, i.e. it was not known that this

type of compression was either possible or realistic in an evacuation

scenario. The FDS+Evac model retains the calculation of friction force

but does not allow the overlapping of a pedestrians physical represen-

tation, which is achieved through the inclusion of a simple collision

detection model.

3. Removal of Injury Behaviour

As discussed in Section 4.6.1, the criteria for defining an pedestrian

as having become “injured” due to their being subject to a physical

force is still a question which remains to be answered. Rather than

include an approximate definition of this, the FDS+Evac model relies

on the output of the physical forces calculated during an evacuation

simulation to metricise the possible danger that an evacuee may be

subject to by the build-up of force.

4. Flow-based Directional Algorithm

An algorithmic change within the FDS+Evac environment occurs in

the goal finding equation, which defines the direction that the pedes-

trian would travel in if entirely unimpeded (i.e. the direction of the

exit). The traditional SFM makes use of a simple equation which will

point an agent directly toward the nearest exit, which is calculated

for each agent at each time-step. The FDS+Evac environment takes a

flow field approach to this problem, which reduces overall computation

time. As the FDS contains a comprehensive fluid dynamics engine, the
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Figure 4.10: A graphical representation of an FDS+Evac “flow field” [72].
In this case all evacuees would head towards the left exit, using the flow field
(blue arrows) to find their way towards this exit.

modelling of the underlying evacuation path is achieved by treating all

exits as “vents”, and calculating the path to these exits from any point

in the environment as the direction of flow at that one point.

Figure 4.10 shows an example of the flow field for a simple evacuation

topology. The exit, marked on the left, is treated as a vent, and

the blue arrows shown at all points within the room described the

direction of travel toward that vent. The approach is common in

cellular automata models (see Section 3.2.1), but not as often employed

in continuous models. An additional advantage of this technique is

that it is required to run just one time at the start of a simulation,

rather than for every agent at every time-step.

4.9 Summary

The original implementation of the Social Forces Model was chosen as a

test bed for this project for two main reasons. Firstly, the SFM has the

option to calculate force, which is required as a measure of the physical

danger that evacuees face in certain situations, and can be used to ensure

the correct working of the analytical technique. Secondly, many variations of

the SFM have been implemented, and versions of the model are incorporated

into large scale evacuation simulations, which will aid the integration of our

analytic technique in further models.
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Despite the limitations listed previously (see Section 4.6.1) the model is

seen as an ideal test bed for our initial experiment, but it is accepted that

any further experiments must be carried out using a fully fledged simulation

environment, as the SFM does not contain much of the functionality required

to test our technique conclusively.
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Chapter 5

Mutual Information

5.1 Introduction

In this Chapter we investigate the information theory techniques which we

will be applying to the identification of crush conditions later in this work.

The techniques are summarised and mathematically defined, and previous

uses of these techniques across different areas of the sciences are investigated.

We show that the techniques produced from initial research into information

theory have applications far beyond this field, and provide robust and mal-

leable statistical measures of order, interdependence and data complexity

that can be applied to many and varied data-sets.

The Chapter concludes with a more in-depth discussion of the way in

which we intend to apply these measures to the field of crush detection.

5.2 Background

The need to measure the specific amount of information held within a signal

became imperative during the early days of telegraph and radio commu-

nication uptake. During the early 1900s, many researchers and engineers

were attempting to quantify the information content of specific communi-

cations, and much of the initial literature is of this era. In 1928, Hartley

published his paper Transmission of Information [49], in which he defined

a general measure of the information content of a variable length message

formed from a known alphabet of symbols. Taking a message of n symbols

in length, consisting of symbols taken from an alphabet of size s, he sought
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to define a measure of information content that increases linearly with n, it

therefore follows that if a message were doubled in length it can be said to

contain double the amount of information. Hartley arrived at the measure

H, where

H = log sn = n log s (5.1)

This measure of information complies with Hartley’s restriction that the

information content of a message must scale linearly with the length of the

message n. As the alphabet of possible symbols remains static, the logarithm

of s can be considered a constant, with a value dependent on the number of

symbols contained in the specific alphabet used. Therefore the metric that

Hartley created may be shown to be equal to nK, where K is the alphabet

specific information constant, and it can be seen that the measure H is

linearly dependent on the message length n, for any fixed alphabet.

Hartley’s measure of information content assumes no syntactic rules are

present in the language, i.e. that the language possesses no grammar, and

each symbol in the alphabet is assumed to contain inherent information

when viewed abstractly. This type of communication can be quite common

in some circumstances, such as in electronic communication systems, but the

grammatical complexity of human language makes this technique of limited

use in the measurement of information content of the written word. If we

look at the English language, the frequency with which certain characters

appear in text is far from uniform, with many letters appearing constantly in

generic sections of text whilst others appear with relative infrequency (which

is the reason that the points on Scrabble tiles are not uniformly distributed

throughout the alphabet). If we consider this on top of the use of separate

words in the language, and the syntactic rules that must be followed to

allow the connection of these words correctly, we see that the complexities

of information content in natural language cannot be accurately modelled

by Hartley’s formula. A measure of information content that relied upon

more than the size of the alphabet was needed.

In 1948, Shannon introduced a measure which relied on the probabilistic

appearance of each letter contained within the possible alphabet [119], and

which accounted for (at least partially) the nuances of natural language.
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Given the observed probabilities of the letters of our alphabet appearing are

p1, p2...pn, the information content (H) of a given message may be described

by

H = −
n∑

i

pi log pi (5.2)

This value gives us the average amount of information that may be

taken from message of n symbols in length using the alphabet in question.

It has become known as the Shannon Entropy, as there have since been

numerous methods of calculation of Entropy defined (e.g. Gibbs Entropy

[115], Boltzmann Entropy [60], and Renyi entropy [112]). All references to

Entropy in this paper will refer to the Shannon Entropy described previously,

unless explicitly stated as being otherwise.

Entropy can have multiple definitions but the method defined in Equa-

tion 5.2, being the quantification of the amount of information a message

could contain when it is received, is that pertaining to the original design

criteria for the calculation.

5.3 Joint Entropy

An extension of the Entropy measure is found in Joint Entropy [119], which

is the measure of the joint information content of two related variables,

signals, or events. If we take two discrete variablesX and Y , we can calculate

their Joint Entropy by considering the probabilities of each pair of possible

outcomes. If the two variables have an observed probability distribution

PX,Y , then their Joint Entropy, H(X,Y ), is defined as:

H(X,Y ) = −
∑

x,y

p(x, y) log p(x, y) (5.3)

Where p(x, y) is defined as the observed frequency of signal X taking the

value x whilst Y takes the value y within the paired variable set.

5.3.1 Conditional Entropy

A related metric to the Joint Entropy is the Conditional Entropy of two

signals, which is defined as the amount of “uncertainty” that remains about
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variable two, once the value of variable one has been ascertained [119]. If

we take two discrete variables X and Y , the conditional entropy is defined

as:

H(Y | X) = −
∑

x,y

p(x, y) log
p(x, y)

p(x)
(5.4)

This is simply the measure of the uncertainty that remains in Y after

the value of X is known. The equivalence therefore exists that:

H(Y | X) ≡ H(X,Y )−H(X) (5.5)

5.4 Mutual Information

Mutual Information (MI), is the final information metric that will be dis-

cussed here. It is a metric that quantifies the amount of information that

two signals or variables share. Again defined by Shannon [119], it was pre-

sented in the same publication as his entropy findings, although named at

a later date. It is a measure of the mutual dependence of the two variables,

and can be thought of as a general measure of the reduction in uncertainty

that is gained about one variable by knowing the value of the other.

If we take (again) our two discrete variables X and Y , the Mutual In-

formation, I(X,Y ) is defined as:

I(X,Y ) =
∑

x,y

p(x, y) logn
p(x, y)

p(x)p(y)
(5.6)

Where p(x, y) is the joint probability distribution of X and Y , and p(x)

and p(y) are the probability distributions of X and Y respectively.

The Mutual Information of two variables is always non-negative (I ≥ 0),

and is only zero when the two variables are entirely independent. Like joint

entropy, MI is also commutative ∴ I(X,Y ) ≡ I(Y,X).

As Mutual Information is a measure of the amount of information shared

by two signal or variables, the following equivalences with other entropy

measures exist:
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Figure 5.1: Venn diagram displaying a quantitative representation of the
Shannon entropies, joint entropy, Conditional entropies, and the mutual
information of a pair of variables X and Y .

I(X,Y ) ≡ H(X)−H(X | Y )

≡ H(Y )−H(Y | X)

≡ H(X,Y )−H(X | Y )−H(Y | X)

≡ H(X) +H(Y )−H(X,Y ) (5.7)

These equivalences can be better viewed, graphically, in Figure 5.1.

5.4.1 Conditional Mutual Information

A useful construct within information theory is the ability to express the

mutual information of two random variables conditional on a third [129].

For three discrete variables, X, Y , and Z, where the value of variable Z is

known, the conditional mutual information is defined as

I(X,Y | Z) =
∑

i,j,k

P (zk)P (xi, yj | zk) log
P (xi, yj | zk)

P (xi | zk)P (yj | zk)
(5.8)

=
∑

i,j,k

P (xi, yj , zk) log
P (zk)P (xi, yj , zk)

P (xi, zk)P (yj , zk)
(5.9)
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5.4.2 Multi-variate Mutual Information

The logical extension of the bi-variate (two dimensional) MI, defined previ-

ously, is to extend the calculation to enable the measurement of information

content shared by more than two signals simultaneously. This calculation

of MI involving more than two variables has turned out to be far less trivial

than it initially sounds, and subsequently there have been many different def-

initions of Multi-variate Mutual Information (MMI) over the past 50 years.

The first definition, and most widely accepted, was that of McGill [94], who

defined the MMI of three variables (A, B, and C) as:

I(A,B,C) = I(A,B)− I(A,B | C) (5.10)

This equation also extends to higher dimensions, so for a total of n input

variables X1 . . . Xn

I(Xn) = I(X1, . . . , Xn−1)− I(X1, . . . , Xn−1 | Xn) (5.11)

The use of Multi-variate Mutual Information (MMI) as an analytical

tool is not as widespread as the traditional MI calculation, despite being

well defined and heavily documented in theoretical literature [23, 91, 94,

129, 143]. One hurdle to the application of MMI in real-world applications

is found in its counter-intuitive tendency to offer a MI metric that can be

negative (I < 0), which implies that the uncertainty of one input is actually

increased when we have knowledge of the value of another related variable.

A good example of this type of negative results can be found in the

instance of an XOR gate, with binary inputs X and Y , and a binary output

Z, see Figure 5.2. The inputs and corresponding output from this gate may

be seen in Table 5.1

In this example application, we see that the three variables must have

dependence of some form, as they are logically related. If we analyse the in-

formation content shared between these variables, we find that both I(Y,Z)

and I(X,Z) are zero as knowing either X or Y will tell us nothing about

the corresponding value of Z, and I(X,Y ) is also zero as the two inputs are

wholly independent. This tells us that our first term, according to Equa-

tion 5.10 must be zero, whatever the arrangement of the input variables,
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Figure 5.2: A dual input, single output XOR gate. X and Y are binary
inputs, whilst Z forms the binary output. Table 5.1 contains the input and
output data

X Y Z

0 0 0
0 1 1
1 0 1
1 1 0

Table 5.1: The inputs, X and Y , and the corresponding output, Z, of the
dual input binary XOR gate, as shown in Figure 5.2

therefore I(X,Y, Z) = 0 − I(X,Y |Z). The value of I(X,Y |Z) will be pos-

itive, and in this case will have the value of 1bit, as once Z is known, the

value of Y is wholly dependent on the value of X, and vice versa. This leaves

us with:

I(X,Y, Z) = I(X,Y )− I(X,Y | Z)

I(X,Y, Z) = 0− 1

I(X,Y, Z) = −1bit

It is this counter-intuitive inference, i.e. that the knowledge we have

of one variable actually increases the uncertainty of the values of the other

two, that makes MMI a difficult concept to grasp, and may have hindered

its wider adoption as an analytical technique. The MMI technique is, in

various forms, still employed in certain fields, most prominently in medical

imaging (see Section 5.9).

5.4.3 The Logarithmic Base

In all formulae presented in this Chapter, the base of any logarithms in-

volved is not explicitly stated. This is due to the fact that the logarithmic
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x P (X = x)

A 9
20

B 3
10

C 1
5

D 1
20

y P (Y = y)

A 1
4

B 1
4

C 1
4

D 1
4

Table 5.2: Probability distributions for variables X and Y

P (Y )

P (X)

A B C D

A 1
20

3
20 0 1

4

B 1
10

1
20

3
20 0

C 1
10 0 1

10 0

D 0 1
20 0 0

Table 5.3: Joint probability distributions for variables X and Y

base dictates only the units in which the mutual information or entropy is

calculated. As these techniques originate in Information Theory the stan-

dard unit is the bit (base 2) but nats (base e), or Hartleys (base 10) are also

widely used.

5.5 MI Example

The Mutual Information of two discrete, and short, signals is simple to calcu-

late. There follows an example of how the mutual information information

of two discrete variables may be calculated. Given the discrete variables

X and Y, where both X and Y are comprised of 20 values taken from an

alphabet of no more than 4 possible values.

X = A B B A C A D A C A B A A C A B C B A B

Y = D C A D A A B B C D A B B C D C A B D C

We can calculate the probability distributions of X and Y by hand, see

Table 5.2. The joint probability distribution of X and Y is also listed in

Table 5.3.

Using values from Table 5.2 we can calculate the Entropy of signals X

and Y:
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H(X) = −
∑

i

P (X = xi) log2(P (X = xi))

= −(
9

20
log2(

9

20
) +

3

10
log2(

3

10
) +

1

5
log2(

1

5
) +

1

20
log2(

1

20
))

= 1.72 bits

Calculating the entropy of signal Y, using the same method, gives us:

H(Y ) = 2.00 bits

The joint entropy of X and Y can now be calculated, using the proba-

bilities given in Table 5.2, giving us:

H(X,Y ) = −
∑

i,j

P (xi, yj) log2 P (xi, yj)

= 2.97 bits

As we now have the values for H(X), H(Y ), and H(X,Y ), we may use

these to acquire the MI of the two signals:

I(X,Y ) = H(X) +H(Y )−H(X,Y )

= 1.72 + 2.00− 2.97

= 0.75 bits

As we can see from the result of the calculation, the Mutual Information

of X and Y, in this case, is measured as 0.7540 bits. The same result can be

reached by solving Equation 5.6 using the data provided in Table 5.2.

5.6 Information Theory

Initial uses of Mutual Information were mainly Information Theory based

[92, 119, 120], and centred around its use as a measure of real-world com-

munication channel transmission rate, i.e. the rate at which data is actually
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Figure 5.3: Schematic diagram of general communication system. Informa-
tion A is transmitted across the channel, where it is modified by with the
addition of noise (source C), the resulting information content received at
point B will therefore only contain a subset of the original content (B ⊂ A).

transmitted across a channel, including error correction rates. This measure-

ment is the intuitive use of MI, as it quantifies the information common to

both signal A and signal B. If we were to consider that A were a transmitted

signal and B a received signal, then the MI of the two signals, I(A,B), must

be a quantification of the amount of signal A that was transmitted without

errors and the amount of signal B that was received without error. For a

generic communication system, as depicted in Figure 5.3, the MI between

the signal transmitted from A and received at B tends towards infinity for

low noise, but tends towards zero for extremely high levels of noise. Note

that the MI of A and B will equal zero (I(A,B) = 0) only if the noise intro-

duced to the system was of such intensity that there was no part of A still

present in B, i.e. A and B were statistically independent.

The use of MI within Information Theory was extended further, and is

routinely used as a measure of the security offered by a particular cipher

(encryption method). Shannon defined the perfect cipher as one in which

the text A and the cipher-text B shared no information whatsoever, i.e.

I(A;B) = 0 [92, 120]. This may seem counter intuitive, as a coded message

must contain the original message, in at least some form, but nevertheless

this is strictly the definition of the perfect cipher. If we analyse this claim

from an information theory perspective, we see that it is far less bizarre.

If the communication system in Figure 5.3 were to have the noise source

C replaced with a cipher, and following this I(A;B) = 0, then the cipher

applied at C is said to be perfect. In this way it can be said that the goal

of any complex cipher is to reduce the MI of the source message and cipher
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text to the lowest possible value.

Recent research has applied this analytical approach to the wholly oppo-

site purpose, to break encryption systems used on embedded devices. The

work of Kocher et al [71, 70] identified, and subsequently exploited, a new

form of attack on embedded hardware known as “side-channel leakage anal-

ysis”. This form of attack revolves around the analysis of implementation

specific, hardware based “leaked information”, information gained by analy-

sis of secondary processes such as computation timings [70], physical power

consumption [71] or electromagnetic emanation [111]. Analyses of the data

obtained by observing these secondary sources under known conditions is

analogous to the transceiver application described previously; the statistical

analysis of measurements gained from one or more observed “noisy” physical

variables. Gierlichs et al successfully applied both MI [40] and subsequently

MMI [41] to the analysis of these readings, and to great effect. As the

MI approach to statistical analysis requires no knowledge of the likely de-

pendencies which exist between input and output variables, the application

proved to be a “universal tool” able to be applied to any system in which

the observations of secondary information sources can be reliably made.

5.7 Biological Stimuli-response Systems

The use of MI as a measure of the information transferred across a commu-

nication channel has been extended to other fields, most notable of which is

the application to biological stimuli-response systems [30, 69, 89, 107, 130].

The application to these types of systems has been aided by the overall simi-

larity in approach to the original use of MI, with areas such as neural coding

being wholly analogous to communication channels described by Shannon

et al in the original literature on the field.

The MI of the stimulus (S) and the response (R) in many biological

models involves specific timing issues which can often be disregarded in other

applications. The response to certain stimuli has been found to exhibit at

a later time than the stimuli is applied. This fact may often appear trivial,

with the “lag” between stimuli and response being measured in milliseconds,

but when dealing with stimuli which change dynamically, and with a high

temporal resolution, this can cause serious issues in data analysis. To combat

this, the use of a time delay during MI calculations is introduced to “align”
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the stimuli and response signals, thus reducing the effect of a constant or

measurable time delay within the system. There are many ways in which

the exact time delay required for each application can be calculated, which

is out of the scope of this review, but were we given a system of stimuli

S and response R with a time delay of δt we can calculate the MI of the

system as follows:

I(S,R) = I(St, Rδt) =
∑

i,j

p(sti, r
δt
j ) log

p(sti, r
δt
j )

p(sti)p(r
δt
j )

(5.12)

This simple shifting (effectively a backwards shifting of the response

variables) cancels any standardised time-lag behaviour that inhibits the op-

eration of the MI analysis.

The MI calculation itself can be used to calculate the optimum time lag,

in a similar manner to that of a cross-correlation analysis. One signal can

be set as a base signal, and set for reference, whilst the other is progressively

incremented forward or backwards along the time-line by changing the value

of δt, until I(S;R) has reached a maxima. At this point it can be assumed

that the signals are aligned, yet this does not necessarily yield optimum

alignment. This alignment technique is more suited for complex data than

some traditional approaches, such as cross-correlation, as when dealing with

a response that may only have been hypothetically defined, the MI alignment

will optimise regardless of the type of correlation present in the data.

5.8 Chaotic Systems

The use of MI for the analysis of chaotic systems is an area which has gar-

nered much interest in recent years and has, in reciprocity, added greatly

to the advance of the information theory techniques which inspired their

analysis. A classic paper in the field is by Fraser and Swinney [34] which

detailed the application of MI to the analysis of Belousov-Zhabotinskii re-

action, the application of MI to the measurement of a system’s time delay

(or lag), and an algorithm to maximise analytical accuracy by the dynamic

partitioning of the MI calculation space. This latter algorithm is known as

the Fraser-Swinney algorithm [16, 34], and has been shown to produce good

results across the systems tested.
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Figure 5.4: Visual example of Fraser-Swinney recursive subdivision. Us-
ing this method the calculation space may be discretised according to the
amount of information they contain. Referencing is achieved by tree nota-
tion, therefore Rx is referenced as R(0, 3, 1).

The Fraser-Swinney algorithm effectively operates by recursively subdi-

viding the calculation space (Cartesian space, in the case of this work) into

progressively finer subsections, dependent on the amount of information that

it contains. This process of recursive division continues until it is found that

no calculation cell contains any additional substructure. The probability of

further subdivision in this manner is measured via a χ-square test.

This approach allows areas of far higher interest to be more accurately

accounted for, whilst avoiding the error introduced into an MI calculation by

dividing the entire calculation space into a fine-grained grid. To allow this

technique to work, the calculation space was arranged into tree notation

rather than the more common grid notation that is often used in mutual

information calculations, See Figure 5.4.

