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Abstract

A reliable method of remotely detecting concealed guns and explosives attached to the 

human body is of great interest to governments and security forces throughout the world.  

This thesis describes the development and trials of a new remote non-imaging concealed 

threat detection method using active millimetre wave radar using the microwave and mm-

wave frequencies bands 14 – 40 and 75 – 110 GHz (Ku, K, Ka and W).  The method is 

capable of not only screening for concealed objects, like the current generation of 

concealed object detectors, but also of differentiating between mundane and threat objects.

The areas focused upon during this investigation were: identifying the impact of different 

commonly worn fabrics as barriers to detection; consulting with end users about their 

requirements and operational needs; a comparison of different frequency bands for the 

detection of guns and explosives; exploring the effects of polarisation on object detection; 

a performance comparison of different detection schemes using Artificial Neural 

Networks; improving existing data acquisition systems and prototyping of a real-time 

capture system.
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1Introduction

This Chapter introduces the project, its aims, objectives and scope; the subject of 

concealed threat detection and terminology; the contribution to knowledge; and finally a 

structural outline of this document.

The aim of this project was to develop a novel method to remotely detect weapons and 

explosives carried upon the human body, concealed by everyday fabrics.  Secondly, to 

design, realise and field trial prototypes of various configurations implementing the 

proposed method and quantify their real-world performance metrics.  A real-time threat 

detection method would represent a significant improvement in capability, with 

widespread applicability because of the ability to distinguish between different objects in 

addition to establishing their presence.  If successful, this research and associated 

technology will greatly benefit society.

The problem statement concisely defines the scope of a research project and the problem 

statement addressed by this thesis is:

Research and develop a method, potentially portable, capable of the 

remote detection of threat items concealed upon a human body with an 

acceptable level of accuracy.  Detection could be covert, providing the 

operator with the nature of the object and location.  Concealment will 

consist of everyday clothing.  The project will lead to a demonstration of a 

prototype, working in real-time at multiple frames per second.
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Academic aims for the project include investigation of the physical and engineering 

mechanisms associated with the remote detection of concealed objects and to identify 

suitable discoveries for publication and patenting.

In the process of developing a prototype, the following areas were investigated for the 

detection of both concealed weapons and explosives:

a) Identification of the optimum frequency bands within the electromagnetic spectrum 

and power levels for object detection.

b) Identification of the effects of different commonly worn materials on 

electromagnetic transmission.

c) Investigation of the use of continuous wave and pulsed illumination for concealed 

object detection. 

d) The design of a signal processing and classification system and database for radar 

signatures.

e) Construction and testing a radar that can inspect a remote individual for concealed 

objects.

f) The development of analysis routines that discriminate between threat objects in 

the database and mundane clutter such as keys and mobile telephones.

Threats to the security of the public and the UK have perceivably increased since the 

beginning of the millennium (Agurto et al., 2007).  The chance of war on UK soil is 

negligible and the danger of concealed weaponry comes from criminal elements and 

terrorists.  Given the opportunity and ability, the author hopes the proposed system will 

improve the world we live in.
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The requirement for a technology capable of reliable and consistent detection of remote 

and concealed guns and weapons has grown in urgency during recent years.  This need has 

always existed for governments and the security forces, but changes in the nature of the 

perceived threat and demands by the public reinforce this urgency.  To date, details of a 

system or collection of systems capable of reliably detecting concealed threats at a stand 

off distance in situations where portability and rapid response are requirements, have not 

been published (Agurto et al., 2007)  The objective of this project is to identify the physical 

fundamentals of concealed threat detection that can be measured and exploited.

1.1 Concealed Threat Detection

Concealed threat detection is a broad subject concerned with the non-invasive detection of 

items capable of causing substantial harm.  Items considered in this application are 

typically guns, explosives and knives.  Protection of community and property are a 

motivator for having a reliable detection system.  Secondary objectives include exposing 

illegal activities and where attacks are likely, act as an effective deterrent.  The UK 

counter-terrorism strategy, known as CONTEST (UKHO, 2010), focuses on the most 

significant security threat to the people of the UK today – the threat from international 

terrorism (BBC, 2010b).  One strand of the CONTEST strategy is to encourage the 

development of systems to 'augment the situational awareness' of security personnel. 

National security is the primary duty of the government (UKHO, 2011).

The UK Home Office hold regular events as part of the INSTINCT (innovation in science 

and technology in counter terrorism) programme inviting proposals from companies and 

academic institutions for innovative research and development in the field of explosives 

and weapons detection (UKHO, 2009).    
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Detection techniques are as numerous as they are wide-ranging and ingenious.  There are 

typically many ways to effect a detection, with differing levels of public visibility.  Sniffer 

dogs are a good example of a method known to the public for the detection of explosives in 

our ports, but the use of trained moths to fulfil the same role (with much shorter training 

times) is less well known (King et al., 2004)  Equally the  use of x-ray machines to screen 

baggage for contraband and weapons is a well known method, but not the use of magnetic 

fields to do the same (Goya & Sibley, 2007).

Development of the proposed system will benefit the security forces in numerous ways, for 

example detection of objects on bodies will be possible not only through everyday 

clothing, but also through other obscurants such as smoke and fog.  By providing a 

capability to remotely inspect a person without physical contact, operator safety is thereby 

improved by distancing them from potential threats.  Since the technique is non-invasive 

the possibility exists for covert use and inspection of uncooperative persons.  An additional 

benefit of all of the above, is that public throughput may be increased compared to 

conventional threat detection regimes.

Unfortunately there are problems associated with concealed threat detection, not all of 

which are technical in nature.  Public acceptance of concealed threat detectors as thorough 

and reliable security tools has been slow – familiarity will come in time and with advances 

in technology.  Currently and understandably there are privacy and legal issues for imaging 

systems producing revealing pictures of targets with piercings, prosthetic limbs and false 

breasts (BBC, 2010a).  Concerns about the availability of detailed images post inspection, 

despite assurances to the contrary were proven valid with the leak of tens of thousands 

such images (McCullagh, 2010).
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Most issues are technical or operational in nature and still the subject of debate; most relate 

to the type and level of radiation used by active systems and in particular backscatter 

systems that use 'soft x-rays' (Knox, 2010).   The opposing requirements to reduce 

radiation levels and improve performance result in a compromise, with image resolution 

and contrast balanced against inspection speed and system noise.  Passive millimetre wave 

imaging systems, particularly, can suffer from this problem, often necessitating long 

integration times, even for systems designed and optimised for a specific and carefully 

controlled environment, such as an airport security suite.

1.2 Contribution to Knowledge

The method and detector described herein has been developed by a team of researchers.  

Contributions specifically made by the author include:

(a) refinement and optimisation of algorithms used to measure the dielectric properties 

of low loss dielectrics; these routines were initially used with a Fabry-Perot 

interferometer and later implemented on the prototypes;

(b) development of deterministic, high speed, non-PC based data acquisition systems 

with integrated signal post-processing, providing capabilities not currently 

available;

(c) incorporation of these systems described in (b) into a direct power detection 

concealed threat detection system,  significantly improving performance;

(d) development of a reliable, high speed, Voltage Controlled Oscillator (VCO)  

programmable frequency source with supporting test, calibration and configuration 

algorithms, providing capabilities for real-time inspection of targets, not currently 

available;
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(e) incorporation of these systems into a direct power receiver concealed threat 

detection system significantly improving performance;

(f) development of algorithms and electronic systems to enable a compact, sensitive 

heterodyne radar receiver to be developed for future enhanced variants of the 

detector described in this work;

(g) devising and realising a covert method of relaying scan information to the operator 

without line of sight using a discrete wireless headset.

1.3 Document Structure

This thesis is organised into seven chapters, each describing a different aspect of the 

project.  

The Literature Review contains an introduction to the field of concealed threat detection 

and a critique of the prior state of the art.  Phenomenology is explained and details of the 

workers in the different fields is given.  Different system types are described with 

associated issues and limitations highlighted.  State of the art non-imaging active radar 

based systems are covered in more detail for comparison with the proposed method.

Background Theory describes the engineering concepts underpinning the operation of the 

devices and the types of  radar used by active illumination concealed threat detectors.  The 

metrics used to compare system performance in this document are defined.

Proof of Concept describes in detail the experiments and development work undertaken to 

realise a bench-top prototype FMCW single pixel mm-wave pattern matching radar  

capable of the remote detection of concealed threat objects.

Portable Prototypes  describes the steps involved realising portable versions of the bench-

top version.  The description includes details on methodology, hardware, data acquisition 

and analysis in real time.
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Data Classification and Results describes the instrument and presents the results generated 

by trials and laboratory experiments to measure its performance.  An analysis of the results 

and suggestions for improvement are given. 

Conclusion and Future Work presents a final summary of achievements and a description 

of techniques and ideas identified during the project as potentially useful and worthy of 

further investigation.
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2Literature Review
I start where the last man left off.

THOMAS A. EDISON

This Chapter presents a critical review of the previous state-of-the-art; introducing and 

describing all major techniques.  Methods and technologies using electromagnetic waves 

are emphasised since they have the greatest relevance to the project.  Related research 

will be referred to, providing a rounded critique.

Concealed threat detection techniques and systems developed in the past two decades are 

reviewed in this Chapter.  The emphasis of existing systems is object screening.  The 

purpose of object screening is to detect and locate objects concealed upon a person, 

prompting a manual search, rather than to identify the nature of an object.

Such an approach is unsuitable for discrete checking of individuals suspected of carrying 

concealed threat items, a scenario requiring a very low false positive rate.

Stimulated by grant offerings (UKHO, 2009) and the large homeland security market  

worth approximately $200 B (Raza, 2012), research and development companies and 

institutions have generated solutions to satisfy the demand of governments and security 

forces to remotely detect concealed guns and explosives (UK Government, 2000; Hill et 

al., 2002; Sutton & Bromley, 2005).
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This research project takes inspiration from this prior art and investigates and develops 

techniques to detect concealed guns and explosives in particular to address this 

requirement. 

The field of concealed threat detection is broad and the subject of many publications.  A 

comprehensive review within a single chapter would be impossible; therefore, this Chapter 

focuses on the area to which this thesis contributes: the use of electromagnetic waves for 

the detection of concealed threats on humans.  Related technologies and systems are 

covered briefly for completeness.

Comprehensive literature reviews covering the field of concealed threat detection can be 

found in a number of review papers, (Agurto et al., 2007; Costianes, 2005; Paulter, 2001).  

Agurto reviewed the advantages and constraints of existing sensors, focusing on passive 

imaging systems, which has the second largest user base after metal detectors, and 

concluded that the most critical weaknesses of this approach were the short range, 

insufficient scanning speed per person scanned and the vulnerability of some sensors to 

weather in outdoor environments.

Two approaches to detecting concealed weapons and explosives at a distance are imaging 

and non-imaging.  Imaging systems use a detector or arrays of detectors, mechanically or 

electronically rastered to measure the intensity of EM waves at specific points, called 

pixels.  A set of pixels make up an image that can be automatically analysed (Connolly, 

2006) or more typically operator interpreted (Detection, 2006).  Non-imaging systems 

instead measure specific properties of a target to determine whether a weapon is present.
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These two categories of detector are sub-divided into active and passive systems.  An 

active system generates radiation to illuminate the target, whereas a passive system relies 

on naturally occurring radiation and emanations to detect concealed weapons.  Active 

systems have the advantage of control over the type, power level, polarisation and 

frequency of the illumination.

A prevalent imaging approach to detection generates grey-scale images for an operator to 

check and identify items.  Figure 2.1 shows the high resolution image generated by a 

Rapiscan 1000 (BBC, 2009b).  The Rapiscan Secure 1000 system is an active x-ray back 

scatter imager (Rapiscan, 2009).  

Figure 2.1: High resolution image from a Rapiscan Systems scanner

Non-imaging EM systems take the form of a directional radar (the focus of this project) to 

detect and sometimes identify concealed objects by exploiting the physical properties of 

threat items.  Recent and relevant work in this field has been conducted at Ariel University 

Centre of Samaria, Israel, to develop a hidden object detection system that locates objects 

by the specular reflections that occur on the edges of objects and the lower than expected 
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power levels of signals returning from lossy materials (Kapilevich & Einat, 2010).  This 

work builds on a previous device and the focus of an international patent (Kapilevich & 

Einat, 2007).

The picture quality of imaging systems has improved to the extent that there are concerns 

about privacy (Telegraph, 2009; BBC, 2010a) with potential breaches of the Human Rights 

Act (BBC, 2010a) and such systems being understandably referred to as 'naked scanners' 

(BBC, 2009b).  An effective detection system will most likely need to overcome these 

concerns to gain public acceptance.

Concealed threat detection systems are used in many high-profile areas such as: airports,  

sea ports, border security, mass surface transportation, infrastructure and public events.  

Typically a zoned approach is adopted with a first line of metal detectors followed by a 

second line of body scanners to identify and locate detected anomalies or failing that resort 

to the traditional pat down (Elias, 2011; Foster, 2011).

Physical examination of an individual by security personnel places them implicitly in close 

proximity with the person(s) being searched and therefore in potential danger, while also 

broadcasting that a search is being conducted to anyone nearby.

Detection technology has yet to advance to the point where there exists a single system 

capable of reliable detection of threats.  It is conventional to use zone detection, with 

systems developed to detect specific objects in very limited circumstances.  The 

practicalities of where and when to scan are based on the available equipment.  An 

appreciation of the range and size of existing systems would be helpful to understand the 

extent with which they vary.  The illustration in Figure 2.2 is of a passive millimetre-wave 

imaging portal system called the TADAR and manufactured by Smiths Detection 

(Detection, 2006).
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Figure 2.2: Smiths Detection TADAR system

This system performs by scanning an array of detectors across the target, generating an 

image similar to that is shown in Figure 2.1.  The TADAR system requires an operator to 

interpret the image and spot suspicious items.  Operation is only effective within a 

carefully controlled environment (the booth) requiring the full co-operation of the 

individual being screened.  System performance would suffer without the carefully 

controlled environment provided by the booth enclosure.  Moreover, a successful 

inspection requires a cooperative individual to follow the instructions of the operator and 

remain perfectly still during image acquisition.  The intended application of this machine is 

passenger screening within an airport; such a system would be less suitable for operation 

outside these conditions.  In comparison a later and more advanced system, using similar 

technology but operating at a higher frequency of 250 GHz instead of 94 GHz, the T4000 

manufactured by ThruVision is much smaller.  Note that although the T4000 does not 

require a booth to operate, a backdrop is used behind the target to increase contrast.  SDN 

(2008) reported commencement trials of the T4000 within a Wayne County courthouse 

during late 2008.  Figure 2.3 shows the T4000 trial installation and the size of the device 

alongside the existing security systems. 
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Figure 2.3: ThruVision T4000 installation in Wayne County Courthouse, Michigan,  

USA.

The predominant approach of modern detection systems and the focus of this project is the 

use of electromagnetic (EM) radiation to remotely detect the presence of concealed threat 

items.

The quantity and complexity of information presented to the user of a system can take 

many forms.  At the most basic level, 'yes/no' or binary detectors indicate when a specific 

object or collection of objects enter its detection volume, without providing any additional 

information.  An example of a binary system is an unzoned metal detector.  An audible 

alert is produced when a substantial metal object enters the detection field.  No information 

about the location, size, composition, orientation or threat value of the  object is provided, 

except its presence.  Comparing an unzoned walk through metal detector with a hand-held 

detector, they have significantly different applications.  Both can indicate the presence of 

metal objects, but the hand-held metal detector is able to pinpoint the location of metal 

objects because of its smaller detection volume.  However the hand-held device must be 

swept over the entire body to give the same body coverage as its walk-through equivalent, 

resulting in a longer inspection time.
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2.1 Detection Energies and Detector Types

A variety of technologies are being used or developed for concealed threat detection; these 

include acoustic and ultrasonic inspection, and electromagnetic-based techniques such as 

x-ray and microwave imaging.  Systems formats are just as varied and include hand-held 

close proximity scanning; walk by scanning and stand-off scanning.  Current technology 

limits the feasibility of different combinations of system type, performance and form.  

Those forms that are not always possible using current technology, but may with future 

advances, become available.  Table 2.1 lists detectors grouped by energy type and the 

remainder of the Chapter, describes each in turn.

Acoustic Hard object detector

Non-linear acoustic object detector

Electromagnetic Microwave dielectric imager

Microwave radar imager

Microwave holographic imager,

mm-wave radar detector

mm-wave imager

EM pulse detector

Pulsed radar with swept frequency

Terahertz imager

IR imager

X-Ray imager

Magnetic Walk through and hand held metal detectors

Magnetic imaging portal

MRI cavity scanner

Gradiometer metal detectors

Table 2.1: List of detector types
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2.2 Acoustic-based Systems
2.2.1 Hard Object Detector

Hard materials reflect acoustic energy more efficiently than soft materials.  Since guns are 

generally made of hard materials, such as metal and ceramic and the human body is 

comparatively soft, acoustic systems work by detecting the glint produced by a hard object 

against the 'soft' background of the body.  Consequently this technology is capable of 

detecting plastic weapons as well as metal weapons, however hard innocuous objects will 

also trigger the system.   

Early designs were binary detection systems, unable of producing an image (Wild, 2001; 

Felber, 1998).  Subsequent developments produced a system capable of creating an image 

using a single focused transducer using 40 kHz ultrasonic waves operating at ranges up to 

eight metres (Wild et al., 2001).  Unfortunately the prototype suffered from low signal to 

noise ratio caused by reflections from the clothing and was very sensitive to weapon 

aspect.  The false alarm rate depended entirely upon the type of clothing, varying from a 

rate below 10% for relatively transparent materials such as cotton, wool, polyester to 80% 

for reflective materials like leather (Wild, 2003).  Figure 2.4 shows a photograph of the 

CWD-2002 hand held acoustic imager.

Figure 2.4: CWD-2002 hand-held acoustic imager (Wild, 2003)
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An alternate system developed by Jaycor operating at higher frequencies up to a 100kHz at 

a range of up to four and a half metres (Jaycor, 2002; Currie & Stiefvater, 2003).  The 

increase in frequency provided the ability to resolve smaller items to a size of 10cm.  This 

is small enough to detect most, but not all guns and other small threat items.

Ultrasonic energy can be easily blocked by thick clothing.  Air-coupled transducers 

generate a high-frequency signal that is needed to reach the target and create a small 

inspection area, however to effectively penetrate clothing a low-frequency signal is needed 

(Nacci & Mockensturm, 2001).  These two contradictory requirements led to the 

development of non-linear acoustic object detectors. 

