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ABSTRACT 

Avian frugivores across Southeast Asia, and in the Philippines in particular, are 

seriously threatened owing to massive loss of habitat and direct exploitation through 

hunting and the pet trade. Their declines may have dire consequences for wider 

ecological processes as many frugivores are also seed dispersers. Conservation 

programmes in the Philippines are crippled by a lack of knowledge on the status, 

abundance and ecology of frugivores which extend to other endemic species in the 

country. This PhD identified factors that influenced frugivore community composition as 

well as drivers of frugivore distribution across Luzon, the largest island in the Philippines. 

It also developed cost-effective methods for gathering baseline ecological data to inform 

conservation measures for frugivores and other little-known species over large 

geographical areas. This included a way of correcting for the bias caused by non-random 

transect placement in a study site which is often the case during bird surveys in the 

tropics. 

Twenty-five species of pigeons, parrots and hornbills were surveyed using 

distance sampling along nearly 500 km of line transects at 14 sites across the island of 

Luzon. I documented surprisingly few reliable disappearances of frugivores from 

individual forest patches – in fact this and other fieldwork since 2000 has increased the 

known extent of occurrence of several species. However, green racquet-tail Prioniturus 

luconensis may have suffered a real range contraction. More alarming was the absence of 

large parrots from most sites with apparently intact habitat surveyed. Even where present, 

large parrots exhibited lower densities than related species in similar habitat in Southeast 

Asia. For six species, including four of six parrots, the largest estimates of population in 

any reserve in Luzon numbered < 1000 individuals, and nearly one-third of all 
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populations in reserves were < 100. At minimum viable population (MVPs) of 500, 

frugivore communities in all but 2–3 of the largest reserves are not expected to remain 

intact. Although seed dispersers may fare better than seed predators (large parrots), a 

major collapse of frugivore communities may occur across Luzon, with serious 

implications for ecosystem functioning. 

The Philippines comprise islands of different origins, climate and habitat, a 

situation which is expected to produce a biogeographically complex set of animal and 

plant communities, which themselves are influenced by anthropogenic actions. I explored 

similarities between frugivore communities across 24 sites in Luzon using non-metric 

multidimensional scaling and attempted to explain site differences in terms of a series of 

geographical, habitat, and disturbance predictors using Mantel tests. In both analyses 

using species presence/absence and densities, sites/species did not seem to ordinate 

simply according to region. Consistent outliers included three sites in West Luzon and 

two in Central Luzon, and, in terms of species, several large rare parrots and pigeons. The 

strongest correlates of site dissimilarity were differences in altitude and several human 

disturbance measures, including path width, canopy closure and a ‘human impact index’ 

(reflecting human pressures and forest management). While Luzon’s frugivore 

communities have been no doubt shaped by natural biogeographical processes, their 

effects have been largely obscured by anthropogenic environmental degradation. There is 

an urgent need to understand better the drivers of frugivore species distribution in order 

to develop appropriate conservation management strategies. To identify precise habitat 

associations of 18 avian frugivores, the presence/absence of each species along 400 m 

long segments of 213 transects was examined in relation to vegetation structure and 

composition, measured at 1227 plots, using generalised linear mixed models (the 24 sites 

were entered as a random factor). Individual frugivore species showed unique patterns of 
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association with habitat variables but five species were high-altitude specialists while six 

preferred lowland sites. Another six species strongly preferred primary forest while one 

thrives in disturbed forest with the attendant increase in food availability. I then ran 

generalised additive mixed models (GAMMs) to identify any non-linearities in responses 

of species to habitat features. Relationships with habitat variables were on the whole 

simple linear or quadratic for the majority of species, suggesting that there were gains to 

be had in improving habitat right along the disturbance gradient. 

Precise and accurate estimates of wildlife population density and sizes are 

essential to evidence effective conservation programmes. Line transect distance sampling 

is a robust method in that variability in detectability due to distance from the transect line, 

but many conservation studies cannot, by necessity, be based on random transect 

placement, but instead use transects along existing trails. This study estimates the bias in 

abundance estimates due to non-random placement of transects along hunter trails (path 

width <100cm) and access roads (path width >100cm) as compared with random paths 

(especially cut transects). Path types were similar in altitude, but differed in terms of tree 

girths, slope, canopy covers, and presence of crops. Hunter trails yielded lowest densities 

and encounter rates for nine of 12 species and lowest effective strip width for seven of 12 

species. Highest densities and encounter rates were along random paths for seven of 12 

species. Differences in density across trail types were driven by differences in encounter 

rates rather than differences in detectability. Density estimates calculated from surveys 

which used non-random transects should be upwardly corrected by on average 90% (18-

187%). In fragmented forests where random placement of transects is not always 

possible, this method of correction will allow species density estimates from sampling 

along hunter trails and access roads to be adjusted. 
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Top on the list of research and conservation priorities arising from this PhD 

would be to map the remaining populations of the Luzon-endemic Green Racquet-tail, 

Luzon Racquet-tail and Flame-breasted Fruit-dove and to formulate conservation 

intervention measures for these threatened/near-threatened species taking into account 

habitat preferences and threats to the species. Forest and reserve management 

programmes and policies in the Philippines and elsewhere in the tropics would greatly 

benefit from empirical data on species occurrence and accurate estimates of population 

abundance using methods described in the study. Sound ecological research by local 

biologists/ecologists must be encouraged to further our understanding of species 

requirements, species tolerance to disturbance, and viability of populations, especially of 

the many unique and/or threatened species in the Philippines and the wider SE Asia 

region.  
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C h a p t e r  1  

ECOLOGY AND CONSERVATION OF PARROTS AND OTHER LARGE 

AVIAN FRUGIVORES OF LUZON, PHILIPPINES 

1.1 Ecology and conservation of parrots and other large avian frugivores:  

the Philippines in context 

Nearly half of the Philippines’ terrestrial vertebrate fauna is endemic and about a quarter 

of this is threatened, securing the country “the hottest of hotspots” designation among 34 

biodiversity hotspots in the world (Myers et al., 2000, Conservation International, 2007). 

A very high proportion of threatened birds found in the country are endemic: 81% (60 

endemic out of 74 threatened species) (BirdLife International, 2013). Forest loss due to 

logging, mining and slash-and-burn farming as well as direct exploitation for food and the 

pet trade have been identified as the major threats to the Philippines’ endemic birds 

(BirdLife International, 2003). Of twelve Philippine parrot species, all but one is endemic, 

and eight are globally threatened with extinction (IUCN, 2011). Likewise, six out of nine 

hornbills in the country, all endemic, are threatened, the highest number for any country 

(IUCN, 2011). Pigeons are not spared, with 13 out of 34 species in the threatened (4 

Vulnerable, 2 Endangered and 4 Critically Endangered) and near-threatened categories 

(IUCN, 2011).  

The situation is compounded by a chronic lack of information on endemic 

species, this extending even to charismatic forms such as parrots (Collar 1998) and large 

frugivores. As a case in point, the nest and breeding behaviour of the common and 

endemic parrot Guaiabero Bolbopsittacus lunulatus has only been recently described by 

birdwatchers and photographers (Rosell II et al., 2007, Arndt, 2005). A cursory scan of 
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the definitive guide to Philippine birds yielded five endemic parrots and 11 

endemic/near-endemic pigeons without breeding information (Kennedy, 2000).  

Seed dispersal by frugivores is probably one of the most important among the 

many vital ecological and social services that birds provide (Whelan et al., 2008, 

Sekercioglu, 2006). Consequently, changes in frugivore assemblage, declines in their 

population or possible future extinction threaten further the already dwindling tropical 

forests in the Philippines and the communities they sustain. Moreover, the biological 

diversity in the Philippines is not yet fully established with at least 270 plants, terrestrial 

birds, mammals, reptiles and amphibians discovered in the past 25 years, not including 

insects, marine life, and new species awaiting description (de Leon and Lita, 2012). 

Conservation action is desperately needed as the likelihood is high of many species 

becoming extinct before they are discovered. The present study was designed in part to 

narrow the information gap on frugivore ecology in order to direct future conservation 

action. 

1.2 Environmental change in the Philippines 

1.2.1 The importance of the Philippines as a hotspot 

A combination of exceptional levels of endemism and serious levels of habitat loss 

characterize biodiversity hotspots, a concept adopted by Conservation International in 

1989 as its institutional blueprint (Myers et al., 2000, Conservation International, 2007). It 

sought to prioritize conservation action around the world in areas of highest threat to 

habitat and high levels of species endemism by setting a requirement of at least 1,500 

species of endemic vascular plants and at least 70% loss in original habitat for a region to 

qualify as a hotspot (Conservation International, 2007). This conservation prioritization 

scheme was followed by Mittermeier et al. (1997), who identified 17 “megadiversity” 

countries throughout the world that collectively harbour more than two thirds of the 
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world’s biological wealth (Mittermeier et al., 1997). The Philippines is both a 

megadiversity country and biodiversity hotspot in its entirety (Myers et al., 2000, 

Conservation International, 2007). It is considered by many as the world’s biologically 

richest country, having the highest number of unique terrestrial and freshwater species 

(and threatened unique species accordingly) per unit area, with most of the species 

crammed in only 7% remaining original vegetation (See Table 1.1) (Conservation 

International, 2007, Heaney and Regalado, 1998). Birdlife International has identified 117 

Important Bird Areas (IBA) and 10 Endemic Bird Areas (EBA) in the country (BirdLife 

International, 2003, Chan et al., 2004, Mallari et al., 2001). In terms of marine biodiversity, 

the country is recognized as the “epicentre of biodiversity and evolution” and apex of the 

“Coral Triangle”, the region of highest concentration of marine species whose other 

angles are Sumatra and the Solomons (Allen and Werner, 2002, Carpenter and Springer, 

2005). For this reason, the Philippines’ biological diversity has been referred to as 

comparable to the Galapagos Islands multiplied tenfold (Heaney and Regalado, 1998).  

Table 1.1 Percent endemism in major taxonomic groups in the Philippines. 

Taxonomic Group Species Endemic Species Percent Endemism 

Plants 9,253 6,091 65.8% 

Mammals 194 122 62.9% 

Birds 632 206 32.6% 

Reptiles 350 245 70% 

Amphibians 110 88 80% 

Freshwater Fishes 343 83 24.2% 

Butterflies 910 360 39.6% 

Total 11,792 7,195 61% 

 

1.2.2 Regional biogeography, ecology and conservation 

The world’s second largest archipelago after Indonesia, the Philippines encompasses 

more than 7,100 islands with a long and complex geological history dating back some 30-

50 million years ago (Heaney, 1986, Hall, 2002, Heaney et al., 2005). Most of the islands in 
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the archipelago started as “island arcs” of volcanic or geologic origin on the Philippine 

Sea Plate at the edge of the Pacific, and were transported through plate tectonic and 

volcanic processes to their present location (Hall, 2002, Heaney and Regalado, 1998). 

Around 50 million years ago, movement of the Australian continent northward resulted 

in uplift, subduction, and convergence of these island segments where it collided with the 

continental plate of Asia (Heaney and Regalado, 1998). Small but permanent islands 

formed from this uplift around 30 million years ago but it was not until 15 million years 

ago that a large island was formed which constituted parts of the present northern Luzon, 

while much smaller islands made up the southern Philippines (Heaney and Regalado, 

1998). Before the Miocene, Luzon was connected to northern Borneo and Sabah through 

the Sulu-Cagayan Arc (Hall, 2002). When the Halmahera-East Philippines-South Caroline 

Arc collided with New Guinea, it caused the Philippine Sea Plate to rotate, resulting in 

the convergence of the north and south Philippines from around 25 million years ago 

(Hall, 2002). Around the same time during the Neogene, Luzon started to separate from 

the proto-Sulu-Cagayan Arc (Hall, 2002). It was not until the Late Miocene that the 

Philippine archipelago formed a single region at the margin of the Philippine Sea Plate 

(Hall, 2002, Heaney and Regalado, 1998). Mindoro, Busuanga, parts of Panay, and 

northern Palawan are the only islands of continental origin in the archipelago which are 

thought to have originated as crusts rifted from the South China margin and approached 

the northern Philippine Islands by the end of the Miocene (Hall, 2002, Mey, 2003).  

Recent geological history, however, is responsible for the present configuration of 

the Philippine archipelago. It was during the most recent period of low sea level in the 

Pleistocene that the current islands coalesced into four large islands: Greater Luzon, 

Greater Mindanao, Greater Negros-Panay, and Greater Palawan. These “Pleistocene 

islands” arose as new oceanic islands from the ocean floor having no dry-land connection 
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with mainland Asia (except for Palawan) or other islands and continents (Heaney et al., 

2005). It is this long and complicated geological history together with the tropical 

location, diverse climate and uneven topography in the Philippines that are mainly 

responsible for their remarkably high degree of endemism (Conservation International, 

2007, BirdLife International, 2003). 

1.2.3 Environmental problems in Philippines  

The ratio of threatened endemic plants and vertebrates per unit area in the Philippines is 

highest among all biodiversity hotspots (Myers et al., 2000). Many causal factors have 

been identified which account for this widespread threat to biodiversity.  These have 

varying degrees of severity at sites and appear to act in concert, so that oftentimes the 

impact from each cannot be reasonably separated. 

 Loss and degradation of forests 

The country has lost around 93% of its original forest cover in the last 500 years, of 

which 55% were lost only after World War II (Kummer and Turner II, 1994, Kummer, 

1992). Logging was by and large a sustainable enterprise during the pre-colonial period. 

Forest cover was at 90% of the land area at the start of the Spanish occupation in 1521 

(Westoby, 1989). Forest clearing and timber extraction during the more than 300-year 

Spanish occupation allowed the expansion of commercial crops, e.g. sugarcane, abaca and 

tobacco that supplied international markets, whilst also providing building materials for 

the burgeoning galleon trade (Garrity et al., 1993). Unlike customary Filipino systems of 

land tenure, the Spanish instituted state ownership and centralized management of forest 

land and resources (Pulhin, 2002). Logging as a large-scale commercial enterprise, on the 

other hand, was introduced by the American colonizers. From 70% at the start of the 

American occupation in the 1900s, old growth forest was reduced to 30% by the time the 

Americans left in the mid-1940s. Harvesting of logs was unrestricted and mainly for 
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export abroad to sustain the industrialization of North America (Ghee and Valencia, 

1990). But the most blatant period of drastic loss to the country’s forest resources was 

during the presidency of Ferdinand Marcos (1965-1986), who awarded Timber Licensing 

Agreements (TLAs) to loyalists and supporters. At the height of logging activities in the 

1970s TLAs, which were valid for 25 years and renewable for another 25 years, covered 

one-third of the land area of the country and were possessed by only 97 companies or 

families of the political elite (Lasco et al., 2001). Deforestation rates peaked at 300,000 

hectares annually and resulted in the loss of seven million hectares of forest during the 

Marcos regime (Chokkalingam et al., 2006, Kummer, 1992). The Philippine logging 

industry made $42.85 billion profits (or $2.65 billion yearly) during the period 1972-1988 

(Teehankee, 1993). 

A predominant pattern of deforestation is evident in the Philippines where old 

growth forests are converted to secondary forest through logging with subsequent 

removal through illegal logging, and shifting and permanent agriculture (van der Ploeg et 

al., 2011, Teehankee, 1993). More than half of the Important Bird Areas (IBA) are 

affected by slash-and-burn farming or kaingin which is a form of shifting agriculture 

(BirdLife International, 2003). Kaingin is mostly practised by poor, landless peasants in the 

uplands (BirdLife International, 2003). It is estimated that half of the 48 million rural 

population (The World Bank, 2011, Pulhin, 2002) or a third of Filipinos in the country 

(Liu et al., 1993) live in the upland and are largely dependent on forest resources that 

remain in these areas. Another destructive agricultural practice is the periodic burning of 

secondary forest for cattle pasture maintenance. Both practices put a halt to forest 

regeneration and significantly contribute to soil erosion, as many of these areas have 

slopes of  18 percent (Myers, 1988, Chokkalingam et al., 2006). Without land tenure 
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instruments in place, this trend of land clearing for agriculture is expected to increase as 

the human population increases by 1.2% in rural areas each year (The World Bank, 2011). 

Forestry practices that put a premium on timber extraction was the norm for 

many decades. A career in forestry used to mean prosperity for many rural families. 

Forestry schools in the past mainly catered to the needs of the timber industry with 

training for foresters focused on methods of timber extraction and processing. But with 

the changing political atmosphere after the fall of the Marcos dictatorship in 1986 and the 

passage of key forestry legislation, the balance turned from pro-elite and exploitative 

methods towards pro-people and participatory policies in forest management (Pulhin, 

2002). One such law was Republic Act (RA) 7160 or the Local Government Code in 

1991 which devolved certain DENR responsibilities to local government units (LGUs) 

and empowered the LGUs to create and enforce forestry laws and promote community-

based forest management (CBFM) among their constituents. This was followed by RA 

7586 or the National Integrated Protected Area System (NIPAS) Act of 1992, which 

provided for the representation of indigenous peoples and local stakeholders on the 

Protected Area Management Board—the administering body that decides on policies and 

matters pertaining to protected areas. Another landmark policy was Executive Order No. 

263 which adopted CBFM as the national strategy for sustainable forestry. Finally, 1997 

saw the passing of an important law which has been considered as the “watershed 

proclamation in the history of the Philippines’ forest legislation” (Pulhin, 2002)—RA 

8371 or the Indigenous Peoples Rights Act of 1997, which recognized the right of 

indigenous communities over ancestral lands which until then was under state control. 

 Mining 

Mining poses a major threat to the Philippine environment. The Philippines is rich in 

mineral deposits which include gold, copper, nickel, chromite, manganese, silver and iron 
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(Mines and Geosciences Bureau, 2012). According to the Mines and Geosciences Bureau 

(MGB) (2012) the Philippines was ranked first in the world with the largest iron ore, third 

in gold, fourth in copper, fifth in nickel and sixth in chromite deposits. The US State 

Department on its updated country fact sheet released in early 2012 estimated Philippine 

mineral deposits to be $840 billion worth (P36.64 trillion at P43.62 per US dollar) 

(Agence France-Presse, 2012). Profits from gold mining alone can potentially contribute 

$16.87 billion (P7.36 trillion) or 76% of the country’s GDP of P9.73 trillion in 2011, an 

amount supposedly enough to eradicate poverty in the country. However, the way the 

industry is run, which disproportionately benefits mining companies and the central 

government over local government units and communities being devastated by mining, 

has caused poverty rates to increase in areas with large-scale mining. The direct reason for 

this increase in poverty is that communities based on traditional livelihoods such as 

farming and fishing are being displaced as mountains and land are destroyed by mining 

operations. The poor performance of the industry in the past decade has cast doubts on 

its long-term economic benefits when weighted against its well-documented and 

oftentimes long-term damage to the environment, particularly to biodiversity, water 

systems, and land viability. 

 Development 

While road systems undoubtedly aid economic development in far-flung rural areas by 

facilitating the transfer of farm goods to the market, it could also lead to increased forest 

loss and devastation through illegal logging and settlement by kaingin farmers along roads. 

In fact, Liu et al. (1993), in a study analysing the rates and patterns of deforestation in the 

Philippines from 1934 to 1988, found higher rates of deforestation nearer roads. This is 

especially critical in sensitive habitats and reserves supporting threatened species and 

indigenous communities. Logging and mining can also result in siltation that can harm 
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riverine habitats as well as pollution from mine tailing that could potentially 

bioaccumulate in top predators, affecting their reproductive output. Fifteen years after 

the mine spill disaster that killed the pristine waters of the Boac river in Marinduque, 

toxic mine tailings still threaten the livelihoods and lives of communities living in the area 

(Silverio, 2011). Similarly, the trend of increasing reliance by farmers on inorganic 

fertilizers, herbicides and pesticides must be controlled to minimize pollution in rivers. 

 Direct exploitation 

Forty percent of birds in the Philippines are hunted for food and/or sport, with pigeons 

and hornbills especially vulnerable due to their habit of flocking on fruiting trees 

(BirdLife International, 2003). The Wildlife Resources Conservation and Protection Act 

(RA 9147) prohibits hunting of all wildlife in the Philippines apart from members of 

indigenous communities, who are allowed small-scale hunting using traditional methods. 

Upland communities in the Cordillera in north-west Luzon traditionally practise 

nocturnal hunting using a strong light source and nets set along paths of bird migration 

along mountain tops. However, monitoring and enforcement are so weak that hunting 

remains unabated in many parts of the country and even inside reserves. Fruit-eating 

birds, bats, civets and wild pigs are prized by poachers among 22 invertebrate and 

vertebrate species hunted in a national park in southern Luzon, Philippines (Scheffers et 

al., 2012). Another critical and direct threat to biodiversity is commercial wildlife trade, 

which affects 20% of threatened birds in the Philippines including several pigeons, 

parrots and hornbills as well as the colourful Palawan Peacock-pheasant Polyplectron 

napoleonis (BirdLife International, 2003). The endemic Philippine Cockatoo Cacatua 

haematuropygia, which occurred on just eight islands in the period 1989-1994 from 52 

islands originally, has seen the most drastic drop in population and distribution, mainly 

due to trapping for the pet trade (BirdLife International, 2001). Survival of trapped 
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nestlings and birds is 50% for the Philippine Cockatoo and 20% for the Palawan 

Peacock-pheasant (BirdLife International, 2003). The Green Racquet-tail Prioniturus 

luconensis, which used to occur in big flocks near population centres in the Sierra Madre 

(Poulsen, 1995), was encountered just twice during our 2010 survey (Española et al., 

2013). 

1.2.4 Protected area provision in the Philippines 

Eleven percent of the Philippines’ land area is under protection, although only 6% falls 

under the IUCN categories I-IV (IUCN and UNEP-WCMC, 2010). This falls below the 

international minimum target of 10% of the total land area. Protected area distribution is 

also skewed towards protection of higher elevation areas which are biologically 

unrepresentative, since the highest levels of biodiversity are found in low elevation forests 

(Mackinnon, 2002, Mallari et al., 2011). Protected area coverage of biogeographic regions 

and centres of species endemism (e.g. endemic bird areas) is likewise uneven with a bias 

towards Palawan, Mindoro and oceanic islets, and poor coverage of the biologically rich 

and larger islands of Luzon and Mindanao (Mackinnon, 2002). Moreover, boundaries of 

forest and protected areas do not always overlap, so that degraded and converted habitats 

are often included in protected area boundaries while remaining natural lands are not 

protected (Mackinnon, 2002). Of the 224 protected areas under the NIPAS, only 132 

(<60%) overlap with priority conservation areas identified during the second iteration of 

the national biodiversity strategy and action planning workshop in 2002 (Ong et al., 2002). 

These 206 priority sites identified together with the 425 threatened Philippine species 

(IUCN, 2011) form the framework within which conservation research and programmes 

need to be conducted in the country (Ong et al., 2002). 

Management of reserves and sanctuaries has been fraught with problems since 

NIPAS was enacted, mainly due to lack of resources. The PAWB does not have the 
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resources to provide sufficiently for the infrastructure, manpower and site management 

capability necessary for effective protection of reserves (BirdLife International, 2003). 

The lack of manpower to patrol forest reserves, combined with corruption in the forestry 

service and municipal governments, has resulted in protected areas becoming susceptible 

to exploitation from illegal logging and hunting (van der Ploeg et al., 2011, Scheffers et al., 

2012). 

1.3 Frugivore ecology 

1.3.1 Frugivore species diversity and taxonomy 

Frugivore (fruit-eating) species are the main seed dispersers of plants with fleshy fruits. 

Species richness and composition of frugivores vary across the major biogeographical 

realms (Afrotropics, Australasia, Indo-Malaya, Nearctic, Neotropics and Palearctic). 

Corlett (1998) made a review of frugivore diversity in the Oriental (Indomalayan) region, 

which has one of the most abundant and diverse frugivore assemblages worldwide with 

half the genera of terrestrial mammals and more than 40% of bird genera as well as many 

fish and reptile species having some degree of frugivory in their diet (Table 1.2). Species 

highly dependent on fruit for their diet occurred in two families of reptiles, 12 families of 

mammals and 17 families of birds (Corlett, 1998). It must be noted that families 

Bucerotidae (hornbills) and Columbidae (pigeons) are of major importance in their role as 

seed dispersal agents because most of the species in these families are obligate frugivores 

and most of the seeds in the fruits they consume survive gut passage.  Conversely, it is 

not known whether members of family Psittacidae (parrots) in the Orient are entirely 

seed predators as some parrots are known to disperse a percentage of the seeds they 

consume (Young et al., 2012). 
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Table 1.2 Frugivory and seed dispersal by Oriental vertebrates. Doubtfully and 

biogeographically marginal taxa are excluded. Frugivory: 1, occasional; 2, consistent; 3, fruit 
seasonally dominant; 4, majority of annual diet. Seed survival refers to proportion of seeds 
which survive oral processing and, if swallowed, gut passage. Importance is the predicted 
impact of local extinction of the taxon on plant communities through loss of seed dispersal 
services: 1-4, minor to major. Table adapted from Corlett (1998). * are taxa that occur in the 
Philippines. are taxa covered by the current study. 

Taxon Frugivory Seed survival Importance 

Fish    

Cyprinidae* 0±3  ?  ? 

Pangasiidae* 0±3  ?  

Clariidae* 0±3  ?  ? 

Reptiles    

Emydidae 0±3 Most?  ? 

Testudinidae* 0±3 Most?  ? 

Agamidae* 0±2?  Most? ? 

Scincidae* 0±2  Most? ? 

Varanidae* 0±3  Most  1 

Mammals    

Phalangeridae  1±2  Most? ? 

Erinaceidae  0±2  ?  ? 

Tupaiiadae*  3  Most  1 

Pteropodidae*  4  Most  4 

Loridae*  1  Most  1 

Cercopithecidae*    

Cercopithecinae*  3±4  Most 3 

Colobinae 1±2  Few  0 

Hylobatidae  4  Most  4 

Hominidae  4  Most  3 

Canidae  1±3  Most 2 

Ursidae  3±4  Most  2 

Ailuridae  2  Most 1 

Mustelidae*  1±3  Most  1 

Viverridae*  0±4  Most  4 

Herpestidae  1±2  Most  1 

Felidae*  0±1  Most  0 

Elephantidae  2  Most 2 

Tapiridae  2  Most  2 

Rhinocerotidae  2  Most  2 

Suidae*  2  Some 1 

Tragulidae*  4  Some?  2? 

Cervidae*  2  Some  2? 

Bovidae*  1±3  Some  2 

Sciuridae*  0±4  Few  ? 

Muridae*  0±4  Some 1 

Hystricidae*  2  Few?  ? 

Leporidae  1±2  Few? ? 

Birds    

Megapodiidae* 2  ?  ? 
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Table 1.2 continued 

Taxon Frugivory Seed survival Importance 

Phasianidae* 2±3  Some  2 

Picidae* 1 ? ? 

Megalaimidae* 4 Most 4 

Bucerotidae* 4 Most 4 

Trogonidae* 1 ? ? 

Cuculidae*  1±3 Most  2 

Centropididae* 1 ? ? 

Psittacidae* 4 None? 0 

Columbidae*    

Ducula, Ptilinopus, 
Gymnophaps 

4  Most 4 

Other genera  1±4 Few 1 

Otididae 1±3  Most? 1 

Rallidae* 1 ? ? 

Pittidae* 1 ? ? 

Eurylaimidae*    

Calyptomena  4 Most 3 

Other genera  1  ? ? 

Meliphagidae 2  Most 1 

Irenidae* 2±3  Most 2 

Corvidae*  1±3  Most 2 

Muscicapidae*    

Turdinae*  2±3  Most 2 

Muscicapinae*  1 Most 1 

Saxicolini*  1±3  Most 2 

Sturnidae*  2±4  Most  3 

Paridae*  1±2 Few ? 

Pycnonotidae*  3 Most 4 

Zosteropidae*  3 Most 3 

Sylviidae*    

Acrocephalinae*  1 Most 0 

Garrulacinae  1±3  Most 2 

Timaliini*  1±3  Most  3? 

Nectariniidae*    

Dicaeini*  2±4  Most 2 

Nectariniini*  1 Most 0 

Passeridae*  0±2  None?  0 

Fringillidae*  0±4  Few? 0 

  

The global distribution of frugivory in birds points to the Neotropics as the most 

species-rich biogeographical realm in terms of both overall bird diversity and frugivore 

richness (Kissling et al., 2009). The other realms and regions along equatorial latitudes—

Indonesia and New Guinea, but not Africa—also show high proportions of frugivores in 

bird assemblages (Kissling et al., 2009). Low diversity of frugivorous bird species in the 
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Afrotropics was reflected in the very low species richness of fleshy-fruited plants (Snow, 

1981, Kissling et al., 2007). In Southeast Asia, the dominance of non-fleshy fruited trees 

(Dipterocarpaceae) west of Wallace’s Line may have given rise to the lower frugivore 

richness in the realm compared to the Neotropics (Primack and Corlett, 2005). It must be 

mentioned that primate diversity west of Wallace’s Line may have a role in inhibiting 

avian frugivory diversification as parrot and pigeon richness greatly increase in Indonesia 

in the absence of primates except for Sulawesi. Kinnaird and O’Brien (2005) did find less 

complex hornbill and primate assemblages in Sulawesi, which is within Wallacea, 

compared to Sumatra within the Asian biogeographic realm, although biomass for both 

groups was significantly higher in Sulawesi. The higher numbers of frugivorous species in 

the Indo-Malaya/Oriental region and New Guinea compared to the Afrotropics may be 

explained by the high diversity of a keystone resource (fig trees, Ficus spp.) in the Indo-

Pacific region (Lambert and Marshall, 1991, Kissling et al., 2007, Kissling et al., 2009). 

Fruit fall was found to be 1.7 times larger in tropical forests than in temperate forests, 

which to a degree explains higher frugivore diversity in the tropics (Hanya and Aiba, 

2010). 

Among frugivorous birds worldwide, the most numerous (50%) are in the order 

of perching birds (Passeriformes) followed by the woodpeckers and allies, which include 

toucans and barbets (Piciformes), parrots (Psittaciformes) and pigeons (Columbiformes), 

which made up 9%, 11% and 15% of all frugivores respectively (Kissling et al., 2009). The 

remaining 11 orders made up less than 4% of all frugivores. Orders with exclusively 

frugivorous species include the African turacos (Musophagiformes) and African 

mousebirds (Coliiformes), while pigeons (Columbiformes), chachalacas, guans and 

curassows (Craciformes) and the hornbills (Bucerotiformes) had more than 50% 

frugivorous species. Other orders had <10% frugivorous species: Galliformes, 
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Cuculiformes, Gruiformes and Strigiformes. The Passeriformes, Piciformes and 

Craciformes have highest frugivore richness in South America, Psittaciformes in the 

Amazon basin, Bucerotiformes in Indonesia, and Columbiformes in New Guinea 

(Kissling et al., 2009). 

Frugivore species composition on islands is different from mainland species, with 

lizards that feed on nectar, pollen and fruit being one of the main agents of pollination 

and seed dispersal (Olesen and Valido, 2003). The Philippine islands have three such 

remarkable lizards, with two having been discovered recently—the only monitor lizards 

(Varanus spp) known to be mainly arboreal and frugivorous (Sy et al., 2009, Gaulke et al., 

2009, Gaulke, 2010, Welton et al., 2010). Another important reptile seed disperser on 

islands is the tortoise, which was observed feeding on > 45 plant species in the 

Galapagos (Blake et al., 2012). These tortoises were found to have very long mean gut 

retention times of 12 days (28 days maximum) with an average seed dispersal distance of 

394 m (4,355 m maximum). Their faeces have also been found to contain, on average, 

464 seeds of 2.8 species per dung pile. Finally, an unusual insular seed disperser is found 

in New Zealand—a giant, flightless orthopteran that consume fleshy fruits and disperse 

seeds after gut passage (Larsen and Burns, 2012). 

1.3.2 Seed dispersal and ecosystem functioning 

Frugivore abundance and richness has been found to positively affect the probability of 

seed dispersal into deforested areas, which indicates that in order to preserve a complete 

seed dispersal service the whole assemblage of frugivores must be conserved (Garcia and 

Martinez, 2012). Loss of disperser species often results in dispersal failure for a plant 

species (Babweteera et al., 2007, da Silva and Tabarelli, 2000, Terborgh and Nuñez-Iturri, 

2006). Coupled with recruitment failure beneath parent plants, dispersal failure can lead 

to extinction of plant populations (Temple, 1977) or at the very least reduce plant 
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reproductive success, resulting in  population decline over time (Levin et al., 2003, 

Wotton and Kelly, 2011). Higher germination rates have been shown in dispersed rather 

than undispersed seeds, with higher growth and survival of juvenile plants growing away 

from the parent plants (Bleher and Bohning-Gaese, 2001, Asquith et al., 1999). Dispersal 

failure inhibits recolonization of forest fragments or clearings after local extinction, 

resulting in increasingly clumped distribution of plants and consequently increased 

susceptibility to stochastic disturbances (Fahrig and Merriam, 1994). Moreover dispersal 

failure has implications for the survival of plant populations under pressure from climate 

change due to their inability to migrate over long distances (Corlett and LaFrankie, 1998, 

Primack and Miao, 1992). 

Nevertheless, the majority of rainforest plants rely on multiple species for seed 

dispersal, so it is unlikely that plants will have lost all of their dispersal potential from a 

complete absence of primary disperser species (Cordeiro and Howe, 2003). Reduced 

numbers of frugivores have been empirically shown to lower rates of visitation and fruit 

removal (Cordeiro and Howe, 2003, Bleher and Bohning-Gaese, 2001, Pizo, 1997). In 

Ecuador the hunting of frugivores such as toucans and primates, which are responsible 

for nearly 85% of visits to a fruiting tree, with toucans recorded in 74% of visits, directly 

impacts fruit removal rates: fruiting trees at non-hunted sites had more seeds removed 

(89.4%) than at hunted sites (66.8%) (Holbrook and Loiselle, 2009). 

Frugivore species richness was determined by species richness of Ficus in sub-

Saharan Africa, more so than water-energy and habitat heterogeneity variables (Kissling et 

al., 2007). However, in another study comparing global patterns of avian frugivory, water-

energy dynamics and productivity were the best predictors of vascular plant and therefore 

bird diversity via climatic effects on food plants specifically on fruit production and 

fruiting phenologies (Kissling et al., 2009).  
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Variation among frugivores is primarily a function of the plant species they 

consume and disperse (Snow, 1981, Innis, 1989, Crome, 1978). This variation in turn is 

affected by the morphological, physiological and behavioural traits of frugivore species 

and the morphological, chemical and nutritive traits of fruits (Corlett, 1996, Poulsen et al., 

2002, Kitamura et al., 2002, Kitamura, 2011, Levey et al., 2002, Wilson and Downs, 2012). 

The manner of plant consumption between mammals and birds differ due to their 

physical makeup, with mammals consuming large and/or hard fruits with their teeth 

while birds are limited in their ability to consume large fruits by the size of their beaks 

and gape widths (Moran et al., 2004, Moran and Catterall, 2010). Patterns of fruit 

consumption in ‘bird’, ‘bat’ and ‘terrestrial mammal’ dispersal syndromes are described in 

terms of fruit characteristics including size, colour, pulp characteristics and location on a 

plant, and frugivore characteristics including perception of fruit colour or odour, digestive 

function, and feeding or foraging behaviour (Moran and Catterall, 2010, Moran et al., 

2004). 