The application of this algorithm results in a mixed-size partition being

used to calculate the MI, with the recursive subdivisions going deeper in

areas of the calculation space which the data-points are more numerous,

and has been shown to provide accurate results in the analysis of many

chaotic systems.

5.9 Medical Image Processing

The arena of medical image processing presents numerous unique challenges

that had not become apparent in other areas, one of which is the issue of im-

age registration (also known as image alignment). Image registration is the
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process of combining multiple images of the same subject, taken at different

times, distances, or orientations, into one image. The act of registering and

summing multiple copies of the same subject can decrease the signal to noise

ratio (i.e. increase clarity) or improve image resolution [59] when compared

to any of the initial input images. It is also highly useful for combining the

output from numerous imaging or data sources (e.g. CT, MRI, MEG/EEG,

etc), to allow the more accurate visualisations of scans or readings obtained

in isolation.

There are many methods by which to register images, for an overview

of traditional techniques see [12]. The automated registration of multiple

images has been aided greatly by the application of MI analysis to identify

the correct scale, orientation and perspective of images [4, 61, 90, 147, 152],

most often in relation to a base image. In the simplest form, the MI technique

is repeatedly applied to a pair of two-dimensional images of the same object,

with some form of translation being applied to one image at each iteration.

The MI of the images in question will peak at the point at which the two

images are maximally aligned, i.e. the point at which object one shares

the most amount of information with object two. This is a necessary over-

simplification of the technique, as the decision on the type of translation and

the specific degree of translation required at each step are far from trivial.

There are two forms of MI which are, to our knowledge, applied uniquely

to the field of image registration. These measures are derived from the same

information theoretic calculations as the traditional MI, but have yet to

make great impact outside of the field. These two measures are Normalised

Mutual Information [132] and Multivariate Mutual Information [94] (also

known as Generalised Mutual Information). A brief description of these

two measures follows, with an example of the use of each measure.

5.9.1 Normalised Mutual Information

An interesting advance in the MI technique can be found in the work of

Studholme et al [132], in which the use of Normalised Mutual Information

(NMI) is defined. The NMI is defined as:

Inmi(X,Y ) =
H(X) +H(Y )

H(X,Y )
(5.13)
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Figure 5.5: An example of the type of error that can cause a rise in MI even
though the images are becoming increasingly misregistered.

This measure of MI was suggested to counter the problem of repeated

misregistration (incorrect alignment, or orientation) of images of differing

size. The problem tackled was that of image overlap, which was found to

alter the MI readings to the point where the MI of the images can actually

rise as the registration of the images decreases. The problem is twofold;

firstly, it was found that a decrease in image overlap decreases the number of

working samples within the calculation, as there can be no MI reading from

sectors in which the images do not overlap. This decreases the relevancy

of the MI analysis, as the probability distributions on which it relies is

calculated from a much smaller sample set, and therefore can be considered

less representative. Secondly, as the MI value of two misregistered images

has been shown to be flawed in some cases, the probability of the MI rising as

the images become even further misregistered is also increased. An example

of this kind of misregistration error can be seen graphically in Figure 5.5.

In this figure, A shows the partial registration of two images, the MI for

these two images will be within a middle range, as at the places where

the images intersect there is reasonable similarity with the colour schemes

used. B shows a further misregistration of the two images, yet the MI of the

intersecting segments of image will yield a higher results than in A, this is

due to the identical colour (or intensity) of the overlapping image segments.

5.9.2 Higher Dimensional Mutual Information

Whilst Multivariate Mutual Information has not been widely adopted as an

analytical technique across multiple disciplines, one area in which it has been
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successfully employed is in the field of image registration [11, 88, 108, 132],

although often not via the original technique (See Equation 5.11). In the

literature relating to medical imaging alternative definitions for MMI have

been proposed, most interestingly by Studholme et al [133], who define their

calculation of MMI as:

I(A,B,C) =
∑

i,j,k

p(ai, bj , ck) log
p(ai, bj , ck)

p(ai)p(bj)p(ck)
(5.14)

This definition varies greatly from the original work of McGill [94], see

Section 5.4.2. The level of this variance can be seen when comparing the

entropy methods of calculating the two metrics. If we call McGill’s MMI

metric IM and Studholme IS the two entropy methods are:

IM (A,B,C) = H(A) +H(B) +H(C)−H(A,B)

−H(A,C)−H(B,C)−H(A,B,C) (5.15)

IS(A,B,C) = H(A) +H(B) +H(C)−H(A,B,C) (5.16)

The difference in the two proposed methods is easily seen from Equa-

tions 5.15 and 5.16. The calculation of Studholme’s metric includes far more

of the joint entropies of the three images in question that that of McGill.

If we return to the Venn diagrams used previously, we can see graphically

the regions of shared information which will be negated or included when

applying these two techniques. Figure 5.6 shows the areas of joint or mutual

information content analysed during the two calculations.

This method of calculation has become widely adopted within the field

of medical imaging, yet has not been adopted by other information theoretic

research areas with such success.
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Figure 5.6: Comparative depictions of the level of shared information mea-
sured during a) McGill’s [94] traditional MMI technique, and b) the tech-
nique used by Studholme [133]. In diagram B, the darker shaded area in the
centre of the Venn diagram denotes that this central union is counted twice
when calculating the final MI value

5.10 Complex Systems

The application of information theoretic techniques to complex systems is

still in its infancy, but significant advances have been made in certain areas.

The use of MI in complex systems has focused on the application of MI

to identify phase-transitions in the complex systems in question, i.e. the

point at which the behaviour of these systems change from one qualitatively

distinct behaviour to another.

The work of Langton [82] centred about the use of physical systems for

viable computational tasks. The use of Cellular Automata was employed as

a proof of concept for this idea, and was used to display the possibility that

a physical or biological system could provide support for the primitive func-

tions required for computation, i.e. transmission, storage, and modification

of information. To enable computation using these CA models, it had to

be shown that two cells must be able to show a degree of cooperation, i.e.

the behaviour of one cells must be able to directly impact the state of an-

other, and vice versa. If this were the case, then it would be possible to find

some form of correlation between the events that take place at the two cells.

Traditional correlation methods require some form of order, or linearity, to

be apparent in the mutual behaviour of the two cells in question, whereas

Mutual Information can be applied to measure the correlation between two

unordered variables. Langston applied the MI analysis to cells and com-

pared the results to values of his behaviour parameter (the λ-parameter) to
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investigate the point at which the system moved away from a static state

and begins to show signs of complexity. It was found that the MI of the

system could clearly show the transition from static to dynamic behaviour,

but also showed the further transition from dynamic (or complex) behaviour

to chaotic (or random) behaviour.

An interesting application, which we will cover extensively as specific

features are directly employed later, is the work by Wicks et al, who applied

MI to the identification of a kinetic phase transition in the Scalar Noise

Model (SNM) [146, 43, 96, 25]. The SNM is a model of self-propelled par-

ticles that is known to exhibit self-organisational behaviour under certain

parameter values. The SNM model is described by four equations, describing

coordinate, heading, and velocity.

xin+1 = xin + vinδt (5.17)

yin+1 = yin + vinδt (5.18)

θin+1 = 〈θNR
n 〉+ δθ (5.19)

vin+1 = v0(cos θin + sin θin) (5.20)

At each time-step t, each particle i within the system performs a parallel

update of its heading, which is taken as an average of the headings of all

particles within distance R of particle i, including i itself, with a random

angle δθ added to their heading which causes fluctuation within the system.

The fluctuation term δθ is a randomly chosen independently identically dis-

tributed angle in the range −η < δθ < η. In this respect the term η can be

viewed as the noise parameter which controls the degree of stochastic, or

random, behaviour within the system. Figure 5.7 gives a visual representa-

tion of the heading update for particle i.

By changing values of η, the behaviour of the systems can be manipu-

lated. Figure 5.8 shows the effects on the flocking behaviour of the SNM for

different values of η. At low noise levels (e.g. η → 0), we see the highly or-

dered behaviour expected from a flocking model with the particles exhibiting

a high degree of clustering. As η approaches π
2 the behaviour has changed,

and whilst there are still clusters of particles present, the distribution ap-

pears far more stochastic than at low noise. The higher η is raised above
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i

Figure 5.7: Visualisation of the heading update for particle i, utilising all
particles within radius R, corresponds to term 〈θNR

n 〉 in Equation 6.3.

Figure 5.8: Three snapshots of the behaviour of the SNM under varying
values of η. A) η = 0, B) η = π

2 , and C) η = π

the critical threshold, the lower the degree of order in the system appears

to be, with all values of η ≥ π showing few signs of clustering or order. The

work of Wicks et al sought to identify the critical phase transition in the

SNM, ηc, i.e. the point at which the system begins to tend away from order,

and starts to exhibit disordered and noisy behaviour.

By applying a mutual information calculation to the agent’s position

and direction coordinates, as seen in Equation 5.21, the position of the

phase transition could be identified.
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I(X,Θ) =
∑

i,j

P (xi, θj) log2
P (xi, θj)

P (xi)P (θj)

I(Y,Θ) =
∑

i,j

P (yi, θj) log2
P (yi, θj)

P (yi)P (θj)

I = I(X,Θ) + I(Y,Θ) (5.21)

It is known that the scalar noise model exhibits a kinetic phase transi-

tions at η ≈ π
2 . This can be confirmed by calculating the value of the Binder

cumulant (β) which will take a value of β ≈ 2
3 at periods of order, and β ≈ 1

3

at periods of low order.

β = 1− 〈φ4〉
3〈φ2〉2 (5.22)

Where φ is an order parameter of the system, in this case the speed of

the net movement of the system

φ =
1

Nv0

∣∣∣∣∣
N∑

i=0

vi

∣∣∣∣∣ (5.23)

We can see then that the order parameter of the system is basically

the average velocity of the system at any one time-step, whilst the Binder

cumulant acts as a general measure of the system state (β ≈ 2
3 implying

order, whilst β ≈ 1
3 implies disorder). The final measure of the system state

is the susceptibility, χ, which is the variance of the order parameter

χ = σ2(φ) =
1

N

(
〈φ2〉 − 〈φ〉2

)
(5.24)

Figure 5.9 shows these measures alongside the MI calculated according

to Equation 5.21.

We see that the Binder cumulant signifies the phase transition point

at η ≈ π
2 , which is confirmed by a change in the behaviour of the order

parameter at this value. We also see that the MI of the system shows a

definite peak at this point, alongside a reduction in the size of the error
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Figure 5.9: Output from the SNM across different values of the Noise value
(η), showing the susceptibility, the MI, and the Binder cumulant. Error bars
represent minimum and maximum values, and are shown for MI only.

bars. These results show that the MI of a system can be used to identify

the point of a kinetic phase transition within a system of inter-connected

particles.

Figure 5.9 also shows that there are very large error bars for the MI at

low levels of η, this is due to the more varied states of the system for low

noise level experiments. At low noise levels the system can settle into a

state in which N distinct clusters of agents exist, the lower the value of N

the higher the MI of the system will rise, whereas for larger values of N the

MI of the system could be extremely low. At values of η greater than the

transition point of the system, η > π
2 , the errors bars reduce considerably,

as the system settles into a far more predictable state of disorder.
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5.11 Summary

We have seen that the use of mutual information is common across many

computer science related disciplines, from image processing to chaotic sys-

tems. The usefulness of MI as a statistical measure of the interdependence

of signals or data-sets is clear, but it has never previously been applied to

an evacuation system.

The results obtained when using MI to identify the point of the kinetic

phase transition within the scale noise model clearly shows that the MI of a

system can be used as some measure of order, but we suggest that within an

evacuation the MI could be used to measure the order of the evacuation. We

propose that the MI of an evacuating population may be used as a measure

of the order or disorder of the evacuation itself.

In Chapter 7 we detail the application of the mutual information tech-

nique to measure order in an in silico evacuation environment.
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Chapter 6

Detection of a Phase

Transition

6.1 Introduction

During this chapter we will cover initial work into the application of MI

techniques, described previously (see Chapter 5), to the detection of a kinetic

phase transition within a previously analysed agent-based particle model.

The model chosen for this investigation is the Scalar Noise Model [146],

an agent-based particle swarm model with a defined phase transition point.

We start with a definition of the model, including a technique which may

be used to identify the phase transition in the model. We then investigate

the manner by which different MI measures may be used to measure order

within the system, and conclude with an analysis of their efficacy.

6.2 Scalar Noise Model

The Scalar Noise Model (SNM) is a mathematically defined model of in-

teracting particles [146, 96, 43, 25]. At each time-step within the SNM, all

particles perform an asynchronous update of their direction of movement,

during which each particle takes the average heading of all other particles,

including itself, that lie with its interaction radius, R, plus an additional

random noise measure, δθ. A visual example of this heading update may be

seen in Figure 6.1.

The Equations governing the operation of the SNM, on a per-particle
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i

Figure 6.1: Visualisation of the heading update for particle i, utilising all
particles within radius R, corresponds to term 〈θNR

n 〉 in Equation 6.3.

basis, can be seen below.

xin+1 = xin + vinδt (6.1)

yin+1 = yin + vinδt (6.2)

θin+1 = 〈θNR
n 〉+ δθ (6.3)

vin+1 = v0(cos θin + sin θin) (6.4)

The term δθ is an independent identically distributed variable (IID) cho-

sen from within the range −η ≤ δθ ≤ η, and it is the value of η which defines

the level of noise within the system. With very low values of η the SNM

produces a very strong flocking behaviour, as the particles slowly begin to

take a similar heading, reducing the overall level of noise with the system.

At higher levels of η the particles have so much additional noise added to

their heading at each time-step that a coherent behaviour within the system

is not able to emerge, so the overall behaviour is that of random movement

of particles. It is the point within this range that the phase transition lies,

and the point which we wish to identify be means of Mutual Information

analysis.
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6.2.1 Phase Transition Point

The phase transition within the scalar noise model may be identified in a

number of ways, but the simplest of these means is the Binder cumulant. If

we may define the order of the system to be measured by the net transport

of the system at one time-step, as for highly ordered simulations in which

all particles have assumed a similar heading the net transport will be high,

whereas as the level of disorder in the system increases the net transport

tends towards zero. We will call this net transport, or order parameter, φ,

and it is defined mathematically in Equation 6.5.

φ =
1

Nv0

∣∣∣∣∣
N∑

i=0

vi

∣∣∣∣∣ (6.5)

The order parameter, measured across changing values of the Noise pa-

rameter, η, can be seen in Figure 6.2, in which the error bars represent the

standard deviation of the values recorded across 64 simulation runs. We see

that as the noise within the system is raised the order shows a steady drop,

which then plateaus at the point when the system has passed into a more

disordered phase. A rough estimation of the phase transition point, from

this output, can be made at approximately 1.6.

We see from Figure 6.2 that during the order to disorder transition there

is a far greater level of variation in the values recorded for φ. The Binder

Cumulant, which we will denote β, uses this variation to more accurately

measure the range in which the transition happens, the mathematical form

of β can be seen in Equation 6.6.

β = 1− 〈φ4〉
3〈φ2〉2 (6.6)

The value of β will assume a value of approximately 2
3 when the system

is in a ordered state, whilst during periods of disorder will assume the value

of approximately 1
3 . During the phase transition itself it will take values

within this range. Figure 6.3 shows the calculation of β for changing values

of η. We see from the Binder cumulant output that the system begins to

degrade from its state of order at approximately η = 1.1, entering into a

regular state of disorder at a value of approximately η = 1.6.
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Figure 6.2: The changing values of the order parameter, φ, for different
values of the noise parameter, η. The error bars represent the standard
deviation of the values across the 64 simulation runs.

From these results, we see that to properly detect the order to disorder

transition we must find a metric which exhibits quantitatively different be-

haviour about this range of values 1.1 < η < 1.6, or quantitatively different

behaviours at η < π
2 and η > π

2 , before we can safely assume that the state

of order within the system may be measured. The exact mathematical value

of the transition point in this system is at a value of η = π
2 [146].

6.2.2 Susceptibility

One metric by which to idenitify the first order phase transition within the

SNM is by calculating the susceptibility of the data [3] which is, in plain

english, the variance present in the order parameter. We saw previously that

during the phase-transition of the SNM the variance of the order parameter

increases, as can be seen from the increased size of the error bars in Fig-

ure 6.2, if we let the variance of this order parameter be the susceptibility,

χ.

χ = σ2(φ) =
1

N

(
〈φ2〉 − 〈φ〉2

)
(6.7)

125



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.5  1  1.5  2  2.5  3  3.5  4

B
in

de
r 

cu
m

ul
an

t

Noise

Binder Cumulant
Phase Transition Point

Figure 6.3: The value of the Binder cumulant, β, in the scalar noise model,
calculated for different values of the noise parameter, η.

This measure yields the susceptibility of the SNM at different values of

η (noise), and can be seen in Figure 6.4, where the error bars represent the

standard deviation of the data.

We see that the susceptibility of the system shows a distinct peak during

the phase transition, but that the values recorded also show far greater

variance across this range.

The susceptibility, i.e. the variance of the order parameter within a

system, has been extensively used for the identification of phase transitions

within complex systems [3, 9, 26, 75] and has been found to be a powerful

and malleable technique by which to perform this analysis. It is, then, the

susceptibility of the SNM that we will be using as a general measure of

the success of the following techniques to adequately identify the phase-

transition point within the scalar noise model.

6.2.3 Methodology

The aim of this Chapter is to investigate possible methods of employing

our chosen form of analysis, Mutual Information, for the identification of a
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Figure 6.4: The susceptibility of the scalar noise model, χ, calculated for
different values of the noise parameter, η.

phase transition within the SNM. Numerous forms of Mutual Information,

covered in detail during Chapter 5 are applied to the three agent variables of

the SNM model (position, X and Y, and heading, Θ) and their identification

of the phase transition is classified in two ways. Firstly, as our ideal method

would give a simple, human readable metric by which to measure order, the

output is analysed by eye to confirm that the point of the phase transition

can be identified from visual output only. Secondly a correlation analysis

will be carried out to measure the mathematical correlation between the

numerical output of our analytical methods and the level of order within

the system measured via more traditional means.

Data Collection

At the start of each experiment, N particles are randomly distributed through-

out the game space, L. As time progresses the behaviour of the particles

falls into a steady state, defined by the noise parameter, η. As we are look-

ing to analyse the behaviour of the system during the steady state, data

is not collected until 50,000 iterations have been completed. At this stage,

the various MI metrics, defined later in the Chapter, are applied at every
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Variable Designation Value

Number of Particles N 3000
Game Area L 50
Velocity v0 0.15
Interaction Radius R 0.5
Total number of iteration t 60,000
Iteration at which data collec-
tion begins

τ 50,001

Table 6.1: Variable values used during the experimentation with the SNM.

time-step for the next 10,000 steps. The values of the metrics collected dur-

ing these 10,000 steps are then averaged (arithmetic mean) and it is these

values which are presented in all the figures and analysis in this Chapter.

Parameters

The parameters used whilst collecting the data for the experiments in this

Chapter are defined in Table 6.1.

These values are identical to those presented in [153], in which similar

experiments have been run. This was done to ensure that the data collected

was a true representation of the system whilst in a well mixed state.

6.3 Development

As existing implementations of the SNM were not freely available, an im-

plementation of the SNM was developed specifically for these experiments.

It was decided that as an agent based model the system was best developed

using an object oriented programming language, as each agent and it’s func-

tionality was inherently suited to being encapsulated within a single class.

The chosen programming language was C++, due mainly to developer ex-

perience. All MI and entropy libraries were also developed specifically for

these experiments, and also coded in C++.

The algorithm underlying the SNM is of O(N2) complexity, in that at

each time-step every agent (or particle) within the model must cross ref-

erence with every other agent within the system to ascertain whether or

not these agent’s are within their interaction radius, R. This computational

complexity results in a function whose runtime grows non-linearly according

the the number of agents, N . All other equations in this model, and the
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associated code for experimentation, are of O(kN) complexity, including all

MI and entropy libraries, and grow linearly with N .

The initial test system was an Intel Core i7 2.0GHz 4-core processor with

8GB RAM, and compiled with Visual Studio 2010. The application was

found to run at sufficient speed for small population sizes. For a population

of 300 agents, and all other variables set as detailed in Section 6.2.3, the sim-

ulations took an average of 0.0012 seconds per time-step, but when attempt-

ing to operate at the system size stated for these experiments (N = 3000)

the computation time per time-step was found to be in the region of 0.119

seconds. Due to the data collection only being initialised after the system

has settled into a steady state, i.e. after 50,000 time-steps of the simulation,

this lead to run-times of up to 7140 seconds (or approximately 2 hours) ,

which was considered unacceptable.

The initial avenue considered for optimisation was a course graining of

the particles into computation grids, which would allow each particle to poll

only a subset of the entire population to update it’s own heading value.

