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Abstract 
 

Aviation is a unique anthropogenic emission source in that it is the only  

man-made source of emissions injected directly to the remote and uncontaminated 

regions of the atmosphere. It constitutes a relatively small fraction of total 

anthropogenic climate impact. However, with the potential increase in growth of air 

traffic and potential reductions of emissions in other sector, the importance of aircraft 

contribution to anthropogenic climate change may increase in the future. 

 

Aviation NOx emissions result in a short-term increase in tropospheric ozone 

(warming) and the long-term destruction of a small amount of ambient methane 

(cooling), positive and negative radiative forcing responses. In addition, the methane 

reduction results in a long-term reduction in tropospheric ozone (cooling) and a long-

term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of 

methane, both negative radiative forcing effects. The aircraft net NOx response (the 

sum of all these components) is thought to result in a positive (warming) radiative 

forcing under constant emissions assumptions. The quantification of aircraft NOx 

effects requires spatio-temporal analyses of its dependencies, which is challenging and 

result in significant variations in aircraft NOx ‘impact’. 

 

An investigation of a series of different factors influencing the effect of aircraft NOx 

emission on climate was performed using the global chemistry transport model 

(MOZART-3) in combination with a radiative transfer model (Edwards–Slingo), and 

rationale of the existing uncertainties associated with aircraft NOx estimates was 

conducted. A wide spectrum in the magnitude and balance of chemical responses from 

aircraft NOx perturbations, affecting Global Warming Potential estimates, was 

observed. The derived aircraft net NOx radiative forcing was found to be as low as -0.4 

and as high as 19.9 mWm
-2

/Tg(N)yr
-1

. The balance between aircraft ozone and methane 

changes proved to be experiment-specific, and it was observed to depend on 

background conditions due to surface emissions or region of emission, aircraft NOx 

emission inventory, or size of aircraft NOx emission rate. Thus, it was shown that it is 

impossible to define a unique GWP for aviation NOx. Moreover, an aviation NOx GWP 

increases with reduction of aircraft NOx emissions and decreases with increased 

aircraft NOx emissions. 
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Chapter 1  

 

Introduction 

 

 

1.1 Climate change issue – science and policy 

 

Climate refers to an average condition of the atmosphere (weather) over 30 years, 

which is a traditional mean time for defining climate (Seinfeld and Pandis, 2006), for  

a certain region. Climate change is understood as both changes in its variables  

(the fundamental climate variable is the global annual mean surface temperature) and 

changes in the variance of these variables. Natural variations have existed for 

millennia: during the last 160 000 years, prior the preindustrial era, CO2 concentrations 

varied from 180 ppmv to 300 ppmv, while CH4 was as low as 0.3 ppmv and as high as 

0.7 ppmv (Harvey, 2000). Human activity in the past 200 years has enhanced the CO2 

and CH4 concentrations: in 2010 the global annual mean of CH4 was 1.8 ppmv 

(Dlugokencky et al., 2011) and CO2 reached 400 ppmv level in 2013 (Jones, 2013). 

The rate of human induced changes significantly exceeds the rate of change from 

natural variations (Seinfeld and Pandis, 2006).      

 

The United Nations Framework Convention on Climate Change (UNFCCC) defines 

climate change as “a change of climate that is attributed directly or indirectly to human 

activity that alters the composition of the global atmosphere and that is in addition to 

natural climate variability observed over comparable time periods” (Article 1, 1992). 

Emissions of greenhouse gases affect atmospheric concentrations; altered atmospheric 
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concentrations change the heat balance, and perturbed heat balance modifies the 

climate and sea level.   

 

Climate response is a result of climate forcing: the former is often represented by 

global mean surface temperature change; the latter is a change imposed on the Earth’s 

energy budget and expressed in watts per square meter. The relation between a global 

mean surface temperature change and a global mean radiative forcing was assumed  

to be approximately linear (e.g., Hansen et al., 1997): 

 

ΔTs = λRF,                                                  (1.1) 

 

 where λ is the climate sensitivity parameter. Thus, the radiative forcing became a 

convenient tool for the first-order projection of climate impact.                 

 

The Intergovernmental Panel on Climate Change (IPCC) stated in its Fourth 

Assessment Report (AR4) that “warming of the climate system is unequivocal, as is 

now evident from observations of increases in global average air and ocean 

temperatures, widespread melting of snow and ice and rising global average sea level” 

and that “most of the observed increase in global average temperatures since the  

mid-20th century is very likely (> 90%) due to the observed increase in anthropogenic 

greenhouse concentrations” (Solomon et al., 2007).   

 

To tackle the climate change issue, in 1992 most countries (195) signed  

an international agreement – the United Nations Framework Convention on Climate 

Change (UNFCCC). The “stabilization of greenhouse gas concentrations in the 

atmosphere at a level that would prevent dangerous anthropogenic interference with the 

climate system” was the main aim of the Rio Convention (Article 2, 1992). In order to 

“strengthen the global response to climate change”, the Kyoto Protocol was adopted in 

1997 (UNFCCC, 1998) and came into force in 2005. In the first commitment period, 

2008–2012, the industrialized countries agreed to reduce their greenhouse gas 

emissions by 5.2% compared with the year 1990. During the second period,  

2013–2020, the reduction of greenhouse gas emissions was committed to be at least 

18%, compared with 1990. The composition of countries in the above commitment 

periods differs. The greenhouse gases included in the first commitment period of the 

Kyoto Protocol are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulphur 
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hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs). In the 

second commitment period nitrogen trifluoride (NF3) was added to the ‘basket’ of six 

greenhouse gases (Annex A, Doha Amendment, 2012). These gases are converted into 

a common scale called ‘CO2 equivalence’
1
 in order to determine the target. 

 

The Kyoto Protocol excludes the short-lived species and their precursors (such as CO, 

NMVOC, NOx, aerosols, SO2) even though they contribute significantly to climate 

forcings. The transport sector is in a peculiar position, as a significant fraction of its 

emissions constitutes non-CO2 substances. In 2000, the largest contribution of nitrogen 

oxides (NOx) emissions belonged to global transportation and constituted 37% of total 

anthropogenic NOx emissions (Fuglestvedt et al., 2010) and 31% of total 

anthropogenic O3 forcing is contributed by transport sector (Fuglestvedt et al., 2008). 

 

1.2 Aviation climate impact 

 

The end of 1990s brought two notable evaluations. In 1998, the European assessment 

on the impact of aircraft emissions on atmosphere (Brasseur et al., 1998) was released, 

the following year, the Intergovernmental Panel on Climate Change (IPCC) published 

a Special Report on ‘Aviation and the Global Atmosphere’ (Penner et al., 1999). The 

latter one highlighted that aviation represents a small but potentially significant impact 

on climate forcing and that the uncertainty in an overall magnitude of those forcing 

arises mostly from non-CO2 effects. Despite the length of time and improvements in 

understanding various atmospheric processes and interactions due to aircraft emissions, 

today this statement seems to be still valid. The level of scientific understanding 

(LOSU
2
) is ‘high’ only for aircraft CO2. LOSU of aircraft NOx impact is assigned to be 

‘medium-low’, followed by ‘low’ for water vapour, soot and sulphate aerosols, linear 

contrails and ‘very low’ for aircraft induced cirrus cloudiness (Lee et al., 2009). 

 

Aviation, as a part of anthropogenic activity, emerges as a unique sector since it is the 

only man-made source injected directly to the ‘clean’ and remote regions of the 

atmosphere, the upper troposphere and lower stratosphere (UTLS). The effectiveness 

                                                        
1
 CO2-equ = Ex * Mx, where Ex is emissions of gas x and Mx is adopted normalized metric; under existing 

scheme Mx = GWP(100).  
2 LOSU – a subjective measure in assessing uncertainties applied in IPCC analysis; the four-grade 

system updated by IPCC AR4 consist of ‘high’, ‘medium’, ‘medium-low’, ‘low’ measures. 
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of some of the emitted substances at these altitudes (8–12 km) is much greater 

compared with those emissions near Earth’s surface in terms of, e.g., O3 production. 

An aircraft emissions alter the Earth’s radiative balance and therefore climate, through 

chemical and aerosol effects (Figure 1.1). These effects arise from three types of 

processes: direct emissions of radiatively active substances (e.g., CO2, H2O); emissions 

of substances that trigger the production or destruction of radiatively active substances 

(e.g., NOx); emissions of substances that initiate the production of aerosol particles  

or modify the properties of natural clouds (e.g., contrails) (Penner et al., 1999). 

 

The number of aircraft emissions and effects, applicable for climate forcings, has been 

identified:  

- emissions of CO2 (positive climate forcing), 

- emissions of NOx (produce tropospheric O3 (positive climate forcing) and 

reduce the ambient CH4 (negative climate forcing)),  

- emissions of H2O (positive climate forcing), 

- formation of persistent linear contrails (positive climate forcing), 

- aviation induced cirrus clouds (positive climate forcing), 

- emissions of sulphate particles (negative climate forcing), 

- emissions of soot particles (positive climate forcing). 

 

 

Figure 1.1: Scheme presenting the main emissions from aviation and the atmospheric processes 

that influence the radiative forcing, which affect climate, which, in turn, lead to social damage 

(Figure from Lee et al. (2009) based on Prather et al. (1999) and Fuglestvedt et al. (2003)). 
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The total aircraft forcings were estimated to be 48 mW m
-2

 for air traffic in 2000 

(Sausen et al., 2005) and 55 mW m
-2

 (  32 mW m
-2

) for air traffic in 2005  

(Lee et al., 2009). Aviation represents a relatively small fraction of total anthropogenic 

RF, between 3.5% and 4.9% in the year 2005 (Lee et al., 2009). However, taking into 

account the average rate of air passenger traffic growth in the recent years, 5.3% yr
-1

 

between 2000 and 2007 (Airbus, 2007) and potential reductions of emissions in other 

sector, the importance of aircraft contribution to anthropogenic climate change may 

increase in the future and it might reach 4.0–4.7% in 2050, as estimated by  

Lee et al. (2009).   

 

Since 2012, the CO2 emissions from civil aviation are included in the EU Emissions 

Trading Scheme (EU ETS). All airlines received allowances to cover their emissions 

for flights to and from European airports. It is currently not certain, how the non-CO2 

effects might be captured, in order to offset the growth of aircraft emissions  

(Forster et al., 2006).  

 

Aviation activity alters atmospheric composition that consequently affects planetary 

energy balance and hence contributes to anthropogenic climate change. Air traffic 

consists of various components in its emissions and effects, where NOx emissions, 

despite being carefully investigated for the last decades still remains among 

scientifically active areas. Aircraft NOx emissions initiate a series of complex chemical 

interactions resulting in positive and negative forcing effects, which quantification 

requires temporal and spatial perception of its dependencies. It is challenging, 

especially when evaluations further down the steps in the cause–effect
3

 chain  

are undertaken, as under existing default metric and framework of emission trading 

policy it is difficult to include these kinds of peculiarities. Is there at all a physical and 

robust possibility in applying the aircraft NOx effect into the ‘time-integrated forcing’ 

concept? 

 

In order to better understand the ‘aircraft NOx phenomenon’ and potentially unravel the 

uncertainties associated with aviation NOx estimates this study was established. 

 

                                                        
3
 ‘Cause–effect’ chain is the schematic path from emission to climate change and impact as presented by 

Fuglestvedt et al. (2003) (see also Figure 1.1). The further steps down, the policy relevance increases, as 

well as uncertainty of estimations.   
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1.3 Research questions 

 

The main research questions addressed within this thesis are: 

 

 Do the surface emissions of ozone precursors influence the effect of aircraft 

NOx emissions? 

 

 Can aircraft inventories explain the variation in estimates of aircraft NOx 

impact on radiative forcing? 

 

 Why is there a significant discrepancy in the reported values of an aircraft NOx 

global warming potential? 

 

 What are the variations of the effect of regional aircraft NOx emissions? 

 

 

 

1.4 Thesis structure 

 

The details regarding tropospheric chemistry and aircraft NOx emissions impacts on 

atmospheric composition, along with presentation of climate metrics employed in this 

study are given in Chapter 2. The description of models and methodology  

are introduced in Chapter 3 and the validation of applied methods given in Chapter 4. 

Furthermore, investigations on how different factors influence the effect of aircraft 

NOx emissions on climate include: surface emissions of ozone precursors (Chapter 5), 

aircraft inventories (Chapter 6), size of aircraft NOx emission (Chapter 7, 8 and 9), 

regions (Chapters 8 and 9). The summary of the main results is presented in  

Chapter 10, followed by conclusions and recommendations for future work in  

Chapter 11.    
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Chapter 2  

 

Chemical cycles, effects of aircraft nitrogen 

oxides emissions on chemical system and 

measures to capture their impact on climate 

 

 

This chapter introduces the details of the relevant tropospheric and stratospheric 

chemistry, showing the scheme which leads to formation and destruction of ozone and 

how aircraft nitrogen oxides emissions alter the chemical composition of the 

atmosphere. Furthermore, an overview of climate metrics used within this study is 

given.     

 

 

2.1 Relevant atmospheric chemistry  

 

2.1.1 Production of hydroxyl radical 

 

A central role in tropospheric chemistry is played by the hydroxyl (OH) radical, which 

is the dominant (OH is unreactive toward O2) oxidant in the troposphere. Photolysis of 

O3, at wavelengths shorter than 319 nm, leads to production of excited O(
1
D) oxygen 

atoms, which either react with an inert molecule, most often it is N2 or O2, to reform 

O3, or collides with water molecule to form two OH radicals: 
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O3 + hλ  (λ< 319 nm) → O(
1
D) + O2                                                                            (2.1)                       

O(
1
D) + M → O(

3
P) + M                                                                    (2.2)           

O(
3
P) + O2 + M → O3 + M                                                                 (2.3)                                  

O(
1
D) + H2O → OH + OH                                                                 (2.4)   

 

The efficiency of O3 photolysis depends on intensity of solar flux and O(
1
D) to OH 

conversion depends on concentrations of water vapour, which, in turn, is determined by 

temperature and relative humidity.    

 

2.1.2 Chemical cycles 

 

Hydroxyl radical reacts rapidly with hydrocarbons, its reaction with carbon monoxide 

(CO) and methane (CH4) constitute the main removal path of these two trace gases. 

The oxidation of CO and CH4 generates the peroxy radicals, HO2 and CH3O2, which 

react with NO to produce NO2 :  

 

CO + OH → CO2 + H                                                                        (2.5) 

H + O2 + M → HO2 + M                                                                   (2.6) 

NO + HO2 → NO2 + OH                                                                   (2.7)         

 

CH4 + OH → CH3 + H2O                                                                  (2.8) 

CH3 + O2 + M → CH3O2 + M                                                           (2.9) 

CH3O2 + NO  → CH3O + NO2                                                                                   (2.10) 

CH3O + O2  → CH2O + HO2                                                                                      (2.11) 

NO + HO2 → NO2 + OH                                                                (2.12)      

 

In the presence of sunlight, the photochemical cycle of NO and NO2 persists and the 

formation of O3 occurs. Once generated, O3 reacts with NO to reform NO2: 

 

  NO2 + hλ  (λ< 424 nm) → NO + O(
3
P)                                          (2.13) 

O(
3
P) + O2 + M → O3 + M                                                            (2.14)        

O3 + NO → NO2 + O2                                                                                                     (2.15) 
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Ozone production and destruction depends on various conditions, such as solar 

radiation, temperature, background levels of NOx and HOx, concentrations of CO, CH4, 

H2O. The described above mechanisms are specific for an intermediate NOx levels, 

~50–1000 pptv (Royal Society, 2008), which characterize the net O3 formation.  

 

However, the oxidation of CO and CH4 also initiates reactions that lead to net O3 

removal. At low NOx levels, which correspond to remote regions of the atmosphere, the 

peroxy radicals are removed by forming hydrogen peroxide and methyl hydroperoxide: 

 

HO2 + HO2 → H2O2 + O2                                                                                              (2.16) 

CH3O2 + HO2 → CH3OOH + O2                                                                              (2.17) 

 

This leads to O3 loss, because the cycle was initiated by O3 photolysis. Also an 

additional process occurs:   

 

HO2 + O3 → OH + 2O2                                                                                                   (2.18) 

 

which, at the expense of O3, regenerates OH.   

 

At high NOx levels, which correspond to locations close to pollution sources or the 

lowermost stratosphere, the formation of nitric acid (HNO3) and peroxynitric acid 

(HO2NO2) becomes the major termination reactions: 

 

OH + NO2 + M → HNO3 + M                                                              (2.19) 

HO2 + NO2 + M → HO2NO2 + M                                                        (2.20)                  

 

Under this regime, the addition of NOx decreases the number of free radicals and 

consequently decreases the production rate of O3. However, the elevated 

concentrations of CO or CH4 or additions of non-methane VOC, efficiently compete 

with above reaction and lead to an increase of O3 formation rate.  

 

In the stratosphere, the chlorinated compounds are highly reactive toward O3: 

 

Cl + O3 + M → ClO + O2                                                                        (2.21) 
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The rapid ClOx cycle is characterized by ClO formation and its loss with O and NO.  

If the ClO reacts with O, the catalytic O3 depletion occurs. If ClO reacts with NO: 

 

ClO + NO → Cl + NO2                                                                           (2.22) 

 

the null cycle with respect to O3 destruction takes place, as the rapid O3 reformation 

occurs through reactions 2.13, 2.14. 

 

2.1.3 Effect of aircraft NOx emissions on tropospheric chemistry 

 

Aircraft NOx (NO + NO2) emissions, injected directly to relatively ‘clean’ regions of 

atmosphere, alter the budgets of O3 and CH4, both important greenhouse gases. The 

NOx mixing ratios in the upper troposphere and lower stratosphere (UTLS) are around 

50–200 pptv (Derwent et al., 1999); at these levels of NOx, the net O3 production 

increases almost linearly with an increasing NOx background concentrations  

(Figure 2.1). As result of an injection of aircraft NOx emissions, the catalytic 

production of O3 occurs (reactions 2.12, 2.13, 2.14, 2.15). The UTLS in mid-latitudes 

is the most efficient in O3 production per NOx molecule due to the low NOx 

backgrounds, low HOx concentration and high NO/NO2 ratio (Derwent et al., 1999). 

Ozone lifetime at flight altitudes is of the order of weeks, thus the aircraft O3 

perturbation is distributed heterogeneously, concentrated mainly in the Northern 

Hemisphere, where most of the aircraft NOx emission occur.  

 

 

Figure 2.1: Model calculated OH concentration (solid line) and photochemical net O3 

production rate (dashed line) as a function of NOx background concentrations. The represented 

conditions are for lower troposphere at mid-latitudes during the spring time (Figure from 

Brasseur et al. (1998) based on Ehhalt and Rohrer (1994)). 
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Air traffic also changes the oxidizing capacity of the atmosphere: enhanced NOx and 

O3 changes the HO2/OH ratio, in favour of OH (reaction 2.7). Additionally, the 

increase of O3 might lead to further OH production through O3 photolysis  

(reactions 2.1, 2.4). In turn, modified OH concentrations influence ambient CH4, as the 

reaction of CH4 with OH is the principal loss process for atmospheric CH4. Enhanced 

OH reduces CH4 lifetime and concentration (reaction 2.8). The aircraft perturbation of 

long-lived CH4 (lifetime of the order of decade) is distributed uniformly across the 

globe.  

 

In the stratosphere, NOx is a source of O3 depletion through the catalytic NOx cycle; 

additional NOx emissions result in a net loss of HOx (reaction 2.19, 2.20) followed by a 

decrease of net O3 production. 

 

 

2.2 Metrics for climate impacts 

 

Metrics constitute tools for quantifying and comparing the potential impact of 

emissions of various gases on climate. It places substances with different radiative 

properties and lifetimes on a common scale; thus it enables definition of climate 

targets, trading or comparison of the emissions from different sources and regions.  

A given metric does not define policy, but constitutes a tool, which makes possible the 

implementation of a policy. Different policy goals and frameworks require different 

metric concepts (e.g., Manne and Richels, 2001, Shine et al., 2007).     

 

Two metrics are adopted in this study: radiative forcing (RF) and global warming 

potential (GWP). Despite other concepts existing, the evaluation of the ‘integrated 

forcings’ mode for aircraft NOx emission is needed due to few and disparate estimates 

available in the literature (see Chapter 7.1 for more details). Also, the usage of GWPs 

is consistent with the approach undertaken by the existing emission trading policy, the 

Kyoto Protocol.  

Alternatives to the GWP, including either popular, but conceptually different approach, 

global temperature change potential (GTP), are also presented. However, many of the 

alternative metric concepts utilize, like GWP, the time-integrated dimension; therefore, 

any ‘their issues’ cannot be solved in isolation to ‘GWP issues’.        
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2.2.1 Radiative forcing 

 

There are various sources of energy in the Earth’s atmosphere; however, the Sun is its 

main (99.97%) contributor. The gas species and particles, of which the Earth’s 

atmosphere is composed, cause that about 52% of incoming short-wave solar radiation 

is absorbed, scattered or reflected; the rest reaches the Earth’s surface; which, in turn, 

is either reflected, or absorbed by surface (Figure 2.2). The heated surface radiates the 

outgoing long-wave radiation, which either radiates to higher altitudes through the 

‘atmospheric window’ (8–12 μm), or is absorbed by lower atmosphere. The 93% of the 

absorbed radiation is re-emitted by atmosphere back to the surface. This “net trapping 

of infrared radiation” is the so-called ‘greenhouse effect’ (Harvey, 2000). The major 

greenhouse gases are water vapour (H2O), carbon dioxide (CO2), ozone (O3), methane 

(CH4) and nitrous oxide (N2O). Anthropogenic activities alter the natural composition 

of the atmosphere, by production of greenhouse gases and its precursors, which leads 

to modification of the Earth’s energy budget.  

 

Radiative forcing (RF) is an accepted measure of the strength of the perturbation of 

Earth–atmosphere system caused by natural agents and human activity. The Third 

Assessment Report of the IPCC (Ramaswamy et al., 2001) defines RF as “the change 

in net (down minus up) irradiance (solar plus long-wave; in Wm
-2

) at the tropopause 

after allowing for stratospheric temperatures to readjust to radiative equilibrium, but 

with surface and tropospheric temperatures and state held fixed at the unperturbed 

values”. This is the most common way in deriving the radiative forcings, employed 

also in this study. 

 

Figure 2.2: The Earth’s energy budget (Figure from Trenberth et al., 2009). 
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2.2.2 Global Warming Potential 

 

The formulation of global warming potential (GWP) is based on a concept of  

Ozone Depletion Potential (Wuebbles, 1983) and other GWP-like approaches  

(e.g., Derwent et al., 1990, Fisher et al., 1990, Lashof and Ahuja, 1990). 

 

The GWP method was introduced by the IPCC in 1990 as a “simple approach (…) to 

illustrate the difficulties inherent in the concept” (Houghton et al., 1990). Despite GWP 

was not intended to be a default tool used in policy, it was soon embraced by Kyoto 

Protocol in order to serve the needs of a multi-gas treaty. On the other hand, it is 

questionable to what extent the presence of GWP itself, affected the current framework 

of Kyoto Protocol agreement (Skodvin , 1999, Shine, 2009). 

The GWP is currently employed to translate the emissions of non-CO2 greenhouse 

gases into a CO2-equivalency, allowing consideration of various options (in terms  

of greenhouse gases emissions reduction) and feasibility of multi-component policy. 

     

The GWP is a ratio of the RF from the emission of a gas x relative to that of  

a reference gas (normally it is CO2) for a nominal kg release of both gases, integrated 

over a given time horizon: 

 

                                   ,
AGWP

AGWP

dt(t)cRF

dt(t)cRF

GWP(H)
CO2

x

H

0

CO2CO2

x

H

0

x

x 




                                 (2.23) 

 

where H is the defined time horizon, RFx and RFCO2 are the radiative forcings arising 

from unit increase in atmospheric abundances of the gas x and CO2, respectively,  

cx and cCO2 are the time-dependent decays in the concentrations of pulses of the injected 

gases. GWP is a dimensionless value. GWP is a purely physical metric defined by 

radiative forcing measure. 

 

Since the GWP concept was introduced it became widely accepted and utilized  

(e.g, Derwent et al., 2001, Wild et al., 2001, Berntsen et al., 2005, Derwent et al., 2008, 

Myhre et al., 2011, Fry et al., 2012, Köhler et al., 2012, Skowron et al., 2013).  
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As well as its applicability has been debated at the same time (e.g., Wigley et al., 1998, 

Smith and Wigley, 2000a, b, Fuglestvedt et al., 2000, O’Neill, 2000, Godal and 

Fuglestvedt, 2002, O’Neill, 2003, Shine, 2009, Tanaka et al., 2010).  

  

The voices of criticism, coming from scientists and economists, highlight several 

limitations associated with usage of GWP concept, e.g.:  

 equal weights are given to emissions over all defined time horizon (Michaelis et al., 

1992), 

 it does not account the effects beyond the defined time horizon, 

 it considers constant background conditions over time, whilst for the policy, the 

transient background would be more relevant (Tanaka et al., 2010), 

 emissions of gases with equal GWPs might have different climate impacts  

(e.g., Smith and Wigley, 2000a); the same GWP for a gas with high RF but short 

lifetime and for a gas with low RF but long lifetime will lead to different impact on 

temperature (Shine et al., 2005b), 

 it does not take into account any specific climate target, e.g., 2°C temperature limit 

(Manne and Richels, 2001, Shine et al., 2007, Manning and Reisinger, 2011,  

Smith et al., 2012, Tanaka et al, 2013),  

 as a cost-benefit approach (Tol et al., 2012), it is not very consistent with 

UNFCCC’s cost-effectiveness approach (Tanaka et al., 2010), 

 scientifically unjustified choice of 100 year time horizon (Fuglestvedt et al., 2003, 

Shine, 2009), even though a GWP value significantly depend on a time horizon.      

 

Despite the objections, GWP, due to its transparency and simplicity in application and 

calculation, gained prevalence among the user community; whether it is a sufficient 

reason of applicability belongs to a separate discussion. 

 

The formulation of GWP relies on a global input parameter; while it is adequate for  

a long-lived (well-mixed) species, it becomes problematic for short-lived substances 

(e.g. Berntsen et al., 2005, Shine et al., 2005a, Isaksen et al., 2009). “Unlike the Kyoto 

gases, it is certainly generally not possible to prescribe a single value of the GWP  

for short-lived emissions, which are independent of location and conditions at the time 

of emissions” (Fuglestvedt et al., 2010). The research challenges regarding aircraft 

NOx GWPs are presented in Chapter 7.1. 
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2.2.3 Alternative metric concepts 

 

The most popular alternative metric is Global Temperature Change Potential (GTP) 

proposed by Shine et al. (2005b). It is defined as a global mean surface temperature 

change at a given point in time after a unit emission release, relative to that of CO2. 

Similarly to the GWP, it is a purely physical metric; however, it goes one step further 

in the cause–effect chain, as it accounts for the thermal inertia of the climate system.  

The GTP is an end-point metric, thus the GTP values for short-lived species over  

long-time horizons are lower than the equivalent GWP values (the GWP which through 

its integrated nature retains memory of short-lived effect long after the emission 

occurred). GTP falls under the cost-effectiveness approach (Shine et al., 2007,  

Tol et al., 2012) and is considered by some to be more (than GWP) suitable  

for climate stabilization policy (Tanaka et al., 2013), when a temperature target  

is considered.   

 

There are series of other metrics that attempt to address different aspects  

of shortcomings of the GWP. The combinations of GWP and GTP were proposed: the 

Temperature Proxy Index (TEMP) (Tanaka et al., 2009) and Mean Global Temperature 

change Potential (MGTP) (Gillet and Matthews, 2010) (known also as integrated 

Global Temperature change Potential (iGTP) (Peters et al., 2011) or (IGTP)  

(Azar and Johansson, 2012). These metrics refer to integrated temperature change 

under time dependent emission scenarios. It has been presented that time-dependent 

concepts, where the time horizon follows the “proximity to the policy target”  

(Manne and Richels, 2001, Shine et al., 2007, Tanaka et al, 2009, Berntsen et al., 2010) 

might suit better to a specific climate targets. In order to explore the different aspects 

of regional patterns of responses and its consequences the non-linear damage function 

was applied (Shine et al., 2005a, Lund et al., 2012) or Absolute Regional Temperature 

Potential (ARTP) has been developed (Collins et al., 2013). The GWP and GTP  

for bioenergy (GWPbio, GTPbio) have been proposed by Cherubini et al. (2011, 2012)  

to account for CO2 emissions from biomass for energy combustion. 

 

The perception of economists on metric design is based on different optimization 

scenarios. The cost-benefit approach relies on a ratio of marginal damage from the 

emission of the substance to that damage from an emission of CO2 and is known  
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as Global Damage Potential (GDP) (Kandlikar et al., 1995). The cost-effectiveness 

approach is more complex as it aims to minimize the cost of emission reduction from 

all substances under the process of fulfilment of the optimization scenario; it is known 

as ‘price ratio’ (Manne and Richels, 2001), as well as Global Cost Potential (GCP)  

(Tol et al., 2012).  

 

A ‘single-basket’ approach embedded in the Kyoto Protocol is not necessarily the only 

framework possible and propositions of other perspectives, like a multi-basket 

approach, gas-by-gas approach or regional agreements, have been suggested as well 

(Rypdal et al., 2005, Daniel et al., 2012). It would be constructive if future climate 

policies give the possibility for revision and updates of existing tools  

(Tanaka et al., 2010). Implementation of any changes will bring the cost for society 

(Godal and Fuglestvedt, 2002, Shine, 2009); however, on a global scale the cost  

is relatively small especially when it is related to the benefits arising from adoption  

a multi-gas mitigation scenario (O’Niell, 2003, Johansson et al., 2006, Smith et al., 

2012). However, any change in metric, whatever the benefit, will be subject to political 

inertia, when adoption by the policy community is concerned. 

 

 

2.3 Radiative forcings from aircraft NOx emissions 

 

The impact of aviation NOx emissions on tropospheric ozone (O3) has been 

investigated since the 1970s (Hidalgo and Crutzen, 1977). Despite the length of time 

over which this effect has been explored, it still represents an active research area. One 

distinct milestone was the IPCC Special Report on ‘Aviation and the Global 

Atmosphere’ (Penner et al., 1999), which highlighted the finding that whilst NOx 

emissions from the existing fleet of subsonic aircraft resulted in a small enhancement 

in tropospheric O3, there was also a small but significant reduction in ambient CH4 (for 

an equilibrium calculation of constant emissions). Since CH4 has a lifetime of 

approximately 8–12 year, it takes some time to respond to an additional NOx injection. 

The IPCC thus established a positive ozone radiative forcing (RF) and a negative RF 

associated with a NOx increase from aircraft. 
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Wild et al. (2001) also distinguished that with this long-term CH4 decrease, a small 

decrease in O3 also emerged (again, for equilibrium conditions). However, it has taken 

some time to realise that this O3 reduction could be significant over the longer  

time-period and that the overall RF response from aircraft NOx arises from one positive 

and two negative RF responses. More recently, Myhre et al. (2011) presented  

a number of model responses to an aircraft NOx increase and also highlighted a fourth 

RF response in that a decrease in CH4 also ultimately resulted in a small negative RF 

response from water vapour in the stratosphere (Myhre et al., 2007). Any CH4 response 

takes decades to come to an equilibrium response, thus it can enter the stratosphere 

where it can be oxidised to water vapour. The water vapour (from CH4 oxidation 

reaction) results in a positive forcing in the stratosphere, so that any decrease in CH4 

will result in a reduction in water vapour forcing in the stratosphere and can therefore 

be considered as a negative RF from aviation NOx.  

 

Despite the magnitudes of positive and negative radiative forcing are roughly the same 

(from equilibrium run of present-day aircraft emissions), they do not cancel in climate 

terms. The complexity of NOx–O3–CH4 system is intensified not only through different 

signs of responses of its components (mixture of positive and negative forcings)  

or different timescales of responses (positive forcing is short-term, negative responses 

are long-term), but also by differences of their spatial extents. Whilst short-term O3 

increase is regional, the CH4, CH4-induced O3 and stratospheric water vapour (SWV) 

act on a global scale. The latitudinal imbalance occurs, with positive net  

(O3 + CH4) forcing observed in the Northern Hemisphere and negative in the Southern 

Hemisphere (Prather et al., 1999). 

 

The other impacts resulting from aircraft NOx emissions, like formation of nitrate 

aerosols (Kärcher, 1996, Unger et al., 2011) or indirect formation of sulphate aerosols 

(more efficient, via increased OH, conversion of SO2 to sulphuric acid)  

(Pitari et al., 2002) are not so well known and are not taken into account in this study.  

 

The recent investigations regarding the impacts of aircraft NOx emissions on 

atmosphere and climate from various modelling studies are presented in Chapter 6.1. 
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Chapter 3  

 

Models description, methodology and 

experimental design 

 

 

The main model employed for this study is the 3D Chemistry Transport Model (CTM), 

MOZART-3 and it constitutes the foundation of Chapters 5, 6, 7, 8, 9. The 2D CTM, 

TROPOS was utilized for an additional analysis, presented in Chapter 4, in order to 

illustrate the long-term processes distinctive for NOx–O3–CH4 system.  

 

In this chapter, the descriptions of models along with the methodology undertaken at 

each main step of calculation are presented. The general bases of experimental design 

(3D CTM, MOZART-3, set up) are introduced.    

 

 

3.1 Models description  

 

3.1.1 2D Chemistry Transport Model, TROPOS 

 

The 2D Chemistry Transport Model, TROPOS is a latitudinally-averaged  

two-dimensional Eulerian global tropospheric chemistry model extensively evaluated 

by Hough (1989, 1991). The model’s domain extends from pole-to-pole (24 latitudinal 

grid cells) and from the surface to an altitude of 24 km (12 vertical layers). TROPOS is 

driven by chemistry, emissions, transport, removal processes and upper boundary 
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conditions. The transport is based on circulation derived by Plumb and Mahlmann 

(1987), who utilized the output from a General Circulation Model (GCM)  

(Mahlmann et al., 1980). The temperature fields are from Barnett and Corney (1985) 

and Oort (1983) and are interpolated onto the model’s grids with a monthly temporal 

resolution. Differential equations, which describe the combined chemistry and 

transport, are solved using a variable-order Gear’s method.  

 

There are 56 chemical species in the chemical mechanism of the model, which consists 

of 91 thermal reactions, 27 photolytic reactions and 7 more reactions, which include 

nighttime NO3 chemistry. There are no fixed concentrations within the modal domain 

other than the upper boundary conditions, which are specified for long-lived species 

and for gases that the stratospheric region acts as a source. The model contains three 

cloud layers, where cloud cover is predicted based on the routine of Buriez et al. 

(1998), which depends on relative humidity.  

 

Table 3.1: Annual emissions used in 2D CTM, TROPOS. 

 
Scenario 

Annual emissions 

2000 

IPCC–TAR 

NOx total [Tg(N)/yr]
 

45.7 

 anthropogenic [Tg(NO2)/yr] 33.0 

 biomass burning[Tg(NO2)/yr] 

lightning [Tg(N)/yr] 

7.1 

5.0 

CO total [Tg(CO)/yr] 1575.0 

 anthropogenic [Tg(CO)/yr] 650.0 

 biomass burning [Tg(CO)/yr] 700.0 

NMVOC total [Tg(C)/yr] 779.7 

 isoprene [Tg(C)/yr] 450.1 

                                                      

A series of updates has been conducted for this study, among which the most important 

are: budgets of surface emission and aircraft emissions (Table 3.1), thermal and 

photolysis reactions rates (Tables A.1, A.2, in Appendix A), cross sections, quantum 

yields for O(
1
D) production from O3 photolysis (Figure 3.1). The latter was especially 

important, as while the previous parameterisation assumed the O(
1
D) production to be 

0 for wavelengths greater than 310 nm, the new one leads to the existence of the ‘tail’ 

in the 300 ≤ λ ≤ 330 nm region (Sander et al., 2003; details are presented in Appendix 

B). Taking into account that intensity of the solar actinic flux in the troposphere and 

lower stratosphere increases rapidly with λ ≥ 290 nm, this update was of importance. 
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Figure 3.1: Quantum yields for O(
1
D) formation from O3 photolysis as a function of 

wavelength. 