Fruit size is a major characteristic considered in the choice of fruit by disperser 

species, and this in turn is constrained by frugivore body weight and gape size 

(Debussche and Isenmann, 1989). However, the structure and not just the size of fruits 

influences feeding visits by various frugivorous birds in New Guinea, with structurally-

protected fruits (e.g. capsules) taken almost exclusively by birds of paradise while large, 

unprotected fruits were consumed by pigeons and bowerbirds (Pratt and Stiles, 1985). A 

study comparing fruit choice in 25 frugivore species including birds, primates, and small 

and large ground mammals in Thailand shows that small fruits and large, soft fruits with 

many small seeds are consumed by a wide spectrum of frugivores, while larger fruits with 

a single large seed are consumed by few potential dispersers (Kitamura et al., 2002). 

Moreover, small frugivores that thrive in small and degraded forest fragments in 



18 

 

Southeast Asia are not able to consume these large, single-seed fruits (Kitamura et al., 

2002). Large-bodied frugivores are therefore especially important seed dispersers not only 

because of their ability to swallow large fruits but also because of their long seed retention 

time, which enables them to move seeds away from parent plants and transport large 

seeds over long distances (Wotton and Kelly, 2012, Ruxton and Schaefer, 2012, French 

and Smith, 2005). 

Frugivores’ consumption of fruit is also determined by their ability to digest 

certain forms of carbohydrate (Wellmann and Downs, 2009, Delrio and Karasov, 1990), 

lipids and proteins (Witmer and Van Soest, 1998, Wang and Chen, 2012, Soriano, 2000). 

Frugivores frequently supplement their predominantly nutrient-dilute (high in water 

content and low in protein and lipid content) fruit diet with nutrient-dense fruit and 

insects for activities that go beyond maintenance, such as breeding and migration 

(Downs, 2008, Smith et al., 2007, Herrera et al., 2006, Boyle, 2010). In a comparison of 

morphological and chemical fruit traits, it was found that fruit colour more than any fruit 

trait reflected fruit preference among frugivore assemblages in South Africa and 

Madagascar (Voigt et al., 2004). Not only fruit nutrient composition and morphology but 

also frugivore gut morphology or the presence/absence of a gizzard was found to 

influence the processing of fruit pulp and seeds (Delrio and Restrepo, 1993). Fruit 

removal and sugar concentration were highest in young secondary forests independent of 

fruit nutrient concentration (Lumpkin and Boyle, 2009). 

Seed dispersal and predation are two of the most important processes regulating 

the extent and patterns of plant regeneration (Wang and Smith, 2002). Successful 

reproduction in plants requires the removal of seeds away from the region of highest seed 

and seedling mortality, which is directly beneath the parent plant (Chapman and 

Chapman, 1996, Janzen, 1970). The spatial distribution of dispersed seeds around the 
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maternal parent, called the “seed shadow”, varies with the mode of dispersal and 

disperser (Willson and Traveset, 2000). Seed dispersal aids in seed establishment in 

suitable sites with conditions that improve germination, survival and growth (Schupp et 

al., 2010, Vander Wall and Beck, 2012). The demographic characteristics and dynamics of 

plant populations, therefore, are a reflection of the reproductive success of individual 

plants (Levin et al., 2003). It is also through seed dispersal to suitable sites that plant 

populations are able to recover from localized extinctions and promote gene flow 

between populations (Schupp et al., 2010). 

The probability of seed deposition (or establishment), however, is decreased by 

forest fragmentation, owing to the decreased availability of woody perches and fruit-rich 

edges for seed dispersers (Herrera and Garcia, 2010, Herrera et al., 2011). Large- and 

medium-gaped birds with predominantly frugivorous diets are less abundant in forest 

remnants and regrowth, while small-gaped and other birds with mixed diets or fruit as a 

minor dietary component are most abundant in regrowth (Moran et al., 2004, Moran et al., 

2009). Successful seed removal, scatter-hoarding and consumption by rodents decline in 

small, severely hunted sites in the Atlantic Forest of Brazil, limiting plant recruitment 

(Galetti et al., 2006). Similarly, bushmeat harvest altered seedling banks by favouring 

lianas, large seeds, and seeds dispersed by bats, small birds, and wind, probably through 

the elimination of seed predators (Wright et al., 2007).  

1.3.3 Seed predation 

Seed predators or species that feed on seeds in fleshy fruits are responsible for pre- and 

post-dispersal loss of seeds. Pre-dispersal seed predation takes place when fruit or seeds 

are removed from the parent plant before dispersal, while post-dispersal seed predation 

happens after seeds have been released from the parent plant. Some examples of seed 
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predators include colombine monkeys and rodents among the mammals, and parrots, 

pigeons, and finches among the birds (Corlett, 1998, Janzen, 1981, Lambert, 1989). 

In one study in Mexico, up to 56% pre-dispersal loss of seed production could be 

attributed to Lilac-crowned Parrots Amazona finschi, a greater rate than post-dispersal 

removal by vertebrates (51%) or insects (36%) (Villaseñor-Sanchez et al., 2010). In 

another study in Peru, Peruvian red uakaris Cacajao calvus ucayalii, a primate, ate 55.4% 

seeds, 38.9% pulps and arils, and 5.6% other items in varying proportions throughout the 

year (Bowler and Bodmer, 2011). Seed predation can be beneficial as in the case of exotic 

pine predation in a forested site in Patagonia, Argentina, which reduced the chances of 

exotic seed establishment and helped maintain native tree formations (Nunez et al., 2008). 

Scatter-hoarding rodents in the Old World use seed size in their choice between 

seed predation and dispersal, with small seeds consumed in situ and medium-sized to 

bigger seeds removed or transported farther away (Wang and Chen, 2009, Wang et al., 

2012). Similarly, Xiao et al. (2005) found that dispersal distances (including mean, 

maximum and distribution range) of seeds in primary caches and of seeds eaten after 

dispersal significantly increased with seed size. Larger seeds were also re-cached more 

often than smaller ones, which reduced relative density among caches and extended 

dispersal distances (Xiao et al., 2005). However, a study of post-dispersal seed predation 

by rodents of 40 tree species in Indonesia showed conflicting results, with predation rates 

negatively associated with seed size and with thickness and hardness of the seed coat, 

which may be partially explained by the scarcity of predators capable of penetrating large 

seeds with hard seed coats (Blate et al., 1998). Moreover, the study found that predation 

rates were not associated with species' natural dispersal mode (clumped vs scatter-

dispersed). This is supported by the work of Moles et al. (2003), who compared the 

survivorship of large and small seeds at the stages of pre- and post-dispersal seed 
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predation. The study did not find significantly lower pre- or post-dispersal survivorship 

for large seeds compared to small seeds (Moles et al., 2003). 

A study found direct positive relationship between tree cover and fruit abundance 

on species richness and abundance of avian seed dispersers but no effect for fruit 

predators (Albrecht et al., 2012). This caused seed dispersers to dominate fruit removal in 

fruit-rich sites accordingly with the dispersal/predation ratio favouring predation in fruit-

poor habitat. In contrast, a negative correlation between predation rates and seed 

production was observed in an avian seed predator in Neuquen Province, Argentina 

(Shepherd et al., 2008). In years with high seed production, predation rate by Austral 

Parakeets Enicognathus ferrugineus ranged from 0.6 to 3.3% while it was 13.0 to 20.6% when 

it was low. 

Seed predation may show a strong spatial and temporal pattern, with a higher 

incidence in forest gaps compared to adjacent forest (Boman and Casper, 1995). 

Similarly, seed predation rates were found to be higher in unconnected forest patches 

surrounded by degraded, structurally contrasted pastures than in connected ones 

surrounded by little-disturbed mature forest in Spain (Herrera et al., 2011). In the 

Neotropics, however, seed dispersal and predation remained constant between secondary 

and primary forest, although the small-rodent seed predation rate and proportion of seed 

destroyed were higher than those of large mammals (DeMattia et al., 2004). 

Some of the seeds that seed predators consume survive passage through the 

alimentary canal and are dispersed in the surrounding environment. Black Rats Rattus 

rattus in Hawaii dispersed a portion of the seeds they consumed which passed intact 

through their digestive tracts (Shiels and Drake, 2011). In the same way, the Chaffinch 

Fringilla coelebs, a typical seed predator, had over a quarter of its droppings containing 



22 

 

whole intact seeds that it dispersed (Heleno et al., 2011). Some of Darwin’s finches, 

having predominantly seed predation and insectivory feeding patterns, were found to be 

capable of endochorous seed dispersal with up to 23% of their faecal samples having 

intact seeds of which 50% of samples with intact seeds had viable seeds (Guerrero and 

Tye, 2009). The general tendency is for New World parrots to be wasteful and destructive 

pre-dispersal seed predators, although they tend to drop uneaten fruit pulp and intact 

seeds to the ground during feeding bouts which are then scattered by secondary 

dispersers (Boyes and Perrin, 2010). Astonishingly, the only alpine parrot, the Kea Nestor 

notabilis from New Zealand, consumed more fruit and dispersed more seeds than all other 

birds in New Zealand combined (Young et al., 2012). 

1.3.4 Dispersal ability 

Frugivore movement has important ecological consequences on a spatial and temporal 

scale with a direct influence on seed dispersal patterns. With a diet composed of more 

than 700 plant species and seed retention time of more than one hour, hornbills are one 

of the best seed dispersal agents, moving seeds over many kilometres away from parent 

trees (Kitamura, 2011). Two West African hornbills (Ceratogymna spp.) showed wide home 

ranges of 925-4,472 ha over a one-year period and seed passage time of 51-765 minutes, 

which translate to seed dispersal distances of 500-3,558 m—with 80% of seeds 

transported >500 m  (Holbrook and Smith, 2000). The same Ceratogymna hornbills travel 

up to 290 km in search of food, which provide evidence that the species are able to map 

and track available fruit resources in space and time (Kinnaird et al., 1996, Whitney and 

Smith, 1998, Holbrook et al., 2002). Cassowaries in Australia feed on 238 fleshy-fruit 

plants with seed retention time of 309 minutes for some species and average seed 

dispersal distance of 239 m—4% of which are dispersed further than 1,000 m (Westcott 

et al., 2005). Supra-canopy flight activity was found to be higher among large-bodied 
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parrots and pigeons compared to smaller species at a forested hillside in Papua New 

Guinea (Symes and Marsden, 2007). 

In fragmented and human-altered landscape, frugivore movement is significantly 

restricted by landscape connectivity and fruit abundance and availability. Toucan 

movement in southern Mexico was determined by fruit abundance and distances between 

forest remnants, and not necessarily by the size/area of remnants (Graham, 2001). In a 

study of avian and mammal frugivores in the Amazon, population density and foraging 

behaviour of individual frugivores, as well as species composition of frugivore 

communities, were influenced by fruit abundance (Moegenburg and Levey, 2003). 

Similarly, abundance and movement of columbids in the Caribbean followed seasonal 

fruit abundance (Strong and Johnson, 2001). Reserves were of particular importance to 

parrots in Brazil, as flight activity was highest nearer reserves and forest areas and 

declined or was absent in anthropogenic habitat where resources were perhaps more 

limited (Evans et al., 2005). Parrots require undisturbed forest to breed and thrive, as their 

young tend to stay in nest valleys until they are  5 months old by which time they learn 

flight and feeding skills as well as movement patterns from their parents before gradually 

integrating into adult groups (Myers and Vaughan, 2004, Lindsey et al., 1991). 

A complex system of long-distance seed dispersal is through diplochory, a 

secondary seed dispersal method where a bird of prey feeds on a frugivorous species (e.g. 

animal frugivores or invertebrates) and increases the distance to which seeds are 

dispersed (Padilla and Nogales, 2009). These secondary dispersal events were studied 

more extensively in island ecosystems and were observed in Falco sp. and shrike Lanius sp. 

feeding on frugivorous lizards Gallotia sp. in the Canary Islands (Nogales et al., 2007, 

Gonzalez-Castro et al., 2012). It is not hard to conceive that with higher raptor diversity in 

continental systems, diplochory may occur far more often than observed or recorded. 
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The Philippines alone has 39 species of raptors, not including new species and recent 

splits from the Philippine Hawk-owl complex Ninox philippensis (Rasmussen et al., 2012). 

1.3.5 Diets and dietary breadth 

Frugivores are species with fleshy fruits as their main diet or, by common definition, 

those that have diets composed of >50% fleshy fruits (Fleming et al., 1987). Other dietary 

components include fish, terrestrial invertebrates, nectar, aquatic invertebrates, plant 

material other than fleshy fruits, carrion, seeds and vertebrates (Kissling et al., 2009). 

Several levels of frugivory exist based on dietary breadth or the range of dietary 

components in a species’ diet, including obligate frugivores (i.e. species which exclusively 

feed on fleshy fruits), partial frugivores (i.e. species with fruits as the main diet but with 

one or two other dietary components), opportunistic frugivores (i.e. species with fruits as 

supplementary diet and more than two other dietary components) and non-frugivores 

(i.e. species with no fruit in their diet) (Kissling et al., 2007). Obligate frugivores are found 

only in the tropics, whereas frugivores with other dietary components have distributions 

that extend to extratropical latitudes (Kissling et al., 2009). Partial frugivores occur in low 

numbers at temperate latitudes but otherwise have similar geographical distributions as 

obligate frugivores, while opportunistic frugivores and non frugivores are species-rich in 

the Himalayan foothills, East African mountains and the Atlantic Forest of Brazil 

(Kissling et al., 2009).  

Geophagy, the habit of consuming soil, has been recorded in psittacids, 

columbids, cracids, and reptilian, amphibian and mammalian frugivores, and is believed 

to serve to aid in the mechanical breakdown of food and digestion, adsorbing dietary 

toxins or supplementing mineral requirements (Brightsmith and Munoz-Najar, 2004, 

Johns and Duquette, 1991, Sokol, 1971, Kyle, 2001, Downs, 2006, Diamond et al., 1999). 
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1.3.6 Breeding ecology 

Parrots and hornbills are predominantly monogamous breeders that nest in tree cavities, 

with a few species atypically nesting in burrows dug in cliffs, banks or the ground, and 

existing cavities in rocks (Collar, 1997, Kemp, 1995). Monk Parrots Myiopsitta monachus 

build communal nests in trees (Eberhard, 1998), Ground Parrots Pezoporus wallicus in 

Australia and the Kakapo Strigops habroptilus in New Zealand make burrows in the ground 

(McFarland, 1991, Powlesland et al., 1992), Yellow-faced Parrots Alipiopsitta xanthops lay 

eggs in cavities inside termite mounds (Dias, 2011) and the Guaiabero Bolbopsittacus 

lunulatus in the Philippines makes nests inside wasp nests (Rosell II et al., 2007). The 

features of nest sites, such as nest height, tree diameter, nest spacing, status of nest tree 

(living or dead), and nest hole characteristics (e.g. cavity dimensions and orientation), vary 

considerably with species and geographical location (Forshaw, 1989, Poonswad, 1995, 

Kemp, 1995). Some species choose dead trees wherein to build cavity nests (Joseph et al., 

1991) while others prefer live trees (Datta and Rawat, 2004). Cockatoos in Sumba, 

Indonesia, prefer cavities in trees with active nestholes belonging to other birds (Walker et 

al., 2005). Larger species naturally require larger cavities: thus the smaller Visayan Tarictic 

Hornbill Penelopides panini has smaller cavity dimensions compared to the larger Writhed-

billed Hornbill Aceros waldeni (Klop et al., 2000). Availability of nestholes limits 

reproductive output in larger species by increasing competition within and between 

species as well as with other cavity-nesting bird families (Heinsohn et al., 2003, Symes and 

Perrin, 2004, Murphy et al., 2003, Renton and Salinas-Melgoza, 2004). 

Columbids on the other hand typically build nests on flimsy platforms of twigs 

and sticks lined with grasses and other plant materials on tree branches or on the ground 

in treeless areas (Myburgh and Broekhuysen, 1974, Johnsgard, 2009). The breeding 

behaviour of the Critically Endangered Negros Bleeding-heart Gallicolumba keayi was 
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described from Panay island, Philippines as nesting low in epiphytic ferns from March to 

June with chicks fledging after only 12 days (Slade et al., 2005). Other Philippine bleeding-

hearts were observed to have similarly low stick nests at 1-2 m from the ground situated 

on bushes, epiphytic ferns, horizontal branches of low trees or tangles of vines, and lined 

with vine tendrils and incorporating leaves, bamboo and greenery (Gibbs et al., 2001). 

Bleeding-hearts in the Philippines typically lay two eggs except for the Mindoro Bleeding-

heart Gallicolumba platenae which has only one creamy-white egg (Gibbs et al., 2001, Lastica 

et al., 2012). The Cream-bellied Fruit-dove Ptilinopus merrilli was observed nesting in May 

and also with a single egg (Gibbs et al., 2001). 

The onset of breeding in many frugivorous bird species in the Philippines occurs 

during the summer or dry months (Dickinson et al., 1991). The dry season is favoured for 

breeding because adverse weather conditions disrupt nesting behaviour through flooding 

events (Walker et al., 2005). Fruit abundance limits fruit-pigeon breeding, with scarcity of 

fruit resulting in delayed onset or failed nesting attempts (Powlesland et al., 1997). Clutch 

size is from two to eight white eggs for both hornbills and parrots, with smaller species 

producing more eggs (Kemp, 1995, Klop et al., 2000, Forshaw, 1989), and one to three 

white eggs for pigeons (Devi and Saikia, 2012, Campbell et al., 2008, Hanane et al., 2011). 

However, birds in general follow a latitudinal gradient in clutch size with larger clutches 

in the temperate region compared to the tropics due to the increasing seasonality of 

resources from the tropics to the poles in combination with decreasing predation rates 

and/or length of breeding season (Griebeler et al., 2010). Incubation in parrots is usually 

undertaken by females although the task is shared in several species including cockatoos, 

with longer incubation periods for larger species (Forshaw, 1989). Before egg-laying and 

incubation in all hornbills with the exception of ground-hornbills, the female (sometimes 

assisted by the male) seals the entrance to the nesting cavity with a wall made of mud, 
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droppings and fruit pulp (Kemp, 1995). Males provide food for the female through a 

narrow slit in the wall of the nest cavity during incubation and the early stages of nestling 

development (Kauth et al., 1998, Kemp, 1995). Cooperative breeding where conspecifics 

help the breeding pair raise the young is common in hornbills, rare in parrots and 

unrecorded in pigeons (Witmer, 1993, Oren and Novaes, 1986, Kinnaird and O'Brien, 

2007). The young for both parrots and hornbills receive parental care from three weeks 

to several months after fledging (Forshaw, 1989, Kemp, 1995). 

1.3.7 Habitat tolerance and preferences 

Studies have documented the importance of protected habitats for forest frugivores 

sensitive to human disturbance. Large frugivores in a tropical cloud forest in Costa Rica 

were moderately tolerant of intermediate but intolerant of severe habitat disturbance, 

while medium and small frugivores were better able to tolerate forest disturbance (Gomes 

et al., 2008). Parrot densities were lower in a small lowland Atlantic forest reserve 

compared to a larger reserve, with threatened species strongly linked to primary forests 

(Marsden et al., 2000). Rare parrots in a hilly forest site in Papua New Guinea were also 

strongly associated with lower-altitude mature forests (Marsden and Symes, 2006). 

However, on the Wallacean islands of Buru and nearby Seram, the parrots preferred 

open-canopied lowland forests while on the distant island of Sumba parrots preferred 

closed-canopy forests at higher altitudes (Marsden and Fielding, 1999). Forest 

fragmentation also affected seed predation rates with isolated or unconnected forest 

patches in northern Spain having increased rates of seed predation on hawthorn Crataegus 

monogyna compared to connected forest patches, and could result in reduced recruitment 

rates and consequently plant regeneration processes within unconnected patches (Herrera 

et al., 2011).  
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Niche partitioning and resource overlap among pollinator or seed disperser 

species were assessed to measure biotic specialization, which was found to decrease 

toward the tropics (Schleuning et al., 2012). The study suggested that decrease in 

specialization of mutualistic interactions is a response of pollinators and seed dispersers 

to increasing local and regional plant diversity, which implies a higher tolerance against 

extinctions in tropical than in temperate communities (Schleuning et al., 2012). 

Armbruster (2006) found that specialization in pollination ecology across latitude appears 

to be evolutionarily labile and reversible to less specialized pollination. 

1.3.8 Threatened frugivores and correlates of extinction risk 

The 2012 Red List assessment for birds estimated that one in eight bird species is 

threatened with extinction because of small and declining populations or ranges (BirdLife 

International, 2012). One-third of these threatened birds are in Asia (BirdLife 

International, 2001). Moreover, the region’s non-passerines, especially large-bodied 

species, were disproportionately threatened due to exploitation and landscape conversion 

(Collar, 2001). Owens and Bennett (2000) made a review of the ecological basis for 

extinction risk in birds and found that species with large body size and long generation 

time, e.g. parrots, hornbills and pigeons, were increasingly at risk through persecution and 

introduced predators, while those with small body size and habitat specialization were 

more at risk from habitat loss. Using forest loss data, Brooks et al. (1997, 1999) 

successfully predicted the number of threatened species in Indonesia and the Philippines 

but the numbers were underestimated in montane birds and mammals. Likewise, 

commercial logging and forest fragmentation were found to depress species richness in 

Sundaic lowland forest birds (Lambert and Collar, 2002).  

Walker (2007) made a review of threats to pigeons and doves in the world and 

found that 19% of 304 extant columbid species are threatened with extinction, with 78% 
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(45) of those threatened being island species. He reported that the Asia, Australasia and 

Oceania regions support the highest number of columbid species with Indonesia, the 

Philippines and French Polynesia being especially important countries within this region 

for columbid conservation because they support 40% of extant species and half of all 

threatened species (Walker, 2007). The main threats to columbids are habitat loss and 

fragmentation, hunting for food, and alien predator species (Walker, 2007). In a study of 

prehistoric Polynesian columbids, Steadman (1997) recorded the extinction of at least 9 

species as well as extirpation of island populations of extant species. 

The same increase in threatened species can be found in Asian hornbills 

compared to those in Africa (Kemp, 2001). Apart from two species on mainland Asia, all 

threatened hornbills are insular, with the Philippines being the country with the highest 

number threatened (6 out of 9 total species) and the only country with a recorded 

hornbill taxon extinction—that of the Ticao Tarictic Penelopides panini ticaensis (Kemp, 

2001). 

More than a quarter of all parrots (90 species) in the world are threatened with 

extinction, of which two-thirds can be found in the following countries: Indonesia, 

Australia, Brazil, the Philippines, Colombia and Mexico (Collar, 2000). The main threats 

are habitat destruction (mainly loss of nest-sites), trade, hunting and introduced species—

a cause of grave concern as 93% of threatened parrots are forest specialists (Collar, 2000). 

There is also the highly depauperate information on parrots in the scientific literature due 

to difficulty in studying parrots which could lead to inappropriate or ineffective species 

management and conservation (Collar, 1998). Parrots are a challenge to study because of 

a number of factors: (1) slow reproduction, which also slows data generation, (2) wide 

ranging behaviour, which makes them difficult to track, (3) unpredictability, which makes 

planning their study difficult, (4) non-territoriality, which makes individual identification 
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difficult, and (5) highly cryptic colouration and behaviour when perched, which parrots 

do most of the day (Collar, 1998). 

1.4 Threats to frugivores 

The major threats to frugivores almost always result from human activities. Hunting, a 

key threat, has predominantly been for subsistence in the Orient and is focused on pigs, 

deer, monkeys and other arboreal mammals, plus porcupines and other rodents, but it 

has been increasingly catering to the regional market in wild animals for the pet trade and 

for parts in traditional medicine, ornaments, food and raw materials (Corlett, 2007, 

Wright et al., 2000). This has reduced and in some places eliminated populations of 

mammalian dispersers of large-seeded fruits (Corlett, 2007). Amazonian mammals suffer 

the same fate, with population declines due to hunting correlated with a species’ intrinsic 

rate of natural increase, longevity, and generation time (Bodmer et al., 1997). 

Deforestation through logging and land conversion for agriculture has also resulted in 

loss of frugivores (Brash, 1987, Brooks et al., 1999, Brooks et al., 2002, Brooks et al., 

1997). Habitat alteration and loss also comes from fragmentation, urban expansion and 

shifting cultivation (Sekercioglu et al., 2004). Increasing land use intensity as evidenced by 

farmers’ dependence on pesticides and fertilizers impoverish farmland biodiversity which 

in turn affects frugivorous animals (Freemark and Kirk, 2001). These threats sometimes 

act synergistically and create secondary impacts such as greater access for hunters and the 

spread of invasive species and diseases (Sodhi et al., 2004a, Sodhi et al., 2004b). 

Using the IUCN threats classification scheme, a quick analysis of threats affecting 

three frugivorous families provides evidence on the prevalence of human activities as the 

main driver of extinction and extirpation of frugivorous species worldwide (Table 1.3). 

The threat category  ‘agriculture and aquaculture’, which includes shifting agriculture, 

wood and pulp plantations, livestock farming and ranching, and marine and freshwater 
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aquaculture, affects the most number of species or at least a quarter from each family. 

Surprisingly and possibly an artefact of a faulty search engine, the threat category 

‘biological resource use’, which includes harvesting for the bird trade, fails to record any 

species affected by it although parrots are one of the most sought after species in the 

worldwide pet trade (Wright et al., 2001). Perhaps as more research on the drivers of 

species endangerment among frugivores is conducted, a full assessment will reveal more 

species at risk from wildlife trade. 

Table 1.3  Numbers of species per family affected by major threats to birds based on the IUCN 

Threats Classification Scheme (v. 3.1, June 2012 version) found in 

http://www.iucnredlist.org/technical-documents/classification-schemes/threats-classification-

scheme. 

 Columbidae  
(n=304) 

Psittacidae 
(n=356) 

Bucerotidae 
(n=55) 

Residential and commercial development 18 (5.9) 33 (9.3) 4 ( 7.3) 

Agriculture and aquaculture 76 (25.0) 116 (32.6) 22 (40) 

Energy production and mining 17 (5.6) 23 (6.5) 3 (5.5) 

Transportation and service corridors 6 (2.0) 14 (3.9) 1 (1.8) 

Biological resource use 0 0 0 

Human intrusions and disturbance 5 (1.6) 1 (0.3) 0 

Natural systems modifications 0 0 0 

Invasive non-native/alien species/diseases 35 (11.5) 50 (14.0) 3 (5.5) 

Pollution 2 (0.7) 5 (1.4) 0 

Geological events 0 3 (0.8) 0 

Climate change and severe weather 27 (8.9) 61 (17.1) 4 (7.3) 

All 104 (34.2) 159 (44.7) 25 (45.5) 

 

1.5 What we know about Philippine parrots and other frugivores 

Twenty-six percent of all parrots in the world (96 or 374) are threatened with extinction 

(IUCN, 2011). The Psittaciformes is also the bird order with the second highest number 

of threatened species. Although it is an established fact that habitat destruction and direct 

exploitation are the major reasons for their endangerment, Collar (1998) identified the 

dearth of biological knowledge, as evidenced by published accounts on parrot biology i.e. 
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status, diet, breeding and range, as another major hindrance to species conservation 

initiatives if not largely contributing to ill-targeted species protection and management 

objectives in the tropics. Parrots’ propensity for ranging very far, breeding slowly, and 

unpredictable, non-territorial and cryptic behaviour has made it a very difficult species 

group to study and follow in the field (Collar, 2000).  

Arguably the same factors contribute to endangerment in Philippine parrots 

where all species apart from one shared with Sulawesi are endemic. Consequently, the 

country has seven threatened endemic parrots and none apart from the Philippine 

Cockatoo has been well studied (Collar, 1998). In his global review of parrot species in 

1998, Collar identified the research/knowledge gaps concerning parrots and listed 

Prioniturus and Loriculus as genera where breeding data were non-existent. Five of the 

endemic parrots and 11 endemic/near-endemic pigeons listed in Kennedy et al. (2000) 

lack breeding information. It was only through efforts of amateur birdwatchers and 

photographers that the nesting behaviour of the relatively abundant and widespread 

Guaiabero Bolbopsittacus lunulatus was documented in 2007 (Rosell II et al., 2007). 

Prioniturus never had a single paper dedicated to it in the period up to 1998 (Collar, 1998) 

although several papers dealing with Prioniturus taxonomy among other species (Collar, 

2011, Schweizer et al., 2012) have come out since, bringing the total number of Prioniturus 

species in the Philippines to six, all endemic with three threatened (two IUCN Vulnerable 

and one IUCN Critically Endangered) and two near threatened (IUCN, 2011).  

The depauperate state of knowledge on parrots apparently extends to all 

Philippine birds, as a Web of Knowledge search on “Philippine bird” articles since 1950 

yielded 88 articles of which only 18 were dedicated to bird ecology. Molecular taxonomy 

and/or biogeography garnered the highest number of articles at 32. Another popular 

topic was avian parasites and diseases, which had 16 articles. Papers on species 
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management, wildlife trade, bird distribution and even bird-inspired indigenous dance 

had fewer than ten articles for each topic. The ecological studies include documentation 

of breeding, diet, frugivory and seed dispersal, habitat association, predation, impacts of 

disturbance, threats and movements. Six studies were on bird distribution or assemblage 

(Paguntalan et al., 2011, Paguntalan and Jakosalem, 2008, Relox et al., 2011, Pagaduan and 

Afuang, 2012, Gomez et al., 2009, Gruezo, 2009). Only three studies have quantified 

species abundance (Mallari et al., 2011, Vallejo et al., 2009, Lee, 2005) and two papers by 

the same authors described an improved method of abundance estimation using point 

transect distance sampling as well as an improved approach to bird-habitat studies (Lee 

and Marsden, 2008b, Lee and Marsden, 2008a).  

From my regular attendance at the Wildlife Conservation Society of the 

Philippines’ annual scientific symposium, I have observed that terrestrial wildlife research 

in the Philippines in the past two decades has generally involved generating species lists 

with little or no effort at species abundance estimation. There is undoubtedly much to be 

gained from having a thorough species list for an area as long as methods of generating 

such lists are standard or remain the same across time and locality. This allows for a direct 

comparison of species composition across sites and seasons, especially in gradient or 

biodiversity monitoring studies involving sites with varying degrees of forest disturbance 

or landscape feature, e.g. altitude and slope. This, however, is not the norm and I have 

come across only one biodiversity monitoring programme in the Philippines since I 

started doing wildlife research more than a decade ago. It is the only institutionalized 

monitoring scheme for protected areas in the country, designed as a participatory 

community-based programme where permanent 2 km transects are designated and where 

quarterly monitoring walks are conducted to generate species lists and numbers 

(Danielsen et al., 2003, Danielsen et al., 2005, Danielsen et al., 2007). The strength of the 



34 

 

method is in its simplicity, low cost, sustainability even with limited external support, and 

the short time period from data sampling to management action (Danielsen et al., 2003). 

Then again problems of data standardization or scientific rigour and ensuing ability to 

detect population and habitat disturbance trends are raised due to the simple sampling 

methods employed (Danielsen et al., 2005). A complementary approach involving both 

conventional/professional and locally-based/participatory environmental monitoring 

schemes is the better approach to ensure higher level conservation management 

intervention in protected areas (Danielsen et al., 2007). 

On a national and regional scale, international conservation organizations have 

followed a framework for monitoring biodiversity conservation outcomes using the 

following indicators: (1) the Red List Index, which is the rate at which the number of 

species in each IUCN Red List category changes, (2) change in protection status of key 

biodiversity areas (KBA) or an assessment of the percentage of KBAs with formal 

protection status, (3) change in habitat extent within KBAs in Palawan, Sierra Madre, and 

Eastern Mindanao Biodiversity Conservation Corridors, and (4) change in fragmentation 

in the Palawan, Eastern Mindanao, and Sierra Madre Biodiversity Conservation Corridors 

(Conservation International, 2006). Species, site and landscape conservation 

priorities/programmes are designed based on this framework, which is underpinned by 

biodiversity information from taxonomic experts, data providers and IUCN specialist 

networks in the region. The dearth and low quality of biodiversity information from the 

region and the Philippines in particular has the potential to significantly misdirect and 

impede conservation initiatives by taking away limited conservation resources from 

sites/species urgently needing it. 
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1.6 Abundance estimation in frugivores 

Bird conservation programmes often use change in estimates of population size or 

density to gauge impacts of habitat loss, pollution or harvesting, assess population 

viability or extinction risk, and put forward conservation initiatives that will help bird 

populations. Its importance is such that the IUCN Red List classification scheme has 

population density as one of its cornerstones (IUCN, 2011). 

There are two basic approaches to abundance estimation: calculating actual 

density estimates (individuals per unit area) and calculating an index of relative abundance 

(Bibby et al., 1998). To derive total population counts or absolute density, either all the 

individuals of the population are counted, or density is multiplied by area occupied 

(Jongman et al., 1995). Species discovery curves, encounter rates, MacKinnon lists, timed 

species-counts and mist-netting are some of the methods used in generating abundance 

indices (Bibby et al., 1998). These methods have been used in surveys of frugivores in 

many areas – especially in monitoring programmes over large areas. In these cases, 

species lists from one time period are compared to those from another (Bibby et al., 

1998). Recent methods include camera-trapping for cryptic and nocturnal animals 

(Silveira et al., 2003) and occupancy modelling (MacKenzie and Bailey, 2004, Peters et al., 

2010). 

Density estimation is often seen as more powerful as ideas of numbers of birds 

are given and allows interpolation and extrapolation in unsurveyed sites (Jongman et al., 

1995, Palmer, 1995). The usual way of calculating density is through the use of distance 

sampling (Buckland et al., 1993), although spot-mapping or territorial mapping 

(International Bird Census Committee, 1970) and mark-recapture (Cormack, 1964, 

Lebreton et al., 1992) has been used. Distance sampling involves noting distances of 

detections to a transect and estimating the abundance of an object from the recorded 
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detections and distances (Thomas et al., 2010). It can be based on line transects or point 

counts (Marsden, 1999, Anderson et al., 1979). The assumptions are (1) objects on the 

line or point are detected with certainty, (2) objects are detected before any responsive 

movement due to observer presence, (3) measurements are exact, and (4) objects are 

located independently of the line or point (Buckland et al., 2001). There are several 

problems associated with surveying frugivores and several papers have looked at ways to 

improve estimates and compared several methods of abundance estimation (Buckland, 

2006, Marques et al., 2007, Casagrande and Beissinger, 1997, Marsden, 1999, Buckland et 

al., 2008, Lee and Marsden, 2012). 

1.7 Overall aim/goal of the PhD  

Academic aim 

To develop cost-effective methods for gathering baseline ecological and socio-economic 

data to inform conservation measures for little-known species over large geographical 

areas.   

List of objectives 

1. To assess the distribution, population densities, local population sizes and broad 

habitat associations of parrots and other key frugivorous birds on Luzon using 

ecological field methods and data from community interviews. 

2. To build a predictive model of frugivorous bird distribution and population 

density using habitat/environmental data from sites of known occurrence.  