This technique would have increased computation speed during the initial

time-steps of the algorithm, but the behaviour would be undefined as the

time-steps grew. In the worst case scenario, e.g. for low values of η, the

computation speed would be reduced to such a point that this optimisa-

tion method would be no faster per time-step than the un-optimised code.

Instead it was decided to opt for a parallelisation approach to the optimi-

sation, splitting computation of multiple cores, threads, or physical systems

to reduce overall runtime.

The first attempt at parallelisation was an openMP parallelisation, a

software parallelisation method that exploits multicore/multithread proces-

sors to reduce the runtime of applications. By splitting the execution of the

heading update functionality across multiple computation streams it was

possible to reduce the running time of the experiments from 2 hours to just

39 minutes, a 66% reduction in overall computation time.

Figure 6.5 shows the computation time against the increase in popu-

lation size for both the Serial C++ and openMP implementations of the

SNM. Further, smaller speed increases are available within this code, but

the reduction of computation time to under the 1 hour mark was considered

acceptable for experimentation, so no further optimisations were pursued.
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for varying values of the population size, N . The timings of both the Serial
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6.4 Experimentation

6.4.1 Multivariate Mutual Information

The first metric which will be tested is the traditional multivariate mutual

information of three variables. The metric is simply defined as the MI of two

of the variables less the conditional MI of the those variables considering the

value of the third variable is known, see Equation 6.8 [94, 128].

I(X,Y,Θ) =I(X,Y )− I(X,Y |Θ)

I(X,Y,Θ) =
∑

i,j

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)

−
∑

i,j,k

P (xi, yj , θk) log
P (θk)P (xi, yj , θk)

P (xi, θk)P (yj , θk)
(6.8)

The results from this analysis can be seen in Figure 6.6, where the error

bars represent the standard deviation of the metric across all test runs.
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Figure 6.6: The multivariate mutual information, I(X,Y,Θ), measured
across 40 runs of the scalar noise model across different values of the noise
parameter, η. The error bars represent the standard deviation of the data.

We see from this figure that the MMI shows a high level of variance

during the period of order within the system, which drops drastically when

the system begins to shift into a state of disorder. The mean value of the

MMI though is also highly variable at low levels of noise, plateauing as the

order within the system breaks down. If we re-plot the output to investigate

the variance of the MMI, we can see clearly the trend as the system falls

into disorder, see Figure 6.7.

The figure shows the trend of the standard deviation of I(X,Y,Θ) to

drop significantly after the phase transition point. Viewing the data shows

that for values of η below the phase transition point 0.015 < I(X,Y,Θ) <

4.87, whereas after the phase transition the range of values recorded was

0.0009 < I(X,Y,Θ) < 0.008. We could, then, infer from this result that

the MMI may, in effect, be used to identify the presence of order within a

system, but that this could only be achieved with a significant number of

test runs.
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Figure 6.7: The standard deviation of I(X,Y,Θ) measures across all exper-
iment runs.

6.4.2 Conditional Mutual Information

Conditional mutual information (CMI) is a further information theoretic

measure that will be tested. The CMI of variables A and B conditional

on C, denoted I(A,B|C), can be thought of as the amount of uncertainty

remaining in variables A and B when the value of C is known. Like MMI

described previously, the CMI may be applied directly to the three agent

variables in the SNM.

I(X,Y | Θ) =
∑

i,j,k

P (θk)P (xi, yj | θk) log
P (xi, yj | θk)

P (xi | θk)P (yj | θk)

=
∑

i,j,k

P (xi, yj , θk) log
P (θk)P (xi, yj , θk)

P (xi, θk)P (yj , θk)
(6.9)

Being applied in this manner, i.e. with Θ as the conditional variable,

will ensure that for greater overall order within the system we will have a

lower value of CMI. The results of the CMI analysis of the SNM may be

seen in Figure 6.8.

We see from the output that visualising the CMI in this way shows a
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Figure 6.8: The conditional mutual information of X and Y conditional on
Θ, I(X,Y |Θ), across changing values of the noise parameter, η. The error
bars represent the standard deviation of values across all test runs.

smoother transition as the system passes from a state of order into that

of disorder, will a reasonably steady rise in line with η. As with the MMI

the variance of the values recorder is far greater during periods of order,

dropping to values of 0.0003 < I(X,Y |Θ) < 0.0098 after the phase transition

point.

6.4.3 Normalised Mutual Information

The Normalised Mutual Information (NMI) is a measure used extensively in

image processing, and particularly in the field of medical image registration

[68, 85, 116]. The NMI measure used here is a variant of that presented in

[132], and discussed in Section 5.9.1, which extends the technique to a third

dimension.

Inorm(X,Y,Θ) =
H(X) +H(Y ) +H(Θ)

H(X,Y,Θ)
(6.10)

Output from the NMI analysis of the SNM can be found in Figure 6.9,

with the error bars representing the standard deviation of the recorded data
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Figure 6.9: The Trivariate Normalised Mutual Information of the SNM mea-
sured for changing values of η. Error bars represent the absolute standard
deviation from the mean.

items across the entirety of the test runs.

We see from the graphical output that the NMI metric provides results

which are qualitatively similar to that of the CMI (see Figure 6.8), with

the same trend of decreased variance in values of η greater than the phase

transition point. There is an obvious upward trend in the NMI as the value

of η is increased, with a very gradual drop as η progresses past the phase

transition point.

6.4.4 Studholme’s Mutual Information

This second multivariate MI measure presented is also extensively used in

medical imaging, and is a variant of traditional two variable MI which has

been extended to account for a third variable. As discussed previously, see

Section 5.9.2, the multivariate MI measure presented here differs from tra-

ditional multivariate MI primarily in the amount of conditional MI between

each possible pair of input variables, see Figure 5.6. First presented by

Studholme et al [132], we will refer to this metric as Studholme’s Mutual

Information. It is defined by Equation 6.11.
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Figure 6.10: Studholme’s Multivariate Mutual Information of the SNM mea-
sured across changing values of the noise parameter, η. Error bars represent
the absolute standard deviation from the mean.

I(X,Y,Θ) =
∑

i,j,k

p(xi, yj , θk) log
p(xi, yj , θk)

p(xi)p(yj)p(θk)
(6.11)

Output from Studholme’s Mutual Information can be seen in Figure 6.10,

with the error bars representing the standard deviation of the recorded data

across the entirety of the test runs.

We see from Figure 6.10 that Studholme’s Mutual Information (SMI)

gives a visually meaningful output, with the SMI rising consistently up to

the point at which the system falls into a state of disorder, at which point

it plateaus and remains at a constant value with a low deviation across test

runs.

6.4.5 Wicks’ Mutual Information

The final information measure we investigate here is an MI measure sug-

gested by Wicks et al [153], and originally applied to identify the phase

transition in the model in question. The MI measure, we will refer to it as

Wicks’ MI (WMI), is a combinatorial measure which averages the MI of the
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positional input variables, X and Y, with the directional input variable, Θ,

according to Equation 6.12.

I(X,Θ) =
∑

i,j

P (xi, θj) log2
P (xi, θj)

P (xi)P (θj)

I(Y,Θ) =
∑

i,j

P (yi, θj) log2
P (yi, θj)

P (yi)P (θj)

I(X,Y,Θ) = I(X,Θ) + I(Y,Θ) (6.12)

The combination of the variables in this way enables the calculation of

the amount of order in the particles of the simulation to be measured across

both planes. The output of the WMI analysis of the SNM is shown in

Figure 6.11, where the error bars represent the absolute standard deviation

of the values across the entirety of the test runs.
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Figure 6.11: The Wicks Mutual Information, I(X,YΘ), measured across
varying values of the noise parameter, θ. The error bars represent the stan-
dard deviation across all test runs.

We see from the graphical output that the WMI shows a distinct peak

during the phase transition point and, as been seen with earlier metrics, the
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variability of the metric is also reduced at levels of noise greater than the

phase transition point, i.e. η > 1.6. Figure 6.12 shows the variability of the

WMI metric, taken from the same data set as the previous figure.
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Figure 6.12: The variance of the WMI, as calculated from the entirety of
the test runs.

6.5 Correlation Analysis

The correlation analysis will measure the amount by which the MI metrics,

presented earlier in this Chapter, relate to the susceptibility of the system,

χ. The results are presented in Table 6.2, the correlation measure used

is the Spearman’s rank correlation coefficient, and all values presented are

absolute.

We see from the data that, considering a standard two-tailed significance

test (α = 0.05), all results apart from the conditional mutual information

(CMI) are statistically significant.

The strongest correlation seen is the Wicks’ MI, showing an R value of

Rs = 0.91, which can be said with a high level of confidence (actual p-value

was p = 9.9e−16).
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Metric Absolute Correlation p-value

MMI 0.51 0.001
CMI 0.27 0.091
NMI 0.57 0.000

Studholme’s MMI 0.41 0.009
Wicks MI 0.91 0.000

Table 6.2: The absolute values of the Spearman’s rank correlation coefficient,
and the associated p-values, of the MI metrics and χ, the susceptibility of
the system, across all test runs of the SNM.

6.6 Conclusions

We have seen throughout this Chapter the application of numerous analyt-

ical techniques for the detection of the phase transition within the scalar

noise model. Some of these techniques have been used previously (e.g. sus-

ceptibility or the Binder cumulant), whereas others are newly applied during

this work (e.g. conditional mutual information and Studholme’s multivari-

ate mutual information).

We have shown that the newly applied measures of order, apart from the

MMI (see Figure 6.6), give visually meaningful output which may be used

to identify the different levels of order within the SNM. The mathematical

analysis though showed that whilst visually meaningful, the output from

some of the MI-based metrics showed either low correlation or a lack of

statistical significance.

The highest significant correlation found was shown to be the Wicks’

MI measure, which showed a strong correlation with the susceptibility of

the SNM. Figure 6.13 shows the Wicks’ MI, the Binder cumulant, and the

susceptibility of the SNM, plotted on the same figure, error bars represent

the standard deviation of the data.

As we can see from this graphic, whilst both susceptibility and WMI

show a definite peak about the phase transition point of this system the

large error bars present on the susceptibility make it a far less usable metric.

Additional to this, it can be seen that the WMI shows measurably different

trends below η = π
2 , i.e. the ordered phase of the system, than above

η = π
2 , i.e. the disordered phase of the system. We believe that these factors

will allow the WMI metric to be applied as an order metric to evacuation

systems.
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Chapter 7

Initial Evacuation

Simulations

7.1 Introduction

This chapter details the methodology which we use to identify the onset

of crush conditions within an in silico evacuation simulation. The work

detailed in this chapter is a proof of concept (i.e. initial evidence that the

proposed technique is fit for purpose) rather than an extensive testing of this

technique, further testing and large scale experimentation is summarised in

Chapter 8.

Whilst initial experimentation with the mutual information (MI) anal-

ysis is carried out on a trivial evacuation scenario modelled using the orig-

inal implementation of the Social forces model (SFM), it is accepted that

this simulation environment cannot be used for the extensive testing of the

MI technique, as the modelling of complex evacuation topologies are not

possible. However, this simulation has been chosen to confirm the general

suitability of MI to the purpose of crush detection. Following successful

experimentation, advanced testing and validation will continue with a more

fully-featured simulation package.

7.2 Hypotheses

We argue that the transition of evacuations from laminar to turbulent states

can be used to identify the build up of crush conditions during an evacua-
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tion. The MI analysis is used here to measure the order within an evacua-

tion, therefore we expect the MI of the system to drop as competition for

exit capacity increases. It is also expected that as the competition for exit

capacity increases, the amount of force that builds up within the evacuat-

ing population will increase [51]; we therefore have our hypothesis for the

acceptance of the MI technique as a plausible method for measuring crush.

• Null hypothesis

H0 : R = 0

There is no correlation between mutual information and force.

• Alternative hypothesis

H1 : R 6= 0

There is a correlation between mutual information and force.

7.3 Experimental Aims

There are two main aims of the experimentation during this Chapter. Firstly,

we will show that the MI analysis which we apply can offer a dynamic and

visually meaningful representation of the amount of order present within an

in silico evacuation. This will be achieved by examination of the changing

output of the MI of the system, alongside a manual examination of visual

output of the SFM during the evacuation run. Secondly, we will show that

the level of order, as measured by the MI of the system, shows a strong cor-

relation with the level of force present at any one point in the evacuation.

This will be achieved by means of a correlation analysis, showing that our

alternative hypothesis (presented in Section 7.2) is correct.

In short, as we have proposed that a build up of high levels of force will

follow a breakdown of order within an evacuation, we expected to see that

as the level of force rises within the evacuating crowd the MI will show a

marked drop, and vice-versa.

7.4 Expected Outcomes

We propose that the MI technique can be used to measure the order within

a crowd of people, i.e. the higher the MI measure, the more ordered the

evacuation. We believe that the breakdown of order within an evacuating
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crowd is a major contributor to the build up of dangerous levels of phys-

ical force, and therefore that as MI drops the level of force measured will

necessarily rise.

We therefore expect a significant negative correlation between the level

of force present at any point in the evacuation and the corresponding MI

measure at that point.

7.5 Methodology

Initial simulations were carried out on a modified version of the Social Forces

Model1. The model was written in serial C, and is identical to that which

formed the basis of the simulations detailed in the original literature [51].

Additional libraries for calculation and analysis were based on those

developed for use during the Scalar Noise Model analysis detailed previously,

converted from parallelised C++ to serial C to enable simpler integration

into the existing code-base. The MI analysis, and required libraries, were

integrated with the existing code in an entirely passive manner, i.e. their

inclusion cannot effect the result of simulations. As during the analysis of the

SNM, this analysis is performed once at the end of each time-step during

the simulations, with data being copied directly from the data structures

present in the simulation into custom structures that form no part of existing

computation to ensure integrity.

All simulations during this Chapter of the thesis were performed on the

same evacuation topology, this being a single room evacuation shown in Fig-

ure 7.1. The reasons for carrying out experimentation on just one topology

are twofold. Firstly, as this original model was designed for experimen-

tal purposes, this implementation does not include the means by which an

evacuation topology can be loaded from file, therefore any changes to the en-

vironment must be hard-coded into the model itself. Secondly, the purpose

of these initial experiments is to provide an indicator that the MI technique

can be used to track changes in evacuation behaviour, rather than to show

that it may be used to analyse realistic evacuation scenarios. More complex

scenarios, as to be found in Chapter 8, will be analysed using a more mature

and fully-featured simulation environment.

1Model selectively available for non-commercial purposes from
http://http://angel.elte.hu/panic/
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Figure 7.1: Representation of the evacuation topology used during the simu-
lations in this Chapter. All evacuees are distributed evenly across the central
15m-by-15m room, and effect egress through the 2m wide door.

There were two changes made to the working of the original SFM model

during this work. Firstly, in the original model an injured agent forms

an immovable obstacle, incapable of movement yet still able to exert force

(physical and social) onto any agent that comes into contact with them. This

behaviour caused problems with simulations, as it was possible for multiple

agents to become injured and form a “barricade” between the agents re-

maining in the room and the only available exit. This causes the simulation

to end with a number of evacuees still remaining in the structure. Simu-

lations in which this occurred were necessarily declared void, their results

unusable, and experiments had to be restarted with the minimum amount of

changes made to the initial conditions to avoid this situation. To counteract

this issue the rule was added that were an agent to succumb to injury, the

agent in question is removed from the simulation after an arbitrary amount

of time. This allows the increase in force that an injured agent causes to be

fully taken into account within the simulations, but negates the “barricade”

behaviour mentioned previously.

Secondly, to obtain a baseline for the MI of the system (i.e. a null

value), a period of milling was introduced, this took to the form of a 10

second addition to the start of each experiment run, during which the agents

had no clearly defined goal. The purpose of this addition was to provide a

baseline value for the MI in each simulation, i.e. the value that the MI takes

during the random movement of agents. Hence, the data collected from
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Figure 7.2: Image showing the barricading behaviour of the SFM. Red agents
represent those incapacitated due to injury, whilst green agents are free to
move, but unable to escape past the injured parties. In these situations the
simulation will continue indefinitely with no resolution.

experiments we have carried out all show the start of the experiment at

t = −10, with an actual evacuation beginning at t = 0 as per the standard

model.

The measure of force stated at all points within this Chapter is identical

to that used in the original literature. This force metric is a summation of

the radial forces acting about the circumference of an individual, divided by

that individual’s circumference. This measure was initially used to replicate

the ability of larger individuals (e.g. adult males), to suffer a higher level of

force than than smaller individuals (children or young adults), with fewer

ill effects.

The point at which an individual is considered to become “injured” is

when the sum of the radial forces acting about their circumference exceeds

1600Nm−1.

All simulations carried out within this Chapter use the default param-

eters for the original implementation of the social forces model [51], with

the exception of the random seed which is changed before the start of each

simulation run. The value of the “driving force”, or the evacuees desire to

effect egress, for these simulations is set to a constant value of V 0 = 5ms−1.

This value was chosen as it marks the first point at which injuries were found

during the original work.

At the start of each of these simulations the room is populated with
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exactly 200 individuals, who are equally spaced apart, once the simulation

has begun Force and MI data are collected at the end of each and every

time-step. As stated previously, each simulation begins with exactly 10s of

“milling behaviour” in which agents move randomly, the evacuation stage

begins immediately after this 10 seconds had passed. All times are stated

with the start of evacuation as the reference point, therefore the start of

each experiment is marked as t = −10s.

7.6 Experimentation

Within the Social Forces Model, there are many variables that are suitable

for inclusion in the Mutual Information analysis, but initially solely geo-

graphic data (i.e. the 2-dimensional Cartesian coordinates of each agent)

were analysed. Using the default room size from the original implementa-

tion [51] (15m × 15m) as a guide to discretisation, the signals are sorted

into bins measuring 1m, assigns each agent to a space in a 15 × 15 grid,

which is used to calculate the probabilistic distribution of the agents for use

in the MI analysis. Mutual information for this experiment is calculated

according to Equation 7.1, and the results of initial experiments can be seen

in Figure 7.3.

I = I(X,Y ) =
∑

i,j

P (xi, yj) log2
P (xi, yj)

P (xi)P (yj)
(7.1)

As the results show, the trough that is apparent in the measurement of

the MI in the system is not an accurate representation of the moment at

which the largest amount of force is recorded, and is poorly defined when

compared to the initial stage of measurement (−10 > t < 0). Also, as the

simulation continues, it becomes impossible to ascertain the levels of force

that are present solely by observing the MI of the system.

This is an unusual result, as both published works [153] and our initial

investigations into the application of the MI method to complex systems,

suggested that an analysis of the interdependence of the geographical vari-

ables should offer a reasonable measure of the spatial clustering within the

system. The evidence for this came from investigations into the scalar noise

model (SNM) [146], that suggested as the degree of noise (η) in the system

decreases, the MI of the system will rise sharply. Whilst Figure 7.3 does
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Figure 7.3: Results from the MI analysis of the SFM, MI was calculated
according to Equation 7.1

show a peak in the value of the MI, at roughly the same point as the rise in

average force, the change in value is very minor and the changes in crowd

density are poorly defined and could not be reliably identified. There is,

however, an explanation for this result.

The tendency of the MI (I → ∞) in a highly ordered instance of the

SNM is caused by the dimensionless nature of the agents, i.e. their lack of

mass. Under exceedingly low noise conditions (η � 1) the particles within

the SNM will, as t → ∞, exhibit an extremely high level of clustering.

These conditions can lead to all agents occupying the same bins (physical

space), which causes the MI of the system to peak in this way. The agents

in the SFM contain sufficient mass to negate this specific problem, as there

is an absolute maximum number of agents that can occupy one area, but

a by-product of this is the poorly defined clustering metric that the MI

provides in this particular model. Therefore, to analyse the SFM correctly,

a technique must be found which abstracts the spatial clustering of the

particles from the calculation, and centres further on the analysis of the

behaviour of the velocity vectors of the agents, a more accurate indicator of

behavioural change than spatial clustering.

To rectify the reliance on spatial clustering present in our initial experi-

ments, test runs were carried out using a combination of the coordinate and

heading information from each agent, as detailed in Equation 7.2.
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Figure 7.4: MI for this result was calculated according to Equation 7.2.
Significant improvements can be seen, most importantly the improved defi-
nition of the phase-transition displayed at 0 > t < 4. This data represents
the average of 64 identical experimental runs.

I(X,Θ) =
∑

i,j

P (xi, θj) log2
P (xi, θj)

P (xi)P (θj)

I(Y,Θ) =
∑

i,j

P (yi, θj) log2
P (yi, θj)

P (yi)P (θj)

I = I(X,Θ) + I(Y,Θ) (7.2)

With this approach, in which the coordinate and directional data on each

agent is analysed in such a way that the spatial clustering is removed from

the analysis, the analysis relies more heavily on the changing behaviours of

the agents (more precisely, the changing velocity vectors), than previously.