2.2.2 Non-linear Acoustic Object Detector

This advanced approach uses a non-linear technique developed by (Achanta et al., 2005) 

that combines ultrasonic and acoustic energy.  The technique employs multiple ultrasonic 

sources to generate a localised acoustic wave (a sum and difference interaction) that is 

better suited to penetrating clothing than direct ultrasonics (Achanta et al., 2005)  The 

resulting wave significantly modifies the velocity of sound at the point of inspection on the 

target (due to dynamic pressure changes) and the resulting reflections are measured  by an 

audio frequency sensor and processed  for information.

Scan speed is significantly affected by the distance between the source and the target.  

Detection of weapons is possible at distances up to 4.5m.  An image can be generated by 

scanning the ultrasonic beam across the target (Achanta et al., 2005).  The image does not 

contain any anatomical details of the inspected individual.  This work has been patented 

(Heyman, 2008).  Threat detection is based on pattern matching and classification.
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2.3 Electromagnetic Detection Systems

This type of detector is in widespread use and constitutes the majority stand off detection 

systems deployed today.  All four permutations of system type are represented and are 

covered in the following order: passive non-imaging, passive imaging, active non-imaging 

and active imaging.

2.3.1 Passive Non Imaging Electromagnetic Detection Systems

2.3.1.1 Millimetre Wave Imagers

The millimetre wave imager is a family of passive detection systems that rely on naturally 

emitted radiation.  All bodies, at temperatures above absolute zero emit black-body 

radiation and the temperature determines the peak radiated wavelength.  Total power 

emitted is dependent on the size and emissivity of the target.  The human body has a 

emissivity approximately fives times greater than most concealed weapons at millimetre 

wavelengths (McMillan et al., 1998).  Systems using this principle work by detecting the 

difference in the product of temperature and emissivity between areas of the body with and 

without concealed threats.  This appears as an area of different contrast on the captured 

image.  Operation is similar to that of a thermal imager (Huguenin, 1997).  This type of 

system does not have the temperature sensitivity of thermal imagers and it is difficult to 

detect concealed weapons that have been in contact with the body and are at body 

temperature.  The person being scanned must remain relatively stationary to avoid a 

blurred image.

An practical example passive non-imaging mm-wave devices are the SPO family of 

systems produced by QinetiQ.  The SPO-7R is a small mobile system, claiming to be 

capable of revealing the presence of large objects concealed by clothing a stand-off 

distance of 4 to 15m, it is a real-time sensor and requires minimal training due to its red 

light/green light indication.  The system works by comparing two separate areas on the 
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target and if the difference in response is greater than a predetermined threshold the user is 

alerted.  The technique relies upon the proposition that two areas of a target will give 

similar emissivity readings and whereas interposing an object in one area will result in a 

suitably different response and trigger the system.  Figure 2.5 shows an image of the SPO-

7R.  

Figure 2.5: SPO-7 system (Transportation, 2007)

A larger system with a working range of 20 m operating in exactly the same way as the 

SPO-7, is available as the SPO-20, see Figure 2.6 or the SPO-30 shown in Figure 2.7. 
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Figure 2.6: SPO-20 system (Transportation, 2007)

The SPO-20 houses 64 MMIC receivers with a refresh rate of 15 Hz and are conically 

scanned with an off axis rotating mirror.  The 80 cm aperture gives a spatial resolution of 

0.3 degrees (Kemp, 2006).

Figure 2.7: SPO-30 system (Appleby, 2008)
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All three systems work by comparing the temperature or emissivity contrast of two points 

on the target around 94 GHz.  If the difference of contrast between the two points of 

inspection is greater than a predefined threshold the system alarms.  The device is aimed 

using a carefully aligned CCTV camera.  Throughput varies, but a claimed 380 people can 

be inspected in an hour (QinitiQ, 2012).   

2.3.2 Passive Imaging Electromagnetic Detection Syst ems

All matter radiates and reflects  EM waves, including humans.  Since the human body is 

approximately 90% water it has relatively high emissivity and reflectivity properties 0.35 

and 0.65 at 100 GHz respectively (Appleby & Wallace, 2007).  In comparison metals, 

plastics and composites have higher levels of reflectivity.  When an object such as 

explosives, weapons, liquids, gels, electronics are concealed upon a person, it appears as an 

area of different contrast.  The sensitivity and dynamic range of a passive system is 

proportional to the contrast it can render with its image.  Techniques to image people 

(Coward & Appleby, 2003; Sheen et al., 2001) have been refined by Pacific Northwest 

National Laboratories; mm-wave and terahertz imagers by www.brijot.com and 

www.thruvision.com and backscatter x-ray systems by www.as-e.com.

ThruVision passive detection systems are generally considered to be state of the art (Sheen 

et al., 2010).  The first passive imaging system to be covered is the ThruVision T4000, an 

indoor only model, designed 'primarily to detect objects with a fairly large thermal 

signature'  with an operating range of 3 to 15 metres (Seymour et al., 2010) and is shown in 

Figure 2.8.  
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Figure 2.8: ThruVision indoor passive imager T4000 

The T4000 is an indoor passive imager with a low rate of 1 – 3 frames per second and 12 

cm aperture giving a spatial resolution of 3 cm (Kemp, 2006).  Figure 2.9 shows an image 

from the operator interface of the T4000.

Figure 2.9: T4000 image of a person carrying a wallet in his trouser pocket at 3 m
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The T5000 is the outdoor version shown in Figure 2.10, with a smaller scanning angle and 

longer operating range of 7 m to 25 m.  The T5000 is only suitable for detecting large 

concealed items and it is claimed that a wide selection of materials can be detected 

including metals, plastics, liquids, gels, ceramics and narcotics.  It is clear from the 

example images, that the material nature of an object is not identified.

Figure 2.10: ThruVision active imaging system T5000

The T5000 works by detecting the reflections from concealed items of the cold sky.  The 

sky is 100-200 K cooler than ambient (Kemp, 2006) .  Metal objects show up particularly 

well, but equally if the reflection is from an ambient temperature source, the temperature 

contrast drops below the sensitivity of the detector and the the concealed object is 

effectively masked.  

Figures 2.11 through 2.13 show images from a T5000 system taken at distances of 25, 20 

and 10 m of an individual approaching the system with a large concealed object wrapped 

around their torso.  The panes labelled A – F are an image of the scene measured by the 

detector with increasing levels of exposure.
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Figure 2.11: ThruVision T5000 staged image of a person at 25 m with concealed object  

around their torso 

The small patch of light grey on the lower torso is the concealed object reflecting the cold 

sky.

Figure 2.12: ThruVision T5000 staged image of a person at 20m with concealed object  

around their torso 

Reflections of the cold sky on the concealed object are clear at 20 m, by inspection of 

panes C and D.
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Figure 2.13: ThruVision T5000 staged image of a person at 10m with concealed object  

around their torso 

At 10 m it is possible to see the concealed object consists of several discrete forearm sized 

blocks, rather than a single block.  

The T4000 and T5000 images are formed by scanning a mirror and 8 receivers.  Figure 

2.14 is a top level diagram of the ThruVision THz system (Seymour et al., 2010).

Figure 2.14: ThruVision THz top level system diagram 
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Since passive detection systems reply upon the contrast between the body and the 

concealed object for detection, an experiment was conducted to determine the visibility of 

a 1 kg explosive device strapped to the torso over time.  It was observed that the maximum 

range of detection with time, up to a point where the contrast did not reduce further 

(Kennedy, 2009).

Figure 2.15: Maximum detection distance against time for a 1 kg explosive device strapped  

to the torso  

Field trials results for the T5000 generated for a test population of 100 subjects, with 70 

wearing a concealed explosive vest and the remainder with no such vest, are shown in 

Table 2.2.  No other test details are provided (Kennedy, 2010).

Accuracy 95.00%

False Negatives 2.80%

False Positives 10.00%

Table 2.2: T5000 field trial detection results for concealed explosive vest tests

The latest product TS4 uses a similar imaging system to the T4000 and T5000 systems and 

shown in Figure 2.16.
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Figure 2.16: ThruVision TS4 

The TS4 features several improvements over the T5000 design with a smaller lighter 

chassis and higher scan rate (Kennedy, 2010).  The improved frame rate of 5 – 10 Hz is 

due to a reduction in the field of view (Met, 2008).  TS4 operator interface imagery is 

shown in Figure 2.17.

Figure 2.17: ThruVision TS4 imagery
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The mm-wave imagery is accurately superimposed over the video feed of a bore sighted 

camera.  Operator interpretation of images is necessary, because the system alone does not 

discriminate between threat and non-threat items and technical challenges still exist for 

automatic image exposure and increasing the frame rate (Kennedy, 2010).

2.3.3 Active Non-Imaging Electromagnetic Detection S ystems

2.3.3.1 Pulsed Radar With Swept Frequency Detector

This type of system uses radar to determine the range to the object and a frequency scan to 

obtain information about the object.  Range is measured by the return time for a pulse or 

swept frequency measurements are taken.  The swept frequency return from the object is 

analysed to determine whether it contains the resonant signature of a threat item.  This type 

of system does not generate an image and the ability of the system to detect threat items 

requires a signature database.  A disadvantage of this approach is that new threats will not 

be detected unless, a representative  database of radar signatures is maintained.

2.3.3.2 Millimetre Wave Radar Detectors

Microwave radar detectors typically have a short effective range of less than 10 m (Kemp, 

2006) and consist of a detector and source (McMillan et al., 1998).  The radiation source is 

often a frequency modulated continuous wave and centred around 94 GHz.  The 

requirement to have a large aperture to produce a small spot is avoided, so generally this 

type of system is small and lighter than its imaging equivalent (Novak et al., 2005).  

System operation consists of measuring the energy reflected from an individual in the 

detection volume.  The distance from the system can be determined by mixing the reflected 

signal with a coherent reference.  The resulting frequency is proportional to target range 

(Komarov & Smolskiy, 2003).
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From a safety perspective MMW radar-based systems use low levels of non-ionising 

radiation, unlike x-ray based systems that use potentially damaging ionising radiation 

(Appleby, 2004a; Andrews et al., 2009).

An example of this type of device developed by Kapilevich & Einat (2010). The system is 

a hand-held millimetre-wave sensor for the detection of  metallic and dielectric objects 

with a claimed detection rate of up to 90% and the subject of a patent (Kapilevich & Einat, 

2007)  An image of the original device is shown in Figure 2.18 and an image of the refined 

version taken from a later publication (Kapilevich & Einat, 2010) is shown in Figure 2.19.  

Operating range is up to 3 m, and detection is achieved by analysing the signal returns at a 

rate of 1 kHz.  The presence of a concealed object is determined by the return signal level, 

looking specifically for specular reflections and signal returns of low power potentially 

indicating the presence of a lossy material.  The spot size for the system is elliptical with 

dimensions of approximately 3 cm wide by 30 cm tall.  Scanning of a target is achieved by 

manually moving the beam of the system across the target to identify the presence if any, 

location, size and shape of hidden objects.  The nature of the object is presented to the 

operator if the structure in time and magnitude of the reflected signal match values stored 

in a calibration table of pre-measured objects.

Figure 2.18: Kapilevich hand-held object detector
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Figure 2.19: Kapilevich refined hand-held object detector

The hardware consists of a single transmitter and receiver with high gain horns and lens(s). 

The transmitter source is a Gunn diode modulated at 1 kHz operating at 94 GHz and 

producing 10 mW.  A spinning disc was used to alternately block and allow the 

transmission of illumination (Kapilevich & Einat, 2007), see Figure 2.20.  

Figure 2.20: Spinning disk to produce a pulsed illumination 

The detector operates in a synchronised demodulation regime using a zero biased Schottky 

diode to measure signal power.  The relative signal technique compares the signal from the 

target with and without illumination.
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A 20 L water bottle full of tap water was used to simulate a human torso while gathering 

measurements for calibration.  Detection of a C4 stimulant is achieved by looking for a 

drop in return signal, due to the absorption of the incident RF power, compared to the same 

signal reflected by the human body without C4, see Figures 2.21 and 2.22.  Figure 2.22 has 

a much higher peak as comparatively more power is reflected from the human torso.

Figure 2.21: Kapilevich detector sweep of man with explosives

Figure 2.22: Kapilevich detector sweep of man without explosive
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Building on his earlier work Kapilevich developed a homodyne system with an operating 

range greater than 3 m and incorporated a range detecting capability using a FMCW radar 

(Kapilevich et al., 2011).  The laboratory prototype uses even higher gain horn antennas 

and some RF power amplifiers.  The system diagram (Kapilevich et al., 2011)is shown in 

Figure 2.23.

Figure 2.23: Kapilevich FMCW non-imaging sensor system diagram

The system embodies a homodyne based detector with 35dB horns, power amplifiers 

sweeping in the 90 – 96 GHz frequency band with a claimed accuracy of several 

centimetres (based on a 6 GHz sweep a range resolution of 25 mm should be possible).  

The remote detection capabilities of the device are similar to its predecessor, for metal and 

dielectric objects.  Detection of small metal items was demonstrated at 9.5 m; large metal 
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objects at 14 m and dielectric rods at 3 m.  Figure 2.24 shows the demonstration of the 

detection of a small handgun in a plastic bag at 9.5 m with the corresponding 

measurement.

Figure 2.24: Kapilevich FMCW radar detecting a remote metal object

Although a handgun is used in the demonstration, it is suspected that any metal object 

would produce similar results.

Operating speeds have not been specified, but based on the described hardware and the 

quantity of back end processing undertaken it is thought that either analysis is performed 

offline or is likely to be significantly slow by may be two orders of magnitude compared to 

its predecessor, with an inspection rate of 1 kHz.

2.3.3.3 Electromagnetic Pulse Detector

This type of system is similar in many ways to millimetre wave radar; they both rely upon 

the electromagnetic properties of target objects for identification.  They function by 

illuminating objects with a pulsed radiation source, rather than continuous radiation and 
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then very rapidly measure the reflected signal, measuring the time domain response.  Every 

object has an associated electromagnetic signature.  The person carrying the concealed 

object also has an associated  electromagnetic signature.  The combined signature is then 

checked against a comprehensive library of known signatures to determine if a threat 

object is present, assuming an average human signature.  The disadvantage of this 

approach is that it is not possible to obtain an average human signature because of the 

diversity of human shapes and sizes.

2.3.4 Active Imaging Electromagnetic Detection Syste ms

2.3.4.1 Microwave Holographic Imagers

Work is being conducted by (Fernandez-Cull et al., 2010) at 350 GHz using a single 

receiver to generate a Gabor hologram and using compressive sensing  to approximate 

depth information from the composite 2D hologram.  This system is effectively a 3D 

surface mapping portal.  

This is a portal type detector, where a person being scanned is illuminated with microwave 

energy by a column containing a set of vertically arranged emitters, which  rotate around 

the person.  These emitters radiate coherent continuous wave energy and the detected 

signal is used to map the surface of the person.  Mapping is achieved by measuring the 

distance to the target from the source and spatial resolution is a function of frequency 

bandwidth, the greater the frequency bandwidth the higher the spatial resolution.  Capture 

time is a signal to noise issue and depends upon illumination intensity.  The target must be 

stationary during image capture to avoid image distortion.  This device works on the 

principle that microwave radiation readily penetrates most clothing but not the human body 

(Gandhi & Riazi, 1986), therefore objects concealed within the body cannot be detected.  

This type of scanner is referred to as “naked scanners” and   involve privacy issues 
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(Telegraph, 2009; BBC, 2009b, 2010a; McCullagh, 2010).  Images must be taken with a 

stationary object and current acquisition time is a few seconds.  There are also concerns 

about scanning or difficulty of scanning children or claustrophobic people.

2.3.4.2 Microwave Dielectric Imagers

This type of imager is based on measuring the dielectric constant of materials (Bertl & 

Detlefsen, 2010).  This is similar to a microwave holographic imager in that it scans 

different surfaces of the person with microwave radiation.  The person must remain 

stationary during scanning to avoid image distortion.  Each detection element consists of 

an emitter detector pair.  The emitter generates a pulse and the detector measures the 

amplitude and propagation delay of the return signal.  The dielectric permittivity and 

electrical conductivity of the material are different from that of air.  The amplitude of the 

signal is a measure of the material property values and the delay gives distance 

information.  The principal differentiation between systems is the size of the detection 

volume.  No anatomical detail is recorded and the operator is presented with a wire frame 

representation of the body.

2.3.4.3 Microwave Radar Imagers

This type of detector uses a frequency modulated continuous wave source.  This system 

forms an image from reflections of the microwave energy within the detection area.  Range 

information is obtained by mixing a fraction of the incident energy with the return energy, 

in such a way to be able to calculate the distance between the source and target.  Spatial 

resolution of the microwave radar imager is dependent upon the microwave wavelength 

used.  A smaller wavelength produces a finer spatial resolution.  However, absorption of 

microwaves by clothing increases with frequency (Bjarnason et al., 2004).  Image 

acquisition time is dependent on the area to be scanned.  
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2.3.4.4 Terahertz Imagers

The 300 to 1000 GHz section of the electromagnetic spectrum represents sub-millimetre 

wave or Terahertz frequencies.  These frequencies possess an advantage of higher spacial 

resolution, but reduced penetration of clothing occurs with increasing frequency much 

above 100 GHz (Dunayevskiy et al., 2007; Gatesman et al., 2006; Dickinson et al., 2006; 

Bjarnason et al., 2004)

The Pacific North West National Laboratory has developed a prototype wideband active 

imaging system.  Operating at 350 GHz for the feasibility testing of sub-millimetre 

imaging for stand-off detection applications.  The operating range is greater than 10 m and 

image acquisition takes between ten and twenty seconds. Wideband operation gives good 

spatial resolution of 7.8 mm axially and a 1 cm diffraction limited lateral resolution at 5 m 

(Sheen et al., 2010).

2.3.4.5 X-Ray Imagers

X-ray imagers use the same technology as conventional medical x-ray imagers (Morris, 

2005), except very low energies are used (Smith, 1991; Chalmers, 2005).  This type of 

system using soft x-rays is a backscatter detector, as this type of radiation penetrates only a 

few millimetres into the body.  Consequently, these x-ray systems cannot find items hidden 

within body cavities or concealed under flesh, for example under a  breast (Schauer, 2011). 

Every part of the body that may conceal an object must be scanned and the images 

produced by this type of system contain detailed anatomical information raising issues of 

privacy (McCullagh, 2010; BBC, 2010a; Telegraph, 2009; BBC, 2009b).  There are also 

safety concerns, because x-ray radiation is ionising, despite using known dosage levels 

well below published safety limits (Zanotti-Fregonara et al., 2011) The European 

Commission  have a moratorium on their use within the European Union (European 

Commission, 2011)
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2.4 Magnetic Detection Systems

Magnetic field intensity drops off rapidly with distance (WHO, 2012) from the source 

requiring close proximity operation for all of the systems described in this section.

Metal detectors detect more than just metal, they detect electrically conductive objects.  