 

A 2D CTM has the disadvantage of not fully representing atmospheric transport  

(it cannot describe the variability of concentrations around latitude circles or species 

(e.g. NOx) are transported to restricted regions), but has the advantage of a complex 

chemical scheme and being computationally efficient, such that the long-term  

(e.g., 100 years) integrations can be performed. 

 

TROPOS was exploited in a number of investigations related mainly with chemistry of 

ozone precursors both, in the past (Hough and Johnson, 1991, Johnson et al., 1992, 

Johnson and Derwent, 1996) and quite recently (Skowron et al., 2009).  

 

3.1.2 3D Chemistry Transport Model, MOZART-3 

 

The Model for Ozone and Related Tracers, version 3 (MOZART-3) is a 3D Chemistry 

Transport Model (CTM) designed to simulate atmospheric ozone and its precursors; it 

was comprehensively evaluated by Kinnison et al. (2007). This model, with an 

extension to the middle atmosphere, is based on earlier versions of global tropospheric 

models: MOZART-1 (Brasseur et al., 1998b) and MOZART-2 (Horowitz et al., 2003). 

MOZART has been developed jointly by the National Center for Atmospheric 

Research (NCAR), the National Oceanic and Atmospheric Administration (NOAA), 

the Max–Planck Institute of Meteorology (MPI–Hamburg), the Geophysical Fluid 

Dynamics Laboratory (GFDL) and Princeton University. However, version 3 of this 

model was released by NCAR.  
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MOZART-3 is built on the framework of the transport model MATCH (Model for 

Atmospheric Transport and Chemistry) (Rasch et al., 1997) and accounts for advection, 

convection, boundary layer exchanges, wet and dry deposition. Using the flux-form 

semi-Lagrangian scheme of Lin and Rood (1996), the vertical velocities are derived 

based on divergence of the horizontal velocity fields. Convection fluxes are derived 

using shallow and mid-level convection scheme of Hack (1994) and deep convective 

routine of Zhang and MacFarlane (1995). The planetary boundary layer exchanges  

are parameterised based on Holstag and Boville (1993) formulations. Wet deposition  

is taken from Brausser et al. (1998b) and surface dry deposition from Müller (1992). 

 

 
 

Figure 3.2: NOx and NOy family represented in MOZART-3 (Figure adapted from Seinfeld and 

Pandis (2006)). 

 

MOZART-3 reproduces detailed chemical and physical processes from the troposphere 

through the stratosphere. The chemical mechanism includes 108 species, 218 gas-phase 

reactions, 71 photolytic reactions (including the photochemical reactions associated 

with organic halogen compounds) and 17 heterogeneous reactions. The species 

included within this mechanism are members of the Ox, NOx, HOx, ClOx and BrOx 

chemical families, along with CH4 and its degradation products. As an example of the 
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complexity of chemical scheme represented in MOZART-3, the scheme of NOx and 

NOy chemistry is presented in Figure 3.2. The kinetic and photochemical data  

are based on the NASA/JPL evaluation (Sander et al., 2006). The non-methane 

hydrocarbon oxidation scheme is based on three separate lumped hydrocarbons  

(one representing aromatic species – TOLUENE, one representing alkanes with four or 

more carbons – BIGALK and one representing alkenes with four or more carbons – 

BIGENE). The lightning parameterisation is based on Price et al. (1997), which defines 

the NOx production from lightning as a function of the location of convective clouds 

top heights. The vertical profile of lightning NOx follows the C-shaped formulations 

(Pickering et al., 1998), which reduces these emissions close to the surface. 

 

MOZART-3 has been extensively used for different application studies, e.g., influence 

of El Niño and La Niña events on dynamical, thermal and chemical structure of the 

middle atmosphere (Sassi et al., 2004), specificity of stratospheric O3 and downward 

O3 transport in the UTLS region during the sudden stratospheric warming event in 

January 2004 (Liu et al., 2009), forecast study of the ozone hole over Antarctica in 

2008 (Flemming et al., 2011), estimations of Ozone Depletion Potentials for n-propyl 

bromide (Wuebbles et al., 2011), assessment of the impact of present-day aircraft NOx 

emissions on climate (Skowron et al., 2013) and others. 

 

Chapter 3.3 presents details regarding the model’s set-up, along with dynamical and 

emission data employed for this study. 

 

 

3.1.3 Edwards–Slingo  

 

The Edwards–Slingo is an offline radiative transfer model (RTM) (Edwards and 

Slingo, 1996). The model calculates the radiative fluxes and heating rates based on the 

δ-Eddington form of the two-stream equations in both, the long-wave and short-wave 

spectral regions. The version of the model used in this study was developed in the UK 

Met Office and it has been set up and maintained by Dr Ruben Rodriguez de León of 

MMU. Cloud treatment is set up based on averaged ISCCP D2 data (Rossow and 

Schiffer, 1999), which are used to determine the position and amount of ice clouds and 

water in the atmosphere. Climatological fields of temperature and specific humidity are 

determined by ERA-Interim data (Dee et al., 2011). Well mixed concentrations of  
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CO2 (379 ppmv), CH4 (1774 ppbv), and N2O (319 ppbv) are specified. While H2O, 

CO2, N2O, O3, CH4 are defined in the long-wave, H2O, CO2, O3, O2 are defined in the 

short-wave. This model does not include concentrations of aerosol, halocarbons and 

chlorofluorocarbons. The Edwards–Slingo radiation code was employed in number of 

studies (Edwards and Slingo, 1996, Stevenson et al., 1998, 2006, Myhre et al., 2009).   

 

 

 

3.2 Methodology 

 

3.2.1 Chemical perturbations 

 

The O3 lifetime is of an order of weeks in the troposphere, thus its concentrations 

modelled by the CTM are expected to be in steady state condition from a few years run 

under the constant emission scenario. The O3 monthly averages from MOZART-3 

output for meteorological years 2000 and 2006 are exploited within this thesis.   

 

A one year CTM simulation is not long enough to obtain the change in CH4 

concentration, as it takes decades for CH4 to come into equilibrium with the perturbed 

OH fields (this is because CH4 lifetime is ~8.7 years (Denman et al., 2007)). Thus, to 

obtain the steady state concentrations of CH4 in the perturbation runs the change in 

CH4 lifetime owing to reaction with OH was computed for each experiment. Then, 

based on Fuglestvedt et al. (1999), it was multiplied by the reference CH4 

concentration and a feedback factor of 1.4 (Prather et al., 2001) to reflect the effect of 

changes of CH4 on its own lifetime ():  

 

[CH4]ss = [CH4]ref * (1 + 1.4 * 0/ref )                                   (3.1)                 

where 0 = per - ref  and  [CH4]ref  is a reference run concentration.  

 

The CH4-induced O3 is derived based on an assumption that 10% increase of CH4 leads 

to 0.64 DU increase of O3 (Prather et al., 2001). 
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3.2.2 Radiative forcing calculations 

 

The short-term O3 radiative forcings (RF) are derived off-line using the  

Edwards–Slingo radiation code (see Chapter 3.1.3 for more details about the model). 

The calculations are based on a monthly O3 MOZART-3 output. The O3 background 

and aircraft perturbations, as calculated by MOZART-3, were converted into mass 

mixing ratios and interpolated onto the Edward–Slingo horizontal and vertical 

resolution. To account for a stratospheric adjustment a 20% reduction was 

implemented to the O3 RF, according to the work of Stevenson et al. (1998).  

 

The radiative forcings of CH4 are calculated using a simplified expression defined in 

Ramaswamy et al. (2001), which accounts the N2O overlap:  

 

F = 0.036 (M - M0) – (f(M,N0) - f(M0,N0)),                             (3.2) 

f(M,N) = 0.47 ln[1 + 2.01 x 10
-5

 (MN)
0.75 

+ 5.31 x 10
-15

 M(MN)
1.52

]             (3.3) 

where M is CH4 in ppbv, N is N2O in ppbv and subscript 0 denotes unperturbed 

concentration.  

 

The CH4-induced O3 has a characteristic RF of 42 mW m
-2

 DU
-1

 (Ramaswamy et al., 

2001). The impact of CH4 change on stratospheric water vapour (SWV) is also 

included in the calculations and as reported by Myhre et al. (2007) the RF of SWV  

is assessed to be 0.15 times that of CH4 RF.  

 

 

3.2.3 Global Warming Potential calculations 

 

The calculations of Global Warming Potentials (GWP) are based on a methodology 

described by Fuglestvedt et al., (2010).  

 

The temporal evolution of net RF following the NOx emission is needed in order to 

calculate GWP. It can be assumed that the constant one year emission is a step 

emission and the successive decay occurs of the resulting forcing from the end of the 

year onwards.  
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The temporal evolutions of O3, CH4-induced O3 and CH4 can be described by:  

F (t) = F
SS

 (1 – exp(– t/))  for t < 1                                 (3.4) 

F (t) = F
SS

 (1 – exp(– 1/)) exp((– (t – 1)/ )  for t ≥ 1                     (3.5) 

where F
SS 

is a steady state forcing and  is lifetime (primary-mode lifetime in case of 

CH4-induced O3 and CH4).  

 

For CH4-induced O3 only t ≥ 1 applies. The first equation describes the effects at the 

first year, when the emission occurs; the second equation describes the long-term decay 

of the first year effect.   

 

The AGWP can be calculated through:  

AGWP (H) = F
SS

 (1 – (exp (– (H – 1 )/) – exp(– H/)))               (3.6) 

where H is the time horizon.  

When lifetime is short compared to the time horizon (e.g. for O3) the integrated forcing 

is equal to F
SS

·1 year.  

 

The CO2 AGWPs used for GWP calculations are taken from IPCC AR4 (Forster et al., 

2007) and constitute 2.47 x 10
-14

, 8.69 x 10
-14

 and 28.6 x 10
-14

 Wm
-2

yr(kgCO2)
-1

 for 20, 

100 and 500 years respectively. 

 

This method of GWP calculations was applied for both, ‘aircraft – no aircraft’ and 

‘incremental aircraft – aircraft’, types of experiments (the first one is presented in 

Chapter 6; the second one in Chapters 7, 8, 9). It is worth to keep in mind that whilst 

these two different settings are in agreement from analytical point of view, they differ 

in their experimental design (reference perturbation) and consequently in the resultant 

sensitivities of O3 response, which means that they cannot be directly comparable 

(more details regarding this issue is presented in Chapter 7.4).  

 

 

 

 



Chapter 3: Model description, methodology and experimental design                        26 

 

 
 

3.3 Experimental design 

 

The 3D CTM, MOZART-3, simulations constitute the basis of each experiment 

performed for this thesis. The applied horizontal resolution is T42 (~ 2.8° x 2.8°) for all 

experiments and the vertical domain extends from the surface to 0.1hPa with 60 hybrid 

layers (Figure 3.3). The transport of chemical compounds is driven by the 

meteorological fields from European Centre for Medium Range Weather Forecast 

(ECMWF), reanalysis ERA-Interim data for the years 2000–2006 (Dee et al., 2011). 

The dynamical input for MOZART-3 consists of wind speed
1
, temperature, pressure, 

specific humidity, surface geopotential height, wind surface stress, surface heat and 

moisture fluxes, solar radiation flux, snow height, soil moisture fraction.  

   

 

Figure 3.3: The MOZART-3’s vertical domain. The black lines indicate model’s 60 hybrid 

sigma pressure layers and red lines show the 1000, 100, 10, 1 and 0.1 pressure (hPa) levels. 

The schematic illustration of a vertical profile of aircraft NOx emissions in MOZART-3  

is presented. 

 

There are several advantages of usage of ERA-Interim reanalysis data. It is proved to 

be a high-quality product, which resolves the deficiencies (e.g., representation of 

hydrological cycles or stratospheric circulation) encountered in previous, ERA-40, data 

(Dee et al., 2011). The distribution of long-lived tracers, mean age of air in the 

                                                        
1
 It is represented by three variables: zonal wind (U) [m/s], meridional wind (V) [m/s] and vertical wind 

velocity (OMEGA) [Pa/s]. 
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stratosphere or CH4 photochemical lifetime is the best represented in MOZART-3 

when is driven by ECMWF reanalysis, than by e.g., the operational data  

(Kinnison et al., 2007). Also, ECMWF products are widely used in the community 

(e.g., Stordal et al., 2006, Hoor et al., 2009, Myhre et al., 2011, Hodnebrog et al., 

2012), which makes this study more consistent in comparison with another studies. 

 

The anthropogenic and biomass burning surface emissions are taken from  

Lamarque et al. (2010) and represent year 2000. The biogenic surface emissions come 

from the European Union project POET (Precursors of Ozone and their Effects on 

Troposphere) (Granier et al., 2005). Table 3.2 presents details regarding surface 

emissions from different sources and for different species. The most populated regions: 

Europe, U.S., Southeast Asia are the main source of anthropogenic CO and NOx 

emissions; the most of biomass burning emissions comes from equatorial Africa 

(Figure 3.4). The main source of biogenic emissions comes from isoprene.     

 

Table 3.2: Annual emissions used in 3D CTM, MOZART-3. 

 
Scenario 

Annual emissions 

2000 

IPCC–AR5 

NOx total [Tg(N)/yr]
 

37.1 

 anthropogenic [Tg(NO2)/yr] 26.5 

 biomass burning[Tg(NO2)/yr] 

lightning [Tg(N)/yr] 

4.5 

4.8 

CO total [Tg(CO)/yr] 1245.9 

 anthropogenic [Tg(CO)/yr] 606.2 

 biomass burning [Tg(CO)/yr] 459.2 

NMVOC total [Tg(C)/yr] 768.5 

 isoprene [Tg(C)/yr]     473.9 

 

 

 

Figure 3.4: Distribution of surface (anthropogenic + biomass burning) emissions of CO (left 

panel) and NOx (right panel) in 2000 based on IPCC–AR5 dataset. 
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Aircraft emissions in MOZART-3 are represented by the REACT4C inventory 

(http://www.react4c.eu) for the year 2006 (CAEP/8 movements), which is  

2.33 Tg(N) yr
-1

. Most of the aircraft NOx emissions are concentrated in the upper 

troposphere lower stratosphere (UTLS) of Northern Hemisphere (Figure 3.5). The 

largest source regions are Europe, North Atlantic, North America and Southeast Asia. 

The NOx and CO emissions are implemented into MOZART-3: the 1°x1° geographical 

spacing and 23 regular altitudinal layers of original data are interpolated to CTM’s T42 

resolution and 60 irregular vertical layers; also unit conversion from kg/yr to mol/cm
3
/s 

and from km to hybrid sigma pressure is conducted. More details regarding REACT4C 

dataset and aircraft inventory peculiarities, in general, are presented in Chapter 6.   

 

 Figure 3.5: Latitudinal distribution (left panel) and geographical distribution at 10.37 km 

(right panel) of aircraft NOx emissions [Tg(N) yr
-1

] in 2006 based on REACT4C dataset. 

 

The effect of aircraft NOx emissions is estimated based on simulations with and 

without emissions (Chapters 5, 6) or additional aircraft NOx rates which are added to 

existing emissions (incremental emissions – base emissions) (Chapters 7, 8, 9). Each 

experiment taken into account for analysis was preceded by a spin-up, which varied 

from one year (Chapters 5, 6) to five years (Chapters 7, 8, 9). 

    

The ‘aircraft – no_aircraft’ is not the sole way in assessing the impact of emissions on 

climate: the small perturbation approach (Hoor et al., 2009) or tagging approach 

(Grewe et al., 2012) also exists. The latter might be interesting for mitigation studies, 

when possible compensations from other emission sectors are investigated,  

e.g., by applying tagging method one can be able to assess how O3 changes induced by 

NOx from lightning (for aircraft it is one of the possible compensating NOx source) are 

modified by aircraft emissions. However, it is not within the scope of this study.  
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Chapter 4  

 

The legitimacy of applied methodology and 

MOZART-3 usage 

 

 

4.1 Introduction  

 

The ability of MOZART-3 to represent the atmospheric processes and constituents was 

extensively evaluated by Kinnison et al. (2007) and was shown in number of 

publications (Sassi et al., 2004, Flemming et al., 2011), with a special attention paid to 

the upper troposphere and lower stratosphere region (Gettelman et al. 2004,  

Park et al., 2004, Pan et al., 2007, Liu et al., 2009). Through these publications the 

capability of MOZART-3 in reproducing the atmospheric composition, both globally 

and seasonally, with a good accuracy was proved. However, while the chemical 

tropopause exchanges are qualitatively well represented in MOZART-3, quantitatively 

the trace gas profiles show some discrepancies. The main factor which determines the 

model’s accuracy of chemical distribution in UTLS region is meteorological data: 

MOZART-3 driven by the ECMWF reanalysis winds has shown the greatest 

agreement with observational data (Kinnison et al., 2007).        

 

In this chapter MOZART-3 output and observational fields of O3, NO2, CO, NOx, NOy, 

CH4, and PAN are compared for the years 2000 and 2006. Furthermore, the 

justification of methodologies applied in this study is presented. 
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4.2 Methodology 

 

4.2.1 Measurement data 

 

The summary of the geographical distributions of the selected observational stations 

and regions is presented on Figure 4.1.  

 

 

Figure 4.1: Locations of WOUDC and SHADOZ ozonesonde stations, WDCGG stationery 

stations and geographical regions covered by aircraft TOPSE campaign. 

 

World Data Centre for Greenhouse Gases (WDCGG) is part of the Global 

Atmosphere Watch (GAW) program of the World Meteorological Organization 

(WMO) and is led by the Japanese Meteorological Agency.  This observational 

network consists of stationary and mobile (aircraft, ship) stations, and in addition ice 

core data are also available. In this study data from the stationary stations across the 

globe are used. The monitored CO and NO2 values are employed for this study. The 

temporal resolution varies from daily to monthly values, depending on the location. 

The data were downloaded on 21
st
 (CO data) and 23

rd
 (NO2 data) of May 2013 from 

the WDCGG website http://ds.data.jma.go.jp/gmd/wdcgg/cgibin/wdcgg/catalogue.cgi/. 

 

World Ozone and Ultraviolet Radiation Data Centre (WOUDC) is another project 

of the Global Atmosphere Watch (GAW) program of the World Meteorological 

Organization (WMO) and it is operated by the Meteorological Service of Canada. 

WOUDC provides the O3 and ultraviolet radiation observations which are represented 

by more than 400 stations. The observations have been run for more than 50 years and 

they consist of total column ozone, the vertical profiles from ozonesondes, lidar 
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measurements and the umkehr technique. For purpose of this study the ozonesondes 

data for selected ozone stations for year 2006 was utilized. The daily profiles for 

selected months, January, April, July, October, were employed here. The data was 

downloaded on 20
th

 of May 2013 from the WOUDC FTP server: 

ftp://woudc:woudc*@ftp.tor.ec.gc.ca/. 

 

Southern Hemisphere Additional Ozonesondes (SHADOZ) project was originated 

by NASA/Goddard Space Flight Centre and other U.S. and international investigators 

in 1998. The main aims are to provide the climatological profiles of tropical ozone in 

the equatorial zone and to validate and refine satellite remote sensing techniques for 

estimating tropical ozone estimations. Currently the observational network consists of 

eleven stations which launch ozonesondes. For the purpose of this study five stations, 

which provide ozone profiles for year 2006, were chosen. The daily profiles for 

selected months, January, April, July, October, were employed here. The data were 

downloaded on 10
th

 of May 2013 from the SHADOZ/Data Archive website 

http://croc.gsfc.nasa.gov/shadoz/. 

 

TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) was 

undertaken in spring 2000. This aircraft campaign covered the continental part of North 

America with a latitudinal range from 37°N to 90°N and from 100 ft to 25000 ft in 

altitude. TOPSE measurements give a unique view on the spatial and temporal 

distribution of ozone and ozone precursors. The gridded climatologies and the regional 

profiles are provided; the latter was utilized in this study. The 3 regions are defined in 

TOPSE campaign: Boulder (37–47°N, 250–270°E), Churchill (47–65°N, 250–280°E) 

and Thule (65–90°N, 250–300°E). The O3, NOx, NOy, CO, CH4, PAN constituents 

were chosen for analysis. The data was downloaded on 9
th

 of May 2013 from the 

website of the Atmospheric Chemistry Division at NCAR 

http://www.acd.ucar.edu/gctm/data/. 

 

4.2.2 CTM’s data 

 

The 2D CTM, TROPOS, was employed for long-term (100 years) integrations, starting 

in January 2000 and finishing in December 2100. The constant surface emissions were 

applied, which represents year 2000; the aircraft NOx emissions constitute the 

QUANTIFY dataset for year 2000 (more details regarding this dataset are presented in 
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Chapters 6.2.1 and 6.3.1). The quarterly averages were taken into account for analysis. 

The aircraft emissions were implemented in two ways, as a constant emission  

(see Chapter 4.5) and as a pulse emission (see Chapter 4.6).     

 

The 3D CTM, MOZART-3, set up is described in detail in Chapter 3.3. The monthly 

averages, starting in January and finishing in December, representing meteorological 

years 2000 (Chapters 4.3, 4.4, 4.5, 4.6) and 2006 (Chapter 4.3) are exploited  

in comparison with observational data and the inter-CTM comparison. 

 

 

4.3 Comparison of modelled, by 3D CTM MOZART-3, atmospheric 

constituents with measurement data  

 

Time series of CO and NO2 for year 2006 (based on WDCGG data) and monthly O3 

profiles for year 2006 (based on WOUDC and SHADOZ data) were analysed, along 

with O3 and its precursors at Northern mid-latitudes and polar region during the spring 

2000 (based on TOPSE campaign data). The selected stations and regions are presented 

in Figure 4.1. This is the first time, when ground CO and NO2 concentrations modelled 

by MOZART-3 are compared with measurements, as well as TOPSE data are plotted 

against MOZART-3 constituents. 

 

In general, the magnitudes and temporal variations of NO2 and CO are well reproduced 

by the model, despite some discrepancies being apparent. The distributions of NO2 

concentrations over Europe (represented by 6 ground stations) reveal good agreement 

with modelled mixing ratios (Figure 4.2). In most cases, differences of the mean of 

NO2 for the year 2006 do not exceed 15%. The exception is at stations Zoseni and 

Burgas, where MOZART-3 annual mean is overestimated by 43% and underestimated 

by 34%, respectively. While at Zoseni the differences are observed during winter 

months, at Burgas the spring and autumn time causes discrepancies. This might 

originate from anthropogenic emission input dataset. 

 

The CO observational stations (represented by 9 ground stations) are more spread over 

the globe. Again the model and observational data are in good agreement and seasonal 

dependencies are reproduced well by MOZART-3 (Figure 4.3). However, some 

tendencies are noticeable. The modelled mean of CO concentrations for year 2006 at 
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high and mid-northern latitudes are similar to the observed data and the differences are 

in the range of 2%. At the tropical northern station modelled values are underestimated 

by 13% compared the measurements. The MOZART-3 data show consistently greater 

CO concentration over southern latitudes than observations, whose annual mean 

differences range from 14% at Casey Station, 17% at Cape Ferguson to 28% at Cape 

Point. This was also pointed out by Emmons et al. (2010), but for MOZART-4; the 

possible reason for this behaviour might be attributed to biomass burning emissions. 

 

 

 

 

Figure  4.2: Time series of NO2 [ppbv] concentrations in 2006 from 6 WDCGG ground stations 

(red lines) and the corresponding time series simulated by MOZART-3 (blue lines). The dotted 

lines show the standard deviation range (observational ranges are based on hourly data, 

modelled ranges are based on monthly data from surface to ~1km). WDCGG and MOZART-3 

annual means and their standard deviations are provided for each location. The map shows the 

locations of ground stations. 
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Figure  4.3: Time series of CO [ppbv] concentrations in 2006 from 9 WDCGG ground stations 

(red lines) and the corresponding time series simulated by MOZART-3 (blue lines). The dotted 

lines show the standard deviation range (observational ranges are based on hourly data, 

modelled ranges are based on monthly data from surface to ~1km). WDCGG and MOZART-3 

annual means and their standard deviations are provided for each location. The map shows the 

locations of ground stations. 
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This range of differences is expected among short-lived species, especially in the low 

troposphere (the height of ground stations did not exceed 500 m). The variability of 

NOx concentrations near the surface is very large, especially in the industrialized areas, 

e.g., Burgas. Taking this into account, and that there are only few point observations of 

NOx, it is challenging to translate it into regional or global scale concentrations.  

 

The monthly O3 profiles from 9 ozonesonde stations were compared with O3 from 

MOZART-3 simulations, both represents year 2006 (Figure 4.4). The good accuracy in 

reproducing vertical distribution of O3 in troposphere and stratosphere is shown for 

mid- and high latitudes of both hemispheres. The Pearson’s correlation coefficients are 

above 0.82 (N=1692) for the domain 1000–10 hPa. However, the larger vertical 

dispersion in the upper troposphere is observed among some of the MOZART-3 

profiles. This is especially pronounced in the tropical tropopause represented by 

Paramaribo, Hilo, Ascension Island, Ha Noi, Kuala Lumpur. In the 250–150 hPa 

region the modelled values reach their overestimations in April at Paramaribo station 

with its 45 ppbv (58%) of O3 difference. The larger O3 mixing ratios in the upper 

troposphere in MOZART-3 have already been pointed out by van Noije et al. (2006) 

and Kinnison et al. (2007). It is explained through excessive downward transport of O3 

across the tropopause caused by too strong Brewer Dobson circulation in MOZART-3, 

which is a one of the difficulties when the accurate representation of dynamical and 

transport processes in the UTLS needs to be modelled (Schoeberl et al., 2003).  

 

The TOPSE aircraft campaign is extremely useful as it gives the unique opportunity to 

validate the simulated O3 and its precursors during the springtime in the mid- and high 

northern latitudes. The observational and modelled data for 7 altitudinal bands are 

shown at Figure 4.5. The accuracy of simulated concentrations is generally good and 

the Pearson’s correlation coefficients (N=126) are usually high, above 0.9 for O3, CH4, 

CO and NOy and 0.7 for NOx and PAN. There is a certain pattern, which may be 

noticed: the oxidised nitrogen species (NOx, NOy and PAN) are overestimated by 

MOZART-3 near the surface, which is observed especially in Boulder region. This 

discrepancy is decreasing with height, when the distance from anthropogenic emissions 

is increasing. For example, the modelled NOx at the surface is 7 times larger than the 

observed concentrations, becoming consistent within 10% one layer (1.5 km) higher  

(in Churchill region). On the contrary, the CO and CH4 concentrations are slightly 

underestimated in MOZART-3 in each region for each altitudinal band. However,  
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the differences are relatively small and did not exceed 1.5% for CH4 in each region and 

for CO 15% in Thule and Churchill, 25% in Boulder. Concentrations of O3 are the best 

reproduced in Thule and Churchill (differences are within 10%) and relatively poorer 

accuracy is observed in the Boulder region (differences are within 25%). Most of the 

concentrations simulated by the model lie within 1-σ of the observational data (PAN 

is an exception near the surface). 

 

 

 

Figure  4.5: Comparison of O3, NOx, NOy, CO, CH4, PAN concentrations between 

measurements taken during the TOPSE campaign and MOZART-3. The means (dots) and 

standard deviations (lines) constitute an average of 4 months (February, March, April, May)  

of year 2000. The map shows the regions covered by the aircraft campaigne. 
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Figure  4.4: Vertical profiles of O3 [ppmv] in 2006 measured at selected, 5 WOUDC and 4 

SHADOZ, sonde stations (red line, daily data) and modelled by MOZART-3 (blue line, 

monthly data). The zoomed figures expose O3 profiles in UTLS region. The map shows the 

locations of observational stations. 
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Figure  4.4: Figure 4.4 continuing. 
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Figure  4.4: Figure 4.4 continuing. 
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4.4 The validity of 2-year MOZART-3’s simulation in representing 

the aircraft O3 response 

 

The calculations of O3 change, along with RFs, cover the surface to 1 hPa domain. 

Since some of the experiments are performed for 2 years (Chapters 5 and 6),  

the magnitude of aircraft stratospheric response is not fully representative (Figure 4.6). 

The stratospheric transport timescales are of several years (Stiller et al., 2012) and 

indeed the reliable aircraft O3 response in the stratosphere is not observed until the  

6
th

 year of simulation, with magnitudes much more enhanced than for 2 years of 

aircraft perturbation runs (Table 4.1). The annual average stratospheric (100–1 hPa)  

O3 column change in the 2
nd

 year is positive (with July showing the most negative peak 

-0.0002 DU), whilst the 6
th

 year shows negative O3 change through all year  

(with greatest July depletion -0.0137 DU). Despite these significant differences in the 

aircraft stratospheric response between the 2
nd

 and 6
th

 years, the total O3 change is not 

as much affected, as most of the mass of aircraft O3 is concentrated in the upper 

troposphere lower stratosphere (UTLS) region. The difference in O3 column change 

between the 2
nd

 and 6
th

 years is 5.1%, the differences in the resultant O3 RF is -0.6%. 

Thus the O3 changes derived from a 2 years simulation for a surface–1 hPa domain, as 

presented in Chapters 5 and 6, can be treated as reliable.  

 

 
 

Figure 4.6: The globally and annually averaged vertical distributions of aircraft perturbations 

of O3 concentrations for consecutive years of simulations. 
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Table 4.1: The global and annual mean O3 column change (in DU) and RF (in mW m
-2

) 

response due to aircraft O3 for consecutive years of MOZART-3 simulations. 

 

Year 
aircraft O3 [DU] 

aircraft O3 RF 

[mW m
-2

] 

surf–100 hPa 100–1 hPa total Net 

2
nd

 0.516 0.002 0.518 13.4 

5
th
 0.503 -0.010 0.493 – 

6
th
 0.503 -0.011 0.492 13.5 

 

 
    

4.5 The CH4 steady-state calculations in a 3D CTM 

 

The CH4 lifetime is of order of decade, ~8.7 years (Denman et al., 2007), 8.8 years in 

MOZART-3 for year 2000. Thus, simulations performed for 2–6 years, which  

are conducted in this study, are not long enough to observe the proper equilibrium CH4 

response to aircraft NOx emissions. In order to calculate an accurate CH4 response,  

the method defined by Fuglestvedt et al. (1999) and presented in Chapter 3.2.1 is 

applied. This method is widely exploited, e.g., Hoor et al. (2009), Myhre et al. (2011), 

Hodnebrøg et al. (2012), Köhler et al. (2012) and others, and it is caused by the fact 

that none of the 3D CTMs can afford long-term runs: the steady state of CH4 would be 

reached after ~50 years of simulation.  

 

In order to illustrate this long-term CH4 behaviour, the 100-year integrations were 

performed with 2D CTM, which has this advantage of being computationally efficient. 

Figure 4.7 gathers together the 2D and 3D CTM runs with constant aircraft NOx 

emissions: solid lines represent the O3 and CH4 responses in TROPOS, yellow dots 

show results observed in MOZART-3. It is shown that, due to differences in lifetimes 

of CH4 and O3, their responses to aircraft emissions act on a different timescales. While 

the O3 response
1

 in MOZART-3 is accurate, the CH4 response is significantly 

underestimated. However, by using a one year perturbed CH4 field (yellow CH4 dot) 

together with the Fuglestvedt et al. (1999) method, the proper CH4 response can be 

derived, as shown by the dashed yellow line in Figure 4.7. The difference between 

calculated and modelled steady state CH4 is 3.1%. This shows that applied method is 

appropriate for steady state CH4 calculations.    

                                                        
1
 The short-term O3 response 
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Figure 4.7: The response of O3 and CH4 to constant aircraft NOx emissions as a function of time 

horizon. The solid lines present the species responses modelled by 2D CTM, TROPOS; yellow 

dots show the species responses modelled by 3D CTM, MOZART-3; dashed yellow line is the 

steady state CH4 derived through MOZART-3 simulations and Fuglestvedt et al. (1999) 

method (more details in the text). The zoomed panel presents the long-term O3 response. 

 

The 100-years TROPOS integration under constant emission scenario visualises also, 

not observed in MOZART-3, the long-term behaviour of O3 burden change  

(Figure 4.7, zoomed panel). The aircraft O3 is weakening with time under a constant 

NOx emissions scenario, following the accumulated decrease of ambient CH4. The 

aircraft net NOx calculations applied in this study account for this effect, as described 

in Chapter 3.2. 

 

 

4.6 The response of NOx–O3–CH4 system to an aircraft NOx pulse 

emission 

 

The pulse experiments have a specific structure (release and unconstrained 

observation) and are useful to study the mechanism of certain process. By conducting 

pulse experiments, the complex relationships between NOx, O3, OH and CH4 can be 

observed in detail (Derwent et al., 2001, Wild et al., 2001, Stevenson et al., 2004).  

 

When the aircraft NOx pulse is applied, O3 burden anomalies follow the emission pulse 

and peak on the same timescale as the NOx source appears, then decay with a typical  

(a few weeks) O3 lifetime. This is defined as the short-term O3 change. After a few 

months (or years, depending on the temporal resolution of a NOx pulse) the burden of 

O3 becomes slightly negative, as a result of lowering backgrounds of CH4 and CO, 
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both important precursors of O3. This is defined as the long-term O3 change and  

it decays with a CH4 lifetime. The NOx pulse is a source of increased OH (through 

positive anomalies of NOx and O3), which after a few months (years) after the pulse is 

weakening. This affects the main CH4 oxidation path and causes the global depletion of 

CH4, which builds up in the first few months (years) and then decay with an e-folding 

lifetime. The e-folding (also called primary mode or adjustment) lifetime is 1.4 greater 

than the average CH4 atmospheric lifetime (Prather, 1994).          

 

The pulse experiments require the freely interactive chemistry in order to perform it 

correctly. This raises a difficulty for 3D CTM, MOZART-3, where fixed boundary 

conditions exist for CH4. Figure 4.8 shows what the ‘risk’ is of improper model 

settings. The aircraft NOx pulse was applied for a period of a month (January) in two 

models: 2D CTM, TROPOS, which has surface CH4 emissions (CH4 flux) and to the 

3D CTM, MOZART-3, which has defined fields of CH4 as lower boundary conditions 

(CH4 fixed). Whilst TROPOS ideally describe the mechanism of NOx–O3–CH4 system, 

MOZART-3 presents the ‘false’ responses. The CH4 depletion recovers just after the 

NOx pulse disappears, which results in the prolonged positive O3 anomaly and lack of 

long-term O3. However, the framework of responses for O3 are CH4 between these two 

setting are in agreement in the year of pulse emissions. This is why the method 

described by Fuglestvedt et al., (2010) and presented in detail in Chapter 3.2.3 was 

applied to incremental aircraft NOx experiments conducted with MOZART-3, so the 

temporal behaviour of species was possible to define.   

 

 

Figure 4.8: The response of O3 and CH4 to pulse aircraft NOx emission under different CH4 

settings as a function of time horizon (solid lines are modelled by 2D CTM, TROPOS; dashed 

lines are the responses from 3D CTM, MOZART-3). 
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The cross checks between the 100 year integrations of ‘real’ NOx pulses in 2D CTM 

and the methodology applied in 3D CTM were performed (the additional aircraft  

NOx emissions were added for a period of year). Figure 4.9 shows that applied method 

is able to get away from constrained chemistry and to properly describe the temporal 

decay evolutions of O3 and CH4.  