The results gained from this approach can be seen in Figure 7.4.

As we can see, the peak in MI using this technique is much more pro-

nounced, with a large increase in the MI as the agents’ vectors become

ordered (at t > 0), displaying the characteristic rise in MI that is expected

as a system attains order. The more relevant characteristic of the mutual

information, the severe drop in MI that identifies the deterioration of the

system into a state of disorder, is also more pronounced in using this tech-

nique. It can be seen that, in addition to identifying the initial rise in force,
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Figure 7.5: The smoothed output from a single run of the SFM.

the geo-directional analysis also makes obvious further peaks and troughs

in the average force measure during simulations.

7.6.1 Single Run

The data shown in Figure 7.4 represents the average of 64 experiment runs

using identical parameter values. It was considered, and had been confirmed

by previous experiments with the Scalar Noise Model (see Chapter 6), that

for a model that has been previously tested for numerical stability as few as

10 experiments runs should suffice to ensure numerical integrity. The figure

of 64 runs used here was decided upon due to hardware constraints, namely

that access to a 64 node HPC (High Power Computing) cluster enabled

the execution of up to 64 experiments in approximately the same time as

a lower number of runs. We see from this figure that MI can be used as a

measure of the amount of force present within an in silico evacuation. To

be of real use to evacuation modellers though, the technique must be shown

to be applicable in real-time, i.e. as a simulation is running, or at least

immediately after a single simulation has finished.

It has been found that the raw data output has a high level of noise, but

the application of a trivial running average of the data is sufficient to smooth

the MI output into a more readable form. The MI and force readings from a

run of the SFM were therefore coarse grained, using the running arithmetic

mean of the previous 10 MI readings. The results are shown in Figure 7.5.
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As we can see, the application of a simple smoothing technique leaves

the data in a readable format, and the same trends that could be seen in

the aggregate data are clearly visible. Statistical analysis of these results

shows that, in this case, the correlation (Pearson’s) between force and MI

produces a value of R = −0.8132 with high significance (p = 2.2e−16), but

this will obviously vary depending on the specific simulation.

7.6.2 Partial Data Analysis

Previous work [153] suggested that, in certain applications, the measurement

of the MI of a proper subset of the particles within a simulation could offer

an accurate indication of the point at which the phase transition occurs

(relative to existing methods). To test if this applies to the Social Forces

model, a technique was used which extrapolates an agent set from the time-

series MI readings of a small subset of the total number of agents.

This time-series subset analysis relies on the fact that MI is entirely

insensitive to the scaling of signals to which it pertains, see Equation 7.3. We

can, therefore, calculate the MI of a subset of particles using the entirety of

the time-series values that were collected for each agent. Using this method

the exact values recorded for each of the n agents in the sample set can be

used for analysis.

I(A,B) ≡ I(nA, nB), n ∈ R (7.3)

For testing, we recorded the MI values across a set of 10 agents for

100 internal time-steps during a simulation run of the SFM. The agents’

positions and headings were recorded at each time-step, and the entirety of

this data was used for the MI analysis.

The results gained from this analysis can be seen in Figure 7.6. The

results show a peak in Mutual Information at the point at which the order

in the system increases, however as order decays the MI readings fall back

to a small, unchanging value.

We can see from Figure 7.6 that the partial data analysis can be used to

detect the point at which evacuation behaviour changes, at t ≈ 0, but the

accuracy with which the analysis of the full system identified the changing

levels of order (and therefore force) is lost at all higher values of t.
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Figure 7.6: Results of the partial data MI analysis of the SFM.

It is suggested that the poor performance of the MI analysis on the SFM,

relative to that presented in the literature, is partly due to the physical mass

of the agents. The mass of the agents prevents large numbers of pedestrians

from occupying the same physical space, which reduces the MI of the entire

system by effectively removing the ability of the agents to cluster. Therefore,

when taking a subset of the agents for analysis the probability of taking more

than one agent from the same coarse-grained grid sections is further reduced.

7.7 Calibration

There are just three variables specific to the MI calculations, which require

parametrisation, these being the size of the bins, or discretisation value, for

the signals X, Y , and Θ. As the MI technique accepts only discrete variables

for analysis, these three continuous variables are course grained previous to

the application of the MI technique. We will assume that the bin size for

x and y will always be equivalent, as they measure the same fundamental

unit (i.e. length).

The initial values used to discretise these variables were bins x and y,

bx, by, were equal to exactly 1m, giving us 15 possible values for both x and

y, and bθ was set to a value of 2π
6 , giving 6 possible values for variable θ.

These values were arbitrarily chosen, and therefore we must investigate the

possibility that other values for bx, by, and bθ could yield a better measure

of order. To enable the best possible result from the MI analysis, calibration
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experiments were carried out on our three analytic variables, these being the

size of the bins used to discretise X and Y , and the size of the bins used

to discretise θ. To calibrate the MI analysis, a range of values were chosen

for the binning size of the variables, and both Pearson’s and Spearman’s

correlation tests were run on each variable. For the purposes of these tests

we were only concerned with the absolute value of the correlation co-efficient,

∴ R = |R|, as we do not want to assume that the correlation between the

force and MI will take any specific form, and we are solely interested in the

general level of correlation between the two values. The correlation analyses

are carried out using both Pearson’s and Spearman’s coefficient calculations,

as again we do not want to make assumptions about the nature of the

relationship between the MI and the force during this specific analysis.

7.7.1 X and Y Discretisation

The first variables to be calibrated are the binning values for X and Y , which

we will refer to as bx and by. The value of bθ for these calibration will remain

at the original value chosen (bθ = 2π
6 ). As these variables represent values

measured in the same unit (metres), it was decided that for the purposes of

experimentation the binning values will remain equivalent, i.e. bx ≡ by. The

range of values tested were 0.25m ≤ bx, by ≤ 7.5m, at intervals of 0.25m.

The correlation results are shown in Figure 7.7. All R values shown in this

figure were found to be significant, i.e. p� 0.05.

We can see from the graph that there is a clear peak in the correlation

for binning values in the range of 1
2m < bx, by < 1m, where the absolute

correlation achieves a value of R ≈ 0.9. There is a drop in correlation after

this, but the general correlation rises again at a value of bx, by ≈ 5.

The results show that the size of the binning values bx and by have a

definite effect on the extent to which the MI can be used as a signifier of

force, but that the initial (arbitrarily chosen) binning values that were used

for the previous analysis were within the optimum values ranges. Initial bx

and by values were set at exactly 1m, whilst bθ had a value of 6.

7.7.2 Orientation Discretisation

Using the optimum binning values found in Section 7.7.1 (bx, by = 1m),

we ran equivalent tests to ascertain the effects that changing bθ has on the
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Figure 7.7: Absolute correlation (both Pearson’s and Spearman’s) between
force and MI, across different binning values for variables bx and by.

system as a whole. We again ran both Pearson’s and Spearman’s correlation

tests on the force and MI values across a range of values for bθ (measured

in radians), the results are shown in Figure 7.8. All R values shown in this

figure were found to be significant, i.e. p� 0.05.

We see a severe drop for low values of bθ (bθ � 1), where the correlation

values drop to as little R ≈ 0.1. A plateau exists with values at bθ >
π
4 ,

where we see little improvement past this point, which gives us correlation

values of up to R ≈ 0.95. This bin size equates to discretising the value of

θ into more than 8 bins of uniform size.

We see from Figure 7.8 that a peak of correlation occurs at bθ = 1c,

and for all values greater than this the amount of correlation between the

MI and force shows a gradual degradation. Initial experiments were carried

out discretising the value of θ into 6 bins of equal size, which was again

arbitrarily chosen but according to this data the value does in fact represent

a reasonable approximation to the optimum value for this parameter.

7.8 Negation of False Positives

As the SFM offers an accurate representation of pedestrian behaviour under

emergency conditions, it can be said that the Mutual Information analysis

can accurately identify the presence of order under these conditions. The

question still remains about the accuracy of the MI technique under non-
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Figure 7.8: Absolute correlation (both Pearson’s and Spearman’s) between
force and MI, across different binning values for variable bθ.

emergency conditions, which are far more complex to simulate. As a means

of negating the possibility of the MI technique flagging non-emergency con-

ditions as highly dangerous, the metric was extended to classify the inherent

danger of the specific evacuation (or, more accurately, a specific time in a

single evacuation) as a function of both the MI of the system and the av-

erage crowd density (ρ̄) at that point in time. This metric, which we will

term f(I, ρmax) is defined as:

f(I, ρmax) =
ρmax
I

(7.4)

This function of the MI and average density of a specific time during

an evacuation will return very high values at low I and high ρmax, a highly

turbulent and densely distributed evacuation, and low values when presented

with very high I values and low values of ρmax, a very ordered and sparsely

distributed evacuation. The general distribution of f(I, ρmax) is seen in

Figure 7.9

The tracking changes between force and MI are highly pronounced, and

show a correlation (Pearson’s) value of R = 0.96 with a high significance

(p = 2.2e−16).
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Figure 7.9: Simulation showing the changing values of Force and f(I, ρmax)

7.9 Results

As can be seen from the results in Figures 7.4 and 7.5, the potential for

Mutual Information to be used as an analytical measure of the general pres-

ence of force within this simulation is clear. The experimental output shows

that upon a rise in the average force within a simulation, there is a corre-

sponding drop in the value of the MI. Statistical analyses have shown that

the R value for this data falls at R = 0.8132 with a high degree of certainty

(p = 2.2e−16).

Calibration of the two discretisation values showed that the initial values

chosen have given a reasonable correlation between force and MI, although

these values were not optimal. Across the calibration experiments the per-

formance of the analysis was improved by approximately 17%, with the

absolute correlation between force and MI rising from a value of R = 0.81

to R = 0.95.

We have also shown that the combination of MI with the average crowd

density could slightly improve the operation of the analysis, with a marginal

increase in the correlation of approximately 1%. Whilst the calculation of

the metric in this way shows only a marginal improvement to the analysis,

it does serve to accentuate the increase and decrease in force levels in a far

more human readable manner, i.e. as the force increases, so does f(I, ρ),

and vice versa. Were the MI technique to be incorporated into a simulation

environment in place of explicit force calculation it is far more agreeable to
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employ the metric f(I, ρ) rather than I, as this can be directly substituted

for force and could allow a more reliable estimate of the true force levels to

be presented to the user.

7.10 Hypothesis Testing

Previous to the calibration of the system, the correlation calculated be-

tween the MI of the system and the level of force present reached a value

of R ≈ −0.81, and the statistical significance of the result was calculated at

P = 2.2e−16, which is far lower then the result required to reject the null

hypothesis in either a two tailed test (P < 0.05) or one tailed (P < 0.01)

test. Hence, according to these results we reject H0, our null hypothesis,

and accept H1, the alternative hypothesis:

There is a correlation between mutual information and force.

7.11 Distribution of Force Across Agents

The force measured during these experiments, and therefore the metric

which we compare MI against, is not evenly distributed across the popula-

tion, with the majority of the force measured being found in the agents clos-

est to the exit. Figure 7.10 shows the distribution of force across agents dur-

ing different points during a simulation identical to those presented through-

out this Chapter.

We can see from the figure that the highest level of force recorded during

these simulations occur within the first 10 seconds of the evacuation, during

which there are the maximum number of agents within the structure. The

formation of arching can clearly be seen at t = 7, where the agents which

form the arch are subject to far greater levels of force than others in the

simulation. An arch breaking can be seen at t = 18, where the two agents

directly inside of the exit have broken free from an arch, which has already

begun to close behind them.
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Figure 7.10: An example of the forces measured from each agent at multiple
points during a simulation identical to that presented in this Chapter.
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7.12 Comparison with the Crowd Density Mea-

sure

Another technique by which force may be approximated is via a crowd den-

sity measure, a measure of the maximum crowd density across the entire

evacuation. Identical simulations to those previously described were run,

and at each time-step the crowd density (pm−2) and the force measure was

calculated for each agent within the simulation, and the maximum value

found for each measure at each time-step was recorded. The experimental

parameters for these simulations were identical to those defined in the origi-

nal paper, and as with all previous simulations the agents’ “desire to leave”

was set at V0 = 5ms−1. The results of these experiments can be seen in

Figure 7.11.

We can see from Figure 7.11 that both the force and the crowd density

rise sharply at the start of the evacuation, but that the maximum force

produced quickly begins to reduce as evacuees leave the room. The density

metric remains high for a prolonged period, and maintains a value of between
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5 and 6 pm−1 until approximately 80s into the evacuation. This is due to

high crowd densities being achievable by a relatively small number of people,

whereas high levels of force are not.

If we measure the correlation of these two metrics in the same manner

as the MI and force (Pearson’s Product Moment Correlation with a two-

tailed significance level, ρ = 0.01) we find that the correlation between force

and density in the SFM has an R value of R = 0.885, with P = 2.2e−16.

This result, as with the MI, is statistically significant, but the correlation

is lower than that of the MI, which after calibration achieved (R = 0.95).

As the number of samples used for both of these correlation calculations

are extremely large (greater than 1000 samples), any difference in R value

would be considered statistically significant.

A method by which the significance of this results may be formally con-

firmed is the Fisher’s z-test, used to test that two correlation co-efficients

taken from independent samples are equal [19]. The fisher’s z-test returns

a z-score which may be compared to the Gaussian distributed to ascertain

statistical significance. The z-score obtained when comparing the Density-

Force coefficient to the MI-Force coefficient is z = −14.938. In the Fisher’s

z-test the significance is confirmed when the absolute value of the z-score is

greater than the calculated p-value. The p-value for this, two tailed, test is

p ≤ 0.000001, which is not unusual when dealing with such a large number

of samples. From this we can establish that the difference in the two corre-

lation coefficients is statistically significant (|z| > p), and that the MI-Force

correlation is significantly higher than that of the Density-Force correlation

(z < 0) .

7.13 Summary

During this chapter we have defined and tested the MI analysis on a simpli-

fied evacuation consisting of a single room with 200 evacuees, and shown that

the MI of the system can be used to measure the amount of force present.

We have shown that the MI technique can be improved by the consideration

of global densities during the analysis and that in these experiments a strong

and highly significant correlation with the amount of force present has been

shown.

We have also shown that the MI metric offers a better indicator of the
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presence of significant levels of force than measuring the density of the evac-

uating crowd. Whilst this improvement is relatively small, is has been shown

to be statistically significant.

These preliminary results are not considered sufficient to prove that the

MI analysis can be used on a large scale evacuation, but rather represents

a proof of concept that shows that the technique has promise and merits

further testing and experimentation.

The following chapter covers the application of the MI analysis to an

evacuation using a fully featured simulation environment.
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Chapter 8

Analysis of a Historic Event

8.1 Introduction

In this Section we describe the results of experiments to investigate the

applicability of MI as a plausible tool for crush detection. In order to ensure

its broad applicability, we first show how MI is easily integrated into an

existing, industry-standard simulation framework. We then validate the

technique, by using it to analyse a historical event. By demonstrating that

the MI technique correctly detects known incidences of crush within this

scenario, we provide support for its adoption as a standard tool.

8.2 Fire Dynamics Simulator

The base simulation environment which we will employ for these extended

tests is the Fire Dynamics Simulator (FDS), a fluid dynamics-based model

of fire and smoke flow. Originally designed to simulate the spread of fire,

heat and smoke throughout structures, the FDS environment has recently

been updated to include the ability to model evacuation from structures.

The FDS+Evac module [74, 73] is the evacuation simulation extension

to FDS, and is based on the social forces model (see Chapter 4) [53, 51]

of pedestrian movement. Unlike the original SFM, presented by Helbing et

al, the FDS+Evac environment enables engineers to accurately model the

intricacies of a building’s design, which allows the simulation of large-scale

evacuations from complex structures.
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8.3 The Station Nightclub Disaster

As mentioned previously (see Section 2.7), the Station Nightclub fire is a

well-known example of the type of hazards that an emergency evacuation

presents. In 2003 the Station Nightclub (Rhode Island, U.S.A.) was the

scene of one the worst nightclub fires in modern American history, when a

pyrotechnic device ignited a flammable polyurethane foam used for sound

insulation. According to the official report into the incident [44] a crush had

formed at the main escape route within 90 seconds of the start of the fire,

trapping patrons inside the club as it filled with smoke. Estimates for the

occupancy of the nightclub on the night of the fire vary, with figures stated

by the media of between 420 and 458 people [44] this cannot be confirmed.

A total of 96 of person died during the evacuation, with more than thirty

bodies were recovered from the crush that formed at the main exit.

This particular event was selected on the basis of (a) the existence of

a significant amount of professional film footage taken inside the nightclub

during the incident1, (b) availability of supporting witness evidence and

other associated documentation, and (c) results from substantial simulation

tests using FDS for fire simulation as part of the formal investigation. We

therefore have information on the initial distribution of individuals at the be-

ginning of the incident, visual evidence of crush during the incident, and the

final locations of each of the victims, as well as a set of validated simulations

with which to compare our own results.

8.4 Methodology

To confirm the ability of the mutual information technique to metricise force

during a complex in silico evacuation two distinct evacuations of the Station

Nightclub were simulated.

Firstly, an idealised simulation was designed, which represented the min-

imum time in which a building such as the Station Nightclub could be evac-

uated under emergency conditions. During this simulation it was assumed

that each evacuee had “perfect” knowledge of their environment, i.e. each

person within the building had knowledge of all possible escape routes. The

simulation would, therefore, represent an even use of available exit capacity

1Ironically, the film crew was present to record a documentary on nightclub safety,
after a fatal incident elsewhere four days previously.
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throughout the building. Also, unlike during the actual event, it is assumed

that no exit becomes unusable due to fire during this simulation.

Secondly, a more realistic recreation of the events which occurred during

the Station Nightclub disaster was simulated. In this scenario the evacuees

did not have perfect knowledge of their environment, and each evacuee was

assigned knowledge of each exit, by means of probability (see Section 8.4.1).

In effect this means that evacuees may not be in a position to make opti-

mal exit choices, as their limited knowledge of the building layout may not

allow for this. To recreate the blocking of the Stage door due to fire (see

Section 2.7.2) the Stage exit of the club is “closed” exactly 30 seconds after

ignition, and is not usable for the rest of the simulation.

The force and MI outputs of these two evacuation simulations will then

be compared, to ascertain whether the results are both visually meaningful

(i.e. the MI provides a reasonable visual indicator of force present) and

mathematically accurate (measured via correlation analysis).

8.4.1 Experimental Setup

The floor plan of the Station Nightclub was rendered in FDS, using official

architectural plans taken from [44] (Figure 8.1). The figure of 420 is used for

the number of pedestrians to be simulated, as this was used during the NIST

investigations into the disaster, the true number of patrons is unknown but

estimates range between 420 and 460 occupants. The initial distribution of

occupants is specified so as to create high crowd densities in the Dancefloor

and Sunroom areas, and lower densities in other areas. For both simulations

the distribution of evacuees throughout the club was as follows; dance floor -

225 persons, main bar - 35 persons, sunroom - 110 persons, and the kitchen

and the rear of the club - 50 persons. Evacuees are distributed evenly across

the respective areas of the building at the start of each simulation.

The kitchen, bar and stage exits were all set to 0.9m, and the main exit

had a width of 1.8m. The smaller opening inside the corridor leading to the

main exit had a width of 0.9m. There is no pre-evacuation time included for

either of the scenarios simulated, so that all time measurements are stated

from the actual start of evacuation. There is no fire present in either of the

scenarios which are tested here. The imperative to evacuate is controlled

via the pedestrian’s “desire to leave” (variable V 0 in the original equations),

which was set with a mean of V 0 = 5ms−1, and a standard deviation of
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Figure 8.1: (Top) Floorplan of Station nightclub, taken from official report.
(Bottom) Rendering in FDS+Evac. [44]
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Exit Probabilites

Area Main exit Main bar exit Stage exit Kitchen exit

Dancefloor 1.0 0.5 0.4 0.0
Sunroom 1.0 0.5 0.2 0.0

Rear 1.0 0.5 0.0 0.1
Main bar 1.0 0.9 0.0 0.0

Table 8.1: The probabilties of agents starting at each area of the building
knowing of the existence of of each of the possible exit routes.

0.5ms−1.

Idealised

During the idealised simulations the assumption is made that each evacuee

has a perfect knowledge of their environment, and therefore all exits from

the building are known to each evacuee from the start of the evacuation.

The simulations begin with the evacuees distributed as defined previously,

and with the defined “desire to leave”.

Actual

At the start of these simulations, each pedestrian is assigned knowledge of

exit routes via a probability. The exact probabilities given for each exit was

estimated by examining firstly the placement of the agents, i.e. which part

of the Nightclub they occupy at the start of the simulation, and secondly

by the suggested exit use found in the literature. As an example of this, we

assume that most of the people occupying the main bar room will be aware

of the exit within that room, but also that the entire population would be

aware of the main entrance, as this would be the most likely entry route for

all occupants of the building. Therefore the 35 persons occupying the main

bar would have a 90% probability of knowing of the existence of the main

bar exit, and a 100% probability of knowing about the main exit. Persons

in this instance who had knowledge of both exits would be able to choose

the closest, or least congested, according the FDS exit choice algorithm [72].