However and importantly from a concealed threat perspective they are unable to 

distinguish between threat or mundane items.  Basic operation is similar for all systems 

with a detection element which consists of two coils, a source coil that generates a time 

varying magnetic field and a second coil  that measures the resulting magnetic field(s).  If 

an electrically conductive object is present it will generate its own additional magnetic 

field in response the varying magnetic field of the source coil, see Figure 2.25.  Detection 

of this additional signal indicates the presence of a conducting object.  Unfortunately large 

numbers of mundane objects also contain metal and would trigger the system.

Figure 2.25: Basic pulse induction metal detection scheme (Nelson, 2004)
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There are sensitivity issues limiting the minimum size of a detectable object due to the 

induced magnetic field of the human body.  Although the human body is a poor conductor 

it is physically large and can swamp the faint signals produced by small objects.

As magnetic field strength rapidly decreases portal sizes are  limited and non-metallic and 

small metal objects often go undetected.  

2.4.1 Walk-Through Metal Detection Portal

Walk-through metal detectors are common sights at nightclubs and airports.  Operation 

requires individuals to be screened to walk through them one at a time.  Since most 

weapons contain a significant amount of metal they are a good means of detecting 

weapons.  As already noted it is unfortunate that many mundane objects with no threat 

value whatsoever also contain metal.  The human body has conductive properties and due 

to its large size and this limits the potential sensitivity of the system to minimise the false 

alarm rate and this may result in small metal objects not being detected.  Unless a walk-

through detector is zoned with multiple detection elements, no information is obtained 

about the location of a detected object.

To overcome the limitations of limited operating range and individual scanning of targets 

through a portal, a system was proposed to screen large crowds consisting of a spatially 

distributed metal detectors (Nelson, 2003b); such a system uses steerable magnetic field 

sensors (Nelson, 2003a) and has a with patent granted (Nelson, 2006b).

This technology can also be applied to detect land mines (Nelson, 2006a) and IEDs 

(Nelson, 2007).  A steerable magnetic sensor has also been incorporated into a 3D metal 

detector (Humphreys & Keene, 2009) extending earlier zoned work by (Keller, 1999, 

1996; Keene, 2003).
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2.4.2 Hand-Held Metal Detectors

These lightweight devices are used in very close proximity to the target, typically a few 

centimetres.  They are used to search over the target to identify the presence of and 

location of metallic items.   Because they used in close proximity to the target the operator 

can be placed in potential danger.

Figure 2.26 shows a pair of hands-free metal detectors that can be covertly worn under 

gloves.  They  are commercially available (Interconnective, 2010) costing less than £300.  

They have been trialled and are in use by UK police to enhance pat down searches (Herald, 

2010).

Figure 2.26: Photograph of hands free metal detectors that can be worn under gloves

2.4.3 Magnetic Imaging Portals

This is a walk-through type detector which uses multiple receivers and a single transmitter 

arranged around a door.  Similar to conventional metal detectors, the time varying 

magnetic field generated by the transmitter antenna interacts with items within the 

detection volume, but multiple detectors are used.  Analysis of these signals enables an 

image to be constructed of the portal contents.  Spacial resolution is approximately 5 cm 
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(Zollars, 1997)  In a hand gun example it could not be identified, but may show up as a 

patch area of different contrast.  It would not be possible to identify conclusively the 

presence of a handgun from the image, but it may be discernible.

The time varying  magnetic field generated by the transmitter antenna interacts with items 

within the detection volume, similarly to current conventional metal detectors.

2.4.4 MRI Body Cavity Imager

Body cavity imagers use the same magnetic resonance imaging techniques used by  

medical MRI systems.  MRI works by exposing the target to large pulsed-magnetic fields 

and using high-frequency microwaves to probe the interaction of the magnetic field with 

the body.  By investigating the internal cavities of the body which would normally contain 

food and liquid in the digestive tract, foreign objects can be located.  The large pulsed 

magnetic fields used by MRI systems are dangerous to people with pacemakers and other 

medical electronic devices.

MRI imagers are very large devices and require very close proximity for inspection.  As 

such, they are unsuitable for mass screening, due to the necessary safety precautions and 

lengthy inspection times.

2.4.5 Gradiometer metal detectors

These passive devices detect ferromagnetic metals by measuring the localised distortion 

they create in the Earth's magnetic field (Roybal, 1997; Allen, 1999).  Ferrous metals 

distort the Earth's magnetic field because they are magnetically permeable and may even 

possess a permanent magnetic moment, that creates its own magnetic field.  A solitary 

gradiometer is susceptible to background fluctuations of the Earth's magnetic field, so in 

practice a pair of detectors are connected in differential mode.  This configuration has the 

dual benefits of overcoming these natural fluctuations and reducing the false alarm rate.  

Zoned detectors consist of multiple gradiometer pairs.  (Paulter, 2001; Allen, 1999).  
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Gradiometers are more sensitive than current metal detectors, however they can still only 

detect ferromagnetic materials (Paulter, 2001)  Early systems were portal based, but as 

greater dynamic range detectors have been developed, mobile platform mounted systems 

have been developed (Keene et al., 2005).

2.5 Summary

The field of concealed threat detection is broad and complex with the inevitable conflicting 

requirements.  The most common systems use EM radiation for detection and work by 

either generating an image for interpretation by an operator or by analysing the radar 

returns of the target for signatures characteristic of threats.  Currently the most effective 

systems work in carefully controlled environments with co-operative targets – a prime 

example is airport passenger screening.

Systems currently exist, but their effectiveness is limited by the extent to which the 

environment can be tightly controlled.  An example system manufactured by Smiths 

Detection called the TADAR (Detection, 2006) was previously considered cutting edge 

and operated well within an airport, but ignoring its size, performance outside would be 

variable, due to the changing environmental conditions. Systems like the TADAR use 

passive detection of mm-waves from background sources to form an image.  Subsequent 

systems like the Rapiscan Secure 1000 (Rapiscan, 2009) are considered current state of the 

art and by actively illuminating the target using x-ray backscatter they overcome the need 

for a carefully controlled environment while also producing superior imagery, but 

unfortunately they retain the weight and size.  Backscatter x-ray are currently the subject of 

a safety investigation by the European Commission (European Commission, 2011) and 

their use has been withdrawn until the use of soft x-rays is deemed safe.  A system capable 

of working safely with equal efficacy inside and outside where the environment is not as 

easily controlled is needed.
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3Background Theory

This Chapter presents some of the concepts employed by the novel prototype for 

the remote detection of concealed guns and explosives.  The relevance with 

regards to the detection of guns or fragmentation based explosives (PBIED's) is 

explored.

3.1 Electromagnetic Propagation

EM radiation has amplitude, frequency and polarisation.  These properties dictate 

how the radiation propagates through different mediums, determining for 

example transmission speed and opacity.  Figure 3.1,  shows the different bands 

of the electromagnetic spectrum with accompanying physical examples (NASA, 

2011).

Figure 3.1: The electromagnetic spectrum
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3.2 Background Theory of Detection

This section describes the portion of the electromagnetic spectrum used by the concealed 

threat detection systems developed during this work, to remotely detect objects and the 

conventions used to classify and distinguish between these systems.

For detection to occur, energy must be measured.  That energy must travel from the target 

to the detection system.  Either the target itself must radiate or the target must be 

illuminated by an external energy source and the reflected/re-radiated energy measured. 

In the microwave/millimetre wave arena, viable detection systems rely on either naturally 

occurring energy emitted by the target, or active illumination of the target.  A system that 

relies upon the naturally occurring radiation for detection is classified as a passive system 

and a system that generates radiation to illuminate a target is classified as an active system. 

Passive detection systems use naturally occurring radiation.  The principal radiation 

sources for passive systems are:

a) The Sun - the Sun is a broadband radiation source.

b) Blackbody radiation - this radiation is generated by the target itself with a peak 

emission frequency based on the temperature of the body.

The science behind passive millimetre wave technology was discovered in the 1930s and 

has been part of radio astronomy ever since (Appleby, 2004b).

Anything above the temperature of absolute zero, emits black-body radiation and is called 

a black-body radiator.  Practically all objects are non-ideal black bodies and referred to as 

Grey bodies (Annaratone, 2009; Seymour et al., 2010) as they exhibit an emissivity of less 

than unity that varies as a function of wavelength, but for calculation of maximum emitted 

power purposes only Blackbodies are considered herein.
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The peak wavelength of emission of a Blackbody can be obtained using Wein's 

Displacement Law:

λmax=
b
T

 (3.1)

where T is the absolute temperature of the object in Kelvin and b is Wein's displacement 

Constant of 2.898×10-3 K.m.  For a body at 300 K the peak emission wavelength is 

9.66×10-6 m or frequency 31.1 THz.

However passive detection systems operate in the millimetre wave regime at much lower 

frequencies.  Using Planck's law the spectral radiation of an object can be calculated:

E(λ)=
2hc2

λ5

1

e
hc
λ k T�1

 (3.2)

where h is Planck's constant (6.63×10-34 J.s), c is the speed of light (3×108m.s-1), k is 

Boltzmann's constant (1.38×10-23 J.K-1) and T is the absolute temperature of the object.  For 

an object at 300 K the spectral plot looks like: 

Figure 3.2: Spectral radiation of a 300 K Blackbody for wavelengths between 0.001 and 10.000 mm

Fig 3.2 shows the energy distribution of radiation against wavelength.  Examination of the 

wavelengths of interest 2.7 to 4.0 mm (75 to 110 GHz) is difficult, because of the low 

gradient of the curve at this point, so Figure 3.3 shows this sub-section of the curve.
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Figure 3.3: Black body radiation of a 300 K body for wavelengths between 2.50 and 5.00 mm

Summing the spectral radiance of wavelengths between 2.72mm and 4.50mm (75 – 110 

GHz) gives the power radiated is 3.94×10-5 W.m-2.

The gain of a horn antenna is (Narayan, 2007):

G=η
4π A

λ2  (3.3)

where η is the antenna efficiency which for a optimum horn of pyramidal construction this 

is 0.511 (Teshirogi & Yoneyama, 2001); A is the area of the horn flare and λ is the 

wavelength of the radiation.

Conventionally the gain of an antenna is in dB:

GdBi=10 log(η4π A

λ2 )  (3.4)

The gain of an antenna is also equal to:

G=
4π
Ω

 (3.5)

where Ω is the solid angle of the beam pattern in steradians.  Removing G by combining 

equations (3.3) and (3.5) gives:
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η
4π A

λ2
=

4π
Ω  (3.6)

simplifying for Ω this is:

Ω=
λ2

ηA
 (3.7)

substituting effective aperture (Ae) for ηΑ gives the solid angle of the antenna as a function 

of wavelength:

Ω=
λ2

Ae
 (3.8)

By inspection of equation (3.8) the area of an antenna and its directionality are inversely 

proportional.  If the area of an antenna is constant, then:

Ω∝λ2  (3.9)

Therefore the acceptance solid angle of a horn antenna is a function of wavelength.  

Consequently, the previously calculated radiation figure of 3.94×10-5 W.m-2 for an object at 

300 K is only correct for a fixed Ω across the wavelengths of interest and so cannot be 

used.   To calculate the energy received the product of the wavelength and the spectral 

radiance of a body are needed.  Figure 3.4 is a plot of Ω against λ generated using 

Equation (3.9):

Figure 3.4: Solid angle against wavelength (2.50 and 5.00 mm) for a unit area aperture
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Multiplying the graphs in Figures 3.3 and 3.4 together creates a spectral radiation power 

plot for an antenna with acceptance solid angle spot lies within the boundary of the 

measured object:

Figure 3.5: Spectral radiation power of a Blackbody at 300 K seen by an antenna for  

wavelengths between 2.50 and 5.00 mm

Summing the area under the curve for wavelengths between 2.73 and 4.00 mm (75 – 100 

GHz) gives the best case power measured by a pyramidal horn antenna from an extensive 

Blackbody object at 300K of  2.88×10-10W.  For a practical system this figure will be 

smaller  (Annaratone, 2009).  

To mitigate the very low power levels received by passive systems, MMIC receivers are 

used.  MMIC receivers are a type of monolithic integrated-circuit operating at microwave 

and mm-wave frequencies performing low-noise, wideband signal amplification with a 

typical gain of  approximately 17dB (Infineon, 2010). but gain can be as high as 40dB (Lo 

et al., 1995)

Examples of passive imaging systems include the TADAR manufactured by Smith’s 

Detection a manufacturer of security systems operating at 3mm wavelengths (Detection, 

2006).  At these wavelengths clothing is mostly transparent, but other objects such as 

dielectrics and metallic weapons are opaque (Anscombe, 2005).  

48



Figure 3.6: Image from TADAR passive imager system using naturally occurring Black-

body radiation to form an image

3.2.1 Active Illumination

An active illumination based detection system provides its own radiation to illuminate the 

target.  The energy transmitted by the system is reflected or re-radiated by objects in a field 

of view.  Active systems have control over the type, power level, polarisation and 

frequency of the illumination they generate, whereas passive systems have no such control. 

The amount of energy reflected from objects is a function of their structure and 

composition.  Any reflected energy is affected by barriers between their detection system 

and the object, including concealing barriers such as clothing.  Masking of objects is 

possible by blocking the incident energy.  Mundane objects within the detection volume 

can also reflect a significant level of energy and affect the responsiveness of the detector.  

As an example, the glint (directly reflected energy) from the perfectly aligned flat surface 

of a mobile phone can swamp the return signal potentially overwhelming the smaller return 

signal from threat objects.
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3.2.2 Continuous or Pulsed Radiation

The difference is based on how output power varies with time.  Continuous wave sources 

as the name implies, continuously produce radiation.  The amplitude and frequency of such 

energy can be modulated.  Conversely pulsed sources produce a short burst of energy 

spread over many frequencies.  Pulsed sources typically have a greater peak power than 

continuous wave sources for a given average power, providing them with a relative 

performance increase.  This can result in superior image quality or faster scan rates.  With 

the use of Fourier transforms and the ability to change domain,  the two approaches are 

mathematically equivalent (Cooley & Tukey, 1965).  The realisation of a FMCW radar is 

simpler by not having to implement the very high speed receiver sub-systems needed when 

using pulsed radiation (Stove, 1992). 

3.2.3 Controlled and Uncontrolled Environments

A controlled environment is a location where the conditions can be accurately 

predetermined in terms of radiation sources, fixtures, temperature etc.  A controlled 

environment is a prerequisite for optimum performance of passive detection systems.  

Examples of controlled environments include installations within buildings and the booth 

of a detector.

Conversely, the number, intensity, orientation and type of radiation sources cannot be 

predicted in an uncontrolled environment.  Therefore the number of unknowns for a 

passive illumination based system is greater than for the equivalent active system and 

hence an active system producing known radiation (coherent or incoherent) to illuminate 

the target may provide better performance in a greater range of environments compared to 

passive systems.
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To work in an uncontrolled environment a successful system must in addition to mitigating 

changes in naturally occurring radiation, be able to accommodate changes of temperature 

and variable weather conditions.

3.2.4 Refractive Index

The complex refractive index N of a material is a frequency dependent complex value 

determining the speed and attenuation of EM waves travelling through it:

N=n+i κ  (3.10)

where n is the real refractive index of the material affecting refraction and reflection  and κ 

determines the extinction coefficient (Hecht, 2001).   Energy not coupled into or absorbed 

by the material is reflected at the interface.  The proportion of energy R reflected is a 

function of the properties of the materials forming the interface:

R=(n1�n2

n1+n2
)

2

 (3.11)

where n1 and n2 are real parts of the refractive indexes for the materials.   The coefficient of 

extinction is a measure of attenuation of a EM wave through the material.  Absorbed 

energy can be re-radiated in a different form, for example thermal radiation. 

Normally Refractive index is positive, but for a special type of the artificially created 

structures called meta-materials it can be negative (Eleftheriades & Balmain, 2005).

The dielectric constant of a material is important when trying to identify the presence of a 

non-fragmentation based explosive because n affects the apparent thickness of the 

explosive because phase speed is a function of n:

v phase=
c
n

 (3.12)

where c is the speed of light.   Measurement of objects with EM radiation generates an 

optical dimension not the physical dimension; with knowledge of the refractive index of a  
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material the physical dimension can be derived.  For example, paraffin wax has a similar 

refractive index to plastic explosives (Baker, n.d.)   Therefore the measurement of block 

with refractive index 1.5 and thickness 8cm will show an optical thickness of 12cm.

The absorption and refractive index of mass manufactured C-4 are shown in Figure 3.7, 

(Yamamoto et al., 2004)   In the frequency band of interest the absorption coefficient is 

very small and the refractive index is approximately 1.8.

Figure 3.7: Absorption and refractive index of C-4

The above is only true for transparent materials and a material can be opaque if the 

imaginary component of ε is high at a particular frequency (Yamamoto et al., 2004).  An 

opaque material can absorb, scatter or reflect the incident wave.
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3.2.5 Refraction and Reflection

Refraction and reflection occur at the boundary between mediums of different refractive 

index.  Since this occurs in each detection scenario, this is applicable to gun, dielectric and 

fragmentation based explosive detection.  In free space an EM wave travels in a straight 

line, however when an EM wave crosses the boundary between two dissimilar materials, 

the direction of propagation of the wave changes.  This change in direction is called 

Refraction and described by Snell's Law (otherwise known as the Law of Refraction):

n1sinθ1=n2sinθ2 (3.13)

where θ1 is the angle between the direction of the initial wave and the normal to the 

boundary of the two media and θ2 is the corresponding angle for the refracted wave.  The 

change of direction is due to the change in velocity experienced by the wave as described 

by Equation (3.12).  Any energy not refracted is reflected.   The reflected wave is at the 

same angle as the incident wave because they are travelling in the same material and hence 

travel at the same speed.  Figure 3.8 shows these two phenomenon. 

Figure 3.8: Angles of refraction and reflection

The fraction of the incident wave power that is reflected for radiation normal to the 

material is given by Equation (3.11).  Using the same example for air (n1 = 1) and paraffin 

wax (n2 = 1.5), the reflected energy is approximately 4% of the incident energy.  Thus 96% 

is refracted into the wax.
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Non-conducting solids and liquids behave as dielectrics with a typical refractive index 

between 1 and 3 at millimetre wave frequencies.  Therefore, most materials reflect at most 

25% of the incident radiation (Kemp, 2006).

3.2.6 Skin Depth

Skin depth is a measure of the depth into a conducting material, where current density has 

fallen to 1/e and defined by Johnson (1950):

δs=√ ρ
π f µ  (3.14)

where ρ is bulk resistivity (Ω.m), f is frequency (Hz) and µ is the absolute magnetic 

permeability of the conductor (H/m).  The skin depth of metals is very shallow preventing 

the measurement of its interior.  For example, copper at 100 GHz has a skin depth of 

0.2062×10-6 m (Lide, 1996).   Therefore only the surface of a metal can be irradiated for 

measurement purposes and the proportion of energy reflected at the interface approaches 

100%.  