 

 

Figure 4.9: The response of O3 and CH4 to pulse aircraft NOx emission simulated by TROPOS 

(upper panel) and MOZART-3 jointly with Fuglestvedt et al. (2010) methodology  

(bottom panel) as a function of time horizon. 
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Chapter 5  

 

The influence of ozone precursor emissions 

on aircraft NOx response 

 

 

5.1 Introduction  

 

The O3 production from NOx strongly depends on the ‘state of the atmosphere’ into 

which NOx is injected (e.g., in the form of air traffic emissions) and it is a complex 

relation influenced by many factors, e.g., solar flux intensity, NOx and HOx background 

levels, concentrations of CO, CH4, etc.. The ‘state of the atmosphere’ is defined mainly 

through surface emissions, of which anthropogenic activity is their principal source. 

  

Changing emissions of any O3 precursors: nitrogen oxides (NOx), carbon monoxide 

(CO), non-methane volatile organic compounds (NMVOC) or methane (CH4), affect 

the concentrations of gaseous species (O3 and CH4) and aerosols through the changes 

in oxidative capacity of the atmosphere (e.g., Unger et al., 2006, Shindell et al., 2009, 

Leibensperger et al., 2011). Reductions in surface NOx emissions increase ambient 

CH4 via a decrease in OH and decrease in the concentrations of tropospheric O3, 

which, overall, produce a global positive radiative forcing, as O3 outweighs CH4 RF 

responses. However, the magnitude of responses strongly depends on location or sector 

of emission (e.g., Fuglestvedt et al., 1999, Fiore et al., 2002, Berntsen et al., 2005,  

Naik et al., 2005, West et al., 2007, Derwent et al., 2008, Fry et al., 2012). In contrast, 

the reductions of CO and NMVOC, causing the increase of OH and decrease of both 
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tropospheric O3 and CH4, lead to an overall negative climate forcings (Fiore et al., 

2002, Naik et al., 2005, Fry et al., 2012). The reduction of global anthropogenic CH4 

emissions contributes to the most negative climate forcings among the O3 precursors, 

due to direct reductions of ambient CH4 (Fiore et al., 2002, Shindell et al., 2005,  

West et al., 2007, Fry et al., 2012). Thus, any modification of the surface emissions 

results in changes of the abundance of atmospheric species, which might affect the 

relation between aircraft NOx emissions and O3 production.   

 

In this chapter, the aircraft NOx impact on chemical composition of the troposphere  

is investigated under different background conditions. Usually this subject is studied in 

the light of air quality issues and potential climate change mitigation possibilities. 

Here, for the first time, the influence of perturbed surface NOx, CO and NMVOC 

fluxes on the aircraft NOx response is taken into account.    

 

 

5.2 Methodology 

 

5.2.1 Surface NOx, CO and NMVOC emissions 

 

Three different cases are investigated: global reduction of surface NOx emissions  

(-30% NOx), global reduction of surface CO emissions (-30% CO), global reduction  

of NMVOC emissions (-30% NMVOC), which are compared with surface emissions 

for year 2000 (base 2000). All other sources of emissions, including aircraft NOx 

emissions were held constant for each experimental case. 

 

The datasets representing historical surface emissions for the year 2000 are IPCC–AR5 

and POET datasets (see Chapter 3.3 for more details). The reductions of O3 precursor 

emissions are achieved by applying two Representative Concentration Pathways (RCP) 

scenarios for year 2100 (Lamarque et al., 2012): the anthropogenic and biomass 

burning emissions under RCP 8.5 2100 scenario for NOx, CO emissions and RCP 4.5 

2100 scenario for NMVOC surface emissions. Each of employed future scenarios 

predicts reductions of emissions, which constitute -32% of surface NOx emissions,  

-33% of surface CO emissions and -33% of surface NMVOC emissions.   
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Figure 5.1 presents the distribution of differences in surface emissions between the 

base case and each experimental case. The most significant reductions of NOx 

emissions are in East U.S., Europe and East Asia. The regions, where the greatest 

decrease of CO surface emissions are calculated for East U.S., North India, East Asia 

and equatorial Africa.  Reductions of NMVOC surface emissions are the largest in East 

Asia, equatorial Africa, East U.S. and Southeast Australia. 

 

 
 

Figure 5.1: The difference (in 10
11

 molecules/cm
2
/s) of the surface NOx (upper panel), CO 

(middle panel) and NMVOC (bottom panel) emissions between RCP 8.5 2100 (in case of NOx 

and CO), RCP 4.5 2100 (in case of NMVOC) and IPCC–AR5 2000 datasets. 
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5.2.2 Experimental design  

 

The QUANTIFY 2000, aircraft emission dataset, was implemented into the 3D CTM, 

MOZART-3. Eight experiments were performed: four reference (no-aircraft) runs and 

four perturbation (aircraft) simulations, each starting in January 2000, finishing in 

December 2000 and preceded by one year spin-up. Each simulation represents specific 

background conditions (base 2000, -30% NOx, -30% CO, -30% NMVOC). The aircraft 

perturbation is derived by extracting the difference between aircraft and no-aircraft 

experiments. 

 

The model (3D CTM, MOZART-3) set-up used to perform simulations is presented in 

detail in Chapter 3.3. Details regarding the aircraft QUANTIFY dataset are provided in 

Chapters 6.2.1 and 6.3.1. 

 

5.2.3 Additional surface and aircraft NOx experiments  

 

A series of surface NOx emission reductions were employed in order to explore the 

strength of influences of background NOx conditions on aircraft O3 response and to 

confront it with aircraft NOx emission rates. The reduction of surface NOx emissions 

varied from -3% to -50% and future NOx RCPs scenarios were applied: RCP 6.0 2010 

(NOx decreased by 3%), RCP 2.6 2020 (NOx decreased by 7%), RCP 8.5 2050  

(NOx decreased by 14%), RCP 4.5 2050 (NOx decreased by 23%), RCP 4.5 2100  

(NOx decreased by 50%); the aircraft NOx emissions were held constant. The next 

series of experiments included modifications of aircraft NOx emissions (REACT4C 

2006 data), which were scaled globally and the reduced aircraft NOx rates varied from 

0.71 to 0.36 Tg(N)/yr; the surface NOx emissions were held constant. The results from 

those additional experiments are presented in Figure 5.15.      
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5.3 Results 

 

5.3.1 Background concentrations of NOx, CO, OH, O3 and CH4 lifetime 

 

The NOx background is one of the important factors influencing O3 production from 

aircraft injected NOx. While the large concentrations of NOx at lower altitudes are not 

conducive for aircraft O3 change, the NOx concentration in middle and upper 

troposphere are ideal for O3 production, where the relation between injected NOx and 

produced O3 is almost linear (Figure 2.1 in Chapter 2.1.3). In MOZART-3 the annual 

averaged concentration of NOx at 200–250 hPa is 85 pptv (Figure 5.2). Locally, at the 

tropical belt, NOx can reach 200–400 pptv, with the greatest concentrations occurring 

over South Asia. This tropical zone is the main area of NOx production from lightning 

(as modelled by MOZART-3), which is the major source of NOx in the upper 

troposphere. The predominant sources of NOx near ground are surface emissions. 

 

 
Figure 5.2: Distribution of concentrations of NOx (in pptv) at 905 hPa (left) and 227 hPa (right) 

modelled by MOZART-3 CTM. 

 

The reduction of surface emissions influences atmospheric constituents and affects not 

only the lower troposphere, but its effect is also observed in the upper troposphere 

(Table 5.1). In most cases, differences in the background of constituents due to 

modified surface fluxes, are more pronounced near ground (1000–900 hPa).  

The exception are the responses of CO to reductions in surface NOx and NMVOC, and 

OH to reductions in surface CO and NMVOC emissions, where greater differences in 

the background conditions are calculated in the 250–200 hPa region compared to the 

1000–900 hPa. The background concentrations of NOx and O3 are always more 

perturbed near ground than in the upper troposphere, e.g., the reduction of NOx 
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emissions modifies the NOx background by -47% in the 1000–900 hPa region and only 

by -8.1% in the 250–200 hPa region.  

 
Table 5.1: The concentrations of NOx, CO, OH and O3 in the lower and upper troposphere for 

different background conditions. 

 

Background constituents 
Background conditions 

Base 2000 -30% NOx -30% CO -30% NMVOC 

1
0

0
0

 -
 9

0
0

 

h
P

a 

NOx [pptv] 278.7 148.6 280.7 309.4 

CO [ppbv] 102.0 107.4 80.1 98.9 

OH [10
6
 mol cm

-3
] 1.00 0.92 1.04 1.02 

O3 [ppbv] 34.5 32.8 33.8 33.3 

2
5

0
 -

 2
0
0

 

h
P

a 

NOx [pptv] 84.6 77.8 84.4 86.5 

CO [ppbv] 69.0 73.0 58.8 66.9 

OH [10
6
 mol cm

-3
] 0.97 0.91 1.02 0.98 

O3 [ppbv] 161.7 158.6 159.3 160.5 

 

Each of the experimental case affects the atmospheric constituents to different extent 

(Figure 5.3). The NOx background changes are the largest for surface reduction of NOx 

emissions: the annual and global NOx field is reduced by -151.1 pptv (-49.1%)  

at 950 hPa and by -7.6 pptv (-8.1 %) at 227 hPa (at that level the most of aircraft NOx 

emissions is emitted in MOZART-3). The ~30% reduction of surface CO emissions 

causes the increase of NOx concentrations by 2.4 pptv (0.8 %) at 950 hPa and minimal 

decrease by -0.2 pptv (-0.2%) 227 hPa. The perturbed NMVOC surface fluxes 

increases NOx background by 34.9 pptv (11.3%) at 950 hPa and 2.1pptv (2.2%) at  

227 hPa.    

 

The CO background is the most sensitive to CO reduction, which decreases CO 

concentration relatively uniformly throughout the troposphere and constitutes  

-9.6 ppbv (-14.5%) at 227 hPa. Also, the ~30% NMVOC reduction leads to a lowering 

of CO background by 2.0 ppbv (3.0%) at 227 hPa. The reduction of surface NOx 

emissions causes increase of CO in the atmosphere, again very consistently throughout 

the troposphere, by 3.6 ppbv (5.6%), globally and annually, more CO at 227 hPa.  

 

While perturbed NOx and CO concentrations are the result of direct effect of modified 

surface fluxes, further changes of other constituents are expected to occur through 

chemical reactions. Indeed, we can observe modified fields of OH and O3 (Figure 5.3). 

The OH field decreases with surface NOx reduction (-5.4% at 227 hPa) and increases 
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with surface CO and NNMVOC reductions (5.0% and 1.4% at 227 hPa, respectively). 

The response of O3 concentration to changes in surface emissions is negative for each 

case; the strongest O3 decrease is observed for NOx reduction (-1.7% at 227 hPa), the 

weakest for surface NMVOC reduction (-0.7% at 227 hPa). 

 

 

Figure 5.3: The globally and annually averaged vertical distributions of differences in 

concentrations of NOx, CO, OH and O3 for different background conditions compared to the 

base case. 

 

The differences in the background responses exist not only in the vertical domain, but 

also spatial influences occur. Figure 5.4 and 5.5 presents the distributions of NOx, CO, 

OH and O3 relative changes at 227 hPa from modified surface emissions. The most 

uniformly distributed background response belongs to CO for each experimental case. 

The more regional responses concentrated mainly over continents, where the reduced 

sources are placed, are calculated for background changes of NOx, OH and O3 

pronounced especially for surface NOx reduction and to lesser extent for surface 

NMVOC reduction. 
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Figure 5.4: The annually averaged spatial distribution of relative changes (in %) of background 

constituents: NOx (left column) and CO (right column) at 227 hPa due to reductions of surface 

NOx emissions (upper row), reductions of surface CO emissions (middle row) and reductions 

of surface NMVOC emissions (bottom row). 

 

 

 

The changes of atmospheric constituents are also influenced by seasons (Figure 5.6).  

In the upper troposphere larger perturbations for each of analysed species occur in 

summer months. The seasonal pattern looks different near the ground where winter 

months are more pronounced for species, for which the main source is surface 

emissions. Changes in OH and O3 that depend purely on chemical reactions have 

smaller responses during winter months, when solar intensity in the Northern 

Hemisphere is much weaker than during the summer months.    
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Figure 5.5: The annually averaged spatial distribution of relative changes (in %) of background 

constituents: O3 (left column) and OH (right column) at 227 hPa due to reductions of surface 

NOx emissions (upper row), reductions of surface CO emissions (middle row) and reductions 

of surface NMVOC emissions (bottom row). 

 

 

 

The oxidizing capacity of the atmosphere is substantially affected, when the reductions 

of NOx, CO and NMVOC are applied. This means that CH4 lifetime must be also 

influenced. Figure 5.7 shows how CH4 lifetime changes under different reduction 

cases. The CH4 lifetime due to destruction by OH is 8.8 years for the base case. While 

the 30% reduction of NOx introduces the greatest, the NMVOC reduction gives the 

weakest perturbations of CH4 abundance compared to base case, where CH4 lifetime 

changes by 7.0% (9.4 yr) and -0.7% (8.7 yr), respectively. The 30% reduction  

of surface CO emissions reduces CH4 lifetime by 3.4% and it constitutes 8.5 years.   
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Figure 5.6: The vertical distributions of differences in concentrations of NOx, CO, OH and O3 

in January (dotted lines) and July (dashed line) for different background conditions compared 

with base case. 

 

 

 

 

 

 
Figure 5.7: The CH4 lifetime (in year) due to destruction by OH for a different background 

conditions. 
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5.3.2 Aircraft perturbation 

 

Most of the NOx and O3 enhancement from aircraft NOx emissions is concentrated  

in the Northern Hemisphere (Figure 5.8). Both species are short lived, order of days 

and weeks, respectively, thus their perturbation occurs where the main air traffic takes 

place. The O3 production from NOx emissions depends on the state of the atmosphere, 

thus by changing the background of constituents, the sensitivity of aircraft O3 response 

should also change.  

 

 

Figure 5.8: The annual mean perturbations of NOx (left) and O3 (right) at 227 hPa in a response 

to emissions of aircraft NOx emissions modelled by MOZART-3 CTM. 

 

Figure 5.9 shows the aircraft NOx and O3 for different background cases. While the 

aircraft NOx response is only slightly affected, for aircraft O3, significant changes are 

calculated. The reduction of surface NOx brings increase of aircraft NOx perturbation 

near ground and decrease, by 1.1% of aircraft NOx response at 283–254 hPa. 

Generally, the small increase of aircraft NOx perturbation is observed at 227 hPa for all 

experimental cases and the reduction of surface NMVOC gives the largest aircraft NOx 

perturbation, which is 0.3 pptv (1.9%). The aircraft O3 response from modifications of 

surface emissions is more significant than aircraft NOx response. The most significant 

changes of aircraft O3 are observed for reduction of surface NOx, where the O3 

perturbation increases by 0.36 ppbv (17%) at 227 hPa. The reduction of surface CO 

and NMVOC causes decrease of aircraft O3 perturbation, by -0.10 ppbv (-4.8%) and -

0.12 ppbv (-5.5%), respectively, despite the increase of aircraft NOx perturbation is 

observed. 



Chapter 5: The influence of ozone precursor emissions on aircraft NOx response                                 56 

 
 

 

Figure 5.9: The globally and annually averaged vertical distributions of aircraft perturbations 

of NOx (left column) and O3 (right column) concentrations for different background conditions 

(upper row) and their absolute differences compared to the base case (bottom row). 

 

The changes in surface emissions affect distributions of both aircraft NOx and O3 

perturbations (Figure 5.10). The reduced surface NOx emissions decreases aircraft NOx 

response at 227 hPa with the negative peaks concentrated over east coast of North 

America and North Atlantic. The reduction of surface CO and NMVOC fluxes 

increases aircraft NOx response at 227 hPa; this enhancement is much more 

pronounced for the ‘NMVOC case’ especially over Europe, the North Atlantic and 

Asia. The aircraft O3 changes to different surface emissions are evenly distributed in 

the Northern Hemisphere, being positive for surface NOx reduction and negative for 

surface CO and NMVOC reductions. 

 

Similar to changes in background constituents, the aircraft responses have their 

seasonal dependencies (Figure 5.11). The aircraft NOx perturbation are greater in 

January for each experimental case for both near ground and at flight levels  

(~300–200 hPa). The aircraft O3 response is stronger in July for each surface conditions 

at flight levels; the reduction of surface NOx is a source of increase of aircraft O3,  

by 19.3%, in July at 227 hPa, on the contrary the reduction of surface NMVOC result 

in 5.7% decrease of aircraft O3 response.           
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Figure 5.10: The annually averaged spatial distribution of absolute changes of aircraft 

perturbations of NOx (upper row) and O3 (bottom row) at 227 hPa due to reductions of surface 

NOx emissions (left column), reductions of surface CO emissions (middle column) and 

combined reductions of surface NOx CO emissions (right column). 

 

 

 

Figure 5.11: The vertical distributions of differences of aircraft perturbations of NOx (left) and 

O3 (right) in January (dotted lines) and July (dashed line) for different background conditions 

compared with base case. 
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5.4 Discussion 

 

The perturbations of anthropogenic and biomass burning emissions substantially affect 

the background conditions of the atmosphere. The reductions of surface NOx, CO and 

NMVOC directly affect concentrations of these gases and the decreases of NOx, CO 

and NMVOC are observed, respectively. Reduction of surface NOx decreases 

concentrations of OH, which consequently affect CO and CH4 causing an increase in 

its abundance. On the contrary, reduction of CO leads to an increase of OH and 

decrease of CH4 lifetime. The NMVOC reduction increases NOx background via OH 

increase. The O3 strongly follows the NOx concentrations, thus its decrease  

is calculated for NOx reduction. What also drives the O3 production is abundance  

of CH4 (and CO, NMVOC); the decrease of CH4 lifetime with reduction of surface CO 

and NMVOC emissions (via OH) also decreases concentrations of O3. These results are 

consistent with other studies (e.g., Fry et al., 2012, Shindell et al., 2009, West et al., 

2007). The species’ lifetimes influence the distribution, both spatial and vertical, of 

their changes to modified surface fluxes. The CO lifetime is longer than NOx, OH and 

O3, thus its changes are more uniformly distributed in the troposphere.     

 

The resultant changes from surface emissions also extent to the upper troposphere, 

where aviation acts as the major pollutant source, which means that aircraft responses 

are also affected. Changes in aircraft response for perturbed background conditions are 

clearly observed (Table 5.2). The greatest aircraft O3 burden change and CH4 lifetime 

reduction are calculated for reduction of surface NOx emissions. The reduced NMVOC 

fields gives the lowest O3 response and the perturbed CO surface emissions results in 

the weakest CH4 lifetime reduction due to aircraft NOx emissions. 

 

Table 5.2: The annual mean O3 burden change (in Tg) and CH4 lifetime change (in year) due to 

the aircraft NOx emissions for different background conditions.  

 

Background conditions 
aircraft O3 burden 

(Tg) 

aircraft CH4 lifetime 

(yr) 

Base 2000 5.05 -0.073 

-30% NOx 6.07 -0.106 

-30% CO 4.89 -0.067 

-30% NMVOC 4.81 -0.069 
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The sensitivity of aircraft O3 production strongly depends on the experimental case 

(Figure 5.12), with its relative values ranging from positive (for reduction of NOx 

reduction) to negative (for reduction of CO and NMVOC emissions).  The reduction  

of NOx emissions leads to larger aircraft O3 responses by 19.6% in July and by 11.9% 

in January. One of the main factors that drive this increase is ‘cleaner’  

NOx background: the decrease of NOx concentration at 250–200 hPa reaches -12.3%  

in July and -4.2% in January. However, taking into account that O3 production from 

injected NOx is almost linear in the upper troposphere, there must be other agent 

influencing O3 response, which is enhanced CO abundance (Figure 5.3). The role of 

CO is also observed when reduction of surface CO emissions is taken into account; 

here weaker aircraft O3 is observed compared to base case (despite the fact that the 

NOx background is almost not affected and the small increase of aircraft NOx is 

observed, reaching 1.2% in January). This decline is rather constant through the year 

and it is -4.7% in July and -4.3% in January. All of these highlight importance of CO in 

O3 production. The decrease of O3 in case of surface NMVOC reduction, by -4.8% in 

January and -5.3% in July, is related with a decrease of CO background and an increase 

(reaching 3.8% in July) of NOx background (via OH increase).    

 

 

Figure 5.12: The relative changes of aircraft NOx response (blue bars), aircraft O3 burden (red 

bars) and NOx concentrations (green bars) in 250–200 hPa domain for January (left) and July 

(right) due to different background conditions. 

 

The disparate aircraft O3 burden changes, as well as CH4 abundance modified in each 

experimental case, both influence the magnitude of aircraft CH4 reduction. Figure 5.13 

shows that the reduction of CH4 lifetime, due to aircraft NOx emissions, is larger for 

reductions of surface NOx, by 46.2% compared to the base case and lower, by -7.4% 

and -4.6%, for reductions of surface CO and NMVOC emissions, respectively. 
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Figure 5.13: The global and annual relative changes of aircraft O3 burden (red bars) and CH4 

lifetime reductions (blue bars) responses due to different background conditions. 

 

Modifications of surface O3 precursor emissions lead to different ratios of the CH4 

lifetime change to the O3 burden change, which is specific for each background 

condition (Figure 5.14). The observed significant increase in the magnitude of aircraft 

O3 response, in the case of reduced surface NOx emissions, is substantially cancelled by 

efficient (due to increased CH4 abundance) negative CH4 response. The situation  

is different for reduction of surface CO emissions, where the decrease of aircraft O3 

response is greater than the increase (due to decreased CH4 abundance) of CH4 lifetime 

reduction.  The CH4/O3 ratio almost does not change (-0.4%) for reduction of surface 

NMVOC emissions compared with the base case. 

  

 

Figure 5.14: The absolute ratio of the CH4 lifetime change to the O3 burden change for 

different background conditions. 
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5.5 Summary 

 

The modified surface NOx emissions clearly affect the aircraft O3 response  

(Figure 5.15): the smaller (cleaner) background NOx leads to greater change of O3 from 

injected NOx, which is consistent with other studies on tropospheric non-linearities 

(Lin et al., 1988, Wu et al., 2009). The relation between the NOx background change 

and aircraft O3 response is linear up to 20% of the surface NOx reduction; for surface 

NOx rates greater than 20% the efficiency of O3 change raises with greater surface NOx 

reduction (the shape of this relation will depend on the initial background 

concentration). On the contrary, the relation between aircraft NOx emissions change 

and aircraft O3 response is linear for each aircraft NOx rate: the aircraft O3 response 

decreases with reduced amounts of injected NOx. The modified aircraft NOx emissions 

are always more efficient in influencing the aircraft O3 change; however, not with the 

same degree. The reduced NOx rates smaller than 5% give the similar strength in 

affecting aircraft O3 response for both cases; the difference in O3 change between 

surface and aircraft experiments are less than 1.5%. The NOx rates greater than 5% 

show that the aircraft O3 response is more sensitive to the aircraft NOx reductions, than 

to the surface NOx changes, e.g., for 50% reduction of surface and aircraft NOx 

emissions, the aircraft O3 changes by 32% and 43%, respectively. Therefore, the 

primary driver of aircraft induced O3 are NOx emissions; to the lesser, but still 

significant, extent it is influenced by NOx background conditions.  

 

 

 
Figure 5.15: Scatter plot of aircraft O3 burden changes (in %) against series of reduced aircraft 

(blue) and surface (red) NOx rates of emissions (dots are individual experiments, line is the best 

fit line). 
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Chapter 6  

 

The uncertainties associated with aircraft 

NOx estimates arising from usage of 

different aircraft inventories 

 

 

6.1 Introduction 

 

The NOx aircraft emissions alter the composition of atmosphere: enhance O3 

production and reduce CH4 lifetime and concentration. These changes result in 

radiative forcings (RF) which consequently stimulate climate change. The 

comprehensive review, regarding aviation impact on atmosphere and climate, has been 

recently presented by Lee et al. (2010).  

 

IPCC (1999) estimated that a global mean RF for O3 to be 23 mWm
-2

 and reduction of 

CH4 as -14 mWm
-2 

in year 1992. An updated study for year 2000 was presented by 

Sausen et al. (2005), which calculated the O3 RF of 21.9 mWm
-2

 and the CH4 RF  

of -10.4 mWm
-2

. Recently, Lee et al. (2009) estimated O3 and CH4 RFs as 26.3 mWm
-2

 

and -12.5 mWm
-2

, consequently, for year 2005. The ensemble studies, as presented 

above, are relatively consistent in determining their RFs and give a global mean net 

positive RF form aircraft NOx perturbation, varying from 9.0 mWm
-2

 to 13.8 mWm
-2

. 
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Many studies have been published over the past years assessing the impact of aviation 

NOx emissions on atmospheric chemistry and RF (Grewe et al., 1999, Isaksen et al., 

2001, Grewe et al., 2002, Stordal et al., 2006, Gauss et al., 2006, Søvde et al., 2007, 

Hoor et al., 2009, Köhler et al., 2008, Myhre et al., 2011, Hodnebrog et al., 2011, 2012, 

Frömming et al., 2012). The NOx estimates derived through modelling experiments, a 

mixture of Chemistry Transport Models (CTMs) and Climate Chemistry Model (CCM) 

give a diverse picture. The O3 column change due to aircraft NOx emissions can vary 

from 0.30 DU (Hoor et al., 2009) to 0.81 DU (Köhler et al., 2008). The methane 

lifetime change due to aircraft NOx emissions ranges between -3.0% (Köhler et al., 

2008) to -0.64% (Hoor et al., 2009). Consequently, the resultant RFs give broad 

spectrum of values as well. The short-term O3 RFs fluctuate between 10.8 mWm
-2

 

(Stordal et al., 2006, Hoor et al., 2009) and ~30 mWm
-2

 (Köhler et al., 2008,  

Hoor et al., 2009). The CH4 RFs vary from -5.7 mWm
-2

 (Hoor et al., 2009) to  

-19.0 mWm
-2 

(Köhler et al., 2008). The reported aircraft net NOx RFs are rather 

positive. However, the numbers can be as low as 0.0 mWm
-2

 (Köhler et al., 2008) or 

0.8 mWm
-2 

(Hoor et al., 2009) and as high as 8.7 mWm
-2

 (Myhre et al., 2011)  

or ~7.0 mWm
-2

 (Hoor et al., 2009, Myhre et al.,2011, Stordal et al., 2006). All these 

numbers are derived based on a sustained present-day aircraft NOx perturbations.  

 

Holmes et al. (2011) gathered the published model results, quantified and distinguished 

the processes, which drive the uncertainties in RFs from aviation NOx.  

The multi-model means of the short-term O3 are of 27.3   9.7 mW m
-2 

per Tg(N) yr
-1

, 

the CH4-induced O3 RF are of -6.6   3.3 mW m
-2 

per Tg(N) yr
-1

 and the CH4 RF are  

of -16.1   5.6 mW m
-2 

per Tg(N) yr
-1

. The multi-model net NOx RF turned out to be 

very uncertain and it is of 4.5   4.5 mW m
-2 

per Tg(N) yr
-1

. The uncertainties of the O3 

change to aviation NOx emissions and the radiative efficiencies of O3 are the main 

contributors to the uncertainty of the aircraft short-term O3 estimates. The uncertainty 

in the aircraft CH4 response originates, in 80%, from the uncertainty in the CH4 change 

to aviation NOx emissions. For the CH4-induced O3 response, the variance in its 

response is driven, in 50%, by the O3 change in the CH4 perturbation.         

 

These studies are not always straightforward in comparison, since the models have 

varying degrees of complexity in terms of completeness of representation of 

tropospheric and stratospheric chemistry, horizontal and vertical resolution.  



Chapter 6: The uncertainties associated with aircraft NOx estimates arising from usage of different 

aircraft inventories                                                                                                                                   64 

 
 

Holmes et al. (2011) highlighted factors, which drive the inter-model differences: these 

related to model response to aircraft emissions (‘aviation factor’), e.g., the model’s 

specific O3, CH4 change per unit emitted N and these related to general model response 

(‘nonaviation factor’), e.g., the model’s specific O3 change per unit change of CH4. 

Myhre et al. (2011) pointed out that the change in CH4 lifetime per unit O3 change is 

the dominant driver of inter-model disparities. However, these factors not necessarily 

must represent only a certain model’s peculiarities. The various sensitivities of O3 

change per unit emitted N and CH4 change per unit change of O3 are also possible to 

observe with one model and the same amount of emitted aircraft NOx, which will be 

shown below.  

 

In this chapter, the NOx impact on chemical composition of the troposphere is revisited 

and the individual RF responses (short-term O3 increase, long-term CH4 and O3 

decreases, CH4 feedback effect on stratospheric water vapour) are estimated. Most 

importantly, the impact of using different emission inventories is investigated, as all 

previous comparative studies have utilised different models. Here, a novel approach for 

aircraft NOx estimates is taken of using a single model with various aircraft emissions.  

 

6.2 Methodology 

 

6.2.1 Aircraft emission inventories 

 

The aircraft inventory datasets are normally produced based on aircraft movement 

database, characteristic of a global fleet in terms of type of aircraft and engines,  

fuel-flow model, calculation of emissions at vertical scale from fuel flow, landing and 

take-off emissions (LTO). The aircraft movement databases are usually generated from 

a combination of flight plan data, flight operation data, radar data, Official Aviation 

Guide (OAG) data (www.oag.com) and idealized great circle routes analysis. Recent 

publication of Olsen et al. (2013) presents more details regarding aircraft inventories 

and their comprehensive comparison. 

In this study, six different aircraft inventories were investigated: 

 

AEDT (Aviation Environmental Tool), representing year 2006 (Wilkerson et al., 

2010). The global aircraft data came from by Volpe National Transportation Systems 
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Centre. An individual flight by flight analysis were adopted in order to estimate the 

aircraft fuel burn and emissions. The 70–80% of global aircraft movements is based on 

a radar data for Europe and North America and for the remaining flight movements the 

OAG data were used. 

 

AEM (Advanced Emission Model), representing year 2006 

(www.eurocontrol.int/services/advanced-emission-model). AEM was developed and is 

maintained by EUROCONTROL. AEM is a stand-alone system, which calculates 

aviation emissions and fuel burn based on a few basic databases: aircraft, aircraft 

engines, fuel burn rates and emissions indices. AEM is design for analysis of the flight 

profile data, on a flight by flight bases, for different air traffic scenarios. 

 

AERO2K inventory, representing year 2002 (Eyers et al., 2005), was developed under 

the EC 5th Framework Programme. The inventory is based on a radar tracked flight 

data for North America and Europe; the rest of the world is included through scheduled 

flights data from Back Aviation database (Back, 2002) and by routing information. The 

fuel burn and emissions for each flight were derived using means from the PIANO 

(www.piano.aero) aircraft performance model based on forty representative aircraft 

types. 

 

REACT4C (EC 7th Framework Programme Reducing Emissions from Aviation by 

Changing Trajectories For the benefits of Climate), representing year 2006 

(www.react4c.eu). The input data consist of the CAEP-8 comprehensive set of aircraft 

movements (the individual movements are for 6 weeks of the year, which then are 

scaled to a full year’s movements). The base of air traffic movements are the radar data 

for flights for Europe and North America and the remaining global flight movements 

are covered by OAG. Two models were applied to generate this inventory: the  

fuel-flow model PIANO (Project Interactive Analysis and Optimization model) and 

global emissions model FAST (The Future Aviation Scenario Tool) (Owen et al., 

2010), similarly as for QUANTIFY and TRADEOFF data presented below. 

 

QUANTIFY (Quantifying the Climate Impact of Global and European Transport 

Systems), representing year 2000 (Owen et al., 2010). The dataset is based on the OAG 

data for scheduled flights and AERO2K’s traffic for non-scheduled aircraft 

http://www.eurocontrol.int/services/advanced-emission-model
http://www.piano.aero/
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movements. The QUANTIFY inventory, once released, was scaled to the International 

Energy Aviation (IEA) aviation fuel burn total for year 2000. 

 

TRADEOFF – representing year 1992 (Gauss et al., 2006). This inventory consists of  

a flight track data from the EUROCONTROL and FAA from the year 1991/1992. Four 

months of aircraft movements: July 1991, October 1991, January 1992 and April 1992 

were scaled in order to get a full year’s movement. The global aircraft movement data 

are a mixture of air traffic control and scheduled data. Sixteen civil aircraft–engine 

type combinations account for the global fleet of aircraft. 

Aircraft inventories used in this study are three dimensional gridded datasets, with  

a 1
°
x1

°
 horizontal resolution and a varying, from 1km through 610m to 500 ft, vertical 

resolution. Table 6.1 gives an overview of the characteristics of each inventory. 

Military emissions have not been included in this study. 

 

Table 6.1: The summary of specifications of aircraft inventories used in this study: AEDT, 

AEM, AERO2K, REACT4C, QUANTIFY and TRADEOFF. 

 

Inventory AEDT AEM AERO2K
 

REACT4C QUANTIFY
 

TRADEOFF 

Year 2006 2006 2002 2006 2000 1992 

Fuel  

Tg/year 
187 210 156 178 152 114 

Distance  

billion 

km/year 

38.9 43.6 33.2 38.9 30.5 17.4 

CO2  

Tg/year 
590 508 492 562 479 n/a 

NOx  

Tg(NO2)/year 
2.72 2.99 2.06 2.33 1.98 1.61 

Vertical 

spacing 
1km 500 ft 500 ft 610 m 610 m 610 m 

Temporal 

resolution 
Annual Monthly Monthly Monthly Monthly Seasonal 

Air traffic 

movements 

Radar 

data, 

OAG 

Radar 

data, 

OAG 

Radar data, 

BACK 

Radar data, 

OAG 

OAG for 

schedule & 

AERO2K for 

non-schedule 

traffic 

OAG, 

scheduled 

data 

         

Modelling 

tool 

SAGE, 

BADA 

AEM, 

BADA 

AERO2K, 

PIANO 

FAST, 

PIANO 

FAST, 

PIANO 

FAST, 

PIANO 
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Air traffic movements incorporated to different aircraft inventories are based on similar 

methodologies: 4D radar data for Western Europe and North America and schedule 

data for the rest of the world. Usually, for most of the inventories, the few weeks of 4D 

‘real data’ are considered, which are then scaled to represent the full year’s movement. 

Only AEDT inventory includes ‘as much real data as possible’ (Wilkerson et al., 

2010), where flight trajectories are analysed on a single flight basis. In addition, the 

track methodology employed in AEDT 2006 is an airways track method (instead of 

Great Circle analysis widely used for other inventories), which was proved to 

constitute a more precise representation of actual flight activity (Wilkerson et al. 

(2010), based on analysis of Eastern Europe, East Asia and Arctic, where most of the 

non-radar data occurs). This all makes aircraft AEDT 2006 inventory favourable, in 

terms of representing the air traffic movements, hence related aviation emissions, the 

most accurately.  

 

6.2.2 Experimental design 

 

The aircraft emission datasets were implemented into the 3D CTM, MOZART-3.  Each 

dataset represents different years of aircraft movements, which results in different 

amounts of burned fuel ranging from 210 Tg yr
-1

 for AEDT (2006) to 114 Tg yr
-1

 for 

TRADEOFF (1992) which affects the emitted NOx. In order to exclude the differences 

in the amount of injected NOx, which consequently impacts O3 response, the NOx 

emissions of each inventory were scaled to the same global total as the REACT4C , 

which is 2.33 Tg (NO2) yr
-1

. 