3. To use semi-structured interviews to glean information on the abundance and 

ecology of parrots, and on relevant aspects of local people’s livelihoods and 

lifestyles.  
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4. To use the results of 1-4 to make recommendations on: (a) IUCN conservation 

status for each species, (b) key conservation areas/habitats for each species, and 

(c) likely impact of exploitation to local parrot populations and its contribution to 

the livelihoods of local communities. 

5. To use the results of 1-4 to develop field and analysis methods for the effective 

gathering of distribution and abundance information about poorly-known species 

over large areas. 
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C h a p t e r  2  

ARE POPULATIONS OF LARGE-BODIED AVIAN FRUGIVORES ON 

LUZON, PHILIPPINES, FACING IMMINENT COLLAPSE? 

2.1 ABSTRACT 

Avian frugivores across Southeast Asia, and in the Philippines in particular, are seriously 

threatened owing to massive loss of habitat and direct exploitation through hunting and 

the pet trade. Their declines may have dire consequences for wider ecological processes, 

since many frugivores are also seed dispersers. Twenty-five species of pigeons, parrots 

and hornbills were surveyed using distance sampling along nearly 500 km of line transects 

at 14 sites across the island of Luzon. I documented surprisingly few reliable 

disappearances of frugivores from individual forest patches – in fact the present survey 

and other fieldwork since 2000 have increased the known extent of occurrence of several 

species. However, Green Racquet-tail Prioniturus luconensis has been recorded at only seven 

out of 29 historic sites in the last ten years; although possibly a function of poor coverage, 

this may be a real range contraction. Still more alarming was the absence of large parrots 

from most sites with apparently intact habitat surveyed. Even where present, large parrots 

exhibited lower densities than related species in similar habitat in Southeast Asia. 

Multiplying site-specific density estimates by reserve area, I estimated population sizes for 

species in five reserves selected from the current protected area network. For six species, 

including four of six parrots, largest populations in any reserve in Luzon numbered 

<1,000 individuals, and nearly one-third of all populations in reserves were <100. Given 

differing opinions and evidence on MVP thresholds, I used a range of MVP values to 

predict the likelihood that frugivore populations will persist in various reserves. At MVPs 

of 500, frugivore communities in all but 2–3 of the largest reserves are not expected to 
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survive. Although seed dispersers may fare better than seed predators (large parrots), and 

many frugivores are good fliers that can disperse between widely separated sites, I express 

the concern that without stricter species and site protection a major collapse of frugivore 

communities may occur across Luzon, with serious implications for ecosystem 

functioning. 

2.2 INTRODUCTION 

Seed dispersal by frugivores is vitally important in maintaining forest vegetation dynamics 

and in rehabilitating degraded habitat after human impact, especially in the highly 

fragmented forests of the Orient (Corlett, 1998). Up to 90% of tree species in tropical 

rainforests have vertebrate-dispersed seeds (Willson et al., 1990, Whelan et al., 2008). In 

submontane forest in the central Philippines the figure is around 80%, with mid- and late-

successional tree species visited almost exclusively by large avian frugivores such as 

hornbills and pigeons (Hamann and Curio, 1999). This implies that forest regeneration 

capacity will decline with the loss or decline of frugivore populations. In places where 

frugivores are rare or absent, seedling recruitment of animal-dispersed trees is indeed 

lower, sometimes with substantial loss of plant species richness (da Silva and Tabarelli, 

2000, Cordeiro and Howe, 2001, Babweteera and Brown, 2009). Moreover, the future 

climate-driven range changes of many plant species depend on frugivorous birds and 

mammals (Corlett, 2009).  

Tropical forest disturbance and fragmentation affects avian feeding guilds 

differently: granivores tend to increase, while woodpeckers, terrestrial and canopy 

insectivores and larger-bodied frugivores show lower abundances (Lambert and Collar, 

2002, Watson et al., 2004, Gray et al., 2007). Vulnerability to extinction after disturbance is 

also higher in frugivores, particularly large-bodied taxa (Owens and Bennett, 2000, 

Gomes et al., 2008, Martin and Blackburn, 2010, Sodhi et al., 2010a). Despite the obvious 
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importance of forest loss to frugivore populations, and of frugivores to forest ecology, 

little research has been done in the Philippines to examine how habitat loss, degradation 

and fragmentation affect the viability of frugivore assemblages and populations. 

Given an exceptionally high endemism (>47% of vertebrates and >76% plants), 

high density of endemic species (64.7 plants per 100 km-2 and 5.7 per 100 km-2 for 

vertebrates) and extensive loss of original habitat (only 7% of old growth forest remains), 

the Philippine Archipelago is one of the hottest of biodiversity hotspots globally (Myers et 

al., 2000, Conservation International, 2007). Protected areas cover almost 11% of the 

Philippines’ land area (although IUCN categories I–IV cover only 6%), but their 

effectiveness in stemming habitat loss and other impacts on wildlife is not apparent 

(IUCN and UNEP-WCMC, 2010). Consequently, 33% of the country’s 181 endemic 

birds are threatened, the second highest total of any country in Asia (BirdLife 

International, 2004). Hunting and commercial trade affect respectively 40% and 20% of 

the country’s threatened birds. Frugivorous birds, particularly large-bodied pigeons, 

parrots and hornbills, are especially heavily exploited and many species are now 

threatened, even in protected areas (BirdLife International, 2003). Species such as the 

Philippine cockatoo Cacatua haematuropygia, which once occurred on 52 islands in the 

archipelago, has suffered serious range contraction owing to intensive trapping for the 

cagebird trade and habitat destruction, and was found on just eight islands in the period 

1989–1994 (BirdLife International, 2001). 

The study assessed the current state of populations of multiple frugivorous 

species (pigeons and hornbills as seed dispersers, parrots as heavily exploited and 

seriously threatened seed predators) across Luzon, the largest island in the Philippines, in 

order to gauge the chances of long-term survival for individual species and frugivore 

communities. First, I attempted to detect range contractions by comparing past and 
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current distribution using occurrence data compiled from the published literature and the 

present field surveys. Then I estimated population densities at a number of key sites and 

compared them with those of related species elsewhere in Southeast Asia. I then asked 

whether estimated populations of frugivores in key protected areas were likely to be large 

enough to remain viable in the long term. The results were discussed in relation to 

current knowledge on likely minimum viable populations (MVPs) and possible benefits 

of dispersal between sites to foresee the structure and size of future frugivore 

communities of Luzon, and to identify key sites for their maintenance. 

2.3 METHODS 

2.3.1 Species distribution 

Locality records for 15 pigeon, eight parrot and two hornbill species in Luzon for pre-

2000 and 2000–2010 were gathered from the grey literature such as museum catalogues, 

biological expedition reports, and birdwatching lists (www.birdwatch.ph) to supplement 

the present surveys (see Appendix 2.3 for site locations and data sources). The 

distributions of nine selected species (three with IUCN Red List status ‘Vulnerable’, four 

‘Near Threatened’ and two ‘Least Concern’ for comparison) were plotted to identify any 

range contractions due to disappearance from one or more historical sites. These were 

defined simply as sites where the species was historically but not recently recorded 

and/or habitat has been so totally lost to urban or agricultural development that their 

survival is seen as impossible. Confirming disappearance of species from sites is difficult 

unless they have been intensively sampled. The surveys lasted on average 9 days per site 

but I augmented field data on species occurrence with informal interviews with local 

hunters. If local hunters recognised a species from a site, but I did not record it during 

the bird survey, then it did not qualify as being a disappearance in the species distribution 

analysis. The Critically Endangered Philippine Cockatoo, which has very few historical 

records in Luzon and was not encountered in the present survey, was omitted.  
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2.3.2 Study site and sampling 

Surveys for 25 forest frugivores (pigeons, parrots and hornbills) took place on Luzon 

from December 2009 to September 2010, at 14 sites within five ecologically distinct 

regions, namely ‘Sierra Madre’, ‘Cordillera’, ‘West Luzon’, ‘Central Luzon’ and ‘South 

Luzon’ (Figure 2.1). These five regions roughly correspond to the subcentres of mammal 

endemism in Luzon, namely northern Sierra Madre of north-east Luzon, Central 

Cordillera of northern Luzon, the Zambales mountains of west-central Luzon and Mt 

Isarog in southern Luzon (Balete et al., 2009). 

Figure 2.1  Frugivore sampling areas in Luzon. Water bodies are coloured grey on the map. a 
Calanasan, Apayao (Cordillera); b Balbalasang-Balbalan National Park, Kalinga (Cordillera); c Mt 
Polis, Cambulo and Pula, Cordillera Administrative Region (Cordillera); d Mt Cetaceo, 
Peñablanca, Cagayan (Sierra Madre); e Divilacan, Maconacon and San Pablo, Isabela (Sierra 
Madre); f Baler, San Luis, Dilasag, Casiguran and Dinalungan, Aurora (Sierra Madre); g Mt 
Tapulao, Zambales (West Luzon); h Subic Watershed Forest Reserve and Bataan National Park, 
Bataan (West Luzon); i Burdeos, Polillo Island, Quezon (Central Luzon); j Mounts Banahaw-San 
Cristobal Protected Landscape, Quezon (Central Luzon); k Quezon Protected Landscape, 
Quezon (Central Luzon); l Mt Isarog National Park, Naga, Camarines Sur (South Luzon); m 
Caramoan National Park, Camarines Sur (South Luzon); n Mt Malinao, Diaro, Camarines Sur 
(South Luzon). 
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Such an extended field season was unavoidable and I acknowledge that birds may 

have been at different stages of breeding at sites as they were visited. Additionally, it is 

possible that some species make seasonal short-range or altitudinal movements, although 

data on such movements are lacking from Luzon. The main currency of bird abundance 

used was population density derived using distance sampling where ‘site’ was included as 

a factorial covariate in detection function modelling. Including site as a covariate works 

towards accounting for variability in detection across sites which could arise from 

differences in terrain, habitat or seasonal effects (Buckland et al., 2008). There may also be 

issues of within-site differences in detectability due to survey timing but I suggest that 

these are minimal as the number of days between the first and last transects walked at a 

site was at most 21 days (Subic Watershed Forest Reserve and Bataan National Park; 

Appendix 2.1). Site-specific population densities are important in formulating species 

management programmes within reserves. 

The total remaining forest cover on Luzon in 2002 was 23.7% (only 8.1% was 

closed-canopy broadleaf and mossy forest), with cover being greatest in Sierra Madre 

(35.5% total; 15.7% closed-canopy broadleaf/mossy forest) and lowest in South Luzon 

(7.7% total; 0.5% closed-canopy broadleaf/mossy forest). The study sites included the 

largest and third largest reserves in Luzon, and a selection of representatively sized 

reserves to show the importance of reserve size. There was no significant difference in 

the proportion of the 50 largest and 50 smallest reserves in Luzon that was sampled (χ2
1 = 

2.82, p = 0.09; Figure 2.2) which shows that there was no bias towards any size class in 

the chosen reserves. All sampling was centred on forested areas, and included the island’s 

three major forest types, cloud forests, pine forests, and mixed dipterocarp forests 

(Appendix 2.1 which also has details of sampling effort across sites), although transects 

inevitably passed through areas with varying degrees of disturbance (discussed below). 
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Figure 2.2  The sizes (log transformed area km2) of the official reserves of Luzon as recognised 

by the Protected Areas and Wildlife Bureau (Protected Areas and Wildlife Bureau, 2004). 
Reserves surveyed during the current study are shown in black. 

 

Transect placement in each site was done opportunistically depending on size of 

site, terrain, and accessibility. Differences in sampling intensity across sites are not seen as 

a major problem since the currencies of frugivore abundance used (density estimates and 

encounter rates) take into consideration survey effort. Sites with comparatively low 

survey effort will have relatively imprecise abundance estimates reflected in wide 

confidence intervals. There were, in total, 496.8 km of transects across the 14 sites (mean 

number of transects per site = 15.21 ± 11.42, range = 2–47). Transects mainly followed 

existing routes, either narrow hunter/farmer trails (80% of total transect length) or 

motorable tracks (9%) passing through forest reserves; however, in places without human 

traffic, single-file paths were cut (11%). Within-site transect placement was made with a 

view to covering as much of the site as possible and to reflect habitat heterogeneity 

within it. Path width averaged 0.54 m (range 0–6.49 m). Mean transect length was 2.34 

km (± 1.38 SD, n = 212 transects) and transects were positioned at least 200 m apart. 

Transects ranged in altitude from 5–1971 m a.s.l. Most traversed forested areas without 

planted crops (89.1%), but the sample also included agroforestry and forest-edge habitats 

in foothills and upland farms (10.9% of segments contained some planted crops).  
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2.3.3 Frugivore survey methods 

The survey targeted 15 pigeon, eight parrot and two hornbill species known to occur in 

forests on Luzon (Dickinson et al., 1991). This set of species are mostly large-bodied but 

also include the small parrot Colasisi Loriculus philippensis while excluding passerine 

frugivores such as Philippine Fairy-bluebird Irena cyanogastra and Philippine Bulbul Ixos 

philippinus. Densities of frugivores were estimated using a line transect distance sampling 

method (Buckland et al., 2008). The method involved recording all individuals of each 

target species heard or seen along the transect, and measuring the perpendicular distance 

of each bird or bird cluster from the transect line (Buckland et al., 2001). Each transect 

was walked just once. Only perched individuals, or individuals flushed by the recorders, 

were included in abundance calculations because birds in flight violate the census method 

assumption that birds are detected at their initial location (Marsden, 1999). The 

proportions of heard-only records across all species averaged 82.9 ± 15.6% SD and, 

among species with more than 50 records, ranged from 71.1% in Luzon Tarictic 

Penelopides manillae to 95.2% for Yellow-breasted Fruit-dove Ptilinopus occipitalis. A laser 

rangefinder (Bushnell Sport 450) was used to measure distances but, where the line of 

sight was obscured, perpendicular distances were estimated to the tree or nearest habitat 

feature. Transects were walked, one time only, at a standardised pace of 1 km h-1, and 

only between 0530H and 1100H, and 1500H to 1800H, i.e. when birds are most active 

(Robbins, 1981). No surveys were conducted in rain, wind or fog as such conditions 

affect bird activity and detectability (Bibby et al., 2000). I conducted the surveys with 2–5 

experienced MSc students and field assistants, all of whom underwent prior training on 

birdcall identification, distance estimation and habitat assessment. A field guide with bird 

photos was used to train team members to identify species reliably. The field assistants 

were indigenous hunters already familiar with birdcalls and with acute distance estimation 
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skills. Distance estimation of both visual and aural detections was checked regularly with 

exercises to maintain accuracy. 

2.3.4 Data analysis 

Two of Luzon’s parrot species, Philippine Cockatoo and Blue-backed Parrot Tanygnathus 

sumatranus, were not encountered during the survey. Four pigeons in the genera Geopelia 

and Streptopelia were excluded from the analysis since they are open country species. The 

number of frugivore species recorded were summed at each site (observed species 

richness) but also estimated species richness using the Chao2 estimator in EstimateS 

v8.2.0 (Colwell et al., 2012) working on the presence or absence of species along each 

segment of transect at the site. The MCDS (Multiple Covariates Distance Sampling) 

engine of DISTANCE 6.0 release 2 software (Thomas et al., 2010) was used to estimate 

species-specific densities (individuals km-2) in individual sites and regions. Bird records 

were entered as clusters (number of birds in a group/flock) with exact distances rather 

than distance bins. Right-hand truncation of the furthest 5% of the data was undertaken 

following Thomas et al. (2010), in order to remove those outlying records at large 

distances away from the transect line which contribute little to the calculated density 

estimate and hinder model fitting (Buckland et al., 2001). The optimal detection function 

for each species was selected based on minimisation of Akaike’s Information Criterion 

(AIC) values between models. Site or region was entered as a factorial covariate, 

depending on the resolution required in the analysis, in an attempt to account for any 

differences in detection across study areas. These could arise from differences in terrain, 

habitat, or seasonal effects such that considerable bias could potentially be introduced 

from changing calling rates, weather pattern, fruiting and therefore food availability 

across sites (e.g. Buckland et al., 2008). Site-specific population densities hold relevance in 

formulating species management programmes within reserves. For the four rarer large 
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parrots (Tanygnathus lucionensis, Prioniturus luconensis, Prioniturus montanus, Prioniturus discurus), 

with only 63 records combined from the current survey, data were pooled for the 

estimation of a common detection probability and species-specific density estimates 

derived using the multiplier function in DISTANCE.  

I calculated likely population sizes for frugivores in five protected areas of 

different sizes, one from each of the five regions (Figure 2.2) as an illustration of the 

likely sizes of each species’ population within a range of reserves (Protected Areas and 

Wildlife Bureau, 2004). Density estimates in the reserves were calculated based on site-

specific density figures and reserve land areas. For each of the protected areas visited 

during the surveys, I computed the number of seed-dispersing and seed-predating 

frugivores expected to have populations in excess of three candidate values of MVP. The 

candidate MVPs used were 5000, 1000 and 500 individuals, the first reflecting the upper 

95% confidence interval of MVPs from Traill et al. (2007) and the latter two being 

increasingly ‘optimistic’ values. The relevance of MVPs is examined more 

comprehensively in the discussion. 

2.4 RESULTS 

2.4.1 Current and historical distribution of frugivores across Luzon 

From the literature review and the current field survey, a total of 89 new (2000–2010) 

locality records were accumulated, including 18 new sites for the Colasisi, and deduced 

from them that widespread species like the Colasisi and the Philippine Cuckoo-dove 

Macropygia tenuirostris are likely to maintain a wide distribution in forested sites across 

Luzon (Figure 2.3). These new records are by no means a reflection of actual range 

expansions but rather to a large extent an artefact of inadequate past sampling. By 

contrast, the Blue-naped Parrot T. lucionensis appears to have a very narrow range 

(currently known from six sites), and the Luzon Racquet-tail P. montanus may currently be 
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restricted to the northern mountains. Moreover, there is uncertainty whether particular 

species remain at some localities, especially in areas of the north (Cordillera and Sierra 

Madre) which have not been visited in the past ten years.  

Figure 2.3  Historical (pre-2000) and current (2000 to the present) distribution of key avian 
frugivores in Luzon, Philippines. Red circle: historical presence in a locality but absence in 
current surveys; green circle: presence in both historical records and current surveys; yellow 
circle: new locality records 2000-present; yellow triangle: new localities discovered during the 
current survey. Localities where a species was recorded historically but have not been visited 
since 2000 are marked ‘?’ 
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Five species are likely to have disappeared from 13 sites, in six of which the Green 

Racquet-tail P. luconensis was not found or the site is completely developed now, 

suggesting that the species is probably locally extinct (Figure 2.3). 

2.4.2 Frugivore presence-absence and density estimates at survey sites, 2009–2010 

A total of 4372 encounters with 22 target species was made along 496.8 km across the 14 

sites. Bataan and Isabela had the greatest observed number of species with 16 each 

(expected number for Bataan = 17 and for Isabela = 20), while Ifugao in the Cordillera 

Mountain Range had fewest observed with just eight (estimated = 9; Appendix 2.2). 

Frugivore communities across the sites were relatively even, with Pielou’s Evenness 

Index (J’) exceeding 0.5 for all sites, the lowest being 0.57 for Mt Isarog. The apparent 

absence of large parrots from most sites was notable (note that absence does not 

necessarily mean that the species historically occurred in a site). The threatened Green 

Racquet-tail, for example, was absent from Aurora, a region in which flocks of the bird 

were recorded by ornithologists and birdwatchers in the early and mid-1990s (F. 

Danielsen et al. unpublished survey report, 1994; T. H. Fisher verbally, 2008). During the 

survey, the species was encountered on 21 occasions at just four sites, and on just one 

occasion, a single bird was recorded in the largest reserve in the country. The Blue-naped 

Parrot was also rarely encountered, with records at Bataan in West Luzon and Polillo in 

Central Luzon. Blue-crowned Racquet-tail was found in good numbers on the Caramoan 

peninsula in South Luzon but was not encountered in the Quezon Protected Landscape, 

a former stronghold (T. H. Fisher verbally, 2008). 

Each of the five regions held highest densities of at least one species (Table 2.1). 

West Luzon had highest densities of six species, Sierra Madre five, Central Luzon four 

and South Luzon three. Cordillera contained highest density of the Flame-breasted Fruit-

dove Ptilinopus marchei and the Luzon racquet-tail, both highland species. For parrots only, 
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West Luzon was again the region with highest densities for most species (four of six 

species). The highest estimated densities were for the White-eared Brown-dove Phapitreron 

leucotis in South Luzon (42.2 km-2; 32.9-54.2 95% CI) and the Guaiabero Bolbopsittacus 

lunulatus in West Luzon (35.6 km-2; 27.7-45.8 95% CI). The highest density for a hornbill 

concerned the Luzon Tarictic (14.1 km-2; 9.2-21.6 95%CI) in Central Luzon. 

Twelve species (four parrots, seven pigeons and one hornbill) never achieved 

densities over 5 km-2 at any site, and four (all parrots) never achieved densities over 3.5 

km-2 at any site. Overall, 38 of the 50 (non zero) density estimates for pigeons were under 

5 km-2, ten of 16 for parrots, and six of ten for hornbills. The proportions of species with 

density estimates under 5 km-2 were no different across pigeons, parrots and hornbills (χ2
2 

= 1.34, p = 0.51). 

2.4.3 How large are remaining frugivore populations in key reserves? 

Only 13 of 22 species (59%; eight of 14 pigeons, three of six parrots, and both hornbills) 

had estimated populations exceeding 1000 individuals in at least one of the five reserves 

(Table 2.2). Discounting species that were absent from reserves (NR) and assuming that 

species present but rare (PR) had very low populations within reserves, 22 (30%) of 73 

species-site populations were expected to be lower than 100. No species in Quezon, and 

just three and four species from Cordillera and Mt Isarog respectively, had populations 

greater than 500 individuals. Only in Sierra Madre and Bataan did nearly half or more of 

the species present have populations greater than 500 individuals. 
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Table 2.1 Density estimates (individuals km-2 ± %SE with 95% confidence limits in parentheses) 

for species in five regions across Luzon, Philippines. 

SPECIES 
Central 
Luzon 

Cordillera 
Sierra 
Madre 

South 
Luzon 

West 
Luzon 

White-eared Brown-dove 
Phapitreron leucotis 

20.1 ± 19.8 
(13.5-29.9) 

5.0 ± 18.8  
(3.4-7.4) 

29.2 ± 10.7 
(23.6-36.1) 

42.2 ± 12.1 
(32.9-54.2) 

22.2 ± 15.5 
(16.3-30.3) 

Amethyst Brown-dove 
Phapitreron amethystina 

4.8 ± 24.5 
(2.9-7.8) 

3.1 ± 28.0 
(1.7-5.4) 

15.7 ± 13.1 
(12.1-20.3) 

2.4 ± 33.7 
(1.2-4.7) 

2.6 ± 38.8 
(1.2-5.5) 

Flame-breasted Fruit-dove 
Ptilinopus marchei (VU) 

1.3 ± 63.4 
(0.4-4.5) 

3.5 ± 41.6 
(1.5-7.8) 

0.5 ± 61.3 
(0.2-1.6) 

0 
0.1 ± 101.6 
(0.02-0.5) 

Cream-bellied Fruit-dove 
Ptilinopus merrilli (NT) 

1.2 ± 41.2 
(0.5-2.6) 

0.4 ± 49.5 
(0.2-1.1) 

3.1 ± 27.0 
(1.8-5.2) 

0.5 ± 58.4 
(0.2-1.6) 

0.1 ± 100 
(0.02-0.6) 

Yellow-breasted Fruit-dove 
Ptilinopus occipitalis 

0.7 ± 56.5 
(0.2-2.0) 

0.07 ± 102 
(0.01-0.4) 

3.9 ± 24.4 
(2.4-6.3) 

3.4 ± 30.31 
(1.9-6.3) 

8.4 ± 28.8 
(4.8-14.9) 

Black-chinned Fruit-dove 
Ptilinopus leclancheri 

2.3 ± 32.9 
(1.2-4.4) 

0.6 ± 62.1 
(0.2-2.1) 

1.5 ± 29.6 
(0.8-2.7) 

0 
5.0 ± 29.1 
(2.8-8.9) 

Pink-bellied Imperial-pigeon 
Ducula poliocephala 0 0 

0.06 ± 98.6 
(0.01-0.3) 

0 0 

Spotted Imperial-pigeon 
Ducula carola 0 0 

0.2 ± 93.1 
(0.03-0.8) 

0 0 

Green Imperial-pigeon 
Ducula aenea 

1.2 ± 93.7 
(0.3-6.0) 

0 
0.02 ± 120 
(0.004-0.2) 

1.7 ± 81.0 
(0.4-6.9) 

0.8 ± 76.8 
(0.2-3.0) 

Metallic Pigeon 
Columba vitiensis 0 0 0 

0.2 ± 121.6 
(0.04-1.7) 

0 

Philippine Cuckoo-dove 
6Macropygia tenuirostris 

7.2 ± 36.1 
(3.6-14.8) 

0.4 ± 39.7 
(0.2-0.9) 

0.6 ± 32.5 
(0.3-1.2) 

7.0 ± 42.7 
(3.0-16.4) 

5.2 ± 31.8 
(2.8-9.8) 

Common Emerald dove 
Chalcophaps indica 

12.2 ± 26.4 
(7.2-20.7) 

1.2 ± 52.4 
(0.4-3.2) 

3.2 ± 20.9 
(2.1-4.8) 

2.2 ± 33.0 
(1.2-4.4) 

1.9 ± 34.7 
(0.9-3.7) 

Luzon Bleeding-heart 
Gallicolumba luzonica (NT) 

4.8 ± 35.4 
(2.4-9.5) 

4.2 ± 52.4 
(1.6-11.4) 

1.8 ± 38.9 
(0.9-3.8) 

2.9 ± 37.6 
(1.4-6.1) 

0.3 ± 71.3 
(0.1-1.1) 

Guaiabero 
Bolbopsittacus lunulatus 

2.2 ± 31.0 
(1.2-4.1) 

0 
9.8 ± 15.2 
(7.3-13.2) 

18.2 ± 21.8 
(11.7-28.4) 

35.6 ± 12.7 
(27.7-45.8) 

Blue-naped Parrot 
Tanygnathus lucionensis (VU) 

0.2 ± 75.5 
(0.05-0.7) 

0 0 0 
0.9 ± 54.7 
(0.3-2.6) 

Green Racquet-tail 
Prioniturus luconensis (VU) 0 0 

0.04 ± 75.1 
(0.01-0.2) 

0 
1.2 ± 47.1 
(0.5-2.9) 

Blue-crowned Racquet-tail 
Prioniturus discurus 0 0 0 

0.5 ± 64.9 
(0.2-1.8) 

0 

Luzon Racquet-tail 
Prioniturus montanus (NT) 0 

3.5 ± 56.0 
(1.2-10.0) 

0.4 ± 84.5 
(0.1-1.7) 

0 0 

Colasisi 
Loriculus philippensis 

5.2 ± 33.3 
(2.7-10.0) 

3.1 ± 30.9 
(1.6-5.7) 

5.8 ± 19.4 
(4.0-8.4) 

1.9 ± 43.0 
(0.8-4.4) 

9.3 ± 19.7 
(6.3-13.7) 

Luzon Hornbill 
Penelopides manillae 

14.1 ± 21.4 
(9.2-21.6) 

1.0 ± 60.9 
(0.3-3.2) 

7.6 ± 16.4 
(5.5-10.4) 

6.4 ± 36.0 
(3.1-13.2) 

11.7 ± 21.8 
(7.6-18.0) 

Rufous Hornbill 
Buceros hydrocorax (NT) 

0.3 ± 46.8 
(0.1-0.7) 

1.5 ± 29.7 
(0.8-2.7) 

3.0 ± 12.0 
(2.3-3.8) 

0.6 ± 47.6 
(0.2-1.6) 

0.9 ± 28.4 
(0.5-1.6) 
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Table 2.2  Estimated population sizes of key frugivores in selected sites in Luzon. Density figures were based on site-specific estimates. The species density figures in 
the Northern Sierra Madre Natural Park are based on the combined density estimates of the Maconacon-San Pablo and Divilacan sites. Likewise, the Subic Bay 
Forest Reserve and Bataan Natural Park species density figures are from the combined density estimates of the Morong, Orani and Subic Bay sites. Figures in bold 
are population sizes that exceeded 5000 individuals. NR=not recorded, PR=present but rare. 

 Quezon Protected 
Landscape 

Balbalasang-Balbalan National 
Park 

Northern Sierra Madre 
Natural  Park 

Mount Isarog Natural 
Park 

Subic Bay Forest Reserve 
and Bataan Natural Park  

Region Central Luzon Cordillera Sierra Madre South Luzon West Luzon 

Area km2 9.4 178.4 2879 101.1 481 

Habitat quality Good lowland secondary 
forest  

Extensive montane  primary 
forest 

Extensive primary  lowland to 
montane forest 

Good secondary forest to 
montane forest 

Logged 20 yrs previously 
but in good condition  

Protection Volunteer forest guards 
patrol the park infrequently; 
hunting occurs along edges 

Remoteness and unstable peace 
and order has discouraged 
commercial logging 

Government-sanctioned and 
illegal logging mostly along the 
western edge of the park 

Forest guards effective in 
protecting against logging 
but hunting not controlled 

Forest guards provided 
by the Subic Bay 
Metropolitan Authority 

Observed species richness 13 11 16 10 16 

Treron pompadora NR NR PR NR 10,285 (1,037-102,106) 

Phapitreron leucotis 360 (221-584) 842 (398-1,779) 45,756 (29,604-71,145) 5,700 (4,159-7,813) 15,178 (8,854-26,755) 

Phapitreron amethystina 81 (32-206) 430 (165-1,119) 118,327 (83,671-177,946) 426 (196-925) 4,591 (1,763-12,171) 

Ptilinopus marchei (VU) NR 1,077 (364-3,187) 526 (86-3,215) NR NR 

Ptilinopus merrilli (NT) 52 (20-137) NR 9,194 (4,363-23,104) PR 234 (35-1,591) 
Ptilinopus occipitalis 80 (2-3,539) NR 30,957 (702-1,365,942) 3,897 (88-171,627) 5,668 (128-250,552) 
Ptilinopus leclancheri 39 (16-95) 103 (17-614) 552 (94-3,252) PR 356 (51-2,519) 
Ducula poliocephala (VU) NR NR PR NR NR 
Ducula carola (VU) NR NR PR NR NR 
Ducula aenea PR NR NR NR PR 
Columba vitiensis NR NR NR PR NR 
Macropygia tenuirostris PR 128 (10-1,651) 689 (50-9,564) 1,444 (116-18,039) 1,759 (137-22,720) 
Chalcophaps indica 65 (27-156) 353 (91-1,364) 759 (136-4,223) 301 (107-846) 605 (138-2,654) 
Gallicolumba luzonica (NT) 55 (24-127) 1430 (574-3,559) 4,260 (1,554-15,713) 234 (93-591) 193 (29-1,275) 
Bolbopsittacus lunulatus 49 (21-115) NR 24,164 (12,986-46,984) 1,935 (1045-3,583) 31,708 (20,335-50,227) 
Cacatua haematuropygia (CR) NR NR NR PR PR 
Tanygnathus lucionensis (VU) NR NR NR NR PR 
Prioniturus luconensis (VU) NR NR 246 (42-1,434) NR 174 (80-380) 
Prioniturus montanus (NT) NR 457 (124-1,680) 1,963 (443-8,698) NR NR 
Loriculus philippensis 42 (16-111) 299 (93-959) 28,418 (11,215-72,156) 121 (27-551) 6,597 (3,128-14,318) 
Penelopides manillae 303 (212-432) 117 (20-680) 25,299 (9,997-64,043) 357 (129-985) 12,542 (6,411-25,058) 
Buceros hydrocorax (NT) 13 (5-32) 440 (185-1,049) 11,473 (7,610-19,045) PR 696 (231-2,301) 
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The huge Sierra Madre reserve had the highest estimated populations of 12 out of 

16 species (those with at least one population estimate), and the highest number of 

threatened/Near Threatened species (four). Highest estimated population of three 

species came from the Subic Watershed Forest Reserve and Bataan Natural Park. The 

threatened highland Flame-breasted Fruit-dove had highest estimated numbers in 

Balbalasang-Balbalan Natural Park. At the most conservative MVP estimate of 5000, only 

four of the surveyed reserves are expected to retain their frugivore assemblages (Figure 

2.4). Even at the lowest MVP of 500, only 12 out of 15 reserves are expected to retain 

their frugivores. The smallest three reserves surveyed had areas < 10 km2 and held no 

frugivore species with estimated populations > 500. Looking across the whole reserve 

network, even at the most conservative estimate of MVP (500 individuals), frugivore 

communities in all but 2–3 of the largest reserves are predicted to lose high proportions 

of their frugivore species (Figure 2.4). In fact, of 159 frugivore populations currently 

extant within the 15 surveyed reserves, only 68 (42.8%) may survive the next 100 years 

with an MVP of 500. It is important to note that the generic MVP does not distinguish 

between smaller, faster breeding, and more disturbance-resilient species such as the 

Colasisi which may have lower MVPs than the ones considered and the larger frugivores 

(e.g. Ducula spp. and Tanygnathus spp) with more specific requirements for habitat and 

breeding whose real MVPs may be higher than those considered here. 
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Figure 2.4  Numbers of frugivores (seed dispersers and seed predators) with estimated 

population sizes in excess of three possible minimum viable population (MVP) values (B = 5000 
individuals; C = 1000 individuals; D = 500 individuals). A shows the size distribution of all 
protected areas on Luzon with sites surveyed during this study marked in black. 
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2.5 DISCUSSION  

2.5.1 Frugivore distribution and abundance on Luzon 

Comparison of parrot population densities from the current survey with those, also 

derived using Distance sampling methods, from Papua New Guinea (PNG) and 

Indonesia reveals that parrots on Luzon are indeed rare. Not a single regional density 

estimate for any of the large parrot species (Tanygnathus and Prioniturus; 100–250 g) 

exceeded 3.5 individual km-2 (Table 2.1).  In Papua New Guinea (PNG), densities for 

large-bodied parrots (genera Eclectus and Cacatua; 350–800 g) averaged 10 km-2, with the 

two rarest parrots at around 1 km-2 (genera Probosciger and Psittrichas; 550–1000 g). 

Similarly, density estimates for large parrots (Prioniturus, Eclectus, Cacatua and Geoffroyus) in 

Wallacea, Indonesia were comparatively highest and may be as high as 106 km-2 

(Marsden, 1998, Marsden, 1999, Walker and Cahill, 2000, Marsden and Symes, 2006). 

Hornbills in Luzon were also rare, with densities from as low as 0.3–3 km-2 for Rufous 

Hornbill and 1–14.1 km-2 for Luzon Tarictic, whereas hornbill densities ranged from 1.3–

6.9 km-2 for the Sumba Hornbill Rhyticeros everetti in Sumba and 25–26 km-2 for the Papuan 

Hornbill Rhyticeros plicatus in Seram, Indonesia (Marsden, 1999) and 3–52 km-2 for the 

latter species in PNG (Marsden and Pilgrim, 2003). In Sulawesi, which like Luzon has 

two hornbill species, densities were again much higher with 9.3–82.7 km-2 for Red-

knobbed Hornbill Aceros cassidix and 18.8 km-2 for the Sulawesi Tarictic Hornbill 

Penelopides exharatus. Hornbill densities elsewhere in the Philippines are also much higher, 

with Palawan Hornbill Anthracoceros marchei estimated at 9.6–19.6 km-2 in the Puerto 

Princesa Subterranean River National Park (Mallari et al., 2011). This alarming trend, 

which may of course extend to other forest species, is not an artefact of sampling 

placement as only relatively intact habitat were surveyed. There are a number of possible 

drivers of low density among Luzon’s avian frugivores, not least direct exploitation for 
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food and the pet trade (e.g. Pain et al., 2006) and issues related to quantity and quality of 

remaining forest (e.g. Kastner, 2009; Rickart et al., 2011a).  