There follows a breakdown of the persons placed in each area of the build-

ing at the start of the simulation, which is identical to that in the idealised

simulation, and their respective known door probabilities, see Table 8.1.

As mentioned previously, the probabilities stated in Table 8.1 are esti-
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mates based upon actual exit usage during the event and the area of the

building in which agents’ begin the simulation. In the case of the kitchen

exit, it was assumed that only people in that specific area would know of

the exit and, as this exit was only used by approximately 12 person during

the event, that only a very small number of individuals near the kitchen exit

knew of it’s existence.

During the actual evacuation of the Station Nightclub, it was found that

the Stage door (see Figure 8.1) was rendering unusable due to the proximity

of the fire at approximately 30 seconds after the start of the evacuation.

Whilst during these simulations we will not be modelling the fire itself,

the urgency to evacuate being controlled by the agent’s V 0 parameter, the

closing of this exit route is still modelled. Therefore in these simulations

this exit route will be removed from use at exactly t = 30, and any evacuees

which were planning to use this exit will be forced to find another escape

route.

8.4.2 Validation

We compare the leaving profiles gained from our simulation with those ob-

tained by similar simulations by the National Institute of Standards and

Technology (NIST), and detailed in the official investigation report [44]. In

these experiments, NIST investigators used both Simulex [139] and buildingEX-

ODUS [46] to evaluate both idealised and actual evacuation scenarios. The

results obtained were very similar for both packages, so we concentrate on

the buildingEXODUS output.

It is considered that the ideal scenario does not require further valida-

tion, as no complex configuration has been required for the FDS simulation,

i.e. it was an entirely standard evacuation. This cannot be said for the more

realistic simulation, as assumptions have been made about exit knowledge,

this scenario will therefore be compared to previous simulations in the lit-

erature as an additional validation step. The NIST simulations (detailed in

[44]) which we will compare against were not identical to those run in this in-

stance, but certain published statistics may be used to verify the simulation

of our more realistic scenario. The two relevant metrics which are available

are the number of evacuees remaining in the building at 90 seconds, and

the number of occupants which effected egress through each exit from the

structure. The 90 second marker was used in this case as this was the value
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Figure 8.2: Results of NIST recreation (left) and simulation (right) of the
fire and smoke spread during the initial 90 seconds of the Station nightclub
fire. [44]
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Figure 8.3: Comparison of leaving profiles between our simulation (FDS)
and official NIST results.

Environment
Main
door

Bar door
Stage
door

Kitchen
door

Total re-
maining

at 90
seconds

Simulex 356 22 39 3 256
EXODUS 364 20 32 4 274
FDS 352 26 26 14 278

Table 8.2: Comparison of valid exit metrics for the two NIST simulations
[44], using Simulex [139] and EXODUS [46], and our simulations using FDS.

chosen by NIST, due to the suggestion that the main exit became blocked

at approximately this time.

We see from Table 8.2 that the number of occupants exiting through

the main door and bar door during our simulations were within reasonable

range of that recorded during the NIST simulations with both EXODUS

and Simulex. The stage door however shows an average of 6 and 13 less

evacuees when compared to EXODUS and Simulex respectively. We believe

this to be due to the friction force between evacuees (not modelled by either

other environment) slowing the flow rate through this door. There is also

a discrepancy when examining the usage of the kitchen door, which is used

by just 3-4 evacuees in the NIST simulations. The usage of this door in the

FDS environment could be reduced to this level by approximately halving

the probability of an evacuee knowing of this door’s existence. This would
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bring the exit usage in line with NISTs figures, but it was decided that as

the known exit usage during the disaster was recorded at 12 persons this

makes our simulation a better representation of the actual usage during the

event. The total persons remaining after 90 seconds for all three simulations

are also considered to be within reasonable bounds.

We therefore conclude that, in this respect, the official NIST simulations

provide a sound basis for validating our own simulations. The results of the

comparison are depicted in Figure 8.3. We note that the results obtained

(in terms of leaving profiles over time) are very similar to those reported

by NIST, and also that the available metrics from the NIST simulations

compare favourably with those from our simulation (see Table 8.2), which

supports the argument in favour of the soundness of our model.

8.4.3 Detection of Crush

Having established the validity of our simulation in terms of broad outcomes,

the next stage was to investigate the emergence of crush, and to assess if this

is easily detectable using Mutual Information. To achieve this we measured

the average force and the level of MI within our simulated population of 420

individuals, for both “actual” and “idealised” evacuations.
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Figure 8.4: Comparison of average force between real and idealised scenarios.
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We first consider the results of the force measurements, comparing them

with evidence from the investigation. The force measurements for both sce-

narios are depicted in Figure 8.4. It should be noted that these graphics

represent the average force at each point during the simulations. As simu-

lations finish at different times, the force readings presented represent the

average of all simulations where force could be measured, i.e. the average of

those simulations which are still running.

The force measure used here is identical to that presented in the original

SFM [51], that is the sum of the forces acting on any individual divided by

the circumference of that individual. The measure of force in FDS has not

been calibrated against empirical data, and is therefore meant primarily as

a guide to the amount of force that any individual may be subject to at any

one time.

Across both scenarios the levels of force initially increased as the evacua-

tion commenced, but rapidly decayed during the idealised version of events.

Force levels dropped to zero at around 175s, when everyone has left the

building, which is broadly in line with the findings of the NIST idealised

situation simulation (195s ± 7s).

In the “actual” scenario, sharp initial rises in force were observed, which

peak after around 65 seconds, or 95 seconds after ignition. This is directly

in line with the findings of the official investigation, which states that a

significant crowd crush occurred by the main entrance (where around a third

of the fatalities occurred) beginning during the time period 71-102 seconds

after ignition. Assuming an approximate 30 seconds between ignition and

the start of evacuation, i.e. a 30 second pre-evacuation time, this puts the

peak in force directly within NIST’s 71-102 second range at 95 seconds.

Prior to 1-1/2 minutes into the fire, a crowd-crush occurred in the

front vestibule which almost entirely disrupted the flow through

the main exit. Many people became stuck in the prone position

in the exterior double doors . . .

The camera angle shifts away from this door after 0:07:33 (0:01:11

fire time) and does not return to the front door until 0:08:04

(0:01:42 fire time). When the camera returns at 0:08:04 (0:01:42

fire time) a pile-up of occupants is visible. Details regarding

how the pile-up occurred are not available from the WPRI-TV
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Figure 8.5: Screenshot of our fire scenario simulation after 65 elapsed sec-
onds.

video; however, the interruption in flow of evacuating occupants

apparent [in Figure shown in document] supports the contention

that the disruption may have initiated early during the 31 second

period when the camera was pointed elsewhere.

Grosshandler et al [44]

Figure 8.5, shows a screenshot of the simulation after 65 seconds, which

graphically illustrates the significant crush around the main entrance and

sunroom area (high levels of force are shown in red).

Again, the analysis of MI during evacuation was performed using only

observable variables, i.e. those with values that can be obtained via di-

rect observation of the evacuation. This is to ensure that the results were

not implementation specific, and to maximise the possibility of applying

the technique in future to other environments or video-captured data from

real-life evacuations. Therefore, the three variables considered for analysis

were the 2-dimensional Cartesian coordinates (xi and yi) of each individual,

i, together with their heading (Θi). The use of speed within our analysis

was again avoided, as during in silico evacuations there may often be little

variation in speed during high population density simulations.

The MI was measured using Equation 8.1, taken from [153];
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I(X,Θ) =
∑

i,j

p(xi, θj) log2
p(xi, θj)

p(xi)p(θj)

I(Y,Θ) =
∑

i,j

p(yi, θj) log2
p(yi, θj)

p(yi)p(θj)

I =
I(X,Θ) + I(Y,Θ)

2
(8.1)

The MI measurements are depicted in Figure 8.6. We would expect to

see, as the simulations begin, an initial rise in the MI of the system. As evac-

uees prepare to exit the structure they tend towards alignment, exhibiting

similar escape trajectories to other evacuees in their locale. In a maxi-

mally efficient evacuation this period of high order (and high MI) would be

sustained throughout, as evacuees would not alter their course in order to

increase their chances of effective egress. However, in an evacuation with

a great deal of competition, the order in the system quickly breaks down,

as the evacuees reposition themselves in order to increase their probability

of escape. MI can therefore be used as an order parameter, where falling

values of MI signify the breakdown of order within a specific evacuation. We

observe marked quantitative differences in the MI readings between the two

simulations. During periods of disorder, MI will tend towards zero, whereas,

during ordered segments of the evacuation, MI will rise significantly.

8.4.4 Idealised Scenario

In the idealised simulation, we see a sharp initial peak, as individuals all

make for the exits at the same time. We then observe a drop, as the evacuees

begin to compete for the available exit capacity. An increase in order is seen

as one exit route begins to clear, creating the rise in MI at 50 < t < 75,

falling back into a state of disorder as the final evacuees clear this (main bar)

exit . The MI reading then shows a progressive rise as the final evacuees

exit the structure. The sharp drop in MI at the end of the simulation occurs

when the number of remaining evacuees falls below the threshold at which

calculating MI is viable (approximately 5 - 10 evacuees).
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Figure 8.6: Comparison of Mutual Information between idealised and actual
scenarios.

8.4.5 Realistic Scenario

The MI readings obtained from the simulation of actual events show a far

more disordered evacuation, with an initial rise in MI (signifying order)

quickly disintegrating into disorder. The MI reading at t ≈ 50s approaches

zero; this period of highly disordered evacuation remains as the exits to

the structure are overwhelmed (see Figure 8.5). The exit rate of evacuees

during this period is also low, which is confirmed by the exit profiles (see

Figure 8.3). The MI level slowly rises towards the end of the evacuation,

but, notably, the higher levels of order seen in the idealised evacuation are

not reached until t ≈ 300s, 5 minutes after the start of the evacuation.

8.4.6 Correlation Analysis

A correlation analysis was performed in order to establish the relationship (if

any) between force and Mutual Information. A scatterplot of force versus

MI suggests the existence of a statistical association (Figure 8.7), so a

Pearson’s correlation test was applied. The results of this are as follows;
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Figure 8.7: Scatterplot of Force versus Mutual Information.

P = 2.2e−16

Rp = −0.571

The P-value obtained is much lower than the standard significance level

for a two tailed test (α = 0.01), (P � α), which confirms the significance

of the result. The correlation coefficient, Rp = −0.571, confirms that there

exists a negative correlation between MI and force within an evacuation

scenario.

8.5 False Positives

The ability of our technique to detect crush during an emergency evacuation

has been demonstrated but the possibility that normal crowd movement

would cause false positives still remained, i.e. what is the possibility that

our analysis could flag normal crowd movement as having the potential to

cause crush?

As crowd behaviour is an inherently complex, emergent phenomena, and

relies upon a myriad of factors, it can be difficult to mathematically prove a

technique to be fail-safe. What can be shown is when presented with normal

(non-emergency) crowd movement throughout a structure, the MI technique

shows sufficiently different result to that of an emergency evacuation. To
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this end, the analysis of a trivial evacuation topology under non-emergency

and emergency conditions was carried out. The aim of these simulations

was to test the capacity of the MI technique to distinguish between complex

(yet laminar) flow, and the presence of turbulence and disorder within the

system.

8.5.1 Specification

The topology chosen was a single room, measuring 25m x 50m, with an

exit placed at the east wall, and an identical entrance occupying the same

position on the west. The room contains a single, large obstacle, see Fig-

ure 8.8, placed in such a way that it disrupts the flow of evacuees. The

test will take two parts; firstly, the usage of the structure under normal

conditions was analysed, this provided data on the ordinary usage of the

structure. Secondly, the structure’s evacuation capacity was overloaded to

mimic an evacuation, which gave a comparative measure showing the MI

readings under abnormal conditions.

The MI and physical force were recorded once for every second of evacu-

ation time, using the same method described previously. The results of the

simulations were as follows.

8.5.2 Baseline

The simulation began with 20 evacuees at the west of the structure, and

additional evacuees were added through the west entrance at a rate of 10

evacuees per second of simulation time. The simulation continued for 1000

seconds, in which time the structure did not exceed capacity, and outflow

continued at a steady rate. The desired leaving speed for these experiments

was set to the FDS default value, 1.25ms−1, which whilst expedient, is far

lower than is expected in an emergency evacuation. All other variables were

also set to the FDS default values during these experiments.

This first test provided a baseline for the usage of the structure, which

was used to classify the MI readings taken under abnormal crowd conditions.

Evacuation

The second test overwhelmed the capacity of the structure under evacuation

conditions, for this the input rate was increased to 30 evacuees per second,
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Figure 8.8: Topography of test configuration. Position A marks the centre
of the entry point for pedestrians, position B marks the centre of the exit.

and the desired escape velocity was increased to 3.5ms−1, which is more in

line with that of an emergency evacuation. Figure 8.10 shows the MI and

force recorded during this simulation.

This second simulation was to be compared to the baseline results to see

if the different MI values between simulations can be used to identify the

changing levels of order present in the two instances.

False Positives Results

Simulations were run 64 times, and the results averaged to obtained the

data shown here. The MI of the system under normal usage, Figure 8.10,

reaches a stable level of I ≈ 0.6bits after roughly 50 seconds of simulation,

and remains at this level for the duration of the simulation. If we compare

this MI reading to that obtained from the simulations modelling the actual

events during the Station nightclub evacuation, we see that the MI in this

system is considerably higher than that recorded at even the most ordered

section of that evacuation (maximum recorded during station simulation was

I ≈ 0.2bits). The force figures recorded during this test run were negligible,

with the average force reading being F ≈ 30Nm−1 across the population.

The results from the simulations in which the structure is overwhelmed,

Figure 8.11, show a far lower lower base MI reading, I ≈ 0.2bits, after

approximately 50 seconds of simulation time. The force readings, again

averaged across all agents, show a drastic increase, with an average value of

F > 100Nm−1 for the majority of the simulation.

These results show that the MI analysis, in this case, is relatively insen-
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Figure 8.9: Images showing the false positives tests after a sufficient amount
of time for the system to settle into a representative state. Top: First test,
showing low usage. Bottom: Higher usage test.
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Figure 8.10: MI (green) and Average Force (red) against time for the simu-
lation described previously.
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Figure 8.11: MI (green) and Average Force (red) against time for the simu-
lation in which the evacuation capacity of the structure is overwhelmed.

sitive to minor local disorder caused by the specific geometry of the topology

in question, yet is robust enough to register a lower MI level as the disorder

in the system increases.

If we contrast these two sets of results, we can see the difference in

the magnitude of the MI between normal and evacuation conditions is pro-

nounced.

False Positives Conclusions

As we can see, the simulations shown here suggest that the MI technique

can accurately distinguish between normal crowd movement and the dis-

order caused by evacuation conditions. Despite the fluctuations in crowd

movement, caused by the obstacle placed in the agents’ path, the MI re-

mains at a relatively high level during the baseline simulation. The same

structure, when overwhelmed, shows much lower MI readings, which is in

general accord with the changes in the amount of force present during each

simulation.

This is not to say that our technique could not cause false positives, as

the analysis cannot be mathematically proven and it is therefore impossible

to state that the technique is infallible. Were this technique to be applied to

the real-time analysis of CCTV footage, the analysis under non-emergency

conditions will be used to form a type of baseline for the MI of the sys-
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tem under normal operating parameters, which will allow for more accurate

identification of abnormal behaviours or usage patterns which will signify

that a problem exists.

8.6 Summary

During this Chapter we have described the application of the MI technique to

analyse a historical example of a crowd disaster . By calculating the Mutual

Information of a system of interacting individuals, we are able to determine

the level of disorder present within a crowd, which correlates strongly with

the amount of force present. We have shown that consistently low levels of

Mutual Information are correlated with high levels of force within a crowd.

This method removes the need for computationally expensive physical force

calculations, and allows planners to quickly and easily incorporate an explicit

measure of crowd disorder and crush (see Section 3.4) into their simulation

scenarios.
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Chapter 9

Conclusions and

Recommendations

9.1 Conclusions

This study defined a technique which offers a metric that can be used to

ascertain the threat of crush during an evacuation without requiring com-

putationally expensive physical force calculations.

1. Demonstration of the Need for a New Methodology

During this work we defined the two existing methodologies for the

identification of crush, these being the explicit and implicit method-

ologies. We have discovered that the two methods of detection offer

distinctly different benefits. The explicit methodology is the less im-

plemented method of measurement, and relies on computationally ex-

pensive force calculations to be carried out to calculate the amount of

force that each pedestrian is subject to. The implicit methodology has

no such overhead, as it relies on the analysis of simulation output and

the experience of the engineer to allow a subjective classification of the

crush danger present in a specific simulation. The trade-off between

these two techniques was identified as that of the accuracy and objec-

tivity of the explicit method for the running speed and malleability of

the implicit.

The result of this finding was the identification of the desirability of
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an analytical technique which offers the objectivity, or automation, of

the explicit methodology (thus going part of the way to removing the

need for highly trained engineers to facilitate the simulation of large-

scale evacuation scenarios), but also negates the need for physical force

calculation, allowing simulations to run a much greater speed.

2. Identification of MI

The demonstration of this gap in the market for a low computational

cost technique that metricises crush danger, lead us to investigate sta-

tistical techniques that can be applied during a simulation that allow

the measurement of order and turbulence, thus allowing a comparison

to physical force.

In mutual information (MI) we discovered a malleable technique which

has been widely implemented for numerous classification, statistical,

and measurement tasks across multiple disciplines. The MI metric

had never previously been employed for the task of crush detection or

evacuation analysis, and has never before been applied to the general

analysis of a human or social system.

3. Proof of the Technique

The MI technique was tested on a simple evacuation topology, in which

crush conditions could be ensured. This scenario was a single 225m2

room with one exit of just 2m, and a population of 200 persons (see

Section 7.5). In this scenario the MI technique performed excellently,

offering results which correlated with the measurement of force to a

degree of 0.98.

4. Analysis of a Historical Event

The Station Nightclub disaster, a well-known example of an evacua-

tion in which the presence of crush conditions was known to have lead

to serious injury and loss of life, was recreated, and analysed using

the MI technique. Two sets of experiments were undertaken (see Sec-

tion 8.4.1). Firstly, the evacuation was set up analyse the affects of an

“ideal” evacuation of the station nightclub, i.e. an emergency evacua-

tion in which the optimum use of the entire exit capacity was ensured.

Secondly, a recreation of the evacuation conditions during the disaster

itself, in which exit capacity was both reduced (as happened during
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the event due to the stage door becoming inaccessible due to fire), and

an uneven utilisation of the remaining exit capacity was introduced.

These experiments demonstrate the suitability of the MI analysis to

measure the force within a full scale evacuation, with the differences

in MI between the idealised evacuation and the recreation of the con-

ditions of the disaster itself showing highly noticeable differences in

output that can be used to measure the safety of both the idealised

scenario and the historical recreation of the disaster.

9.2 Recommendations for Further Research

The application of the MI technique to a cellular automata (CA) model will

allow, for the first time, a model which can measure the danger of crush

conditions forming whilst operating at a drastically reduced computation

time compared to other methods. The inclusion of the MI metric in a CA

model will allow myriad further possibilities for research, most notably the

use of a force measurement model for experimentation with genetic algo-

rithms, which may be required to run simulations millions of times before

they satisfy the termination condition, e.g. a predetermined minimum evac-

uation time or acceptable levels of force throughout the simulation. This

level of computation is inhibitive for current force measurement models due

to their long run-times, but is possible using a modified CA that implements

MI as their primary force metric.

The MI technique could be improved after an investigation into the anal-

ysis of multiple subsystems of an evacuating population. As we have seen

from the work with the SFM, the changing patterns of evacuation can be

seen by viewing the MI of the system as it changes over time. It has been

shown that in a single room evacuation, the MI technique can identify a

breakdown in ordered flow into turbulence and disorder. The logical exten-

sion of this is to discover a way by which the entire population of a large

scale evacuation can be reliably segmented into different sub-populations, to

allow for the calculation of both highly local and global order simultaneously.

A method such as the k-means clustering algorithm could be employed for

this purpose, but the limits at which this type of analysis may operate will

have to be thoroughly tested.

Methods such as the Fraser-Swinney algorithm (see Section 5.8) provide
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means by which a system of interconnected particles can be subdivided into

uneven regions of interest, which has been shown to offer more accurate an-

alytical results than a strictly defined analysis such as that presented here.