 

Seven experiments were conducted, one reference (no-aircraft) run and six perturbation 

(aircraft) runs, each starting in January 2000 and finishing in December 2000. Each of 

the simulations was preceded by one year spin-up. The aircraft perturbation is obtained 

by extracting the difference between aircraft and no-aircraft experiments. The validity 

of 2 years simulations is presented in Chapter 4.4. The details regarding model set-up, 

surface emissions and dynamical data applied for this study are described in  

Chapter 3.3. The detailed description of radiative forcings and global warming 

potentials calculations is presented in Chapter 3.2 
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6.2.3 Additional aircraft NOx experiments – altitudinal regions 

 

In order to examine the extent of importance of altitudinal and latitudinal locations in 

O3 production, the incremental aircraft NOx emissions (0.035 Tg(N) yr
-1

) were applied 

for a period of a year to three altitudinal regions: 9–10 km, 10–11 km, 11–12 km and 

three latitudinal regions: Europe, Southeast Asia and North America (Figure 6.1).  

The additional NOx emission corresponds to 38%, 12%, 130%, 32%, 28% and 30%  

of relative increases in the respective regions.  The MOZART-3 setup is consistent 

with incremental aircraft NOx experiments presented in Chapter 8 and it is described  

in details in Chapter 3. The aircraft inventory used for these runs is the REACT4C 

2006 dataset 

 

Figure 6.1: The vertical (left side) and latitudinal (right side) profiles of incremental aircraft 

NOx emissions in six regions: 9–10 km, 10–11 km, 11–12 km, Europe (EUR), Southeast Asia 

(SE ASIA) and North America (NA). 

 

 

6.3 Results 

 

6.3.1 Aircraft NOx emissions 

 

As various methodologies have been applied to determine different inventories,  

the distribution of NOx emissions reveals some discrepancies. The geographical 

distribution shows rather uniform picture (Figure 6.2). The image of altitudinal spacing 

reveals some discrepancies (Figure 6.3). 

 

The main location of aircraft NOx emissions is the Northern Hemisphere: emissions  

in 30–60°N and 0–30°N regions constitute 65% and 24%, respectively, for AEDT, 
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AEM and REACT4C inventories; AERO2K, QUANTIFY and TRADEOFF have more 

emissions in mid northern latitudes (68%) and less over the northern tropical region 

(21%). Most of aircraft NOx emissions is present over North America, Europe and 

Southeast Asia. AERO2K, QUANTIFY and TRADEOFF have lower emissions,  

by ~4%, in 60–120°E region and more, by ~4%, in 120–60°W region than AEDT, 

AEM and REACT4C. 

 

The largest part of the NOx emissions are injected between 9 and 12 km for most of the 

inventories; AEDT and AEM have larger fraction of aircraft NOx over 12 km than the 

other inventories. AERO2K’s NOx emissions at cruise altitudes represent only 43% of 

its total aircraft NOx emissions (Figure 6.3), which, when compared with 57% of 

QUANTIFY, 58% of AEM, 59% of REACT4C and TRADEOFF and 63% of AEDT, 

is noticeably low. The ‘missing’ ~10% is hidden under AERO2K’s relatively large 

NOx emissions at mid-altitudes, which is 34%, while for all the rest of inventories  

it covers around 25%. The difference in the vertical structure of NOx emissions 

between AERO2K and the other datasets is considerable. Also Olsen et al. (2012) and  

Wilcox et al. (2012) highlighted the peculiarity of AERO2K inventory in their 

inventory comparison and water vapour studies, respectively. 

 

The normalized datasets (scaled to the same global total, which is 2.33 Tg(NO2) yr
-1

) 

also reveal discrepancies in altitudinal and latitudinal distributions of aircraft NOx 

emissions (Figure 6.4, 6.5). The AERO2K’s NOx dominates by ~87% near ground and 

in mid-altitudes (till 9 km) reaching 261% at 2–3 km layer compared to AEDT 

inventory, along with significant lack of aircraft NOx emissions ~56% in 9–13 km 

region (Figure 6.4). All FAST inventories (REACT4C, TRADEOFF, QUANTIFY) 

have ~21% more NOx emissions at 10–11 km compared to AEDT and ~83% less at 

11–13 km. The latitudinal distribution of aircraft NOx emissions is rather consistent 

(Figure 6.5). It is observed that high northern and southern latitudes are causing  

the greatest relative differences. The longitudinal profiles (Figure 6.5) shows that 

AEDT has slightly more NOx in Asia and a bit less NOx in North America than 

AERO2K, QUANTIFY and TRADEOFF. The AEM and REACT4C inventories are 

the most consistent with AEDT dataset in terms of their latitudinal and longitudinal 

distribution. 
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Figure 6.2: The globally and annually averaged latitudinal (upper row) and longitudinal 

(bottom row) distributions of aircraft NOx emission (left column) and the fraction of aircraft 

NOx emission occurring in latitudinal and longitudinal bands (right column) for different 

aircraft inventories: AEDT, AEM, AERO2K, REACT4C, QUANTIFY and TRADEOFF. 

 

 

 

 

Figure 6.3: The globally and annually averaged altitudinal distributions of aircraft NOx 

emission (left) and the fraction of aircraft NOx emission occurring in three altitudinal bands 

(right) for different aircraft inventories: AEDT, AEM, AERO2K, REACT4C, QUANTIFY and 

TRADEOFF. 
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Figure 6.4: The vertical distributions of absolute (left) and relative (right) differences of 

normalized aircraft NOx emissions; data from each scaled inventory is related to the scaled 

AEDT inventory. 

 

 

 

Figure 6.5: The latitudinal (upper row) and longitudinal (bottom row) distributions of absolute 

(left column) and relative (right column) differences of normalized aircraft NOx emissions; 

data from each scaled inventory is related to the scaled AEDT inventory. 

 

Despite the geographical distribution between AEDT and REACT4C is similar the 

differences exist in altitudinal domain. Thus, the region where most of the aircraft NOx 

emissions are injected is divided into single vertical layers in order to estimate where 

the differences exist. Figure 6.6 shows that the REACT4C’s main North Atlantic flight 

corridor, as well as emissions over Europe and United States, is concentrated  
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at 227 hPa. The AEDT’s North Atlantic flights are one layer higher at 201 hPa. 

Different situation is distinguished for AERO2K’s emissions, where the main 

concentration of European and North Atlantic flights is two layers lower than AEDT’s 

emissions, at 254 hPa (Figure 6.7). AEDT has also more aircraft NOx emissions over 

East Asia at 201 hPa than REACT4C and AERO2K. While REACT4C has these 

emissions at 254–283 hPa, the AERO2K data has observed deficiency of NOx 

emissions over East Asia in all investigated vertical layers. 

 

 

Figure 6.6: The differences (in molec/cm
3
/s) in annual distributions of aircraft NOx emissions 

at 176 hPa (upper row), 201 hPa (middle row), 227 hPa (bottom row) between AEDT and 

AERO2K (left column), REACT4C (right column) normalized inventories. 
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Figure 6.7: The differences (in molec/cm
3
/s) in annual distributions of aircraft NOx emissions 

at 254 hPa (upper row), 283 hPa (middle row), 314 hPa (bottom row) between AEDT and 

AERO2K (left column), REACT4C (right column) normalized inventories. 

 

 

The original aircraft emission data have a regular vertical gridding (500ft, 610m  

or 1km), which are then interpolated by MOZART-3 to its irregular (with hybrid sigma 

layers every ~1 km in UTLS region) vertical spacing (Figure 3.3 in Chapter 3).  

Figure 6.8 shows the vertical distribution of aircraft NOx emissions in MOZART-3 for 

the six normalized aircraft inventories. Each dataset represents the equal global total of 

aircraft NOx (2.33 Tg (NO2) yr
-1

). The initial resolution of dataset plays an important 

role when it is redistributed into the lowest CTM’s vertical layers. Since the vertical 

resolution in MOZART-3 near surface is high (~45 m), the datasets with higher 

resolution (AEM and AERO2K) have more aircraft NOx emissions near ground  

(1000–950 hPa). 

 

In MOZART-3 the most of aircraft NOx emissions are injected in the 283–200 hPa 

region, where the emissions differ by 23% when the greatest (TRADEOFF) and  
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the smallest (AERO2K) numbers are considered. The peak of aircraft NOx emissions  

is found to be at 227 hPa, with the greatest values occurring for REACT4C and 

TRADEOFF. AEDT and AEM have more emissions at 200 hPa and over, than other 

inventories, which gives the possibility of more efficient accumulation of N molecules 

(Seinfeld and Pandis, 2006). 

 

Figure 6.8: The globally and annually averaged vertical distribution of aircraft NOx emissions 

redistributed into MOZART-3 vertical layers for six aircraft inventories: AEDT, AEM, 

AERO2K, REACT4C, QUANTIFY and TRADEOFF. The NOx emissions are scaled to the 

same global total, which is 2.33 Tg(NO2)/yr. 

 

 

6.3.2 Chemical perturbation 

 

Aviation NOx emissions affects the NOx–O3–CH4 system; its response presents  

Figure 6.9. The enhancements of NOx and O3 are calculated due to aircraft NOx 

emissions, concentrated mainly at ~300–180 hPa, where most of the aviation emissions 

are injected. The positive peak of NOx perturbation is observed at 227 hPa for all 

inventories; only AEDT and AEM have their maximum one level higher, at 201 hPa. 

This suggests that NOx emissions at higher altitudes have a greater potential in 

perturbing NOx fields, which indeed is confirmed by additional (as described in 

Chapter 6.2.3) experiments (Figure 6.10). The greatest NOx perturbation is observed 

for AEDT and the smallest for AERO2K, which consequently affects the O3 response, 

which follows similar pattern of differences between datasets. The peak of O3 response 

is found to be at 227 hPa level for all inventories, with AEDT and AERO2K having the 

most different magnitudes. The enhanced O3 changes the oxidizing capacity of the 
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troposphere; the OH/HO2 ratio is perturbed: OH increases and HO2 decreases. The 

positive OH response is observed through all tropospheric domain, the negative HO2 

response appears mainly at flight altitudes. While the impact of AERO2K inventory on 

NOx and O3 in UTLS region is relatively small, it is responsible for greater aircraft OH 

perturbation in mid-altitudes and consequently CO and CH4 changes, than other 

datasets. The more efficient CO oxidation results in a greater AERO2K’s HO2 

perturbation in mid-altitudes, than of other inventories. 

 

 

Figure 6.9: The globally and annually averaged vertical distributions of aircraft perturbations 

of NOx (a), O3 (b), OH (c) and HO2 (d) concentrations for a six normalized aircraft inventories. 

 

 

Figure 6.10: The perturbation of NOx concentrations at 280–180 hPa (in pptv) due to  

0.035 Tg(N)/yr incremental aircraft NOx emissions in three altitudinal regions. 
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The spread in magnitudes of aircraft perturbations of NOx and O3 at 227 hPa for  

a series of aircraft inventories reveals regional patterns (Figure 6.11). The largest 

spread in aircraft NOx perturbation is observed over Europe, North Atlantic, western 

and central areas of Asia and eastern coast of Asia. The largest differences in perturbed  

O3 are concentrated uniformly in high northern latitudes.       

 

 

Figure 6.11: Standard deviation in annually averaged perturbations of NOx (left) and O3 (right) 

at 227 hPa for a series of aircraft inventories. 

 

The same amount of emitted NOx, but varying vertical distributions of NOx emissions 

lead to significant differences in short-term O3 response between inventories. Table 6.2 

gives global and annual means of O3 burden change and O3 production efficiency 

values for six different inventories. The greatest burden change is observed for AEDT 

(5.6 Tg) and AEM (5.4 Tg) and the smallest for AERO2K (4.7 Tg). Also, QUANTIFY 

shows a relatively weaker O3 response (5.0 Tg) compared with the other FAST 

inventories REACT4C and TRADEOFF (5.3 Tg and 5.2 Tg, respectively).  

 

Table 6.2: The global and annual mean O3 burden change (in Tg) and O3 production efficiency 

(OPE; the number of O3 molecules produced per emitted NOx molecule) for a series of 

normalized aircraft inventories. 
 

INVENTORY O3 Tg OPE 

AEDT 5.6 30.1 

AEM 5.4 29.1 

AERO2K 4.7 25.4 

REACT4C 5.3 28.2 

QUANTIFY 5.0 27.0 

TRADEOFF 5.2 27.7 
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It has been shown that the O3 production in the troposphere is sensitive to the height of 

the initial precursor emissions (Köhler et al., 2008). This is indirectly observed in these 

results, where more molecules of ozone are produced per molecule of N for inventories 

with greater amounts of NOx emissions at higher altitudes, it being 30 for AEDT,  

29 for AEM, 28 for REACT4C, 27 for QUANTIFY and TRADEOFF and 25 for 

AERO2K (Table 6.2). This shows that a lower potential, by 15%, is represented by 

AERO2K inventory compared to AEDT dataset in terms of ozone production, which  

is consistent with the spread of O3 burden change. 

 

The methane lifetime due to destruction by OH in a reference case was calculated  

as 8.88 years. In contrast to the O3 responses, the CH4 lifetime reductions are found  

to be quite uniform among different inventories (Table 6.3) ranging from -0.074 years 

for AERO2K and TRADEOFF, -0.073 years for REACT4C to -0.07 years for AEDT. 

 

Table 6.3: CH4 lifetime (in year) due to destruction by OH (between the surface and 1hPa) and 

the CH4 lifetime change (in year) due to the aircraft NOx emissions for a series of normalized 

aircraft inventories. 
 

INVENTORY 
CH4 lifetime  

(year) 

CH4 lifetime  

change (year) 

Reference run 8.882  

AEDT 8.813 -0.070 

AEM 8.811 -0.071 

AERO2K 8.808 -0.074 

REACT4C 8.810 -0.073 

QUANTIFY 8.809 -0.073 

TRADEOFF 8.808 -0.074 

 

 

6.3.3 Radiative forcing and global warming potential for aviation NOx 

 

The latitudinal distributions of short-term O3 RF for the six normalized inventories  

are shown in Figure 6.12. The patterns of each inventories are consistent and they 

mimic the zonal-mean distributions of NOx emissions (Figure 6.2) (as both are rather 

short-lived), with dominating role of short-term O3 RF over Northern Hemisphere. 

There is relative agreement in the resultant short-term O3 RF between inventories  

at high southern and northern latitudes; the tropical region (30°S–40°N) shows 

discrepancies (Figure 6.11). The largest spread in the short-term O3 RF between 
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inventories are found to be over northern tropical belt (15–30°N), where locally the 

standard deviation reaches 3.0–3.5 mWm
-2

, over Middle East, Pacific and North 

Africa. The AERO2K shows the greatest underestimations of short-term O3 RFs among 

the investigated inventories (Figure 6.13).    

 

 

Figure 6.12:  The zonal and annual mean radiative forcing (mW m
-2

) from short-term O3 (left) 

and the standard deviation in net radiative forcing from short-term O3 (right) for a series of 

normalized aircraft inventories. 

 

 
Figure 6.13: The zonal and annual means of the absolute (left) and the relative differences 

(right) in net radiative forcing from short-term O3 between normalized AEDT and the rest  

of normalized inventories. 

 

Table 6.4 presents the global and annual mean RF (mWm
-2

) for short-term O3,  

CH4-induced O3, CH4, and stratospheric water vapour from aircraft NOx perturbation 

for a series of normalized inventories. The spread of short-term O3 values is of  

2.8 mWm
-2

, with AEDT and AERO2K resulting in highest and lowest numbers (the 

standard deviation is 1.0 mWm
-2

, when all investigated inventories are considered). 

The CH4 responses are much more consistent, the numbers differ by 0.4 mWm
-2 

and 

standard deviation is 0.2 mWm
-2

 (with values ranging from -7.1 mWm
-2 

for AERO2K 

and TRADEOFF and -6.7 mWm
-2

 for AEDT). The net aircraft NOx RF values ranges 

from 3.6 mWm
-2 

for AEDT, 3.0 mWm
-2 

for AEM, 2.3 mWm
-2 

for REACT4C to  

0.2 mWm
-2 

for AERO2K and the standard deviation constitute 1.2 mWm
-2

. 
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Table 6.4: Radiative forcings (in mW m
-2

) due to short-term O3, CH4-induced O3, CH4, 

stratospheric water vapour (SWV) and net NOx (net of all 4 components) for six normalized 

aircraft inventories. The radiative forcings per unit emission of aircraft N  

(in mW m
-2

/Tg(N) yr
-1

) are presented in the brackets. 

 

INVENTORY 
Radiative forcings from aircraft NOx emissions 

Short-term O3 CH4-induced O3 CH4 SWV Net NOx 

AEDT 14.3 (20.5) -3.0 (-4.3) -6.7 (-9.5) -1.0 (-1.4) 3.6 (5.2) 

AEM 13.8 (19.7) -3.0 (-4.2) -6.8 (-9.7) -1.0 (-1.5) 3.0 (4.2) 

AERO2K 11.5 (16.5) -3.1 (-4.5) -7.1 (-10.4) -1.1 (-1.5) 0.2 (0.3) 

REACT4C 13.4 (19.2) -3.1 (-4.4) -7.0 (-10.0) -1.1 (-1.5) 2.3 (3.3) 

QUANTIFY 12.8 (18.3) -3.1 (-4.4) -7.0 (-10.0) -1.1 (-1.5) 1.7 (2.4) 

TRADEOFF 13.1 (18.7) -3.1 (-4.5) -7.1 (-10.2) -1.1 (-1.5) 1.8 (2.6) 

 
 

     

Myhre et al. (2011) presented GWP values for aviation NOx emissions using the same 

aircraft emissions, the same experimental design and a range of five models.  

The differences in their results constitute a good insight into uncertainties arising from 

usage of different global chemistry models. In contrast, the spread in results, which  

are presented here, gives range of differences that arise from usage of different aircraft 

inventories. 

 

The resulting GWP values for three time horizons (20, 100 and 500 years)  

are presented in Table 6.5. The numbers show significant differences, which  

are enhanced with larger time horizons; however, the sign of calculated responses 

shows a consistently net positive value. The greatest differences come from the AEDT 

and AERO2K inventories, being 57%, 93%, 93% different for 20, 100, 500 time 

horizons, respectively. The increase of discrepancy with larger time horizons might  

be expounded by CH4, as its response ‘remains’ for a few decades after NOx emission. 

 

The GWP decrease between a 20 year time horizon and a 100 year horizon is larger for 

inventories where the CH4 lifetime reduction is more enhanced; it is 82% for AEDT, 

83% for AEM, 85% for REACT4C, 87% for QUANTIFY and TRADEOFF, 97%  

for AERO2K. The 100 vs 500 year time horizons discrepancies are constant, 70%, for 

all inventories. Due to relatively short lifetimes of the net NOx components the GWP 

(H=500) differs between inventory data only by the CO2 integral in the denominator. 

 

 



Chapter 6: The uncertainties associated with aircraft NOx estimates arising from usage of different 

aircraft inventories                                                                                                                                   80 

 
 

Table 6.5: Global Warming Potentials (GWP) for aircraft NOx emissions for a series of 

normalized aircraft inventories for 20, 100 and 500 time horizon (sO3 = short-term O3,  

lO3 = CH4-induced O3, CH4 = CH4 + SWV, net NOx = sO3 + lO3 + CH4). All values are given 

on a per kg N basis and are relative to CO2. 
 

INVENTORY 
GWP(20) GWP(100) GWP(500) 

sO3 lO3 CH4 NOx sO3 lO3 CH4 NOx sO3 lO3 CH4 NOx 

AEDT 828 -140 -356 332 235 -50 -126 60 72 -15 -38 18 

AEM 796 -137 -364 295 226 -49 -129 49 69 -15 -39 15 

AERO2K 666 -146 -379 142 189 -52 -134 4 58 -16 -41 1 

REACT4C 777 -143 -372 262 221 -51 -132 39 67 -15 -40 12 

QUANTIFY 740 -143 -372 225 210 -51 -132 28 64 -15 -40 8 

TRADEOFF 759 -146 -380 233 216 -52 -134 30 66 -16 -41 9 

 

 

 

6.4 Discussion 

 

Figure 6.15 shows the vertical profiles of the relative difference of NOx, O3 and OH 

responses to aircraft NOx emissions to that of the AEDT inventory (chosen simply as  

it gives the largest overall response). The aircraft NOx perturbation at 227 hPa is about 

25% greater for AEDT than that for AERO2K. The difference rises with higher 

altitudes and constitutes 55% at 100 hPa. On the contrary, AERO2K’s NOx response 

significantly exceeds that of AEDT (and any other inventory) at mid altitudes, where 

the difference reaches 500% at 762 hPa. The response of the O3 for these discrepancies 

is not comparable. It is found that AERO2K’s O3 response indeed dominates in the 

low-troposphere region (1000–600 hPa) but only by about 4%, whereas AEDT’s 

prevalence at cruise altitudes reaches 25% and 50% at 100 hPa. The same pattern  

is observed for all inventories, just the scale of differences is smaller. The linear 

relation between additional NOx and O3 response is observed in the UTLS region, 

being the strongest at 227 hPa and becoming weaker at higher altitudes. The ratio of O3 

to NOx for AERO2K’s results is 1 at 227 hPa and 0.9 at 100 hPa (e.g. for AEM it is 1 

at 227 hPa and 0.7 at 100 hPa, for REACT4C it is 1.5 at 227 hPa and 0.8 at 100 hPa). 
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Figure 6.15: The globally and annually averaged vertical distributions of relative differences 

(in %) in aircraft perturbations of NOx (a), O3 (b) and OH (c) concentrations for a normalized 

aircraft  inventories; results from each inventory were related to the results from AEDT. 

 

Interestingly, the greatest O3 aircraft perturbation did not introduce the largest CH4 

reduction, as might be expected from the chemistry. The vertical distribution of 

emissions might hide the explanation: a significant fraction of AERO2K’s NOx 

emissions occurs in the mid-troposphere. The ~4% domination of AERO2K’s O3  

in 900–700 hPa region significantly modifies the oxidizing capacity of the low 

troposphere (there is more OH by about 30% than for AEDT, Figure 6.14).  

Annual mean concentrations of OH and CH4 and temperature are greater at lower 

altitudes, which catalyse processes of OH production and CH4 destruction. 

 

Another consequence of AERO2K’s enhancement of O3 concentrations at lower 

altitudes is that this O3 is not as radiatively efficient as O3 at higher altitudes  

(Lacis et al., 1990, Köhler et al., 2008). Hence, despite the spread between O3 burden 

of the two most differing inventories is 15%, the discrepancy of short-term O3 RF 

reaches 20%. 

 

It is worth to note, that not only the height is important, also the geographical 

distribution of aircraft NOx emissions plays a certain role in terms of O3 RF response. 

The NOx emissions from low latitudes have a larger impact on climate forcings than 

the NOx emissions from high latitudes (e.g., Fuglestvedt et al., 1999, Berntsen et al., 

2005, Köhler et al., 2012). The AERO2K dataset has less, compared to other 

inventories, NOx emissions at cruise altitudes over East Asia (Figure 6.6, 6.7), which 

was also noted by Olsen et al. (2013). However, what are the extents of influences of 

potentials hidden in geographical and altitudinal regions in terms of O3 production? 
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The O3 response differs from region to region, being the most pronounced at cruise 

altitudes, especially at 11–12 km and 10–11 km (Figure 6.16). The efficiency of O3 

production at 11–12 km exceeds the low latitude efficiency by 36%, the mid-latitude 

by 45% for North America and 51% for Europe and the lower flight altitudes 

efficiency, 10–11 km and 9–10 km, by 14% and 22%, respectively. The background 

conditions and the intensity of solar irradiance influence both, O3 and CH4 responses. 

The ratio of the CH4 lifetime change to the O3 burden change is specific for each 

region (Figure 6.17). The least efficient CH4 loss occurs in altitudinal regions,  

10–11 km and 11–12 km. The greatest efficiency in CH4 lifetime reduction is observed 

in Southeast Asia. Interestingly the CH4 loss efficiency changes significantly at  

9–10 km compared to higher altitudinal layers. 

 

 

Figure 6.16: The normalized O3 burden change (red bars) and CH4 lifetime reduction  

(blue bars) due to 0.035 Tg(N)/yr incremental aircraft NOx emissions in six regions. 

 

 

 

Figure 6.17: The absolute ratio of the CH4 lifetime change to the O3 burden change due  

to 0.035 Tg(N)/yr incremental aircraft NOx emissions for six regions. 
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All these aspects reduce the potential of AERO2K in terms of its impact on 

tropospheric O3 and its overall aircraft net NOx RF response compared with other 

aircraft inventories. The AERO2K’s ratio of the CH4 lifetime change to the O3 burden 

change is significantly greater than of other inventories (Figure 6.18).  

 

 

Figure 6.18: The absolute ratio of the CH4 lifetime change to the O3 burden change due to 

aircraft NOx emissions for a series of normalized aircraft inventories. 

 

 

 

6.5 Summary 

 

Figure 6.19 presents a short-term O3 RF and net NOx RF responses normalized to  

1 Tg of emitted aircraft N reported for a number of model simulations (Stordal et al. 

2006, Hoor et al., 2009, Myhre et al., 2011, Hodnebrog et al., 2011, 2012). The above 

studies give an inter-model mean O3 and NOx RF values equal 22.2 and  

5.0 mW m
-2

/Tg(N) yr
-1

, respectively. Most of the modelled short-term O3 responses are 

placed within a one standard deviation range. On the contrary, the net NOx RF values 

constitute a more diverse picture. This can be revealed by the inter-study differences in 

the components taken into account for net NOx calculation. Myhre et al. (2011) 

highlighted that the ratio of the CH4 lifetime change to the O3 column change is very 

specific for each model, which also influence the net NOx numbers. The results given 

by MOZART-3 are in good agreement with other modelling studies. 
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Figure 6.19: Global and annual radiative forcings from a short-term O3 (left) and net NOx 

(right) per unit emission of aircraft N (mW m
-2

/Tg N yr
-1

) as reported in literature (black font) 

and as a result of this study (red font). Each point represents a specific model study, solid lines 

denote the mean value, dashed lines show the one standard deviation range of results. The 

components included in ‘net NOx’ values differ from study to study, as explained in the text. 

 

 

The difference in RF values (20% for O3 RF and 94% for net NOx RF) between six 

aircraft inventories is of a smaller magnitude to that of uncertainties between models; 

however, it is still meaningful. Myhre et al. (2011) reported a 36% spread in O3 RF 

values and 54% in net NOx RF numbers between a set of five different models (note 

that Myhre et al. (2011) account for the time-history emissions (Grewe and Stenke, 

2008) in their long term effects). Hoor et al. (2009) presented a 64% spread in O3 RF 

and 89% in net NOx (net is without SWV) values between five different models and 

Stordal et al. (2006) reported a 33% spread in O3 RF and 59% in net NOx RF (net is a 

sum of short-term O3 and CH4) numbers between three different models. This places 

the disparities between different inventories on the same scale of importance as inter-

model differences. 

 

Overall, the AERO2K inventory is significantly distinct from other inventories in terms 

of its impact on O3 and net aviation NOx. The spread between aircraft NOx estimates 

emerging from usage of different aircraft inventories constitutes a significant range of 

uncertainty. An attention should be paid to formulating aircraft emission inventories 

where precise cruise altitudes are defined. 
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Chapter 7  

 

New developments in global warming 

potentials for aviation NOx emissions 

 

 

7.1 Introduction  

 

There are significant difficulties related to the inclusion of the effects from chemically 

active short-lived substances (e.g., ozone precursors or aerosols) into the Global 

Warming Potential (GWP) concept, which was initially designed for long-lived 

greenhouse gases. The substantial uncertainties associated with estimates of the climate 

impacts for these species and limited understanding of indirect effects makes the usage 

of GWP scientifically contentious (e.g., Isaksen et al., 2009). GWPs for NOx emissions 

are described by Fuglestvedt et al. (2003) as one of the most “challenging and 

controversial”. 

 

Generally, the NOx GWP metric value comprises the short-term O3 effect, long-term 

CH4 response and long-term CH4 effect on O3. Further indirect NOx effects also occur, 

like nitrate formation, or CH4 effect on stratospheric H2O (the latter has usually been 

taken into account recently, in addition to the three ‘default’ components mentioned 

above, e.g., Myhre et al., 2011, Fry et al., 2012, Köhler et al., 2012). The short-term O3 

response is always positive; the CH4 and CH4-induced O3 responses are always 

negative. However, the net effect is not always so clear in terms of magnitude, or even 

a sign. 



Chapter 7: New developments in global warming potentials for aviation NOx emissions                      86 

 
 

The net NOx value depends on the counterbalancing effects, which represent different 

temporal behaviours. Additionally, the climate forcings resulting from NOx emission 

significantly depend on the location of emissions. Shine et al. (2005a) highlighted two 

dimensions of challenges related with defining a robust metric value for climate impact 

of NOx emissions: metric design and differences among the models. The inclusion  

of non-linear and heterogeneous NOx–O3–CH4 system into a concept leaning on global 

mean input, results in a substantial divergence in the calculated values available in the 

literature.  

 

GWPs for aviation NOx, based on a pulse emission, have been derived in a very limited 

number of evaluations. IPCC AR4 (Forster et al., 2007) identified only three studies: 

Wild et al. (2001), Derwent et al. (2001) and Stevenson et al. (2004), which yielded the 

GWP100 values of 130, 100 and -3, respectively. These GWPs have lately been  

re-evaluated by Fuglestvedt et al. (2010), yielding values of 71 and -2.1  

(for Wild et al., 2001 and Stevenson et al., 2004, respectively). Recently Köhler et al. 

(2012) calculated aircraft NOx GWP100 of 75, whilst Myhre et al. (2011) and  

Skowron et al. (2013) provided ranges of aircraft NOx GWP100 varying from 67 to -21 

and from 60 to 4, respectively.  

 

It has been shown that the uncertainties in estimations in GWP from aviation NOx 

might arise from different tropospheric NOx background conditions  

(e.g., Holmes et al., 2011), model-specific CH4 per O3 response (Myhre et al., 2011),  

or usage of different aircraft inventories (Skowron et al., 2013). 

 

These disparate, and relatively few estimates, of aircraft NOx GWP are the inspiration 

of this study. In this chapter, the impact of different aircraft NOx emission rates on 

NOx–O3–CH4 system and its implication on aircraft NOx GWP value are investigated.  
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7.2 Methodology 

 

7.2.1 Incremental aircraft NOx emissions 

 

The incremental aircraft NOx emissions were applied globally for a period of a year, 

having aircraft NOx rates ranging from 0.007 to 9.3 Tg(N) yr
-1

. The reference run for 

the incremental experiments constitute actual aircraft NOx emissions for the year 2006,  

0.71 Tg(N) yr
-1

. These CTM simulations in conjunction with further calculations of the 

temporal evolution of aircraft perturbations following the additional aircraft NOx 

injections (as described in Chapters 3.2.3 and 4.6) give a possibility of creating 

experiments analogous to pulses
1
 (Figure 7.1) and are consistent with the ‘transient’ 

approach defined by Fuglestvedt et al. (2010).  

 

Additionally, the corresponding aircraft NOx emission rates (0.717–10 Tg(N) yr
-1

) 

were employed for steady-state experiments where the reference run constitutes a 

background without aircraft emissions. These CTM simulations and further 

calculations of temporal evolution of aircraft perturbations are consistent with  

‘steady-state’ approach defined by Fuglestvedt et al. (2010). The results of which will 

be employed and discussed later in this chapter. 

 

 

Figure 7.1: Temporal evolution of changes in the global burdens of O3 (red) and CH4 (blue) for 

different incremental aircraft NOx emission rates: 0.035 Tg(N) yr
-1

 (solid line), 0.71 Tg(N) yr
-1

 

(dashed line), 2.1 Tg(N) yr
-1

 (dotted line). 

                                                        
1  Similarities: injection of additional aircraft NOx emissions over the existing background aircraft 

emission; Distinctions: mathematical calculation, not modelled observation, of temporal behaviour of 

perturbations following additional aircraft NOx emissions. 

The justification of applied method is presented in Chapter 4.6.   
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7.2.1 Experimental design 

 

The REACT4C inventory base case for 2006, and a series of globally-scaled datasets, 

were implemented into the 3D CTM, MOZART-3. Thirteen pulse-like experiments 

were performed, one reference (base aircraft emission) run and twelve perturbation 

(incremental aircraft emission) simulations, each starting in January 2006 and finishing 

in December 2006; each simulation was preceded by a multi-year spin-up, 2000–2005. 

The aircraft perturbation is derived by extracting the difference between ‘incremental 

aircraft’ and ‘aircraft’ experiments. Also thirteen steady-state experiments were 

performed,  one reference (without aircraft emission) run and twelve perturbation 

(aircraft emission) simulations, each starting in January 2006 and finishing  

in December 2006; each simulation was preceded by a one-year spin-up, 2005.  

The aircraft perturbation is derived by extracting the difference between ‘aircraft’ and  

‘no aircraft’ experiments.  

 

The details regarding model set-up, aircraft emission dataset, surface emissions and 

dynamical data applied for this study are described in Chapter 3.3. The description of 

radiative forcings and global warming potential calculation is presented in  

Chapter 3.2. 

 

 

7.3 Results 

 

7.3.1 The non-linearity of NOx–O3–CH4 system 

 

The NOx background concentrations (~50–200 pptv) in UTLS region are ideal for O3 

production, which increases almost linearly with additional NOx (Figure 2.1). The 

linear relation between additional NOx and O3 was shown previously (e.g., Isaksen  

et al., 1999, Köhler et al., 2008), with some evidence of the decline of O3 production 

with larger aircraft NOx emissions (Rogers et al., 2002). Here, the successive additions, 

increasing in size, of different aircraft NOx rates, reveal a dual nature of aircraft O3 

responses (Figure 7.2). Different incremental aircraft NOx emissions yield different 

results, with O3 saturating at higher NOx emission rates. Overall, Figure 7.2 shows a 

strong non-linear O3 response to aircraft NOx perturbations observed on a global scale. 
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Figure 7.2: Scatter plots of aircraft O3 burden change against series of aircraft NOx emission 

rates (dots are individual experiments, line is a linear solution). The zoomed panel presents 

linear O3 response due to small incremental aircrat NOx perturbation. 

 

The linear increase of O3 burden with additional NOx is observed for small incremental 

aircraft NOx emission rates, up to ~1.42 Tg(N) yr
-1

 of total emitted NOx, which  

is a 100% increase over the reference aircraft NOx emission. The deviation from  

a linear solution varies with size of the incremental aircraft NOx emission rate and  

is -7% for 0.71 Tg(N) yr
-1

, -18% for 2.1 Tg(N) yr
-1

 and -36% for 6.4 Tg(N) yr
-1 

of 

additional NOx injections. The CH4 lifetime reduction also reveals the non-linear 

behaviour and with greater aircraft NOx emission rates, a smaller CH4 lifetime 

reduction is observed (Figure 7.3); however, it is less pronounced than for the O3 

burden changes shown in Figure 7.2. Again, the deviation from a linear solution varies 

with size of the incremental aircraft NOx emission rate and constitutes 6% for  

0.71 Tg(N) yr
-1

, 13% for 2.1 Tg(N) yr
-1

 and 28% for 6.4 Tg(N) yr
-1

of additional  

NOx injections. 

 

The ozone production efficiency (OPE, the number of O3 molecules produced per 

emitted NOx molecule) picture shows a significant saturation for emissions higher than 

1.5 Tg(N) yr
-1

 (Figure 7.4). A relative decline of OPE occurs for emissions larger than 

5.7 Tg(N) yr
-1

. The same is found for CH4 lifetime change per aircraft Tg(N) yr
-1

;  

the CH4 reduction increases with increasing aircraft NOx emissions and follows OPE 

till around 100% increase of reference aircraft NOx levels, which is ~1.5 Tg(N) yr
-1

. 