West Luzon and the Sierra Madre had highest species richness, highest number 

of threatened/Near Threatened species, and highest population estimates, so these 

should have highest conservation value for frugivores. The importance of these areas 

both at the present and in terms of long-term persistence of species can be attributed to 

their possessing, respectively, the best protected reserve (Subic Bay Forest Reserve) and 

the largest and most intact reserve (Northern Sierra Madre Natural Park) in Luzon. While 

it was the US Naval Reservation in the former that maintained Subic’s largely intact forest 

(Posa and Sodhi, 2006), it is the unstable security and remoteness of the latter that has 

contributed to its protection (Mallari et al., 2001). The risk of extinction is less for 

frugivores in these two reserves, as indicated by the findings.  

The frugivorous birds of Luzon show patchy distributions in terms of both 

presence and local abundance. Some of this variation across sites is presumably natural, 

with, for example, Luzon Racquet-tail being confined to the higher altitudes of the 

Cordillera and Sierra Madre mountains; this species may always have been a northern 

Luzon endemic. In contrast, the lowland-dwelling Green Racquet-tail, an endemic of 

Luzon, is now a cause of great conservation concern: first, it has disappeared from a 

number of localities (largely owing to forest fragmentation and deforestation, as at Mt 

Arayat, Bucay, and Barit in Abra, and Tanay in Rizal; CPE pers. obs.); second, at sites 

where it was found it only achieved a maximum density of 1.2 individuals km-2. The 

absence of Ducula pigeons from many sites which retain ‘good’ forest suggests that 

frugivores may be under stress (e.g. from hunting) even where habitat remains. While I 

acknowledge that there is much to learn about the true distribution patterns of Luzon’s 

frugivores and the difficulty of confirming species’ absence from sites, a more rigorous 
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evaluation of remaining tropical lowland forests for frugivores in Luzon may reveal 

further range contraction for these and other lowland species.  

2.5.2 Likely population sizes and future viability 

The minimum viable population size is the smallest population at which a species is 

expected to persist in a given length of time (Traill et al., 2010). There is wide variation in 

estimated MVP from published population viability analyses (PVAs), ranging from 20 

individuals to as high as 100,000 (Franklin and Frankham, 1998, Reed et al., 2003, Reed, 

2005, Brook et al., 2006, Traill et al., 2007, Traill et al., 2010). However, a standardised 

analysis using 212 species gave MVP figures of 4169 (3577–5129, 95% CI) with 3742 

individuals (2544-5244, 95% CI) specific to birds (Traill et al., 2007). Assessment of 

population viability in key areas used primarily the threshold of 5000 individuals 

recommended by several authors (Franklin and Frankham, 1998, Reed, 2005, Traill et al., 

2010) as necessary to maintain a genetically robust population within a site. Many 

frugivores are good dispersers (e.g. Myers & Vaughan, 2004), which in some cases might 

allow genetic mixing and the rescue of local populations from imminent disappearance 

(Hanski, 1998). Vulnerability to extinction of frugivore metapopulations at the various 

sites on Luzon is, of course, unknown, but should depend on several factors including 

species population sizes in habitat fragments, number of subpopulations in the landscape, 

species tolerance to disturbance, site isolation and dispersal abilities across what is 

presumably an increasingly inhospitable matrix (e.g. Moilanen & Hanski, 1998). Isolation 

may be a more serious threat to frugivore populations in south Luzon given the small size 

of reserves and a significant human-modified landscape. A less conservative MVP can be 

applied which is lower than the recommended 5000 MVP value to account for the good 

gap-crossing abilities of many frugivores (Lees and Peres, 2009, Dexter, 2010).  
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Although I found little evidence for local extinctions of frugivores from sites in 

Luzon (Figure 2.3), the MVP evidence suggests that time may be short for some species 

and areas. Only the Northern Sierra Madre Natural Park (NSMNP), the combined Subic 

Watershed Forest Reserve and Bataan Natural Park (SWFR-BNP) in West Luzon and Mt 

Isarog Natural Park in South Luzon had populations that exceeded the MVP and this is 

true for only eight species across all regions. More than half the species considered may 

well disappear across all five reserves in 100 years and even the most persistent species 

may be restricted to just three reserves. All threatened (IUCN Vulnerable) species, i.e. 

Flame-breasted Fruit-dove Ptilinopus marchei, Spotted Imperial-pigeon Ducula carola, Pink-

bellied Imperial-pigeon Ducula poliocephala, Blue-naped Parrot, and Luzon endemic Green 

Racquet-tail might be lost. Moreover, if I more optimistically peg the threshold at around 

1000 individuals (Brook et al., 2006), only an additional two species from NSMNP, 

SWFR-BNP and  Balbalasang-Balbalan National Park (Cordillera) will survive long-term 

along with three from Mt Isarog National Park (South Luzon). It is possible that no 

species would be able to persist in the smallest reserve, Quezon Protected Landscape 

(QPL) in Central Luzon, under either scenario (Figure 2.4), although it may be that loss 

of some species of frugivores might allow other more resilient species, such as Colasisi or 

White-eared Brown-dove, to benefit from their loss through reduced competition for 

some foods. 

NSMNP is the single reserve which will be able to sustain the highest number of 

frugivores (eight species), and the surrounding region of Sierra Madre has the most (28) 

and largest-sized reserves (covering 9347.78 km2) in all Luzon. Although West Luzon has 

the fewest (10) and smallest reserves (covering just 430.51 km2), it has six of the 

‘persistent’ species (those with populations high enough to be expected to survive) 

remaining in the SWFR-BNP, the rest of which are found in NSMNP and Mt Isarog 
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Natural Park. The small size of reserves in South and Central Luzon (they cover only 

around 750 km2 within each region), coupled with widespread deforestation in these 

areas, means that they are unlikely to support viable populations of frugivores (Liu et al., 

1993). Verburg et al. (2006) assessed connectivity of reserves across Luzon and showed 

that many in South and Central Luzon suffer from severe fragmentation. Moreover, if 

NSMNP has the ’threshold’ protected area size capable of supporting the highest number 

or nearly 50% of frugivores, then all the reserves in Luzon and maybe other islands of the 

Philippines could be deemed ineffective in the long term.  

Rapid species collapse is a reality in many regions of the world (e.g. Sodhi et al., 

2004b; Thiollay, 2006; Corlett, 2007). The demise of the Philippine Cockatoo across 

almost all of its range (BirdLife International, 2001) is a stark example from the 

Philippines. Certainly, given their very low density estimates and small population sizes in 

reserves, imminent collapse of populations of many frugivorous and large-bodied species 

appears likely. It is possible that the recorded declines in and absence of large avian 

frugivores in many sites in Luzon, as seen in the study, is mirrored in losses of other 

frugivorous vertebrates such as bats and other mammals due to hunting pressure and/or 

habitat change (Mickleburgh et al., 2009, Heydon and Bulloh, 1997), although quantitative 

data are largely lacking from the island. Even the relatively intact NSMNP, which given 

the evidence here offers the best hope for the most number of frugivores in the long 

term, is now under serious threat from illegal timber exploitation (van der Ploeg et al., 

2011). Local collapse of frugivore communities has serious long-term consequences for 

seed dispersal and forest regeneration dynamics, forest regeneration and plant species 

diversity. Although parrots, as also seed predators, contribute little if anything to forest 

regeneration and most often reduce the fitness of the food tree (Galetti, 1992, Ragusa-

Netto, 2005), pigeons and hornbills, by contrast, are among the top seed dispersers in 
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rainforests (Hamann and Curio, 1999, Kitamura, 2011). The disappearance of large avian 

frugivores would deprive an estimated 60% of late-successional plant species in a 

Philippine submontane rainforest of all their dispersal agents (Hamann and Curio, 1999). 

Such a significant loss of seed dispersers at a community level can therefore be expected 

to do irreversible damage to government reforestation efforts and the ecosystem services 

that forests provide (CIFOR, 2003, Babweteera and Brown, 2009).  

A compounding issue is the lack of basic knowledge on breeding, diet, extent of 

range, foraging behaviour, and habitat preference of frugivores, as well as ecological 

research on the factors that influence their abundance and distribution (Collar, 1998). 

While few if any demographic data are available for Luzon’s frugivore species, we can 

expect large parrots and hornbills to have low reproductive rates (Forshaw and Cooper, 

1990, Poonswad et al., 1999), suggesting declines cannot quickly be reversed. Some avian 

frugivores can travel large distances between forest patches (e.g. Myers & Vaughan, 

2004), but how these distances compare with the gaps between Luzon’s large reserves, 

how hospitable the matrix is for frugivores, and how likely birds from tiny local 

populations are to make such dispersal flights, are unknown. Studies looking at how well 

frugivorous birds disperse across landscapes, which might involve radio-tracking of 

individuals, would be important for testing hypotheses at a metapopulation level. 

Knowledge from such research is vital in informing ecological restoration initiatives by 

identifying key sites and communities that will benefit most from rehabilitation and 

conservation action (Fordham and Brook, 2010). Further analysis of the data gathered 

from the present survey will yield correlates of frugivore densities and habitat preference, 

and clarify threats to the species. To test the hypothesis that hunting is largely responsible 

for the decline of many frugivores, comparative studies on sites with different levels of 

hunting pressure could be carried out, complemented with interviews with local people. 
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In general, more research is needed on how and whether land adjacent to existing 

reserves could be rehabilitated as part of the national forest estate, in order to improve 

the chances that populations of Luzon’s frugivores, along with many other important 

forest species, can persist long-term.  
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C h a p t e r  3  

DRIVERS OF FRUGIVORE COMMUNITY COMPOSITION ACROSS LUZON 

3.1 ABSTRACT 

The Philippines archipelago comprises islands of different origins, ages, climate and 

habitat, a situation which is expected to produce a biogeographically complex set of 

animal and plant communities. Community composition, in terms of presence of species 

and their abundances is also likely to be influenced by anthropogenic processes. I 

explored similarities between frugivore communities across 24 sites in Luzon using non-

metric multidimensional scaling and attempted to explain site differences in terms of a 

series of geographical, habitat, and disturbance predictors using Mantel tests. NMDS 

ordinations based on presence/absence were rather different to those using bird 

densities. In both cases, clusters and outliers did not seem to ordinate simply according to 

region. Consistent outliers included three sites in West Luzon and two in Central Luzon, 

and, in terms of species, several large rare parrots and pigeons. The strongest correlates of 

site dissimilarity were differences in altitude and several human disturbance measures – 

path width, secondary forest index, canopy closure and a ‘human impact index’ (reflecting 

human pressures and forest management). While Luzon’s frugivore communities have 

been no doubt shaped by natural biogeographical processes, their effects have been 

largely obscured by anthropogenic environmental degradation. 

3.2 INTRODUCTION 

The structure and composition of avian assemblages and how they relate to aspects of 

the environment have been one of the dominant themes of investigation in community 

ecology (Block and Brennan, 1993, Nekola and White, 1999). Specifically, habitat 

selection in forest bird communities has given birth to many theoretical and empirical 
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perspectives (Cody, 1985). This interest is also, in part, due to the incredible rate at which 

humans clear forests through extraction of timber and other forest products, livestock 

grazing, shifting cultivation, and infrastructure development (Whitmore, 1997, Kahn and 

McDonald, 1997, Terborgh and Nuñez-Iturri, 2006). This presents a great opportunity to 

measure the response of communities to anthropogenic landscape changes. 

The incredible biodiversity in the Philippines has its origin in the long and 

complex geologic history dating 30-50 million years ago (Heaney, 1986, Heaney et al., 

2005, Heaney and Regalado, 1998, Heaney and Mittermeier, 1997). The archipelago of 

more than 7,000 islands has a mostly oceanic origin with a few islands arising from 

continental crust broken off from mainland Asia (Hall, 2002). The first of the islands to 

appear was northern Luzon which explains the well-defined mountain ranges of the 

Cordillera and Sierra Madre (Hall, 2002). Luzon, being the oldest geologically, has given 

rise to diverse habitats including high-elevation forested mountains that have a huge 

influence on the microclimate in certain regions. The Sierra Madre mountain range in 

northern Luzon for example has documented lower rainfall (averaging 1,649 mm per 

annum in the period 1975-2004) in the leeward Cagayan valley to the west of the 

mountain range while the windward east facing the Pacific Ocean gets more rain (3,534 

mm on average in 1975-2004) throughout the year (PAGASA as cited in van Weerd and 

de Haes 2010). This diversity of habitats and environmental variables has in turn 

produced a high level of endemism even within the island of Luzon alone, a pattern 

which is repeated for the entire Philippines. 

In the Philippines, forest loss due to logging, mining and slash-and-burn farming 

as well as direct exploitation for food and the pet trade have been identified as the major 

threats to endemic birds (BirdLife International, 2003). This and having only 7% of its 

old-growth closed-canopy forest remaining, has earned the Philippines the title as one of 



 

64 

 

the hottest of biodiversity hotspots in the world (Myers et al., 2000, Conservation 

International, 2007). While the negative response of frugivore communities to human-

induced habitat change is well documented in many tropical forest biomes (e.g. (Gomes et 

al., 2008, Soh et al., 2006, Anggraini et al., 2000, Lefevre and Rodd, 2009, Neuschulz et al., 

2011), there are only a few studies on Philippine frugivores and their tolerance to 

disturbance that I know of (Rickart et al., 2011a, Brooks et al., 1999, Posa and Sodhi, 

2006). Likewise, I have not encountered a study exploring environmental determinants of 

Philippine frugivore assemblages although a study found that large avian frugivores are 

important in the seed dispersal of 60% of late-successional tree species in a Philippine 

sub-montane rainforest (Hamann and Curio, 1999). 

In this chapter I assessed community differences in Luzon with the use of 

ordination and clustering techniques. The analyses identified environmental factors that 

determine frugivore community composition in terms of presence-absence and density 

across the island in order to understand in part the underlying factors in disappearance of 

populations and hopefully direct habitat and species management programmes to reduce 

extinction risks. 

3.3 METHODS 

3.3.1 Field methods 

Data on the presence and abundance of 21 frugivorous birds were collected in 24 sites in 

Luzon, Philippines representing five regions: Cordillera, Sierra Madre, western Luzon, 

central Luzon, and southern Luzon. Details of study sites can be found in Chapter 2, 

Appendix 2.1. In this chapter I separated the sites that were at least 5 km apart. Mts 

Banahaw-San Cristobal Protected Landscape (central Luzon) was divided into Tayabas 

and Dolores—adjoining municipalities within the bounds of the reserve and with 

differing management practices and degrees of hunting. Sites in Isabela (Sierra Madre) 
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were divided into Divilacan and Maconacon-San Pablo. Aurora (Sierra Madre) sites were 

divided into six: Amro River, Baler, Calabgan, Casapsapan, San Luis, and Talaytay-

Simabahan Talagas which are all within reserves. Mt Tapulao in Zambales (western 

Luzon) was divided into two sites: Kalamansian and Tanagan-Balawey. Lastly, the 

combined Subic Watershed Forest Reserve (WFR) and Bataan National Park (western 

Luzon) was divided into three sites: Subic WFR, Mt Natib in Orani, and Nagbalayong in 

Morong. 

Bird species presence-absence and density measures were obtained using 

methods described in Section 2.3.3 and Section 2.3.4. Data on forest structure used in 

this analysis i.e. canopy closure, path width, tree architecture, and basal area were 

collected from 10x20m plots located alternately to the left and right at the 200m mark of 

each 400m transect segment. Canopy closure was measured using a concave forest 

canopy densiometer or spherical densiometer (Suganuma et al., 2008, Engelbrecht and 

Herz, 2001). Transects were along narrow hunter/farmer trails (80%), old logging roads 

or farm access roads (9%), and in places without human traffic, specially-cut trails (11%). 

Tree architecture and diameter at breast height (DBH) were determined for the three 

largest trees in the habitat plot located in each transect segment (Bibby et al., 1998).  

From key informant interviews I created an index of human impact considering 

three factors: hunting of birds, forest condition and/or degree of disturbance, and habitat 

management. The index with the categorical ranking or score is reproduced below: 

 Hunting of birds 

 1 Unobserved or very low incidence 

 2 Yearly or seasonal 

 3 Quarterly 

 4 Monthly 

 5 Daily or weekly 



 

66 

 

 Forest condition and/or degree of disturbance 

 1 Old-growth, closed canopy forest 

 2 Secondary forest (more than 25 yrs old) and/or non-timber forest product 

(NTFP) harvesting 

 3 Secondary forest (15-25 yrs old) and/or selective logging for home consumption 

 4 Secondary forest (1-14 yrs old) and/or small-scale logging for the lumber industry 

along narrow forest trails 

 5 Commercial logging along wide logging roads and/or annual slash-and-burn 

practiced 

 Habitat management 

 1 Regular patrol by paid forest guards, logging check-points, large-scale 

government-supported reforestation initiative 

 2 Irregular patrol by paid/volunteer forest guards, irregular monitoring of logging 

activities, small-scale government-supported reforestation initiative 

 3 Insufficient number or untrained forest guards, and/or infrequent or ineffective 

forest patrol, small-scale local reforestation initiative 

 4 Untrained volunteer forest guards, sporadic forest patrol, unsuccessful 

reforestation programme 

 5 No forest guards, and/or non-existent reforestation programme 

 

Key informants are conservation workers, hunters, loggers, upland farmers, and 

those living in the vicinity of the forest. Interviews were mostly conducted in groups and 

in informal settings. A questionnaire with photos of the parrots, hornbills and pigeons 

was used as guide for the semi-structured interviews as described by May (2001). These 

were intermediate between structured and focused interviews and made use of standard 

questions but the interviewer was free to probe beyond the answers and thus enter into a 

dialogue with the interviewee. It allowed respondents to answer more on their own terms 

than the standardized interview permits and at the same time allowed for greater structure 

for comparability over that of the focused interview. Data on the direct exploitation of 

parrots and other birds was gathered from interviews and market surveys (Herrera & 

Hennessey, 2007). In addition, information on the history of forest disturbance and 

habitat protection/management at sites was also noted. 
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3.3.2 Data manipulation and analysis 

Frugivore community composition was investigated using non-metric multidimensional 

scaling (NMDS), an ordination method used to explore similarities within a dataset and to 

identify clustering (Morgan et al., 1976, McCune and Grace, 2002). To measure the 

similarity coefficients between sites, a data matrix populated with sites, species and either 

presence-absence data or density estimates was constructed. The Jaccard similarity index 

was used for presence-absence measures. Frugivore population density estimates derived 

using distance sampling (see Chapter 2, section 2.3.3 and 2.3.4) were first standardized by 

subtracting the density estimate of each species with the mean across sites and dividing 

this by the standard deviation. Similarity between density measures was defined as their 

Euclidian distance from each other in a given number of dimensions or axes i.e. 3 in this 

analysis. Ordination success in NMDS was measured numerically by the stress value, and 

graphically, by the Shepard diagram (Appendix 3.1). A low stress value indicates a 

reasonable monotonic relationship between distance and similarity. NMDS was preferred 

over other ordination techniques because it does not assume linearity of the data and it is 

also reportedly better than metric analogues at reducing distance relationships among 

samples into fewer dimensions (McCune and Grace, 2002, Legendre and Legendre, 1998, 

Kent, 2006, Morgan et al., 1976, Minchin, 1987, Cheng, 2004). All NMDS analyses were 

performed using the software PAST (Hammer et al., 2001). 

I used data on structural variables of the habitat as well as measures of human 

disturbance in order to identify those environmental features which best explained 

differences in frugivore communities across sites. These were pooled across transect 

segments to compute for the mean value for each transect and again averaged across 

transects within each site. From these, dissimilarity matrices (also called distance or 

difference matrix) were derived between all pairs of 24 sites with respect to the following 
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predictor variables: altitude, geographical distance, seasonality, observer skill, tree basal 

area, path width, canopy closure, tree architecture, and human impact. Seasonality and 

observer skill both refer to the number of days between surveys in any two given sites 

with the former counting the shortest number of days between surveys while the latter 

includes the consecutive days in the calendar between surveys from the start of the 

fieldwork in December 2009. Tree architecture refers to the branching of trees with those 

starting to branch in the lower half of the tree considered as indicators of disturbed and 

secondary forests (types B and D). Trees with branching that starts above half the height 

of the tree are indicators of primary and regenerating forests (types A and C). 

Dissimilarity matrices for the dependent variables i.e. bird species composition based on 

presence-absence and density were derived from their axes values (in three-dimensional 

space) in the NMDS analyses using Euclidean metrics. The square matrices were then 

analysed for significant associations using simple Mantel’s tests (McCune and Grace, 

2002) in the software PAST (Hammer et al., 2001). Mantel tests were designed to 

investigate the relationship between multivariate frugivore community structure and the 

environmental variables (Mantel, 1967) in a way that is flexible since there are multiple 

design possibilities. A useful feature of the analysis is its ability to make use of qualitative 

environmental data which in combination with other standardized environmental data 

works as a non-parametric multivariate analysis of variance with a randomization design 

(Diniz-Filho and Bini, 1996). 

3.4 RESULTS 

3.4.1 Community similarities across sites  

Sites were ordinated according to species presence-absences (Fig 3.1) and population 

densities (Fig 3.2). Figure 3.1 has sites that are scattered in ordination space while Figure 

3.2 has more tight clusters and well-defined outliers. The strongest outliers in Figure 3.2 

have representatives from each region and are the following: Polillo in the central Luzon; 
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Tanagan-Balawey (TangnBlwey) and Kalamansian as well as Subic Watershed Forest 

Reserve (WFR) in western Luzon; San Luis, Cagayan, and Maconacon-San Pablo 

(MacSnPablo) in the Sierra Madre; Balbalasang-Balbalan National Park (BBNP) in the 

Cordillera; and Caramoan and Mt Isarog in the southern Luzon. Tanagan-Balawey and 

Kalamansian which are adjacent sites in western Luzon, separated only by a wide slash-

and-burn clearing, ordinated close to each other. There is little congruence between 

Figure 3.2 and the strongest outliers in Figure 3.1 but Subic WFR and Tanagan-Balawey 

of western Luzon, Mt Isarog of southern Luzon, and Polillo of central Luzon appear as 

strong outliers in both the presence-absence and density ordinations. Divilacan and Baler 

of Sierra Madre, and Polis-Cambulo (PolisCmblo) of the Cordillera are outliers only in 

the former. 

Figures 3.3 and 3.4 are ordinations of species against sites in terms of presence-

absence and density data. This time the presence-absence data formed a tight cluster of 

species while the density ordination was more scattered. The main species driving 

community dissimilarity across sites and common to both presence-absence and density 

measures are the Blue-crowned Racquet-tail (PRDI), Luzon Racquet-tail (PRMO), Green 

Racquet-tail (PRLU), Blue-naped Parrot (TALU), and Spotted Imperial Pigeon (DUCA) 

and to a lesser degree Flame-breasted Fruit-dove (PTMA) and Green Imperial Pigeon 

(DUAE). Among the strong outliers in the presence-absence ordination only were 

Metallic Pigeon (COVI) and Pink-bellied Imperial Pigeon (DUPO) while for the density 

ordination only it is Philippine Cuckoo-dove (MATE) and Colasisi (LOPH). It is notable 

that all the rare large parrots and pigeons are the strongest correlates of community 

dissimilarity. The other important drivers of dissimilarity are the two hornbills Luzon 

Hornbill (PEMA) and Rufous Hornbill (BUHY). 
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3.4.2 Correlates of community similarity across sites 

Community differences in terms of presence-absence were driven more by geographical 

factors i.e. altitudinal differences than by anything else (Table 3.1). Presence/absence was 

also significantly correlated with disturbance indicators—path width, canopy closure, and 

density of secondary forest trees (tree architecture B) and weakly correlated with 

geographical distance. Density and presence-absence measures did not share significant 

correlates of community similarity although the combined measure of human impact—

hunting, habitat destruction, and habitat management—came close having significantly 

high correlation with species density but weak with regard to presence-absence measures. 

Moreover, dissimilarity across sites in terms of density was also correlated with 

seasonality (p=0.01) and observer skill (p=0.05) and weakly correlated with density of 

regenerating forest trees (tree architecture C&D). 
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Sites driving community differences 

Figure 3.1 Sites ordinated on axis 1 and 2 (top) and 2 and 3 (bottom) of non-metric multi-

dimensional scaling (NMDS) based on species presence or absence (Stress = 0.171). The 

ordination does not show tight clustering of sites and the outliers are not well defined. Site tags 

indicate the region where a site belongs: CL–Central Luzon, WL–West Luzon, SL–South Luzon, 

SM–Sierra Madre, COR–Cordillera.   
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Figure 3.2  Sites ordinated on axis 1 and 2 (top) and 2 and 3 (bottom) of NMDS based on 

standardised species density (Stress = 0.137). The ordination shows tight clustering of sites with 
strong outliers from each region including Subic WFR in West Luzon, Caramoan and Mt Isarog 
in South Luzon, Polillo island in Central Luzon, Cagayan and San Luis in Sierra Madre and BBNP 
in Cordillera. Site tags indicate the region where a site belongs: CL–Central Luzon, WL–West 
Luzon, SL–South Luzon, SM–Sierra Madre, COR–Cordillera. 
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Species driving community differences 
 

 
 
Figure 3.3 Species ordinated on axis 1 and 2 (top) and 2 and 3 (bottom) of NMDS based on 
species presence or absence (Stress = 0.093). Persistent outliers include PRMO Prioniturus 
montanus, PRLU Prioniturus luconensis, PRDI Prioniturus discurus, PTMA Ptilinopus marchesae, DUCA 
Ducula carola, DUPO Ducula poliocephala, DUAE Ducula aenea, TALU Tanygnathus lucionensis and 
COVI Columba vitiensis. 
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Figure 3.4 Species ordinated on axis 1 and 2 (top) and 2 and 3 (bottom) of NMDS based on 

standardised species density (Stress = 0.307) showing little or no clustering. 
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Table 3.1 Results of Mantel correlations between species occurence and density data and 

environmental correlates across sites in Luzon. Significance are indicated in bold while near 
significance are italicised. 

 
Community similarity 
(presence-absence) 

Community similarity 
(density) 

Altitude R=+0.51, p<0.001 R=+0.06, p=0.21 

Geographical distance R=+0.11, p=0.07 R=+0.09, p=0.15 

Seasonality R<-0.01, p=0.45 R=+0.12, p=0.01 

Observer skill R=-0.03, p=0.65 R=+0.10, p=0.05 

Basal area R=-0.10, p=0.88 R=+0.14, p=0.11 

Path width R=+0.26, p=0.03 R=-0.19, p=0.87 

Canopy closure R=+0.14, p=0.03 R=-0.135, p=0.98 

Tree architecture (A) R=-0.003, p=0.46 R=-0.04, p=0.65 

Tree architecture (B) R=+0.19, p=0.014 R=+0.08, p=0.15 

Tree architecture (C&D) R=-0.015, p=0.55 R=+0.14, p=0.06 

Human impact R=+0.10, p=0.08 R=+0.22, p=0.01 

 

3.5 DISCUSSION 

Frugivore community composition was not shaped by geographical distance alone but by 

several factors associated with the differing landscape context as sites across Luzon did 

not form distinct clusters corresponding to regions in both density and presence-absence 

measures. Considering density (Fig 3.2), there was a tight cluster of half to more than half 

of the sites (12-14 of 24) with similar frugivore abundances.  This suggests similarity in 

habitat factors influencing population density in the clustered sites. Conversely, the 

nebulous configuration of the presence-absence ordination (Fig 3.1) suggests that more 

complex and varied factors define frugivore assemblage in each site resulting to more 

pronounced dissimilarity between sites. Sites that were dissimilar in both density and 

presence-absence measures i.e. Tanagan-Balawey and Subic WFR in western Luzon, Mt 

Isarog in southern Luzon, and Polillo in central Luzon had highest densities (albeit very 

small in some) of several species across all sites including some very rare species which 
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were absent in many sites. Geography is commonly identified as a major factor driving 

differences in animal communities (Qian and Ricklefs, 2012) but Jones et al. (2001) 

pointed to evolutionary development or age of a taxon as a greater influence on species 

abundance than individual or derived ecological trait. Human alteration of habitats may 

play a bigger role in species assemblages in the highly fragmented forests in Luzon but to 

what degree remains unknown. 

The three pigeons and four parrot species that were the main drivers of frugivore 

community dissimilarity share the following traits: large body size, resource specialization, 

and rarity. These traits were consistently associated with high sensitivity to forest 

fragmentation with a few exceptions (Renjifo, 1999, Castelletta et al., 2005, Fahrig and 

Merriam, 1994). Predictably, the widespread fragmentation in the forests of Luzon has 

resulted in very low densities of large frugivores and their absence in many areas. Several 

studies have proposed that large-bodied frugivores may be restricted due to their large 

area requirements and disproportionately affected by hunting (Turner, 1996, Sodhi et al., 

2004b, Renjifo, 1999, Brash, 1987). Pigeons, especially large species, and hornbills are 

hunted for meat in Luzon and there is considerable demand for parrots for commercial 

trade both in the country and abroad (BirdLife International, 2003, Walker, 2007, Collar, 

2000). Rarity, on the other hand, is influenced by a species’ ability to disperse through 

matrix habitats and degree of specialization on resources (Gascon et al., 1999, Sekercioglu, 

2002, Henle et al., 2004, Castelletta et al., 2005). The Luzon Racquet-tail, Flame-breasted 

Fruit-dove and to a degree the Spotted Imperial Pigeon and the Pink-bellied Imperial 

Piegon were restricted to high-elevation areas, contributing to their rarity and influence 

on spatial variation of species diversity. 

Frugivore species composition in Luzon was strongly correlated with altitudinal 

differences across sites and abundance of pioneer tree species (with branching below half 
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tree architecture or type B)—a human disturbance measure. Several montane forest 

specialists e.g. Luzon Racquet-tail and Flame-breasted Fruit-dove may have been 

responsible for the strong correlation with altitude. The same pattern of community 

preference for high-altitude habitat can be seen in other taxa with tendency to higher 

endemism for small non-volant mammals at higher altitudes (Rickart et al., 2011b, Heaney 

et al., 1989). The remaining correlates of species assemblage were also measures of human 

disturbance: path width, and canopy closure. Likewise, density measures were also highly 

correlated with a human impact index which integrates hunting, forest condition and 

conservation management. The dominance of anthropogenic factors among the 

significant correlations shows that frugivore composition in Luzon is largely shaped by 

species’ response to human altered landscapes. Many studies have shown that frugivore 

richness changes in forest fragments compared with continuous forest (Gascon et al., 

1999, Cordeiro and Howe, 2001). Frugivore assemblages are also affected by forest 

fragment size with a direct relationship between fragment size and species richness 

although the effect is inconsistent as there are cases where an increase in generalist or 

matrix species was observed following fragmentation (Cordeiro and Howe, 2001, 

Sekercioglu et al., 2004, Pizo, 1997, Neuschulz et al., 2011). Isolation of forest fragments 

also affects frugivore assemblage with lower numbers of frugivore species visiting matrix 

habitats compared to relatively well-forested ones containing certain fruiting plant species 

favoured by frugivores (Luck and Daily, 2003, Antunes, 2005, Lovejoy et al., 1986). 

Seasonality was correlated with species density; a relationship observed in other 

frugivorous taxon (Galetti, 1997, Verdu and Garcia-Fayos, 1994, Hanya et al., 2011, 

Ganesh and Davidar, 1999, Klingbeil and Willig, 2010). Variation in species abundances 

as a response to landscape structure between seasons has been linked to resource 

abundance and diversity i.e. fruit availability (Ragusa-Netto, 2007, Galetti, 1997). Another 
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way by which seasonality can affect species abundance is in the adverse weather brought 

about by the seasonal monsoon which is likely to affect species detectability (Robbins, 

1981). This has clear implications for conservation monitoring which must be designed to 

reflect this seasonal variation in species abundances. On the same note, ‘observer skill’ 

was correlated with differences between sites in terms of frugivore species densities. In 

other words, estimates of abundance across sites varied significantly with time from the 

beginning of the fieldwork that sites were surveyed.  In turn, this suggests an 

improvement in the conduct of field methods by observers over time which has been 

found to be the case in several studies (Bibby et al., 2000, McLaren and Cadman, 1999). I 

suggest another reason for the correlation which is the strong winds brought by the 

northeast monsoon during the start of the fieldwork in late 2009. There are two 

monsoon seasons in the Philippines, the southwest monsoon (May to October) which 

coincides with the rainy season and the northeast monsoon (November to March) which 

brings strong and cold winds (Deppermann, 1954). The strong winds peter out by March 

which could explain the significant variation in species abundance estimates as previously 

noted. 