For comparison the skin depth of a lossy dielectric is:

δ=( √ε'

2πε' ' )λ  (3.15)

where ε' and ε'' are the real and imaginary parts of the absolute permittivity and λ is the 

wavelength.

Since the imaginary part of the refractive index is large relative to air in the frequencies of 

interest, metals are almost perfect reflectors (Polyanskiy, 2008).

κ≈c√
µ

4π f ρ
≫1 (3.16)

3.2.7 Radar Cross Section

The power received by a mono-static radar from a remote metal object can be calculated 

(ignoring atmospheric attenuation) using:
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Pr=
G2Ptσ λ

2

64π3 R4  (3.17)

where Pr is received power, G is antenna gain, Pt is transmitted power, σ is the Radar Cross 

Section (RCS) for the object, λ is the wavelength of the signal and R is the distance to the 

object (Renato, 2002).  It should be noted the received signal strength is inversely 

proportional to the fourth power of the range.

The RCS of an object is the apparent area intercepting that amount of power which, when 

scattered equally in all directions, produces a power at the receiver equal to that from the 

target (Skolnik, 2002) and is equal to (IEEE, 1984):

σ=4πR2 Sr

St
 (3.18)

where Sr is power density at the range R and St is the power density intercepted by the 

object.  This simplifies producing a gain figure:

σ=G A  (3.19)

where G is the effective RCS gain of the object and A the irradiated area of the object.

3.2.8 Polarisation

Polarisation is a property of an EM wave describing the orientation of electric field 

oscillations within the wave.  A polarised EM wave can be produced by one or more 

correlated sources.  When the sources of an EM wave are uncorrelated it is described as 

incoherent.  Active EM based detection systems often use polarised energy and this can be 

either planar or circularly polarised.  Planar polarisation can be at any angle, but normally 

refers to the electric field component of the wave and can be described as horizontal or 

vertical relative to the planet surface.  The other type is circularly polarised, where the 

polarisation rotates as the wave travels; this is either right handed polarisation or left 

handed describing the direction of rotation.  Where the amplitude or phase of the two fields 

are not equal for a circular polarisation, it is referred to as elliptically polarised. 
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The intensity of a linearly polarised electromagnetic wave is:

I=
cnε0

2
∣E∣2  (3.20)

where E is the complex amplitude of the electric field, n is the refractive index, c is the 

speed of light and ε0 is the permittivity of free space.   

The polarisation of an EM may change due to scattering of an object.  This depends upon 

the size, form, structure and composition of the object and the type of radiation.  A 

polariser is such a device and is used to change the polarisation of a millimetre waves in a 

controlled manner.  It achieves this by only transmitting the component of the wave that is 

perpendicular to the traces of the polariser (Alba, 2006).  For linearly polarised waves a 

polariser typically takes the form of a grid of thin parallel conducting lines.

The PCB polariser shown in Figure 3.9 was designed with variable line pitches to assist in 

experiments.  Appendix B contains a detailed description and results.

Figure 3.9: B274B Multi-pitch PCB Polariser
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Structures such as isolated spheres (symmetric in all orientations) and flat metallic surfaces 

(symmetric about one axis) do not alter polarisation, whereas a complex shape such as a 

gun or shrapnel containing explosive device, changes the polarisation to some extent.  In 

this project only linear polarisation was used, but the properties of complex metallic shapes 

do considerably affect the polarisation of the return signal.  This is especially applicable to 

the detection of concealed guns and explosives.  The polarisation modifying properties of 

complex shapes such as handguns and fragmentation may be used to indicate the presence 

of a concealed threat (Andrews et al., 2008a; Rezgui et al., 2008; Andrews et al., 2009) 

3.2.9 Beam Generation and Focussing

The intensity of an EM wave is inversely proportional to the distance from a compact wave 

source.  As the wave spreads out radially from an isotropic source covering the surface 

area of a sphere, the greater the radius the larger the surface area.  For an isotropic antenna 

radiating power P the intensity I at distance r is given by:

I=
P
A
=

P

4π r2  (3.21)

The effective range of a system is limited by the SNR of the signal.  Lenses or antennas 

can be used to focus radiation and reduce the loss of intensity due to dispersion of a wave 

as it propagates, compared to an undisturbed wave.

3.2.10 Radiation Safety

High energy radiation, such as X-rays and gamma rays are capable of ionising atoms 

whereas low energy non-ionising radiation is not.  Ionising radiation is dangerous and low 

energy non-ionising radiation is not thought to be damaging for low levels of exposure.  

Only non-ionising radiation is used in this project at levels well below internationally 

accepted safety  guidelines (ICNIRP, 1998).  The levels of radiation used in this research 
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project are small compared to the the guide levels, however we were mindful to minimise 

levels where possible.  An assessment and examination of the radiation used in this 

research project can be found in Appendix A.  This fulfils aim (a) of the project.

Passive detection systems do not share this risk.

3.3 Radar
3.3.1 Active Radar Types

It is worthwhile at this point to cover the different types of active mm-wave radar.  The 

main types are pulsed radar, continuous wave radar and frequency modulated continuous 

wave radar:

(a) Pulse radar – emit wave usually less than a metre long at set frequencies.  These are 

used to detect range, by measuring the time taken to receive a reflection.  To be 

accepted the pulse has to be received within a period called the range gate.

(b) Continuous Wave (CW) Radar – these operate at a fixed frequency similar to a 

pulse radar but on a continuous basis.  This type of radar measures velocity by 

exploiting the Doppler Effect.  Energy levels are much lower than for pulsed radar.

(c) Frequency Modulated Continuous Wave (FMCW) Radar – use ramped frequency 

modulation and mix the outgoing wave with the reflected signal at the detector to 

allow continuous measurement of distance and velocity, by measuring the 

amplitude and phase of the return, or the average power of the returned 

transmission.

FMCW was chosen despite its complexity compared with pulsed radar because of the 

recent availability of wideband RF components, as an alternative to the high cost of the 

equivalent pulsed radar parts.  In (Hunt, 2001) the performance of FMCW was comparable 

with pulsed radar.  (Mikhnev, 2008) covers the reconstruction of a FMCW signal set.  The 

58



disadvantages of the FMCW approach to detection also include the longer detection time 

and the processing overhead.  However there are advantages of greater flexibility in 

antenna design and system imperfections can be quantified and calibrated at different 

frequencies, permitting automatic compensation.  Lastly the calculated time-domain 

performance of FMCW schemes have superior signal-to-noise ratios, giving superior 

resolution, this is crucial to discriminating between multiple co-located targets (Mikhnev, 

2008). 
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4 Proof of Concept
It doesn't matter how beautiful your theory is, it doesn't matter how smart you are.

If it doesn't agree with experiment it's wrong.

RICHARD  P. FEYNMAN

This Chapter describes the steps taken to build a bench-top non-imaging radar based 

demonstrator capable of remotely detecting concealed threats object using microwave and 

mm-wave radiation.  Starting with an analysis of the Problem Statement, a basic device 

specification is presented and important phenomenology is identified.  Secondly the 

diversity and scope of threat objects and their concealment are quantified.  Thirdly, 

experiments to establish the proof of concept are described.  

4.1 Analysing the Problem

This section breaks down and analyses the requirement defined in the Problem Statement, 

see Chapter 1.  The requirements of the solution will now be outlined.

Threat items to be detected by the prototype consist of guns and explosives, knives and 

needles are not included.  The type, size and composition of each threat item are 

considered in section 4.2.

The final device needs to be reasonably small for covert use and light enough to be easily 

carried by a single adult, probably in a bag.  The user interface and operation of the device 

must not alert the target that they are being covertly screened for threat items.  This 

requires that the detection method to be entirely non-invasive.   
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Since the final device will be portable, it must also be possible to power it using batteries, 

precluding the use of high power consumption components.

Since the device is not intended to be deployed in a fixed installation, it is unlikely that it 

will be used within carefully controlled environment.  To be effective in an uncontrolled 

environment requires a degree of control over target illumination.  The mechanical 

scanning mechanism used in passive imaging systems adds size and weight, making it 

attributes inconsistent with a compact and lightweight device.  Therefore, the device must 

use active illumination of the target.

Remote detection in this context, is defined as a stand-off distance greater than five metres 

(Bowring, 2006).  Since covert use within a reasonably busy environment is expected and 

maintaining a line of sight to the target over a distance of more than ten metres is difficult, 

an effective upper range of eight metres is assumed.

The device could either automatically scan over the target and produce an image for the 

operator, or the device could be manually scanned over the target by the operator, 

indicating the presence of concealed objects during an inspection.  Inclusion of a 

mechanical scanning mechanism is however precluded because of the design requirement 

for a compact and lightweight device.

The device must be capable operating in real time, handling data acquisition and 

processing measurements at multiple frames per second.  It is anticipated that the operating 

speed should be comparable with the frame rate of a video, giving a minimum target rate 

of fifteen inspections per second. 
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4.2 Threat Objects and Detection Scenarios

Threats come in different forms and the most effective method of detection is not always 

the same.  This section identifies the different threat types and it is anticipated that multiple 

variants of the device could be developed, each optimised for a particular threat.

PBIEDs may be divided into two types, with and without fragmentation.  The efficacy of a 

bomb is related to the detonation environment and its composition.  For example, 

explosive devices without fragmentation kill by over pressure and are effective in enclosed 

or underground environments where the pressure wave is confined.  Explosive devices 

without fragmentation normally consist of a substantial volume of explosive material.  The 

exception is an airtight environment, such as an aeroplane, where very little explosive 

material would be required which makes them the most difficult explosive device to detect.

Conversely, fragmentation based explosives contain a significant proportion of 

fragmentation and little explosive material.  This type of explosive is normally intended to 

be detonated in the open.

In summary, to be effective, explosives generally consist of either a substantial volume of  

dielectric material or fragmentation.  With these distinct differences, the detection method 

should be tailored  to the characteristics of each type of explosive.  This project focuses 

exclusively on person borne improvised explosive devices (PBIEDS) mostly with 

fragmentation present.

The form of a hand gun is fixed and is equally effective in open and confined 

environments.
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4.2.1 On Body Threat Concealment

Large quantities of explosive material are most readily concealed when attached to the 

torso, as in the archetypical suicide bomber.

Assault rifles and other large guns are rarely recovered by the security forces in the UK, 

indicating their low availability.  As they are also difficult to conceal, it is reasonable to 

exclude them from the scope of detection.  This gun detection aspect of the project focuses 

on smaller handguns, that can be easily concealed.  The body locations most commonly 

used to conceal handguns are the shown in Figure 4.1.

Figure 4.1: Areas of the body commonly used to conceal handguns (Met, 2008)
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A mundane item is an object that is not a threat object, but may be confused for a threat 

object.  Examples of mundane items are keys, mobile phones, glasses cases, wallets, 

cameras etc.  Unfortunately, from a threat detection perspective, almost everyone carries 

concealed mundane items upon their person.

4.2.2 Detection Scenarios

Different environments include indoor and outdoor, controlled and uncontrolled areas, day 

and night, etc. and these have been outlined previously.  The different scenarios that the 

proposed method is required to be capable of distinguishing between are: body only; body 

and gun; body and explosive; body and mundane object; body, gun and mundane object; 

and body, explosive and mundane object.

4.3 Basic Device Specification

The device consists of an ultra wideband active single pixel highly focused radar 

producing a beam pattern of dimensions comparable to that of a threat object.  The beam 

pattern should be comparable in size to the object being illuminated to minimise 

measurement of the area surrounding the object.

The device must be able to discriminate between threat and mundane items on the human 

body that are concealed by commonly worn items of clothing at a distance greater than five 

metres.  Screening rates will be approximately fifteen scans per second.

It is a requirements to have low power consumption and offer flexible power options either 

running off a small battery pack or an external mains powered DC switched mode power 

supply (SMPS).

The following section gives a review of the design decisions for the initial prototype.
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4.3.1 Radar Types

There a four distinct active radar types.  The first is continuous wave radar.  This type of 

radar transmits a continuous, unmodulated wave and is unable to determine the range to a 

target, but instead, is designed to detect the Doppler shift of radiation reflected by a 

moving target.   Doppler is the perceived variation upon the true frequency of a signal 

when a target is moving relative to the receiver.   If the target is moving then effect of 

Doppler must be considered.  If the target is moving toward the receiver the signal is 

perceived to be of a higher frequency (LHS of moving target) and of lower frequency 

(RHS of moving target) for a target moving away from the receiver.

        Stationary target                             Target moving to the left

Figure 4.2: The Doppler effect on the perceived frequency of illumination of a stationary  

and moving target.

The Doppler shift fd is given by:

f d=2vr( f 0

c ) (4.1)

where vr is the relative velocity of the target and source, f0 is the transmitter frequency and

c is the velocity of light.  The signal frequency seen at the receiver fr is given by:

f r= f 0± f d (4.2)
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where the frequency is greater if the radar and source are moving closer and lower if they 

are moving away from each other.  By mixing the received signal with the transmitted 

signal it is possible to extract the Doppler frequency directly.  A system with a single 

mixer directly generating a baseband signal is called a Homodyne  (Langman et al., 1996)

A similar approach is heterodyne detection where the incoming signal is down converted 

using a local oscillator to an intermediate frequency (IF) as is done in a super-heterodyne 

system  (Iizuka et al., 1984).  Following amplification of the IF the Doppler signal is 

extracted by further down mixing to produce a baseband signal.

One way to overcome the inability of CW radar to detect the range is to modulate the 

amplitude or frequency of the transmitter.  These systems are considered in the following 

sections.

4.3.2 Measurement of Ultra-Wideband Frequency Respon ses

Techniques for producing UWB are discussed in (Taylor, 2001, 1995).  Ultra wide band 

frequency measurements are either obtained by amplitude modulation using a narrow  

pulse generator and a very fast receiver to measure the target response in real time, see 

Figure 4.31 or frequency modulation using a stepped or swept frequency source (Currie & 

Brown, 1987).  
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4.3.2.1 Narrow Pulsed Radar

Figure 4.3: System diagram of a pulsed radar 

Pulsed radar is used in many industrial applications (Weib & Knochel, 1997; Motzer, 

2000).  The simplest form of radar uses AM modulation producing a pulse that is scattered 

at a distance dtarget.  The time return journey time for the pulse is:

T p=
2d target

c
 (4.3)

where c is the speed of light.  To resolve more than one spatially separated target, the pulse 

length τ must be smaller than twice the separation of the targets ∆d:

τ≤
2∆ d

c
 (4.4)

To improve resolution the pulse length needs to be shortened:

∆ d≥
cτ
2

 (4.5)

The problems of high-speed acquisition associated with narrow pulse radar, can be 

overcome by using a continuous wave modulated frequency technique. 

There are two main types of FMCW radar: swept and stepped.

68

Timer

Pulse
Generator

Frequency
Source

Tx

RxSignal
Processing



4.3.2.2 Swept FMCW Radar

Figure 4.4: Swept FMCW radar system diagram

A swept frequency radar typically has a linearly modulated frequency source that transmits 

and measures the scattered target response.  Due to the journey time, the scattered response 

is at a different frequency to the currently transmitted frequency.  Using the source 

oscillator as the reference oscillator and mixing the received signal into a baseband signal 

can be achieved in a single step, without an IF.  In contrast a super-heterodyne system has 

an intermediate step producing an IF.  The journey time of a signal reflected from a remote 

object can be determined by examination of the phase difference of the outgoing and 

incoming signal.  The products of this multiplication are the sum and difference 

frequencies, based on the trigonometric identity (Abramowitz & Stegun, 1965):

sinθsinφ=
1
2

cos(θ�φ)�
1
2

cos(θ+φ)  (4.6)

where the product of the two sine waves on the left hand side result in the difference and 

sum of the original frequencies on the right hand side.  Using this to multiply two signals 

gives:

sin(2π f 1 t )sin(2π f 2 t )=
1
2

cos[2π( f 1� f 2)t ]�
1
2

cos[2π( f 1+ f 2) t ]  (4.7)

The journey time is proportional to the difference of the transmitted and received 

frequencies (Stove, 1992, 1992; Brandwood, 2003).  
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Figure 4.5: Swept frequency FMCW radar response 

By rapid sweeping the transmitter frequency and monitoring the instantaneous difference 

between the transmitted frequency and received frequency, a difference or beat frequency 

fb can be obtained.  The range to the target can be calculated from the difference frequency:

f b=T p(∆ f
T b ) (4.8)

Where the round trip time Tp has been previously defined by Equation 4.3, ∆f is the 

bandwidth of the frequency sweep, Tb is the time period of the sweep, as shown in Figure 

4.5.  If the target is moving the Doppler shift imposed on fb must be considered for a 

continuous frequency ramp.  Fortunately for a swept or stepped frequency system the 

Doppler shift is small (1312Hz for a target walking at 4mph at a transmitter frequency of 

110GHz) comparing the typical values of fb to our frequency step size it can be ignored.

If the error due to Doppler can be ignored, the range to the target is proportional to the 

difference frequency of the transmitter and receiver frequencies, see Figure 4.5, (Brooker 

et al., 2008).  
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4.3.2.3 Stepped Frequency FMCW

Very similar to swept frequency radar and using the same hardware, see Figure 4.4, a 

stepped frequency radar uses  multiple discrete frequency steps equally spaced on the 

frequency ramp.  Transmission and reception of the signal occurs simultaneously.  To 

determine the relative phase the two signals can be mixed to produce a baseband signal.  

This allows absolute ranging to an interface (surface).  The resulting oscillating response in 

the frequency domain can be transformed and analysed using the Fourier transform (Currie 

et al., 1992) or MUSIC to obtain an improved resolution in the presence of noise (Yuehua 

et al., 1998) in the time domain.

4.3.2.4 Direct Detection Radar  

The 'Direct Detection' radar is another and less common type of FMCW radar without a 

mixer.  The system diagram is shown in Figure 4.6.   Removal of the mixer eliminates the 

capability to determine the absolute distance to a surface or interface, but for a dielectric 

target, the distance between surfaces can still be measured.

Figure 4.6: Relative interface distance stepped FMCW radar system diagram

When a dielectric object is illuminated, there will exist multiple reflections between its 

surfaces, producing a series of interference patterns as described in section 4.6.  The 

mixing of signals that would normally occur in the radar, occurs instead at the target.   
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Fourier analysis of the received power in the frequency spectrum will produce a series of 

relative optical measurements related to the relative distances between the surfaces of the 

target. 

4.3.2.5 Resolution Limitations of FMCW Radar

Two limitations exist for FMCW radar: the bandwidth ∆f and the linearity of the frequency 

sweep.  The resolution dres achievable is the larger value from equations (4.9) and (4.11):

d res=
c

2∆ f
 (4.9)

Brooker et al., (2005) state the achievable range resolution with a non-linear sweep is:

d lin=d target Lin  (4.10)

where dtarget is the distance to the target and Lin is the non-linearity of the sweep:

Lin=
Smax�Smin

Smin
 (4.11)

where Smin and Smax are the extreme rates of change of frequency sweep with time. 