Then the CH4 lifetime reduction saturates at 1.9–3.7 Tg(N) yr
-1

 levels and starts  

to decline at aircraft NOx rates greater than 5.7 Tg(N) yr
-1

.    
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Figure 7.3: Scatter plot of aircraft CH4 lifetime reduction against series of aircraft NOx 

emission rates (dots are individual experiments, line is a linear solution).  The zoomed panel 

presents linear CH4 response due to small incremental aircrat NOx emissions. 

 

 

 

Figure 7.4: Scatter plots of aircraft O3 production efficiency (upper) and normalized CH4 

lifetime reduction (bottom) against different sizes of aircraft NOx emisison. 
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7.3.2 Variability of global warming potentials for aviation NOx emissions 

 

The aviation NOx GWP values were derived for each incremental aircraft NOx 

emission size for three time horizons, 20-, 100- and 500-years. With one model,  

a series of GWP numbers ranging from positive to negative is observed (Figure 7.5).  

The unique number for an aviation NOx GWP does not exist, regardless of the time 

horizon taken into account and the net NOx components.  

 

The calculated values of GWPs for a 100-year time horizon (GWP100) varies from 29, 

22, 17 for 0.007, 0.07, 0.7 Tg(N) yr-1 of incremental aircraft NOx emissions, 

respectively, to -1, -5 for 6.4, 7.1 Tg(N) yr-1 of additional aircraft NOx, respectively. 

The aviation NOx GWP20 values vary between 197 and 44 and for GWP500 ranges from 

9 to -2. The difference in the reported numbers for net NOx GWP20 reaches 78% and 

for net NOx GWP100, 500 the difference constitutes 115%. This significant diversity 

among net NOx GWPs exists despite the observation that the discrepancies for single 

components are less pronounced: 44% for short-term O3 GWP100, 29% for  

CH4-induced O3 GWP100 and 33% for (CH4+SWV) GWP100.   

 

The chemical components’ lifetimes, which impact on the net NOx effect are much 

shorter than the millennial scales of CO2’s persistence in the atmosphere. Thus, the 

aviation NOx GWPs are declining rapidly in the first decades following the additional 

aircraft NOx injection (Figure 7.6). The shape of the response (exponential decay with 

time) remains similar for each incremental NOx emission size; however, the calculated 

numbers differ. The GWPs for aircraft NOx rates not greater than 3.5 Tg(N) yr
-1

 

remains positive for each time horizon. The GWPs for aircraft NOx rates greater than 

4.9 Tg(N)/yr of are positive for H=20, but for H=100 and H=500, either the value is 0, 

or the sign changes to negative. The difference in the calculated aircraft NOx GWPs 

between 0.07 and 0.71 Tg(N) yr
-1

 NOx rates is 15% for H=20 and it rises to 25% for 

H=100 and H=500. The disparity in GWPs between 0.71 and 6.4 Tg(N) yr
-1

 NOx rates 

is 57% for H=20 and 105% for H=100, 500. For a small aircraft NOx emission  

(and linear O3 and CH4 regime) the differences among reported GWP values stay in  

a reasonable range, but uncertainties increase substantially for greater incremental 

aircraft NOx emission.  

 

 



Chapter 7: New developments in global warming potentials for aviation NOx emissions                      92 

 
 

 

 

 

 
Figure 7.5: Calculated aviation net NOx GWPs for a 20-, 100- and 500-year time horizons as a 

function of different global aircraft NOx emission rates. Net NOx=short-term O3+ 

CH4-induced O3+CH4+SWV. All values are on a per kg N bases and are relative to CO2. 
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Figure 7.6: Calculated aviation NOx GWPs for different incremental aircraft NOx emission 

rates (1.1-times, 2-times and 10-times of the reference aircraft NOx emission level) as 

 a function of time horizon. 

 

 

7.4 Discussion 

 

The chemical and transport schemes within different models control the sensitivities of 

O3 and CH4 perturbations; this is potentially one of the reasons for the discrepancies 

found between reported aircraft NOx GWP values (e.g., Fuglestvedt et al., 2010,  

Myhre et al., 2011). However, this study shows that even with one model a wide range 

of NOx GWPs is achievable. The varying, with size of the injected aircraft NOx 

emissions, O3 and CH4 responses and in a non-linear way, constitute another means of 

explaining variability among reported aircraft NOx GWPs. 

  

There is very limited number of studies that define GWPs for aviation NOx emissions. 

IPCC AR4 (Forster et al., 2007) summarized them and only three values for GWP100 

were presented: 130, 100 and -3 (Wild et al., 2001, Derwent et al., 2001,  

Stevenson et al., 2004). While the first two values are within the same range, the third 

number introduces confusion especially given that Stevenson et al. (2004) and  

Derwent et al. (2001) used the same model. Recently, these GWPs were re-evaluated 

by Fuglestvedt et al. (2010) yielding values: 71 for Wild et al. (2001) and -2.1 for 

Stevenson et al. (2004). Knowing that NOx GWP varies with different aircraft NOx 

rates (Figure 7.5), these differences might be explained by the size of a NOx pulse 

applied in each study. Signals of ~0.7-times, ~1.5-times and 10-times greater than 

background (reference) aviation NOx emissions were applied in Wild et al. (2001), 

Derwent et al. (2001) and Stevenson et al. (2004) experiments, respectively. This study 
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shows that by applying large pulse sizes, the O3 response (and consequently CH4, but 

to lesser extent) is pushed into saturation regime. Thus, the caution made by  

Stevenson et al. (2004) over the interpretation of their results is appropriate.  

The GWP100 value for the aircraft NOx rate 10-times larger than the reference aircraft 

NOx derived in this study is -1, which is comparable with Stevenson et al. (2004) work. 

The numbers of GWP100 for small aircraft NOx rates calculated in this study are  

of 29–17, which are much smaller than Wild et al.’s value, 71; the background aircraft 

NOx emissions and inter-model differences can play a role here. 

 

The above GWP numbers are derived through pulse experiments, as the definition of 

GWP says (Chapter 2.2.2). Fuglestvedt et al. (2010) presented how to get a GWP from 

steady-state experiments and since then a series of additional estimations appeared as 

well (Köhler et al., 2008 (in Fuglestvedt et al., 2010), Myhre et al., 2011, Köhler et al., 

2012, Skowron et al., 2013). On purpose, these steady-state GWP values, which varied 

from 75 to -27 (Chapter 7.1), were not compared with the above pulse GWP numbers. 

Whilst the ‘pulse GWP’ and ‘steady-state GWP’ are in agreement from mathematical 

point of view, when following method of Fuglestvedt et al. (2010), they differ in their 

experimental design, namely in their reference perturbation and consequently in the 

resultant sensitivities of chemical responses (e.g., Figure 5.15 in Chapter 5). Thus, it is 

questionable whether they might be directly compared. This issue is addressed in the 

following paragraph.  

 

Indeed, the OPE per unit of emitted N is 17% greater for experiments where  

a background without aircraft emissions constitutes the reference case (steady-state 

approach); this discrepancy decreases to ~10% for larger aircraft NOx emission rates 

(Figure 7.7). On the contrary, the CH4 response is more pronounced, by ~15%, for 

pulse experiments for small aircraft NOx emission rates. However the magnitudes of 

CH4 lifetime reduction per emitted N differs by only ~1% for aircraft NOx emission 

rates greater than 2.8 Tg(N) yr
-1

. These peculiarities of the chemical system affect the 

GWP values, where net NOx GWP100 for the steady-state approach are greater than 

‘pulse GWPs’ by ~50–60% across various aircraft NOx emissions rates (Figure 7.8). 

Thus, attention should be given to any methodological differences between aircraft 

estimates comparisons, where the results from various studies are taken into account.  
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Figure 7.7: Scatter plots of O3 production efficiency (upper) and CH4 lifetime reduction 

(bottom) per unit of emitted N for steady-state (blue) and ‘pulse’ (dark blue) experiments 

against series of aircraft NOx emission rates.  

 

 

Figure 7.8: Calculated aviation NOx GWPs for 100-year time horizons for steady-state (blue) 

and ‘pulse’ (dark blue) experiments as a function of different global aircraft  

NOx emission. 

 

 

There is significant variability of aircraft NOx GWPs for each time horizon (Figure 7.5) 

driven by non-linearities of the chemical system. However, a unique value for GWP 

does not exist, even for a relatively small incremental aircraft NOx emission rates. 

Taking into account only the linear regime of O3 and CH4 responses (experiments with 
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NOx up to 1.42 Tg(N) yr
-1

, which constitute a NOx emission increase of 100%) the 

range of O3 and CH4 GWP values are admittedly limited, ΔO3 GWP100 = 9%,  

Δ CH4 GWP100 = 5% (Figure 7.9). The GWP diversity still remains significant for net 

NOx estimates, where Δ net NOx GWP100 = 30%. The decreasing OPE per unit emitted 

N with increasing aircraft NOx emission rates drives the variability of aircraft O3 GWP 

(Figure 7.10). The increasing CH4 GWP with greater NOx emission rates follows the 

weakening of CH4 lifetime reduction per increasing aircraft N emission. When the CH4 

lifetime change per unit O3 burden change is analysed, it is observed that each aircraft 

NOx emission rate leads to a different ratio, even in the linear regime. Figure 7.11 

reveals that weaker O3 change with increasing aircraft NOx emissions is more 

pronounced than the weakening of CH4 reduction. Thus, the ratio is decreasing with 

greater aircraft NOx emissions, similarly as it is observed for net NOx GWPs. A strong 

correlation between the CH4/O3 ratio and aircraft net NOx GWP was found  

(Figure 7.12): 97% of global aviation NOx GWP100 variability can be explained by 

variance in CH4/O3 ratio resulting from application of different aircraft NOx rates into  

a 3D CTM, MOZART-3.  

 

 

 

Figure 7.12: Scatter plot of net NOx GWP100 for ‘pulse’ (dark blue) and steady-state (blue) 

experiments against corresponding ratio of CH4 lifetime change per O3 burden change (dots are 

the individual experiments, line is the best fit curve). 
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Figure 7.9: Scatter plots of O3 burden change (blue) and the corresponding short-term  

O3 GWP100 (red) on the left panel and CH4 lifetime reduction (blue) and the corresponding 

(CH4+SWV) GWP100 (red) on the right panel against series of small incremental aircraft NOx 

emission rates (up to 1.42 Tg(N) yr
-1 

= 100% NOx emission change).  

 

 

Figure 7.10: Scatter plots of normalized O3 production efficiency (blue) and the corresponding 

short-term O3 GWP100 (red) on the left panel and normalized CH4 lifetime reduction (blue) and 

the corresponding (CH4+SWV) GWP100 (red) on the right panel against series of small 

incremental aircraft NOx emission rates (up to 1.42 Tg(N) yr
-1 

= 100% NOx emission change). 

 

 

Figure 7.11: Scatter plot of CH4 lifetime change per O3 burden change (blue) and the 

corresponding net NOx GWP100 (red) against series of small incremental aircraft NOx emission 

rates (up to 1.42 Tg(N) yr
-1 

= 100% NOx emission change). 
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The O3 burden change and the CH4 lifetime reduction increase with greater aircraft 

NOx emissions and decrease with reduced
2
 aircraft NOx emissions (Figure 7.13). These 

processes proceed linearly when aircraft NOx rates are relatively small
3
. However, the 

rates of changes become disparate for greater aircraft NOx rates, where CH4 lifetime 

reduction is more sensitive, by 9%, 18%, 35% for 25%, 50%, 100% aircraft NOx 

emission change, respectively, than O3 burden change to modified aircraft NOx 

emission rates. This relation is observed to be symmetrical and the more pronounced 

CH4 lifetime reduction over O3 burden change is valid for both reduction and increase 

of aircraft NOx emissions. The relative difference between O3 and CH4 changes 

constitute 30% for each aircraft NOx emission rate.  

 

 

Figure 7.13: Scatter plots of O3 burden change (red) and CH4 lifetime reduction change (blue) 

for steady-state experiments against series of aircraft NOx emission rates, ranging from  

0.35 Tg(N) yr
-1

 (-50% NOx emission change) to 1.42 Tg(N) yr
-1 

(100% NOx emission increase). 

 

The efficiency of ozone production decreases with increasing NOx emission rates and 

conversely, increases with decreasing aircraft NOx emissions (Figure 7.14). On the 

contrary, the CH4 lifetime reduction is weakening with reduced NOx rates and becomes 

more negative with greater aircraft NOx emissions. There are 18% more O3 molecules 

produced per emitted N when the aircraft NOx emissions are reduced by 50% 

compared with 50% NOx increase case. The CH4 lifetime reduction is 26% stronger for 

50% NOx increase compared with 50% NOx reduction. The greater O3 burden change 

                                                        
2
 The aircraft NOx reduction experiments were taken from Chapter 5 and combined with steady–state 

experiments performed for this Chapter.  
3
 The aircraft NOx ranging from 0.35 Tg(N) yr

-1
 (-50% NOx emission change) to 1.42 Tg(N) yr

-1 
(100% 

NOx emission increase) was taken into account. The 0% change constitute the 0.71 Tg(N) yr
-1 

of aircraft 

NOx emissions.  
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per N and weaker CH4 reduction per N leads to greater CH4/O3 ratio with decreasing 

aircraft NOx emissions rates (Figure 7.15). Knowing that aviation net NOx GWP  

is strongly and significantly correlated with ratio of CH4 lifetime change per O3 burden 

change, the distinct picture might be drawn where magnitudes of aviation net NOx 

GWP increase with reduced aircraft NOx emissions.  

 

 

Figure 7.14: Scatter plots of normalized O3 production efficiency (upper) and normalized CH4 

lifetime change (bottom) for steady-state experiments against series of global aircraft NOx 

emission rates, ranging from 0.35 Tg(N) yr
-1

 (-50% NOx emission change) to 1.42 Tg(N) yr
-1  

(100% NOx emission increase). 

 

 

 

Figure 7.15: Scatter plot of CH4 lifetime change per O3 burden change (blue) and the 

corresponding net NOx GWP100 (red) for steady-state experiments against series of global 

aircraft NOx emission rates, ranging from 0.35 Tg(N) yr
-1

 (-50% NOx emission change) to  

1.42 Tg(N) yr
-1 

(100% NOx emission increase) (dots are individual experiments, lines are the 

best fit curves). 
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7.5 Summary 

 

The response of the chemical system varies with size of the aircraft NOx emission rate, 

and in a non-linear way, which results in significant diversity of aviation NOx GWPs. 

The chemical response is also sensitive to the level of aircraft NOx background.  

 

Twenty four experiments were performed, gathering both ‘pulse’ and steady-state 

experiments, leading to twenty four different dependencies between CH4 lifetime 

change and O3 burden change, giving twenty four different net NOx GWP estimates. 

This sheds light on understanding the disparities between numbers reported in 

literature.  

 

This study shows that even with one model and consistent experimental settings it is 

not possible to determine a unique value for an aircraft NOx GWP. Additionally,  

the peculiarity of the relation between aircraft NOx emissions and aviation NOx GWP, 

where the GWP magnitudes increase with reduction of aircraft NOx emissions and 

decrease with increasing aircraft NOx emissions, also raises concern. It is not evident 

how policy might handle such behaviour.     
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Chapter 8  

 

Variation of the effect of regional aviation 

NOx emissions 

 

 

8.1 Introduction 

 

The geographical imbalance of climate impact from NOx emissions is a result of both 

the short-term nature of the chemistry and the heterogeneous pattern of emissions.  

The geographical imbalance arises from complexity of the response of NOx effect 

components. The short-lived O3 change (positive climate forcing, warming)  

is inhomogeneous, concentrated mainly where the NOx emissions occur. The CH4 

response (negative climate forcing, cooling), due to its decadal lifetime,  

is homogenously spread over the globe. Thus, even if these two effects might cancel  

as a global mean, they do not on a regional scale (e.g., Prather et al., 1999).    

 

The same amount of NOx emissions might lead to different regional climate impacts. 

The O3 production formed from NOx emissions strongly depends on the background 

conditions that are distinct for specific spatio-temporal locations. The O3 response is 

influenced by the background NOx concentrations (e.g., Isaksen et al.,1978, Berntsen 

and Isaksen, 1999), the abundance of HOx, VOCs (e.g., Lin et al.,1988, Jaeglé et al., 

1998) or the intensity of solar flux. 
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These different influences result in quite a specific behaviour, as different climate 

responses might result from equal global mean RFs arising from the same amount of 

emitted NOx at different locations (e.g., Berntsen et al., 2005, Shine et al., 2005a). 

       

There is an ongoing interest in investigations of regional climate impacts, including 

those from the effects of surface NOx emissions (Fuglestvedt et al., 1999,  

Berntsen et al., 2005, Naik et al., 2005, Shine et al., 2005a, Derwent et al. 2008, 

Shindell et al., 2009, Fry et al., 2012). All these studies agree that the global O3 change 

and its radiative forcings are more sensitive to NOx emission fluxes near equator, than 

in mid- and high-latitude regions. Shine et al. (2005a) additionally pointed out that 

usually the hemisphere, where NOx emissions occur, is related with a warming effect 

and the other hemisphere with cooling. 

 

There are only few studies dealing with geographical effects from aircraft NOx 

emissions (Grewe and Stenke, 2008, Stevenson and Derwent, 2009, Köhler et al., 

2012). Grewe and Stenke (2008) and Köhler et al. (2012) have shown that different 

latitudinal bands give different RFs per unit aircraft NOx emission. The RFs resultant 

from O3 and CH4 changes at low latitudes are significantly greater than RFs from those 

changes at higher latitudes. Köhler et al. (2012) also presented the aircraft NOx impact 

over four geographical regions, where tropical locations, China and India, with their 

net NOx RFs of 14.3 mW m
-2 

per Tg(N) yr
-1

 and 12.6 mW m
-2 

per Tg(N) yr
-1

, 

substantially exceed the mid-latitudinal net NOx RFs, of ~2 mW m
-2 

per Tg(N) yr
-1

, 

over Europe and USA. On the contrary, the study of Stevenson and Derwent (2009) 

result in strong compensations between O3 and CH4 responses for July’s pulse aircraft 

NOx emissions at 112 different cruise altitude locations, where, in most cases, the 

short-term O3 positive RFs was overwhelmed by long-term CH4 negative RFs. They 

also highlighted the correlation between NOx background concentration and the 

resultant RFs from aircraft NOx perturbation.   

 

Similarly as for the previous chapter, few and disparate estimates are the motivation of 

this study. In this chapter, the regional impacts of aviation NOx emissions on 

tropospheric chemistry and their related climate forcings are investigated. The low-

latitude emissions are usually highlighted in terms of their efficiency in O3 production 

and O3 RFs. However, aircraft NOx emissions, injected in the mid-latitude remote 

oceanic regions, might also be influential in terms of their impact on climate.  
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The responses of Northern and Southern Hemisphere along with five regions: Europe, 

North America, Southeast Asia, North Pacific and North Atlantic are investigated. The 

dependence of experimental design (e.g. aircraft NOx rates) on the perception of inter-

regional dependencies is also discussed.  

 

 

8.2 Methodology 

 

8.2.1 Incremental aircraft NOx emissions 

 

In order to explore the impact of regional aircraft NOx emissions on climate, seven 

geographical domains were defined: Europe (EUR), North America (NA), Southeast 

Asia (SE ASIA), North Pacific (NPAC), North Atlantic (NATL), Northern Hemisphere 

(NH) and Southern Hemisphere (SH) (Figure 8.1, Table 8.1). Incremental aircraft NOx 

emissions were applied to one region per experiment. The injections of aircraft NOx 

emissions are valid for all altitudes in the defined domains. Each incremental aircraft 

NOx case is based on equal mass of emissions, 0.035 Tg(N) yr
-1

. This constitutes 

different relative addition of emission to the total NOx in each region (Table 8.1); 

whilst for continental regions, it is equal to ~30% increase of aircraft NOx, for oceanic 

domains, it rises to ~160%.     

 
 

 

Figure 8.1: Regions with incremental aircraft NOx emissions: Europe (EUR), North America 

(NA), Southeast Asia (SE ASIA), North Atlantic (NATL), North Pacific (NPAC), Northern 

Hemisphere (NH) and Southern Hemisphere (SH). 
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Table 8.1: Description of regional domains, along with the amount of emitted aircraft NOx in 

each region (third column) and the increase (in %) of aircraft NOx for three cases of 

incremental aircraft emissions in each region (three last columns). 

 

REGION Geographical extent 
Aircraft NOx 

[Tg(N)/yr] 

Incremental aircraft N [Δ N/base N] 

0.035 

Tg(N)/yr 

0.71 

Tg(N)/yr 

6.39 

Tg(N)/yr 

EUR 10°W-30°E; 40°N-60°N 0.112 0.32 6.3 57.2 

NA 120°W-75°W; 30°N-50°N 0.132 0.27 5.4 48.5 

SE ASIA 95°E-145°E; 12°S-45°N 0.128 0.28 5.5 50.0 

NPAC 
180°W-140°W;  

150°E-180°E; 20°N-60°N 
0.021 1.67 33.4 300.6 

NATL 50°W-15°W; 30°N-60°N 0.023 1.54 30.8 276.8 

      

NH 180°W-180°E; 0°-90°N 0.653 0.05 1.1 9.8 

SH 180°W-180°E; 0°-90°S 0.057 0.62 12.4 111.9 

      

Global 180°W-180°E; 90°S-90°N 0.71 0.05 1 9 

 

Additionally, two other sizes of aircraft NOx emissions rates were applied in each 

region: 0.71 Tg(N) yr
-1

 and 6.39 Tg(N) yr
-1

. This choice is subjective and it is based on 

experiments in Chapter 7, where a global incremental NOx emission of 0.71 Tg(N) yr
-1

 

still belongs to a linear response regime, while injection of 6.39 Tg(N) yr
-1

 results in 

highly non-linear behaviour of NOx–O3–CH4 system. Table 8.1 shows the relative 

increases of aircraft NOx emissions for each incremental aircraft NOx case.  

 

8.2.2 Experimental design 

 

The REACT4C 2006, aircraft emission dataset, was implemented into the 3D CTM, 

MOZART-3. Twenty two experiments were performed, one reference (base aircraft 

emission) run and twenty one perturbation (incremental aircraft emission) simulations, 

each starting in January 2006 and finishing in December 2006; each simulation was 

preceded by a multi-year spin-up, 2000–2005. The aircraft perturbation is derived by 

extracting the difference between ‘aircraft’ and ‘incremental aircraft’ experiments. 

The details regarding model set-up, aircraft emission dataset, surface emissions and 

dynamical data applied for this study are described in Chapter 3.3. The description of 

radiative forcings and global warming potentials calculations is presented in  

Chapter 3.2. 



Chapter 8: Variation of the effect of regional aviation NOx emissions                                                   105 

 
 

8.3 Results 

 

8.3.1 Hemispherical and regional aircraft NOx emissions 

 

Air traffic presents a highly heterogeneous geographical pattern: 92% of NOx 

emissions are emitted in the Northern Hemisphere (Figure 8.2), from which 52% 

belongs to EUR, NA and SE ASIA and 6% to NPAC and NATL (based on the regional 

domains defined in this study, see Table 8.1). By contrast, the vertical distribution is 

similar world-wide, with most of the air traffic concentrated at 10–11 km (Figure 8.3). 

However, subtle differences in the peak of aircraft NOx emissions exist: Northern 

Hemisphere, Europe and North Pacific have their peak of NOx at 10.37 km;  

for Southern Hemisphere, North America, North Atlantic and Southeast Asia it is one 

level higher, 10.98 km.   

 

 

 

Figure 8.2: The latitudinal (upper row) and longitudinal (bottom row) profiles of aircraft NOx 

emissions in seven regions: Northern and Southern Hemisphere (left panels); Europe (EUR), 

North America (NA), Southeast Asia (SE ASIA), North Atlantic (NATL) and North Pacific 

(NPAC) (right panels). 
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Figure 8.3: The vertical profiles of aircraft NOx emissions in seven regions: Northern and 

Southern Hemisphere (left panel); Europe (EUR), North America (NA), Southeast Asia (SE 

ASIA), North Atlantic (NATL) and North Pacific (NPAC) (right panel). 

 

 

 

8.3.2 Hemispherical and regional chemical perturbations for aviation NOx emissions 

 

The same amount of additional emitted aircraft NOx (0.035 Tg(N)/yr) from various 

locations leads to different magnitudes and extents of O3 perturbation. The specific 

patterns of response from the Northern and Southern Hemisphere are shown in  

Figure 8.4. The NH’s O3 perturbation is concentrated mainly at cruise altitudes of high 

latitudes, where most of the emissions occur. The SH’s aircraft NOx emissions are 

concentrated mostly in the low-latitudes (there are hardly any emissions for latitudes 

greater than 52°S), where the convective transport is strong. Thus, the SH’s O3 

response is observed throughout the vertical domain, with peak of perturbed O3 in  

mid-altitudes and over 35–15°S. The NH’s relative O3 change is concentrated mainly 

over Europe and North Atlantic, while O3 from SH NOx perturbation expands almost 

uniformly across the southern tropical belt. The regional dependencies also present 

their characteristic extent in O3 change. Whilst the peak of O3 perturbation is 

concentrated at cruise altitudes in all regions, convective transport, pronounced 

especially over low-latitudes (SE ASIA), causes that chemical impact has a greater 

vertical extent than for other regions (Figure 8.5). The peak magnitudes of O3 changes 

vary among continental regions from 0.16 ppbv (SE ASIA), 0.24 ppbv (NA) to 0.29 

ppbv (EUR); the oceanic regions O3 response is observed to be much greater:  

0.72 ppbv (NPAC) and 0.90 ppbv (NATL). The differences in magnitudes of O3 

perturbation originate from various background conditions specific for each region  

(e.g., EUR and SE ASIA on Figures C.1, 8.5; more details are presented in Chapter 8.4 
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and on Figure C.2). The spatial extent of O3 perturbation is determined primarily by the 

transport of aircraft NOx effect and it differs among different regions. The EUR 

emission leads to the O3 perturbation being concentrated mostly over Europe and high-

northern latitudes. The meridional transport is especially pronounced for NPAC and 

NATL, where the aircraft NOx perturbation (Figure C.1), through westerly winds, is 

transported to the regions far from the aircraft NOx emission locations. This affect the 

spread of O3 perturbation, that is observed in Europe, North Atlantic and northern 

latitudes of America in the case of NPAC and in Europe and all northern Asia in the 

case of NATL. The NA’s O3 change occurs over Atlantic and Europe, while the SE 

ASIA’s O3 perturbation is transported to the Northern Pacific.    

 

 

 

 

Figure 8.4: Annual O3 changes calculated by MOZART-3 model for incremental aircraft NOx 

emissions of 0.035 Tg(N) yr
-1

 in Northern Hemisphere (NH) (upper panel) and Southern 

Hemisphere (SH) (bottom panel). Figures on the left show the change (in %) of O3 

concentration at flight level, 227 hPa. Figures on the right show the zonal mean change  

(in ppbv) of O3 concentration. The red rectangles indicate the geographical domains with 

incremental aircraft NOx emissions.       
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Figure 8.5: Annual O3 changes calculated by MOZART-3 model for incremental aircraft NOx 

emissions of 0.035 Tg(N) yr
-1

 in Europe (EUR) (upper panel), North America (NA)  

(middle panel) and Southeast Asia (SE ASIA) (bottom panel). Figures on the left show the 

change (in %) of O3 concentration at flight level, 227 hPa. Figures on the right show the zonal 

mean change (in ppbv) of O3 concentration. The red rectangles indicate the geographical 

domains with incremental aircraft NOx emissions.      
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Figure 8.5: Figure 8.5 continuing, but for North Atlantic (NATL) (upper panel) and North 

Pacific (NPAC) (bottom panel).  

 

 

The aircraft NOx perturbation in different regions shows disparities in their impact on 

global O3 burden and CH4 lifetime change (Table 8.2).  The Southern Hemisphere 

produces 40% more O3 per emitted aircraft N, and is twice as efficient in CH4 lifetime 

reduction, than the Northern Hemisphere. A similar pattern in O3 change is observed  

if the North Pacific is compared with Europe. In general, the remote oceanic regions 

have a greater OPE and this results in the larger O3 burden change, where NPAC and 

NATL exceed SE ASIA by 24% and 13%, respectively, in O3 perturbation. Among 

continental regions, the low-latitudinal SE ASIA gives more O3 by 23% and 14% 

compared with EUR and NA, respectively. The CH4 lifetime reduction results from 

more convoluted dependencies and the largest O3 change did not always introduce the 

greatest CH4 reduction. The least efficient CH4 loss occurs over NATL, the greatest 

efficiency in CH4 lifetime reduction is observed over SE ASIA. The CH4 lifetime 

reduction over NA (-0.036%) is almost as high as over SE ASIA (-0.039%), however 

NPAC’s CH4 follows the high O3 burden change (0.26 Tg), which is not observed for 

SE ASIA’s O3 burden change (0.20 Tg). The explanations of these patterns are 

presented in the Discussion (Chapter 8.4).   
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Table 8.2: The global and annual mean O3 burden change (in Tg) and the CH4 lifetime 

reduction (in %) due to the aircraft NOx emissions in different geographical regions. 

Calculations are done for surface–1hPa domain and are based on 0.035 Tg(N) yr
-1

 aircraft  

NOx increase. 

 

REGION 
O3 burden change 

 (Tg) 

CH4 lifetime change  

(%) 

Global 0.20 -0.034 

   

NH 0.19 -0.031 

SH 0.31 -0.067 

   

EUR 0.15 -0.024 

NA 0.17 -0.028 

SE ASIA 0.20 -0.039 

NPAC 0.26 -0.036 

NATL 0.22 -0.024 

 

 

The global response of the chemical system varies with the size of the pulse and in a 

non-linear way (Chapter 7). The non-linear O3 and CH4 responses are also observed 

from regional aircraft NOx perturbations (Figure 8.6); the greater NOx emission rates 

lead to weaker O3 responses and less pronounced CH4 reductions. However, each 

region has its own distinctive sensitivity in the response of chemical system. The O3 

response over Southeast Asia is much less sensitive to different aircraft NOx emission 

rates than over oceans, where the O3 change depends significantly on the amount of 

emitted NOx. For example, as a result of 6.39 Tg(N) yr
-1

 experiments, SE ASIA has the 

greatest global O3 burden change and NATL’s O3 is observed to be of similar 

magnitude as O3 for EUR, which is in contrast to what was presented in the paragraph 

above. The CH4 lifetime reduction also changes with aircraft NOx emission rates. The 

non-linearity of CH4 lifetime reduction is stronger at low latitudes, where conditions 

for CH4 oxidation (high temperature and concentrations of OH) are advantageous, 

compared with mid-latitudes. Thus, CH4 over SE ASIA and SH follows strictly the O3 

sensitivity to additional NOx emissions: the weaker O3 response causes the weaker CH4 

lifetime reduction, both at the same rates of deviation. For other regions, especially for 

NATL and NPAC, the weaker O3 response does not necessarily lead to a weaker CH4 

lifetime reduction. Figure 8.7 shows these peculiarities. The CH4 lifetime change per 

unit O3 burden change over SE ASIA and SH remains almost the same for each 

incremental aircraft NOx case (the ratio changes by 1.5% and -1.9%, respectively, with 

greater NOx emission rates). This is not observed for other regions, especially oceanic 
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domains, where CH4/O3 ratio becomes significantly greater (44% for NATL) with 

larger NOx emission rates. These results show that the variation in experimental design 

strongly influences the perception of inter-regional dependencies, e.g., the greatest O3 

burden change, can easily belong to, either NPAC, or SE ASIA depending on the size 

of aircraft NOx emission rates. 

 

 

Figure 8.6: The normalized O3 burden change (red bars) and CH4 lifetime reduction (blue bars) 

in different geographical regions as a response to different sizes of incremental aircraft NOx 

emissions. 

 

 

Figure 8.7: The absolute ratio of the CH4 lifetime change to the O3 burden change for different 

geographical regions for a series of aircraft NOx emission rates. 

 

 

8.3.3 Hemispherical and regional radiative forcings and global warming potentials 

for aviation NOx emissions 

 

The latitudinal distributions of short-term O3 RF for different geographical regions are 

shown in Figure 8.8. In general, the pattern for each region shows similar latitudinal 

profiles as aircraft NOx emissions. However, the magnitudes of O3 RF responses differ: 

the SH’s O3 RF is much larger, by 52%, than NH’s short-term forcing and NPAC, 
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NATL exceeds, by 29%, the O3 responses from continental regions. The peak of  

short-term O3 RF is different for each region being located at 21°S for SH (3.1 mW m
-

2
), 29°N (1.7 mW m

-2
), 44°N for EUR (1.4 mW m

-2
), 31°N for NA (1.9 mW m

-2
), 

24°N for SE ASIA (1.9 mW m
-2

), 39°N for NATL (2.3 mW m
-2

) and 31°N for (2.6 

NPAC mW m
-2

). The RFs mentioned above are zonal and annual values; locally, the 

differences in the short-term O3 RF are much more pronounced. Both hemispherical 

perturbations show the strongest O3 forcings over subtropical belts, for SH it is 

southern parts of the equator, for NH it is northern parts (Figure 8.9). The magnitudes 

of the responses differs, for NH O3 RF reaches 2.5 mW m
-2 

over Northern Africa, for 

SH the maximums of O3 RF (3.5–3.9 mW m
-2

)
 
 are more spread and occur over South 

Atlantic and Australia. The North Pacific is the most powerful in terms of induced 

short-term O3 RF among all investigated regions (Figure 8.10). The O3 forcings reach 

4.5 mW m
-2

 over northern Pacific and west coast of North America. The NPAC 

perturbation has the most extensive range of impact that is observed for most of the 

northern subtropical areas: Atlantic, Africa and southwest Asia. Similarly acts NATL, 

but the O3 RF response is shifted more East with the highest values (3.5–3.9 mW m
-2

) 

concentrated over Africa and southwest Asia. The smallest responses of O3 RF are 

observed for EUR experiment, with maximum forcings (2.3 mW m
-2

) located over 

Balkans and southwest Asia. The NA perturbation affects mainly subtropical Atlantic 

and Africa (3.0–3.1 mW m
-2

) and SE ASIA – southeast Asian coast and subtropical 

Pacific (3.0–3.2 mW m
-2

).  

 

 

Figure 8.8: Zonal and annual mean net (long wave and shortwave) radiative forcing (mW m
-2

) 

from short-term O3 for Northern (NH) and Southern (SH) Hemisphere (left panel) and regions: 

Europe (EUR), North America (NA), Southeast Asia (SE ASIA), North Atlantic (NATL) and 

North Pacific (NPAC) (right panel). Based on 0.035 Tg(N)/yr aircraft NOx increase 

experiments. 
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Figure 8.9: The annual distribution of the net (long wave and shortwave) radiative forcing 

(mW m
-2

) from short-term O3 for Northern (NH) and Southern (SH) Hemisphere. Based on 

0.035 Tg(N)/yr aircraft NOx increase experiments. The red rectangles indicate the geographical 

domains with incremental aircraft NOx emissions.      