Delineation of biogeographical regions was historically based on discontinuities 

of ecologically relevant attributes of the abiotic environment or vegetation structure (e.g. 

bioclimatic zones and biomes), discontinuities in the taxonomic composition of 

assemblages (e.g. zoogeographical realms or floristic kingdoms) or a combination and 

integration of both (e.g. ecoregions; Kreft and Jetz, 2010). Our results, however, show 

that the increasing prevalence of human-altered landscapes has so altered species 

composition that biogeographical boundaries have become obscured (Fig 3.1). It is in 

such landscapes that the influence of taxon cycle (evolutionary development or age) on 

species persistence may be seen and/or tested (Jones et al., 2001). A much more dire 
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implication of this is the loss of large frugivores which are the main agents of forest 

regeneration through their ecological role of seed dispersal (Hamann and Curio, 1999, 

Moran et al., 2009). This alarming trend of human-induced landscape changes, if 

continued, will almost certainly lead to changes in community structure, both in terms of 

the presence of individual species and the densities at which they occur, and in extreme 

cases, extirpation and maybe even extinction of mostly endemic large frugivore species, 

creating an environment overrun with widespread species able to colonise and disperse 

through matrix habitat.  
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C h a p t e r  4  

AVIAN FRUGIVORE HABITAT ASSOCIATIONS ON LUZON 

4.1 ABSTRACT 

Frugivore populations in many reserves across Luzon have been reduced to such a degree 

that their future viability has become uncertain. This presents an urgent need to 

understand better the drivers of species distribution in order to develop appropriate 

conservation management strategies. To identify habitat associations of 18 avian 

frugivores, a study was conducted at 24 sites in Luzon, encompassing a total of 1227 

habitat plots positioned along 400 m segments of  213 transects. The number of species 

recorded in each habitat segment as well as the presence/absence of each species was 

examined in relation to the effects of geographical and vegetation structure and 

composition using generalised linear mixed models (GLMMs) with site as a random 

factor. Altitude was the strongest variable correlated with presence of most species (based 

on Akaike variable weight). Forest disturbance and high-altitude forest were the next 

strongest variables. Different frugivore species showed unique patterns of association 

with habitat variables but five species were high-altitude specialists while six preferred 

lowland sites. Another six species strongly preferred primary forest while one thrives in 

disturbed forest with the attendant increase in food availability. I then ran generalised 

additive mixed models (GAMMs) to identify any non-linearities in responses of species to 

habitat features. Relationships with habitat variables were simple linear or quadratic for 

the majority of species. Non-linear relationships were rare and found in five species with 

the variables tree girth and canopy cover. Both structural and floristic variables appear to 

be important determinants of frugivore composition and should be considered in 

conservation planning in forest reserves in Luzon. 
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4.2 INTRODUCTION 

Frugivores, with their role as seed dispersers, are crucial to healthy ecosystem functioning 

through the formation and maintenance of biodiversity (Corlett and Hau, 2000, 

Kitamura, 2011, Holbrook et al., 2002, Corlett, 2009). While a broad range of animals 

disperse seeds, birds in particular are credited for dispersal not only in a local but regional 

or even transcontinental scale (Green et al., 2002, Holbrook et al., 2002). In places where 

frugivores are absent or scarce, forest regeneration capacity is hampered, sometimes with 

substantial loss of plant species richness and/or abundance (Moran et al., 2009, 

Babweteera and Brown, 2010, Neuschulz et al., 2011). Luzon island in the Philippines has 

seen such an alarming decline in avian frugivore numbers that frugivore population 

collapse across many including the largest reserves in the island may be inevitable without 

conservation intervention (see Chapter 2). Knowledge of factors that determine species 

presence in a landscape underlies every successful biodiversity management and 

conservation programme (Collinge, 1996, Guedes, 2004, Stagoll et al., 2010, Suchant et al., 

2003). Apart from elucidating the nature of the relationship between a bird and its 

habitat, this knowledge is useful in predicting bird distribution and numbers in 

unsurveyed sites as well as impacts of land use changes on populations (Bibby et al., 1998, 

Brooks et al., 1997, Marsden, 1998, Neuschulz et al., 2011, Swift and Hannon, 2010, 

Marsden et al., 2006). Bird-habitat relationships are complex and research on the subject 

requires careful characterisation of habitats where species are present and those where 

they are absent (Lee and Marsden, 2008b). Summary statistics, i.e. median and mean 

values as well as measures of dispersion, usually precede more complex multivariate 

analyses. The use of indices is recommended when investigating habitat resource use in 

proportion to availability (Devictor et al., 2008). When dealing with habitat gradients, e.g. 

altitude, slope and canopy cover, however, graphical and linear regression approaches are 

more popular with the exception of species presence/absence data where logistic 
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regression is more appropriate (Bibby et al., 1998, Jongman et al., 1995). Bird-habitat 

relationships are not always linear and sometimes vary in relationship throughout a year 

which has implications for fine-scale species management programmes (Meents et al., 

1983). Multiple regression approaches are used in detecting non-linear or curvilinear 

relationships. 

I aim here to tie the presence of individual species to habitat and physical 

features, and to determine the most important drivers of frugivore presence across 

Luzon. To do this, I first develop multivariate generalised linear mixed models (GLMMs) 

to identify important habitat features for each species. Then I examine relationships using 

generalised additive mixed models (GAMMs) to identify non-linearities and thresholds in 

bird-habitat associations that may help target forest management strategies to conserve 

key species. 

4.3 METHODS 

4.3.1 Field methods: bird counts and vegetation measures 

Bird and habitat data collection was carried out from December 2009 to September 2010 

at 24 sites in Luzon (Fig. 2.1). The sites, which were at least 5 km apart and had a mean 

distance of 242 km, belong to one of five biogeographical regions in the island: 

Cordillera, Sierra Madre, western Luzon, central Luzon, and southern Luzon. A detailed 

description of the study sites can be found in Chapter 2 Appendix 2.1. 

Bird species presence/absence was obtained using methods described in Section 

2.3.3 and Section 2.3.4. Ten pigeons, six parrots and two hornbills were considered in the 

current analysis because encounter data were insufficient (less than 9 encounters) for 

some species of bird and precluded robust analysis. Data on forest structure variables 

used in this analysis, i.e. altitude, canopy closure, path width and slope, were collected 
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from 10x20m habitat plots located alternately to the left and right of the trail at the 200m 

mark of each 400m transect segment. Standard tree girths (not less than 30cm) were 

determined for the three largest trees in the habitat plot (Bibby et al., 1998). Path width 

along the transect was measured at the 0, 10, and 20m mark of each habitat plot. Canopy 

closure was measured three times in each plot using a concave forest canopy 

densiometer. Similarly, slope was measured within each plot using a clinometer at three 

locations; one along the transect at the 10m mark of each habitat plot and the other two 

at the opposite corners of the same plot. The average measures of canopy cover, slope, 

path width, altitude, and tree girth were computed for each plot. The presence of key 

plants and habitat features which comprise the floristics variables were also noted for 

each plot. These comprised the following: planted crop, palm, fig Ficus sp., dipterocarp, 

epiphyte, Parkia javanica, pioneer tree species, banana Musa sp., guava Psidium guajava, 

pandan Pandanus sp., tree fern and dead standing tree. These are known or suspected to 

be an important resource to frugivores. Crops, pioneer tree species, and specific plants i.e. 

banana and guava are indicators of disturbance and present a possible food source for 

frugivores. Other known food plants include palm, fig, and pandan. Tree ferns were 

observed to be used as nesting material of the small parrot Colasisi Loriculus philippensis so 

were included as well. Some such as the presence of epiphytes and dipterocarps are an 

indicator of good forest with high humidity and closed canopy. Finally, standing dead 

trees are important for cavity-nesting frugivores such as large parrots and hornbills. 

Transects were mostly along hunter trails (89%), old logging roads, farm access roads, or 

occasionally, motorable roads within forested reserves (9%), and specially-cut trails 

(11%). 
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4.3.2 Data analysis 

Using presence-absence or binary data, the twelve floristics variables were condensed into 

just three floristics axes (Factors 1 to 3) using PCA or principal components analysis 

(Jolliffe, 2011). PCA is a multivariate analysis that uses an orthogonal transformation to 

reduce a number of observed variables into a smaller number of artificial variables called 

principal components (Jongman et al., 1995). The three axes with the highest eigenvalues 

were selected as these account for the largest possible variance or variability in the 

observed variables (Jongman et al., 1995). Multicollinearity, which occurs when two or 

more predictors in the regression model are correlated, is a potential problem as it 

increases the standard error of estimates and often yields confusing or misleading results 

(Zuur et al., 2010, Grewal et al., 2004). To identify multicollinearity among the 

environmental variables, Spearman’s rank correlations were performed on pairs of 

independent variables using the software PAST (Hammer et al., 2001, Zuur et al., 2010). 

Since no strong correlations (rs > 0.5) were detected, the analysis proceeded with eight 

variables; five structural (altitude, slope, path width, tree girth, and canopy cover) and 

three floristic (PCA Factors 1 to 3). 

To investigate the relationship between the presence/absence of frugivores and 

environmental predictors,  I used Generalized Linear Mixed Models (GLMMs) (Bolker et 

al., 2009) fit by the Laplace approximation with a binomial error distribution, a logit link 

function, and site as a random factor. Analyses were run using the package ‘gamm4’ 

(version 0.1-6) in R (version 2.15.0, R Development Core Team). Models were first 

developed for each predictor individually, entered both as a linear and as a quadratic 

term. The five predictor variables with the lowest Akaike Information Criterion (AIC) 

values were retained and used to build the GLMM models for each species (Burnham et 

al., 2011). For the Amethyst Brown-dove Phapitreron amethystinus, however, the AIC values 
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of the fifth to seventh most ‘powerful’ variables were the same so all seven variables 

instead of five were used in building the models. The analysis involved a series of 

iterations using combinations of variables yielding a list of best models with the lowest 

AIC. Akaike weights, which are a simple transformation of the raw AIC values, were used 

to quantify the strength of each model in the model set (Burnham and Anderson, 2002, 

Wagenmakers and Farrell, 2004). Each contributing variable was then ranked according 

to its strength of influence in frugivore habitat distribution by adding the Akaike weights 

of models where a particular variable appeared. 

Non-linearities in the frugivore-habitat associations were then identified using 

Generalized Additive Mixed Models (GAMMs) with package ‘gamm4’ in R version 2.15.0 

(R Development Core Team, 2012). The predictor variables tree girth, canopy cover, 

Factor 1 and Factor 2 were chosen for the analyses owing to the fact that they can be 

manipulated by land managers. The AIC were noted for each model. Finally, I 

investigated the relationship of species richness in each transect segment with the chosen 

predictor variables. 

4.4 RESULTS  

4.4.1 Community analysis 

The PCA analysis reduced the 12 binary floristic variables into three axes accounting for 

51.5% of variability. PCA axes 1 to 3 (= Factors 1 to 3) described three predominant 

forest types in the surveyed sites (Table 4.1). Factor 1 describes a mature and rich 

secondary forest dominated by dipterocarp and palm trees with a thick understorey of 

tree fern, pandan, figs and epiphytic plants. The habitat was also associated to a lesser 

degree with standing dead trees and absence of crops. Factor 2 represents disturbed 

forest or agroforest habitat with crops growing alongside forest trees, in particular fig and 

pioneer tree species such as Macaranga with banana and tree fern in the understorey. 
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Factor 3 is characteristic of mossy forest in being associated with dense tree fern, and 

epiphyte growth as well as the absence of dipterocarps, fig and pioneer tree species. 

Table 4.1 The three highest scoring factors in the principal components analysis (PCA) of 

floristic variables. Eigenvalues and percentage variation explained by each factor are shown 
with the correlations between factor scores and individual variables. Only factor scores greater 
than 0.2 are shown. 

 Factor 1 Factor 2 Factor 3 

Eigenvalue 0.392727 0.346379 0.228089 

% explained 20.892 18.426 12.133 

Correlations with individual variables    

Crops –0.33 +0.21 (–) 

Palms +0.70 (–) (–) 

Figs +0.25 +0.78 –0.35 

Dipterocarps +0.68 (–) –0.47 

Epiphytes +0.59 (–) +0.31 

Leguminous trees (–) (–) (–) 

Pioneer trees (–) +0.64 –0.21 

Tree stump +0.31 (–) (+) 

Musa spp. (–) +0.49 (+) 

Guava (–) (–) (+) 

Pandanus spp. +0.29 –0.35 (+) 

Tree ferns +0.45 +0.47 +0.66 

 

4.4.2 Frugivore-habitat associations 

Table 4.2 shows the confidence set of variables for each species as well as for frugivore 

species richness. Floristic variables were correlated with the presence of the highest 

number of species compared to structural factors. Akaike weights of all predictor 

variables for each species in Table 4.3 indicate that altitude is the most powerful variable, 

being significantly correlated with the presence/absence of 12 out of 18 frugivore species 

and with the highest Akaike weights for ten of these. This is followed by Factor 2 and 

Factor 3 with 12 species each and garnering the highest Akaike weights for three and two 

species respectively. Factor 1 was correlated with the presence/absence of 15 species, the 

highest in total, but did not have the highest Akaike weight for any variable. Four of the 

variables, altitude, path width, canopy cover and tree girth, behaved in an entirely linear 

fashion across all species. The remaining six variables had a mix of linear and quadratic 
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relationships with frugivore presence/absence. Factor 3, however, was associated with 

mid-range values for most species. 

The top five habitat features driving species richness at sites were flat slope, big 

tree girth, and increasing measures of Factors 1 to 3. At the species level, three species, all 

rare or uncommon, showed entirely linear relationships with variables. One was Green 

Racquet-tail Prioniturus luconensis, which was associated with increasing forest quality and 

slope, and negatively associated with increasing altitude, canopy cover and forest 

disturbance. The same variables were important for the Green Imperial-pigeon Ducula 

aenea, which was associated with low altitude, slope and narrow paths, and increased tree 

girth and canopy cover. Conversely, Blue-crowned Racquet-tail Prioniturus discurus was 

negatively associated with increased measures of good forest and preferred wide forest 

paths.  

The lowland species White-eared Brown-dove Phapitreron leucotis and Common 

Emerald Dove Chalcophaps indica were associated with the same variables except for one: 

the former preferred big trees while the latter was averse to floristic indicators of forest 

disturbance (Factor 2). Similarly, Yellow-breasted Fruit-dove Ptilinopus occipitalis and 

Guaiabero Bolbopsittacus lunulatus shared the same variables, having highest correlations 

with measures of forest disturbance (Factor 2), but differed in just one, with the former 

associated with wide paths while the latter showed a preference for closed-canopy forest. 

The Flame-breasted Fruit-dove Ptilinopus marchei and Luzon Racquet-tail 

Prioniturus montanus, known montane or cloud forest specialists (BirdLife International, 

2010), as expected were significantly and positively correlated with altitude. Other high-

altitude species include the Cream-bellied Fruit-dove Ptilinopus merrilli, Philippine Cuckoo-

dove Macropygia tenuirostris, and to a lesser degree Rufous Hornbill Buceros hydrocorax. On 
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the other hand, White-eared Brown-dove, Black-chinned Fruit-dove Ptilinopus leclancheri, 

Common Emerald Dove, Luzon Hornbill Penelopides manillae, Green Racquet-tail, and 

Blue-crowned Racquet-tail showed a strong preference for lowland sites. Species 

associated with good forest include White-eared Brown-dove, Amethyst Brown-dove, 

Cream-bellied Fruit-dove, Black-chinned Fruit-dove, Common Emerald Dove 

Chalcophaps indica, Luzon Bleeding-heart Gallicolumba luzonica, Green Imperial-pigeon and 

Colasisi Loriculus philippensis. An opportunistic species, Yellow-breasted Fruit-dove 

Ptilinopus occipitalis profits from forest disturbance and subsequent increase in food 

availability along forest edges. 

Table 4.2 Confidence set of variables for each species with full model sets in Appendix 4.1. + 

and – indicate positive and negative coefficents respectively. * p < 0.05; ** p < 0.005; *** p < 
0.0005. 

4.2a White-eared Brown-dove Phapitreron leucotis 

AvAlt AvCCover Factor 1 AvPath AvGirth AIC ∆AIC 

– *** +*** – **  + 1320 0 
– *** +*** – **   1321 1 
– *** +*** – ** – + 1322 2 
– *** +*** – ** –  1322 2 
– *** +***   + 1324 4 
– *** +***    1325 5 
– *** +***  –  1327 7 
– *** +***  – + 1327 7 

 

 

4.2b Amethyst Brown-dove Phapitreron amethystinus 

AvPath AvGirth AvSlope CCover Factor1 Factor2 Factor3 AIC ∆AIC 

 +**   +*  +* 1084 0 
– +**   +*  +* 1086 2 
 +** –  +*  +* 1086 2 
 +**  – +*  +* 1086 2 
 +**   +* – + 1086 2 
 +**    –  1087 3 
 +**     + 1087 3 
 +**   + –  1087 3 
 +**    – + 1087 3 
– +**  – +*  +* 1087 3 
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4.2c Cream-bellied Fruit-dove Ptilinopus merrilli 

AvAlt AvGirth Factor 1 Factor 3 AveSlope AIC ∆AIC 

+** +**    499.2 0 
+** +** +   499.8 0.6 
+** +**    499.9 0.7 
+** +* –   500.2 1.0 
+** +* +  – 500.8 1.6 
+** +*  – – 500.8 1.6 
+** +** + –  501.2 2.0 
+** +* + – – 502.1 2.9 

 
 
4.2d Yellow-breasted Fruit-dove Ptilinopus occipitalis 

Factor 2 AvGirth AvPath Factor 1 Factor 3 AIC ∆AIC 

+**     742.4 0 
+** +    742.6 0.2 
+**  +   743.0 0.6 
+** + +   743.1 0.7 
+*  + +  743.3 0.9 
+**   +  743.4 1.0 
+* + + +  743.4 1.0 
+** +  +  743.5 1.1 
+**    + 743.7 1.3 
+** +   + 743.7 1.3 

 
 
4.2e Black-chinned Fruit-dove Ptilinopus leclancheri 

AveAlt AvGirth Factor 1 AvSlope Factor 2 AIC ∆AIC 

–** +** +*   458.1 0.0 
–** +** +* –  458.2 0.1 
–** +** +*  – 459.4 1.3 
–** +** +* – – 459.5 1.4 
–** +**    461.5 3.4 
–** +**  –  461.6 3.5 
–** +**   – 462.0 3.9 
–** +**  – – 462.0 3.9 
–** +*  –  463.2 5.1 
–**  +* – – 464.3 6.2 
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4.2f Philippine Cuckoo-dove Macropygia tenuirostris 

AvAlt AvPath AvGirth AvSlope Factor 3 AIC ∆AIC 

+*** – + –  577.8 0 
+***  + –  578 0.2 
+*** –  –  578.3 0.5 
+***     578.4 0.6 
+***   –  578.6 0.8 
+*** – +  + 578.9 1.1 
+*** – + – + 579.3 1.5 
+***  +* – + 579.5 1.7 
+***    + 580 2.2 
+*** –  – + 580.5 2.7 

 

4.2g Common Emerald Dove Chalcophaps indica 

Factor 2 AvAlt AvPath CCover Factor 1 AIC ∆AIC 

 –    640.7 0.0 
 –   – 641.0 0.3 
– –    641.3 0.6 
–   +  641.4 0.7 
 – –   641.5 0.8 
    – 641.6 0.9 
– –   – 641.7 1.0 
 – –  – 641.9 1.2 
–     642.1 1.4 
–    – 642.2 1.5 

 

4.2h Luzon Bleeding-heart Gallicolumba luzonica 

AvGirth Factor 1 Factor 3 AvPath CCover AIC ∆AIC 

+ +* – *   582.8 0.0 
+ +* – * –  584.3 1.5 
 +* – *   584.5 1.7 

+ + – *  + 584.6 1.8 
+* +    585.7 2.9 
+*  –  + 585.8 3.0 

 +* – * –  585.9 3.1 
 +* – *  + 586.1 3.3 

+*  –   586.2 3.4 
+ + – * – + 586.2 3.4 
+*  – –  586.5 3.7 
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4.2i Guaiabero Bolbopsittacus lunulatus 

Factor 1 Factor 3 AvGirth CCover Factor 2 AIC ∆AIC 

+*    – * 1022 0 
+* +   – * 1024 2 
+*  +  – * 1024 2 
+*   + – * 1024 2 
+* + +  – * 1025 3 

    – * 1026 4 
+* +  + – * 1026 4 
+*  + + – * 1026 4 
+*     1027 5 

   + – * 1027 5 

 
 
4.2j Colasisi Loriculus philippensis 

Factor 1 AvSlope AvGirth Factor 2 Factor 3 AIC ∆AIC 

+ – **    819.3 0 
+ – **   – 819.9 0.6 
 – **    820.4 1.1 

+ – **  +  821.1 1.8 
+ – ** +   821.2 1.9 
 – **   – 821.6 2.3 

+ – ** +  – 821.9 2.6 
+ – **  + – 821.9 2.6 
 – **  +  822.2 2.9 

 

4.2k Rufous Hornbill Buceros hydrocorax 

Factor 1 Factor 2 AvAlt AvGirth Factor 3 AIC ∆AIC 

    – 962.5 0 
   + – 963 0.5 
 –   – 963.1 0.6 
  +  – 963.2 0.7 
–    – 963.6 1.1 
 –  + – 963.7 1.2 
   +  964 1.5 
–   + – 964 1.5 
 – +  – 964 1.5 
  + + – 964 1.5 
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4.2l Luzon Tarictic Penelopides manillae 

AvSlope AvPath Factor 2 Factor 3 AvAlt AIC ∆AIC 

– * –  + – *** 880.7 0 
– *   + – *** 881.6 0.9 
– * – + + – *** 881.8 1.1 
– * –   – *** 882 1.3 

 –  + – *** 882.3 1.6 
– *    – *** 882.8 2.1 
– *  + + – *** 882.9 2.2 
– * – +  – *** 883.1 2.4 

 –   – *** 883.4 2.7 
   + – *** 883.5 2.8 
 – + + – *** 883.5 2.8 

– *  +  – *** 884 3.3 
    – *** 884.5 3.8 
 – +  – *** 884.6 3.9 
  + + – *** 884.9 4.2 
  +  – *** 885.8 5.1 

 

 

4.2m Flame-breasted Fruit-dove Ptilinopus marchei 

AvAlt AvPath Factor 3 AveSlope Factor 1 AIC ∆AIC 

+***   –  235.8 0.0 
+*** –   – 236.2 0.4 
+***   – – 236.5 0.7 
+*** –  –  236.8 1.0 
+*** –  – – 237.5 1.7 
+***  – –  237.8 2.0 
+*** – –  – 238.0 2.2 
+***  – – – 238.3 2.5 
+*** – – –  238.8 3.0 
+*** – – – – 239.3 3.5 

 
 
4.2n Green Imperial-pigeon Ducula aenea 

AvGirth AvAlt CCover AvPath AvSlope AIC ∆AIC 

+ –   – 216.3 0 
+    – 216.3 0 
+  +  – 216.7 0.4 
+ – +  – 216.8 0.5 
+   – – 217.1 0.8 
+ –  – – 217.2 0.9 
    – 217.5 1.2 
 –   – 217.9 1.6 
  +  – 218 1.7 
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4.2o Blue-naped Parrot Tanygnathus lucionensis 

Factor 1 Factor 3 AvGirth AvSlope Factor 2 AIC ∆AIC 

    – 82.37 0.00 
 –   – 82.55 0.18 

– –   – 83.38 1.01 
–    – 83.60 1.23 
  +  – 83.70 1.33 
 – +  – 83.80 1.43 
   – – 83.97 1.60 

– – +  – 84.26 1.89 

 
 
4.2p Green Racquet-tail Prioniturus luconensis 

Factor 1 Factor 2 AvAlt AvSlope CCover AIC ∆AIC 

  – *   114.0 0.0 
+  – *   114.7 0.7 
+  – *  – 114.7 0.7 
+ – – *  – 115.2 1.2 
 – – *   115.4 1.4 
  – * +  115.7 1.7 
  – *  – 115.7 1.7 

+ – – *   115.9 1.9 
+  – * +  116.3 2.3 

 

4.2q Blue-crowned Racquet-tail Prioniturus discurus 

Factor 1 Factor 2 AvAlt AvPath CCover AIC ∆AIC 

–  – +  57.26 0.00 
  – +*  57.34 0.08 
– – – +  57.68 0.42 
 – – +  57.85 0.59 
–  – + + 57.98 0.72 
– – – + + 58.57 1.31 
– – –   58.58 1.32 
–  –   58.65 1.39 
  – + + 59.34 2.08 
  –   59.76 2.5 
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4.2r Luzon Racquet-tail Prioniturus montanus 

AvPath AvAlt Factor 1 Factor 2 Factor 3 AIC ∆AIC 

– +*** –  – 94.79 0 
– +***   – 95.92 1.13 
– +*** – + – 96.77 1.98 
– +***  + – 97.47 2.68 
– +***    97.81 3.02 
 +*** –  – 97.89 3.1 
– +***  +  98.28 3.49 
– +*** –   98.32 3.53 
 +***   – 99.06 4.27 
– +*** – +  99.21 4.42 

 
 
4.2s Species richness 

Factor 2 AvGirth AvSlope Factor 1 Factor 3 AIC ∆AIC 

+ +*** –**   1256 0 
 +*** –**   1257 1 

+ +*** –** +  1257 1 
 +*** –** +  1258 2 

+ +*** –**  + 1258 2 
 +*** –**  + 1259 3 
 +*** –** + + 1259 3 

+ +*** –** + + 1259 3 

 

4.4.3 Identifying non-linearities in frugivore-habitat associations 

From 216 cases of frugivore-habitat associations involving four environmental 

variables and 18 frugivores, there were 48 linear and 19 quadratic relationships between 

species and variables (Table 4.4). Only five non-linear relationships were detected (Figure 

4.1a-e). In two of the complex cases, the relationship was with tree girth and the 

terrestrial pigeons Common Emerald Dove and Luzon Bleeding-heart. Green Racquet-

tail also showed non-linear relationship with tree girth. The remaining two non-linear 

relationships were with canopy cover and with Black-chinned Fruit-dove and Green 

Imperial-pigeon. The analyses using species richness yielded significant correlations with 

girth. Moreover, the strongest (lowest AIC values) relationships were linear for all the 

variables considered. 
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Table 4.3 Summary of habitat association models across frugivore species in Luzon with their corresponding Akaike weights. Figures in bold are significant 

relationships to variables. IUCN threat status: NT = near threatened, VU = vulnerable. n = number of bird encounters. The symbols represent the shape of the 

relationship between species presence and the habitat variable + positive linear; – negative linear;  quadratic. 

 AvAlt AvSlope AvPath AvGirth CCover F1 F2 F3 

Species with n>50 

White-eared brown-dove Phapitreron leucotis (n=630) 
– 

1.00 
 

– 
0.30 

+ 
0.58 

+ 
1.00 

 
0.89 

  

Amethyst brown-dove Phapitreron amethystinus (n=286)  
– 

0.25 
– 

0.30 
+ 

0.97 
– 

0.31 
 

0.68 
 

0.42 
 

0.73 

Cream-bellied fruit-dove Ptilinopus merrilli (NT) (n=79) 
+ 

0.92 
∩ 

0.38 
 

+ 
0.91 

 
 

0.38 
 

 
0.38 

Yellow-breasted fruit-dove Ptilinopus occipitalis (n=157)   
+ 

0.47 
+ 

0.49 
 

+ 
0.35 

+ 
0.92 

 
0.34 

Black-chinned fruit-dove Ptilinopus leclancheri (n=75) 
– 

0.98 
∩ 

0.50 
 

+ 
0.96 

 
 

0.82 
 

0.36 
 

Philippine cuckoo-dove Macropygia tenuirostris (n=128) 
+ 

0.99 
∩ 

0.73 
– 

0.50 
+ 

0.55 
   

 
0.34 

Common emerald dove Chalcophaps indica (n=119) 
– 

0.62 
 

– 
0.39 

 
+ 

0.37 
 

0.47 

– 
0.43 

 
 

Luzon bleeding-heart Gallicolumba luzonica (NT) (n=87)   
– 

0.34 
+ 

0.71 
+ 

0.34 
+ 

0.73 
 

 
0.80 

Guaiabero Bolbopsittacus lunulatus (n=243)    
+ 

0.25 
+ 

0.30 
+ 

0.85 
 

0.90 

+ 
0.31 

Colasisi Loriculus philippensis (n=137)  
– 

0.95 
 

+ 
0.27 

 
+ 

0.67 
 

0.28 
 

0.40 

Luzon hornbill Penelopides manillae (n-165) 
– 

0.99 
– 

0.70 
– 

0.62 
   

+ 
0.36 

 
0.53 

Rufous hornbill Buceros hydrocorax (NT) (n=199) 
+ 

0.39 
  

+ 
0.45 

 
–  

0.41 
– 

0.43 
 

0.64 
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Table 4.3 continued 

 
        

 AvAlt AvSlope AvPath AvGirth CCover F1 F2 F3 

Species with n<50 

Flame-breasted fruit-dove Ptilinopus marchei (VU) (n=36) 
+ 

1.00 
∩ 

0.76 
– 

0.52 
  

 
0.55 

 
 

0.28 

Green imperial-pigeon Ducula aenea (n=30) 
– 

0.48 
– 

0.74 
– 

0.37 
+ 

0.69 
+ 

0.42 
   

Blue-naped parrot Tanygnathus lucionensis (VU) (n=11)  
∩ 

0.31 
 

+ 
0.36 

 
– 

0.39 
 

0.77 

– 
0.51 

Green racquet-tail Prioniturus luconensis (VU) (n=14) 
– 

0.95 
+ 

0.30 
  

– 
0.43 

+ 
0.53 

– 
0.37 

 

Blue-crowned racquet-tail Prioniturus discurus (n=9) 
– 

0.77 
 

+ 
0.69 

 
– 

0.34 
– 

0.58 
– 

0.47 
 

Luzon racquet-tail Prioniturus montanus (NT) (n=11) 
+ 

1.00 
 

– 
0.81 

  
 

0.57 
 

0.33 
 

0.76 

Species richness  
–  

0.97 
 

+ 
1.00 

 
+ 

0.39 
+ 

0.61 
+ 

0.29 
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Table 4.4 AIC scores for GAMM model analyses of frugivore-habitat associations. Figures in bold are the best models with the lowest AIC values.  
Quad = quadratic. K=3 refers to the number of kernels which is three in the GAMM analyses. 

 TREE GIRTH CANOPY COVER FACTOR 1 FACTOR 2 
 Linear Quad k=3 Linear Quad k=3 Linear Quad k=3 Linear Quad k=3 

White-eared brown-dove 1169.00 1312.00 1171.00 1165.00 1312.00 1167.00 1168.00 1163.00 1165.00 1167.00 1169.00 1169.00 

Amethyst brown-dove 922.20 1039.00 924.20 935.50 1052.00 937.50 939.70 937.80 941.50 939.10 936.90 938.70 

Cream-bellied fruit-dove 443.00 492.50 445.00 452.20 500.70 454.20 451.10 450.30 452.70 452.20 452.00 454.20 

Yellow-breasted fruit-dove 656.50 767.00 658.50 659.80 766.80 661.80 660.80 660.20 662.70 656.10 661.90 657.80 

Black-chinned fruit-dove 413.00 476.30 415.00 421.30 476.40 418.00 420.30 415.80 418.60 420.10 419.90 421.40 

Philippine cuckoo-dove 523.50 676.30 525.50 524.30 676.20 526.30 525.70 525.00 527.70 525.70 525.60 527.70 

Common emerald dove 563.30 633.90 561.70 564.10 635.10 566.00 563.80 563.40 565.80 562.50 564.00 564.50 

Luzon bleeding-heart 504.00 540.90 497.30 505.20 540.60 507.20 502.90 503.20 504.70 505.60 504.80 507.60 

Guaiabero 903.80 1013.00 905.80 904.50 1015.00 906.50 901.50 902.60 903.40 904.20 900.70 905.50 

Colasisi 697.70 713.60 699.70 697.30 713.30 699.30 694.70 697.40 696.70 695.70 697.40 697.70 

Luzon hornbill 727.90 757.80 729.90 734.80 795.90 736.80 734.80 734.80 736.80 732.80 734.80 734.80 

Rufous hornbill 821.40 888.60 823.40 821.10 888.60 822.90 820.10 823.10 822.10 823.00 823.10 825.00 

Flame-breasted fruit-dove 261.70 296.10 263.70 262.10 296.10 263.90 262.00 260.70 264.00 261.00 262.00 263.00 

Green imperial-pigeon 200.10 255.00 202.10 202.00 254.80 200.70 202.00 202.50 204.00 202.50 202.50 204.50 

Blue-naped parrot 83.68 124.00 85.68 83.67 123.90 85.67 83.25 83.79 85.25 83.96 80.38 84.74 

Green racquet-tail 114.80 142.60 113.90 114.10 142.50 116.10 114.00 114.60 116.00 114.40 114.90 116.40 

Blue-crowned racquet-tail 52.22 87.50 54.22 51.96 86.85 53.10 46.98 51.09 48.98 51.05 47.43 49.97 

Luzon racquet-tail 105.50 117.40 107.50 105.50 117.00 107.50 105.50 104.00 107.40 105.40 105.00 107.40 

Species richness 1264.00*** 1278.00*** 1266.00*** 1282.00 1295.00 1284.00 1282.00 1281.00 1284.00 1280.00 1281.00 1281.00 
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Figure 4.1 Non-linear bird-habitat relationships detected by the GAMM analyses which show 

important thresholds in species occurrence as a function of tree girth and canopy cover. 

 

4.1a Increasing presence of Common Emerald Dove Chalcophaps indica with increasing tree girth 

beyond approximately 125 cm. 

 

 

4.1b Decreasing presence of Luzon Bleeding-heart Gallicolumba luzonica with increasing tree girth 

beyond approximately 150 cm. 

  



 

99 

 

4.1c Decreasing presence of Green Racquet-tail Prioniturus luconensis at tree girths beyond 

approximately 150 cm. 

 

 

 

4.1d Increasing presence of Black-chinned Fruit-dove Ptilinopus leclancheri with increasing canopy 

cover beyond approximately 60%. 
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4.1e Decreasing presence of Green Imperial-pigeon Ducula aenea at canopy cover beyond 

approximately 70%. 

 

4.5 DISCUSSION 

Of the habitat variables considered, the main correlates of species richness and presence 

of most individual species were altitude, slope, tree girths, canopy cover, and Factor 2, a 

correlate of secondary forest. Two major points emerge from this analysis and will be 

discussed in turn. First, habitat associations of frugivores proved to be highly 

individualistic with no two species sharing exactly the same set of habitat correlates or the 

same response to the correlates. Second, birds appear to respond to a complex of habitat 

attributes that include geographic, structural and floristic factors. Habitat variables appear 

to be intimately related and were unlikely to act solely. A study in another island in the 

Philippines has demonstrated similar linked effects of geography, structure and floristics 

on bird assemblages (Lee and Marsden, 2008b). 

Variation in the response of birds to fine-scale habitat gradients, e.g. vegetation 

type, may reflect differences in microstructure, especially the foliage characteristics of 

individual plant species which may affect foraging efficiency and concealment from 

predators (Cody, 1985). Moreover, certain plant species may provide important resources 
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to birds (Karr and Freemark, 1983). Pioneer plant species, e.g. Macaranga, supply 

frugivores with a bounty of fleshy fruit as opposed to dipterocarp species with inedible 

pericarp (Corlett and Primack, 2005). Young secondary forest and agroforest sites, which 

typify Factor 2 habitat, were particularly important ecotones, having not only pioneer 

plant species but an abundance of figs and human-planted crops that are also potential 

food sources. Yellow-breasted Fruit-dove and Luzon Hornbill are specialists in this kind 

of matrix habitat although the former also prefers large trees, which indicates its 

preference for a more mature secondary forest.  

Mature forest offers birds a different complement of resources because of its 

different habitat structure and vegetation type, often dominated by large dipterocarps 

with palm trees in the understorey (Corlett and Primack, 2005). A cavity-nesting bird, the 

‘Near Threatened’ Rufous Hornbill, as expected showed preference for trees with large 

girth, although counterintuitively it was averse to increasing measures of rich lowland 

forest (Factor 1) and to measures of forest disturbance (Factor 2). It was instead found to 

prefer high-altitude forest (Factor 3). Species having high Akaike weights for Factor 1 

and/or other indicators of good forest, e.g. big tree girth and high canopy cover, include 

the ‘Near Threatened’ Cream-bellied Fruit-dove and Luzon Bleeding-heart as well as the 

relatively common White-eared Brown-dove, Amethyst Brown-dove, Black-chinned 

Fruit-dove and Green Imperial-pigeon. A weak predictor variable, canopy cover had 

highest Akaike weight for only one species—White-eared Brown-dove. Frugivores 

showed an inconsistent response to canopy cover in that three species had a negative 

relationship with it and five were positive. This is contrary to a study on population 

trends in Neotropical birds where light penetration was found to be a key variable 

limiting species occupancy (Patten and Smith-Patten, 2012). It is surprising that species 

such as the White-eared Brown-dove, common and generally considered to be tolerant of 
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heavily disturbed habitats, were strongly associated with primary forest features. They 

were certainly observed in secondary forests but had higher abundance in good intact 

forests (see Table 5.2). 