The combined effect of non-linearity with the system frequency bandwidth is (Brooker et 

al., 2008):

d res=√( c
2∆ f )

2

+(d targetLin)2  (4.12)

4.3.2.6 Comparison of Pulsed and Frequency Modulated Systems

The advantage of using a pulsed system is faster acquisition time and greater peak power 

(SiversIMA, 2011) but the equipment is expensive requiring high speed switches and ultra-

fast detectors and digitisation processes.  Conversely, the swept frequency technique is 

slower and dependant on the number of points and the dwell time for signal capture.  The 

equipment is however more affordable and although FMCW radar has a higher average 

power compared to pulsed radar (Wolff, 2009), it can suffer from sensitivity issues with 

reflected power (Brooker et al., 2008).
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4.3.2.7 Pulsed and FMCW Radar Equivalence

These two approaches are equivalent if the phase is measured (Komarov & Smolskiy, 

2003).  Transformation of data between the time domain and frequency domain can be 

achieved using the Fourier transform (Cooley & Tukey, 1965).  Where u and U are two 

functions related by:

u(t)=∫
�∞

∞

U ( f )e2π itf df  (4.13)

and

U ( f )=∫
�∞

∞

u(t )e�2π itf dt  (4.14)

U is the Fourier transform of u, and u is the inverse Fourier transform of U:

u⇔U  (4.15)

The transforms have 2π in the exponent (so in the spectral analysis, we can use f instead of 

ω=2πf) to maintain the symmetry between the variables (Brandwood, 2003).  These 

equation relate to the general case with an infinitely long series of samples, however for a 

finite series the equations are:

un=
1
N ∑k=0

N�1

U k e
2π i n( k

N )  (4.16)

and

U n=∑
k=0

N�1

uk e
�2π i n( k

N )  (4.17)
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4.3.2.8 Distance Resolution and Bandwidth

The absolute bandwidth available within a frequency band increases with frequency.  A 

greater bandwidth is therefore available in the mm-wave band than the microwave band.  

More information is available in the scattered signals of an object with shorter pulses 

because a greater range of frequencies existing in a short pulse (Immoreev, 2003).  This 

can be shown numerically with the formula devised by Shannon that relates the 

information content of a channel H to the channel frequency bandwidth ∆f:

)1log( ns PPfH +∆=  (4.18)

Where Ps is the signal power and Pn the noise power.  For a given signal-to-noise ratio the 

information content of a channel is limited by the frequency bandwidth.  System 

bandwidth is important because it determines radar range resolution, see Equation (4.9).

Figure 4.7: Radar resolution against bandwidth

To summarise, the greater the bandwidth the better the resolution and in this case the 

absolute frequency of the sweep is only relevant for the hardware required (Andrews et al., 

2009).  Due to ease of implementation, availability of parts and the equivalence of the 

measurements, stepped FMCW radar was chosen for active target illumination.

74

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

Resolution (m)

B
an

dw
id

th
 (H

z)
 



4.4 Atmospheric Signal Attenuation

Atmospheric attenuation of electromagnetic waves is frequency dependent.  In the lower 

frequency microwave or millimetre ranges, this is limited to specific absorption lines, 

where attenuation is due to scattering and absorption by atmospheric particles (Crane, 

1980; Liebe, 1989).  Three discrete regimes of scattering based on frequency wavelength 

and atmospheric particle size are shown in Figure 4.8.

Figure 4.8: Geometric, Mie, and Rayleigh atmospheric scattering regimes

The normalised size x is defined as:

x=
2π r
λ

 (4.19)

where r is the characteristic dimension of the object and λ is wavelength.
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Figure 4.9, taken from (Appleby & Wallace, 2007) shows atmospheric attenuation across 

the EM spectrum, at sea level based on current models with rain = 4 mm/h, fog = 100m 

visibility, STD (standard atmospheric) = 7.5 gm/m3 water vapour and 2 × STD (humid 

conditions) = 15gm/m3 water vapour.  

Figure 4.9: Atmospheric attenuation across the EM spectrum at sea level

Except for the spikes in attenuation at 22 GHz and 63 GHz due to water and oxygen 

respectively, the general trend is of increasing attenuation until 10 THz, beyond which 

several atmospheric windows exist.  Therefore it is advantageous to operate at lower 

frequencies.  Figure 4.10 taken from (Cafe, 2008) focuses on these lower frequencies and 

breaks down the contributions of oxygen and water so their effects can be seen more 

easily.
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Figure 4.10: Atmospheric absorption 1 GHz to 1 THz

Under standard conditions, worst case atmospheric attenuation in the 14 – 110 GHz 

frequency band, is approximately 0.2 dB due to oxygen for a target at ten metres.  

Atmospheric attenuation would start to be a problem if the device operated above 500 

GHz.  Comparatively, the attenuation due to clothing is expected to be greater.

4.5 Material Attenuation and Transmittance

Data on the attenuation effects of clothing and different fabrics at mm-wave frequencies is 

available beyond 100GHz in (Dunayevskiy et al., 2007; Gatesman et al., 2006; Dickinson 

et al., 2006; Bjarnason et al., 2004), but in 2008 information below this frequency was  

lacking.  Therefore it was necessary to obtain appropriate data for a variety of fabrics 

below 100GHz, so the optimum operating band and power levels for item detection can be 
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identified.  The process involved measuring the transmittance of a selection of fabrics at 

different angles of incidence for frequencies between 14 and 110GHz, using the methods 

outlined in Chapter 3 and (Harmer et al., 2008).

Figure 4.11 shows the apparatus seen from the side and consists of a frequency modulated 

source, a frame to hold the sample, a rotational table to turn the sample in the beam and 

finally a receiver to measure the signal passing through the sample.  The purpose for this 

configuration is to test the relative attenuation of different materials at different frequencies 

and angles.  

Figure 4.11: Side view of material transmittance experiment

The rotational table is used to easily measure the response of the material under test at 

different angles, between 0° and 75° in 5° increments.  The software was created in 

LabVIEW.  The apparatus produced the data for Harmer et al., (2008) and a proposed 

paper by Southgate et al., (2008) investigating the EM properties of commonly worn 

fabrics.
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Without an automated means of rotating the sample, collection of data on numerous 

materials at many repeatable angles would be tedious and error prone.  Figure 4.12 shows 

the experiment part way through measurement of a denim sample.

Figure 4.12: Material transmittance experiment – part way through denim measurements 

A stepper motor controlled rotating stage would address this issue and is described next.

During an experiment to measure the permittivity of fabrics (Harmer et al., 2008) it is 

necessary to examine an object from an array of angles, because of structure and surface 

texture.  This could be achieved by manually rotating the object or automatically using a 

rotational table such as the one shown in Figure 4.13.
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Figure 4.13: Stepper motor controlled rotational table

A driver board controlled by a Microchip PIC microcontroller was designed and built to 

specifically power and control this rotational table.  The driver board is shown in Figure 

4.14.

Figure 4.14: B194 Rotational table driver board
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The circuit uses an 8-bit PIC18F1320 micro-controller and discrete power transistors to 

switch power to the coils of the stepper motor and worked very well.  Implementing the 

design and having the ability to change the firmware allowed full and deterministic control 

of a stepper motor over a ubiquitous RS232 connection.
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The list of materials tested included commonly worn fabrics and other materials of interest:

a. Cotton shirt

b. Cotton polyester shirt mix – stripped blue, black and white

c. Denim – two lots pale blue and dark blue

d. Kevlar

e. Leather – colours: natural, red, white and yellow

f. Paper white 85g/m2

g. Polar fleece blue

h. Polyester film

i. Paraffin wax block 8cm square

An analysis of measurements for from the 14 – 40 GHz experiment can be found in 

(Harmer et al., 2008).  The summed measurements of transmittance for each material are 

shown in Figure 4.15 for frequencies between 75 and 110 GHz.  The radiation was 

normally incident for this data.  The measurements show that Kevlar is the most 

attenuating material, but apart from personal body armour, this is not a commonly worn 

material.  Of the most commonly worn materials red leather was the most attenuating of all 

the fabrics tested and represents the baseline to aim for when detecting concealed objects.  

The case for red leather is discussed next.
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Figure 4.15: Energy transmission through various materials, normally irradiated

Since red leather gave the smallest normalised signal levels at different frequencies for a 

commonly worn dry fabric, it represents the most difficult material through which to detect 

a threat and helps establish the level of sensitivity needed in the first prototype.
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The effect of applying water to a fabric sample to simulate wet conditions gave results with 

higher levels of attenuation.  The different leather samples were similar, except for their 

colour.  It was therefore concluded that the pigment was probably responsible for the 

different levels of attenuation.  Natural iron oxide (Fe2O3) pigments are used for in material 

colouring processes to produce a red colour.  A by-product of this process is an increase in 

the metal content of the leather that could explain the increased levels of attenuation.  

Hence the unanticipated impact of material colouring on transmission performance was 

identified and must be considered.  Figures 4.16 and 4.17 show the measurements the 

background and red leather between 75 and 110 GHz (Southgate, 2009).
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Figure 4.16: Background measurement prior to red leather energy transmittance  

experiment
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Transmission Performance: Red Leather
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Figure 4.17: Energy transmittance for red leather between 75 and 110 GHz

Figure 4.18 shows the normalised response for the red leather.  

Red Leather Normalised Transmission Response
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Figure 4.18: Normalised response of red leather between 75 and 110 GHz
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After examination of the results for the different fabrics, it was concluded that an optimal 

window does not exist in range of frequencies that would give significantly better results, 

than the average across the range.

The benefit of this conclusion is the absence of any restriction on operating frequency for 

the detection system, although this early work was restricted to lower frequencies  

(Andrews et al., 2009).  This is a definite advantage for systems using active swept 

frequency radar since the wider the swept frequency range, the finer the spatial resolution 

(Immoreev & Taylor, 2005).

4.6 Detection of Dielectrics

Most non-conducting materials reflect up to 25% of a 75 to 110 GHz signal in air.  Water 

reflects 40% (Rønne & Keiding, 2002) and human skin has similar properties, but with a 

lower reflectance (Pickwell et al., 2004).   Therefore a large plastic bottle full of water can 

be used to approximate a human torso (Bowring et al., 2007b).  Metals are almost perfect 

reflectors.  

The Fabry-Perot Interferometer (FPI) was used extensively during the early stages of this 

research project to measure the properties of dielectrics.  The contribution to knowledge 

gained through using this enhanced the control and analysis software available for faster 

data collection.

Interference between the front and back surfaces of a dielectric slab forms the basis of 

detecting explosive layers, by generating an oscillatory signal in the frequency domain. 

The interference pattern is a result of the combination of reflections from the parallel sides 

of the dielectric, acting in a similar way to a the plates of a FPI.  Reflections occur due to a 

step change in refractive index between two dielectric materials creating a partial mirror 

reflecting a fraction of the incident radiation, see equation 4.20.  
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R=(n1�n2

n1+n2
)

2

 (4.20)

Where R  is the fraction of the incident wave power reflected and n1 and n2 are the 

refractive indices for the interface materials.  The two partially reflecting surfaces act in a 

similar fashion to the two fixed plates of an etalon resulting in the oscillatory frequency 

response.  The frequency difference of successive cycles δf of oscillation is inversely 

proportional to the thickness of the dielectric (Bowring et al., 2008)

δ f =
c
2

l n=
c

2l sn
 (4.21)

Therefore the lowest maxima is at:

f =
c

2 l sn
 (4.22)

where c is the speed of light, n is the refractive index of the material, ls is the physical 

thickness of the sample.  This technique is applied to measuring a PTFE disc in the next 

section.

For a transmitted signal E0e-jωt, return signal ER, primary target distance L and amplitude 

reflection r:

∣ER∣
2=∣r E0e� jω t e

(2jω L
c )∣

2

 (4.23)

where ω = 2πf, f is frequency and c is the speed of light.  A detector measuring only power 

will measure ∣ER∣
2 , which for a single interface does not vary based on frequency.  

However for two interfaces located at L1 and L2, the reflected power is:

∣ER∣
2=
 =

∣r 1e
(2jω L1

c )
+r 2e

(2jω L2

c )∣
2

∣r 1∣
2+∣r 2∣

2+2∣r 1∣∣r 2∣cos(2ωc
(L1�L2))

 (4.24)
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This contains a cosine term that produces an oscillating response, proportional to the 

difference in L1 and L2, with respect to frequency.  By Fourier Transforming this response 

it is possible to extract the apparent distance between the two interfaces.

This analysis can be adapted to provide the absolute range to a target at a distance L2 and 

the first interface is at the transmitter, forming a cavity.  Since the first interface is at the 

radar L1 = 0:

∣ER∣
2=∣r 1∣

2+∣r 2∣
2+2∣r 1∣∣r2∣cos(2ω

c
(L2))  (4.25)

and if the frequency is being swept linearly with time t:

ω=2π[ f 0+(δ f
δ t )t]  (4.26)

then the frequency of the interference pattern is:

f if=
2L2

c (δ f
δ t )  (4.27)

4.6.1 Measurements of a PTFE Disk Embedded with Mica  

Figure 4.19 shows the interference pattern for a PTFE disk containing embedded mica of 

thickness 40 mm illuminated between 50 and 65 GHz. 
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Figure 4.19: 50 - 65 GHz frequency response of a 40 mm thick PTFE disc with embedded  

mica

Applying Equation (4.22) to the 5 oscillations between 51 and 62 GHz the refractive index 

of mica embedded PTFE may be determined:

                      δ f=
c

2n l s

∴                      n=
3×108×5

2×0.04×(62�51)×109=1.70
 (4.28)

The oscillations in the frequency domain relate to the optical depth of the dielectric and the 

existence of such a pattern is a clear indicator that a dielectric object is present.  It is 

important that the range resolution of the system is better than the minimum optical depth 

of a explosive device for detection to occur:

c
2∆ f

≤n l s  (4.29)

A Fourier Transformation of the frequency data shown in Figure 4.19 generates a time 

domain/optical depth plot (Bowring et al., 2007a), giving an observed peak shown in 

Figure 4.20.  
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Figure 4.20: Fourier transformed frequency response of a 40 mm thick PTFE disc with  

embedded mica

The difference of the observed thickness from the measured thickness of 40 mm is a 

product of the mica in the sample with a refractive index of approximately 2, which may 

be compared to 1.44 for the PTFE matrix alone (Lamb, 1996).

The large non-zero frequency component generated by the variations in illumination power 

and receiver sensitivity is difficult to mitigate and obscures low optical depth 

measurements.   Also it is significant that dielectric objects with irregular surfaces but 

parallel surfaces produce a sinusoidal oscillatory response in the frequency domain despite 

the additional scattering caused by the irregular surfaces (Bowring et al., 2007b).

An improvement in optical depth resolution could be achieved by increasing the frequency 

sweep and the maximum extent of separate dimensions measurable extent is a function of 

the number of frequency samples points taken:

dextent=
c(N�1)

2∆ f
 (4.30)
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where c is the speed of light, N is the number of samples and ∆f is the system bandwidth.

The disadvantage of this method is that the Fourier transform expects the datasets to be 

periodic (Smith, 1997).  A distinct advantage of this method is that it is independent of 

absolute frequency, requiring only a frequency bandwidth to achieve a specific resolution.  

By changing the operational frequency band of the prototypes up to 75 – 110 GHz an 

optical depth resolution of better than 5 mm could be achieved.

4.6.2 Application to Non-Fragmentation Based Explosi ves

A practical illustration of this phenomenon uses air and paraffin wax.  Paraffin wax has 

similar dielectric properties to plastic explosives (Lamb, 1996; Kemp et al., 2006; Hu et 

al., 2006) .  The refractive index of paraffin wax at 120 GHz is 1.48 with a imaginary 

component of 27x10-4 (Lamb, 1996).  For a normally illuminated flat surface the 

coefficient of reflected power is 4% and since only 4% of the incident signal is reflected 

the signal strength rapidly diminishes, anything after the first reflection has little effect on 

the results.  Figure 4.21 shows in three stages, the principal reflections and the quantities of 

interest are in bold:

Figure 4.21: Principal reflections of an EM signal caused by a paraffin wax block
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The first stage shows the original incident wave, the reflected component and the 

transmitted component (96%).  Stage two occurring at the back surface of the dielectric, 

shows most of the signal passing out of the dielectric and a small internal reflection (4% of 

96%).  Step three sees most of signal reflected in stage two, passing back out of the 

dielectric towards the receiver (96% of 3.8%).  The EM waves add and interfere when 

measured on the detector diode.  Depending upon three variables, the thickness of the 

dielectric, the dielectric's refractive index and the wavelength of the radiation interference 

will occur causing a sinusoidal response.  If the distance between the partial reflectors is 

equal to:

∆ d=
k λ
2

(4.31)

where k is an integer and λ is the wavelength of the radiation then all the waves passing 

through are in phase and a maximum signal will be measured.  If the distance between the 

surfaces is not a multiple of λ/2, then some degree of destructive interference will occur 

and the signal will not be a maximum.  Figure 4.23, shows detector voltage representing 

measured power against frequency (sample number) for a linearly stepped frequency 

source.

This simple example considers a uniform sample of loss-free material, since signal 

attenuation has no effect upon the the optical depth of the object. 

4.6.3 Simulated Plastic Explosive in Isolation

This technique can be applied to a dielectric block, simulating a plastic explosive device.  

Paraffin wax shares similar dielectric characteristics with conventional explosives and has 

been used as a replacement in experiments (Farinelli & Roth, 2003; Bowring et al., 2007b). 
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This technique can be applied to objects that are outside the Fabry-Perot interferometer 

(FPI), since at any discrete change in refractive index (and depending on the angle of 

incidence) portions of the EM wave are coupled into and reflected at the boundary.

Figure 4.22: 8 cm by 8 cm calibration wax block used for antenna alignment

By analysing the frequency response of an object across a wide band, it is possible to 

determine its dimensions if the object’s dielectric properties are known.  Figure 4.22 shows 

a wax block used to align the apparatus.  It has a simple shape with flat parallel sides, ideal 

for testing the adapted FPI technique.  The response is shown in Figure 4.23 from 

Southgate (2009).
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Figure 4.23: Sinusoidal response of paraffin wax block

Performing an adapted Fourier Series transform on this dataset and after removing the DC 

component (0Hz) a peak can be seen at 12cm in Figure 4.24.  The FFT was adapted to 

directly output the optical depth for paraffin wax.  The peak corresponds not to the 

thickness of the wax block, but instead to its optical thickness (actual thickness 8cm 

multiplied by its refractive index of approximately 1.5, giving 12cm).