 

 

 

Figure 8.10: The annual distribution of the net (long wave and shortwave) radiative forcing 

(mW m
-2

) from short-term O3 for Europe (EUR), North America (NA), Southeast Asia  

(SE ASIA), North Atlantic (NATL) and North Pacific (NPAC). Based on 0.035 Tg(N)/yr 

aircraft NOx increase experiments. The red rectangles indicate the geographical domains with 

incremental aircraft NOx emissions.      
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Figure 8.11 shows the normalized net global annual mean RF and the four component 

forcings, for different geographical regions. The hemispheric differences in the 

resultant RFs are significant: net NOx RFs vary from 3.7 mW m
-2

/Tg(N) yr
-1 

for NH  

to 7.3 mW m
-2

/Tg(N) yr
-1

 for SH. The differences between single components also are 

observed: both short-term O3 RF and long-term negative RFs are twice as strong over 

SH than over NH (by 50% and 53%, respectively). The highest net NOx RF value is 

observed over North Atlantic, 10.0 mW m
-2

/Tg(N) yr
-1

, which is the result of strong 

positive short-term O3 RF and relatively weak long-term negative forcings.  

A similar pattern is observed for NPAC, in that the difference in short-term O3 RF 

(22.9 mW m
-2

/Tg(N) yr
-1

) is larger than all the regions. Whilst the short-term  

O3 RF over Southeast Asia is as large as that over the North Atlantic  

(20.0 mW m
-2

/Tg(N) yr
-1

), the negative forcings play a relatively larger role at  

low-latitudes, which efficiently reduce the net NOx RF in SE ASIA to  

4.9 mW m
-2

/Tg(N) yr
-1

. The net of positive and negative forcings over North America 

and over Europe are the smallest among all the regions, 3.3 and 2.3 mW m
-2

/Tg(N)yr
-1

, 

respectively.  

 

Figure 8.11: Radiative forcings per unit emission of N (in mW m
-2

/Tg(N) yr
-1

) due to short-

term O3 (sO3), CH4-induced O3 (lO3), CH4 (CH4), stratospheric water vapour (SWV) and NOx 

(net of all 4 components) for Northern and Southern Hemisphere and regions: Europe, North 

America, Southeast Asia, North Atlantic and North Pacific. Based on 0.035 Tg(N)/yr aircraft 

NOx increase experiments. 

The net NOx GWP values are positive for all regions and each time horizon  

(Figure 8.12). There are substantial differences in calculated GWPs; the greatest values 

are calculated for a 20-year time horizon for each region and the significant,  
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by ~80–70%, reduction of GWPs appears with larger time horizons.  

The largest differences in values are calculated for North Atlantic  

(GWP20, 100, 500 = 511, 125, 38) and Europe (GWP20, 100, 500 = 164, 26, 8) for each time 

horizon. The net NOx GWPs of continental mid-latitude regions, EUR and NA,  

are smaller than low-latitudinal SE ASIA, by 48%, 31% for H=20 and by 53%, 33% 

for H=100, respectively. However, the net NOx GWPs of oceanic mid-latitude regions, 

NPAC and NATL, are greater than low-latitudinal SE ASIA, by 32%, 38% for H=20 

and by 44%, 55% for H=100, respectively. The Southern Hemisphere’s GWPs for 

positive and negative components are twice larger than values for Northern 

Hemisphere. The net NOx GWP presents significant dominance of SH over NH,  

by 51% for 20-time year horizon and by 49% for 100- and 500-time year horizon. 

 

Figure 8.12:  Aviation net NOx GWPs for Northern and Southern Hemisphere and regions: 

Europe, North America, Southeast Asia, North Atlantic and North Pacific for 20-, 100- and 

500-year time horizons. All values are on a per kg N basis relative to CO2 and are based  

on 0.035 Tg(N)/yr aircraft NOx increase experiments. 

 

8.4 Discussion 

 

The explanation for large O3 response over remote oceanic regions might be unravelled 

by small background NOx concentrations. The large O3 response over SE ASIA might 

be additionally explained by the intensity of solar irradiance: taking into account the 

NOx background conditions in this region, the magnitude of O3 change is substantial. 

The mean concentration of NOx at 227 hPa is 93 pptv. However, the NOx emissions 
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from lightning over SE ASIA significantly modify its background at flight level, where 

mean local annual NOx concentrations reach ~400 pptv, while these over  

mid-latitudinal regions are ~70 pptv (Figure 8.13a). Thus, indeed, intensity of solar 

flux, driving photochemistry, constitutes an important factor in local O3 production.  

 

The CH4 perturbations depend highly on the place and extent (latitude and altitude)  

of the O3 perturbation, as both temperature and concentrations of OH and CH4 affect 

the efficiency of CH4 oxidation (Köhler et al., 2008). The mean concentrations of OH 

and CH4 at 227 hPa are 1.0 x 10
6
 molecules cm

-3
 and 1717 ppbv, respectively;  

the mean temperature at 227 hPa is 220°K (Figure 8.13). The most efficient CH4 

lifetime reduction occurs over Southeast Asia, where OH concentrations and 

temperature are the greatest among the investigated domains. The concentrations of 

CH4 differ between regions within 1% range. Despite the OH and CH4 backgrounds are 

of similar magnitudes over NPAC and NATL, the temperature pattern reveals 

differences, being higher over North Pacific, by ~6°K (~3%). The lower temperature 

slows down the CH4 oxidation, which might be the reason of the least efficient CH4 

lifetime reduction over North Atlantic.  

 

 

Figure 8.13:  Annual mean distributions of NOx (a), OH (b), CH4 (c) concentrations and 

temperature pattern (d) at 227 hPa in 2006 modelled by MOZART-3. 
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The vast part of air traffic takes place in Northern Hemisphere, which results in a 

highly heterogeneous pattern of aircraft NOx emissions, only ~8% belongs to the 

Southern Hemisphere (e.g. Figure 8.2). The response of the NOx–O3–CH4 system 

consist of temporally diverse changes of its components; O3 – short-lived and  

CH4 – long-lived. Thus, it is expected the O3 to roughly follow the NOx source and the 

CH4 perturbation to be more spread over the globe. In fact, 82% of increase of aircraft 

O3 burden comes from the Northern Hemisphere, which is at the same time a dominant 

sphere for CH4 lifetime reduction due to aircraft NOx emissions, as only 31% of CH4 

reduction happens in Southern Hemisphere (Figure 8.14). 

Both O3 and CH4 lifetime responses are found to be related to the hemisphere where 

the main NOx source occurs. This behaviour is confirmed when aircraft NOx emissions 

are injected in selected locations: for Europe, North America, North Pacific and North 

Atlantic more than 90% of O3 and CH4 is associated with Northern Hemisphere; for the 

Southern Hemisphere’s NOx emissions 88% of O3 and 95% of CH4 changes are related 

with this hemisphere.         

 

Figure 8.14:  The O3 burden change (right panel) and CH4 lifetime reduction (left panel) in 

Northern and Southern Hemisphere for different aircraft NOx emission locations. 

 

The positive combined O3+CH4 forcings are associated with Northern Hemisphere and 

negative with southernmost latitudes for global aircraft NOx perturbation (Prather et al., 

1999). This geographical imbalance of the aircraft net NOx effect is indirectly observed 

here. The CH4 lifetime reduction is much more efficient in the Southern Hemisphere, 

where CH4 changes per O3 change are twice as large in Southern Hemisphere, 

compared with the Northern Hemisphere (Figure 8.15). Moreover, this effect is 

irrespective to the location of emission, which means that it is also the true for 

Southern Hemisphere as a NOx emission receptor. These results suggest that aircraft 
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NOx emissions have the potential to trigger the positive net NOx RFs for the Northern 

Hemisphere and negative net NOx RFs for the Southern Hemisphere’s latitudes 

regardless of the aircraft NOx emission location. Indeed, the aircraft NOx emissions 

injected in Southern Hemisphere lead to the net NOx RFs of 0.0
1
 and 0.2 mWm

-2
 for 

SH and NH. 

  

Figure 8.15:  The absolute ratio of the CH4 lifetime change to the O3 burden change in 

Northern and Southern Hemisphere for different aircraft NOx emission locations. 

 

Recently Köhler et al. (2012) presented results for regional aircraft NOx impacts from 

four regions: USA, Europe, India and China. The 0.036 Tg(N)/yr of aircraft NOx was 

injected through all vertical layers into limited domains. The greatest O3 mass change 

and O3 forcings, as well as net NOx forcings were found for low latitudinal regions and 

the net NOx RFs and GWPs are positive. This is in agreement with results from this 

study. However, discrepancies appear when magnitudes of responses are compared. 

The continental mid-latitudinal O3 chemical perturbation from this study are lower by 

~16–20% and the low-latitudinal O3 column change modelled by MOZART-3 is 50% 

weaker, than Köhler’s et al. (2012). The magnitudes of O3 RFs also differ and are 

smaller in this study by 17–29% for continental mid-latitudes and around twice smaller 

for low-latitudes. The net NOx RFs differences are small for EUR (5%) and greater for 

NA, 28%. The geographical extent of low-latitudinal region taken into account in this 

study is different than Köhler’s et al. (2012): here it reaches the 12°S circle of latitude, 

                                                        
1
 This is hemispherical mean; the sign of the net NOx RF value changes to negative for 60-90°S 

latitudinal band.  
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in Köhler’s et al. (2012) – 6°N. SE ASIA region in this study is characterized by very 

high NOx background concentrations from lightning emissions, while Köhler’s India 

and China are relatively ‘free’ from those high NOx lightning emission, as modelled by 

MOZART-3 (e.g. Figure 8.12). This might be one of the reasons of the substantial 

differences in O3 response and the resultant NOx RFs over tropics.  

 

The CH4 lifetime change per unit O3 change, as presented by Köhler et al. (2012), 

varies by 18%, between different regions of NOx emission. This study presents similar 

range of regional differences, 20%, when continental regions are considered. However, 

by taking into account the oceanic locations, the variation in CH4 lifetime change per 

unit O3 change increases to 47% (Figure 8.7). 

  

Whilst there is a general qualitative agreement in general properties of regional 

responses between Köhler et al. (2012) and this study, the comparison with Stevenson 

and Derwent (2009) becomes more complicated. Their study presents integrated 

radiative forcings (IRF) over 100-year time horizon of positive and negative responses 

of chemical system due to aircraft NOx emissions. The aircraft NOx increase  

(4 kg (NO2) s
-1 

= 0.04 Tg(N)/yr) was injected for a period of month (July) at cruise 

altitudes (~200–300 hPa) in a limited geographical domains. Unfortunately, a detailed 

comparison is not possible as Stevenson and Derwent (2009) did not provide an exact 

number for their AGWPs. However, some peculiarities are noticed, e.g. the lowest O3 

IRFs values are observed for South Asia and the greatest for South Pacific; the smallest 

magnitudes of CH4 IRFs are for Asia, next to North America and Europe and the most 

pronounced CH4 reduction is observed for Pacific; the net IRFs are negative for most 

of the locations, with the greatest cancellation over Pacific and the smallest over South 

America. The certain characteristic of the model is visible in this case; however, other 

aspects exist as well.  

 

Firstly, the aircraft NOx increase was performed only for a period of one month, July. 

The small Asian short-term O3 response may indicate that it can influence the results to 

some extent. The NOx background (due to lightning) is much higher in this region 

during summer compared with winter months, when the lightning NOx ‘moves’ more 

south from the equator. As an example on how a ‘July’s aircraft NOx’ may affect the 

results, the AGWP100 were calculated for an annual mean and July perturbation based 

on the experiments performed with MOZART-3 (Table 8.3).  It is observed that, when 
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July’s numbers are derived, all values are greater, by ~50%, compared with yearly 

values (the photochemistry is much more efficient in northern latitudes in July, 

compared with the annual average); except the AGWP100 for SE ASIA and SH,  

where July’s calculations result in the reductions of calculated metrics by 18% and 2%, 

respectively. The response of a NOx–O3–CH4 system is highly dependent on the state 

of the atmosphere into which aircraft NOx is injected, thus, as it is shown above,  

a single month perturbation is not representative when the regional responses are 

investigated (even on the global scale a 35% difference in calculated values is 

observed).      

Secondly, the amount of emitted NOx during one month is the same as the amount of 

NOx applied in this study and by Köhler et al. (2012), but for a period of year.  

As it was shown in chapter 8.3.2 the size of NOx emission rates influence the regional 

response of the chemical system (Figures 8.6, 8.7).  

 

Table 8.3: Calculated time integrated (H=100) radiative forcings of aircraft net NOx (sum of 

positive and negative components) for annual mean perturbation and for July perturbation in 

different regions. Calculations are based on 0.035 Tg(N)/yr aircraft NOx increase. 

 

REGION 
Year_ 

AGWP100 

July_ 

AGWP100 

Global 3.9 5.3 

   

NH 3.7 5.7 

SH 7.3 7.1 

   

EUR 2.3 3.5  

NA 3.3 5.1  

SE ASIA 4.9 4.0 

NPAC 8.7 17.6 

NATL 10.8 20.1 

 

 

8.5 Summary 

 

The analyses presented in this chapter have shown how different locations of aircraft 

NOx emission affect the sensitivity of global and hemispherical O3 response and the 

compensating balance between O3 and CH4 perturbations. The spatial variation of O3 

burden change has a strong correlation with NOx background concentration at flight 

level (Figure 8.16), which was also presented by Stevenson and Derwent (2009),  
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but for O3 integrated RFs. Generally, the largest global and annual O3 burden change  

is observed for locations where NOx background is low and it is decreasing with greater 

NOx concentrations. The SE ASIA, with large NOx background, is an exception here, 

as the efficiency of O3 production charged by the intensity of solar flux results in 

relatively large O3 burden change. The July’s correlation between aircraft O3 change 

and NOx background conditions confirms the effectiveness of sunlight in accelerating 

the photochemical reactions, as SE ASIA has lower ΔO3 compared with low NOx 

background northern location (Figure C.2, in Appendix C). Indeed, the efficiency of O3 

production depends on a mixture of various conditions (Appendix C, Figure C.2). 

 

 

Figure 8.16:  Scatter plot of global and annual O3 burden change due aircraft NOx emission 

increase by 0.035 Tg(N) yr
-1

 in different regions against background NOx concentration  

at 227 hPa (dots are individual experiments, line is the best-fit curve).  

 

 

The sensitivity of regional chemical responses varies with size of aircraft NOx 

emissions (Figure 8.7), being especially pronounced over remote domains. The global 

O3 and CH4 responses saturate with greater aircraft NOx emission rates  

(e.g., Figure 7.4). This saturation effect is also observed for regional dependencies 

(Chapter 9.4), where scale of this processes reach different limits for each region. 

Therefore, regional application of an equal mass of emission implies violation of the 

subtle balance of local NOx–O3–CH4 system. The question addressed with ‘fixed NOx’ 

experiments is the regional sensitivities to unit mass of emission. If the regional values 

of climate impact are required, then, experiments where the balance of local  

NOx–O3–CH4 system is treated ‘equally’ should be applied and this is addressed in 

Chapter 9.  
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Chapter 9  

 

Variation of the effect of regional aviation 

NOx emissions – the revisited approach and 

its implications  

 

 

9.1 Introduction  

 

The sensitivity of global chemical response varies with size of the aircraft NOx 

emissions and saturates at greater NOx emission rates (e.g. Figure 7.4). Also,  

the varying regional chemical responses depends on the size of the aircraft NOx 

emissions (Figure 8.7), being especially pronounced for regions with low background 

NOx concentrations. Equal mass of aircraft NOx emissions leads to substantially 

different relative increases of aircraft NOx (Table 8.1, 9.1), which means that each 

regional domain is pushed to different regimes of its local NOx–O3–CH4 system 

balance, when it ‘deals’ with additional NOx.  

 

In order to give an ‘equal chance’ for regions to respond to aircraft NOx emissions and 

to estimate the un-biased values of regional aircraft net NOx RFs and GWPs the 

experiments with equal relative aircraft NOx emissions are employed . Additionally, 

separate calculations were performed in order to explore how the inclusion of regional 

aircraft NOx responses into a global estimates influence the calculated metrics.  
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9.2 Methodology 

 

9.2.1 Incremental aircraft NOx emissions and experimental design 

 

The relative incremental aircraft NOx emissions were applied for a period of year to 

seven regions: Northern Hemisphere (NH), Southern Hemisphere (SH), Europe (EUR), 

North America (NA), Southeast Asia (SE ASIA), North Pacific (NPAC) and North 

Atlantic (NATL) (geographical extents of these regions are the same as in Chapter 8, 

Table 8.1). Incremental aircraft NOx emissions were applied to one region per 

experiment. The injections of aircraft NOx emissions are valid for all altitudes in the 

defined domains. Two different cases of incremental aircraft NOx emission were 

applied: 5% (N) yr
-1 

and 100% (N) yr
-1

. This constitutes different addition of mass of 

aircraft NOx emission in each region, which for some regions is substantially different 

than 0.035 Tg(N) yr
-1

 experiments (Table 9.1). The 5% NOx increase per year reduces 

the incremental aircraft NOx emissions by ~80–95% compared with 0.035 Tg(N) yr
-1

 

case for most regions. The 100% NOx increase per year is greater than  

0.035 Tg(N) yr
-1 

by ~70% for continental regions, but it is still smaller by ~40% for 

oceanic regions.  

                                                                                               
Table 9.1: The amount of emitted aircraft NOx in each region in Tg(N) yr

-1
 (second column) 

and in % yr
-1

 (third column) is given. The two last columns present the increase (in Tg(N) yr
-1

) 

of aircraft NOx for two cases of relative incremental aircraft emissions, 5% and 100%, in each 

region. In the bracket the difference between the % (N) and 0.035 Tg(N) increases is shown. 

 

REGION 
Aircraft NOx 

 Δ aircraft NOx [Tg(N) yr
-1

] 

(Δ 
  –        

        
) 

[Tg(N) yr
-1

] [% yr
-1

]  5% yr
-1

 100% yr
-1

 

Global 0.71 100  0.035 (0%) 0.71 (+19.0) 

      

NH 0.653 92  0.033 (-0.08) 0.653 (+17.4) 

SH 0.057 8  0.003 (-0.92) 0.057 (+0.61) 

      

EUR 0.112 16  0.006 (-0.84) 0.112 (+2.15) 

NA 0.132 19  0.007 (-0.81) 0.132 (+2.71) 

SE ASIA 0.128 18  0.006 (-0.82) 0.128 (+2.60) 

NPAC 0.021 3  0.001 (-0.97) 0.021 (-0.40) 

NATL 0.023 3  0.001 (-0.97) 0.023 (-0.35) 

REST 0.294 41  0.015 (-0.58) 0.294 (+7.29) 
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9.2.3 Incorporation of aircraft NOx regionalities into global estimates  

 

The experiments with regional 5% yr
-1

 and 100% yr
-1

 incremental aircraft NOx 

emissions were exploited. An additional geographical domain was defined (REST) 

covering all the longitude-latitude-altitude grids outside of the EUR, NA, SE ASIA, 

NATL, NPAC domains. The aircraft NOx emissions characteristic for region REST 

along with the relative incremental aircraft NOx emissions are presented in Table 9.1.      

 

The magnitudes of the impact of aircraft NOx are calculated in three different ways: 

 global NOx emissions, globally calculated and averaged aircraft deltas 

(chemical, RFs, AGWPs) (called later as Global),   

 hemispherical NOx emissions, hemispherically calculated aircraft deltas 

(chemical, RFs, AGWPs), then averaged globally (called later as 

Hemispherical),  

 regional NOx emissions, regionally calculated aircraft deltas (chemical, RFs, 

AGWPs), then averaged globally (called later as Regional). 

   

Through relative increases in each region the sums of aircraft NOx emissions in each, 

Global, Hemispherical and Regional, case are the same. Below the schematic structure 

for 5% yr
-1 

incremental aircraft NOx case is presented:  

  

5%_avi_NOx = 5%_avi_NOx
Global 

= 5%_avi_NOx
Hemispherical

 = 5%_avi_NOx
Regional

 = 

0.035 Tg(N) yr
-1

 ,  

where: 

5%_avi_NOx
Global 

= Global
5%_NOx, 

5%_avi_NOx
Hemispherical 

= NH
5%_NOx

 + SH
5%_NOx

, 

5%_avi_NOx
Regional 

= EUR
5%_NOx

 + NA
5%_NOx + SE ASIA

5%_NOx + NPAC
5%_NOx + 

NATL
5%_NOx + REST

5%_NOx
. 

 

The amount of emitted aircraft NOx is the same for each 5%_avi_NOx case  

(and consequently for 100%_avi_NOx case), thus the influence of differences in the 

treatment of aircraft NOx emissions and its effects (Global vs Hemispherical  

vs Regional) on the calculated chemical response, radiative forcing or global warming 

potential can be investigated. 
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9.2.2 Experimental design 

 

The REACT4C, aircraft emission dataset, was implemented into the 3D CTM, 

MOZART-3. Nineteen experiments were performed, one reference (base aircraft 

emission) run and eighteen perturbation (incremental aircraft emission) simulations, 

each starting in January 2006 and finishing in December 2006; each simulation was 

preceded by a multi-year spin-up, 2000–2005. The aircraft perturbation is derived  

by extracting the difference between ‘aircraft’ and ‘incremental aircraft’ experiments.  

The details regarding model set-up, aircraft emission dataset, surface emissions and 

dynamical data applied for this study are described in Chapter 3.3. The description  

of radiative forcings and global warming potentials calculations is presented  

in Chapter 3.2. 

 

 

9.3 The linearity of chemical responses to regional aircraft NOx 

emissions  

 

The global O3 burden changes linearly with additional NOx emissions up to  

~1.42 Tg(N) yr
-1

, which constitute 100% incremental aircraft NOx emissions increase. 

The deviation from linearity was found to be -7%. The O3 burden changes from 

regional aircraft NOx emissions also are calculated to be relatively linear, with certain 

deviations from 1:1 relation (Figure 9.1). The annual average O3 response appears to be 

the most linear for SE ASIA and EUR where the annual mean value between 5% x 20 

and 100% experiments differ by 0.3%, 3.5%, respectively. NA’s O3 change for 100% 

NOx increase is 10% lower than for 5% x 20, similarly as NPAC, but the difference 

increases to 18%. NATL is the only region, where the variation in resultant O3 is 

relatively large, 35% and it rises to 53% for winter months (DJF). The NATL O3 

burden change for 100% aircraft NOx emission increase is significantly greater than the 

resultant O3 form 5% x 20 case. In general, for remote oceanic regions (NPAC, NATL) 

and for EUR the deviation from linearity is increasing during winter and it is 

decreasing during the summer months (JJA). The opposite pattern, non-linearity is 

greater in the summer than during the winter, is observed for NA and SE ASIA. 
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Despite these deviations from linear response exist for regional aircraft O3 responses, 

there are not as much pronounced, as the observed non-linearities of tropospheric O3 

changes due to surface anthropogenic NOx reductions over North America and East 

Asia (Wu et al., 2009). These non-linearities are significantly less pronounced during 

the summer, which is inconsistent with aircraft NA and SE ASIA O3 changes.     

 

The values of CH4 lifetime change per O3 burden change are always greater for 100% 

aircraft NOx increase than 5% x 20 case. Whilst the difference for continental regions 

varies from 5% for SE ASIA to 7% for NA, it becomes substantial for oceanic regions 

as it constitutes 42% for NPAC and 45% for NATL. This suggest that application  

of greater NOx emission rates, which definitely is the case for 0.035 Tg(N) yr
-1

 over 

NPAC and NATL, might significantly decrease their net NOx RFs.        

 

 
Figure 9.1: Ozone burden changes (in Tg) due to incremental aircraft NOx emissions in 

different regions. The abscissa shows the responses from 5% x 20 NOx increase and the 

ordinate shows the responses from 100% NOx increase. The linear (1:1) relationship is 

presented by dashed line.   
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9.4 Variations of radiative forcings and global warming potentials 

for different rates of regional aircraft NOx emissions 

 

The global O3 production efficiency and the efficiency of CH4 lifetime reduction 

change with varying sizes of aircraft NOx emission (e.g. Figure 7.7). This influence the 

resultant aircraft net NOx RFs and GWPs, which magnitudes are, in general, decreasing 

with increasing aircraft NOx emission rates. The similar pattern, to some extent,  

is observed on a regional scale.    

  
The net NOx radiative forcing from regional perturbations are found to be greater for 

experiments with lower aircraft NOx emission rates, which is the 5% (N) yr
-1 

case and 

tend to decrease with greater aircraft NOx emissions (Table 9.2). The net NOx RFs of 

EUR, NA and NATL are larger by ~30% for 5% (N) yr
-1

 compared with 0.035 Tg(N) 

yr
-1

, the difference for NPAC’s net NOx RF increases to 56%. The short-term O3 RF 

variation ranges from 10% for EUR to 22% for NPAC; CH4 RF variation ranges from 

up to 10% for continental regions and rises significantly for oceanic regions reaching 

69% for NATL. In general, for smaller aircraft NOx emissions rates short-term O3 RF 

is calculated to be the greatest and CH4 RF, and consequently CH4-induced O3 RF and 

SWV RF are calculated to be the smallest (less negative) compared with greater 

aircraft NOx emissions rates, as it was observed on a global scale.  

 

Table 9.2: Normalized regional aircraft net NOx radiative forcings for different incremental 

aircraft NOx emissions. Net NOx accounts for short-term O3 RF, CH4-induced O3 RF and  

CH4 with SWV RF. 
 

REGION 
Net NOx RF [mW m

-2
/Tg(N) yr

-1
] 

0.035 Tg(N) yr
-1

  5 %(N) yr
-1

 100 %(N) yr
-1

 

Global 3.96 3.96 3.06 

    

NH 3.41 3.46 3.22 

SH 7.31 9.91 6.71 

    

EUR 2.29 3.52 1.93 

NA 3.26 4.29 3.20 

SE ASIA 4.87 4.61 4.96 

NPAC 8.67 19.91 9.64 

NATL 10.86 14.52 12.59 
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There is one exception, SE ASIA: the values of net NOx RFs for different incremental 

aircraft NOx emission cases stay within a ~5% range and they are increasing with 

increasing NOx emission rates. The same is observed for short-term O3 RF, which is 

10% lower for 5% (N) yr
-1

 compared with 0.035 Tg(N) yr
-1

, and 2% different for 100% 

(N) yr
-1 

compared with 0.035 Tg(N) yr
-1

.  

 

The background atmospheric conditions of SE ASIA domain might explain this 

distinct behaviour. The HOx background at flight level over SE ASIA is the highest 

among all investigated regions (Figure C.2 in Appendix C), having at the same time 

low NOx background (< 1 pbbv). Under this condition an important termination chain 

for HO2 would be HO2 + HO2 (Seinfeld and Pandis, 2006). This finds a further 

explanations in Lin et al. (1988) box model study, where it is shown that for low NOx 

background the radical combination reactions (RO2 and HO2) supress the non-linearity 

of O3 production efficiency. 

 

The regional ratios of the CH4 lifetime change per O3 burden change vary, as observed 

on a global scale (Figure 7.11), with different sizes of emitted aircraft NOx and they 

decrease with increasing aircraft NOx emissions (Figure 9.2). The greatest differences 

are found to be over oceans, where the CH4 lifetime change per O3 burden change 

varies by 54% for NATL and 47% for NPAC between aircraft emissions of 0.71 and 

1.42 Tg(N) yr
-1

; the continental (EUR and NA) differences constitute ~10% between 

0.71 and 1.8 Tg(N) yr
-1

. The CH4 lifetime change per O3 burden change for SE ASIA 

varies only by 3% for different aircraft NOx emissions rates, which results in relatively 

constant magnitudes of net NOx RFs (Table 9.2). Similarly as for global net NOx 

GWPs, the regional metric values are significantly correlated with ratio of CH4 lifetime 

change per O3 burden change (r=0.7, p<0.001). The remote oceanic regions, with small 

CH4 lifetime change per O3 burden change values, give larger net NOx GWPs than 

continental regions with greater CH4/O3 ratios. Similarly as for global GWPs, regional 

aviation net NOx GWPs decrease with increasing aircraft NOx emissions 

(consequently, the SE ASIA is again an exception). 
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Figure 9.2: Scatter plot of CH4 lifetime change per O3 burden change for different regions and 

a series of aircraft NOx emission (dots are individual experiments, lines are the linear best fit 

lines). 

 

 

The spread in the reported regional net NOx RFs and GWPs differs between different 

experimental designs (Figure 9.3). Experiments with 0.035 Tg(N) yr
-1

 have shown 

reduced variability of calculated metrics, mainly through supressed NPAC response. 

The aviation net NOx GWP varies from 26 (EUR) to 125 (NATL) for 0.035 Tg(N) yr
-1

 

incremental aircraft NOx emissions experiments. The 5% (N) yr
-1

 incremental aircraft 

NOx emissions case result in a new values ranging from 41 for EUR to 229 for NPAC.  

 

 

 

Figure 9.3: The spread in regional aviation net NOx RFs (left) and aviation net NOx GWPs 

(right) for different incremental aircraft NOx emission, 5% (N) yr
-1

(blue), 100% (N) yr
-1

 (red) 

and 0.035 Tg(N) yr
-1

 (green).   
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9.5 Incorporation of aircraft NOx regionalities into a global metrics 

 

Usually metrics utilize globally averaged estimates from globally averaged input.  

An aircraft NOx perturbation leads to production of a heterogeneous pattern of 

chemical and radiative forcing responses and results in various sensitivities of changes 

depending on the location of emission. This is why an attempt to include this spatial 

variation in responses appeared. Previous chapters have shown the climate metrics for 

aircraft NOx impacts based on global input and global estimates  

(Chapter 6, 7), as well as on regional input and global estimates (Chapter 8 and 9.4). 

Here an attempt of one step forward is presented and the climate metrics (RFs and 

GWPs) for aircraft net NOx impact from regional input and regionally calculated 

responses are derived.     

 

Different treatments of NOx emissions and differences in calculations of chemical 

responses lead to disparity in estimates of O3 burden change and CH4 lifetime reduction 

(Table 9.3). The values based on global emissions and global calculations are the 

largest for aircraft O3 burden change, whilst, for aircraft CH4 lifetime reduction, the 

values based on regional emissions and regional calculations are the largest. The 

magnitude of O3 burden change is affected mainly in Regional case, where values 

decrease by 47% and 45% for 5% (N) yr
-1 

and 100% (N) yr
-1

, respectively, compared 

with Global case. The Hemispherical case decreases the O3 burden change by 8% and 

9% for 5% (N) yr
-1 

and 100% (N) yr
-1

, respectively. The CH4 lifetime reduction for 

Hemispherical case is found to be weaker by 7% and 9%, than global averages, for 5% 

and 100% (N) yr
-1

 incremental aircraft NOx emissions, respectively. The Regional case 

increases the CH4 lifetime reduction by 8% for both for 5% and 100% (N) yr
-1

. 

Regional aircraft NOx emissions modify the O3 concentration fields, but not necessarily 

the chemical response is located in the receptor domain. Often the vast part of aircraft 

O3 change is observed, due to meridional transport of aircraft NOx perturbation 

(Appendix C, Figure C.1), outside of region where NOx emissions were emitted (e.g. 

Figure 8.5). Thus, some mass of aircraft O3 changes is lost for Hemispherical and 

Regional cases. Table 9.3 gives also an insight on how different might be the oxidizing 

environment of the atmosphere when it is analysed on the regional and global scale.    
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This fact that not all aircraft O3 changes are captured through regional calculations of 

regional input affect also the resultant short-term O3 RFs (Table 9.4). The 

Hemispherical and Regional O3 RFs are ~10% and ~65%, respectively, lower than 

Global magnitudes. However, when the respective regional calculations are performed 

based on a global NOx emissions input, the short-term O3 RFs are 45% greater than the 

Global estimates. This visualise the challenges arising when dealing with short-lived 

species, as theoretically the more detailed study should allow to observe the more 

detailed patterns; the balance between the nature of investigated substances and the 

complexity of applied method is needed. 

 

Table 9.3: The global and annual mean O3 burden change (in Tg) and the CH4 lifetime reduction 

(in yr) due to the aircraft NOx emissions as a results of different treatment of aircraft NOx 

emissions and calculated responses: global, hemispherical (NH+SH) and regional 

(EUR+NA+SE ASIA+NATL+NPAC+REST) for different incremental aircraft NOx emissions. 
 

Incremental case NOx treatment 
O3 burden change  

(Tg) 

CH4 lifetime change  

(yr) 

5% (N) yr
-1 

Global 0.18 -0.0026 

Hemispherical 0.17 -0.0024 

Regional 0.10 -0.0028 

100% (N) yr
-1

 

Global 3.38 -0.0511 

Hemispherical 3.06 -0.0466 

Regional 1.85 -0.0555 

 
Table 9.4: The short-term O3 RF due to the aircraft NOx emissions as a results of different 

treatment of aircraft NOx emissions and calculated responses: global, hemispherical (NH+SH) 

and regional (EUR+NA+SE ASIA+NATL+NPAC+REST) for different incremental aircraft 

NOx emissions. 
 

Incremental case NOx treatment Short-term O3 RF [mW m
-2

/Tg(N) yr
-1

] 

  Global NOx emissions–globally calculated ΔO3 averages 

5% (N) yr
-1

 
Global 

16.7 

100% (N) yr
-1

 15.3 

  Regional NOx emissions–

regionally calculated ΔO3–

averaged globally 

Global NOx emissions–

regionally calculated ΔO3–

averaged globally 

5% (N) yr
-1

 
Hemispherical 15.3 16.7 

Regional 5.6 31.0 

100% (N) yr
-1

 
Hemispherical 13.9 15.3 

Regional 5.5 28.0 
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The calculated net NOx RFs for different NOx treatments show continuation of these 

peculiarities: Hemispherical and Regional values are ~3% and ~155% smaller than 

Global RF magnitudes (Table 9.5). Whilst the Hemispherical net NOx RF is, to great 

extent, consistent with Global estimates; the Regional net NOx RF shows significant 

discrepancy, where even a sign changes to negative. This can be explained by the fact 

that short-term O3 RFs are more than twice smaller for Regional estimates than the 

global averages. Additionally, there is a greater CH4 lifetime reduction and thus 

stronger negative CH4 RF response for Regional case. All these aspects reduce the 

magnitude of Regional net NOx RF compared with Global and Hemispherical 

estimates.   

 

Table 9.5: The aviation net NOx RFs and GWPs as a results of different treatment of aircraft 

NOx emissions and calculated responses: global, hemispherical (NH+SH) and regional 

(EUR+NA+SE ASIA+NATL+NPAC+REST) for different incremental aircraft NOx emissions. 
 

Incremental case NOx treatment 

Net NOx 

RF  

[mW m
-2

/Tg(N) yr
-1

] 
GWP100 

5% (N) yr
-1

 

Global 4.79 55 

Hemispherical 4.59 52 

Regional -2.71 29 

100% (N) yr
-1

 

Global 3.78 44 

Hemispherical 3.69 42 

Regional -2.10 23 

 

The relation between Global, Hemispherical and Regional estimates changes again, 

when different treatments of NOx emissions and their effects are applied to GWP 

calculations. The regional effectiveness in aircraft chemical and RF responses per 

emitted N is significantly larger than the ‘global potential’ and the ‘strength’ is hidden 

especially over the remote locations, like SH, NPAC or NATL (Figure 9.4). The 

AGWP is a normalized value, thus, in order to deal with potentials of regional NOx RF 

responses, the weighted (by emission of NOx in each region) averages are applied for 

Hemispherical and Regional GWP calculations. The Hemispherical net NOx GWP100 is, 

similarly as net NOx RFs, in the same range of magnitudes as Global estimate: the 

differences are 5% and 2.5% for 5% and 100% (N) yr
-1

, respectively (Table 9.5). The 

Regional net NOx GWP100 decrease substantially being 47% and 48% smaller, for 5% 

and 100% (N) yr
-1

, respectively, than Global net NOx GWP100.   
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Figure 9.4: Regionally normalized (per unit emission of N) contributions (in %) of Northern 

and Southern Hemispheres (upper panel) and different regions (bottom panel) to the aircraft net 

NOx RF. Based on 5% (N) yr
-1

 incremental aircraft NOx emission experiments. 