Altitude, known as one of the fundamental drivers of bird distribution (Wiens, 

1989), was the most powerful driver of species distribution for Luzon’s frugivores. It had 

the highest Akaike variable weights for ten species. Since altitude was slightly correlated 

with Factor 3 (rs = 0.21), slope (rs = 0.25) and tree girth (rs = 0.10), many of the species 

strongly correlated with altitude were also strongly associated with mid-values for Factor 

3 and/or slope, i.e. Cream-bellied Fruit-dove, Philippine Cuckoo-dove, Flame-breasted 

Fruit-dove and Luzon Racquet-tail. Compared to lowland tropical rainforests cloud 

forests generally have shorter trees, higher stem density, gnarled and twisted trunks and 

branches, dense and compact crowns, and tough but smaller leaves (Peh et al., 2011). A 

closer look at vegetation structure and topographic gradients in cloud forests may help 

elucidate specific factors driving habitat association in high-altitude sites. It is important 

to note that levels of disturbance in upland sites are much reduced compared to lowland 

sites, which are more susceptible to logging and agricultural pressures. Similarly, sites with 

steep slopes may act as refuge from hunting or poaching because of their relative 

inaccessibility, and they are likely to retain trees that cannot be reached by loggers (Cleary 

et al., 2005). Upland sites and steep slopes may represent sites where essential resources 

for birds could be found such as food, shelter, and breeding space. That the ‘Vulnerable’ 

Green racquet-tail was the only species positively associated with steep slopes is possibly 

an indication that this parrot is being pushed to the edge of its known habitat in good 

lowland forests as has been shown for other species (Hawkins, 1999, Lambert and Collar, 

2002). Of the four species averse to steep slopes, three were also averse to wide forest 

trails and one was correlated with increasing lowland forest quality.  
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Path width was not a good predictor variable in that it failed to get the highest 

Akaike weight for any of the species and also had low Akaike weights across all species 

considered. However, it got the second highest Akaike weight for Blue-crowned Racquet-

tail and Luzon Racquet-tail although the relationship was positive for the former and 

negative for the latter. Blue-crowned Racquet-tail was recorded in just one site in Luzon, 

which was in a coastal limestone forest that was highly disturbed and planted to coconut 

trees near the beach. This is not a pattern consistent for the species in its entire range, as 

it also occurs in very good lowland to submontane forests in Negros (pers. obs.). In 

contrast, the Luzon Racquet-tail was recorded in mostly intact montane forest with 

minimal disturbance if any. 

Several species including those of conservation concern, i.e. the ‘Vulnerable’ 

Flame-breasted Fruit-dove, Blue-naped Parrot and Green Racquet-tail, and the ‘Near 

Threatened’ Luzon Racquet-tail (BirdLife International, 2010), had habitat associations 

that were difficult to model owing to very low encounter rates which resulted to wide 

variances. It is doubtful whether the habitat association models based on the few sites at 

which the species were recorded have accurately captured their preference. It is likewise 

difficult to separate the effects of ecological and life-history traits on rarity although Cofre 

et al. (2007) found evidence that rarity in terms of species distribution was associated with 

low investment in reproduction, non-migratory status and a degree of habitat 

specialization. The same authors also found that rarity in terms of abundance was 

regulated by resource requirements and availability.  

The relationships between frugivore presence and habitat features were usually 

simple linear or quadratic. It was perhaps surprising how few non-linear relationships 

there were. Overall, 48 from 216 were linear and 19 were quadratic – only five were more 

complex. Even the complex relationships appear closer to quadratic when graphed 
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(Figures 4.1a-e). Such complex relationships need to be identified when examining the 

response of birds to environmental variables as simply considering linear relationships 

can be misleading conservation-wise (Meents et al., 1983). These simple relationships 

suggest that management prescriptions can be simply formulated. It also means that 

improvement to habitat quality all along the forest quality gradient from very degraded to 

intact forest is expected to improve the habitat for frugivores (Naidoo, 2004). 

Six of the 18 frugivore species considered including the ‘Near Threatened’ 

Cream-bellied Fruit-dove and Luzon Bleeding-heart were strongly dependent on good 

forest. The rest required some measure of good forest but were tolerant of disturbance to 

a degree. This reinforces the importance of habitat heterogeneity for maintaining bird 

diversity within reserves as no single habitat can provide the needs of all species. 

Nevertheless, forest quality in Luzon especially within protected areas by and large is 

decreasing (Verburg et al., 2006). Very good forests are being degraded through illegal 

logging while very poor forest is being wiped out by fire and total clearance for 

agriculture and development. All these have and will continue to affect frugivores. 

Although a few ‘non-forest’ or large open country frugivores, e.g. bulbuls and orioles, 

occur in Luzon, they will never be able to replace forest frugivores in their role of forest 

regeneration. 
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C h a p t e r  5  

DENSITY ESTIMATION IN LUZON’S FRUGIVORES: CORRECTING FOR 

EFFECTS OF HABITAT, AND NON-RANDOM PLACEMENT  

OF SAMPLING ALONG PATHS 

5.1 ABSTRACT 

Precise and accurate estimates of wildlife population density and sizes are essential to 

provide evidence for effective wildlife management and conservation programmes. Line 

transect distance sampling is a robust method in that variability in detectability due to 

distance from the transect line and covariates is taken into account in species density 

estimates. Many conservation studies cannot, by necessity, be based on random transect 

placement, instead use transects along existing trails. This study estimates the bias due to 

this in estimates of species densities, encounter rates, effective strip widths and overall 

detection function along three path categories—random paths (specially-cut transects), 

hunter trails (path width <100cm) and access roads (path width >100cm). Differences in 

floristic and vegetation structural features as well as human disturbance in the form of 

hunting were responsible for the difference in species density estimates across path types. 

Path types were similar in measures of altitude and the presence of fig, bamboo and 

pioneer trees and differed especially in terms of tree girths, slope, canopy cover, and 

presence of crops, dipterocarp trees and attributes of secondary forest. Hunter trails 

yielded lowest densities and encounter rates for nine of 12 species and lowest effective 

strip width for seven of 12 species. Highest densities and encounter rates were along 

random paths for seven of 12 species. Differences in density across trail types were 

driven by differences in encounter rates rather than differences in detectability. Average 

encounter rate across path types is 206% compared to 143% for effective strip width. 
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Correction of density estimates from a survey with biased transect placement produced 

higher values of up to 287% difference compared to raw estimates. The average 

difference between raw and corrected estimates is 190% (118-287%). In fragmented 

forests where random placement of transects is not always possible, this method of 

correction will allow species density estimates from sampling along hunter trails and 

access roads to be adjusted. 

5.2 INTRODUCTION 

The quantification of wildlife populations is an essential component of effective species 

management and conservation programmes, and is particularly critical within reserves 

supporting populations of threatened species (Thompson, 2002, Newton et al., 2004). 

Sampling methods are the means employed to quantify most wildlife populations since 

censuses or total counts are usually not feasible and prohibitively expensive (Marques and 

Buckland, 2003). A key assumption of any such sampling is that an estimate of a sample 

or fraction of the population accurately reflects the true population size of the survey 

region.  

A widely used sampling method in estimating wildlife populations and birds in 

particular is line transect distance sampling (LTDS) (Buckland et al., 2001). When 

assumptions for the implementation of LTDS are met, it gives a precise and accurate 

estimate of species density or number of birds per unit of area. The assumptions are (1) 

transects are randomly placed in the survey area, (2) all animals or clusters of animals 

along the transect are detected, (3) animals are detected at their initial location and prior 

to any responsive movement to the observer, and (4) distances are accurately measured or 

estimated with minimal errors (Buckland et al., 1993). The method is robust in that it 

takes into consideration changes in detectability with distance away from the transect line 

(Buckland et al., 2001). Successive work has incorporated the effects of covariates 



 

107 

 

including habitat, observer, bird behaviour, weather conditions, etc. on detectability 

(Marques et al., 2007, Marques and Buckland, 2003).  

Meeting the assumption of random placement of transects is not always possible 

in many different habitats e.g. tropical forests because of the density of vegetation and 

steep slopes along ridges, wetland because of impassable bogs or quicksand, and 

farmland because of restrictions both physical (fences) and ethical (i.e. trampling of 

crops). Completely random placement of samples is difficult in the tropics unless the 

survey team has a lot of manpower or if there is a grid of trails specially cut (e.g. Johns 

1996). An alternative used by Jones et al. (2001) was to survey along existing trails but to 

place point counts 20-50 m off the trail within the forest. Lee (2005) found serious effects 

of logging paths on the densities of birds on Mindoro, Philippines, but his survey 

suffered from the problem of small number of replicates. This is clearly an important 

issue, in respect of safety of fieldworkers and reliability of results, however, little research 

has been undertaken on the effects of surveying along non-random features (Marques et 

al., 2010, Marques et al., 2012), especially in the tropics (Hilario et al., 2012). Marques et al. 

(2012) has found distance surveys that assume uniform species distribution from 

landscape features such as roads produced a -20% bias in density estimates of Eastern 

Grey Kangaroo Macropus giganteus. There are exceptions as some species such as the Wild 

Turkey Meleagris gallopavo are randomly distributed relative to non-random land features 

such as roads so road surveys yield unbiased results (Erxleben et al., 2011). 

In this study, I have tested the degree of bias that LTDS on non-random 

transects has on estimates of density, encounter rate and effective strip width. LTDS was 

used to estimate abundance of avian frugivores, a group deemed important for their role 

in seed dispersal and forest regeneration. Sampling was conducted along line transects 

classified according to three path categories based on measures of increasing path width 
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and known levels of hunting disturbance: random paths, hunting trails and access roads. 

In order to measure the bias resulting from conducting sampling along non-random 

transects, I compared species densities, encounter rates (birds encountered per unit 

effort), effective strip width (ESW) (the distance from the line at which as many animal 

clusters are detected beyond the given distance as are missed within the given distance 

from the line) and detection function (probability that an animal is detected as a function 

of distance from the line) across path categories. This bias can be corrected in completed 

surveys as I have demonstrated in density data from surveys in the Sierra Madre in 2010. 

Knowledge of this bias will allow extrapolation of results to a wider area and will benefit 

the design and conduct of future surveys. 

5.3 METHODS 

5.3.1 Field methods: bird counts and habitat measures 

Bird and habitat data were collected from December 2011 to February 2012 at Subic Bay 

Forest Reserve and Bataan National Park in western Luzon (Fig. 5.1). Sixteen frugivorous 

bird species were sampled using LTDS methods described in Section 2.3.3. Transects 

were categorized according to their measures of path width as random paths (paths 

specially cut in the forest), hunter trails (existing paths <100cm in width) and access roads 

(existing paths >100cm in width) (Fig. 5.2). Random paths were specially-cut transects 

that didn’t follow any obvious land feature such as ridges, flat land, rivers or other bodies 

of water. Hunter trails were narrow paths regularly used by hunters and farmers along 

forested edges of farms or logging roads. Hunter activity was mostly confined to the use 

of snares to capture prey but in some areas airguns and dogs are used to track and 

retrieve prey. Local people also use these hunter trails to collect non-timber forest 

products such as rattan, honey, seedlings, snails, frogs, forest fruits, etc. Wider forest 

paths showing evidence of cattle or vehicle traffic were categorized as access roads. 
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Examples of access roads include ‘buffalo-assisted logging’ roads and farm-to-market 

roads. 

  

Figure 5.1 Map of transects across the study area in Subic Bay Forest Reserve and Bataan 

National Park. Yellow lines are transects along random paths, pink lines are along hunter trails and 

red lines are along access roads. 
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Figure 5.2 Examples of the three path types in Luzon, Philippines. A = random or 
specially-cut path, B = narrow hunter trail, C = cattle and/or vehicle access road 
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Habitat measures were taken for each 400m transect segment in 10x20m habitat 

plots following methods detailed in Section 4.3.1. Habitat variables included structural 

and floristic factors as well as a Principal Components Analysis (PCA) composite axis of 

floristic factors that characterize the major forest types in the study area, i.e. primary 

forest, secondary forest and regenerating forest (see Section 4.3.2). Structural factors 

include altitude, tree girth, slope, path width and canopy cover. Floristic factors were 

occurrence records of plant types and habitat features known to be important for 

frugivores, such as planted crop, palm, fig, rattan, dipterocarp, epiphyte, bamboo, pioneer 

trees, liana and standing dead trees. Percentile values of habitat variables were obtained 

after which a pair-wise comparison of habitat features across the three path categories 

was carried out using the Mann-Whitney-Wilcoxon Test. 

5.3.2 Density estimation across path types 

The MCDS (Multiple Covariates Distance Sampling) engine of DISTANCE 6.0 release 2 

software (Thomas et al., 2010) was used to estimate species-specific densities (individuals  

km-2) in the different path categories. Species with less than 30 observations/encounters 

were excluded from the distance analysis but encounter rates were computed instead. 

Bird records were entered as clusters (number of birds in a flock) with distances divided 

(or grouped) into intervals whenever rounding of distances to favoured values (e.g., 

nearest 10 or 15 m) or bird movement prior to detection was evident, following Buckland 

et al. (2001) and Thomas et al. (2010). Outlying records at large distances away from the 

transect line were removed since they contribute little to the calculated density estimate 

and hinder model fitting (Buckland et al., 2001, Thomas et al., 2010). I determined the cut-

off point for the analyses by fitting a preliminary model and removing observations with 

less than 0.15 detection probability (Buckland et al., 2001). Models were built using the 

half-normal and hazard rate key functions each in combination with covariates thought to 
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influence the probability of detection, namely sampling month, and average canopy cover 

and tree girth per transect. Several exploratory analyses using the multivariate models 

with different truncation values and distance intervals were run with the optimal 

detection function for each species selected based on minimisation of Akaike’s 

Information Criterion (AIC) values and coefficient of variation of the density estimate. 

With competing models or where model choice was uncertain, a comparison of 

goodness-of-fit measures between models was made (Marques et al., 2007). A 

nonparametric bootstrap was used to estimate variance by sampling with replacement 

using transects as resampling units (Buckland et al., 2001). 

5.3.3 Density correction of first field season data 

Species density estimates in section 5.2.2 were used to compute the percentage difference 

in density across path types (Table 5.3). This then allowed for a correction factor to be 

used in adjusting species densities estimated from the first field season data (those 

presented in Chapter 2) to correct for the bias in non-random transect placement. As a 

demonstration, I considered two sites with high numbers of bird records for the analysis: 

Aurora and the combined Isabela and Cagayan sites. Transects in each site were parsed 

into two equally-sized groups of either closed or open canopy forest using the median 

measure of average canopy cover per transect. These were 71% in Isabela and Cagayan, 

and 75% in Aurora. Transects with average canopy cover values below the median were 

placed in the open canopy category and transects with values above the median in the 

closed canopy category. Only six species had enough bird records in the aforementioned 

sites for density estimates to be used in this analysis. There were so few records of 

Colasisi Loriculus philippensis in Aurora and of Luzon Hornbill Penelopides manillae in Isabela 

and Cagayan that these species were excluded from the analyses for these sites. 
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5.4 RESULTS 

5.4.1 Differences in habitat across path types 

Table 5.1 shows the comparison of environmental correlates across different path types 

in the survey using the Mann-Whitney-Wilcoxon Test. Two habitat measures, path width 

and presence of crops, were significantly different in all three path types. On the other 

hand, altitude and the presence of fig, bamboo and pioneer trees were not significantly 

different across path types. 

Random paths had higher values of most ‘habitat variables’ compared to hunter 

trails and access roads (Table 5.1). Random paths were mainly characterized by minimal 

evidence of human alteration such as low occurrence of planted crops, a thick and dark 

understorey of dense liana and rattan, and an overstorey of large dipterocarp trees. 

Hunter trails were not significantly different from random paths except for significantly 

higher measures of path width and presence of crops and lesser density of rattan, liana 

and dipterocarp trees. Compared to access roads, hunter trails had significantly larger 

trees, higher values for the floristic composite representing primary forest and more 

palms; and significantly smaller paths and lesser occurrence of crops. Access roads were 

characterized by smaller trees, gentler slope, open canopy, and higher occurrence of crops 

and the floristic composite of secondary forests (Table 5.1). 

5.4.2 Densities, encounter rates, detectability and detection functions across path types 

Average difference in encounter rates for common species was 200% while average 

difference in ESW was just 110%. Although not marked for less common species, the 

average differences were still higher for encounter rates at 211% compared to 180% for 

ESW. Across species average difference in encounter rates was 206% and 143% for 

effective strip width. 
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Table 5.1 Medians and upper/lower percentiles of environmental features across different path types and results of Mann-Whitney-Wilcoxon tests; * p < 

0.05; ** p < 0.005 

 Random paths Small hunter/farmer trails Access roads Test 

Altitude 340 (193-614) 381 (213-647) 267 (200-458) 1<2; 1>3; 2>3 

Tree girth 111 (93.5-127) 106 (89.8-124) 85.3 (68.3-120) 1>2; 1>3*; 2>3* 

Slope 13.5 (10.0-19.3) 10.9 (8.80-15.8) 10.2 (6.86-13.9) 1>2; 1>3*; 2>3 

Path width 0.00 (0.00-4.36) 43.3 (36.1-52.7) 91.2 (65.2-118) 1<2**; 1<3**; 2<3** 

Canopy cover 86.8 (82.4-90.6) 85.4 (79.9-88.6) 81.9 (54.2-89.6) 1>2; 1>3*; 2>3 

Primary forest 0.38 (0.24-0.62) 0.33 (0.24-0.56) 0.21 (0.00-0.50) 1>2; 1>3*; 2>3* 

Secondary forest 0.30 (0.20-0.41) 0.40 (0.19-0.53) 0.57 (0.29-0.83) 1<2; 1<3**; 2<3* 

Regenerating forest 0.23 (0.15-0.33) 0.24 (0.17-0.29) 0.15 (0.07-0.27) 1<2; 1>3; 2>3* 

Crop 0.00 (0.00-0.00) 0.00 (0.00-0.10) 0.07 (0.00-0.20) 1<2*; 1<3**; 2<3* 

Palm 0.00 (0.00-0.20) 0.00 (0.00-0.12) 0.00 (0.00-0.00) 1>2; 1>3*; 2>3* 

Fig 0.30 (0.22-0.55) 0.33 (0.17-0.42) 0.18 (0.12-0.41) 1<2; 1>3; 2>3 

Rattan 0.58 (0.50-1.00) 0.42 (0.37-0.62) 0.37 (0.12-0.54) 1>2**; 1>3**; 2>3 

Dipterocarp 0.50 (0.30-0.79) 0.30 (0.14-0.49) 0.20 (0.06-0.41) 1>2**; 1>3**; 2>3 

Bamboo 0.00 (0.00-0.18) 0.00 (0.00-0.12) 0.00 (0.00-0.10) 1>2; 1>3; 2>3 

Pioneer trees 0.20 (0.01-0.38) 0.17 (0.00-0.29) 0.15 (0.05-0.29) 1>2; 1>3; 2>3 

Standing dead tree 0.21 (0.02-0.40) 0.17 (0.01-0.25) 0.03 (0.00-0.20) 1>2; 1>3*; 2>3 

Liana 0.60 (0.45-1.00) 0.50 (0.33-0.55) 0.42 (0.26-0.60) 1>2*; 1>3*; 2>3 
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Four best models for estimating detection probability were selected by AIC across all 

species considered: (1) month, (2) tree girth, (3) no covariate, and (4) a combination of 

month, tree girth and canopy cover. AIC chose a different model for each path type within 

each species except for the Amethyst Brown-dove, Luzon Hornbill and Green Imperial-

pigeon, each of which had the combination of all three covariates as best model for two path 

types. 

Species densities were lowest along hunter trails in five of six common species and 

highest along random paths in four species (Table 5.2). The Guaiabero was the only 

common species with highest density along access roads. Among less common species (those 

with fewer than 30 records in a path category), four of six had lowest densities along access 

roads while the opposite was true for the Common Emerald Dove and Green Imperial-

pigeon, with both having highest densities on access roads. All the common species were at 

least 124% more abundant or 24% higher in random paths compared to hunter trails with 

the highest being more than 200% or twice as high in both brown-doves (Table 5.3). The 

Amethyst Brown-dove was also 261% more abundant on random paths compared to access 

roads. The Yellow-breasted Fruit-dove had 430% and 263% higher density in random paths 

and hunter trails respectively compared to access roads. 
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Table 5.2 Density estimates (D), encounter rates (ER), number of observations (n), effective strip width (ESW), and detection functions for species in 

different path type. Species are arranged according to the number of observations with the most common species first. Db are bootstrapped estimates of 

density. Data were not truncated (TR) in species with records fewer than 12 in a particular path type. 

 
Random paths Hunter/farmer trails Access roads 

White-eared 
Brown-dove 

Phapitreron leucotis 

Db = 37.5 ± 0.14; 27.6-47.9 
ER = 4.16 ± 0.17 
n = 428 
ESW = 57.8 ± 0.02 
Best model = Canopy Cover; TR = 70m 

 
 

Db = 17.2 ± 0.20; 10.8-24.2 
ER = 1.83 ± 0.23 
n = 431 
ESW = 56.8 ± 0.05 
Best model = no covariate; TR = 90m 

 

Db = 28.4 ± 0.18; 19.5-38.9 
ER =  3.27 ± 0.16 
n = 307 
ESW = 61.8 ± 0.03 
Best model = Month; TR = 85m 

 

Guaiabero 

Bolbopsittacus 
lunulatus 

Db = 41.4 ± 0.19; 28.1-56.8 
ER = 2.21 ± 0.11 
n = 227 
ESW = 33.0 ± 0.06 
Best model = no covariate; TR = 60m 

 
 

Db = 31.3 ± 0.17; 20.9-41.7  
ER = 1.51 ± 0.16 
n = 354 
ESW = 30.9 ± 0.04 
Best model = Tree Girth; TR = 60m 

 
 

Db = 52.2 ± 0.12; 41.8-63.5 
ER = 2.71 ± 0.11 
n = 255 
ESW = 32.3 ± 0.05 
Best model = Canopy Cover; TR = 70m 
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Table 5.2 continued 

 
Random paths Hunter/farmer trails Access roads 

Amethyst Brown-
dove 

Phapitreron 
amethystinus 

Db = 17.1 ± 0.25; 10.9-24.0 
ER = 1.79 ± 0.24 
n = 184 
ESW = 53.2 ± 0.05 
Best model = Month + Canopy Cover + 
Tree Girth; TR = 85m 
 

 
 

Db = 5.31 ± 0.34; 2.03-9.81 
ER = 0.57 ± 0.31 
n = 135 
ESW = 56.1 ± 0.05 
Best model = Month + Canopy Cover; 
TR = 90m 
 

 
 

Db =  6.58 ± 0.32; 2.85-11.0 
ER = 0.59 ± 0.33 
n = 55 
ESW = 47.3 ± 0.06 
Best model = no covariate; TR = 70m 
 

 

Yellow-breasted 
Fruit-dove 

Ptilinopus occipitalis 

Db = 8.98 ± 0.26; 4.98-14.0 
ER = 1.29 ± 0.23 
n = 133 
ESW = 74.0 ± 0.04 
Best model = Canopy Cover + Tree 
Girth; TR = 90m 
 

 
 

 
Db = 5.42 ± 0.47; 1.68-11.6 
ER = 0.56 ± 0.39 
n = 132 
ESW = 65.4 ± 0.06 
Best model = Canopy Cover; TR = 100m 
 

 
 

 
Db = 2.58 ± 0.34; 1.16-4.01 
ER = 0.26 ± 0.46 
n = 24 
ESW = 63.4 ± 0.19 
Best model = Month; TR = 120m 
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Table 5.2 continued 

 
Random paths Hunter/farmer trails Access roads 

Colasisi 

Loriculus philippensis 

Db = 19.2 ± 0.21; 12.7-24.5 
ER = 1.05 ± 0.21 
n = 108 
ESW = 30.5 ± 0.06 
Best model = Tree Girth; TR = 50m 
 

 
 

Db = 13.3 ± 0.30; 7.08-22.6 
ER = 0.52 ± 0.22 
n = 122 
ESW = 27.8 ± 0.08 
Best model = no covariate; TR = 50m 
 

 
 

Db = 14.3 ± 0.36; 6.44-24.9 
ER = 0.52 ± 0.24 
n = 49 
ESW = 33.0 ± 0.10 
Best model = Month; TR = 55m 
 

 
 

Luzon Hornbill 

Penelopides manillae 

 
Db = 9.66 ± 0.28; 7.21-14.2 
ER = 0.83 ± 0.18 
n = 85 
ESW = 55.4 ± 0.09 
Best model = Month + Canopy Cover + 
Tree Girth; TR = 110m 
 

 
 

 
Db = 8.00 ± 0.23; 4.99-12.1 
ER = 0.45 ± 0.17 
n = 106 
ESW = 50.1 ± 0.07 
Best model = Tree Girth; TR = 100m 
 

 

 
Db = 12.6 ± 0.43; 7.81-17.5 
ER = 0.67 ± 0.16 
n = 63 
ESW = 46.2 ± 0.16 
Best model = Month + Canopy Cover + 
Tree Girth; TR = 90m 
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Table 5.2 continued 

 
Random paths Hunter/farmer trails Access roads 

Common Emerald 
Dove 

Chalcophaps indica 

D = 6.72 ± 0.29; 3.76-12.0 
ER = 0.30 ± 0.26 
n = 31 
ESW = 24.2 ± 0.13 
Best model = Month + Canopy Cover; 
TR = 55m 
 

 
 

D = 12.5 ± 0.34; 6.50-23.9 
ER = 0.25 ± 0.28 
n = 58 
ESW = 10.9 ± 0.19 
Best model = Tree Girth; TR = 40m 
 

 

D = 14.2 ± 0.29; 8.02-25.1 
ER = 0.29 ± 0.23 
n = 27 
ESW = 10.1 ± 0.17 
Best model = Month; TR = 20m 
 

 

Green Imperial-
pigeon 

Ducula aenea 

D = 5.75 ± 0.44; 2.44-13.5 
ER = 0.35 ± 0.41 
n = 36 
ESW = 75.1 ± 0.08 
Best model =  Month; TR = 100m 
 

 

D = 1.54 ± 0.48; 0.62-3.79 
ER = 0.13 ± 0.44 
n = 31 
ESW = 64.1 ± 0.15 
Best model = Month + Canopy Cover + 
Tree Girth; TR = 90m 
 

 
 

D = 8.96 ± 0.57; 3.08-26.1 
ER = 0.16 ± 0.47 
n = 15 
ESW = 42.8 ± 0.18 
Best model = Month + Canopy Cover + 
Tree Girth; TR = 80m 
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Table 5.2 continued 

 
Random paths Hunter/farmer trails Access roads 

Philippine 
Cuckoo-dove 

Macropygia 
tenuirostris 

D = 2.47 ± 0.42; 1.10-5.53 
ER = 0.40 ± 0.32 
n = 41 
ESW = 90.1 ± 0.27 
Best model = Tree Girth; TR = 100m 
 

 
 

D = 1.04 ± 0.39; 0.49-2.21 
ER = 0.14 ± 0.38 
n = 33 
ESW = 76.5 ± 0.09 
Best model = Month; TR = 105m 
 

 
 

D = 0.49 ± 0.64; 0.15-1.61 
ER = 0.07 ± 0.58 
n = 7 
ESW = 106 ± 0.23 
Best model = Month 
 

 
 

Green Racquet-tail 

Prioniturus luconensis 

 
D = 3.15 ± 0.52; 1.18-8.43 
ER = 0.18 ± 0.44 
n = 18 
ESW = 61.1 ± 0.20 
Best model = Month + Tree Girth; TR = 
80m 
 

 
 

 
 
D = 1.41 ± 0.40 
ER = 0.11 ± 0.38 
n = 25 
ESW = 53.7 ± 0.07 
Best model = no covariate; TR = 70m 
 

 
 

 
 
D = 0.43 ± 0.83; 0.10-1.87 
ER = 0.06 ± 0.72 
n = 6 
ESW = 100 ± 0.38 
Best model = Month 
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Table 5.2 continued 

 
Random paths Hunter/farmer trails Access roads 

Pompadour 
Green-pigeon 

Treron axillaris 

 
D = 2.79 ± 1.01; 0.50-15.52 
ER = 0.20 ± 0.44 
n = 21 
ESW = 45.9 ± 0.90 
Best model = Month + Tree Girth; TR = 
100m 
 

 
 

 
D = 2.02 ± 0.38; 0.97-4.23 
ER = 0.07 ± 0.30 
n = 17 
ESW = 51.5 ± 0.14 
Best model = Tree Girth; TR = 80m 
 

 

 
D = 1.90 ± 0.60; 0.61-5.90 
ER = 0.11 ± 0.34 
n = 10 
ESW = 70.0 ± 0.31 
Best model = no covariate 
 

 

Black-chinned 
Fruit-dove 

Ptilinopus leclancheri 

D = 1.23 ± 2.23; 0.05-30.4 
ER = 0.09 ± 0.46 
n = 9 
ESW = 35.6 ± 2.19 
Best model = Canopy Cover + Tree Girth 
 

 
 

D = 2.08 ± 0.78; 0.49-8.82 
ER = 0.05 ± 0.35 
n = 12 
ESW = 11.5 ± 21.20 
Best model = Tree Girth 
 

 
 

D = 1.16 ± 0.53; 0.42-3.20 
ER = 0.11 ± 0.40 
n = 10 
ESW = 51.8 ± 0.33 
Best model = Tree Girth 
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Table 5.2 continued 

 
Random paths Hunter/farmer trails Access roads 

Rufous Hornbill 

Buceros hydrocorax 

ER = 0.12 ± 0.28 
n = 12 
 

ER = 0.05 ± 0.35 
n = 11 
 

ER = 0.05 ± 0.49 
n = 5 
 

Luzon Bleeding-
heart 

Gallicolumba 
luzonica 

ER = 0.02 ± 0.68 
n = 2 

ER = 0.05 ± 0.40 
n = 12 

ER = 0 
n = 0 

Blue-naped Parrot 

Tanygnathus 
lucionensis 

ER = 0.06 ± 0.73 
n = 6 

ER = 0.01 ± 1.00 
n = 2 

ER = 0.03 ± 0.98 
n = 3 
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Table 5.3  Percentage difference in density estimates, encounter rates and effective strip width 

between path types 1 (random paths), 2 (hunter trails) and 3 (access roads). More than 200% 

percentage differences (i.e. one is greater than twice the other) are in bold. The position of the plus 

sign indicates in which of the path types estimated density (D), encounter rate (ER) or effective strip 

width (ESW) was higher.  

SPECIES 

Density Encounter Rate 
Effective Strip 

Width 

1&2 1&3 2&3 1&2 1&3 2&3 1&2 1&3 2&3 

Species with total n>250 

White-eared Brown-dove +214 +133 161+ +227 +127 179+ +102 107+ 109+ 

Guaiabero +140 117+ 163+ +146 123+ 179+ +107 +102 105+ 

Amethyst Brown-dove +292 +261 112+ +314 +303 104+ +105 +112 +108 

Yellow-breasted Fruit-dove +163 +430 +263 +230 +496 +215 +126 +122 103+ 

Colasisi +175 +157 112+ +202 +202 100 +110 108+ 119+ 

Luzon Hornbill +124 104+ 129+ +184 +124 149+ +111 +120 +108 

Species with total n<120 

Common Emerald Dove 186+ 211+ 114+ +120 +103 116+ +222 +240 +108 

Green Imperial-pigeon +373 156+ 582+ +269 +219 123+ +117 +175 +150 

Philippine Cuckoo-dove +238 +504 +212 +286 +571 +200 +118 118+ 139+ 

Green Racquet-tail +223 +733 +328 +164 +300 +183 +114 164+ 186+ 

Pompadour Green-pigeon +138 +147 +106 +286 +182 157+ 112+ 153+ 136+ 

Black-chinned Fruit-dove 169+ +106 +179 +180 122+ 220+ +310 146+ 450+ 
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The same five common species with lowest densities along hunter trails also had 

lowest encounter rates with three of those having lowest effective strip width as well. All the 

common species had highest encounter rates along random paths except again for the 

Guaiabero, which was highest on access roads. Likewise for effective strip width, four 

common and two less common species had highest values along random paths. The 

Pompadour Green-pigeon was the lone species with lowest effective strip width on random 

trails. Four of six less common species had encounter rates lowest along hunter trails while 

three of six less common species had lowest effective strip width. Encounter rates for 

common species were 146-314% lower along hunter trails compared to random paths and 

120-286% lower for less common species. Average percentage difference in effective strip 

width was low at 110% among common species and 180% for less common species. In the 

Common Emerald Dove the effective strip width was considerably greater (>200%) for 

random paths compared to hunter trails and access roads. A large drop in effective strip 

width along hunter trails in the Black-chinned Fruit-dove generated a 310-450% difference 

compared to random paths and access roads. 

5.4.3 Correction factors for first field season’s density data 

Corrected density estimates for all species were higher compared to raw estimates (Table 5.4). 

The Amethyst Brown-dove had the highest percentage difference at 275-288% while Luzon 

Hornbill had the lowest at 118-120%. The average corrected density estimates in Aurora was 

higher at closed canopy sites than open canopy sites with 35.0 km-2 compared to 25.8 km-2. 

Conversely, average corrected density estimates at closed canopy sites in Isabela and Cagayan 

were lower at 26.7 km-2 compared to 37.7 km-2 in open canopy sites. 
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Table 5.4  Raw (not accounting for path types) and corrected density estimates (individuals km-2 ± 

CV) for selected frugivores from Aurora and combined Isabela and Cagayan sites from data gathered 

during the first field season on 2010. 

 

5.5 DISCUSSION 

A crucial assumption of distance sampling, including LTDS, is that samples/transects are 

randomly placed in the study area ensuring that animal distribution in the landscape is 

uniform (Buckland et al., 2001, Fewster et al., 2008). This uniformity assumption is clearly 

violated when sampling along roads or linear features where animal density is atypical. 

Disturbance to the animals as well as the habitat caused by hunting activities along narrow 

trails, and by cattle and vehicle traffic along wide roads, makes density estimates from 

sampling in these path types biased since one cannot assume estimates to be representative 

for the species and consequently cannot extrapolate results to areas larger than the area 

covered or survey region. Indeed, non-random transect placement in the study resulted in 

  Aurora Isabela and Cagayan 

  Closed Open Closed Open 

  10/113/9 0/67/18 8/88/9 0/85/15 

White-eared Brown-dove Raw 41.4 ± 13.2 33.4 ± 21.5 21.4 ± 22.1 35.9 ± 20.7 

Corrected 82.7 ± 13.2 65.8 ± 21.5 42.5 ± 22.1 72.5 ± 20.7 

Amethyst Brown-dove Raw 15.5 ± 25.1 8.47 ± 32.2 22.7 ± 22.2 24.8 ± 17.3 

Corrected 42.7 ± 25.1 24.2 ± 32.2 62.4 ± 22.2 71.3 ± 17.3 

Yellow-breasted Fruit-dove Raw 1.77 ± 51.3 3.91 ± 48.7 4.11 ± 50.3 8.21 ± 30.0 

Corrected 3.12 ± 51.3 8.58 ± 48.7 7.44 ± 50.3 16.7 ± 30.0 

Guaiabero Raw 25.1 ± 24.5 13.3 ± 32.3 6.73 ± 38.5 5.19 ± 29.3 

Corrected 33.5 ± 24.5 17.1 ± 32.3 8.90 ± 38.5 6.84 ± 29.3 

Colasisi Raw   7.43 ± 31.4 12.4 ± 27.7 

Corrected   12.5 ± 31.4 21.4 ± 27.7 

Luzon Hornbill Raw 10.9 ± 35.4 11.4 ± 29.8   

Corrected 13.1 ± 35.4 13.5 ± 29.8   
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fewer observations nearer transect lines on hunter trails and access roads for most species, 

which in turn significantly reduced densities and encounter rates. The high percentage 

difference (118-287%) between the corrected density estimates against raw estimates 

highlights the significant bias of subjective placement of lines in distance sampling. This is 

much higher compared to the -20% bias that Marques et al. (2012) observed from animal 

avoidance of landscape features resulting to an overestimation of detection probability and 

underestimation of density. Large bias in density estimates was also encountered in a point 

transect sampling of Irish Hares Lepus timidus hibernicus along linear features (Marques et al., 

2010). Similarly, a population study of primates has produced evidence of considerable bias 

in density estimates on surveys that do not satisfy the uniformity assumption in survey design 

(Buckland et al., 2010).  