The problem encountered with applying the Fraser-Swinney algorithm to

the field of evacuation is that of agent mass, i.e. the physical space that

may be occupied by a single agent at any one time. Many works that deal

with dynamically subdividing the sphere of operation (such as [34]), or ex-

trapolating results from a subset of data (such as [153]) generally deal with

mass-less particles which, theoretically, can allow the entire population to

occupy the exact same physical space at one time. When dealing with these

systems, the dynamic subdivision of the game-space has shown reasonable

results, yet the same technique offers multiple problems when applied to

a system that contains, and also relies on, mass. The usefulness of such

techniques, and their applicability to evacuation systems must be investi-

gated, and possible modifications to existing algorithms which will allow

their application to such systems researched.

This thesis provides the ground work from which this, and other, re-

search can be investigated. The aim being the application of the techniques

contained within this thesis in a real world context.
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[31] Ehtamo, H., Heliövaara, S., Hostikka, S., and Korhonen,

T. Modeling evacueeS exit selection with best response dynamics.

Pedestrian and Evacuation Dynamics 2008 (2010), 309–319.

[32] Elsevier. Science direct. Online, 2011. Last accessed: 23.09.11.

185



[33] Fahy, R. F. Exit 89 - an evacuation model for high-rise buildings

- model description and example applications. In Proceedings of the

Fourth International Symposium on Fire Safety Science (1994).

[34] Fraser, A. M., and Swinney, H. L. Independent coordinates for

strange attractors from mutual information. Physical Review A 33

(1986), 1134–1140.

[35] Fraser-Mitchell, J. Modelling human behaviour within the fire

risk assessment tool CRISP. Fire and materials 23, 6 (1999), 349–

355.

[36] Freud, S. Group psychology. The standard edition of the complete

psychological works of Sigmund Freud (1921), 1953–1974.

[37] Fruin, J. J. Pedestrian Planning and Design. Metropolitan Associa-

tion of Urban Designers and Environmental Planners, Inc, NY, USA,

1971.

[38] Fruin, J. J. The causes and prevention of crowd disasters. In First

International Conference on Engineering for Crowd Safety (1993), El-

sevier.

[39] Galea, E., Blake, S., Gwynne, S., and Lawrence, P. The use

of evacuation modelling techiques in the design of very large transport

aircraft and blended wing body aircraft. The Aeronautical Journal of

the Royal Aeronautical Society (April 2003), 207–218.

[40] Gierlichs, B., Batina, L., Tuyls, P., and Preneel, B. Mutual

information analysis - a generic side-channel distinguisher. In Cryp-

tographic Hardware and Embedded Systems - CHES 2008. Spriner-

verlag, 2008.

[41] Gierlichs, B., Batina, L., and Verbauwhede, I. Revisiting

higher-order dpa attacks: Multivariate mutual information analysis.

Lecture Notes in Computer Science 5985 (2010), 221–234.

[42] Gill, J., and Landi, K. Traumatic asphyxial deaths due to an

uncontrolled crowd. The American journal of forensic medicine and

pathology 25, 4 (2004), 358.

186



[43] Gönci, B., Nagy, M., and Vicsek, T. Phase transition in the

scalar noise model of collective motion in three dimensions. The Eu-

ropean Physical Journal 157, 1 (2008), 53–59.

[44] Grosshandler, W., Bryner, N., Madrzykowski, D., and

Kuntz, K. Report of the Technical Investigation of the Station Night-

club fire. Tech. rep., National Institute of Standards and Technology,

USA, 2005.

[45] Grosshandler, W., Bryner, N., Madrzykowski,

D., and Kuntz, K. Report of the technical investi-

gation of the station nightclub fire. Published online at

http://fire.nist.gov/bfrlpubs/fire05/PDF/f05032.pdf, Nov 2007.

[46] Gwynne, S., Galea, E., Lawrence, P., and Filippidis, L. Mod-

elling occupant interaction with fire conditions using the buildingEX-

ODUS evacuation model. Fire Safety Journal 36, 4 (2001), 327–357.

[47] Gwynne, S., Galea, E., Lyster, C., and Glen, I. Analysing the

evacuation procedures employed on a thames passenger boat using the

maritimeEXODUS evacuation model. Fire Technology 39, 3 (2003),

225–246.

[48] Gwynne, S., Galea, E. R., Owen, M., Lawrence, P. J., and

Filippidis, L. A review of the methodologies used in the computer

simulation of evacuation from the built environment. Building and

Environment 34 (1999), 741–749.

[49] Hartley, R. V. L. Transmission of information. Bell System Tech-

nical Journal 7, 3 (1928), 535–563.

[50] Havard, C. Black’s medical dictionary. Rowman & Littlefield Pub-

lishers, Inc., 1990.

[51] Helbing, D., Farkas, I., and Vicsek, T. Simulating dynamical

features of escape panic. Nature 407 (2000), 487–490.

[52] Helbing, D., Johansson, A., and Al-Abideen, H. Dynamics of

crowd disasters: An empirical study. Physical Review E 75, 4 (2007),

46109.

187



[53] Helbing, D., and Molnár, P. Social force model for pedestrian

dynamics. Physical Review E 51, 5 (1995), 4282–4286.

[54] Henein, C., and White, T. Front-to-back communication in a

microscopic crowd model. Pedestrian and evacuation dynamics 2008

(2010), 321–334.

[55] Herman, E. Some laughed in e2 stampede, January, 19 2007.

[56] Hughes, R. The flow of human crowds. Annual review of fluid me-

chanics 35, 1 (2003), 169–182.

[57] IEEE. Ieeexplore. Online, 2011. Last accessed: 23.09.11.

[58] International Maritime Organisation. Ineterim guidelines for

evacuation analyses for new and existing passenger ships. MSC/Circ.

1033, IMO, 2002.

[59] Irani, M., and Peleg, S. Improving resolution by image registra-

tion. Graphical Models and Image Processing 53 (1991), 231–239.

[60] Jaynes, E. T. Gibbs vs boltzmann entropies. American Journal of

Physics 33 (1965), 391–398.

[61] Jeong, J., Gore, J., and Peterson, B. Mutual information anal-

ysis of the EEG in patients with alzhiemer’s disease. Clinical Neuro-

physiology 112 (2001), 827–835.

[62] Jin, Y. Studies on human behavior and tenability in fire smoke.

[63] Johansson, A., Helbing, D., Al-Abideen, H. Z., and Al-

Bosta, S. From crowd dynamics to crowd safety: A video-based

analysis. Advances in Complex Systems (ACS) 11, 04 (2008), 497–

527.

[64] Johnson, N. Panic at the who concert stampede: An empirical as-

sessment. Social Problems 34 (1987), 362.

[65] Kirchner, A., Nishinari, K., and Schadschneider, A. Fric-

tion effects and clogging in a cellular automaton model for pedestrian

dynamics. Physical review. E, Statistical, nonlinear, and soft matter

physics 67, 5 Pt 2 (2003), 056122.

188



[66] Kirchner, A., and Schadschneider, A. Simulation of evacuation

processes using a bionics-inspired cellular automaton model for pedes-

trian dynamics. Physica A: Statistical Mechanics and its Applications

312, 1-2 (2002), 260 – 276.

[67] Kisko, T., and Francis, R. EVACNET+: A computer program to

determine optimal building evacuation plans. Fire Safety Journal 9,

2 (1985), 211–220.

[68] Knops, Z., Maintz, J., Viergever, M., and Pluim, J. Normal-

ized mutual information based registration using¡ i¿ k¡/i¿-means clus-

tering and shading correction. Medical image analysis 10, 3 (2006),

432–439.

[69] Knudsen, E., and Konishi, M. Mechanisms of sound localization

in barn owl (tyto alba). Journal of Computational Physiology 133

(1979), 13–21.

[70] Kocher, P. Timing attacks on implementations of diffie-hellman,

rsa, dss, and other systems. In Advances in Cryptology - CRYPTO

’96 (1996), pp. 104–113.

[71] Kocher, P., JAffe, J., and Jun, B. Differential power analysis.

In Annual international cryptology conference: CRYPTO ’99 (1999),

vol. 1666, Springer Berlin, pp. 388–397.

[72] Korhonen, T., and Hostikka, S. Fire dynamics simulator with

evacuation: Fds+ evac, technical reference and users guide, 2009.

[73] Korhonen, T., Hostikka, S., Heliovaara, S., and Ehtamo, H.

Fds+evac: An agent-based fire evacuation model. Proceedings of the

4th Intl. Conference on Pedestrian and Evacuation Dynamics (2008).

[74] Korhonen, T., Hostikka, S., Heliövaara, S., Ehtamo, H., and
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[112] Rényi, A. On measure of information theory. In Proceedings of the

4th Berkeley Symposium on Mathematics, Statistics and Probability

(1960), pp. 547–561.

[113] Richmond, P., and Romano, D. Agent based gpu, a real-time 3d

simulation and interactive visualisation framework for massive agent

based modelling on the gpu. In Proceedings International Workshop

on Supervisualisation (2008).

[114] Rogsch, C., Schreckenberg, M., Tribble, E., Klingsch, W.,

and Kretz, T. Was it panic? an overview ab out mass-emergencies

and their origins all over the world for recent years. In Proceedings

of the 4th Intl Conference on Pedestrian and Evacuation Dynamics

(Berlin, Germany, 2008), Springer.

[115] Rondoni, L., and Cohen, E. Gibbs entropy and irreversible ther-

modynamics. Nonlinearity 13 (2000), 1905.

[116] Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M.,

and Hawkes, D. Nonrigid registration using free-form deformations:

193



application to breast mr images. Medical Imaging, IEEE Transactions

on 18, 8 (1999), 712–721.

[117] Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T.,
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Abstract

Fatal crush conditions occur in crowds with tragic frequency. Event organizers and architects are often
criticised for failing to consider the causes and implications of crush, but the reality is that both the
prediction and prevention of such conditions offer a significant technical challenge. Full treatment of
physical force within crowd simulations is precise but often computationally expensive; the more common
method of human interpretation of results is computationally “cheap” but subjective and time-consuming.
This paper describes an alternative method for the analysis of crowd behaviour, which uses information
theory to measure crowd disorder. We show how this technique may be easily incorporated into an
existing simulation framework, and validate it against an historical event. Our results show that this
method offers an effective and efficient route towards automatic detection of the onset of crush.

Introduction

Overloading pedestrian routes can quickly lead to the development of crush conditions (should the neces-
sary conditions be evident), as observed in the Hillsborough [1], Station nightclub [2] and Saudi Arabian
Hajj [3] incidents. A more sophisticated understanding of how crush conditions form is therefore critical
for the architectural design of highly-populated, contained regions (such as ships, nightclubs and stadia),
as well as for the planning of events and formulation of incident management procedures. Using this in-
sight, we can begin to understand how and why crush forms as a result of poor design or lack of strategic
planning. A first step towards this is a method for detecting the early-stage formation of crush, which is
the problem we address here.

Computer-based simulation studies are often used to analyse the movement of individuals in various
scenarios, often as part of a performance-based design. Such work encompasses the study of historical
events [3], the examination of evacuation procedures [4], and the design of aircraft [5]. Existing simulation
frameworks include EXODUS [6], PEDFLOW [7] and EVACNET [8] , and these offer a range of “real
world” features, including exit blockage/obstacles, occupant impatience and route choice [9]. However,
the phenomenon of crush is one that has received relatively little attention so far from the designers of
evacuation simulations, and any simulations do not explicitly consider the effects of crush.

We therefore seek a method for the detection of crush conditions that may be easily integrated into
existing software for crowd simulation. Such a method will have a significant impact on both computer-
based evacuation studies and real-time analysis of video images (facilitating, for example, the development
of automated crush alarms based on CCTV images). In this paper we give a description of our proposed
method, which is based on applying information theory to a system of interacting particles. We show
how our method may be easily integrated into an existing simulation framework, and test it using details
of an historical event. Simulation results show that our method provides an excellent “early warning”
indicator of the emergence of crush conditions.
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Methods

Within an evacuation simulation, the two distinct states of a crowd are characterised by the behaviour of
individuals. Under “normal” conditions, crowd flow is highly ordered, with the orientation and speed of a
specific individual being similar to that of those in their immediate locality. The onset of more turbulent
flow sees individuals exhibit a marked change in behaviour, as they change speed and alter course in
order to avoid others [3]. We therefore wish to identify these distinct states, and achieve this by applying
statistical analysis techniques to the movement of individuals within crowds.

In the general case, the Mutual Information (MI) of two discrete time-series variables, A and B, is
defined as:

I(A,B) =
∑

i,j

p(ai, bj) logn

p(ai, bj)

p(ai)p(bj)
(1)

where p(ai), p(bj), and p(ai, bj) are the individual probability and joint probability distributions of A and
B. In general terms, MI quantifies the interdependence of two variables; therefore if A and B are entirely
independent, then I(A,B) = 0, but in all all other cases I(A,B) > 0. In the context of crowd behaviour,
we measure the interdependence of both location and heading over a population of individuals, in order
to establish the degree of order within the crowd. An ordered crowd (e.g., one exhibiting stable laminar
flow) will have relatively high MI, since individuals are moving in a synchronised fashion. An entirely
disordered (i.e. turbulent) crowd will exhibit an MI value of zero, since individuals are acting completely
independently of one another. We seek to detect the onset of such turbulence, as an early indicator of
crush.

The three variables considered for analysis are the 2-dimensional Cartesian coordinates (xi and yi)
of each individual, i, together with their heading (Θi). We forego the use of speed within our analysis,
as there is often little variation in speed during incidents with high population density. We measure MI
using Equation 2, taken from [10]:

I(X,Θ) =
∑

i,j

p(xi, θj) log2

p(xi, θj)

p(xi)p(θj)

I(Y, Θ) =
∑

i,j

p(yi, θj) log2

p(yi, θj)

p(yi)p(θj)

I =
I(X, Θ) + I(Y, Θ)

2
(2)

The base simulation environment used is the Fire Dynamics Simulator (FDS) [11], a fluid dynamics-
based model of fire and smoke flow. The FDS+Evac module [12] is an agent-based evacuation simulation
extension for FDS, and is based on the established social forces model [13, 14] (SFM) of pedestrian
movement. An important feature offered by FDS+Evac is that of route selection, which allows the user
to embed “knowledge” about available exits into each individual.

Importantly, the evacuation module for FDS includes the calculation of physical forces, which we will
need in order to assess the correlation between crush conditions and mutual information. We integrate
the MI analysis code into the FDS environment as a set of natively coded (FORTRAN 90) libraries. As
the technique is entirely passive, i.e. it will not affect the results of the evacuation, there are no concerns
regarding the effect this may have on the outcome of the simulations (although there is clearly a small
overhead incurred by the MI calculations). The MI of the system is calculated at every simulation time
step, and the results averaged over 100 time steps before being recorded. This equates to one MI reading
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per second of real-life evacuation time, which gives sufficient granularity. We record the average physical
force within a simulation in the same way. In what follows, we use the default FDS+Evac parameter
values, as described in [15]. All simulation code is available at http://code.google.com/p/mi-crush/

Results

In order to validate the technique, we choose a well-documented incident that illustrates the significant
hazards that an emergency evacuation may present. In 2003, the Station Nightclub (Rhode Island, USA)
was the scene of one the worst nightclub fires in recent history, when a pyrotechnic device, used by the
rock band Great White, ignited sound insulation foam in the walls and ceiling of the venue. According
to the official report into the incident [2], a crush formed at the main escape route within 90 seconds of
the start of the fire, trapping patrons inside the club as it filled with smoke. Estimates of the nightclub
occupancy vary between 440 and 460; a total of 96 people died during the incident.

We select this particular event on the basis of (a) the existence of a significant amount of professional
film footage taken inside the nightclub during the incident - ironically, the film crew was present to record
a documentary on nightclub safety, after a fatal incident elsewhere four days previously, (b) availability
of supporting witness evidence and other associated documentation, and (c) results from substantial
simulation tests using FDS as part of the subsequent (extensively documented) formal investigation.
We therefore have information on the initial distribution of individuals at the beginning of the incident,
visual evidence of crush during the incident, and the final locations of each of the victims, as well as an
additional set of validated simulations with which to compare our own results. We first ensure that our
simulation produces valid outcomes in terms of evacuation profiles (by testing it against the historical
event), and then specifically test the MI technique.

Exit profile validation

Here, we first ensure that our own simulation produces general evacuation outcomes that are in line with
reality (as well as previously validated simulations). We begin by rendering the floor plan of the Station
in FDS, using official architectural plans taken from [2] (Figures 1- 2). We use a figure of 450 for the
number of agents to be simulated, and their initial distribution is specified according to [2] (i.e., with
high crowd densities in the Dancefloor and Sunroom areas, and lower densities in other areas).

We run two sets of experiments; the first, idealised set is designed to provide baseline evacuation data,
and the second set replicates, as closely as possible, the conditions and events in the nightclub during the
event. Investigation findings into the spread of the fire suggest that the Stage door became impassable 30
seconds from the start of the incident, so we reflect this fact in our simulation by closing that exit after
that period has elapsed. The official investigation was able to identify the exit paths for 248 of the 350
people who escaped from the building. The distribution of evacuees through the three other available
exit routes was found to be non-uniform, with estimates of between one-half and two-thirds of patrons
attempting to leave via the familiar main exit, rather than the under-utilised (and less familiar) Main Bar
and Kitchen doors. Reports suggest that only 12 people left via the Kitchen door during the evacuation.
In order to simulate this distribution of path choices, patrons are assigned a probability of knowledge for
each exit route. Exactly 12 evacuees are made aware of the existence of the Kitchen exit, and of the
remaining patrons, 100% are given knowledge of the main door, 50% are given knowledge of the main
bar door, and 25% are given knowledge of the stage door. On the other hand, the idealised evacuation
was structured as follows: there was no blocking of the Stage door, and agents in the simulation had full
knowledge of all exit routes. This scenario represents the minimum time it would take to evacuate 450
people from the Station Nightclub, with optimum use made of available exit structures and no hindrance
from fire, smoke, or unfavourable environmental conditions.
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We compare our simulation results with those obtained by the National Institute of Standards and
Technology (NIST), and detailed in the official investigation report [2]. In these experiments, NIST
investigators used both Simulex [16] and buildingEXODUS [17] to evaluate both idealised and realistic
evacuation scenarios. The results obtained were very similar for both packages, so we concentrate on
the buildingEXODUS output. Within the “realistic” simulation, occupants were instructed to always
select the nearest exit, and the Stage door was also closed after 30 seconds. In the NIST simulation, 91
simulated occupants left via the building front door, which is precisely the number reported in the official
investigation. Thirty-five simulated occupants used either the platform door or the kitchen door, which,
again, is consistent with the evidence.

We therefore conclude that the official NIST simulations provide a sound basis for validating our own
simulations. The results of the comparison are depicted in Figure 3. We note only that the results
obtained (in terms of leaving profiles over time) are very similar to those reported by NIST, which
supports the argument in favour of the soundness of our model.

MI technique validation

Having validated the model in terms of broad outcomes, we now consider the problem of Mutual Infor-
mation “false positives” (that is, a situation in which “normal” pedestrian flow is incorrectly flagged, via
MI measurement, as potentially leading to crush). In order to mitigate against this, we first benchmark
the method using a trivial evacuation topology under both emergency and non-emergency conditions.
This structure is designed to test the capacity of the MI technique to distinguish between laminar flow
and turbulence within the system.

The topology chosen is a single room, measuring 25m×50m, with an exit placed at the east wall, and
an identical entrance occupying the same position on the west (Figure 4). The room contains a single,
large obstacle, placed in such a way that it disrupts the flow of evacuees. We then perform two sets
of runs; the first set tests usage of the structure under “normal” conditions, and the second set tests it
during an evacuation situation.

For the normal situation, we begin with 20 evacuees at the west of the structure, with additional
evacuees added through the west entrance at a rate of 10 evacuees per second of simulation time. The
desired leaving speed for is initially the FDS default value of 1.25ms−1. All other parameters are set at
the FDS default values. For the simulated evacuation, we aim to overwhelm the capacity of the structure
by increasing the input rate to 30 evacuees per second, and increasing the desired escape velocity to
3.5ms−1.

We now compare the results of both sets of runs to see if the values for MI differ between them (and
thus may be used to identify the different levels of order observed in each situation). Each situation is
simulated 50 times, and the results averaged. The MI of the system under normal usage (Figure 7 reaches
a stable level of I ≈ 0.6 bits after roughly 50 seconds of simulation (after which point there are sufficient
individuals in the system to render the results meaningful), and remains at this level for the duration
of the simulation. The force figures recorded during this test run are negligible, with the average force
reading being F ≈ 30Nm−1 across the population.

The results from the simulations in which the structure is overwhelmed (Figure 8) show a far lower
basal MI reading, I ≈ 0.2 bits, after approximately 50 seconds of simulation time. The force readings,
again averaged across all agents, show a significant increase, with an average value of F > 100Nm−1 for
the majority of the simulation.