 

 

Indeed, different treatment of aircraft NOx emissions and calculation of their effects 

influence the derived estimations. The dependencies between Global, Hemispherical 

and Regional magnitudes are driven by various factors, affecting this relation  

at different stages of calculated metrics. The inclusion of regionalities into a global 

metrics might be useful, but the methods to achieve this need to be applied with care, 

as well as the motivation of such procedure. Lund et al. (2012) highlighted that for 

transport sectors, taking into account regionalities in the calculations might become  

an important issue when this sector is considered in isolation, but it turns to be of 

importance when its climate impact is assessed in connection with an overall climate 

response.   
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Chapter 10 

 

Overall summary of results 

 

 

The series of global and regional aircraft NOx experiments were conducted using  

3D CTM, MOZART-3. The dependence of aviation NOx effects on various factors, 

such as surface emissions of ozone precursors, aircraft inventories, the amount  

of emitted aircraft NOx and region of aircraft NOx emissions, have been shown 

(Chapters 5, 6, 7, 8, 9). A substantial variation in the relation between aircraft 

responses of O3 and CH4 were found: 82 different ratios of CH4 lifetime change per O3 

burden change were derived in 82 CTM experiments. Consequently, a wide spectrum 

of aircraft net NOx RFs and GWPs were calculated: 59 different experiments led to  

59 different GWP values (Figure 10.1) with magnitudes ranging from positive (95%  

of results) to negative (5% of results). 

 

 

Figure 10.1: Scatter plot of aviation NOx global warming potentials for 100-time year horizon 

against ratios of CH4 lifetime change per O3 burden change for global and regional aircraft  

NOx perturbations (dots are the individual experiments, line is the linear fit line). 
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10.1 Do the surface emissions of ozone precursors influence the effect 

of aircraft NOx emissions? 

 

The effect of aircraft NOx emissions depends on the condition of the atmosphere into 

which NOx is injected. The results from Chapter 5 show that modified surface 

emissions of ozone precursors (NOx, CO, NMVOC) alter the chemical perturbations 

from the aircraft NOx perturbation. The 30% reductions of anthropogenic and biomass 

burning NOx, CO and NMVOC fluxes were applied, while aircraft NOx emissions were 

kept constant. Reductions of surface NOx emissions decrease OH concentrations, 

increasing CO and CH4 abundance. On the contrary, reductions of CO and NMVOC 

increase OH level, decreasing CH4 lifetime by 3.4% and 0.7%, respectively.   

Reductions of surface NOx, CO and NMVOC emissions caused the decrease of 

tropospheric O3 concentrations. The resultant changes from surface emissions also 

affect the upper troposphere, where aircraft NOx emissions are released. The greatest 

sensitivity of aircraft O3 and CH4 responses to modified background conditions were 

calculated for 30% reduction of surface NOx emissions: the O3 burden change 

increased by 20% along with the increase of CH4 lifetime reduction by 46%. The 30% 

reductions of surface CO and NMVOC affected aircraft NOx response with similar 

sensitivity, causing decrease of aircraft O3 burden change by 3% and 4% and decrease 

of aircraft CH4 lifetime reduction by 7% and 5%, respectively. The NOx background 

conditions efficiently influenced aircraft O3 response: the smaller NOx concentrations 

the greatest O3 change. However, aircraft NOx emissions were found to be even more 

efficient (by 11% for 50% of reduced NOx) in affecting O3 changes.     

 

10.2 Can aircraft inventories explain the variation in estimates of 

aircraft NOx impact on RF? 

 

Comparative modelling studies have usually focused on the inter-model variability, 

using the same emission databases. Chapter 6 presents a novel approach of using  

a single model with various aircraft emissions. Six different aircraft NOx emission 

inventories were normalized to give the same global emissions of NOx and were 

analysed using MOZART-3. Each of the emission datasets have slightly different 

assumptions and therefore vertical distributions of emissions. The normalized NOx 

emissions differed by 23% at cruise altitudes, 283–200 hPa, where most of the aircraft 
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NOx occurs in MOZART-3. The resultant short-term O3 chemical perturbation varied 

by 15% and each of the datasets led to different O3 production efficiency, being the 

greatest for inventories with more NOx emissions at higher altitudes. The largest O3 

aircraft perturbation did not introduce the greatest CH4 reduction, as the relationship 

between O3 and CH4 change is a function of altitude of NOx emission; thus, it is 

inventory dependent. Once all the positive and negative effects were accounted for, the 

variability of the net NOx radiative forcing reached 94%. Using these radiative effects 

to formulate a net aviation NOx GWPs for 100-year time horizon resulted in values 

ranging from 60 to 4. The spread between aircraft NOx estimates arising from usage of 

different aircraft inventories, and their vertical distribution of emissions, potentially 

explains a significant range of uncertainty in estimates of an overall aviation NOx RF. 

 

10.3 Why is there a significant discrepancy in the reported values of 

an aircraft NOx GWP? 

 

The magnitudes of aviation NOx GWPs reported in the literature not only vary greatly 

in magnitude, but also in sign, from positive to negative. Chapter 7 presents some 

peculiarities of NOx–O3–CH4 system, which reveal the explanation of these disparities. 

The response of the chemical system varied with the amount of aircraft NOx emission 

and in a non-linear way. The aircraft O3 perturbation along with CH4 lifetime reduction 

saturated at higher aircraft NOx emission rates, in accordance with current 

understanding of atmospheric chemistry. However, the extent of these effects was 

different and O3 saturation was more pronounced than the weakening of CH4 reduction. 

This resulted in a decreasing ratio of CH4 lifetime reduction per O3 burden change with 

greater aircraft NOx emissions. A strong and significant (r=0.99, p<0.001) correlation 

between the variance in CH4/O3 dependencies and global aircraft NOx GWPs was 

found. Consequently, the substantial diversity of aviation GWPs, with magnitudes 

ranging from positive to negative, net NOx GWP100 varied from 22 to -4, could be 

reproduced with the same model and emissions distribution. Thus, even with one 

model and consistent experimental design, it was not possible to determine a unique 

value for an aviation NOx GWP. Additionally, the magnitudes of aircraft net NOx 

GWPs increase with reduction of aircraft NOx emissions and decrease with increasing 

aircraft NOx emissions.   
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10.4 What are the variations of the effect of regional aircraft NOx 

emissions? 

 

Aircraft NOx emissions injected into different geographical locations affect the 

sensitivities of global and hemispherical chemical responses and the compensating 

balance between O3 and CH4 changes, as it was shown in Chapters 8 and 9. The 

resultant O3 burden change varied by 42% between different regions; the aviation net 

NOx GWP100 varied from 21 for Europe to 125 for the North Atlantic (based  

on 0.035 Tg(N) yr
-1 

incremental aircraft NOx emission experiments). Significant 

hemispherical disparity in the resultant effects from aircraft NOx perturbation was also 

found, where the net NOx GWP100 for Northern and Southern Hemisphere differed  

by 49%, being greatest for the Southern Hemisphere. The dependence between spatial 

variation of O3 burden change and NOx background was shown: O3 response decreases 

with greater NOx concentrations. 

 

Similarly as for global responses, regional chemical perturbations also varied with size 

of aircraft NOx emission rate. Therefore, experiments based on equal mass of aircraft 

NOx emissions applied into different regions leads to biased regional dependencies. 

This affects mainly geographical domains with low NOx concentration (e.g., remote 

oceanic regions), where injected NOx often constitutes a significant relative increase, 

which pushes the local NOx–O3–CH4 balance into a saturation regime and reduces  

its aircraft NOx effect. The experiments with equal relative aircraft NOx emissions 

revealed the ‘real’ potential of regional aircraft NOx effects. The 5% (N) yr
-1

 

incremental aircraft NOx emission case resulted in a net aviation NOx GWP100 ranging 

from 41 for Europe to 224 for North Pacific. 

 

The regional ratios of CH4 lifetime change per O3 burden change decrease with 

increasing aircraft NOx emissions: the remote oceanic regions experienced the most 

substantial variation (54–47%) compared with more stable continental regions  

(~10% of divergence). This pattern affects the magnitudes of resultant metrics, which 

were found to be smaller for greater aircraft NOx emissions. The only region, among 

investigated, which was an exception to the above dependencies, is Southeast Asia, 

where the non-linearity of NOx–O3–CH4 system was found to be supressed. The CH4 

lifetime change per O3 burden change varied by only 3% and the calculated RF and 

GWP values were almost insensitive to the amount of emitted aircraft NOx emissions.   
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Chapter 11  

 

Conclusions and recommendations for 

further work 

 

 

The impact of aircraft NOx emissions on a coupled NOx–O3–CH4 system was 

investigated and some previously unexplored uncertainties associated with aircraft NOx 

estimates were identified. The applied framework, which consisted of two main tools, 

3D CTM MOZART 3 and RTM Edwards–Slingo, have been found suitable for 

representing aircraft responses properly and in agreement with other studies, both on  

a global and regional scale. The aircraft net NOx effects estimated in this study arise 

from four components, short-term O3, CH4-induced O3, CH4 and CH4 impact on SWV, 

which differ in their spatial and temporal scale of responses. This study has shown that 

a consistent consensus in aviation net NOx estimates is going to be a difficult to 

achieve due to the intrinsic characteristics of NOx chemistry. The aircraft NOx 

uncertainties originate not only from inter-model differences (Myhre et al., 2011)  

or background NOx concentrations (Holmes et al., 2011), but also the usage of different 

aircraft NOx inventories and the size of emitted aircraft NOx contribute to these 

disparities (Figure 11.1). The increasing uncertainty with increasing policy and societal 

relevance is a conventional process when moving along the cause–effect chain: 

however, the aviation NOx GWP can be over an order of magnitude different for 

constant aircraft NOx emissions, which represents a significant uncertainty before one 

steps to ‘real-world impacts’ uncertainties. One of the main challenges with 

incorporating aircraft NOx emissions into climate agreements might be the fact that  

a unique aviation NOx GWP does not exist, or that global aviation net NOx impact 

decreases with increased aircraft NOx emissions and increases with reduction  

of aircraft NOx emissions, a behaviour that is different to most other emissions.      
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Figure 11.1: Scheme presenting a cause–effect chain from aircraft NOx emissions to aviation 

NOx GWP. The increasing disparity in calculated values at different steps of this chain based 

on selected 3D CTM case studies is shown (Figure adapted from Fuglestvedt et al., 2003) 

 

Recently, a new HNO3 forming channel resulting from the reaction between NO and 

HO2 has been found (Butkovskaya et al., 2005). It was shown that it leads to  

a reduction in tropospheric O3 burden of 11%, a decrease of global mean OH of  

~13–14% and an increase in CH4 lifetime of ~5–11% (Cariolle et al., 2008,  

Søvde et al., 2011). These modified background changes of atmospheric constituents 

will affect aircraft NOx response and as it was presented by Gottschaldt et al. (2013)  

by accounting for HO2 + NO → HNO3 the magnitude of aircraft net NOx RF  

is significantly reduced, mainly through enhanced CH4 lifetime reduction. Further 

worthwhile points of consideration are: the inclusion of plume processes, that might 

reduce the aircraft O3 response by 10–25% (Cariolle et al., 2009), new NMHC 

oxidation scheme (Taraborrelli et al., 2012), that might increase OH background and 

consequently affect CH4 and CH4 related aircraft NOx components or new cloud 

scavenging parameterisation (Neu and Prather, 2011), that might influence the upper 

tropospheric O3 budget. These aspects might be considered in the future modelling 

studies and their impact on aircraft NOx effects.    

 

Studies presented in this thesis give some perspectives and inspiration for further 

research. Firstly, whilst it was interesting to investigate the non-linearities of a  

NOx–O3–CH4 system on global and regional scales, the altitudinal dimension  

UNCERTAINTIES ASSOCIATED WITH AIRCRAFT NOx ESTIMATES FOR SELECTED CASE STUDIES  
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also sounds equally interesting. Taking into that aircraft chemical perturbation, even 

for relatively close altitudinal bands (9–10km and 10–11km in Figure 6.17), can be 

already very different, the series of incremental aircraft NOx emissions at different 

altitudinal level might give an additional view on the dependencies between NOx 

chemistry and background conditions. Secondly, the performed analysis of the effects 

of regional aircraft NOx emissions give some insight into the hemispherical radiative 

imbalance (Figure 8.15) that are characteristic for aviation NOx. The presented results 

suggest the potential of Southern Hemispheric cooling regardless of the location of 

aviation NOx emissions, which seems to be an important aspect to explore. In order to 

fully investigate and prove this behaviour, more regions over Southern Hemisphere 

need to be defined, along with detailed analysis of their RF latitudinal variation. 

Finally, this thesis presents the dependencies between the coupled NOx–O3–CH4 

system and climate forces. However, an investigation of climate responses to saturation 

of O3 production efficiency with increasing aircraft NOx emissions rates might be also 

an interesting prospect for a further study
1
, where of special interest might constitute 

the interactions among chemical non-linearities and band saturation effects under 

different background conditions.  

 

The denominators for GWP calculations applied in this study constituted data given by 

IPCC AR4 (Forster et al., 2007). However, Joos et al. (2013) has recently presented the 

re-evaluated CO2 AGWPs. If values from this latest study were applied, the aviation 

NOx GWPs presented within this thesis would be reduced by ~5% for GWP20, 6% for 

GWP100 and 12% for GWP500. Consideration of different scenarios of future emissions 

also might lead to verified aircraft NOx GWP values. In the light of results presented 

by Reisinger et al. (2011), where CO2 AGWPs decrease for greater CO2 concentrations, 

the calculated aviation NOx GWPs would increase, with differences pronounced 

especially under RCP 8.5 scenario. 

 

The aircraft NOx characteristics are emphasised by the integrative nature of the GWP 

and its ‘artificial’ memory of short-lived effects long after their occurrence. This 

explains the fact that the variance in the CH4 change per O3 change in the year  

of emission drives the variability of NOx GWPs; since there is no unique GWP value, 

there is also no unique ratio of CH4 lifetime change per O3 mass change. However,  

the variance in the resultant global CH4 lifetime change per O3 column change  

                                                        
1
 This would require a different model framework, than applied in this thesis.  
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is reduced significantly, by 95%, for time horizons representing the long-term decay 

responses (Figure 11.2). This gives the chance for an end-point metrics, like GTP,  

to reduce the disparity in aircraft NOx estimates, as the effect is accounted only for one 

chosen year in the future. This possibly might be viewed, as a trade-off with relatively 

wider range of uncertainties associated with GTP and related with additional 

assumptions on the climate sensitivity and heat exchange between the ocean and 

atmosphere. Nevertheless, the non-linearities of NOx–O3–CH4 system need further 

investigations in order to capture responses of other metric types on such attribute.  

 

 

Figure 11.2: Scatter plot of CH4 lifetime change per O3 column change for different case 

studies of aircraft NOx perturbations. The abscissa shows the ratios of responses of the first 

year effect and the ordinate shows the ratios of the long-term decay responses. The standard 

deviation values are given next to arrows. 

 

The aviation impact on climate arises from CO2 emissions and non-CO2 emissions and 

effects, causing the long-term and short-term impacts, respectively. The scientific 

understanding is assigned to be high only for CO2, the non-CO2 factors are still very 

uncertain, which becomes an urgent matter as they constitute a significant contribution 

to the total aviation RF. Currently, the effects of aircraft NOx are considered to be the 

best known, among the unknowns. The assessment of the impact of aviation on 

aerosol, the RF from contrails and contrail cirrus, or the effect of aircraft aerosol on 

contrail cirrus are especially uncertain, where often both magnitude and sign are 

questionable. Recent studies, e.g., Burkhardt and Kärcher (2011), Righi et al. (2013), 

Chen and Gettelman (2013), highlight the significance of those aircraft climate effects 

and show that their RF magnitudes might even outweigh the impact of aircraft CO2 

emissions. Thus, all the more, further investigations of aviation non-CO2 climate 

impacts, other than NOx, are particularly in need.        
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           Table A.1. Updated rate constants for second-order reactions in 2D CTM, TROPOS. 

 

Reaction k rate_old k rate_new Ref 

(KR1)    O1D + N2O → NO + NO 7.2E-11 6.7E-11*exp(20/T) 1 

(KR2)    O1D + H2OC → OH + OH 2.2E-10 1.63E-10*exp(60/T) 1 

(KR3)    O1D + MOLS → O3P 2.1E-11*exp(100/T) 2.15E-11*exp(110/T) 1 

(KR4)    O3P + O2 → O3 See Table A.2 

(KR5)    O3P + NO → NO2 See Table A.2 

(KR6)    O3P + NO2 → NO3 See Table A.2 

(KR7)    O3P + NO2 → NO 6.5E-12*exp(120/T) 5.1E-12*exp(210/T) 1 

(KR8)    HO2 + OH → H2O 4.8E-11*exp(250/T) 4.8E-11*exp(250/T) 1 

(KR9)    O3 + OH → HO2 1.9E-12*exp(-1000/T) 1.7E-12*exp(-940/T) 1 

(KR10)   HO2 + O3 → OH 1.4E-14*exp(-600/T) 1.0E-14*exp(-490/T) 1 

(KR11)   HO2 + HO2 → H2O2 See A.3 

(KR12)   OH + OH → H2O2 See Table A.2 

(KR13)   H2O2 + OH → HO2 2.9E-12*exp(-160/T) 1.8E-12 1 

(KR14)   H2 + OH → H2O + HO2 7.7E-12*exp(-2100/T) 2.8E-12*exp(-1800/T) 1 

(KR15)   H2 + O1D → HO2 + OH 1.1E-10 1.1E-10 1 

(KR16)   NO2 + OH → HNO3 See Table A.2 

(KR17)   NO + O3 → NO2 2.0E-12*exp(-1400/T) 3.0E-12*exp(-1500/T) 1 

(KR18)   NO2 + O3 → NO3 1.2E-13*exp(-2450/T) 1.2E-13*exp(-2450/T) 1 

(KR19)   NO + HO2 → NO2 + OH 3.7E-12*exp(240/T) 3.5E-12*exp(250/T) 1 

(KR20)   NO2 + HO2 → HO2NO2 See Table A.2 

(KR21)   HO2NO2 → NO2 + HO2 See Table A.2 
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Reaction k rate_old k rate_new Ref 

(KR22)   NO + NO3 → NO2 + NO2 1.6E-11*exp(150/T) 1.5E-11*exp(170/T) 1 

(KR23)   HNO3 + OH → NO3 See A.4 

(KR24)   HO2NO2 + OH → NO2 1.5E-12*exp(360/T) 1.3E-12*exp(380/T) 1 

(KR25)   NO2 + NO3 → N2O5 See Table A.2 

(KR26)   N2O5 → NO2 + NO3 See Table A.2 

(KR27)   CO + OH → HO2 
1.5E-13* 

(1.0+(0.6+PATM)) 

1.3E-13* 

(1.0+(0.6*PATM)) 
3 

(KR28)   CH4 + OH → CH3O2 + H2O 
1.59E-20*(T

2.84
)* 

exp(-978/T) 

1.85E-20*(T
2.82

)* 

exp(-987/T) 
3 

(KR29)   CH4 + O1D → CH3O2 + OH 1.4E-10 1.05E-10 3 

(KR30)   CH4 + O1D → HCHO + H2 1.5E-11 7.5E-12 3 

(KR31)   CH3O2 + NO → HCHO + 

HO2 + NO2 
4.2E-12*exp(180/T) 2.8E-12*exp(300/T) 1 

(KR32)   CH3O2 + HO2 → CH3OOH 1.7E-13*exp(1000/T) 4.1E-13*exp(750/T) 1 

(KR33)   CH3O2 + CH3O2 → products 1.7E-13*exp(220/T) 9.5E-14*exp(390/T) 1 

(KR34)   CH3O2 + NO2 → CH3O2NO2 See Table A.2 

(KR35)   CH3O2NO2 → CH3O2 + NO2 See Table A.2 

(KR36)   CH3OOH + OH → products 1.1E-11 3.8E-12*exp(200/T) 1 

(KR37)   HCHO + OH → CO + HO2 1.6E-11*exp(-110/T) 5.4E-12*exp(135/T) 3 

(KR38)   HCHO + NO3 → HNO3 + 

HO2 + CO 
6.0E-16 5.6E-16 3 

(KR41)   C2H6 + OH → C2H5O2 
1.37E-17*T2* 

exp(-444/T) 
8.7E-12*exp(-1070/T) 1 

(KR42)   C3H8 + OH → products 
1.27E-17* 

T2*exp(14/T) 
8.7E-12*exp(-615/T) 1 

(KR43)   C4H10 + OH → products 1.55E-11*exp(-540/T) 
1.75E-17* 

T
2
*exp(114/T) 

4 

(KR44)   C5H12 + OH → products 3.9E-12 
2.48E-17* 

T
2
*exp(158/T) 

4 

(KR45)   C6H14 + OH → products 5.6E-12 
2.61E-14*T* 

exp(-112/T) 
4 

(KR46)   C2H5O2 + NO → products 1.16*KR31 2.6E-12*exp(365/T) 
1 
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Reaction k rate_old k rate_new Ref 

(KR47)   CH3CHO + OH → CH3COO2 5.6E-12*exp(310/T) 4.4E-12*exp(365/T) 3 

(KR48) CH3CHO + NO3 → HNO3 + 

CH3COO2 
1.4E-12*exp(-1860/T) 1.4E-12*exp(-1900/T) 1 

(KR49)   CH3COO2 + NO2 → PAN See Table A.2 

(KR50)   PAN → CH3COO2 + NO2 See Table A.2 

(KR51)   PAN + OH → HCHO + NO2 1.2E-12*exp(-650/T) 2E-14 1 

(KR52)   CH3COO2 + NO → CH3O2 + 

NO2 
1.85*KR31 8.1E-12*exp(270/T) 1 

(KR53)   C4H9O2 + NO → products 1.16*KR31 2.54E-12*exp(360/T) 5 

(KR54)   C2H5COCH3 + OH → 

CH3CH(O2)COCH3 
1.8E-11*exp(-890/T) 

2.53E-18* 

(T
2
)*exp(503/T) 

4 

(KR55)   CH3CH(O2)COCH3 + NO → 

products 
KR31 2.54E-12*exp(360/T) 5 

(KR56)   C6H13O2 + NO → products 1.16*KR31 2.54E-12*exp(360/T) 5 

(KR57)   C2H4 + OH → 

HOCH2CH2O2 
See Table A.2 

(KR58)   HOCH2CH2O2 + NO → 

HO2+NO2, *FRAA:HCHO, 

*FRBB:CH3CHO 

KR31 9.0E-12 3 

(KR59)   C2H4 + O3 → products 1.2E-14*exp(-2633/T) 1.2E-14*exp(-2630/T) 1 

(KR60)   C3H6 + OH → 

CH3CH(O2)CH2OH 
See Table A.2 

(KR61)   CH3CH(O2)CH2OH + NO → 

CH3CHO + HCHO + HO2 + NO2 
KR31 2.54E-12*exp(360/T) 5 

(KR62)   C3H6 + O3 → products 1.3E-14*exp(-2105/T) 6.5E-15*exp(-1900/T) 1 

(KR63)   C2H2 + OH → HCOCHO + 

OH 
See Table A.2 

(KR64)   C6H6 + OH → *0.47:ARO2 7.57E-12*exp(-529/T) 2.33E-12*exp(-193/T) 4 

(KR65)   C7H8 + OH → *0.82: ARO2 2.1E-12*exp(322/T) 1.18E-12*exp(338/T) 4 

(KR66)   ARO2 + NO → CH3COCHO 

+ HCOCHCHCHO + HO2 + NO2 
KR31 2.54E-12*exp(360/T) 5 

(KR67)   HCOCHCHCHO + OH → 

HCOCHCHCOO2 
3E-11 5.2E-11 5 
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Reaction k rate_old k rate_new Ref 

(KR68)   HCOCHCHCOO2 + NO → 

products 
KR31 8.1E-12*exp(270/T) 5 

(KR69)   HCOCHO + OH → CO + CO 

+ HO2 
1.15E-11 1.15E-11 1 

(KR70)  CH3COCHO + OH → 

CH3COO2 + CO 
1.7E-11 1.5E-11 3 

(KR71)   C2H5O2 + HO2 → C2H5OOH 6.5E-13*exp(650/T) 7.5E-13*exp(700/T) 1 

(KR72)   C4H9O2 + HO2 → C4H9OOH KR71 
(2.91E-13* 

exp(1300/T))*0.625 
5 

(KR73)   C6H13O2 + HO2 → 

C6H13OOH 
KR71 

(2.91E-13* 

exp(1300/T))*0.770 
5 

(KR74)   CH3COO2 + HO2 → 

CH3COO2H 
KR71 4.3E-13*exp(1040/T) 1 

(KR75)   CH3CH(O2)COCH3 + HO2 → 

products 
KR71 

(2.91E-13* 

exp(1300/T))*0.625 
5 

(KR76)   HOCH2CH2O2 + HO2 → 

products 
KR71 1.2E-11 3 

(KR77)  CH3CH(O2)CH2OH + HO2 → 

products 
KR71 

(2.91E-13* 

exp(1300/T))*0.520 
5 

(KR78)   ARO2 + HO2 → ; KR71 
(2.91E-13* 

exp(1300/T))*0.820 
5 

(KR79)   HCOCHCHCOO2 + HO2 → ; KR71 4.3E-13*exp(1040/T) 5 

(KR80)   CH3O2 + CH3COO2→ 

products 
2.2E-12*exp(490/T) 2.0E-12*exp(500/T) 1 

(KR81)   CH3COO2 + CH3COO2 → 

2CH3O2 
2.8E-12*exp(490/T) 2.9E-12*exp(500/T) 1 

(KR82)   C2H5OOH + OH → products 2.0E-11 
1.16E-11 

(298K; 69%:31%) 
5 

(KR83)   C4H9OOH + OH → products 2.0E-11 1.24E-11 5 

(KR84)   C6H13OOH + OH → 

C6H13O2 
3.0E-12 6.4E-12 5 

(KR85)   CH3COO2H + OH → 

CH3COO2 
5.0E-12 3.7E-12 5 
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Reaction k rate_old k rate_new Ref 

(KR86)    Isoprene + OH → ISOPO2 - 2.7E-11*exp(390/T) 3 

(KR87)    ISOPO2 + NO → products - 2.54E-12*exp(360/T) 5 

(KR88)    ISOPO2 + HO2 → 2.75 CO + 

0.9 H2 
- 

(2.91E-13* 

exp(1300/T))*0.706 
 

(KR89)   Isoprene + O3 → products - 
1.03E-14* 

exp(-1995/T) 
3 

(KR91)   MVKETONE + OH → 

MVKO2 
3.0E-12*exp(500/T) 2.6E-12*exp(610/T) 3 

(KR92)   MVKO2 + NO →  products KR31 2.54E-12*exp(360/T) 5 

(KR93)   MVKO2 + HO2 → products KR71 
(2.91E-13* 

exp(1300/T))*0.625 
5 

(KR94)   MVKETONE + O3 → 

products 
4.0E-15*exp(-2000/T) 8.5E-16*exp(-1520/T) 3 

(KR95)   MACR + OH → MACRO2 3.86E-12*exp(500/T) 8.0E-12*exp(380/T) 3 

(KR96)   MACRO2 + NO → products KR31 8.1E-12*exp(270/T) 5 

(KR97)   MACRO2 + HO2 → products KR71 4.3E-13*exp(1040/T) 5 

(KR98)   MACR + O3 → products 4.4E-15*exp(-2500/T) 1.4E-15*exp(-2100/T) 3 

 

 

A.3:   Old values:     k11 = (2.2E-13*exp(600/T))+(MOLS*1.8E-33*exp(980/T)) 

           New values:   k11 = (3.5E-13*exp(430/T))+(MOLS*1.7E-33*exp(1000/T)) 

           Ref.: 1 

A.4:   Old values:      ko = 7.2E-15*exp(785/T), k2 = 4.1E-16*exp(1440/T),  

                                   k3 = MOLS*1.9E-  33*exp(725/T) 

           New values:    ko = 2.4E-14*exp(460/T), k2 = 2.7E-17*exp(2199/T),  

                                   k3 = MOLS*6.5E-34*exp(1335/T) 

          Ref.: 1 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A.2. Updated rate constants for termolecular reactions in 2D CTM, TROPOS. 

 

Reaction 
Old values New values 

Ref 
k0 k∞ Fc k0 k∞ Fc 

(KR4)    O3P + O2 → O3 [M]*5.6E-34*(T/300)
-2.6 

2.8E-12 exp(-T/696) [M]*6.0E-34*(T/300)
-2.4 

—  1 

(KR5)    O3P + NO → NO2 [M]*9.7E-32*(T/300)
-1.6 

3.0E-11*(T/300)
0.3

 exp(-T/1850) [M]*1.0E-31*(T/300)
-1.6 

3.0E-11*(T/300)
0.3

 0.85 2 

(KR6)    O3P + NO2 → NO3 [M]*9.0E-32*(T/300)
-2.0 

2.2E-11 exp(-T/1300) [M]*1.3E-31*(T/300)
-1.5 

2.3E-11*(T/300)
-0.24

 0.6 2 

(KR12)   OH + OH → H2O2 [M]*6.9E-31*(T/300)
-0.8 

3.0E-11 exp(-T/913) [M]*6.9E-31*(T/300)
-0.8 

2.6E-11
 

0.5 2 

(KR16)   NO2 + OH → 

HNO3 
[M]*2.5E-30*(T/300)

-2.9 
5.2E-11 exp(-T/353) [M]*3.3E-30*(T/300)

-3.0 
4.1E-11 0.4 2 

(KR20)  NO2 + HO2 → 

HO2NO2 
[M]*1.8E-31*(T/300)

-3.2 
4.7E-12 0.6 [M]*1.8E-31*(T/300)

-3.2 
4.7E-12 0.6 2 

(KR21)  HO2NO2 → NO2 + 

HO2 
[M]*4.7E-6*(-10000/T)

 
3.4E+14*(-10420/T) 0.6 [M]*4.1E-5*(-10650/T)

 
4.8E+15*(-11170/T) 0.6 2 

(KR25)   NO2 + NO3 → 

N2O5 
[M]*2.7E-30*(T/300)

-3.4 
2.0E-12*(T/300)

0.2
 0.34 [M]*3.6E-30*(T/300)

-4.1 
1.9E-12*(T/300)

0..2
 0.35 2 

(KR26)   N2O5 → NO2 + 

NO3 

[M]*2.2E-3*(-11080/T) 

*(T/300)
-4.4 

9.7E+14*(-11080/T) 

*(T/300)
0.1

 
0.34 

[M]*1.3E-3*(-11000/T) 

*(T/300)
-3.5 

9.7E+14*(-11080/T) 

*(T/300)
0.1

 
0.35 2 

(KR34)   CH3O2 + NO2 → 

MEO2NO2 
[M]*2.3E-30*(T/300)

-4.0 
8.0E-12 exp(-T/327) [M]*2.5E-30*(T/300)

-5.5 
1.8E-11 0.36 3 

(KR35)  MEO2NO2 → 

CH3O2 + NO2 
[M]*9.0E-5*(-9690/T)

 
1.1E+16*(-10560/T) 0.4 [M]*9.0E-5*(-9690/T)

 
1.1E+16*(-10560/T) 0.6 3 

(KR49)  CH3COO2 + NO2 → 

PAN 
[M]*2.0E-28

 
8.4E-12 0.27 [M]*2.7E-28*(T/300)

-7.1
 1.2E-11*(T/300)

-0.9
 0.3 3 

(KR50)  PAN → CH3COO2 + 

NO2 
[M]*6.3E-2*(-12785/T)

 
2.2E+16*(-13435/T) 0.27 [M]*4.9E-3*(-12100/T)

 
5.4E+16*(-13830/T) 0.3 3 

(KR57)  C2H4 + OH → 

ETHEO2 
[M]*9.5E-29*((T/300)

-3.1 
9.0E-12 exp(-T/840) [M]*8.6E-29*(T/300)

-3.1 
9.0E-12*((T/300)

-0.85
 0.48 3 

(KR60)  C3H6 + OH → 

PRPEO2 
[M]*8.0E-27*(T/300)

-3.5 
3.0E-11 exp(-T/433) [M]*8.0E-27*((T/300)

-3.5 
3.0E-11*((T/300)

-1
 0.5 3 

(KR63)  C2H2 + OH → 

HCOCHO + OH 
[M]*5.0E-30

 
8.3E-13*(T/300)

2.0
 0.6 [M]*5.0E-30

 
8.3E-13*(T/300)

2.0
 0.6 1 
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Appendix B 

 

 

By taking into account the O(
1
D) production from O3 photolysis at wavelengths longer 

than 310 nm, which leads to existence of so-called ‘tail’, the overall rate increases by 

~10% (Seinfeld and Pandis, 2006). This is an important modification of the specificity 

of the oxidizing capacity of the atmosphere. 

 

An updated quantum yield for production of O(
1
D) in 2D CTM, TROPOS  

(in FACSIMILE format): 

 

*; 

  TUHERE = TEMP<#70,#8> ; 

*; 

  DO 49 FOR #3 = 0(1)34 ; 

    P1O3<#3> = 0.9 ; 

    LABEL 49; 

 

  DO 52 FOR #3 = 35(1)38 ; 

  Q1 = EXP(-0/(0.695*TUHERE)) ; 

  Q2 = EXP(-825.518/(0.695*TUHERE)) ; 

  ATAU = (304.225-LAMBDA<#3>)/5.576 ; 

  BTAU = (314.957-LAMBDA<#3>)/6.601 ; 

  CTAU = (310.737-LAMBDA<#3>)/2.187 ; 

  X1 = ((Q1/(Q1+Q2))*0.8036*EXP(-(ATAU@4))) ; 

  X2 = ((Q2/(Q1+Q2))*8.9061*((TUHERE/300)@2)*EXP(-(BTAU@2))); 

  X3 = (0.1192*((TUHERE/300)@1.5)*EXP(-(CTAU@2))) ; 
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 PTEMP = X1+X2+X3+0.0765 ; 

    P1O3<#3> = PTEMP ; 

    LABEL 52 ; 

 

  DO 54 FOR #3 = 39(1)46 ; 

    P1O3<#3> = 0.08 ; 

    LABEL 54 ; 

 

 DO 55 FOR #3 = 47(1)105 ; 

    P1O3<#3> = 0.00 ; 

    LABEL 55 ;  

*; 

 

 

 

 

 



151 

 

 

 

 

 

Appendix C 

 

 

 

 

 
Figure C.2: Relationship between background conditions (CO concentrations, HOx 

concentrations, OH/HO2 ratio and NOx/HOx ratio) at 250–200 hPa and aircraft O3 burden 

change (aircraft O3) for different regions: Europe (EUR), North America (NA), Southeast Asia 

(SE ASIA), North Atlantic (NATL) and North Pacific (NPAC). The percentage fraction 

presents how the specific combination of  region and background condition contribute to the 

specific total regional background condition.   
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Figure C.1: Annual NOx changes (in %) at 227 hPa calculated by MOZART-3 model for 

incremental aircraft NOx emissions of 0.035 Tg(N) yr
-1

 in Northern Hemisphere (NH), 

Southern Hemisphere (SH), Europe (EUR), North America (NA), Southeast Asia (SE ASIA), 

North Atlantic (NATL) and North Pacific (NPAC). The red rectangles indicate the 

geographical domains with incremental aircraft NOx emissions. 
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The assessment of the impact of aviation NOx on ozone and other
radiative forcing responses e The importance of representing cruise
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h i g h l i g h t s

� The series of aircraft inventories are investigated using 3D CTM, MOZART v3.
� The discrepancies in altitudinal distribution of aircraft NOx emissions are observed.
� The resultant O3 chemical perturbation varied by 15%.
� The variability of net NOx radiative forcing is observed to be 94%.
� Future efforts should focus on accurate representation of emissions at cruise altitudes.
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a b s t r a c t

Aviation emissions of NOx result in the formation of tropospheric ozone (warming) and destruction of a
small amount of methane (cooling), positive and negative radiative forcing effects. In addition, the
reduction of methane results in a small long-term reduction in tropospheric ozone (cooling) and, in
addition, a long-term reduction in water vapour in the stratosphere (cooling) from reduced oxidation of
methane, both negative radiative forcing impacts. Taking all these radiative effects together, aircraft NOx

is still thought to result in a positive (warming) radiative effect under constant emissions assumptions.
Previously, comparative modelling studies have focussed on the variability between models, using the
same emissions database. In this study, we rather quantify the variability and uncertainty arising from
different estimations of present-day aircraft NOx emissions. Six different aircraft NOx emissions in-
ventories were used in the global chemical transport model, MOZART v3. The inventories were
normalized to give the same global emission of NOx in order to remove one element of uncertainty.
Emissions differed in the normalized cases by 23% at cruise altitudes (283e200 hPa, where the bulk of
emission occurs, globally). However, the resultant short-term ozone chemical perturbation varied by 15%
between the different inventories. Once all the effects that give rise to positive and negative radiative
impacts were accounted for, the variability of net radiative forcing impacts was 94%. Using these radiative
effects to formulate a net aviation NOx Global Warming Potential (GWP) for a 100-year time horizon
resulted in GWPs ranging from 60 to 4, over an order of magnitude. It is concluded that the detailed
placement of emissions at chemically sensitive cruise altitudes strongly affects the assessment of the
total radiative impact, introducing a hitherto previously unidentified large fraction of the uncertainty of
impacts between different modelling assessments. It is recommended that future formulations of aircraft
NOx emissions focus efforts on the detailed and accurate placement of emissions at cruise altitudes to
reduce the uncertainty in future assessments of aviation NOx impacts.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The impact of aviation NOx emissions on the production of
tropospheric ozone (O3) has been investigated since the early 1970s
(Hidalgo and Crutzen, 1977). Several thematic research pro-
grammes in the US and Europe investigated aircraft NOx effects on
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tropospheric chemistry in the 1980s and 1990s (see Lee et al., 2010
for a summary).