The higher average density of frugivores in open compared to closed forest transects 

in Isabela and Cagayan could be due to persistence of primary forest birds in selectively 

logged forests and mixed-rural habitats (Peh et al., 2005). The high frugivore density in open 

forest may also suggest an uneven distribution of closed and open canopy transects, with the 

former situated mostly on the eastern side of the Sierra Madre Mountain Range which always 

bear the brunt of tropical typhoons that strike the country during the rainy season. 

Consequently, species diversity and numbers have always been low on the eastern side of the 

mountain range from personal observation as well as reports from local people. van Weerd 

and Udo de Haas (2010) found similar low bird species richness in both ultrabasic and 

montane forests in the Northern Sierra Madre National Park which could both be found on 

the eastern side of the mountain range. The southern Aurora province has a history of 

intensive logging 3-4 decades ago and although commercial logging still continues, it is on a 
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much smaller scale. The abandoned logging roads have largely reverted to forest now, 

although some were still being used by locals to access the forest for selective logging, small-

scale agriculture and hunting throughout the province. Logging has been widely known to 

negatively impact bird species richness and density (Marsden, 1998, Velho et al., 2012) which 

explains the low frugivore density in logged open canopy forest in Aurora. With the 

government’s intensive reforestation efforts in Aurora, an increase in average density of 

frugivores on closed canopy forest was expected as rain forest rehabilitation was shown to 

affect avifauna composition and abundance by making it more similar to that of naturally 

regenerating forest (Ansell et al., 2011).  

It is very important to note that it was differences in encounter rates rather than 

differences in detectability that were mainly responsible for differences in species density 

across trail types (Table 5.3). The percentage differences in ESW (effective strip width) across 

path types were small in all species, indicating that roads and edges created by forest trails did 

not alter the detectability of birds or minimally if ever. This may be due to the birds being 

detected mostly from aural cues whereas visual cues would be greatly affected by dense forest 

growth or lack thereof, as in the case of habitats surrounding access roads. Patterns of 

detection could therefore be different for non-calling and/or cryptic species (Dawson and 

Efford, 2009, Pacifici et al., 2008). Encounter rate, ESW and cluster or animal group size are 

the three main components that affect precision in line transect abundance estimation. 

Conspicuousness can affect detection along transects and this was seen in increasing ESW 

with increasing body size e.g. 30-32 m on average for the small parrots against 72 m for the 

Yellow-breasted Fruit-dove. Increase in detectability was also seen with increase in body size 

of African savanna mammals (Ogutu et al., 2006). 
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Path types differed in terms of floristic factors or presence of key plants and 

structural factors such as tree girth, canopy cover, path width and slope (Table 5.1). Among 

the three path types, access roads showed stark difference in structural and floristic attributes 

compared to the other path types in having significantly wider paths, smaller trees, gentler 

slope, and open canopy. Random paths and hunter trails were structurally similar and shared 

similar vegetation except for significantly higher occurrence of liana, rattan and Dipterocarp 

trees in random paths. This similarity was superficial, however, as shown by the much lower 

density estimates (up to 373% difference) along hunter trails compared to random paths in 

nine of 12 species which were even lower (up to 582% difference) than estimates along 

access roads. Although it must be said that frugivores were not always the target prey in 

hunting activities, human traffic and secondary activities such as collection of non-timber 

forest products along hunting trails must affect habitat use by birds. In contrast, Black-

chinned Fruit-dove showed an interesting pattern of highest density (up to 430% more) 

along hunter trails and largest drop (up to 450% less) in effective strip width also along 

hunter trails. Perhaps a reason for this is the abundance of food items and other resources on 

edges of trails which serve to attract birds, making them more conspicuous. Another possible 

explanation is the fact that trails were purposely built by hunters to go through areas with 

perceived high density for this and other prey species. In species favouring forest edges, 

density estimates were much higher along access roads e.g. Guaiabero, Common Emerald 

Dove and Green Imperial-pigeon, although records for the latter two are too few to be 

conclusive. Habitat association analysis has indeed shown that the Guaiabero is tolerant of 

forest disturbance to a degree (Ch. 4, section 4.4.2). Some of the responses of birds and other 

animals to roads and forest edges have been documented elsewhere (Ortega and Capen, 

2002, Yost and Wright, 2001, Marsh and Beckman, 2004). 
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To conclude, distance sampling can be conducted along non-random linear features 

but positioning samples thus causes likely bias in density estimates. It is suggested here that 

density estimates be adjusted with the use of a correction factor developed from an episode 

of robust sampling that fulfils the assumptions of the method. The density correction 

method has potential use in sampling other taxa in the increasingly fragmented forest 

landscape of the Philippines. Failure to correct for non-random sampling placement will 

introduce considerable bias to conservation status assessments resulting to species 

management and conservation programmes with ill-targeted objectives. With the constant 

spectre of limited conservation resources in the tropics, this is a grave mistake that ecologists 

and conservation workers cannot afford to make. The correction factors presented here, 

although not ideal, goes some way towards making population assessments more realistic 

where random placement of transects is prohibited by time, terrain, cost, safety, etc. 
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C h a p t e r  6  

THE FUTURE OF AVIAN FRUGIVORE RESEARCH AND CONSERVATION  

6.1 Key findings of the dissertation research 

Three major barriers to effective protected area management in the Philippines have been 

identified by the Protected Areas and Wildlife Bureau (PAWB) of the Department of 

Environment and Natural Resources (DENR): (1) poor biogeographical representation of 

the existing protected area (PA) system, (2) limited capacities of the DENR-PAWB and the 

Protected Area Management Boards (PAMB) for PA management, and (3) inadequate 

systems for financial planning, budgetary management and revenue generation (DENR-

PAWB, 2012). The overlap between PAs and Key Biodiversity Areas identified by 

Conservation International is only 35% and montane areas are disproportionately 

represented in PA systems leaving lowland forests vulnerable to clearance from logging and 

agriculture (DENR-PAWB, 2012, Ambal et al., 2012). Likewise, PAs in the Philippines 

represent only 6% of IUCN Categories I-IV protected areas (Ong et al., 2002). The first two 

barriers stem in part from an incompletely known status and ecology of many threatened 

species and habitats in the Philippines (BirdLife International, 2003). This has resulted in 

many conservation initiatives in the country not having the benefit of baseline ecological and 

socio-economic research to inform conservation measures on the ground. This PhD sought 

not only to gather ecological data on little-known species over large geographical areas but 

also to develop cost-effective methods of doing ecological research in oftentimes very 

difficult terrain and field conditions. Each chapter’s aims and major findings will be briefly 

discussed in turn with their conservation and future research implications. 
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Chapter 2. Frugivore collapse in Luzon 

The chapter used data gathered from birdwatching archives, museum collection databases, 

unpublished expedition bird records, hunter interviews, and a 10-month bird survey in 

Luzon to (1) create historical and current distribution maps of frugivores in order to detect 

range changes (and in particular range contractions), (2) estimate population densities at a 

number of key sites and compare them with those of related species elsewhere in Southeast 

Asia, and (3) assess whether populations of frugivores in key protected areas are viable in the 

long term using current knowledge on likely minimum viable populations (MVPs). The 

following are the key findings of this chapter: 

 Very little local extinction has been recorded in the last ten years, with the current 

survey considerably increasing the known range of some species including threatened 

taxa. The threatened Luzon-endemic Green Racquet-tail Prioniturus luconensis has been 

recorded from only seven sites in the last ten years. 

 Ten (four parrots, five pigeons and one hornbill) out of 18 species never achieved 

densities of more than 5 per sq km at any site, and four (all parrots) never achieved 

densities of more than 1 per sq km at any site. These density estimates are much 

lower than densities of similar species in neighbouring Indonesia and Papua New 

Guinea. 

 As many as eight out of 20 species, including four out of six parrots, had likely 

populations < 1,000 individuals in all of the five reserves considered in the study, 

which includes the largest reserve in the country—the Northern Sierra Madre 

National Park. More than one third of populations in reserves had <100 individuals. 

At the lowest estimate of MVP = 500 individuals, three of the smallest reserves in 
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Luzon are expected to lose all their frugivores and even the largest reserve will lose 

high proportions of its frugivore species in the next 100 years. 

The many new species occurrence localities added during the study do not imply an 

expanding range/population but can be attributed instead to an incomplete historical record 

of species distribution, as museum collection expeditions were commonly to the same 

accessible sites (BirdLife International, 2003). The same accessibility has made these sites 

prone to logging and agricultural encroachment, resulting in total habitat destruction in a 

number of places which explains some of the local extirpations recorded in the study. This 

illustrates how much remains to be known of Philippine birds that records of large-bodied 

and charismatic species remain incomplete. The chapter also points to the importance of 

attempting to increase reserve size in order to increase MVPs of the most vulnerable species. 

One such species is the Luzon-bound Green Racquet-tail, which was recorded in only two 

regions during the island-wide survey and, overall, in just seven sites in the last ten years 

when birdwatcher and unpublished expedition reports are also taken into account, although 

the reasons for this ominous decline are unclear. It must be said that not only birds but the 

population viability of mammals and other taxa may very well be reduced by the small size of 

reserves and forest fragments (Burkey, 1995). Given the increasingly fragmented forests in 

the tropics, obtaining empirical data on population abundance and long-term viability is 

critical for the success of any conservation intervention. 

Chapter 3. Frugivore community ecology 

Non-metric multidimensional scaling ordinations were used to explore similarities between 

frugivore communities in 24 sites belonging to five regions in Luzon, while Mantel tests were 

used to explore community differences in terms of a series of geographical, habitat, and 
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disturbance predictors. Ordinations were built both with presence/absence and population 

density data. The main findings of the chapter are the following: 

 Clusters and outliers did not ordinate according to region, suggesting that 

geographical factors were not the only determinants of species occurrence and 

abundance. 

 Consistent outliers included three sites in West Luzon and two in Central Luzon, 

and, in terms of species, several large rare parrots and pigeons. 

 The strongest correlates of site dissimilarity were altitude and several human 

disturbance measures – path width, secondary forest index, canopy closure and a 

‘human impact index’ comprising hunting, forest history and conservation 

management. 

The archipelagic nature of the Philippines brought about by its complex geologic history has 

contributed to an extraordinary rate of speciation which produced many endemic species and 

many centres of endemism even within the island of Luzon alone (Balete et al., 2009). 

However, frugivore community dissimilarity in the sites/reserves covered was found to be 

determined largely by correlates of anthropogenic disturbance apart from altitude. In the face 

of incomplete or nonexistent baseline ecological data on many of the protected areas in the 

country with which to compare, this chapter’s findings flag the impact that habitat 

disturbance, hunting and reserve protection/management have on frugivore communities in 

Luzon. Southeast Asia with its largely archipelagic nature coupled with one of the highest 

rates of deforestation in the tropics has shown a similar pattern of biodiversity loss and 

decline (Sodhi et al., 2010b, Turner, 1996). 
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Chapter 4. Frugivore habitat associations 

A natural progression from the previous chapter, which explored dissimilarities in frugivore 

communities across Luzon’s landscape, this chapter sought to establish the drivers of 

community composition and abundance in sites. Generalized linear mixed models were used 

to identify habitat associations of 18 avian frugivores in 24 sites in Luzon. Species numbers 

as well as species occurrence in each site were examined in relation to the effects of 

geographical and vegetation structures and composition. Generalised additive mixed models 

were then used to identify non-linear species response to habitat features. The key findings 

from this chapter are the following: 

 Both structural and floristic variables appear to be important determinants of 

frugivore composition. Altitude was the strongest variable correlated with species 

richness and presence of most species, followed by a correlate of forest disturbance 

and high-altitude forest. 

 Five species were high altitude specialists while six preferred lowland forest. Another 

six species strongly preferred primary forest while one thrives in disturbed forest. 

 Species relationships with habitat variables were simple linear or quadratic except for 

five species that showed a non-linear response to the variables tree girth and canopy 

cover. 

The findings will hopefully be used in capturing as much as possible the full habitat 

requirements of frugivores when delineating protected areas and forest corridors. Many 

endemic species in the Philippines are not as fortunate as knowledge on species requirements 

is largely missing for many species, even those threatened with extinction (Collar, 1998). 
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Chapter 5. Frugivore density estimation: detectability and variability with site, season and habitat type 

This chapter quantified the biases that are expected to appear in estimates of species 

densities, encounter rates, effective strip width and overall detection function as a result of 

transect placement along three path categories: random paths (specially-cut transects), hunter 

trails (path width <100cm) and access roads (path width >100cm). The key findings of the 

chapter were: 

 Differences in floristic and vegetation structural features as well as human 

disturbance in the form of hunting were responsible for the difference in species 

density estimates across path types. The impact that hunting has on frugivore 

populations is even more significant than disturbance caused by access roads in some 

species. 

 Hunter trails yielded lowest densities and encounter rates for nine of 12 species and 

lowest effective strip width for seven of 12 species. Highest densities and encounter 

rates were along random paths for seven of 12 species. 

 Differences in density across trail types were driven by differences in encounter rates 

rather than differences in detectability. 

 Correction of density estimates from a survey with biased transect placement 

produced higher values with an average of 190% (118-287%) difference compared to 

raw estimates. 

The method developed in this chapter will make biased sampling along non-random linear 

features possible as long as density estimates are adjusted to correct for the potentially 

significant bias (Marques et al., 2010). 
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6.2 Conservation implications for Philippine frugivores 

This dissertation has flagged the serious plight of the large forest frugivorous birds of Luzon, 

and in so doing it also suggests that the problems of population decline, range contraction 

and small population size are likely to affect other vertebrate taxa as well. The causes of these 

problems have only generally been outlined, but a combination of massive long-term habitat 

loss and equally chronic wildlife exploitation by local human populations seems likely to 

explain the phenomenon. Blueprints already exist for conservation efforts in Luzon, in the 

form of BirdLife International’s Important Bird Areas (IBAs) and Endemic Bird Areas 

(EBAs), many or parts of which are not covered by any protected area (Mallari et al., 2001, 

Chan et al., 2004), and this dissertation points strongly to the need to implement these 

proposals in full. The fieldwork behind this dissertation also addressed four of the five 

unexplored forests in Luzon supporting threatened species (Mallari et al., 2004), the missing 

site being Mt Irid-Mt Angilo which is on the southernmost part of the Sierra Madre 

mountain range. A notable discovery from these unexplored forests was of a small and likely 

highly threatened population of the Green Racquet-tail in a patch of logged forest dominated 

by bamboo near the foot of Mt High Peak in Zambales. Another potentially important find 

is of a bird-rich forest near Baler in Aurora which was the only place the Pink-bellied 

Imperial Pigeon Ducula poliocephala was recorded during the study. 

However, there is also a need to re-assess how well the existing PAs represent the 

vast and unique biodiversity in the country. Southern Luzon has the fewest and smallest 

reserves in the island, the largest of which (Mt Isarog National Park) will not be able to 

sustain viable frugivore populations in the future apart from the common White-eared 

Brown-dove Phapitreron leucotis (Chapter 2). Likewise, the third largest reserve in the Cordillera 

is expected to lose all of its frugivores in the next 100 years (Chapter 2), an especially 
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worrying situation for the island-endemic Luzon Racquet-tail, which apart from the Sierra 

Madre has the Cordillera supposedly as a stronghold. Reserve size has been shown in the 

study to influence extinction risk, as species abundance and therefore population viability are 

linked to it. The smallest reserves are the ones likely to suffer species loss and the ones least 

able to maintain viable frugivore populations. Numerous forest fragmentation and 

metapopulation studies have demonstrated that smaller areas are more vulnerable to habitat 

shrinkage and destruction and experience faster rates of species loss/extirpation (Burkey, 

1995, Sodhi et al., 2004b, Lundmark, 2004, Watson et al., 2005). The use of biodiversity 

corridors may be the best means of mitigating the impacts of fragmentation not only in the 

nature reserve network but also in forest remnants left over from logging and destructive 

agricultural practices (Laurance et al., 2012, Linehan et al., 1995). In the Philippines, however, 

where land is under immense pressure both from local people for agriculture and from 

corporate businesses for mineral extraction, the creation of habitat corridors that allow avian 

populations to merge genetically is likely to be a logistical and legal challenge on a large scale. 

The National Integrated Protected Areas System (NIPAS) provides for the 

decentralization of PA management through the instrument of the Protected Area 

Management Board (PAMB), a multi-stakeholder entity tasked with PA management, but 

this is usually seen by local communities, notably the local government, as an extension of 

the DENR, so they leave the responsibility for PAs with the DENR (DENR-PAWB, 2012). 

PA management planning is poorly institutionalized, with the quality of plans inconsistent 

across sites. The only biodiversity monitoring instrument for protected areas in the country 

(Danielsen et al., 2003) has not been adequately implemented, leaving the PAMB without an 

objective measure for the effectiveness of PA management. Another major barrier to 
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effective PA management in the Philippines is the bureaucratic and unsustainable financial 

systems governing PAs which do not provide for sufficient generation and management of 

revenue for PA operation (DENR-PAWB, 2012).  

These are just some of the factors that contribute to the ineffectiveness of PA 

management, which is manifest in nonexistent or insufficient patrols for biodiversity 

monitoring as well as for controlling wildlife exploitation and habitat destruction within PAs. 

There is a pressing need for PA management programmes to put a far greater emphasis on 

curbing further habitat disturbance/destruction and hunting within reserves, as these are 

negatively influencing frugivore communities and potentially disrupting seed dispersal and 

forest regeneration dynamics. This is especially important in the largest reserves, which 

represent the country’s best chance of retaining viable frugivore populations. 

That the Luzon-bound and threatened/near-threatened Green Racquet-tail, Luzon 

Racquet-tail Prioniturus montanus and Flame-breasted Fruit-dove Ptilinopus marchei were 

recorded in fewer than fifteen localities each and in very low densities in all of Luzon 

underscores the urgent need for conservation intervention for these as well as other island 

endemics. The future is especially dire for the Green Racquet-tail, which has a population of 

under 250 individuals in the largest reserve (NSMNP) in the country—a situation that 

qualifies it for the Endangered category of threat in the following criteria: B1ab, C2ai (IUCN 

Standards and Petitions Subcommittee, 2013). Population or range contraction for the 

species cannot be accurately inferred as the historical record is incomplete. 

In the end, research-based conservation intervention is not all that is needed. A coal-

fired power plant has just been given a permit to operate very near Rasa Island, one of the 
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last strongholds of the Philippine Cockatoo Cacatua haematuropygia in the country, by the 

Palawan Council for Sustainable Development (PCSD), despite opposition from the local 

government as well as recommendations against its operation by its own technical evaluators 

(Anda, 2013). The Katala Foundation, a non-government organization that has laboured for 

Philippine Cockatoo conservation for many years, has exposed corruption in the leadership 

of the PCSD as the cause of this blatant disregard for expert technical and scientific evidence 

on the impact the power plant will have on the Philippine Cockatoo population. It is this 

kind of weak implementation of environmental laws that erode best-laid conservation 

programmes and initiatives in the country. 

6.3 Implications for future study methods 

A hopefully valuable contribution of this dissertation research was to quantify and correct for 

bias in species density estimates caused by non-random placement of transects, thus making 

it possible to conduct surveys along transects with varying path widths and degrees of 

disturbance (Marques et al., 2010, Marques et al., 2012). Use of the method is not limited to 

the study of birds, as other taxa that are amenable to transect sampling in population studies 

would benefit from the density-correction system described in this study. This is especially 

useful to transect-based wildlife surveys in the tropics where a random placement of transects 

is constrained by time, terrain, cost, safety, etc. The relevance of this method to adjust 

estimates of density in surveys conducted in non-ideal field conditions is becoming more 

apparent in the increasingly fragmented forests and habitats not only in the Philippines but in 

the wider tropics (Brooks et al., 1999, Castelletta et al., 2005, Korfanta et al., 2012, Laurance, 

1999, Tanner and Kirk, 2008). 



 

140 

 

6.4 Future research and conservation priorities 

 There is need for a thorough and systematic search for the remaining sites where the 

Luzon-endemic Green Racquet-tail, Luzon Racquet-tail and Flame-breasted Fruit-

dove survive in order that relevant and timely conservation measures or intervention 

can be devised. A crucial first measure is to stem deforestation and curb hunting 

activities in sites that are known habitat of the species. This can be facilitated by 

community-based species management and monitoring programmes at sites where 

the species are especially vulnerable. Complementary conservation education 

campaigns will help ensure the success of the programmes in the long-term. 

Protection of the species can be institutionalised through provincial, municipal and 

even barangay/village level ordinances and declaration of local protected areas. 

 In spite of the high rate of deforestation in the Philippines, species discovery in the 

country is also one of the highest in the world with 270 species discovered in the past 

25 years—not including insects, marine life, and those species awaiting description 

(de Leon and Lita, 2012). Future expeditions must be organized to little explored 

forests in the Philippines with the objective of not only completely documenting 

biodiversity in these places but also of obtaining solid evidence of their abundance 

(Mallari et al., 2004, Mallari et al., 2001). With the steady encroachment of logging, 

development and agriculture into the last remaining forests of the Philippines, the 

chances of species being lost without ever having been discovered become higher 

with each passing year. 

 The country’s highly fragmented forest landscapes and many centres of endemism 

lend themselves well to metapopulation and disturbance gradient studies which are 
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based on accurate species occurrence data and abundance estimates. They represent a 

potential laboratory for measuring the impacts of disturbance and isolation on 

species and populations and for identifying the consequences for the ecosystem 

services of seed dispersal and forest regeneration. Key points for investigation 

include an assessment of the number of subpopulations in the landscape, species 

tolerance to disturbance and dispersal abilities of species across an increasingly 

expanding human-altered landscape.  

 The incredibly depauperate state of knowledge on Philippine frugivores (Collar, 

1998, Walker, 2007) and biodiversity in general (BirdLife International, 2003) is due 

in part to lack in capacity for sound ecological research in the country. Since 1950, 88 

papers on Philippine birds worthy of listing in Web of Science were published, with 

only 18 papers on bird ecology (less than one paper every 3.5 years). Moreover, 

around three quarters of these papers were authored by non-Filipinos. This is 

evidence of a major deficiency in the country’s technical and professional ability to 

manage the environment and to conserve biodiversity. Incidentally, American and 

European researchers also dominated ecological research publications coming out of 

the Andes and the Amazon (Pitman et al., 2011). A wider review covering 1333 

ecological papers from tropical countries in the period 1995 to 2004 shows the same 

pattern of unequal geographical distribution of research in the tropics with lead 

authors mostly from a developed country (Stocks et al., 2008). A mechanism for 

research capacity-building and training of Filipino biologists will greatly benefit 

conservation initiatives on the ground by making it more cost-effective, sustainable 

and potentially more socially acceptable and participatory. Collaborative research 
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programs must be designed where visiting foreign researchers work closely with in-

country collaborators thereby offering opportunities for training of young 

undergraduate and graduate-level Filipino biologists in data analysis and manuscript 

preparation and not just fieldwork. Local institutions that employ biologists must be 

strengthened to provide scientists with the incentive to stay in the country once they 

are established researchers.  

 Building on the previous point, emphasis must be put on basic ecological research in 

order to further our understanding of the food, habitat and breeding requirements of 

the many unique bird species in the country. If baseline information is missing for 

even birds which are mostly diurnal and arguably easier to study, one can only 

surmise on the amount of ecological information missing for other Philippine 

endemic taxa. 

PA management and conservation initiatives in the Philippines have always been saddled by 

contradictory and ill-defined laws relating to land tenure, poor government management of 

poverty-stricken and displaced human communities, powerful lobbies from the corporate 

sector, institutional corruption and inertia, and widespread indifference to the plight of 

wildlife and the environment. In spite of these disheartening conditions, hope comes in 

trickles as small conservation victories are won through much hard work, dedication and 

dialogue with the aim of finding a balance between the oftentimes conflicting interests of 

development and environmental protection (Posa et al., 2008). 
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Appendix 2.1. Survey areas per region in Luzon with total transect length, altitudinal range, protection status and predominant habitat type per site. Kaingin = 

swidden or slash-and-burn agriculture. DENR = Department of Energy and Natural Resources. PAMB = Protected Area Management Board. 

Areas per region Dates 
Kilometres 
walked 
(transects) 

Altitudinal 
sampling 
range  
(m asl) 

Protection status Predominant habitat type 

Central Luzon 

Mounts Banahaw-San 
Cristobal Protected 
Landscape, Quezon 

14-23 May 
2010 

32.4 (15) 580-1935 Active volunteer forest guards ensure 
reserve is protected from mining and 
logging activities but kaingin farming 
continues to encroach 

Regenerating secondary forest in the low 
elevations and mixed evergreen-
gymnosperm and mossy forests toward the 
peak  

Burdeos, Polillo Island, 
Quezon 

9-11 June 
2010 

26.8 (9) 5-200 Volunteer forest guides struggle to keep 
regular patrols and feel disempowered to 
prevent logging and kaingin activities 

Mangrove forest at sea-level and degraded 
secondary forest with selective logging and 
extensive kaingin farming 

Quezon Protected 
Landscape, Quezon 

7-10 July 
2010 

22 (10) 25-355 Volunteer forest guards involved in 
reforestation and patrol of the reserve but 
kaingin farming and hunting continues in 
the buffer zone 

Regenerating lowland dipterocarp forest 
over limestone 

Cordillera 

Mt. Polis, Barangays 
Cambulo and Pula, Cordillera 
Administrative Region 

20-26 July 
2010 

22 (6) 1155-1895 Forest at high altitudes protected by locals 
as watershed; hunting is prevalent and is a 
way of life for all males from pre-puberty 

Highly agricultural landscape in the lowlands 
and mixed pine-evergreen and mossy forests 
confined near the peak  

Balbalasang-Balbalan 
National Park, Kalinga 

29 July-3 
August 
2010 

34.8 (12) 900-1850 Flat lands are highly agricultural while 
forested mountains are protected as source 
of wood and traditional hunting ground 

Extensive old-growth evergreen forest 
dominated by Agathis at higher elevations 
and mixed grass-pine forest in the lowlands 

Calanasan, Apayao 10-13 
August 
2010 

19.2 (8) 665-1060 Kaingin farming in flat land; mayor 
banned hunting of rufous hornbills for ten 
years to allow the population to recover 

Good secondary forest starting from the 
lowlands to montane elevations where trees 
are stunted and gnarled 
 



 

 

 

1
8
6
 

Appendix 2.1 continued 
 

Areas per region Dates 
Kilometres 
walked 
(transects) 

Altitudinal 
sampling 
range  
(m asl) 

Protection status Predominant habitat type 

Sierra Madre 

Divilacan, Maconacon and 
San Pablo, Isabela 

17 
February-5 
March 2010 

50 (28) 10-1270 Dicatian Lake and forest surrounding it is 
protected by a municipal ordinance and a 
conservation NGO; illegal logging 
continues and has left the western side of 
the Sierra Madre barren 

Beach forest along the coast, regenerating 
secondary forest in the lowlands, old-growth 
dipterocarp forest in the Sierra Madre 
interior and mossy forest along mountain 
ridges 

Mt Cetaceo, Peñablanca, 
Cagayan 

13-20 
March 2010 

37.6 (12) 320-1110 The area is protected by an indigenous 
tribe for hunting purposes, but lowland 
settlers are slowly clearing the edges for 
farming 

Regenerating logged-over forest dominated 
by medium-sized trees and overrun by tall 
grass and woody vines in forest gaps and 
along old logging trails 

Baler, San Luis, Dilasag, 
Casiguran and Dinalungan, 
Aurora 

25 August-
19 
September 
2010 

114.4 (47) 10-1190 Commercial logging continues along the 
border between Isabela and Aurora but is 
banned elsewhere. Some selective logging 
and hunting continues; DENR has a 
programme to reforest logging remnants 

Regenerating logged-over forest throughout 
Aurora province with agricultural 
plantations along the coast and generally 
untouched montane/mossy forest at higher 
elevations 

South Luzon 

Mt Malinao, Diaro, Albay 17-18 April 
2010 

8 (2) 490-1140 Kaingin farming gradually extends from 
the lowlands up the mountain 

Extensive abaca plantation in the lower 
elevations and forest gaps replaced by 
secondary forest and mossy forest higher up 

Caramoan National Park, 
Camarines Sur 

22-24 April 
2010 

22 (10) 20-205 PAMB is powerless against development 
activities of individuals within the reserve 

A mixed forest-agricultural landscape over 
limestone bordered by the sea 

Mt. Isarog National Park, 
Naga, Camarines Sur 

27 April-3 
May 2010 

32.4 (11) 295-1760 PAMB strictly enforces a logging ban 
although hunting remains unchecked; 
kaingin farming continues to encroach in 
the lower areas of the reserve 

Highly agricultural in the lowlands and 
gradually giving way to mature secondary 
forest and old-growth mossy forest toward 
the peak 
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Appendix 2.1 continued 
 

Areas per region Dates 
Kilometres 
walked 
(transects) 

Altitudinal 
sampling 
range  
(m asl) 

Protection status Predominant habitat type 

West Luzon 

Mt Tapulao and areas around 
it, Zambales 

21 January-
1 February 
2010 

30.8 (21) 235-1970 Contested mining operation near the peak; 
rampant selective logging and kaingin 
farming 

Scrub/bamboo and highly fragmented 
secondary forest in the lowlands to mixed 
evergreen-gymnosperm and dwarf mossy 
forests toward the peak 

Subic Watershed Forest 
Reserve (SWFR) and Bataan 
National Park (BNP), Bataan 

10-30 
December 
2010 

44.4 (22) 20-430 Paid full-time forest guards in the SWFR 
and volunteer forest guards in BNP; 
selective logging in BNP and hunting for 
bush meat in both SWFR and BNP 

Regenerating logged-over forest dominated 
by dipterocarps in the upper elevations and 
mixed bamboo-evergreen stand in the lower 
elevations 
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Appendix 2.2 Number of encounters of each species, transect length (km), overall encounter rate (individuals km -1; sites combined), and species richness and 

evenness in surveyed sites in Luzon, Philippines. Both an observed (Obs) species richness and one estimated (Est) using the Chao2 estimator of EstimateS along with 
associated 95% confidence intervals are shown. 