These results confirm that MI analysis is relatively insensitive to minor local disorder, but is robust
enough to register a lower MI level as disorder in the system increases. We observe a significant difference
in MI between normal and evacuation conditions, leading us to conclude that our method is unlikely to
generate false positive results, and is capable of detecting the disorder present at the onset of crush.
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Crush detection

The next stage is to specifically investigate the emergence of crush in our “real-world” scenario, and to see
if crush is easily and reliably detectable using Mutual Information. We repeat the validation experiments
described above, but this time we measure the average force and the level of MI within a simulated
population of 450 individuals (again, for both idealised and representative evacuation scenarios). For
each scenario, the simulation was run 64 times (across a cluster computer), and the results averaged.

We first consider the results of the force measurements, comparing them with evidence from the
investigation. The force measurements for both scenarios are depicted in Figure 9. Across both scenarios
the levels of force initially increase as the evacuation commences, but it rapidly decays during the idealised
version of events, since evacuees are more uniformly distributed. Force levels drop to zero at around
175s, when everyone has left the building, which is broadly in line with the findings of the NIST idealised
situation simulation (195s ± 7s).

In the representative scenario, we observe a sharp initial rise in average force, which initially peaks
after around 65 seconds. This is directly in line with the findings of the official investigation, which states
that a significant crowd crush occurred by the main entrance (where around a third of the fatalities
occurred) at the beginning of the time period 71-102 seconds into the fire.

“Prior to 1-1/2 minutes into the fire, a crowd-crush occurred in the front vestibule which
almost entirely disrupted the flow through the main exit. Many people became stuck in the
prone position in the exterior double doors [2, p. 232].

The camera angle shifts away from this door after 0:07:33 (0:01:11 fire time) and does not
return to the front door until 0:08:04 (0:01:42 fire time). When the camera returns at 0:08:04
(0:01:42 fire time) a pile-up of occupants is visible. Details regarding how the pile-up occurred
are not available from the WPRI-TV video; however, the interruption in flow of evacuating
occupants apparent [in Figure 6-3] supports the contention that the disruption may have
initiated early during the 31 second period when the camera was pointed elsewhere.” [2, p.
182]

In Figure 10, we show a screenshot of the simulation after 65 seconds. The MI measurements are
depicted in Figure 11. We expect to see, as the simulations begin, an initial rise in the MI of the
system. As evacuees prepare to exit the structure they tend towards alignment, exhibiting similar escape
trajectories to other evacuees in their locale. In a maximally efficient evacuation this period of high
order (and high MI) would be sustained throughout, as evacuees would not alter their course in order to
increase their chances of effective egress. However, in an evacuation with a great deal of competition, the
order in the system quickly breaks down, as the evacuees reposition themselves in order to increase their
probability of escape. MI may therefore may be used as an order parameter, where falling values of MI
signify the breakdown of order within a specific evacuation. We observe marked quantitative differences
in the MI readings between the two simulations. During periods of disorder, MI should tend towards
zero, whereas, during ordered segments of the evacuation, MI will rise significantly.

In the idealised simulation, we see a sharp initial peak, as individuals all make for the exits at the
same time. We then observe a drop, as the evacuees begin to compete for the available exit capacity.
An increase in order is seen as one exit route begins to clear, creating the rise in MI at 50 < t < 75,
falling back into a state of disorder as the final evacuees clear this (main bar) exit . The MI reading then
shows a progressive rise as the final evacuees exit the structure. The sharp drop in MI at the end of the
simulation occurs when the number of remaining evacuees falls below some (very low) threshold.

The MI readings obtained from the simulation of actual events show a far more disordered evacuation,
with an initial rise in MI (signifying order) quickly disintegrating into disorder. The MI reading at t ≈ 50s
approaches zero; this period of highly disordered evacuation remains as the exits to the structure are
overwhelmed (see Figure 10). The exit rate of evacuees during this period is extremely low, which is
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confirmed by the exit profiles (see Figure 3). The MI level slowly rises towards the end of the evacuation,
but, notably, the higher levels of order seen in the idealised evacuation are not reached until t ≈ 300s, 5
minutes after the start of the evacuation.

We then perform a correlation analysis in order to establish the relationship (if any) between force and
Mutual Information. A scatterplot of force versus MI suggests the existence of a statistical association
(Figure 12), so we perform a simple linear correlation test. The results of this are as follows:

P = 2.2e−16

Rp = −0.571

The P-value obtained is much lower than the standard significance level for a two tailed test (α = 0.01),
(P ≪ α), which confirms the significance of the result. The correlation coefficient, Rp = −0.571, confirms
that there exists a negative correlation between MI and force within an evacuation scenario.

Discussion

Fatal levels of force can emerge within a crowd as a result of pushing, leaning or (less commonly) vertical
stacking of bodies. Images of steel barriers bent out of shape (for example, in the aftermath of the
Hillsborough disaster [1]) graphically illustrate the extent to which force levels can grow. Fruin reports
the results of several studies (either after-the-event forensic tests, or controlled experiments) which suggest
that forces exceeding around 1500N could prove fatal [18]. Crush is therefore an important factor to be
considered in simulation studies aimed at improving structural designs or evacuation/control procedures,
along with other aspects such as panic or physical obstacles.

Crush detection methods used to date in simulation studies may be classified into two generic groups;
explicit methods and implicit methods [19]. The implicit methodology is the traditional approach, and is
still highly popular, being the preferred technique in a large number of simulation models (see [20] for an
extensive review). It relies on the expert analysis of factors such as population density and environmental
considerations, yielding a human interpretation of the output of the simulation to help determine whether
or not crush might have occurred. Although subjective, this method is still popular, because it does not
require the use of computationally expensive force calculations, relying instead on human expertise and
intuition.

The explicit modelling of crush conditions incorporates an assessment of crush into the model itself,
and therefore requires less human analysis than the implicit approach. Usually based on the calculation of
Newtonian force values, and operating in 2-dimensional space, explicit methodologies are used to detect
the presence of crush conditions in a much more objective fashion. By simulating the physical force
exerted by each individual, they calculate the precise amount of force present within a crowd. While the
explicit methodologies offer a measure of the forces acting within a crowd, the calculations needed to
assess levels of force require much more computer processing power than an implicit method. Experiments
show that the computation time required by a model that explicitly quantifies force can be up to 100 times
greater than that required by an implicit model [21]. We therefore require a computationally “cheap”
alternative if large-scale, iterative studies are to be effective.

In this paper we have described a novel technique for detecting the onset of crush in crowd evacuation
scenarios. By calculating the Mutual Information of a system of interacting individuals, we are able
to determine the level of order within a crowd. We have shown that consistently low levels of Mutual
Information are correlated with high levels of force within a crowd. This method allows planners to
quickly and easily incorporate objective measures of crowd disorder and crush into their simulation
scenarios. Future work will focus on refinements of the technique, as well as investigation of its “real-
world” applicability. A key extension of the method will incorporate partitioning of the simulated space
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in order to detect the location (as well as the existence) of crush. Another possible addition would be
the consideration of social and psychological factors within our simulation. We are also particularly
interested in the potential for using our technique to analyse real-time video images, with the eventual
aim of developing an on-site automatic early warning system for crush and disorder at large-scale events.
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Figure Legends

Figure 1. Environment to be simulated. Floorplan of Station nightclub, taken from official re-
port.

Figure 2. Station nightclub. Rendering in FDS+Evac.

Figure 3. Initial validation results. Comparison of leaving profiles between our simulation (FDS)
and official NIST findings.

Figure 4. Layout of benchmarking environment. Position A marks the centre of the entry point
for pedestrians, and position B marks the centre of the exit.

Figure 5. Screenshots of benchmarking simulations. Normal scenario.

Figure 6. Benchmarking simulations. Evacuation scenario.

Figure 7. Results of benchmarking simulations. MI (green) and Average Force (red) plotted
against time for normal scenario.

Figure 8. Results of benchmarking simulations. MI (green) and Average Force (red) plotted
against time for evacuation scenario.

Figure 9. Average force comparison for real and idealised scenarios. Across both scenarios
the levels of force initially increase as the evacuation commences, but it rapidly decays during the ide-
alised version of events, since evacuees are more uniformly distributed.

Figure 10. Typical screenshot of our fire scenario simulation after 65 elapsed seconds.
This illustrates the significant crush around the main entrance and sunroom area (high levels of force
are shown in red).
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Figure 11. Mutual Information comparison for idealised and representative scenarios.
This illustrates the difference between ordered and disordered evacuations in terms of MI.

Figure 12. Scatterplot of force versus Mutual Information. This suggests the existence of a
statistical association.
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Abstract:  This paper describes the application of Mutual Information to the detection of crush in a 
well-established model of pedestrian evacuation.  We show that Mutual Information offers a computationally 
low-cost  alternative  to  "expensive"  physical  force  calculations  for  the  detection  of  crush  in  evacuation  
simulations.

Introduction

A number of software environments [1] exist for the simulation of large-scale egress situations, such as the 
evacuation of buildings, stadia and other enclosed spaces. These environments offer sophisticated tools for the  
analysis of human behaviour under evacuation conditions, and can recreate many of the social, environmental,  
structural,  and  psychological  factors  that  may  affect  egress.  Although  such  simulation  environments  can 
accurately model many aspects of crowd behaviour, they generally lack the capability to analyse the effects of 
the physical forces that build up within crowds. These forces can give rise to crush conditions (or simply crush), 
and are commonly cited as a major cause of injuries and fatalities during emergency evacuations [2-6].  The 
inclusion of crush analysis in simulations has traditionally been achieved by one of two methods;

1. Implicit
The implicit approach is the traditional method of qualifying the presence of crush within a simulation. 

It requires experienced engineers and technicians to analyse simulation output, such as population densities and 
environmental considerations, to ascertain the likelihood of crush becoming a danger during an evacuation. This 
is, however, a fundamental weakness of this technique - since it requires the knowledge of an expert analyst, the 
identification of crush is inherently subjective and difficult to automate.

2. Explicit
This approach requires the deployment of physical force calculations to quantify the level of crush that 

arises within a crowd. Most often based on traditional physical force equations, the explicit analysis of crush 
conditions offers a highly accurate measure of the force that exists within a simulation, but incurs a significant 
computational overhead.

We propose the use of Mutual Information (MI) [7] as a new approach to the analysis of crush conditions within 
a simulation environment. MI is a probabilistic method of analysing order within variable sets, and offers the  
possibility of automated qualification of the presence of crush within a simulation, whilst requiring a fraction of  
the computational overhead required by physical force calculations. In this paper we first define the notion of 
crush, before discussing previous work on the analysis of crowd movements. We then give a formal definition  
of Mutual Information, before describing its application to an established model of pedestrian movement. We 
conclude with a discussion of possible future work.

Crush

The danger presented by crush conditions has been recognised for some time as a major cause of injury and 
death during emergency situations [8,9]. The build-up of force within groups of people is known to be a major  
cause of  compressive asphyxia (or  traumatic asphyxia), which is the application of pressure on or about the 



chest  or  ribcage which leads to  shortness  of  breath and, eventually,  suffocation.  These types of  injury are  
characteristic of situations in which crush conditions are present.

There have been a number of situations where crush has caused a great number of injuries or deaths. Some of 
the most notable include the Hillsborough disaster [2], the Gothenburg dancehall  fire [3], the E2 nightclub 
incident [4], the Station Nightclub fire [5], and the Mihong bridge disaster [6].  The precipitating factors for the 
formation of crush are many and varied, e.g. emergency evacuation due to fire (Gothenburg and the Station 
Nightclub) or poor event management (Hillsborough, Mihong bridge). The numerous causes of crush, and the 
dynamically  changing  nature  of  crowd  behaviour,  can  therefore  make  it  difficult  to  precisely  define  the 
parameters under which a situation may lead to crush conditions forming.

Previous Work

After analysing video recordings of the Hajj pilgrimage in Saudi Arabia (2006), it was noted by Johansson et al 
[10] that the crowd exhibited a marked change in behaviour under certain conditions. This change in behaviour 
appeared to mark a transition between laminar ("smooth") flow of individuals, and a more turbulent flow.  We 
therefore suggest that this latter state of crowd behaviour immediately precedes the formation of crush, and that 
its detection can therefore act as an indicator of imminent crush conditions.  It has already been shown that  
Mutual Information may be used to identify phase transitions within a system of interacting, self-propelled  
particles  [11].   This  work focused on identifying kinetic  phase transitions in  the  Scalar  Noise Model  [12] 
(SNM), a system of dimensionless particles that exhibits flocking behaviour under correct parameterisation. By 
measuring the MI of the system, it is possible to detect the point (the kinetic phase transition) at which the 
system moves from chaotic or stochastic behavioural characteristics to exhibiting signs of order.

We  suggest  that  these  transitions  within  evacuating  crowds,  from  one  state  of  collective  behaviour  to  a 
qualitatively different behavioural state, may be considered analogous to the kinetic phase transition identified  
in the SNM.  It is by treating the formation of crush as a phase transition (which can be identified within an  
evacuation) that we form the basis of applying the MI technique for crush analysis and detection.

Mutual Information

Mutual Information (MI) is a statistical measure of the mutual dependence of two variables, and has been used 
extensively as an analytic technique [13,14]. Equation 1 expresses the mutual information (I) of two discrete 
signals (A and B).

P(ai) is the probability of A having the value ai;  P(ai, bj)  is the probability of A having the value ai and B having 
the value bj. The base of the logarithm (n) defines the units in which the MI will be measured; this is commonly 
base 2, giving the MI in  bits. In general terms, MI quantifies the measure of  interdependence between two 
signals or variables; therefore, if A and B are entirely independent then I(A,B) = 0, but in all other cases MI is 
non-zero.

Experimentation

The  Social  Forces  Modem  [15]  (SFM)  is  a  well-established  framework  for  the  simulation  of  pedestrian  
movement. A particle-based model, the SFM can accurately recreate many of the social,  psychological  and 
physical forces present within evacuating crowds. We use the Mutual Information technique to analyse a version 
of the SFM identical to that presented in [15], but with two important additions. Firstly, in the original model an 
injured agent forms an immovable obstacle, still able to exert force (both physical and social) on agents within 
their interaction radius. This behaviour causes problems during simulations, as it makes possible the creation of  



a  barricade of  injured  agents  between  the  evacuating  mass  and  the  only  available  exit.  This  causes  the  
simulation to end with evacuees remaining in the structure. Simulations in which this occurs are declared void,  
the results unusable, and the experiments must be restarted. To counteract this issue, we add a rule dictating that  
when agents succumb to injury they are removed from the simulation after an arbitrary amount of time. This  
allows the increase in force that an injured agent may incur to be fully taken into account within the simulation, 
but prevents the barricading behaviour mentioned previously. Secondly, in order to obtain a baseline for the MI 
of the system (i.e. a null value), a period of "milling" is introduced. This takes the form of a 10 second "pre-
evacuation" period inserted at the start of each experiment, during which agents have no clearly defined goal.  
This addition yields a baseline value for the MI in each simulation, i.e. the value of the MI for a random geo-
spatial distribution of agents. Therefore all experiments show the start of the experiment, at  t  = 10s− ,  with 
evacuation beginning at t = 0s as per the standard model.  

Tests are run using a combination of the spatial and directional data taken from the agents during multiple 
simulations of the Social Forces model.  The MI is calculated as shown below:

With this approach the coordinate and directional data on each agent is analysed in such a way that the spatial  
clustering  is  abstracted  from  the  analysis,  i.e.  the  two  positional  variables  are  analysed  separately.   This 
counteracts problems associated with the measurement of the Euclidean distance between particles, in which the 
MI acts as a better metric of clustering than of the alignment of behavioural characteristics. This analysis relies 
solely on on the changing behaviours of the agents (more precisely, the changing velocity vectors), rather than 
their spatial clustering. The results are depicted in Figure 1.

We observe that the peak in MI is pronounced, with a large increase in the MI as the agent vectors become 
ordered (at t > 0s), displaying the characteristic rise in MI that would be expected as a system attains order. The 
more relevant characteristic of the mutual information - the severe drop in MI that identifies the deterioration of  
the system into a state of disorder (1s < t < 3s) - is also highly pronounced.

Figure 1 - MI and Average Force, as recorded against simulation time.



Conclusions

Despite this work still being in at an early stage, our preliminary results show that by employing the Mutual 
Information technique it is possible to detect the point at which the formation of dangerously high levels of  
force  become  likely,  without  the  need  to  calculate  the  precise  levels  of  force present  within  a  specific 
simulation. As this method of crush analysis negates the need for the actual calculation of physical forces acting 
between agents, it is thought that it provides a far less computationally expensive method of analysis, although 
the exact cost saving has yet to be calculated.

Future Work

The investigation into the use of Mutual Information as a detector for crush is still in its infancy, but research 
into this area will continue, with a particular focus on the use of MI as an automated indicator of crush.  Exact  
computational cost savings must also be calculated.  These steps will make the case for the MI analysis to be 
regarded as a valid and effective alternative to traditional crush detection methods
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Summary. Several simulation environments exist for the simulation of large-scale
evacuations of buildings, ships, or other enclosed spaces. These offer sophisticated
tools for the study of human behaviour, the recreation of environmental factors
such as fire or smoke, and the inclusion of architectural or structural features,
such as elevators, pillars and exits. Although such simulation environments can
provide insights into crowd behaviour, they lack the ability to examine potentially
dangerous forces building up within a crowd. These are commonly referred to as
crush conditions, and are a common cause of death in emergency evacuations.

In this paper, we describe a methodology for the prediction and mitigation of
crush conditions. The paper is organised as follows. We first establish the need for
such a model, defining the main factors that lead to crush conditions, and describ-
ing several exemplar case studies. We then examine current methods for studying
crush, and describe their limitations. From this, we develop a three-stage hybrid
approach, using a combination of techniques. We conclude with a brief discussion
of the potential benefits of our approach.

1 Introduction

The events of 9/11 were widely seen and examined in the safety community
and beyond. The catastrophic outcome and the minutiae of the evacuation
have been examined by numerous official agencies, research organizations,
media outlets, as well as Hollywood. Given this, the events of the day are
incredibly well known; possibly more so than any other recent event.

Tall buildings are designed based on the assumption that an evacuation
is managed, i.e. that the evacuation will take place in stages, if required,
with only certain sections of the population evacuating at any one time. The
evacuation will usually take place from those floors closest to the incident,
then occur from more distant floors. This assumption is key to the successful
evacuation of these tall structures; the stair capacity is calculated based on
the assumption that the majority of the population follow the evacuation
procedure. This means that the stair capacity within the structure will not
be sufficient for the simultaneous evacuation of the entire population.
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After 9/11 the assumption that tall buildings can be evacuated in a phased
and controlled manner is being questioned. Instead, it is often suggested
that evacuees will be reluctant to remain behind in a structure, fearful of a
failure in structural integrity similar to that experienced in the twin towers.
Given the nature of the incident on 9/11 and the possible consequences of
remaining within the building (either by choice or through compulsion), it
is now suggested that residents may choose to ignore the instructions of a
staged procedure and instead move to the stairwells. This may then overload
the available staircase capacity.

Given this is the case, the consequences of failure should be examined. If
there is a failure in the acceptance of procedure then either the failure should
be made as graceful as possible, or measures should be taken to resolve the
issue; in either case, an understanding of the consequences of failure is vital.

It should be noted that during these scenarios it is not assumed that
the conditions are dependent upon the existence of panic, which is difficult
to predict and rarely the dominant evacuee behaviour[1]. In reality, it has
been found that panic and irrational behaviour are a direct effect of the
deteriorating conditions, rather than the cause of the deterioration itself.
Here we are assuming that crush conditions may develop simply because of
the overloading of a route and may therefore be influenced by architectural,
procedural, or behavioural factors.

One of the consequences of a full evacuation from a tall structure, that
was originally designed for phased evacuation, is the overloading of an es-
cape route in a relatively short period of time. One of the most dangerous
consequences of such an incident is that the exits, such as those at the base
of stairways, would become overloaded, leading to many evacuees arriving
at a bottleneck; i.e. the exit component is used above and beyond its design
capacity. This may then lead to conditions similar to those observed at the
Rhode Island[2] and Gothenburg[3] incidents, where crush incidents and falls
were evident and lead to blocked egress routes and injuries. It is therefore
critical for the safety of tall structures to develop an understanding of: (1)
Exactly when these conditions may develop? (2) What factors need to be
present in order for crush conditions to occur? (3) When do these conditions
become critical? (4) How can we establish the possible consequences of this
type of incident and design against them?