Figure 4.24: Result of adapted Fourier Transform on FMCW data showing the optical  

depth of a paraffin wax block of dimensions 8 cm by 8 cm 
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This happens because the front and back faces of the wax block act as boundaries or step  

change in refractive index.  Peaks in the response occur when the EM radiation is at a 

frequency of wavelength similar to an integer multiple of the optical thickness of the wax 

block and troughs when the reflected wave is out of phase with the incoming wave.  The 

distance to the wax block is not determined using this technique.

4.6.4 Dielectric with Reflective Background (Simulat ed Body)

To more fully simulate the effects of an explosive device strapped to the torso, the wax 

block from the previous experiment was positioned in front and against a large water bottle 

full of water used to simulate a human torso.  The use of a large water bottle as a simulated 

human torso has been adopted by other researchers (Kapilevich & Einat, 2010),  due to the 

similarity between the dielectric properties of the human torso and water.

Figure 4.25: Wax block with full water barrel backing simulating a human torso

The raw data collected during this experiment is shown in Figure 4.26 and applying the 

adapted Fourier Transform, produces Figure 4.27.  
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Figure 4.26: Paraffin wax block of dimensions 8 cm by 8 cm backed by a full water bottle  

backing

The resulting plot shown in Figure 4.27 is similar to that for the wax block alone, with the 

system seeing an optical depth of 120 mm, except for the large low frequency variation 

seen in the raw data plot which produces a peak in the optical depth plot at 14mm.  Again 

the refractive index of paraffin wax was 1.5, which explains why the peak for the 80 mm 

square wax block appears at 120 mm; the peak at 14 mm is attributed to the shape of the 

ribbed wall of the water bottle, which causes a gap of this dimension between the wax 

block and the water.
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Figure 4.27: Paraffin wax block backed by a full water bottle optical depth plot

Although the data shown in Figure 4.26 has a distinct oscillatory nature, there are problems 

converting this data into distinct optical depths.  The experimental data in addition to a 

zero offset, contains the source and receiver characteristics.  The zero offset can be 

removed numerically while the variations in source and receiver characteristics can be 

modelled.

Direct power detection can be used to measure the distance between interfaces, but since 

the phase of the reflected signal is not compared with the phase of the source only relative 

time and hence distance measurements are possible.  Everything in the beam is measured 

simultaneously and it is not possible to gate out objects in the beam, whereas a heterodyne 

based radar with access to phase information can determine the range, permitting time 

gating of the signal to remove clutter.
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4.6.5 Observation of a Water Backed Dielectric Layer  Between 75 – 110 GHz

Figures 4.28 and 4.29 using a 75 – 105 GHz system show the results for a rectangular 

block of paraffin wax between 25 – 30 mm thick, simulating a plastic explosive layer.  The 

graph shows the wax target alone, mounted on a full water barrel (in the case of Figure 

4.25) and strapped to a human torso.

Figure 4.28: Frequency spectrum of a barrel only, wax block and barrel and wax block only  

(offset vertically) 
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Figure 4.29: Frequency spectrum of a body only, wax block and human body and wax 

block only (offset vertically) 

The oscillation in the data due to the wax block is clearly seen even when backed by an 

aqueous body.  Transforming the data into an optical depth produces a clear peak at 40 mm 

corresponding to the wax block, shown in Figures 4.30 and 4.31.
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Figure 4.30: Fourier transformed optical depth for barrel only, wax block and barrel and  

wax block only (offset vertically) 

Figure 4.31: Fourier transformed optical depth for body, wax block and body and wax  

block only (vertically offset)

100



This may be compared with results taken using a VNA (Agilent E8363B/N4420B).  This 

heterodyne measures the range dependent response from the same targets and by sweeping 

from 14 to 40 GHz.  Figure 4.32 and 4.33 shows the range gated responses for body, barrel 

and wax.

Figure 4.32: Range gated response from barrel only, wax block and barrel and wax block  

only (offset vertically) taken using the VNA
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Figure 4.33: Range gated response from body only, wax block and human body and wax 

block only (offset vertically) taken using the VNA

The presence of the wax block is clearly indicated by the peak in front of the body and 

barrel corresponding to its optical depth.  These results suggest that time domain analysis 

using a super-heterodyne based system can be used to detect the presence of a concealed 

dielectric.  However in practice, with a moving target with body rotation of approximately 

±10° combined with Doppler blur, the response from the body changes and additional 

peaks occur where the peak for the explosive is expected.  Therefore it is necessary to scan 

faster than the VNA in a practical system.  The VNA used takes approximately 200 ms to 

complete the aforementioned scan  (Agilent, 2012). 
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It could be argued that the technique for detecting the thickness of a dielectric block would 

give results of little or no significance if the block is of irregular shape or thickness.  

Results show that dielectric blocks of irregular shape and surface texture still display 

strong directional reflectance at millimetre wavelengths.  The location and approximate 

thickness can still be determined (Bowring et al., 2007b).

Two test samples are shown below:

Figure 4.34: Irregular dielectric test piece one

Figure 4.35: Irregular dielectric test piece two
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4.7 Detection of Metals
4.7.1 Edge Glint

The edges of a metal object can be easily detected from their to scattered signal.  This can 

be seen by rotating a simple thin metal sheet (an unetched PCB), see Figure 4.36, in the 

beam and the lateral distance between the edges can be calculated from the frequency of 

the peaks in the raw data.

Figure 4.36: Experimental apparatus to measure the FMCW response of a rotating thin 

metal plate (unetched PCB)

Since the metal sheet is conductive and is within an alternating EM field, an electric 

current is generated within it.  The radiation of the induced surface currents can be 

measured and analysed (Novak et al., 2005; Gashinova et al., 2006).   The measurements 

taken for Figure 4.37 were taken using a VNA and using the method described in (Rezgui 

et al., 2008).
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Figure 4.37: Rotating thin metal sheet optical depth transform results

The metal plate is geometrically simple, conserving the polarisation of the incoming EM 

radiation.  The distance l between the peaks is a function of the angle θ through which the 

plate is rotated and width L of the metal plate in the relationship:

l=Lcosθ  (4.32)

It can be seen from this that the response from a simple metal object is not aspect 

independent and a poor choice for the detection of simple metal objects.  However a gun is 

a complex shape with many dimensions, edges and corners.  The multiple and curved 

surfaces scatter and alter the polarisation of the incident radiation which when measured 

can indicate the presence of a complex object such as a gun.
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4.7.2 Gun Barrel Detection

One feature of every gun is the barrel.  The signal response due to glint varies for a simple 

metal object as described in section 4.7.1, but the barrel has a distinctive response that has 

some aspect independence.

The experimental apparatus to measure the response of a metal barrel at different angles is 

shown in Figure 4.38.  

Figure 4.38: Experimental apparatus to measure the response of a gun barrel

Synthesiser Agilent E8257D 40 GHz

Antennas 20dB gain horns

Detector HP 11585A zero-bias detector

DC Amplifier 80dB with variable gain and offset

Data Acquisition National Instruments NI-6132 PCI card

Object 10cm long barrel closed at one end with 9 

mm ID and 19 mm OD

The difference between the response from the exterior of the gun to the response of the 

barrel is that it has a cut off frequency and being a cavity has greater aspect independence.

Rotating the barrel the measurements in Figure 4.39 were taken.
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Figure 4.39: Frequency response of a 9mm internal diameter 10cm long simulated gun 

barrel aligned between 0 and 60 degrees and illuminated between 14 and 40 GHz (plots  

vertically offset)

An oscillating response can be clearly seen when the wavelength of the signal is small 

enough to propagate into the barrel.  The minimum frequency f0 to propagate into the 

barrel is given by:

f c=
1.8412c

2π r
 (4.33)

where c is the speed of light, and r is the radius of the circular cross section (Bevelacqua, 

2008).  For a 4.5 mm radius the calculated cut off frequency of 19.5 GHz agrees with the 

empirical results.

For a cavity length L, the response for when f is greater than fc is given by (Rezgui et al., 

2008):

∣Er∣
2∝cos(2π√( f 2� f c

2)(2L
c )+φ)  (4.34)
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where c is the speed of light.  The results show the oscillatory response occurs at a range of 

angles up to and over 45° and oscillation period relating to the cavity length L.   The period 

seen is independent of rotation angle unlike the response produced by a simple metal plate 

given in section 4.7.1, where the period is proportional to the angle of orientation.  This 

signal behaviour provides a potential method of determining the presence of a metal barrel 

which in most cases would constitute a suspicious object when concealed.

4.8 'Direct Detection' Radar Resolution and Maximum Range

For a practical 'direct detection' based system, the system antenna forms one interface and 

the approximately parallel surfaces of remote objects form other interfaces.  Spatial 

resolution is a function of the bandwidth with a theoretical distance dres between adjacent 

channels of:

d res=
c

2∆ f
 (4.35)

Where ∆f is the bandwidth of the system and c is the speed of light.  With a frequency 

sweep between 14 and 40GHz, d = 5.77mm.  This is the best possible resolution for this 

bandwidth and can be applied in exactly the same way in stepped and swept FMCW radar 

that measure the phase, by a non-linear frequency ramp, see equations (4.9) to (4.12).   

The maximum unambiguous distance between two interfaces measurable by the the system 

is a function of the resolution dres and the number of frequency points taken ns:

dunambiguous=d resns  (4.36)

For a distance of 10 m, 1734 points are required or practically 2048 for FFT purposes.  The 

unambiguous range of a system is only the maximum distance an object can be from the 

antenna for unambiguous extraction of range, not the maximum range at which an object 
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can be detected.  The maximum range that an object can be detected is a function of the 

transmitted power, the receiver sensitivity, the RCS of the object and the minimum 

detected noise limited power:

Smin=(S/N)minkT 0B(NF )  (4.37)

where S/Nmin is the minimum signal to noise ratio needed to detect a signal, k is 

Boltzmann's Constant [1.38 x 10-23 J/°K], T0 is the Absolute Temperature of the receiver 

input [°K], B is the receiver bandwidth [Hz] and NF is the Noise figure.

4.9 Prototype One: Direct Detector Bench Top Feasibi lity System

This system was the first prototype and was built to demonstrate feasibility.  The system 

consists almost entirely of off the shelf parts and bench equipment.  The hardware and 

experimental apparatus is shown in Figures 4.40 and 4.41.  

Figure 4.40: Direct Detector bench prototype antennas and a gun with simulated torso
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Figure 4.41: Direct Detector bench prototype RF and PC hardware

A LabVIEW program handled control of the equipment and signal processing.  The top 

level diagram for the system is shown in Figure 4.42.

Figure 4.42: 14 – 40GHz Direct Detector Prototype Block Diagram
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The bench equipment used to test the detection technique is listed below:

 An Agilent E8257D PSG Analogue Signal Generator – 40GHz, for generation of 

the FMCW signal to illuminate the target.

 Two 20dB high gain horns to focus radiation onto the target and minimise the 

collection of radiation from surround objects.

 A microwave zero-biased detector to convert the intensity of the received radiation 

into a proportional analogue voltage.

 A DC coupled amplifier to amplify the voltage produced by the detector and 

provide a low source impedance for the subsequent ADC.

 A National Instruments PCI-6132 – 14-bit 2.5MS/s/ch, Simultaneous Sampling 

Multifunction DAQ card to digitise the receiver signal and trigger the E8257D 

PSG.

 A PC running Windows and LabVIEW to control and process the signal data 

acquired by the PCI-6132 card.

The only component that was not bought off the shelf was the DC coupled amplifier.

The control and analysis was implemented using LabVIEW.  The source and receiver 

antennas were located and the object under measurement positioned as in Figure 4.40, with 

a reflective background and in this case a water barrel full of water to simulate a human 

torso.  Aiming was achieved by manually aligning the horns and target to obtain the 

maximum signal at the detector.  The signal source is stepped in frequency and the 

response is measured using a single receiver.  The receiver produces a unipolar DC voltage 

response.  The frequency response of the target is then processed using an FFT and the 
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resulting data plotted with an arbitrary amplitude against optical depth.  The plot is against 

optical depth because without knowledge of the target material, geometric thickness is a 

function of optical depth and refractive index.

Figure 4.43: Rotational table in a direct detection reflective object experiment

This information could then be fed into a pattern matching artificial neural network for 

classification.  Classification consisted of attributing a threat level to each set of 

measurements.  Physical shape, construction, material composition and distance all affect 

the results.  In the context of this research direct detection has come to describe an 

experimental apparatus used to detect the reflected response of a remote target as shown in 

Figure 4.43.  Time for a single inspection was approximately three seconds.
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Figure 4.44: Direct detection of wax slab on torso experiment

Initially samples were held against the body as shown in Figure 4.44, however more 

regularly and conveniently a water barrel was used to simulate a human torso backing for 

the object under test, as previously shown in Figure 4.40.  This approach was later adopted 

by another research group (Kapilevich & Einat, 2010).   The use of a water bottle gave 

increased repeatability, because the position of the object and 'torso' were constant.  

Even using high gain horns on the transmit and receive paths the measured signal at the 

receiver is tiny, due to distribution of the EM signal and scattering.  A two stage amplifier 

with optional inverting stage was constructed to provide up to 60 dB of gain.  A top level 

diagram of a single channel of the amplifier is shown in Figure 4.45.
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Figure 4.45: Top level diagram of a single channel of the 60 dB variable gain and offset  

voltage amplifier

The gain and offset were manually set to fill the input of the ADC, later systems would 

need a means of automatically adjusting gain in a controlled manner to respond to the 

range to target.  A ranging system was incorporated into the subsequent prototypes.

4.10Detection Using Multiple Polarisations

It was found that complex targets could be more readily identified by rotating the 

polarisation of the receiver horn.  Since complex objects are capable of changing the 

polarisation of an EM wave, the effects of changing the polarisation of the receiver were 

investigated.  The signal response was measured at 0° and 90° with respect to the 

transmitter horn.  These are known respectively as co-polarisation and cross-polarisation.  

For co-polarised measurements, antennas are orientated so they are sensitive to EM waves 

in the same polarisation.  Practically, this is achieved by orienting the horn feeds in the 

same direction as shown in Figure 4.46.  For cross-polarised measurements the horn feeds 

are perpendicular as shown in Figure 4.47.
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Figure 4.46: Co-polarised antennas

Figure 4.47: Cross-polarised antennas

Since wave-guide horns act as excellent polarisers, the polarisation of a signal may be 

measured by careful orientation of the antenna.  For example, if the transmitter and 

receiver horns are orientated in the same plane (co-polarised configuration) only the signal 

where the polarisation has been conserved is measured.  Conversely if the receiver antenna 
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is rotated about its axis only the amplitude component a of a signal of amplitude A in the 

plane of the antenna will be measured, where θ is the difference in angle between the 

polarisation of the antenna and the radiation: 

a=Acosθ  (4.38)

The radiation from a horn antenna is linearly polarised (Markov, 1965), therefore by using 

horn antennas the polarisation of outgoing signals and the parallel component of received 

signals can be measured.  If a signal is exactly 90° out of alignment with a receiver then 

theoretically no signal is measured.  This phenomenon can be exploited, by manipulating 

the polarisation of the antennas.  Normally shifting the polarisation of EM waves is 

achieved using a polariser, but instead we use the physical characteristics of a small hand 

gun to shift the polarisation.  The two graphs below show the results of cross polarising the 

antennas for a person with and without a small handgun present on their person, see 

Figures 4.48 and 4.49.  The data was gathered using apparatus shown in Figure 4.50.
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Figure 4.48: Cross-polarised response of a person rotating with no gun present

Figure 4.49: Cross-polarised response of a person rotating with a concealed handgun
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The co and cross polarised time domain responses for a selection of targets can be seen in 

Figures 4.51 to 4.58.  The co and cross polarised measurements were taken using a Agilent 

VNA operating between 14 and 40 GHz.   The experimental apparatus is shown by Figure 

4.50. and a more detailed description of the method can be found in (Rezgui et al., 2008).

VNA
E8363B

Tx

Co Polar Rx

Cross Polar Rx

 

  

Figure 4.50: Experimental VNA setup for measuring the time domain co and cross-

polarised responses of a range of objects scanning between 14 and 40 GHz

The targets were positioned approximately 2 m from the antennas and the resulting data 

range gated, so the ranges given in the plots are all relative.   The co and cross polarised 

responses are shown by the smooth pink and crossed blue traces respectively.  Figures 4.51 

and 4.52 show a gun in different orientations and Figures 4.53 and 4.54 show the body face 

on and at an angle.  The features from different parts of the body can seen clearly in Figure 

4.54.
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Figure 4.51: Co and cross-polarised response of a gun between 14 and 40 GHz

Figure 4.52: Co and cross-polarised response of a gun between 14 and 40 GHz
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Figure 4.53: Co and cross-polarised response of a body between 14 and 40 GHz orientated  

face on

Figure 4.54: Co and cross-polarised response of a body between 14 and 40 GHz at an angle  

showing the signal from the arms and torso
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Figure 4.55: Co and cross-polarised response of a body with gun between 14 and 40 GHz 

face on

Figure 4.56: Co and cross-polarised response of a gun on the side of the body between 14  

and 40 GHz angled side on
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Figure 4.57: Co and cross-polarised response of a body with camera between 14 and 40  

GHz face on

Figure 4.58: Co and cross-polarised response of a bunch of keys between 14 and 40 GHz 

face on

The cross polarised response produced by complex structures such as the gun are absent 

from the plots for the body alone.  The measurements for the bunch of keys has a 

significant a cross-polarised component, so using the presence of a cross polar response 

alone is insufficient to reliable indicate the presence of a gun.  However, significantly the 

122



co and cross polar response for the keys are similar in amplitude, unlike those for the gun 

and due to the smaller RCS of the keys they are also an order of magnitude smaller than 

the measurement for the gun.
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5Portable Prototypes

This chapter describes the development of portable prototypes based on the techniques 

discussed in Chapter 4.  

The feasibility prototype techniques see 4.6.1 to 4.6.5 and 4.7.2, use a lot of equipment 

unsuited to the realisation of a portable version.  To implement a portable device the 

functionality of the test equipment in compact low power form factors is required.  The 

systems requiring a portable version to be developed were the controllable mm-wave 

source; DC amplification of the detector signals; ADC circuitry for sampling of detected 

signals; synchronisation and control circuitry, firmware and software and power supplies.  

Although designed to be portable the system chassis was designed with a tripod mount to 

ease setup, configuration and calibration.

The bench top prototype required the target object to be placed and moved into the 

detection volume of the system.  By making the prototype portable or tripod mounted its 

detection volume can be moved by just pointing it in a new direction.  Inspection of a 

individual would be achieved by manually rastering the detection volume over the target to 

identify the presence, nature, size and position of any concealed objects.