 

  

km 

  
T

R
P

O
 

  
P

H
L

E
 

  
P

H
A

M
 

  
P

T
M

A
 

  
P

T
M

E
 

  
P

T
O

C
 

  
P

T
L

E
 

  
D

U
P

O
 

  
D

U
C

A
 

  
D

U
A

E
 

  
C

O
V

I 

  
M

A
T

E
 

  
C

H
IN

 

  
G

A
L

U
 

  
B

O
L

U
 

  
T

A
L

U
 

  
P

R
L

U
 

  
P

R
D

I 
 

  
P

R
M

O
  

  
L

O
P

H
  

  
P

E
M

A
  

  
B

U
H

Y
 

Species richness 
(95% CI) 

Species 
evenness 

Obs Est  

WEST 
LUZON 

                         

 
Zambales 30.8  105 1 1  110 44   3  52 6 1 43  8   18 10 7 14 19 (14-55) 0.74 

 Bataan 44.4 4 110 23  1 6 1   9  8 5 1 122 10 13   29 34 13 16 17 (16-24) 0.72 

CENTRAL 
LUZON 

                         

 Banahaw 32.4  130 3 15  5      91 1 5 6     25 2  10 10 (10-10) 0.62 

 Polillo 26.8   30  3 2 13   21  1 65 17  2    1 26  11 11 (11-14) 0.76 

 Quezon PL 22.0  83 18  9 3 10      12 12 5     6 31 6 11 11 (11-11) 0.79 

SOUTH 
LUZON 

                         

 Malinao 8.0  32 6  3 8      29 1  21     4 1  9 10 (9-22) 0.78 

 Caramoan 22.0 2 130 1  1 9   1 23   3 9 20   11  2 17  13 13 (13-19) 0.61 

 Isarog 32.4  186 13   22     2 39 7 7 29     2 5  10 10 (10-10) 0.57 

SIERRA 
MADRE 

                         

 Isabela 50.0  81 206 1 12 10 1  6   2 1 7 21  1  4 25 18 48 16 20 (17-45) 0.64 

 Cagayan 37.6  318 93  43 96 12  2   15 30 21 21  1   38 22 32 14 15 (14-28) 0.74 

 Aurora 114.4  379 124 13 22 39 23 3  1  3 19 4 80     18 50 88 15 15 (15-15) 0.70 
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Appendix 2.2 continued 
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Species richness 
(95% CI) 

Species 
evenness 

Obs Est 

CORDILLERA                          

 Ifugao 22.0  12 6 2 1       1  1     2 7   8 9 (8-18) 0.81 

 Kalinga 34.8  17 9 24   2     2 5 26     10 6 1 17 11 11 (11-19) 0.87 

 Apayao 19.2  21 16 9 3 1 4     2 2 1     1 5 3 14 13 14 (13-21) 0.82 

TOTAL 496.8 6 1604 549 65 98 289 110 3 9 57 2 245 157 112 368 12 23 11 17 186 220 228   

Encounter Rate  0 3.2 1.1 0.1 0.2 0.6 0.2 0 0 0.1 0 0.5 0.3 0.2 0.7 0 0 0 0 0.4 0.4 0.5   

 
TRPO=pompadour green-pigeon Treron pompadora, PHLE=white-eared brown-dove Phapitreron leucotis, PHAM=amethyst brown-dove Phapitreron amethystina, PTMA=flame-breasted 
fruit-dove Ptilinopus marchei, PTME=cream-bellied fruit-dove Ptilinopus merrilli, PTOC=yellow-breasted fruit-dove Ptilinopus occipitalis, PTLE=black-chinned fruit-dove Ptilinopus 
leclancheri, DUPO=pink-bellied imperial-pigeon Ducula poliocephala, DUCA= spotted imperial-pigeon Ducula carola, DUAE=green imperial-pigeon Ducula aenea, COVI= metallic pigeon 
Columba vitiensis, MATE=Philippine cuckoo-dove Macropygia tenuirostris, CHIN=common emerald dove Chalcophaps indica, GALU=Luzon bleeding-heart Gallicolumba luzonica, 
BOLU=guaiabero Bolbopsittacus lunulatus, TALU=blue-naped parrot Tanygnathus lucionensis, PRLU=green racquet-tail Prioniturus luconensis, PRDI=blue-crowned racquet-tail Prioniturus 
discurus, PRMO=Luzon racquet-tail Prioniturus montanus, LOPH=colasisi Loriculus philippensis, PEMA=Luzon hornbill Penelopides manillae, BUHY=rufous hornbill Buceros hydrocorax
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Appendix 2.3. Sites used for analysis of frugivore distribution in Luzon. Triangles indicate sites 

visited in the current survey. 
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(1) Bangui, Ilocos Norte; (2) Pagudpud, Ilocos Norte; (3) Mt. Sicapo-o, Mt. Simminublan, 
Ilocos Norte; (4) Solsona, Ilocos Norte; (5) Simminaplan, Ilocos Norte; (6) Massisiat, Abra; 
(7) Bucay, Abra; (8) Liwan (Rizal), Kalinga; (9) Balbalasang-Balbalan National Park, Kalinga; 
(10) Cambulo, Ifugao; (11) Barit, Abra; (12) Barlig, Mountain Province; (13) Mt. Polis, CAR; 
(14) Bauko, Mountain Province; (15) Mt. Data National Park, Mountain Province; (16) Mt. 
Pulog National Park; (17) Sablan, Benguet; (18) Atok, Benguet; (19) Baguio City, Benguet; 
(20) Dupax, Nueva Vizcaya; (21) Dalton Pass and Imugan, Nueva Vizcaya; (22) San Miguel, 
Pangasinan; (23) Manleluag Hot Springs National Park, Pangasinan; (24) Hermana Mayor 
island, Zambales; (25) Mt. Tapulao, Zambales; (26) Mt. Arayat, Pampanga; (27) Valley Golf, 
Antipolo, Rizal; (28) Quezon City, Metro Manila; (29) Makati, San Miguel, Taguig and 
Pateros, Metro Manila; (30) Mt. Natib, Orani, Bataan; (31) Olongapo City, Zambales; (32) 
Subic Watershed Forest Reserve; (33) Parañaque and Muntinlupa, Metro Manila; (34) Bataan 
National Park, Morong, Bataan; (35) Samal, Bataan; (36) Mt. Samat and Mt. Mariveles, 
Bataan; (37) Mt. Cayapo, Limay, Bataan; (38) Silang, Cavite; (39) Caylabne Bay Resort, 
Ternate, Cavite; (40) Mt. Palay-palay-Mataas na Gulod National Park, Cavite; (41) Nasugbu, 
Batangas; (42) Tagaytay Highlands, Cavite; (43) Leisure Farms, Lemery, Batangas; (44) 
Bubuin and Napayung Islands, Taal Lake, Batangas; (45) Mt. Makiling National Park, 
Laguna; (46) Sampaloc Lake and Villa Escudero, San Pablo, Laguna; (47) Mts. Banahaw-San 
Cristobal Protected Landscape, Dolores, Quezon; (48) Jala-jala and Pililla, Rizal; (49) 
Majayjay, Laguna; (50) Mts. Banahaw-San Cristobal Protected Landscape, Tayabas, Quezon; 
(51) Lumban, Laguna; (52) Kalayaan, Laguna; (53) Marinduque; (54) Quezon Protected 
Landscape, Quezon; (55) Lopez, Quezon; (56) Mt. Labo, Camarines Norte; (57) Bicol 
National Park, Camarines Norte and Sur boundary; (58) Cabusao, Camarines Sur; (59) 
Magarao, Camarines Sur; (60) Guinobatan, Albay; (61) Bulan, Sorsogon; (62) Matnog, 
Sorsogon; (63) Mt. Bulusan, Sorsogon; (64) Guinlajon, Sorsogon; (65) Bato, Catanduanes; 
(66) Viga-Gigmoto Watershed, Catanduanes; (67) Caramoan National Park, Camarines Sur; 
(68) Mt. Malinao, Albay; (69) Mt. Isarog National Park, Camarines Sur; (70) Panganiban, 
Camarines Norte; (71) Alabat, Quezon; (72) Santa Maria, Famy, Siniloan, Pakil, Pangil and 
Paete, Laguna; (73) Tanay, Rizal; (74) Real, Quezon; (75) Polillo, Quezon; (76) Burdeos, 
Quezon; (77) Patnanungan Island, Quezon; (78) Boso-boso, Antpolo, Rizal; (79) Montalban 
(Rodriguez), Rizal; (80) Ipo and Angat Dams; (81) mountain north-east of Bayabas, (82) 
Papaya, Nueva Ecija; (83) Gapan, Nueva Ecija; (84) Aurora Memorial National Park, Aurora; 
(85) Mt. Cabulao, San Luis, Aurora; (86) Baler, Aurora; (87) Tabayong River, border of 
Quirino and Aurora; (88) Simbahan-Talagas Protected Landscape, Aurora; (89) Talaytay 
Protected Landscape; (90) Calabgan Watershed Forest Reserve; (91) Casibo, Nueva Vizcaya; 
(92) Casapsapan Beach and Amro River Watershed Forest Reserve, Aurora; (93) Quezon, 
Nueva Vizcaya; (94) Diagopanay, Dinapigue, Isabela; (95) San Mariano, Isabela; (96) Mt. 
Dipalayag, San Mariano, Isabela; (97) Mt. Palanan, Isabela; (98) Minuma and Siagot, Ilagan, 
Isabela; (99) Divilacan, Isabela; (100) Masipi, Isabela; (101) Maconacon, Isabela; (102) San 
Pablo, Isabela; (103) Mt. Dos Los Cuernos, Peñablanca, Cagayan; (104) Palay and Cayapa, 
Peñablanca, Cagayan; (105) Mt. Cetaceo, Peñablanca, Cagayan; (106) Quibal, Peñablanca, 
Cagayan; (107) Baggao, Cagayan; (108) Mt. Tabuan, Cagayan; (109) Mt. Cagua, Gonzaga, 
Cagayan; (110) Palaui Island, Sta. Ana, Cagayan; (111) Calanasan, Apayao.  

Data came from published papers, birdwatching lists from the Wild bird Club of the 
Philippines (http://www.birdwatch.ph/html/record/record.html), Dr Nigel Collar’s list of 
bird records from several museums including the Philippine National Museum (PNM), the 
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unpublished expedition reports of Arne Jensen (1994) plus records held in the following 
institutions and accessed through the ORNIS data portal (http://ornisnet.org) on May 2011: 
Academy of Natural Sciences, Philadelphia, PA (ANSP); American Museum of Natural 
History, New York, NY (AMNH); Yale University Peabody Museum, New Haven, CT 
(YPM); Delaware Museum of Natural History, Wilmington, DE (DMNH); Museum of 
Comparative Zoology, Harvard University, Cambridge, MA (MCZ); Western Foundation of 
Vertebrate Zoology, Camarillo, CA (WFVZ); Kansas University Natural History Museum, 
Lawrence, KS (KU); United States National Museum, Washington, D.C. (USNM); Field 
Museum of Natural History, Chicago, IL (FMNH); California Academy of Sciences, San 
Francisco, CA (CAS); Museum of Vertebrate Zoology, University of California, Berkeley, CA 
(MVZ); Denver Museum of Nature and Science, Denver, CO (DMNS); University of 
Michigan, Museum of Zoology, Ann Arbor, MI (UMMZ); Museum of Southwestern 
Biology, University of New Mexico, Albuquerque, NM (MSB); Burke Museum of Natural 
History, University of Washington, Seattle, WA (UWBM); Bishop Museum of Natural 
History, Honolulu, HI (BPBM); University of Arizona Bird Collection, Tucson, AZ (UAZ); 
James R. Slater Museum of Natural History, University of Puget Sound, Tacoma, WA (PSM). 
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Appendix 3.1 Shepard diagrams of the following NMDS analyses: A – ordination of sites based on 

presence-absence data; B – ordination of sites based on standardized species density; C – ordination 
of species based on presence-absence; D – ordination of species based on standardized species 
density. 

 

 

 

 

                              A B 

 

 

 

 

 

 C D   
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Appendix 4.1 AIC scores for all GLMMs. + and – denote the variables included in models with 

positive and negative coefficients or relationships respectively. * p < 0.05; ** p < 0.005; *** p < 
0.0005 

1. White-eared Brown-dove Phapitreron leucotis 

AvAlt AvCCover Factor 1 AvPath AvGirth AIC ∆AIC 

– *** +*** – **  + 1320 0 
– *** +*** – **   1321 1 
– *** +*** – ** – + 1322 2 
– *** +*** – ** –  1322 2 
– *** +***   + 1324 4 
– *** +***    1325 5 
– *** +***  –  1327 7 
– *** +***  – + 1327 7 
– ***  – ** – + 1331 11 
– ***  – **  + 1332 12 
– ***  – ** –  1333 13 
– ***  – **   1334 14 
– ***  –  + 1338 18 
– ***   –  1339 19 
– ***    + 1339 19 
– ***     1341 21 

 +*** – **   1350 30 
 +*** – **  + 1351 31 
 +*** – ** –  1352 32 
 +*** – ** – + 1353 33 
 +***    1355 35 
 +***   + 1356 36 
 +***  –  1357 37 
 +***  – + 1358 38 
  – ** –  1361 41 
  – **   1362 42 
  – **  + 1362 42 
  – ** – + 1362 42 
   –  1368 48 
    + 1369 49 
   – + 1369 49 
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2. Amethyst Brown-dove Phapitreron amethystinus 

AvPath AvGirth AvSlope CCover Factor1 Factor2 Factor3 AIC ∆AIC 

 +**   +*  +* 1084 0 
– +**   +*  +* 1086 2 
 +** –  +*  +* 1086 2 
 +**  – +*  +* 1086 2 
 +**   +* – + 1086 2 
 +**    –  1087 3 
 +**     + 1087 3 
 +**   + –  1087 3 
 +**    – + 1087 3 

– +**  – +*  +* 1087 3 
– +**   +* – + 1087 3 
 +**  – + – +* 1087 3 
 +**      1088 4 
 +**   +   1088 4 
 +**  –   + 1088 4 

– +** –  +*  +* 1088 4 
 +** – – +*  +* 1088 4 
 +** –  + – + 1088 4 

– +**    –  1089 5 
– +**     + 1089 5 
 +** –   –  1089 5 
 +** –    + 1089 5 
 +**  – +   1089 5 
 +**  –  –  1089 5 

– +**   + –  1089 5 
– +**    – + 1089 5 
 +** –  + –  1089 5 
 +** –   – + 1089 5 
 +**  – + –  1089 5 
 +**  –  – + 1089 5 

– +** – – +*  +* 1089 5 
– +** –  +* – + 1089 5 
– +**  – + – +* 1089 5 
 +** – – + – +* 1090 6 

– +**      1090 6 
 +** –     1090 6 
 +**  –    1090 6 

– +**   +   1090 6 
 +** –  +   1090 6 

– +**  –  –  1090 6 
– +**  –   + 1090 6 
 +** – –  –  1090 6 
 +** – –   + 1090 6 

– +**  –  – + 1091 7 
    +*  +* 1091 7 

– +**  –    1091 7 
– +** –  +   1091 7 
– +** –   –  1091 7 
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AvPath AvGirth AvSlope CCover Factor1 Factor2 Factor3 AIC ∆AIC 

– +** –    + 1091 7 
– +**  – +   1091 7 
 +** – – +   1091 7 

– +** –  + –  1091 7 
– +** –   – + 1091 7 
– +**  – + –  1091 7 
 +** – – + –  1091 7 
 +** – – –  + 1091 7 

– +** – – + – +* 1091 7 
– +** –     1092 8 
 +** – –    1092 8 
    + – + 1092 8 

– +** – –  –  1092 8 
– +** – –   + 1092 8 
– +** – –  – + 1092 8 
     –  1093 9 

–    +*  +* 1093 9 
  –  +*  +* 1093 9 
   – +*  +* 1093 9 

– +** – –    1093 9 
– +** – – +   1093 9 
– +** – – + –  1093 9 
    +   1094 10 
      + 1094 10 
    + –  1094 10 
     – + 1094 10 

–   – +*  +* 1094 10 
–    +* – + 1094 10 
  –  + – + 1094 10 
   – + – + 1094 10 

–     –  1095 11 
  –   –  1095 11 
   –  –  1095 11 
   –   + 1095 11 

–    + –  1095 11 
–  –  +*  +* 1095 11 
  – – +*  +* 1096 12 

–       1096 12 
  –     1096 12 
   –    1096 12 

–    +   1096 12 
–      + 1096 12 
  –  +   1096 12 
  –    + 1096 12 
   – +   1096 12 

–     – + 1096 12 
  –  + –  1096 12 
  –   – + 1096 12 
   – + –  1096 12 
   –  – + 1096 12 
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AvPath AvGirth AvSlope CCover Factor1 Factor2 Factor3 AIC ∆AIC 

–  – – +*  +* 1096 12 
–  –  +* – + 1096 12 
–   – + – + 1096 12 
  – – + – + 1097 13 

–  –   –  1097 13 
–   –  –  1097 13 
–   –   + 1097 13 
  – –  –  1097 13 
  – –   + 1097 13 

–  –  + –  1097 13 
–   – + –  1097 13 
–   –  – + 1097 13 
–  –     1098 14 
–   –    1098 14 
  – –    1098 14 

–  –  +   1098 14 
–  –    + 1098 14 
–   – +   1098 14 
  – – +   1098 14 

–  –   – + 1098 14 
  – – + –  1098 14 
  – –  – + 1098 14 

–  – – + – + 1098 14 
–  – –  –  1099 15 
–  – –   + 1099 15 
–  – – + –  1099 15 
–  – –  – + 1099 15 
–  – –    1100 16 
–  – – +   1100 16 
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3. Flame-breasted Fruit-dove Ptilinopus marchei 

AvAlt AvPath Factor 3 AveSlope Factor 1 AIC ∆AIC 

+***   –  235.8 0.0 
+*** –   – 236.2 0.4 
+***   – – 236.5 0.7 
+*** –  –  236.8 1.0 
+*** –  – – 237.5 1.7 
+***  – –  237.8 2.0 
+*** – –  – 238.0 2.2 
+***  – – – 238.3 2.5 
+*** – – –  238.8 3.0 
+*** – – – – 239.3 3.5 
+*** –    244.9 9.1 
+***    – 245.6 9.8 
+***     246.3 10.5 
+*** – +   246.8 11.0 
+***  –  – 247.6 11.8 
+***  +   248.2 12.4 

 – +   279.3 43.5 
 –    279.7 43.9 
  +   279.8 44.0 
 –   – 280.0 44.2 
  + –  280.0 44.2 
 – + –  280.3 44.5 
   –  280.5 44.7 
 –  –  280.5 44.7 
 – +  – 280.5 44.7 
    – 280.6 44.8 
   – – 280.6 44.8 
  +  – 280.8 45.0 
 –  – – 280.8 45.0 
  + – – 281.1 45.3 
 – + – – 281.5 45.7 
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4. Cream-bellied Fruit-dove Ptilinopus merrilli 

AvAlt AvGirth Factor 1 Factor 3 AveSlope AIC ∆AIC 

+** +**    499.2 0 
+** +** +   499.8 0.6 
+** +**    499.9 0.7 
+** +* –   500.2 1.0 
+** +* +  – 500.8 1.6 
+** +*  – – 500.8 1.6 
+** +** + –  501.2 2.0 
+** +* + – – 502.1 2.9 
+**     504.0 4.8 

 +**    504.0 4.8 
 +** +   504.5 5.3 

+**  +   504.6 5.4 
+**    – 504.6 5.4 
+**   –  504.7 5.5 

 +**  –  505.0 5.8 
+**   – – 505.1 5.9 

 +**   – 505.2 6.0 
+**  +  – 505.2 6.0 

 +** +  – 505.6 6.4 
+**  + –  506.0 6.8 

 +** + –  506.0 6.8 
 +** –  – 506.0 6.8 

+**  + – – 506.5 7.3 
 +** + – – 507.1 7.9 
  +   510.2 11.0 
   –  510.6 11.4 
    – 510.7 11.5 
  +  – 511.0 11.8 
   – – 511.4 12.2 
  + –  511.7 12.5 
  + – – 512.5 13.3 
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5. Yellow-breasted Fruit-dove Ptilinopus occipitalis 

Factor 2 AvGirth AvPath Factor 1 Factor 3 AIC ∆AIC 

+**     742.4 0 
+** +    742.6 0.2 
+**  +   743.0 0.6 
+** + +   743.1 0.7 
+*  + +  743.3 0.9 
+**   +  743.4 1.0 
+* + + +  743.4 1.0 
+** +  +  743.5 1.1 
+**    + 743.7 1.3 
+** +   + 743.7 1.3 
+** + +  + 744.2 1.8 
+**  +  + 744.3 1.9 
+* + + + + 744.8 2.4 
+**   + + 744.9 2.5 
+** +  + + 744.9 2.5 
+*  + + + 744.9 2.5 

 +    747.7 5.3 
  +   747.8 5.4 
  + +  747.8 5.4 
 + + +  747.9 5.5 
 + +   748.0 5.6 
   +  748.3 5.9 
 +  +  748.5 6.1 
    + 748.6 6.2 
 +   + 748.7 6.3 
  +  + 749.0 6.6 
 + +  + 749.0 6.6 
  + + + 749.4 7.0 
 + + + + 749.4 7.0 
   + + 749.7 7.3 
 +  + + 749.8 7.4 
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6. Black-chinned Fruit-dove Ptilinopus leclancheri 

AveAlt AvGirth Factor 1 AvSlope Factor 2 AIC ∆AIC 

–** +** +*   458.1 0.0 
–** +** +* –  458.2 0.1 
–** +** +*  – 459.4 1.3 
–** +** +* – – 459.5 1.4 
–** +**    461.5 3.4 
–** +**  –  461.6 3.5 
–** +**   – 462.0 3.9 
–** +**  – – 462.0 3.9 
–** +*  –  463.2 5.1 
–**  +* – – 464.3 6.2 
–**   –  466.9 8.8 
–**     467.0 8.9 

 +* +* –  467.0 8.9 
 +* +*   467.1 9.0 

–**   – – 467.2 9.1 
+*  +* – – 467.8 9.7 
+*  +*  – 467.9 9.8 

 +*  – – 469.8 11.7 
 +*  –  469.9 11.8 
 +*   – 470.0 11.9 
 +*    470.1 12.0 
  +* –  470.5 12.4 
  +*   470.9 12.8 
  +* – – 471.1 13.0 
  +*  – 471.6 13.5 
   – – 473.4 15.3 
   –  473.8 15.7 
    – 473.9 15.8 
–    – 545.6 87.5 
–  +  – 547.1 89.0 
–  +   547.3 89.2 
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7. Green Imperial-pigeon Ducula aenea 

AvGirth AvAlt CCover AvPath AvSlope AIC ∆AIC 

+ –   – 216.3 0 
+    – 216.3 0 
+  +  – 216.7 0.4 
+ – +  – 216.8 0.5 
+   – – 217.1 0.8 
+ –  – – 217.2 0.9 
    – 217.5 1.2 
 –   – 217.9 1.6 
  +  – 218 1.7 

+  + – – 218 1.7 
+ –    218.1 1.8 
+     218.2 1.9 
+ – + – – 218.2 1.9 
   – – 218.3 2 
 – +  – 218.5 2.2 
 –  – – 218.9 2.6 

+  +   218.9 2.6 
+ – +   218.9 2.6 
+   –  219 2.7 
+ –  –  219.1 2.8 
  + – – 219.4 3.1 
 –    219.8 3.5 
 – + – – 220 3.7 

+  + –  220.2 3.9 
  +   220.2 3.9 

+ – + –  220.3 4 
   –  220.4 4.1 
 – +   220.6 4.3 
 –  –  220.9 4.6 
  + –  221.7 5.4 
 – + –  222.1 5.8 
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8. Philippine Cuckoo-dove Macropygia tenuirostris 

AvAlt AvPath AvGirth AvSlope Factor 3 AIC ∆AIC 

+*** – + –  577.8 0 
+***  + –  578 0.2 
+*** –  –  578.3 0.5 
+***     578.4 0.6 
+***   –  578.6 0.8 
+*** – +  + 578.9 1.1 
+*** – + – + 579.3 1.5 
+***  +* – + 579.5 1.7 
+***    + 580 2.2 
+*** –  – + 580.5 2.7 

 – +   586.4 8.6 
 – +  + 587.4 9.6 
  +*   587.7 9.9 
 – + –  587.7 9.9 
 –    588 10.2 
 – +* – + 588.6 10.8 
  +* –  588.7 10.9 
  +*  + 588.8 11 
 –   + 589.2 11.4 
 –  –  589.4 11.6 
  +* – + 589.9 12.1 
   –  590.7 12.9 
    + 590.9 13.1 
 –  – + 591 13.2 
   – + 592.6 14.8 

+***   – *** – 696 118.2 
+*** – ** +*   699.1 121.3 
+*** – **    701.5 123.7 
+*** – **   – 703.5 125.7 
+***  +**   706.9 129.1 
+***  +**  – 708.9 131.1 
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10. Common Emerald Dove Chalcophaps indica 

Factor 2 AvAlt AvPath CCover Factor 1 AIC ∆AIC 

 –    640.7 0.0 
 –   – 641.0 0.3 
– –    641.3 0.6 
–   +  641.4 0.7 
 – –   641.5 0.8 
    – 641.6 0.9 
– –   – 641.7 1.0 
 – –  – 641.9 1.2 
–     642.1 1.4 
–    – 642.2 1.5 
– – –   642.2 1.5 
– –  +  642.2 1.5 
–   + – 642.2 1.5 
  –   642.4 1.7 
   +  642.4 1.7 
  –  – 642.5 1.8 
   + – 642.8 2.1 
 – – +  642.8 2.1 
– – –  – 642.8 2.1 
–  –   643.0 2.3 
–   +  643.0 2.3 
– –  + – 643.0 2.3 
–  –  – 643.3 2.6 
 – – + – 643.5 2.8 
–   + – 643.6 2.9 
– – – +  643.6 2.9 
  – +  643.7 3.0 
  – + – 644.2 3.5 
– – – + – 644.4 3.7 
–  – +  644.5 3.8 
– –  + – 645.1 4.4 
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11. Luzon Bleeding-heart Gallicolumba luzonica 

AvGirth Factor 1 Factor 3 AvPath CCover AIC ∆AIC 

+ +* – *   582.8 0.0 
+ +* – * –  584.3 1.5 
 +* – *   584.5 1.7 

+ + – *  + 584.6 1.8 
+* +    585.7 2.9 
+*  –  + 585.8 3.0 

 +* – * –  585.9 3.1 
 +* – *  + 586.1 3.3 

+*  –   586.2 3.4 
+ + – * – + 586.2 3.4 
+*  – –  586.5 3.7 
+*  – – + 587.1 4.3 
+* +  –  587.2 4.4 
+*     587.5 4.7 
+* +   + 587.6 4.8 

 + – * – + 587.6 4.8 
  –  + 587.6 4.8 
 +*    587.9 5.1 

+*    + 587.9 5.1 
+*   –  588.1 5.3 

  – –  588.6 5.8 
  –   588.8 6.0 
  – – + 588.8 6.0 
 +  –  589.2 6.4 

+* +  – + 589.2 6.4 
+*   – + 589.3 6.5 

 +   + 589.6 6.8 
    + 590.2 7.4 
   –  590.5 7.7 
 +  – + 591.1 8.3 
   – + 591.3 8.5 
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12. Guaiabero Bolbopsittacus lunulatus 

Factor 1 Factor 3 AvGirth CCover Factor 2 AIC ∆AIC 

+*    – * 1022 0 
+* +   – * 1024 2 
+*  +  – * 1024 2 
+*   + – * 1024 2 
+* + +  – * 1025 3 

    – * 1026 4 
+* +  + – * 1026 4 
+*  + + – * 1026 4 
+*     1027 5 

   + – * 1027 5 
+* + + + – * 1027 5 
+* +    1028 6 
+*  +   1028 6 

 +   – * 1028 6 
  +  – * 1028 6 
 +  + – * 1028 6 
  + + – * 1028 6 

+   +  1029 7 
+* + +   1029 7 

 + +  – * 1029 7 
 + + + – * 1029 7 
   +  1030 8 

+ +  +  1030 8 
+*  + +  1030 8 

 +    1031 9 
  +   1031 9 

+ + + +  1031 9 
 + +   1032 10 
 +  +  1032 10 
  + +  1032 10 
 + + +  1033 11 
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13. Blue-naped Parrot Tanygnathus lucionensis 

Factor 1 Factor 3 AvGirth AvSlope Factor 2 AIC ∆AIC 

    – 82.37 0.00 
 –   – 82.55 0.18 

– –   – 83.38 1.01 
–    – 83.60 1.23 
  +  – 83.70 1.33 
 – +  – 83.80 1.43 
   – – 83.97 1.60 

– – +  – 84.26 1.89 
 –    84.38 2.01 
 –  – – 84.40 2.03 

–  +  – 84.70 2.33 
–   – – 85.12 2.75 
– –  – – 85.15 2.78 
  + – – 85.42 3.05 

–     85.50 3.13 
  +   85.54 3.17 

– –    85.68 3.31 
   –  85.70 3.33 
 – + – – 85.71 3.34 
 – +   85.89 3.52 

– – + – – 86.07 3.70 
 –  –  86.28 3.91 

–  + – – 86.30 3.93 
–  +   86.95 4.58 
– – +   87.02 4.65 
–   –  87.18 4.81 
  + –  87.33 4.96 

– –  –  87.55 5.18 
 – + –  87.83 5.46 

–  + –  88.70 6.33 
– – + –  88.93 6.56 
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14. Green Racquet-tail Prioniturus luconensis 

Factor 1 Factor 2 AvAlt AvSlope CCover AIC ∆AIC 

  – *   114.0 0.0 
+  – *   114.7 0.7 
+  – *  – 114.7 0.7 
+ – – *  – 115.2 1.2 
 – – *   115.4 1.4 
  – * +  115.7 1.7 
  – *  – 115.7 1.7 

+ – – *   115.9 1.9 
+  – * +  116.3 2.3 
+  – * + – 116.3 2.3 
+ – – * + – 116.9 2.9 
 – – *  – 117.0 3.0 
 – – * +  117.2 3.2 
  – * + – 117.4 3.4 

+ – – * +  117.7 3.7 
 – – * + – 118.8 4.8 

+     120.6 6.6 
 –    120.8 6.8 

+    – 121.0 7.0 
+ –   – 121.0 7.0 
   +  121.1 7.1 
    – 121.2 7.2 

+ –    121.6 7.6 
+   +  122.1 8.1 
 –   – 122.2 8.2 

+   + – 122.3 8.3 
 –  +  122.5 8.5 

+ –  + – 122.5 8.5 
   + – 122.7 8.7 

+ –  +  123.3 9.3 
 –  + – 123.9 9.9 
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15. Blue-crowned Racquet-tail Prioniturus discurus 

Factor 1 Factor 2 AvAlt AvPath CCover AIC ∆AIC 

–  – +  57.26 0.00 
  – +*  57.34 0.08 
– – – +  57.68 0.42 
 – – +  57.85 0.59 
–  – + + 57.98 0.72 
– – – + + 58.57 1.31 
– – –   58.58 1.32 
–  –   58.65 1.39 
  – + + 59.34 2.08 
  –   59.76 2.5 
 – – + – 59.84 2.58 
   +  60.12 2.86 
 –  +  60.17 2.91 
 – –   60.20 2.94 
–   +  60.35 3.09 
–   + + 60.36 3.10 
– –    60.48 3.22 
– –  +  60.51 3.25 
– – –  + 60.54 3.28 
–  –  + 60.60 3.34 
–     60.68 3.42 
– –  + + 60.72 3.46 
  –  – 60.88 3.62 
 – –  – 60.97 3.71 
 –    61.10 3.84 
   + + 62.05 4.79 
 –  + + 62.14 4.88 
– –   + 62.20 4.94 
–    + 62.37 5.11 
 –   – 62.61 5.35 
    – 62.86 5.60 
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16. Luzon Racquet-tail Prioniturus montanus 

AvPath AvAlt Factor 1 Factor 2 Factor 3 AIC ∆AIC 

– +*** –  – 94.79 0 
– +***   – 95.92 1.13 
– +*** – + – 96.77 1.98 
– +***  + – 97.47 2.68 
– +***    97.81 3.02 
 +*** –  – 97.89 3.1 
– +***  +  98.28 3.49 
– +*** –   98.32 3.53 
 +***   – 99.06 4.27 
– +*** – +  99.21 4.42 
 +*** + + – 99.65 4.86 
 +***  + – 100.10 5.31 
 +***  +  100.20 5.41 
 +*** +   101.10 6.31 
 +*** + +  101.30 6.51 
 +***    101.50 6.71 
–  +  – 110.80 16.01 
–     111.20 16.41 
–  +   111.20 16.41 
–    – 112.00 17.21 
–   +  112.10 17.31 
–  + +  112.50 17.71 
–  + + – 112.70 17.91 
–   + – 113.40 18.61 
  +  – 115.90 21.11 
  +   116.00 21.21 
   –  116.30 21.51 
  + –  116.90 22.11 
    – 117.00 22.21 
  + – – 117.50 22.71 
   – – 117.80 23.01 
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17. Colasisi Loriculus philippensis 

Factor 1 AvSlope AvGirth Factor 2 Factor 3 AIC ∆AIC 

+ – **    819.3 0 
+ – **   – 819.9 0.6 
 – **    820.4 1.1 

+ – **  +  821.1 1.8 
+ – ** +   821.2 1.9 
 – **   – 821.6 2.3 

+ – ** +  – 821.9 2.6 
+ – **  + – 821.9 2.6 
 – **  +  822.2 2.9 
 – ** +   822.4 3.1 

+ – ** + +  823.1 3.8 
 – **  + – 823.5 4.2 
 – ** +  – 823.6 4.3 

+ – ** + + – 823.9 4.6 
 – ** + +  824.2 4.9 

+     824.7 5.4 
+*    – 825.3 6 

 – ** + + – 825.5 6.2 
+   +  826.5 7.2 
+  +   826.6 7.3 
+*  +  – 827.3 8 
+*   + – 827.3 8 

    – ** 827.4 8.1 
   +  828 8.7 
  +   828.1 8.8 

+  + +  828.5 9.2 
  +  – 829.3 10 
   + – 829.3 10 

+*  + + – 829.3 10 
  + +  829.9 10.6 
  + + – 831.3 12 
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18. Luzon Tarictic Penelopides manillae  

AvSlope AvPath Factor 2 Factor 3 AvAlt AIC ∆AIC 

– * –  + – *** 880.7 0 
– *   + – *** 881.6 0.9 
– * – + + – *** 881.8 1.1 
– * –   – *** 882 1.3 

 –  + – *** 882.3 1.6 
– *    – *** 882.8 2.1 
– *  + + – *** 882.9 2.2 
– * – +  – *** 883.1 2.4 

 –   – *** 883.4 2.7 
   + – *** 883.5 2.8 
 – + + – *** 883.5 2.8 

– *  +  – *** 884 3.3 
    – *** 884.5 3.8 
 – +  – *** 884.6 3.9 
  + + – *** 884.9 4.2 
  +  – *** 885.8 5.1 
    + 891.1 10.4 
–    + 891.2 10.5 
– –   + 891.6 10.9 
–  + +  892 11.3 
 –   + 892.2 11.5 
–     892.3 11.6 
– – + +  892.3 11.6 
– –    892.7 12 
  + +  892.8 12.1 
 – + +  892.9 12.2 
–  +   893.1 12.4 
 –    893.2 12.5 
– – +   893.3 12.6 
  +   893.7 13 
 – +   893.9 13.2 
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19. Rufous Hornbill Buceros hydrocorax 

Factor 1 Factor 2 AvAlt AvGirth Factor 3 AIC ∆AIC 

    – 962.5 0 
   + – 963 0.5 
 –   – 963.1 0.6 
  +  – 963.2 0.7 
–    – 963.6 1.1 
 –  + – 963.7 1.2 
   +  964 1.5 
–   + – 964 1.5 
 – +  – 964 1.5 
  + + – 964 1.5 
–     964.1 1.6 
 –    964.3 1.8 
–   +  964.3 1.8 
– –   – 964.3 1.8 
–  +  – 964.4 1.9 
  +   964.6 2.1 
 –  +  964.7 2.2 
– –  + – 964.7 2.2 
– –    964.8 2.3 
 – + + – 964.8 2.3 
– + +  – 965 2.5 
–  +   965.1 2.6 
– –  +  965.1 2.6 
  + +  965.2 2.7 
– – +  – 965.2 2.7 
 – +   965.4 2.9 
–  + +  965.6 3.1 
– – +   965.9 3.4 
– – + + – 965.9 3.4 
 – + +  966.1 3.6 
– – + +  966.4 3.9 
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19. Species richness 

Factor 2 AvGirth AvSlope Factor 1 Factor 3 AIC ∆AIC 

+ +*** –**   1256 0 
 +*** –**   1257 1 

+ +*** –** +  1257 1 
 +*** –** +  1258 2 

+ +*** –**  + 1258 2 
 +*** –**  + 1259 3 
 +*** –** + + 1259 3 

+ +*** –** + + 1259 3 
+ +***    1263 7 
 +***    1264 8 

+ +***  +  1264 8 
 +***  +  1265 9 

+ +***   + 1265 9 
 +***   + 1266 10 
 +***  + + 1266 10 

+ +***  + + 1266 10 
  –**   1272 16 

+  –**   1272 16 
  –** +  1272 16 
  –**  + 1273 17 

+  –** +  1273 17 
+  –**  + 1274 18 
  –** + + 1274 18 

+  –** + + 1274 18 
+     1280 24 
   +  1281 25 

+   +  1281 25 
    + 1282 26 

+    + 1282 26 
   + + 1283 27 

+   + + 1283 27 
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Appendix 5.1 Frugivore encounters and numbers encountered (in parentheses) per path type during 

the second field season in Bataan Natural Park from December 2011 to March 2012. 

Species 

Bird encounters (individuals encountered) per path type 

Random paths 

Effort = 102.8 km 

Hunter/farmer trails 

Effort = 147.2 km 

Access roads 

Effort = 90 km 

Treron pompadora 21 (25) 18 (45) 10 (25) 

Phapitreron leucotis 481 (496) 437 (465) 312 (330) 

Phapitreron amethystinus 187 (189) 136 (140) 56 (59) 

Ptilinopus merrilli 1 (1) 0 1 (1) 

Ptilinopus occipitalis 147 (163) 134 (157) 24 (25) 

Ptilinopus leclancheri 9 (9) 12 (23) 10 (11) 

Ducula carola 0 0 1 (1) 

Ducula aenea 36 (93) 35 (60) 16 (56) 

Macropygia tenuirostris 41 (46) 35 (37) 7 (9) 

Chalcophaps indica 31 (33) 59 (64) 30 (30) 

Gallicolumba luzonica 2 (2) 12 (13) 0 

Bolbopsittacus lunulatus 238 (310) 361 (453) 260 (316) 

Tanygnathus lucionensis 6 (9) 2 (3) 3 (3) 

Prioniturus luconensis 21 (44) 26 (39) 6 (8) 

Loriculus philippensis 112 (143) 124 (150) 50 (77) 

Penelopides manillae 90 (135) 106 (186) 66 (88) 

Buceros hydrocorax 12 (31) 11 (39) 5 (7) 

 