Here, we outline a program of work that will enable the assessment of ar-
chitectural and procedural designs in order to establish whether they are
prone to crush conditions developing in certain scenarios, what the con-
sequences of this might be, and how we might best mitigate against this
event. The development of a similar tool is mentioned in the recommenda-
tions within the 9/11 report[4]:

NIST recommends that tall buildings be designed to accommo-
date timely full building evacuation of occupants when required in
building-specific or large-scale emergencies such as widespread power



Prediction and Mitigation of Crush Conditions in Emergency Evacuations 3

outages, major earthquakes, tornadoes, hurricanes without sufficient
advanced warning, fires, explosions, and terrorist attacks. Building
size, population, function, and iconic status should be taken into ac-
count in designing the egress system. Stairwell capacity and stair dis-
charge door width should be adequate to accommodate counter-flow
due to emergency access by responders.

Improved egress analysis models, design methodologies, and supporting
data should be developed to achieve target evacuation performance for the
building population by considering the building and egress system designs
and human factors such as occupant size, mobility status, stairwell tenability
conditions, visibility, and congestion.

Although numerous egress models exist that are able to simulate general
movement, none are able to simulate all of the conditions highlighted in NIST
recommendations, along with a comprehensive crush model. Developing such
a model, that is publicly available and that can be embedded into existing
egress tools, meets an identified need and will allow for a broad and vital
examination of these situations.

2 Definition of Crush Conditions

There are many factors that play a part in the initial formation of crush con-
ditions during an evacuation, these can be classified under the broad headings
of spatial, temporal, perceptual, procedural, and cognitive components.

2.1 Spatial

The spatial components of crush conditions are the simplest to quantify. They
relate to the ratio of space available for egress to the number of persons that
are expected to use the escape routes. Fruin defined this metric as the “level
of service”[5], and highlighted the level at which the population density has
the potential to facilitate the formation of crush as “Level of Service F”,
which is the density at which a single individual would have, on average,
less than 0.46m2 of space available to them. It should also be noted that the
International Maritime Organisation (IMO) considers an evacuation to be
unsafe if, for 10% of the overall evacuation time, the density of the evacuees
reaches 4 persons per square metre[6]. This is due to the fact that, even at
relatively low levels of force, prolonged exposure to “light” crush conditions
may still cause serious injury or death.

2.2 Temporal

Temporal factors of egress vary, and depend heavily upon the rate at which
conditions change. The RSET (Required Safe Egress Time), defined as the
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elapsed time between the initialisation of an evacuation and the final evacuee
reaching safety[7], i.e. the time required for a complete evacuation under ideal
circumstances. The ASET (Available Safe Egress Time), defined as the total
time available for evacuation[7], is a far more specific metric, as it will vary
depending on the catalyst for evacuation (i.e. the nature of the emergency).
Traditionally, the RSET and ASET metrics have been used to determine
whether or not the occupants of a building could evacuate under specific
conditions. Generally, a structure could be considered safe if the ASET value
exceeds that of the RSET, i.e. there is more time available for an evacuation
than would be required. The rate at which conditions change can compound
time constraints, as the ASET calculation will change dynamically with the
changing conditions. The Rhode Island nightclub fire (see Section 3.1), is a
good example of this, and shows how the rapidity with which an incident
escalates can place severe time constraints on the evacuating population.

2.3 Perceptual and Cognitive Factors

Perceptual and cognitive factors that lead to the formation of crush conditions
are intrinsically linked, as an individual must rely on their perception of
events in order to decide upon a course of action. The individuals’ perceived
level of threat plays a large part in this, as it has the most direct effect on the
decision making process. Whilst the perception of threat plays a great part
in the decision making process, the relationship between these two factors
is highly complex, and can result in individuals displaying a wide range of
behaviour, from the altruistic at one end of the scale, right through to highly
competitive egress behaviour, e.g. running, pushing, etc.

The perception of information also plays a key part in the formation of
crush. During emergency situations, it is often found that information relating
to the current conditions is slow to propagate throughout a crowd of people,
e.g. the evacuees that are placed further back in a crowd may not be aware of
the conditions further ahead. This has been found in many situations, such
as the Hillsborough disaster (see Section 3.4), where the people attempting
to enter a structure were unaware of the already dangerously overcrowded
conditions that existed inside. In these cases the persons at the rear of a
crowd can compound the situation by producing additional force that will
propagate forward through the crowd, and also by limiting the extent to
which the pressure could be alleviated by inadvertently blocking the most
immediate exit routes.

2.4 Procedural

The procedural components of crush were already alluded to (see Section 1),
and centre around the inability, or unwillingness, of evacuees to follow strict
evacuation plans in emergency situations. This type of problem is extremely
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common in public buildings, where a great number of the occupants will
be unfamiliar with the structure and have little, or no, knowledge of the
evacuation plans, e.g. hospitals, town halls, museums, stadiums, etc. When
an evacuation takes place under these circumstances the crowd will often
attempt to leave by the most familiar route, generally the route by which
they entered, even though there may be exits in closer proximity. An example
of this type of behaviour can be found in the Rhode Island nightclub incident
(see Section 3.1), where the majority of the crowd converged at just one point
of escape, even though there were numerous other exits available.

2.5 Summary

The formation of crush conditions within crowds is a highly complex, emer-
gent phenomena, and the causes of this cannot be explained by simply at-
tributing it to the presence of panic within the crowd, which is widely re-
garded as being somewhat of a fallacy. We suggest that crush conditions can
only be reliably defined as a combination of all the factors mentioned above,
which culminate in the individuals’ inability to fully control their direction
and speed of movement, thus leading to an increase in the physical forces
that they are subject to.

3 Case Studies

Here we present case studies representing situations where the formation of
crush conditions have led to both serious injuries and fatalities. Each case
study also represents some failure within a system (e.g. failure to limit the
capacity of a structure to safe levels, failure to adhere to official guidelines or
fire laws, failure to follow crowd control policies, etc). These types of failure
are often observed in cases where the evacuation of a building leads to the
death or injury of many people. Failures of this kind are common, and we
believe that they should be expected, and be considered during the design
of buildings, the creation of evacuation plans, and especially in simulated
evacuation exercises.

3.1 Rhode Island Nightclub

The Station Nightclub, Rhode Island, was the scene of a tragedy when, on
February 20th 2003, a fire during a rock concert caused 100 fatalities and
significant injuries[2]. The fire started when the band’s pyrotechnics ignited
the flammable soundproofing foam that surrounded the stage, and quickly
filled the club with dense, choking smoke. The fire spread from the stage,
igniting a large portion of the ceiling, and within five minutes of the initial
ignition those outside the club observed flames breaking through a portion
of the roof.
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Despite the existence of four possible exits, the majority of the crowd
headed for the most familiar exit; the entrance to the club. This exit point
was soon overwhelmed, and people began to trip or fall during their escape.
The official time-line of the fire (compiled by NIST[2]) states that just 1
minute and 42 seconds after the start of the fire, there existed a “pile” of
people, blocking the main exit and making further egress through that route
impossible.

3.2 Gothenburg Dancehall

When fire broke out in a dancehall in Gothenburg, Sweden, on October 28th
1998, it claimed the lives of 63 people and injured over 180 others. The first
floor venue in question was packed to over double its 150 capacity, with
officials estimating that there may have been over 400 people in attendance.
Eye-witness accounts of the incident state that population density prior to
the start of the fire was already at dangerously high levels, with a number of
the occupants observing that there were so many people present that they
were unable to dance[3]. Shortly before midnight, a fire was discovered in one
of the two stairways leading out of the first floor dancehall, and those near
to the affected area began to evacuate. No announcement was made to the
remaining occupants, and some survivors who had been at the far end of the
hall when the fire was initially discovered stated that they smelled smoke but
had initially believed it to be cigarette smoke and felt no need to evacuate.
As the full evacuation began, the one remaining exit to the building quickly
became overwhelmed, and the mass of evacuees began to trip or fall over
others, further diminishing the capacity of the exit.

3.3 E2 Nightclub Incident

In Chicago’s E2 nightclub on Feb 17th 2003, the security guards’ use of
pepper spray, to intervene during an altercation, became the catalyst for an
evacuation that claimed the lives of 21 patrons[8]. When the security guards
released the pepper spray in an enclosed space, the effects of the chemical
compound on the surrounding crowd were significant. Those close to the
attack began to rush toward the exit in an attempt to escape the pepper
spray, which by this point was already spreading around the club. As the
initial wave of evacuees made their way through the club, those who had not
witnessed the incident began to fear for their safety, especially as it became
obvious that some form of chemical agent was present.

Within seconds the entire crowd, consisting of over 1500 people, rushed
towards the main exit. The door to the street opened inwards, whilst the
door leading to the dance floor opened outwards. As people rushed from the
club, the upper door flew outwards, pushing those on the upper landing down
the steep flight of stairs. As more people attempted to exit, they were forced
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on top of the fallen evacuees, and the bodies began to “stack up” and block
the exit. It was the tremendous pressure placed upon the fallen evacuees that
caused the 21 deaths during this incident. The most common cause of death
was asphyxiation.

3.4 Hillsborough

The Hillsborough disaster[9] (Sheffield, UK), claimed the lives of 96 people
and caused the hospitalisation of a further 300. Due to the heightened public
interest in the incident (the match had been transmitted live on English
television), and also because of the multiple perceived failures on the part
of the authorities, the Hillsborough disaster has become one of the most
thoroughly investigated crowd disasters in living memory.

The tragedy at Hillsborough stadium occurred when police stewarding
the match made the decision to open an extra set of gates, intended as an
exit, in order to relieve the extreme levels of congestion that were forming as
the crowds tried to enter the stadium through the turnstiles at the Lepping’s
Lane end of the ground. These gates did not have turnstiles, and the result
was an influx of up to 5,000 fans through the narrow corridor that lead into
the standing terrace. The sudden arrival of so many additional fans pushed
the capacity of the central pens far above their legal maximum, and soon a
dangerous crush formed at the front of the stands. Those fans still entering
the stadium were unaware of this, and continued to attempt to enter the
stand as the people inside were slowly crushed against the crowd barriers
and fences at the front of the stands. The conditions at the front of the
terrace became so bad that most of the 96 victims died from asphyxiation,
or other crush related injuries, within five minutes of the game starting.

4 Previous Work in the Field

In general, each crush detection method that has been used to date can
be classified into one of two generic groups; explicit methods and implicit
methods. These two generic methodologies are outlined below, along with a
brief discussion of their relative strengths and weaknesses.

4.1 Implicit

The implicit methodology is the original crush detection approach, and is
still highly popular, being used in a large number of simulation models[10].
This methodology relies on the expert analysis of factors such as population
density (see Section 2.1), behavioural analysis, and environmental considera-
tions. The analysis of conditions within these models, therefore, is left to the
engineer, who interprets the output of the simulation to determine whether
crush conditions have occurred.
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Implicit modelling does not take into account the possibility that evac-
uees may exhibit any competitive egress behaviours (e.g. pushing), as there
is no accurate method for simulating these behaviours without the inclu-
sion of force calculations. This makes it ideally suited for general evacuation
simulations; i.e. timely evacuations under “ideal” conditions.

As the exact force being exerted upon individuals is never calculated,
the precise physical danger that may exist in the evacuation can never be
quantified. The only assertion that can be made, based on an implicit analysis,
is that crush conditions may form during the evacuation in question. The
benefit of this approach is that, as the physical force calculation are not
performed, it requires far less processing power than other methods.

There are too many implementations of the implicit methodology to list
here but a popular, well documented example is Simulex[11], from Crowd
Dynamics Ltd.

4.2 Explicit

The explicit modelling of crush conditions incorporates an assessment of crush
into the model itself, and therefore requires less user analysis than the implicit
approach. Often based on the calculation of Newtonian force values, and
generally operating in 2-dimensional space, explicit methodologies may be
used to detect the presence of crush conditions much more precisely than
would be possible with implicit modelling techniques. By simulating the exact
forces being exerted by each individual, and enabling the propagation of forces
throughout a crowd, the explicit methodology can be used to measure the
exact amount of force that any individual is subject to. This, therefore, offers
the possibility of quantifying the dangers that individuals may face, which is
not possible using the implicit modelling techniques.

Whilst the explicit methodologies offer an accurate measure of the forces
acting within a crowd, the calculations needed to measure force require much
more processing power than an implicit implementation, so there exists a
definite trade-off between the two techniques.

The most well-known implementation of this methodology is the Social
Forces Model[12], which combines the force equations mentioned above with
the modelling of the social forces acting within crowds. Although the origi-
nal Social Forces Model was created as a learning tool, rather than an full-
featured simulation environment, the model has recently been incorporated
into the FDS+Evac Simulation environment[13].

5 Our Proposed Approach

We propose a three stage approach to this problem, consisting of separate
processes for the identification, qualification, and quantification of crush



Prediction and Mitigation of Crush Conditions in Emergency Evacuations 9

conditions. By employing different methods for all three stages of the anal-
ysis, we believe that the entire process may be completed at relatively low
computational expense. We hope to implement these techniques as part of a
suite of applications, that would offer existing egress simulations the possi-
bility of including either full or partial crush analyses, depending on the level
of accuracy required.

Two of the three techniques that we propose are still relatively novel
and untested, so will require validation before they would be suitable for
integration into existing environments. Each methodology will be fully tested
as stand-alone applications, but a full validation will be required before the
concepts are proven. At present, the team intends to attempt to integrate
the applications into the open source simulation environment FDS+Evac, to
enable full validation of the models, including historical data validation and
peer validation[14].

5.1 Identification

In order to first identify crush conditions, we propose treating their forma-
tion as a simple phase transition, similar to those found in many social and
biological systems[15]. In many of these systems a point is reached at which a
change (often an abrupt change) can be observed, this change is characterised
as a movement away from one general rule of system behaviour to another,
different set of observable behaviours that dictate the state of the system as
a whole.

In egress situations, a crowd will usually head towards the most familiar
exit, often forming groups either before or during this action. The evacuees
that make up these groups will have similar trajectories to their closest neigh-
bours and will be travelling at a similar speed (i.e the flow, within each group,
can be considered laminar). This would form the general rule for the ordered
state of this system (see Fig 1 - A). If the evacuees are impeded in any way
during their exit (e.g. they come across an obstacle in their path, or reach a
congested area), they will reduce their speed and be forced to change their
directions of movement, or forced to remain stationary (i.e. the flow becomes
non-laminar, or turbulent). This would form the general rule for the disor-
dered state of this system (see Fig 1 - B).

Buckingham’s Π Theorem[16] is a key theorem in dimensional analysis,
and can be used to create a set of dimensionless variables that allow the anal-
ysis of an unfamiliar system, i.e. a system for which the equations governing
its behaviour are either partially or wholly unknown. We will apply this the-
orem to the agent data within an egress model, to reduce the system to a
number of dimensionless quantities, which can then be analysed to ascertain
the state of the system at any one time. The advantage of this approach
is that both the agent’s physical variables (e.g. speed, direction, mass) and
their decision making variables (e.g. perceived level of threat, tendency to-
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A B

Fig. 1. Slide A shows an example of the movement vectors of evacuees during the
ordered state of the system, with all vectors showing a good deal of similarity. Slide
B shows example vectors during the disordered state, with the vectors varying a
great deal more in both direction and magnitude

ward competition) are considered, which will provide a more comprehensive
analysis of crush than could be achieved by movement variables alone.

Further analysis is achieved by the use of Mutual Information (MI)[17], a
technique that has been used to quantify the similarity of two signals. This
methodology was first used by Wicks et al [18] to detect phase transitions
within a well-known flocking model[19], and was found to accurately identify
the point of phase transition even when only a subset of the agents’ data were
analysed. We will employ a similar methodology to detect the formation of
crush conditions within localised groups of agents, using the MI method to
quantify the extent to which our “idealised” (ordered) agent-state (see fig 1),
differs to that of the current state. We will dynamically restructure agents into
groups, based on their current locale, and treat each group as a system within
its own right, tracking a subset of each “sub-system” to identify the earliest
stages of crush formation without the need to track every agent throughout
the entire evacuation.

5.2 Qualification

To qualify the presence of crush conditions within the crowd, we intend to use
a time-series, neural network classifier[20] to analyse the agent variables and
movement patterns. This will give an indication of the amount of pressure
that is likely being exerted on the individual in the crowd. The classifier
acts as a statistical data analysis tool, and is configured to recognise the
conditional similarities shared by individuals affected by the onset of crush
conditions.

The neural network approach has been selected for two main reasons.
Firstly, after the initial training program, the neural network approach re-
quires far less computational power to make its classification than other sta-
tistical analysis techniques, reducing the classification during normal running
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conditions to little more than matrix arithmetic. The reduction in computa-
tion, in relation to other techniques, will free up system resources for utili-
sation by other tasks. Secondly, the method of classification used in a neural
network is highly robust, as it does not rely on any “system specific” variables,
which makes the deployment of this technique possible across a wide range
of existing egress simulations, without the need for extensive configuration.

By employing a time-series, neural network[21] (i.e. a neural network that
accepts input in the form of sequential data representing changes over time),
we also hope to identify the qualitative similarities of individuals exhibiting
competitive egress behaviour. It will enable us to analyse growing behavioural
trends, rather than just classify an agent’s behaviour at one precise moment
in time.

To train the network, we will collect time-series agent data from a “full-
force” simulation, i.e. a simulation in which a physical force model is running,
which should enable the network to recognise the qualitative similarities that
individuals affected by crush share. We hope that training the network using
this type of data will allow the network to associate the existence of a variety
of conditions to the presence of crush, therefore negating the need to engage
a physics engine for all subsequent simulation runs.

5.3 Quantification

To fully quantify the effects of force propagating through a crowd, a phys-
ical force model is employed, based on the explicit crush detection method
mentioned previously(see Section 4.2). We currently plan to implement this
physical force model as a rigid body dynamics engine[22], with representations
of such variables as mass, velocity, friction, and force propagation, modelled
according to the laws of Newtonian mechanics. The engine will solve simpli-
fied physical equations in two dimensional space, resulting in good approx-
imations[23] of force calculations that can be completed in as little time as
possible.

The possibility of modelling this phenomena as a soft body dynamical
system will be investigated, as recent research has highlighted the need to
incorporate calculations for the compression forces acting within crowds[24],
but our initial research into the feasibility of this approach leads us to be-
lieve that the calculations involved would be prohibitively computationally
expensive at this time.

5.4 Hybrid Approach

The methodologies outlined above may each be employed individually, to
add differing degrees of crush analysis to a simulation, but we also propose
a conceptual framework, within which all three methodologies could be com-
bined to create an analytical tool that applies crush calculations intelligently.
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This approach will allow us to retain the accuracy of force calculations whilst
reducing the computational expense associated with it.

The proposed approach requires the analysis of conditions based on locale,
i.e. analysing conditions in different locations as if they were separate systems,
and the escalation of analytical accuracy upon confirmation of crush. Figure 2
shows the flow of control across the three applications.

Model Input
Identification

MI Analysis

Crush present
Qualification

ANN Classifier

Crush present
Quantification

Physics Engine

Physics Engine
Output

No Yes

No Yes

Fig. 2. Process flow diagram depicting the interactions between the three applica-
tion, according to the suggested framework.

By applying the more accurate analyses only once crush has been con-
firmed by the previous method, the most computationally expensive tech-
niques will only be applied to affected areas, rather than across the entire
behaviour space. This leaves us with the possibility of having different analy-
ses being applied simultaneously, within the same simulation, but in different
geographical locales, e.g. the identification method is running on a corridor
where the flow of pedestrians is laminar, whilst at the exit of a stairwell,
where a crowd has formed, the analysis would be carried out by the quan-
tification method. The advantage of engaging each application in this way
is that it will ensure that the most serious effects of crush, the build up of
forces within a crowd, are measured precisely, without calculating force for
all agents within the simulation.

6 Benefits of our Approach

This approach to crush analysis will provide a new tool, suitable for inte-
gration into existing simulation environments, that will allow engineers the
ability to incorporate different levels of analysis for each specific simulation.
The inclusion of such analytical methods will add a further dimension to
traditional models, and further the realism of current simulation tools.
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The addition of crush analysis techniques into models will allow engineers
to better test the robustness of evacuation procedures, carry out more realistic
recreations of historical incidents, and more comprehensively investigate the
safety of architectural designs. It is the aim of this project to supply further
tools to the evacuation sciences community that will allow this to happen,
and act as a further weapon in the armoury of the engineers, technicians, and
analysts that operate in this field.

7 Conclusion

The need for further crush analysis techniques has been clearly stated, and
the phenomena that we wish to simulate precisely defined. We have pre-
sented three methodologies for the detection, confirmation, and measurement
of crush conditions within a simulation environment, and a theoretical frame-
work within which they could operate in unison, reducing computational ex-
pense without a reduction in accuracy.

The short-term goal of this research is simply to prove the suitability of
these concepts for use in the analysis of crush, by the creation of a prototype
implementation that may be used for experimentation. In the long-term we
are looking to integrate this prototype into a larger simulation environment,
to prove its feasibility as an “off the shelf” component to an evacuation model.
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