A method of detecting the range to the target is needed to mitigate variations in the return 

signal level due to distance and permit deterministic normalisation of measurements prior 

to analysis.  Methods of determining target distance are described in section 5.1.
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Both stepped and swept approaches have been used to obtain target data.  Initially the 

stepped approach was used where it was possible to easily synchronise receiver sampling 

with steps in the transmission frequency, but this is slow and prohibitive for large numbers 

of data points.  Their frequency stepping speed is relatively slow taking tens of 

milliseconds per frequency point, resulting in anything more than a basic scan taking tens 

of seconds, even minutes.  This is impractical for taking reliable data from a human with 

object target due to sway and breathing movement.  A secondary and beneficial side effect 

of rapid scanning is that spontaneity of research and experimentation are easily stifled 

when data collection and processing times are excessive or off-line.  The same data can be 

collected in a fraction of the time.  

The analog sweep approach required a deterministic sampling system that could monitor 

the state of the signal generator and suspend sampling during a band switch.  However, 

even the relatively fast analog sweep option (option 007) for the Agilent PSG was slower 

than our requirements.  The circuitry for the next prototype will need to include the facility 

to sweep the mm-wave source more rapidly with a matched increase in receiver 

digitisation rates.  This is accomplished by the rapid scanning prototypes described in 

section 5.2.

5.1 Methods of Determining Target Range 

In order to determine the range to a target such that radar returns can be effectively 

normalised a method of measuring target range is needed.  Ideally the system itself would 

be capable of determining target range by phase sensitive detection (homodyne based 

ranging), removing the need for a separate ranging peripheral; such a system was 

implemented by the later Mirlin prototype, described later in Section 5.7.  Meanwhile a 

compact, lightweight, low power device was needed to measure the proximity of a 

individual with a suitable interface.  A number of devices were investigated for purposes of 
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range normalisation of the signal including laser, acoustic, video and capacitive, but 

ultimately two devices were selected for trial and comparison.  These were the Sharp 

2Y0A700 IR distance sensor and the SensComp 615088 50kHz ultrasonic ranger.

5.1.1 IR Distance Sensor

Sharp 2Y0A700 IR Distance Sensor

Figure 5.1: Sharp 2Y0A700 infra-red distance sensor

The selected part was a Sharp IR Distance Sensor part number 2Y0A700, with a quoted 

maximum range of 550cm.  The small package of this sensor with an equally small power 

consumption, silent operation and easy to interface analogue voltage output made this an 

ideal part, however the range was less than that for the acoustic sensor.  In practice this 

maximum range was nearer 450cm and dependant upon the reflector properties.  It was 

found that clothing is a poor reflector and the quoted range is for a white sheet of paper.  

This approach did have a much smaller beam pattern than the acoustic methods, but 

ultimately the range was insufficient for our purposes.  Figure 5.2 shows the measured 

accuracy of the device.
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Figure 5.2: Measured against actual distance results for a GP2Y0A700 

5.1.2 Acoustic Range Finder

SensComp 615088 50kHzUltrasonic Instrument Grade Smart Sensor 

Figure 5.3: SensComp #615088 50kHz ultrasonic instrument grade Smart Sensor 

The quoted range of the sensor is 10.7 m with a nominal beam pattern of 15°.  In practice 

for clothing the maximum obtainable range was 8.0m.  The width of the beam pattern was 

significant, because objects off axis and closer than the intended target were detected in 

128



error.  Fortunately, the sensor can be configured to allow multiple targets to be detected 

with a separation of greater than 8 cm between them.  This device was selected to be used 

on the next prototype.

5.1.3 Ranging Device Interfacing

The Smart Sensor is controlled and target distance measured by toggling and measurement 

a series of IO pins.  Reception of acoustic echoes is indicated on the ECHO pin and must 

be reset if multiple echoes are to received.  To distinguish between clustered targets the 

relative arrival time of an echo must be recorded and the ECHO output reset with a low 

latency.  The maximum latency is a function of the length of the acoustic pulse train, 

consisting of sixteen 50 kHz oscillations and the desired range.  The minimum delay 

before the ECHO output can be reset allowing reception of the acoustic pulse train and the 

internal delay times of the device is 0.44 ms (SensComp, 2009).  This corresponds to a 

maximum achievable resolution of:

d r=
V sTbd

2
 (5.1)

where Vs is the speed of sound (343.2 ms-1 and in dry air at 20 °C) and Tbd is the minimum 

delay time before reset (0.44 ms).  The maximum obtainable dr given this constraint is 75.5 

mm.  

The process of extracting accurate range information about multiple targets from the sensor 

is a timing and latency critical task, unsuited to a MATLAB script running on a PC.  Hence 

an intelligent peripheral interface (IPI) was designed and built by the author to manage the 

SensComp device with a minimum of latency and supervision.  The heart of the intelligent 

peripheral is a PIC18F2420, a fully deterministic RISC architecture microcontroller 

(Microchip, 2008).  The IPI was designed to fit the footprint of the sensor and send regular 

messages containing measured range over a serial interface to MATLAB, while 

automatically triggering and measuring the outputs of the ultrasonic sensor in a fully 
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deterministic manner.  Practical measurements using the device are shown in Figure 5.4.

Figure 5.4: Measured against actual distance results for a SensComp 615088 

50kHzUltrasonic Instrument Grade Smart Sensor 

The IPI  features  power LEDs and on board indicators showing the number of  targets 

visible to aid debugging and assist  commissioning.   Figure  5.5 illustrates the compact 

footprint of the board making it very easy to integrate into the existing design.

Figure 5.5: The compact B246A and ultrasonic sensor assembly
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The firmware flowchart is shown in Figure 5.6.

Figure 5.6: B246A Range Finder Multiple Target firmware flowchart

131

START

Has the 
measurement
timer expired?

Trigger 
range finder

Initialise 
range finder

Has a target echo 
been received?

Has the echo 
timer expired?

Convert timer 
values to distances

Send measurements
to master

Log timer value,
increment target

counter and reset 
echo register

          Yes

         No

Yes  

No

Yes

No



5.1.4 Signal Gain

Two methods of normalising the signal response of a target were considered: numeric and 

physical.  The numeric method of multiplying the signal level in software is possible 

provided the input signal level fills a sufficient fraction of the ADC dynamic range.  When 

it is decided that an insufficient fraction of the ADC input is used or the dynamic range of 

the ADC is small or the detector is prone to saturation then variable physical amplification 

of the signal prior to digitisation is required.  

Prototype One uses zero biased  millimetre wave power detector and amplifier, the output 

of which provides a suitable signal for the ±10 V 14-bit ADC of the NI-6132 to digitise 

over the possible variations of target distance.  Numeric gain of the detected signal was 

implemented in software by the host PC. 

5.2 Custom High Speed Compact Data Acquisition Board s

Real time operation requires rapid scanning of targets.  Lab based experiments measuring 

the response of static objects and bodies are indispensable tools for understanding 

mechanisms of operation, but inadequate for even slow moving real world targets.  A 

means of dramatically reducing the scan time of the system was needed to ‘freeze’ in time 

a moving target.  This was the design aim for the rapid scanning prototypes, by providing a 

synchronised deterministic method of recording the receiver response, thereby enabling 

faster and faster sweep speeds to be achieved.  In essence, the shorter the scan time the 

smaller the degree of movement of the target and the subsequent minimisation of the 

spatial blurring of the raw data.

For the target to be effectively frozen in time as far as range is concerned the limit 

acquisition time was set as a distance the target can move as a fraction of the range 

resolution.  Using range resolution equation 4.35, the optimal resolution (range interval) 

for a 35 GHz frequency sweep is 4.29 mm:  
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d=
c

2∆F

d=
3×108

2×35×109

d=4.29mm

 (5.2)

Assuming the worst case scenario of the device operator and target walking (3 mph) 

towards each other the time taken to travel a single range interval is:

1mile per hour=0.447ms�1

Relative Speed=6×0.447ms�1=2.682ms�1

Time taken to travel range interval=
4.29×10�3

2.682ms�1=1.6ms
 (5.3)

For the Fourier Transformations to operate correctly, the time for a complete scan must be 

at least less than half this value, or 0.8 ms.  

For maximum effectiveness these circuits required a matching Rapid Scanning DAC 

circuit B226 (described later in section 5.3.1) to produce the drive signal for the microwave 

Voltage Controlled Oscillator (VCO) generating the mm-waves and ADC boards to 

measure the detector signals. 

A diagram of the initial apparatus using the custom rapid scanning data acquisition board is 

shown in Figure 5.7.
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Figure 5.7: Typical apparatus for using a rapid scanning board

A collection of progressively refined circuits were realised to fulfil this requirement of an 

non-PC based high-speed sampling device that could be used with or without a computer.  

The experience in developing these was applied in the actual portable prototypes.

5.2.1 Rapid Scanner Board

This system underwent a three iterations until a satisfactory version was produced.  The 

board was originally designed to provide a non-pc based alternative to National 

Instruments analogue interface cards capable of synchronising with the synthesiser and 

only digitise when a valid signal is being generated.  In analogue sweep mode the 

synthesiser is capable of sweeping from 12.50 to 18.33 GHz in 58 ms.  By controlling the 

synthesiser using the Sweep Stop In/Out interface, a practically unlimited number of 

samples could be taken during a frequency sweep by stopping the sweep during data 

acquisition.  However for the fastest possible sweep, a synthesiser with the 007 analog 

sweep option is required.  The shortest sweep time configurable for a 12.50 to 18.33 GHz 

sweep is shown as 16 ms on the GUI, but unexpectedly only 17 sweeps per second were 

observed to occur in practice, in free running mode.  Free running mode produces a 

continuous sequence of frequency sweeps.
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The output of the synthesiser was measured and instead of the expected single frequency 

ramp the ramp was split into three parts, as shown in Figure 5.8.
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Figure 5.8: Time against frequency for a E8257D PSG Analogue Signal Generator (007  

analogue ramp option) ramping from 12.5 to 18.33 GHz 

The plot was created by measuring the output of the Sweep Out connector on the back of 

the signal generator which outputs a voltage proportional to the frequency sweep ranging 

from 0 V and the start of the programmed sweep and 10 V at the end of the programmed 

sweep.  The periods of the graph when the frequency is not increasing are due to the 

switched oscillator architecture of the signal generator and the delay at the end of the 

sweep is the fly-back preparation time for a new sweep.  A means of monitoring the Sweep 

Out output was initially implemented, but dropped when triggered monitoring and receiver 

sampling performance were proven to be repeatable.  This was fortunate as it transpired 

design and realisation of the sampling circuitry was relatively simple compared to the task 

of transporting the generated data in a timely manner.  

The initial decision was to sample and buffer an entire sweep was made as it gave the 

lowest latency between samples, transmitting the data to the host between sweeps, thereby 

maintaining peak samples per second.  The PIC18F2620 with its large quantity of RAM – 
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3968 bytes the largest of any 8-bit PIC was selected for the sampling task and the 

PIC18F2550 was selected for its 'Full-Speed' USB connectivity.

 The block diagram shown in Figure 5.9 shows the top level subsystems of the prototype.

Figure 5.9: Rapid scanning board v1 top level block diagram

The data throughput calculations started with the sample time Ts were:

Ts=
1

Sample Rate
=

1

110×103
=9.09×10�6s  (5.4)

and the maximum number of samples Dmsss that could be taken during the shortest 

configurable sweep available on the synthesiser:

Dmsss=
Tsweep

Ts

=
15×10�3

9.09×10�6=1650samples/inspection (5.5)

The maximum number of sweeps per second (inspection rate) with a synthesizer total 

sweep time including band switches and fly-back of 58 ms is:
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f inspection=
1

T inspection

=
1

58×10�3
=17.24Hz  (5.6)

the the total expected average data generated per second with a message size per sample of  

40 bits is:

Data Payload= f inspection×Dmsss×Message Size=1.14Mb  (5.7)

Fitting this into the band switch and fly-back period of each inspection gives a data rate of:

Data Payload
f inspection×(T flyback+Tbandswitching)

=
1.14×106

17.24×31.6×10�3=2.09Mbaud  (5.8)

These figures assume no handshaking, line returns or checksums.

A USB connection was chosen over a standard serial connection because of the additional 

speed needed for the quantity of data to be transferred.  A standard serial connection would 

have been insufficient for transferring captured data for real time processing.  USB is 

ubiquitous on modern computers and satisfies the bandwidth requirements for real time 

transfers with a theoretical bandwidth of Low Speed (1.5Mbps) and Full Speed (12Mbps) 

for USB 1.0 and 480Mbps for USB 2.0.   USB 1.0 is sufficient for our requirements and 

the Microchip PIC18F2550 high performance USB 2.0 compliant micro-controller 

supporting Full-Speed USB 1.0 connections (Microchip, 2009).   Although capable of 

simultaneous dual channel signal capture the USB capable micro-controller a Microchip 

PIC18F2550 was unable to fully utilise the available USB bandwidth.  A significant time 

was spent trying to improve the throughput of the micro-controller.  Both CCS and 

Microchip compilers were evaluated, see Appendix C, but ultimately even rewriting 

firmware to interface directly with the USB Engine instead of using the standard library 

only an improvement of 34% was achieved, this performance was inadequate.  An 

alternative was needed and a commercial USB to UART bridge was identified TTL-232R-

3V3.  Manufactured by FTDI the bridge is capable of 3Mbaud.
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The next board revision dropped the second digitsation channel  in exchange for a higher 

maximum speed and reduced circuit and firmware complexity.

Even so, when using only a single ADC the system is capable of saturating the 3Mbps data 

channel offered by the bridge.  The throughput the hardware serial port of a PIC18F is:

Baud Rate=
F osc

4(n+1)
 (5.9)

where Fosc is the system oscillator speed and n is the value in the SPBRG register.  

Therefore, by inspection of Equation (5.9), the maximum  achievable baud rate and hence 

throughput for the serial port, is a quarter of the system oscillator speed.  The maximum 

oscillator frequency for this chip is 40 ΜHz giving a maximum throughput of 13.33 

Mbaud, however the baud rates supported by the USB converter are different (FTDI, 

2010):

Baud Rate=
3000000
y+0.125x

 (5.10)

where y can be any integer between 2 and 16384 and x can be an integer between 0 and 7, 

except when y = 1, x must equal 0.  Thereby achieving baud rates between 183.1 baud and 

3 Mbaud.  The inter-relationship of all these variables influences the processing capability 

of the MCU via Fosc and the throughput of the data link in the following relationship:

F osc

4(n+1)
=

3000000
y+0.125x

 (5.11)

A 36 MHz system clock was selected, a reduction of 1 MIPS, but allowing full use of the 

serial link - 3 Mbaud. 

Changing the oscillator also alters the ADC module clock.  The original PIC18F2620 was 

swapped for a PIC18F2431 with an internal high resolution automatically clocked and 

buffered ADC module with automatic acquisition triggering.
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The new Tadc for can be calculated using the TAD  (typically 416 ns) for the PIC18F2431 

(Microchip, 2010):

T AD⩽
F osc

ADCdivisor

=Tadc  (5.12)

where ADCdivisor is a preselected conversion value and in this case 16, producing a Tadc of 

444 ns for a 36 MHz system clock.  Allowing sample time.  The minimum acquisition time 

is:

Tacq=Tamp+Tcoff+T c  (5.13)

where Tamp is the amplifier (negligible) settling time, Tc is the holding capacitor charging 

time and Tcoff is the temperature coefficient.  Tcoff is (Microchip, 2010):

Tcoff=(Temp�25°C)(5×10�9 s°C�1)  (5.14)

where Temp is the operating temperature of the converter.  Assuming the maximum 

operating temperature is 50 °C, Tcoff is:

Tcoff=(50°C�25°C)(5×10�9s°C�1)=130×10�9s  (5.15)

Tc  allowing for a conversion error of ≤ ½ LSb is:

Tc=�(Chold)(Ric+Rss+Rs) ln( 1
2047)×10�6 s  (5.16)

where Chold is the hold capacitor (9 pF), Ric is the internal multiplexer switch impedance, Rss 

is the internal sampling switch impedance and Rs is the source impedance.   Rss varies with 

Vdd and for a 5 V supply Rss is 6 kΩ, therefore Tc is:

Tc=�(9 pF )(1kΩ+6kΩ+100Ω)ln( 1
2047)×10�6 s=620×10�9 s  (5.17)

Hence Tacq is:

Tacq=(0+130+620)×10�9=750×10�9 s  (5.18)

The resulting maximum throughput was:
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F sample=( 1
12×16

36×106+750×10�9)=164ksps
 (5.19)

This completes the ADC calculations in preparation for coding.

Figure 5.10: Rapid Scanner v3

The final version of the board and top level diagram are shown in Figures 5.10 and 5.11.
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Figure 5.11: Rapid Scanner v3 top level block diagram

The resolution obtainable by the commercial NI-6132 card was exceeded and by 

controlling the ADC reference a variable inter-inspection dynamic input was created. 

5.2.2 Rapid Scanning Performance Benefits

Speed increases in excess of 10,000% were achieved, by sweeping instead of stepping the 

frequency source, reducing the time taken to obtain a long scan of 32768 points (chosen 

from 2n for numerical analysis) used for a long scan with the FPI where a large number of 

points gave good resolution over narrow bands reducing the time taken from three and a 

half minutes to well under a second.  To enable ever faster sweep speeds faster prototypes 

are needed to maintain the number of scan points created within a sweep.  For example, if 

2048 points are required and the sweep time is 20ms then the minimum sample rate Fmin 

would be: 

F min=
I s

T i
 (5.20)
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where Is is inspection size or number of samples and Ti is inspection time.  To acquire 2048 

samples in 20 ms, a minimum sample rate of 102 ksps is required.

A significant and inherent benefit of increasing signal acquisition rates was to produce a 

system capable of capturing inspection data almost instantly.  This made examination and 

measurement of targets more intuitive, enabling interactive manipulation of targets in real-

time, in a ways previously impossible.  

The original software was written using MATLAB and it was later and unexpectedly 

discovered that MATLAB has limited high speed serial communications support.  All 

debuging and throughput measurement had been fulfilled by a custom C# application.  The 

maximum rate supported using  MATLAB was 230 kbaud, much less than the 3 Mbaud 

that was planned.  Typically 2400 samples would be generated for a 16 ms sweep with a 

150 KSPS sample rate.   The maximum number of samples that could be transmitted per 

second over the MATLAB limited serial link would be 11500.  This would adversely 

impact the inspection rate and limit the maximum number of samples possible within an 

inspection.  Using the existing process of sequentially sampling and transmitting data 

would result in a significant inter-inspection delays of approximately:

T inspection=
10Rsns

8nb
 (5.21)

where nb is the baud rate of the serial link, Rs is the sample size in bits and ns is the 

inspection size in data samples.  Giving a MATLAB imposed inspection time of 209 ms, 

instead of the expected 16 ms for a 3 Mbaud connection.