Despite the length of time over which this effect has been
investigated, it still represents an active research area. One partic-
ular milestone was the IPCC (1999) Special Report on ‘Aviation and
the Global Atmosphere’, which summarized results of a number of
3D global chemical transport models (CTMs), which were relatively
newly developed over 2D models. The IPCC (1999) highlighted the
finding that whilst NOx emissions from the existing fleet of sub-
sonic aircraft resulted in a small increase in tropospheric O3, there
was also a small but significant reduction in ambient CH4 (for an
equilibrium calculation of constant emissions), since CH4 has a
lifetime of approximately 8e12 years and takes some time to
respond to an additional NOx increase. The IPCC thus identified a
positive ozone radiative forcing (RF) and a negative RF associated
with a NOx increase from aircraft.

Wild et al. (2001) also identified that with this long-term CH4
decrease, a small decrease in O3 also resulted (again, for equilib-
rium conditions). However, it has taken some time to realise that
this O3 decrease could be significant over the longer time-period
and that the overall RF response from aircraft NOx arises from
one positive and two negative RF responses. More recently, Myhre
et al. (2011) summarized a number of model responses to an
aircraft NOx increase and also highlighted a fourth RF response in
that a decrease in CH4 also ultimately resulted in a small negative
RF response from water vapour in the stratosphere. Any CH4
response takes decades to come to an equilibrium response and its
mixing time means that it can enter the stratosphere where it can
be oxidised to water vapour. The water vapour results in a positive
forcing in the stratosphere, so that any reduction in CH4 will result
in a reduction in water vapour forcing in the stratosphere and can
therefore be viewed as a negative RF from aviation NOx.

The complexity of NOxeO3eCH4 system is intensified not only
through different timescales of responses of its components (pos-
itive forcing is short-term, negative responses are long-term), but
also by differences of their spatial extents: the short-term O3
enhancement is regional, the CH4, CH4-induced O3 and strato-
spheric water vapour (SWV) act on a global scale.

Many studies have been published over the past 20 years
assessing the impact of aviation NOx emissions on tropospheric
chemistry and RF (see Lee et al., 2010 for a recent review, alongwith
Myhre et al., 2011). Among them, the investigations regarding the
impact of aircraft NOx from modified cruise altitudes also exist
(Gauss et al., 2006; Frömming et al., 2012). However, these studies
are not always straightforward to compare, since the models have
had varying degrees of complexity in terms of completeness of
representation of tropospheric and stratospheric chemistry, hori-
zontal and vertical resolution.

There are numbers of tools which are utilized in order to place
on a common scale different climate impacts. The most traditional
are radiative forcing (RF) and global warming potential (GWP).
Radiative forcing (RF) is an accepted measure of the strength of the
perturbation of Earth-atmosphere system caused by natural agents
and human activity. The global warming potential (GWP) is a ratio
of the RF from the emission of a species relative to that of CO2 for a
nominal kg release of both gases, integrated over given time hori-
zon. Whilst RF is a backward looking measure, the GWP through its
relativity is one step further in the causeeeffect chain.

In this paper, we revisit the NOx impact on chemical composi-
tion of the troposphere using a 3D CTM, MOZART v3 (Kinnison
et al., 2007) and quantify the individual RF responses from short-
term O3 increases, long-term CH4 and O3 decreases, and CH4
feedback effects on stratospheric water vapour. Most importantly,
the impact of using different emission inventories is investigated in
this work, since all previous comparative studies have utilised

different models. Here, we take a novel approach of using a single
model with different (normalized) emissions that have slightly
different assumptions and therefore vertical distributions of
emissions in order to better understand the impact of height dis-
tribution of aircraft NOx emissions and their representation in
emission inventories.

2. Methodology and experimental design

2.1. Aircraft emission inventories

The aircraft inventory datasets are usually generated from an
aircraft movement database, the characteristic of a global fleet in
terms of type of aircraft and engines, fuel-flowmodel, calculation of
emissions at vertical scale from fuel flow, landing and take-off
emissions (LTO). The aircraft movement databases are a mixture
of a flight plan data, flight operation data, radar data, Official
Aviation Guide (OAG) data (www.oag.com) and idealized great
circle routes analysis. A comprehensive comparison of global
aviation inventories was recently presented by Olsen et al. (2013).

Here, six different aircraft inventories were investigated:

1. AEDT (Aviation Environmental Tool) for the year 2006
(Wilkerson et al., 2010). The global aircraft data was provided
by Volpe National Transportation Systems Centre. The aircraft
fuel burn and emissions were estimated based on an individual
flight by flight analysis. This inventory is based on radar data
for Europe and North America, which account for 70e80% of
global aircraft movements, and for the remaining flight
movements the OAG data were used.

2. AEM (Advanced Emission Model) for the year 2006 (www.
eurocontrol.int/services/advanced-emission-model). AEM is a
stand-alone system (developed and maintained by EURO-
CONTROL), which calculates aviation emissions and fuel burn.
It uses a few basic databases: aircraft, aircraft engines, fuel burn
rates and emissions indices. AEM is aimed to analyse the flight
profile data, on a flight by flight bases, for different air traffic
scenarios.

3. AERO2K inventory for the year 2002 (Eyers et al., 2005) was
developed under the EC 5th Framework Programme. The
dataset is based on a radar tracked flight data for North
America and Europe. Data for the rest of the world are covered
by scheduled flights data from Back Aviation database (Back,
2002) and by routing information. Forty representative
aircraft types were applied in order to calculate the fuel burn
and emissions for each flight using means from the PIANO
(www.piano.aero) aircraft performance model.

4. REACT4C (EC 7th Framework Programme Reducing Emissions
from Aviation by Changing Trajectories For the benefits of
Climate) for the year 2006 (www.react4c.eu). The input data
are the CAEP-8 comprehensive set of aircraft movements,
which are individual movements for 6 weeks of the year, scaled
to a full year’s movements. The air traffic movements are from
radar data for flights for Europe and North America and the
remaining global flight movements are taken from OAG. The
models used to generate this inventory are: the fuel-flow
model PIANO (Project Interactive Analysis and Optimization
model) and global emissions model FAST (The Future Aviation
Scenario Tool) (Owen et al., 2010), similarly as for QUANTIFY
and TRADEOFF data presented below.

5. QUANTIFY (Quantifying the Climate Impact of Global and Eu-
ropean Transport Systems) for a year 2000 (Owen et al., 2010).
The inventory consists of OAG data for scheduled flights and
AERO2K’s traffic for non-scheduled aircraft movements. The
QUANTIFY dataset, once released, was scaled to the
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International Energy Aviation (IEA) aviation fuel burn total for
year 2000.

6. TRADEOFF for the year 1992 (Gauss et al., 2006). The dataset
was created based on a flight track data from the EURO-
CONTROL and FAA from the year 1991/1992. Four months of
aircraft movements: July 1991, October 1991, January 1992 and
April 1992 were scaled to a full year’s movement. The global
aircraft movement data are a combination of air traffic control
and scheduled data. Sixteen civil aircraft-engine type combi-
nations represent the global fleet of aircraft.

Aircraft inventories used in this study are three dimensional
gridded datasets, with a 1� �1� horizontal resolution and a vertical
resolution which varies from 1 km through 610 m to 500 ft. An
overview of the characteristics of each inventory is presented in
Table 1. Military emissions have not been taken into account in this
study.

Each dataset represents different years of emissions, which re-
sults in different amounts of burned fuel ranging from 210 Tg yr�1

for AEDT (2006) to 114 Tg yr�1 for TRADEOFF (1992) which affects
the emitted NOx. In order to exclude the differences in the amount
of injected NOx and consequently its impact on O3 response, the
NOx emissions of each inventory were scaled to the same global
total as the REACT4C, which is 2.33 Tg (NO2) yr�1.

2.2. Global chemical transport model of the atmosphere

TheModel for Ozone and Related Tracers, version 3 (MOZART-3)
was used in this study. It is a 3D Chemistry Transport Model (CTM)
comprehensively evaluated by Kinnison et al. (2007) and exten-
sively used for different applications, e.g. impact of El Niño and La
Niña events on dynamical, thermal and chemical structure of the
middle atmosphere (Sassi et al., 2004), distribution of stratospheric
O3 and downward O3 transport in the UTLS region during the
sudden stratospheric warming event in January 2004 (Liu et al.,
2009), forecast analysis of the ozone hole over Antarctica in 2008
(Flemming et al., 2011), evaluation of Ozone Depletion Potentials
for n-propyl bromide (Wuebbles et al., 2011).

MOZART-3 is built on the framework of the transport model
MATCH (Model for Atmospheric Transport and Chemistry) (Rasch
et al., 1997) and accounts for advection (flux-form semi-
Lagrangian scheme of Lin and Rood (1996)); convection (shallow
and mid-level convection scheme of Hack (1994) and deep
convective transport of Zhang and McFarlane (1995)); boundary
layer exchanges (Holstag and Boville, 1993) and wet and dry
deposition (Brasseur et al., 1998; Müller, 1992, respectively).

MOZART-3 represents detailed chemical and physical processes
from the troposphere through the stratosphere. The chemical
mechanism consists of 108 species, 218 gas-phase reactions, 71
photolytic reactions (including the photochemical reactions asso-
ciated with organic halogen compounds) and 17 heterogeneous

reactions. The kinetic and photochemical data is from NASA/JPL
(Sander et al., 2006).

The anthropogenic (non-aviation) and biomass burning emis-
sions are taken from Lamarque et al. (2010) and represent the year
2000. The biogenic surface emissions are taken from the European
Union project POET (Precursors of Ozone and their Effects on
Troposphere) (Granier et al., 2005).

The horizontal resolution applied in this study is T42
(w2.8� � 2.8�) and the vertical domain extends from the surface to
0.1 hPa with 60 hybrid layers (Fig. 1). The transport of chemical
compounds is driven by the meteorological fields from European
Centre for Medium Range Weather Forecasting (ECMWF), rean-
alysis ERA-Interim for the year 2000 (Simmons et al., 2007).

Seven experiments were performed, one reference (no-aircraft)
run and six perturbation (aircraft) simulations, each starting in
January 2000 and finishing in December 2000; each simulationwas

Table 1
The summary of specifications of six aircraft inventories used in this study: AEDT, AEM, AERO2K, REACT4C, QUANTIFY and TRADEOFF.

Inventory AEDT AEM AERO2Ka REACT4C QUANTIFY TRADEOFF

Year 2006 2006 2002 2006 2000 1992
Fuel (Tg year�1) 187 210 156 178 152 114
Distance (billion km year�1) 38.9 43.6 33.2 38.9 30.5 17.4
CO2 (Tg year�1) 590 508 492 562 479 n/a
NOx (Tg(NO2) year�1) 2.72 2.99 2.06 2.33 1.98 1.61
Vertical spacing 1 km 500 ft 500 ft 610 m 610 m 610 m
Temporal resolution Annual Monthly Monthly Monthly Monthly Seasonal
Air traffic movements Radar data,

OAG
Radar data,
OAG

Radar data,
BACK

Radar data,
OAG

OAG for schedule & AERO2K
for non-schedule traffic

OAG, scheduled
data

Modelling tool SAGE, BADA AEM, BADA AERO2K, PIANO FAST, PIANO FAST, PIANO FAST, PIANO

a Based on civil aviation data only.

Fig. 1. The vertical domain of MOZART-3. The dashed lines (black lines in the web
version) represent model’s 60 hybrid sigma pressure layers and solid lines (red lines in
the web version) show the 1000, 100, 10, 1 and 0.1 pressure (hPa) levels. The per-
centage numbers are the schematic illustration of a vertical distribution of aircraft NOx

emissions in MOZART-3.
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preceded by one year spin-up. The aircraft perturbation is derived
by extracting the difference between aircraft and no-aircraft ex-
periments. The calculations of O3 change and CH4 lifetime change,
along with RFs, covers the surface-1 hPa domain. Since our exper-
iments are performed for 2 years, the magnitude of aircraft
stratospheric response is not fully representative. The O3 depletion

due to aircraft NOx emissions, from current fleets, is relatively small
(�0.01 DU), thus it does not affect O3 changes significantly. How-
ever, the O3 column change, presented in this paper is over-
estimated by 5.1% for surface-1 hPa domain and the short-term O3
RF is underestimated by 0.6%. The CH4 lifetime reduction and its
negative RF are overestimated by 0.2%.

Fig. 2. The globally and annually averaged latitudinal (upper row) and longitudinal (bottom row) distributions of aircraft NOx emission (left column) and the fraction of aircraft NOx

emission occurring in latitudinal and longitudinal bands (right column) for six aircraft inventories: AEDT, AEM, AERO2K, REACT4C, QUANTIFY and TRADEOFF. The figure presents the
original, not scaled datasets.

Fig. 3. The globally and annually averaged altitudinal distributions of aircraft NOx emission for six different inventories (left) and the fraction of aircraft NOx emission occurring in
three altitudinal bands (right) for six aircraft inventories: AEDT, AEM, AERO2K, REACT4C, QUANTIFY and TRADEOFF. The figure presents the original, not scaled datasets.
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2.3. Radiative forcings and global warming potentials calculations

The short-termO3 radiative forcings are calculated off-line using
the Edwards e Slingo radiation code (Edwards and Slingo, 1996).
This comprehensive radiative transfer model was developed in the
UKMeteorological Office and is based on the two-stream equations
in both the long-wave and short-wave spectral regions. Cloud
treatment is based on averaged ISCCP D2 data (Rossow and Schiffer,
1999). Climatological fields of temperature and specific humidity
are based on ERA-Interim data (Simmons et al., 2007). The calcu-
lations were performed on monthly O3 MOZART-3 output. To ac-
count for a stratospheric adjustment a 20% reductionwas applied to
the O3 RF, following the work of Stevenson et al. (1998).

A one year CTM simulation is not long enough to calculate the
change inCH4 concentration, as it takes decades for CH4 to come into
equilibriumwith the perturbed OH fields. That is why to obtain the
steady state concentrations of CH4 in the perturbation runs the
change in CH4 lifetime owing to reactionwith OHwas calculated for
each inventory, which then, based on Fuglestvedt et al. (1999), was
multiplied by the reference CH4 concentration and a feedback factor
of 1.4 (Prather et al., 2001) to reflect the effect of changes of CH4 on
its own lifetime: [CH4]ss ¼ [CH4]ref * (1 þ 1.4 * Da0/aref), where
Da0 ¼ aper � aref and [CH4]ref is a reference run concentration.

The RF of CH4 is calculated using a simplified expression defined
in Ramaswamy et al. (2001). The impact of CH4 change on

Fig. 4. The globally and annually averaged vertical distribution of aircraft NOx emis-
sions in MOZART-3 for six aircraft inventories: AEDT, AEM, AERO2K, REACT4C,
QUANTIFY and TRADEOFF. The NOx emissions are scaled to the same global total, which
is 2.33 Tg(NO2) yr�1.

Fig. 5. The globally and annually averaged vertical distributions of aircraft perturbations of NOx (a), O3 (b), OH (c) and HO2 (d) concentrations for a series of normalized aircraft
inventories.
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stratospheric water vapour (SWV) is also included and as described
in Myhre et al. (2007) the RF of SWV is assumed to be 0.15 times
that of CH4 RF. The CH4-induced O3 is computed based on an
assumption that 10% increase of CH4 leads to 0.64 DU increase of
ozone (Prather et al., 2001) and this ozone has a specific RF of
42 mW m�2 DU�1 (Ramaswamy et al., 2001).

The temporal evolution of net RF following the NOx emission is
required in order to calculate GWP. It can be assumed that the
constant one year emission is a step emission followed by a decay
of the resulting forcing from the end of the year onwards. The
GWP calculations are based on a methodology described by
Fuglestvedt et al. (2010). The primary-mode lifetime is taken into
account for integrations of long-term effects (CH4 with SWV and
CH4-induced O3).

3. Results

3.1. Aircraft NOx emissions

Since various methodologies have been applied to derive
different inventories, the distribution of NOx emissions reveals
some discrepancies. The geographical distribution shows rather
common picture (Fig. 2). The image of altitudinal spacing is not so
unique (Fig. 3).

The Northern Hemisphere is the main location of aircraft NOx
emissions: emissions in 30e60N and 0e30N regions constitute 65%
and 24%, respectively, for AEDT, AEM and REACT4C inventories;
AERO2K, QUANTIFY and TRADEOFF have slightly more emissions in
mid northern latitudes (68%) and less over the northern tropical re-
gion (21%). Most of aircraft NOx emissions occur over North America,
Europe and South-East Asia. AERO2K, QUANTIFYand TRADEOFF have
a bit lower emissions, byw4%, in 60e120E region and a bit more, by
w4%, in 120e60W region than AEDT, AEM and REACT4C.

The largest part of the NOx emissions are injected between 9 and
12 km for most of the inventories, only AEDT and AEM have more
aircraft NOx over 12 km than the other inventories. AERO2K’s NOx
emissions at cruise altitudes constitute only 43% of its total aircraft
NOx emissions (Fig. 3), which, when compared with 57% of
QUANTIFY, 58% of AEM, 59% of REACT4C and TRADEOFF and 63% of
AEDT, is quite low. The ‘missing’ w10% is hidden under AERO2K’s
relatively high NOx emissions at mid-altitudes, which is 34%, while
for all the rest of inventories it is around 25%. The difference in the
vertical structure of NOx emissions between AERO2K and the other
datasets is significant.

The original aircraft emission data, with their regular vertical
gridding (500 ft, 610 m or 1 km) are interpolated by MOZART-3 to
its irregular (with hybrid sigma layers every w1 km in the upper
troposphere and lower stratosphere (UTLS) region) vertical spacing
(Fig. 1). Fig. 4 shows the vertical distribution of aircraft NOx emis-
sions in MOZART-3 for the six aircraft inventories. Each dataset
represents the same amount of global total aircraft NOx

(2.33 Tg NO2). The initial resolution of dataset plays a significant
role when it is redistributed into the lowest CTM’s vertical layers.
Taking into account that the vertical resolution in MOZART-3 near
surface is high (w45 m) the datasets with higher resolution (AEM
and AERO2K) have more aircraft NOx emissions near ground
(1000e950 hPa).

In MOZART-3 most of aircraft NOx emissions are injected in the
283e200 hPa region, where the emissions differ by 23% when the
greatest (TRADEOFF) and the smallest (AERO2K) numbers are taken
into account. The peak of aircraft NOx emissions is observed at
227 hPa, with the greatest values occurring for REACT4C and
TRADEOFF. AEDT and AEM have more emissions at 200 hPa and at
higher altitudes, than other inventories, which raises the possibility
of more efficient accumulation of Nmolecules (Seinfeld and Pandis,
2006).

3.2. Chemical perturbation

The response of the NOxeO3eCH4 system affected by aviation
NOx emissions is presented in Fig. 5. The positive peak of NOx

Table 2
The short-term global and annual mean O3 column change (in DU) and O3 pro-
duction efficiency (OPE; the number of O3 molecules produced per emitted NOx

molecule) for a series of normalized aircraft inventories.

Inventory O3 (DU) OPE

AEDT 0.56 30.1
AEM 0.54 29.1
AERO2K 0.48 25.4
REACT4C 0.52 28.2
QUANTIFY 0.50 27.0
TRADEOFF 0.52 27.7

Table 3
CH4 lifetime (in year) due to destruction by OH (between the surface and 1 hPa) and
the CH4 lifetime reduction (in year) due to the aircraft NOx emissions for a series of
normalized aircraft inventories.

Inventory CH4 lifetime (year) CH4 lifetime change (year)

Reference run 8.882
AEDT 8.813 �0.070
AEM 8.811 �0.071
AERO2K 8.808 �0.074
REACT4C 8.810 �0.073
QUANTIFY 8.809 �0.073
TRADEOFF 8.808 �0.074

Fig. 6. Zonal and annual mean net (long-wave and shortwave) radiative forcing (mW m�2) from short-term O3 (left) and the standard deviation of net radiative forcing from short-
term O3 (right) for a series of normalized aircraft inventories.
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response is observed at 227 hPa for all inventories, except for AEDT
and AEM, which have their maximum one level higher, at 201 hPa.
This suggests that potential of NOx perturbation is greater for
higher NOx emissions. The greatest NOx response is observed for
AEDT and the smallest for AERO2K, which consequently affects the
O3 perturbation, which follows the same pattern of differences
between datasets in terms of emissions. The largest O3 response
takes place at 227 hPa level for all inventories. The enhanced O3
changes the oxidizing capacity of the troposphere. In general,
aircraft NOx perturbs the OH/HO2 ratio: increases OH and decreases
HO2. The positive OH response is observed through all tropospheric
domain, the negative HO2 response is observed mainly at flight
altitudes. While the impact of AERO2K inventory on NOx and O3 in
UTLS region is relatively weak, it is responsible for greater aircraft
OH in mid-altitudes and consequently CO and CH4 changes, than
other datasets. The more efficient CO oxidation results in a greater
AERO2K’s HO2 perturbation in mid-altitudes compared to other
inventories.

The same amount of emitted NOx, but different vertical distri-
butions of NOx emissions lead to significant differences in short-
term O3 response between inventories. Table 2 gives global and
annual means of total column O3 change (in DU) and ozone pro-
duction efficiency values for six different inventories. The greatest
column change is observed for AEDT (0.56 DU) and AEM (0.54 DU)
and the smallest is for AERO2K (0.48 DU). Also QUANTIFY shows a
relatively lower O3 perturbation (0.50 DU) comparedwith the other
FAST inventories REACT4C and TRADEOFF (0.52 DU).

The O3 production in the troposphere has been shown to be
sensitive to the height of the initial precursor emissions (Köhler
et al., 2008). This is indirectly observed in our results, where
more molecules of ozone are produced per molecule of N emitted
for inventories with NOx emissions at higher altitudes, it being 30
for AEDT, 29 for AEM, 28 for REACT4C, 27 for QUANTIFY and
TRADEOFF and 25 for AERO2K (Table 2). This shows that a lower
potential, by 15%, is observed for AERO2K inventory compared to
AEDT dataset in terms of ozone production, which is consistent
with the spread of O3 column change.

The methane lifetime due to destruction by OH in a reference
case was observed as 8.88 years. In contrast to the O3 responses, the

CH4 lifetime reductions are observed to be quite uniform among
different inventories (Table 3) ranging from �0.074 years for
AERO2K and TRADEOFF, �0.073 years for REACT4C to �0.070 years
for AEDT.

3.3. Radiative forcing and global warming potential for aviation
NOx emissions

The latitudinal distributions of short-term O3 RF for the six in-
ventories are shown in Fig. 6. The pattern for each inventory shows
similar characteristics and it is consistent with zonal-mean distri-
butions of NOx emissions (Fig. 2) (both rather short-lived), with
dominating role of short-term O3 RF over the Northern Hemi-
sphere. While agreement in the resultant short-term O3 RF be-
tween inventories at high southern and northern latitudes is
observed the tropical region (30�Se40�N) shows discrepancies. The
largest spread in the short-term O3 RF between inventories occurs
over northern tropical belt (15e30�N), where locally the standard
deviation reaches 3.0e3.5 mW m�2, over Middle East, Pacific and
North Africa.

Table 4 presents the global and annual mean RF (mW m�2) for
short-term O3, CH4einduced O3, CH4, and SWV for a series of in-
ventories. The standard deviation of short-term O3 values is
1.0 mW m�2 (with AEDT and AERO2K resulting in highest and
lowest numbers, 14.3 and 11.5 mW m�2, respectively). The CH4
responses are much more consistent, the standard deviation is
0.2 mW m�2 (with values ranging from �7.1 mW m�2 for AERO2K
and TRADEOFF to �6.7 mW m�2 for AEDT). The net aircraft NOx RF
values ranges from 3.6 mW m�2 for AEDT, 2.3 mW m�2 for
REACT4C to 0.2 mW m�2 for AERO2K, with 1.2 mW m�2 standard
deviation.

Myhre et al. (2011) reported GWP values for aviation NOx

emissions using the same aircraft emissions, the same experi-
mental design and a range of five models. The differences in their
results constitute a good insight into uncertainties which arise from
usage of different global chemistry models. In contrast, the spread
in results which are presented in this study gives a measure of
differences that arise from usage of different aircraft inventories.
The resulting GWP values for three time horizons (20, 100 and 500
years) are given in Table 5. The values show significant differences,
which are enhancedwith larger time horizons; however, the sign of
calculated responses shows a consistently net positive value. The
largest differences come from the AEDT and AERO2K inventories,
being 57%, 93% different for 20, 100 time horizons respectively. The
increase of discrepancy with larger time horizons can be explained
by CH4, as its response ‘remains’ for a few decades after NOx
emission.

The GWP reduction between a 20 year time horizon and a 100
year horizon is larger for inventories where the CH4 lifetime
reduction is more enhanced, e.g. it is 82% for AEDT, 83% for AEM,
85% for REACT4C, 87% for QUANTIFY and TRADEOFF, 97% for
AERO2K. Due to relatively short lifetimes of the net NOx

Table 4
Absolute radiative forcings (in mWm�2) due to short-term O3, CH4-induced O3, CH4,
stratospheric water vapour (SWV) and NOx (net of all 4 components) for series of
normalized aircraft inventories. The radiative forcings per unit emission of N (in
mW m�2 Tg(N) yr�1) are presented in the brackets.

Inventory Radiative forcings

Short-term O3 CH4-induced O3 CH4 SWV Net NOx

AEDT 14.3 (20.5) �3.0 (�4.3) �6.7 (�9.5) �1.0 (�1.4) 3.6 (5.2)
AEM 13.8 (19.7) �3.0 (�4.2) �6.8 (�9.7) �1.0 (�1.5) 3.0 (4.2)
AERO2K 11.5 (16.5) �3.1 (�4.5) �7.1 (�10.4) �1.1 (�1.5) 0.2 (0.3)
REACT4C 13.4 (19.2) �3.1 (�4.4) �7.0 (�10.0) �1.1 (�1.5) 2.3 (3.3)
QUANTIFY 12.8 (18.3) �3.1 (�4.4) �7.0 (�10.0) �1.1 (�1.5) 1.7 (2.4)
TRADEOFF 13.1 (18.7) �3.1 (�4.5) �7.1 (�10.2) �1.1 (�1.5) 1.8 (2.6)

Table 5
Global warming potentials (GWP) for aircraft NOx emissions for a series of aircraft inventories for 20, 100 and 500 time horizon (sO3 ¼ short-term O3, lO3 ¼ CH4-induced O3,
CH4 ¼ CH4 þ SWV, net NOx ¼ sO3 þ lO3 þ CH4). All values are on a per kg N basis and are relative to CO2.

Inventory GWP(20) GWP(100) GWP(500)

sO3 lO3 CH4 Net NOx sO3 lO3 CH4 Net NOx sO3 lO3 CH4 Net NOx

AEDT 828 �140 �356 332 235 �50 �126 60 72 �15 �38 18
AEM 796 �137 �364 295 226 �49 �129 49 69 �15 �39 15
AERO2K 666 �146 �379 142 189 �52 �134 4 58 �16 �41 1
REACT4C 777 �143 �372 262 221 �51 �132 39 67 �15 �40 12
QUANTIFY 740 �143 �372 225 210 �51 �132 28 64 �15 �40 8
TRADEOFF 759 �146 �380 233 216 �52 �134 30 66 �16 �41 9
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components the GWP (H ¼ 500) differs between inventories only
by the CO2 integral in the denominator.

4. Discussion

Fig. 7 shows the vertical profiles of the relative difference of NOx,
O3 andOH responses to that of theAEDT inventory (chosen simply as
it gives the largest overall response). The aircraft NOx perturbation
for AEDT occurring at 227 hPa is about 25% greater than that for
AERO2K. The difference increases with higher altitudes and consti-
tutes 55% at 100 hPa. On the contrary, AERO2K’s NOx significantly
exceeds that of AEDT at mid-altitudes, where the difference reaches
500% at 762 hPa. The response of theO3 for these discrepancies is not
the same. It is observed thatAERO2K’sO3 response indeeddominates
in the low-troposphere region (1000e600 hPa) but only by about 4%,
whereas AEDT’s dominance at cruise altitudes reaches 25% and 50%
at 100 hPa. The same pattern is observed for all inventories, just the
scale of differences is not so well pronounced. The linear correlation
between additional NOx andO3 response is observed in UTLS region,
being the strongest at 227 hPa and becoming weaker at higher alti-
tudes, for AERO2K the ratio of O3 to NOx is 1 at 227 hPa and 0.9 at
100hPa (e.g. forAEM it is 1 at 227hPa and0.7 at 100hPa, forREACT4C
it is 1.5 at 227 hPa and 0.8 at 100 hPa).

Interestingly, the greatest O3 aircraft perturbation did not
introduce the strongest CH4 reduction, as might be expected from
the chemistry. The altitudinal distribution of emissions can hide the
explanation: a significant fraction of AERO2K’s NOx emissions oc-
curs in the mid-troposphere. Thew4%’s dominance of AERO2K’s O3
in 900e700 hPa region significantly changes the oxidizing capacity
of the low troposphere (there is more OH by about 30% than for
AEDT). Annual mean concentrations of OH and CH4 and tempera-
ture are greater at lower altitudes which catalyse OH production
and CH4 destruction.

Another implication of AERO2K’s enhancement of O3 concen-
trations at lower altitudes is that this O3 is not as radiatively effi-
cient as O3 at higher altitudes (Lacis et al., 1990; Köhler et al., 2008).

It is worth tomention, that not only the height is important, also
the geographical distribution of aircraft NOx emissions plays a
certain role in terms of O3 RF response. The NOx emissions from low
latitudes have a greater impact on climate forcings than the NOx
emissions from high latitudes (Berntsen et al., 2005; Köhler et al.,
2012) The AERO2K dataset has lower, compared to other in-
ventories, NOx emissions at cruise altitudes over East Asia and over
the Pacific (not shown here), which was also noted by Olsen et al.
(2013). Even though certain regional differences in the distribu-
tion of aircraft NOx emissions occur, they are not as powerful as
altitudinal discrepancies in terms of O3 production (based on work
to be published).

Fig. 8 shows a short-term O3 RF and net NOx RF responses
normalized to 1 Tg of emitted N reported for a number of model
simulations (Stordal et al., 2006;Hooret al., 2009;Myhreet al., 2011;
Hodnebrog et al., 2011, 2012). The inter-model mean O3 and NOx RF
values are 22.2 and5.0mWm�2 Tg�1(N) yr�1, respectively.While for
short-termO3 responsesmost of themodel results are placedwithin
a one standard deviation range, the net NOx RF values constitute a
more diverse picture. This can be explained by the inter-study dif-
ferences in the components taken into account for net NOx calcu-
lation. Myhre et al. (2011) pointed out that the ratio of the CH4

lifetime change to the O3 column change is very specific for each
model, which also influence the net NOx numbers. The results
produced by MOZART-3 are in good agreement with other studies.

The spread in RF values (20% for O3 RF and 94% for net NOx RF)
between six aircraft inventories is of a smaller magnitude to that of
uncertainties betweenmodels; however, it is still significant. Myhre
et al. (2011) reported a 36% spread inO3RF values and54% in netNOx Fi
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RF values between a set of five different models (note that Myhre
et al. (2011) account for the time-history emissions (Grewe and
Stenke, 2008) in their long-term effects); Hoor et al. (2009) re-
ported a 64% spread in O3 RF and 89% in net NOx (net is without
SWV) values between five differentmodels and Stordal et al. (2006)
showed a 33% spread in O3 RF and 59% in net NOx RF (net is a sum of
short-termO3 and CH4 only) values between three differentmodels.
This places the discrepancies between different inventories on the
same scale of importance as inter-model differences.

5. Conclusions

The coupled NOxeO3eCH4 system, as affected by aviation NOx

emissions, results in a regional short-term O3 positive radiative
forcing and a global long-term O3, CH4 and SWV negative re-
sponses. Nonetheless the overall radiative forcing induced by cur-
rent day emissions of aviation NOx from 3D CTM MOZART-3 is
positive as shown by this study, ranging from 3.6 to 0.2 mW m�2.

By using one model (3D CTMMOZART-3) and a series of aircraft
inventories (AEDT, AEM, AERO2K, REACT4C, QUANTIFY, TRADEOFF)
scaled to the same global total (2.33 Tg (NO2) yr�1), the sensitivity
of O3 response due to the discrepancies in vertical distribution of
aircraft NOx emissions was investigated. It is observed that the
differences in the vertical distribution of aircraft NOx emissions
between inventories, with AEDT and AERO2K being the most
different, strongly influence the aircraft short-term O3 response
and consequently the net NOx effect.

The aviation impact on RF per unit emission of NOx differs from
inventory to inventory and ranges from 5.2 to 0.3 mWm�2 Tg�1(N)
yr�1 (for AEDT and AERO2K, respectively). The responses of short-
term O3 RF range from 20.5 to 16.5 mW m�2 Tg�1(N) yr�1 (for
AEDT and AERO2K, respectively). It is observed that both, the O3
and net NOx RF are greater for inventories with higher peak of
perturbation of NOx concentrations, which is a result of the amount
of emitted NOx at higher altitudes.

The spread between aircraft short-term O3 RF (20%) and aircraft
net NOx RF (94%) values, which emerges from usage of different
aircraft inventories should not be neglected as it constitutes a sig-
nificant range of uncertainty. Careful attention should be paid to
formulating aircraft emission inventories where precise cruise al-
titudes are defined.
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