Re-writing the rapid scanner firmware to buffer and asynchronously transmit the sample 

data was not an option due to lack of RAM.  To overcome this issue, the number of 

samples taken was reduced to allow local buffering and asynchronous transmission to the 

host PC.  However this approach preoved insufficient and without data compression the 
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rate of inspections per second would suffer, dropping from the expected 18 fps to less than 

6 fps.  Lossy compression of the sample data would be an acceptable interim measure until 

the C# version of the software capable of Full Speed USB communication was ready. 

The effect of lossy compression upon reconstruction and transformation of the data into the 

time domain would be to the reduce the amplitude of high frequency signal components, 

representing large optical distances which would not be present anyway.  The degree of 

compression would be proportional to the attenuation of high frequency components. 

The time taken to bin and compress the data was similar to the time it would take to send it 

in its entirety.  Therefore, apart from implementing a routine to reconstruct the data on the 

host PC prior to processing and analysis, the MATLAB imposed restriction on serial port 

baud rate was circumvented.

Bench tests have shown that 12 Mbaud is possible with a enhanced hardware and an FTDI 

F232H IC, using PCB B251A FT2232H breakout board.  It is expected this additional 

speed and more could be needed by future systems.
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5.3 Frequency Source

The VCO used in all of the portable prototypes is a manufactured part made by Sivers 

IMA, model number VO3260P/04.  This microwave primitive is the radiation source, 

producing a frequency roughly linear with control voltage.  The power output varies by 

frequency and temperature as shown in Figure 5.12 and fulfils the input requirements of 

the AMC-10 Harmonic Generator, used to multiply the frequency to 75 – 110 GHz.

Figure 5.12: VCO output power output against frequency

The non-linear drive voltage frequency response is shown in Figure 5.13.
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Figure 5.13: VCO output frequency against driver voltage

Driving the VCO with a linear voltage ramp will not produce equally spaced frequency 

steps resulting in a loss of resolution.  Brooker et al., (2005) states the achievable 

resolution with a non-linear sweep is:

∆ d lin=d target Lin  (5.22)

where d is the distance to the target and Lin is the linearity of the ramp defined as:

Lin=
Smax�Smin

Smin
 (5.23)

where Smin and Smax are the rate of change of frequency sweep with voltage (∆F/∆V). 

This can be combined quadratically with the system frequency bandwidth:

∆ d resolution=√( c
2∆ f )

2

+(d target Lin)2  (5.24)

For direct detection the non-linearity associated with using a linear voltage ramp to drive 

the non-linear response shown in Figure 5.13, did not significantly affect the depth spectra 

obtained as the effective value of dtarget is small.  However, for homodyne systems, for 
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example Prototype 4 (see Section 5.7), the range finder requires a closer to ideal linear 

frequency sweep and in this case the voltage sweep generated by the Rapid Sweeper 

circuitry (see Section 5.3.1) was designed to compensate for the VCO non-linearity.  The 

non-linear voltage curve was generated by extracting the desired frequency and voltage 

pairs from a cubic spline interpolation of the measured response, shown in Figure 5.13.

5.3.1 Rapid Sweeper

Figure 5.14: Rapid scanner top level system diagram

The Rapid Sweeper is a device developed to provide a non-linear drive voltage for non-

linear VCOs, for generation of a linear frequency ramp.  The frequency against voltage 

characteristics for the VCO are shown in Figure 5.13 and the non-linearities are easier to 

observe in Figure 5.15 plotting the voltage tuning sensitivity against frequency change.
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Figure 5.15: Tuning sensitivity for Sivers IMA VCO at different temperatures

Host communications were handled by a FTDI USB TTL converter part number TTL-

232R-3V3.  The command interpreter accepts instructions and configuration information 

from the host and initiates frequency sweeps as required.  The DAC selected for this 

prototype was a 5V TTL parallel interfaced 16 bit low glitch multiplying current output 

DAC operating in unipolar mode generating 0 – 10 V ramp using a LT1112 op amp and 

with secondary amplification provided by an OP97FPZ to produce a low impedance drive 

signal 0 – 18 V for the Sivers IMA VCO.
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5.4 Target Screening and Localisation of Concealed O bjects

Scanning a detector is a common way of increasing the detection volume of a system.  This 

is implied for imaging systems where the detection element(s) can be scanned across the 

desired detection volume.  Scanning can be achieved either mechanically or electronically 

and depends on the technology used.  

If a detector is small and lightweight, a crude scanning regime can be undertaken by the 

operator by moving or aiming a detector over the target.  This may be slower than 

mechanically or electrically scanned systems, but provides more control and is far simpler 

to implement.

The signals reflected from the body vary from different parts of the torso.  Signals from the 

arms appear behind the chest and lead to interference effects very similar to the signature 

of explosive material.  To mitigate this problem, microwave optics are used to focus 

illumination onto a small area of the subject, so only signals for one part of the body are 

being measured at a time.  The decision to increase the operating frequency allowed the 

use of smaller optics and achieved the design goal of a compact and lightweight system.

5.4.1 Illumination Spot Size

For the technique to work optimally the object needs to be illuminated with a beam 

commensurate with the size of the object.  Illuminating an area larger than the object under 

inspection reduces system performance, because that signal measured at the receivers 

contains information about not just the object but the surrounding area.  Therefore it is 

crucial for optimum performance that the beam pattern is comparable in size to the object 

being scanned, and this depends on the gain of the transmitter and receiver antennas.  The 

directionality of a pyramidal optimum horn antenna is a function of gain (Wikipedia 

contributors, 2012):
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G=eA
4πA

λ2  (5.25)

where eA is the aperture efficiency (0.511 for a horn antenna) and A is the product of:

aE=√3λ LE  (5.26)

where LE is slant length of the side in the E-field

aH=√2λ LH  (5.27)

where LH is the slant length of the side in the H-field and combining to create:

Goptimum=eA

4π√3λ LE√2λ LH

λ2
 (5.28)

The beam width ω at range r for antenna gain G is defined as:

ω≈r (4π
G )

1
2  (5.29)

This is plotted in Figure 5.16 as a function of range r, for a 20 dB rectangular horn 

antenna.
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Figure 5.16: Spot size (half power) as a function of distance
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Since the beam pattern is a function of range, the performance of the system varies on 

object size and the range of operation.  This dynamic is partly mitigated by providing real-

time feedback to the user by showing the beam pattern as an overlay on the live camera 

feed part of the GUI.  This performance variation applies to guns, whereas for explosives a 

representative patch is needed due to its uniform nature.

Standard gain horns are available in 10, 15, 20 and 25 dB versions.  Larger horns produce 

more gain.  A 25db horn is approximately 3 times longer than the equivalent 20dB horn.

The use of just an antenna to generate a small radiation spot on the target is impractical and 

therefore a horn antenna in combination with a lens was used.  This increases the effective 

gain.
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5.5 Prototype Two: Direct Detector Tripod Prototype

The first compact prototype is shown in Figure  5.17.  The top level systems diagram for 

the prototype is shown in Figure 5.18.  

Figure 5.17: First portable direct detector prototype

This prototype is a self contained unit requiring no external bench equipment, except a 

laptop providing the user interface and running the MATLAB detection script.

Table 5.1 is a parts list of the top level systems.  The following sections describe the design 

and operation of each individual subsystem.
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Figure 5.18: Top level systems of the first portable direct detector prototype, only one  

receive channel is shown
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Video Camera Trust HiRes USB camera

Multiplier Millitech AMC-10-RFH00 active chain multiplier

VCO Sivers IMA VO3260P/02 wide band voltage controlled oscillator

MMIC x2 MMIC 94GHz detector supplied by MMIC Solutions

Control 

Electronics

B253A

Range Finder SensComp 615088 50kHz Instrument Grade Smart Sensor with smart 

slave interface

Lens Polyethylene lens designed by Sarah Smith

Power Supplies B272 Direct Detector RF PSU board

Laptop Intel i5 with 4 GB RAM

Table 5.1: Prototype two top level parts list

To obtain a single inspection, the control electronics monitors the physical user interface.  

When a trigger event has occurred the control electronics loads the first value from the 

lookup table into the DAC and initialises the range finder.  The voltage from the DAC 

causes the voltage controlled oscillator to generate a RF signal.  This signal is multiplied to 

the desired frequency within the harmonic generator and transmitted via the transmitter 

horn.  The lens focuses this energy onto the target with a beam size approximately 

commensurate with the size of a medium to large handgun.  Energy returns from the target 

are captured by the receiver horns in co and cross polarisation, amplified and measured by 

the MMIC receivers, producing a voltage proportional to the detected RF energy.  The 

ADCs digitise the respective voltages for processing by the control electronics.  This 

sequence is repeated for each value in the lookup table.  The receiver data is processed and 

compressed before transmission with accompanying data from the range finder to the PC 
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via the communications subsystem.  The PC unpacks and analyses the data; updates the 

user interface and provides feedback if a threat is detected.  The video feed is manipulated 

to show the scan area and calculated beam pattern.

The role of B253A board is to manage, configure, synchronise and power the hardware 

portion of the prototype.  The VCO lookup table was created by the method described in 

Section 5.3.1 and refined by iteratively measuring and modifying the voltage curve to 

achieve the desired linear frequency ramp.

The host computer processes data sent by the control electronics and provides the graphical 

user interface.  The laptop processor and memory specifications are an Intel multi-core i5 

with 4 GB of RAM.

The transport of data and translation of protocol and physical signal translation is handled 

by multiple FTDI USB TTL converters.  Data is packetised prior to transmission by micro-

controllers to ensure synchronisation and data integrity.

This user interface consists of physical switches and buttons used to control the system 

software.  The main push to scan trigger is part of this interface.

The video feed is provided by a Trust HiRes USB 2.0 web cam shown in Figure 5.19 

connected to the host PC via a hub.  This camera was chosen because of its diminutive size 

and video resolution of 640 × 480 at 25 fps. 

Figure 5.19: Video feed provided by a Trust HiRes USB 2.0 Webcam
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The target range is determined using a SensComp 50 kHz ultrasonic SmartSensor 

interfaced and controlled by board B246A running software P246B.  This board makes for 

a self contained unit providing a simple serial interface for the host PC.    The 

measurement and host update rate was set to 20Hz.  The highest measurement rate is a 

function of target range and the speed of sound in dry air (Hyperphysics, 2008):

vsound≈331.4+0.6Tc  (5.30)

where Tc is temperature in degrees Celsius.  At 25 °C the speed of sound is 346 ms-1, 

therefore the maximum measurement rate is:

Measurement Rate≈
vsound

2d
 (5.31)

where d is the maximum range of 8 m, the peak measurement rate is 21.6 Hz.

During trials a slower rate of 3 Hz was found to provide a responsive system while 

minimising unnecessary measurements.

Unlike airport scanners, this portable machine does not produce revealing images of the 

subject by using a standard camera to assist aiming.   Professor Bowring told BBC News 

"It is designed to work out on the streets and is not (restricted) to a closed, controlled 

environment," (BBC, 2009a). 

Active mm-wave illumination will be used by the prototype.  It has already been decided to 

investigate detection methods utilising active illumination of the target to improve 

performance within uncontrolled environments.  The decision on the frequency band used 

was based on the availability of parts for a 75 to 110 GHz radar.  The increase in absolute 

bandwidth improved the radar resolution to 4.3 mm, compared to lower frequencies and  

requires physically smaller optics to focus.
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The rapid sweeper used for this prototype is a compact version of the circuitry used to 

drive the VCO for a proposed super heterodyne radar.  For more information about this 

sub-system refer to Section 5.3.1.

A full description of the VCO used was provided earlier in section 5.3.

Manufactured by Millitech the part number AMC-10 is a times six multiplier producing 

signals in the 75 - 110 GHz band.  Requiring a nominal RF input power of 10dBm (max 

13dBm) (Millitech, 2011), the target is illuminated using the radiation generated by this 

device.

Figure 5.20: AMC-10 frequency against output power (Millitech, 2011)

Microwave horns are used to direct radiation.  Antenna gain is calculable from the flare 

dimensions of the horn using Equation (3.3).  

A single 20 dB horn is used to illuminate the the microwave lens.

The role of the microwave lens is to focus the diverging  microwave beam as it exits the 

horn into as  small a spot as possible at a distance of 8m.
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Figure 5.21: Diagram of lens

The lens used is planoconvex.  The thin lens approximation for the focal length f is:

1
f
=(n�1) .( 1

R1

+
1
R2)  (5.32)

where the radii of curvature of the lens surfaces are R1 = ∞, R2 = 150 mm and n = 1.52 for 

polyethylene, giving a focal length of approximately 290 mm.  The beam size angle is 

defined as:

θFWHM≈1.22λ
D
=0.026rad  (5.33)

Where λ = 3.3 mm @ 90 GHz.

The gain of an ideal horn and lens combination is:

G≈6(D
λ )

2

=15000=42dB  (5.34)

Where the horn is at the point of focus:

D
f
≈

165
290

=0.56rad  (5.35)

Typically, the optimal fill of a lens is:
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D
2 f
≈0.28rad  (5.36)

which approximates to the beam angle of a 20dB horn antenna.  The lens was designed by 

Sarah Smith and built in house.  Smith (2012) provides a full description of the design.  

Polyethylene was used instead of PTFE because of the difficulty of manufacture.

Figure 5.22 compares the theoretical beam size with 3 dB measurements taken in the lab at 

various distances. 
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Figure 5.22: Spot size measurements with lens, range against beam-width

The receiver horns are used to provide signal gain and maximise the signal detectable by 

the MMICs.  The horns are commercial off the shelf 75 – 110GHz 25dB gain antennas.  

Their purpose is to enhance the directionality of the system and passively improve the 

system's signal to noise ratio by creating a beam profile that overlaps with the transmitted 

beam at all distances.  By minimising the collection of radiation from extraneous clutter, a 

high signal to noise ratio is maintained.
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The MMIC receivers are monolithic devices incorporating a microwave frequency 

integrated circuit low noise amplifier and RF detector.  They produce a bandwidth limited 

signal with greater sensitivity than a comparable zero biased detector alone (they 

incorporate a zero biased detector after two LNA stages).  The prototype employs two 

devices, one in co-polar orientation and another in cross polar orientation.  The device is 

manufactured by MMIC Solutions.  These parts are traditionally used in passive imaging 

applications operating around 94 GHz.  These devices measure RF power and generate a 

DC voltage.

Property Value

LNA response bandwidth 4 kHz

Sensitivity 3 x 109 mV/mW

Detector Bandwidth 72 – 110 GHz

Detector Noise ≈ 0.1 mV

Table 5.2: MMIC LNA and detector properties

The device output noise of 0.1 mV equates to an input noise power of 0.03 pW.   Figure 

5.23 shows the performance and voltage output of the two MMIC LNA receivers used in 

the prototype.
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Figure 5.23: MMIC output voltage against frequency at room temperature

MMIC 33 and MMIC 34 are the serial numbers of the MMIC detectors under 

measurement.  The measurement apparatus consisted of a VCO, AMC-10 harmonic 

generator and a series of attenuators connected to the MMIC detector input. 

The Analog Devices' AD976A ADC was chosen to digitise the receiver signals for easy 

processing.  The AD976A is a 200 ksps, low power, 16 bit converter operating from a 

single 5 V supply.  The converter resides with its controller on board B253A.

The power supply unit provides the numerous supply rails used by the different circuits 

and peripherals of the prototype from a single 12 V supply.  The power supply circuitry 

consists of several buck, boost and linear regulators individually switched and current 

monitored using B240, running firmware P240.

A later version of board B241 incorporates a 4 x 20 character LCD displaying the status of 

the separate power circuits driven by another microcontroller running firmware P241.

Detection performance varied during experimentation and development of the rapid 

sweeper boards B226A and B226B.  The cause of this variation was identified as 

temperature drift of the harmonic generator.
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5.6 Prototype Three: Portable Direct Detector Protot ype

The top level systems diagram for the prototype is shown in Figure 5.24.  

DC Amplifier

Control 
Electronics

Video
Camera

MMIC 
Detector

MultiplierVCO

Embedded
Computer

Tx

Rx

Range Finder
Intelligent
Ranging

Agent

Computer
Support
Board

Intelligent
Ranging

Agent

Temperature
Sensors

External
Triggers

Touch 
Screen

Controller

TFT Backlight
Controller

Aiming
Lasers

Figure 5.24: Top level systems of the first portable direct detector prototype, only one  

receive channel is shown
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Video Camera uEye UI-1226LE-C-HQ digital USB camera

Multiplier Millitech AMC-10-RFH00 active chain multiplier

VCO Sivers IMA VO3260P/02 wide band voltage controlled oscillator

MMIC x2 MMIC 94GHz detector supplied by MMIC Solutions

Control 

Electronics

B253B, B264, B270, B271, and B273 

Range Finder SensComp 615088 50kHz Instrument Grade Smart Sensor with smart 

slave interface board B246

Lens Polyethylene lens designed by Sarah Smith

Power Supplies B265, B266, B269

Laser Aiming Four solid state laser diodes aligned as aiming guides without use of 

the video stream.

Computer Support 

Board

B273 provides power conditioning, data connection aggregation, 

battery backup for the RTC and an external buzzer interface.

Temperature 

Sensors

Incorporated onto B253B is a four channel temperature monitoring 

system with host reporting functionality.

Embedded PC A Eurotech ISIS PC-104 embedded PC 

Table 5.3: Prototype three top level parts list

System operation varies from the previous prototype in three major ways.  A low power 

Intel Atom based embedded PC running software running Windows XP Embedded using a 

LCD and touch screen, handles user input and processing, removing the need for an 

external computer.  The detector software is coded in C# rather than MATLAB, enabling 

the neural the network classification algorithm to run at full speed, in addition to enhancing 

the communication links.  Temperature sensors have been included to monitor the 

environmental and RF subsystem temperatures to provide some stability in operation over 

a wider range of operating temperatures.  Board B253B interfaces to and monitors the 

temperature sensors relaying digitised measurements to the embedded PC.
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The power supply has been changed with all circuits running off a single 24 VDC supply 

provided by an external DC supply or battery pack including the LED LCD back-light 

which requires a boost converter producing 28 V.  The revised PSU board B265  is 

significantly smaller than the previous revision, but lacks the capability of monitoring and 

switching individual supplies. 

The criteria for selecting the video camera was, size, optics and connectivity.  The uEye 

UI-1226LE is small and has the ubiquitous USB interface and supporting API.  The optics 

contain an autofocus functionality so images are clear regardless of range.

The software consists of two versions for the direct detector, LabVIEW and a later C# 

versions.  The C# version was developed in conjunction with some custom data acquisition 

electronics to vastly reduce data acquisition times and improve capture rates.   The desired 

scan rate was 15 fps.  The custom board was designed to be easily swapped between 

different computers to facilitate testing and be small enough to fit into a portable prototype. 

The custom board interfaced over a USB link, providing a single digitisation channel with 

a resolution of better than 19 mV.  In one respect the custom board was inferior to the 

National Instruments' PCI-6132, which has a voltage resolution of better than 1.3 mV.  In 

all other respects it was better (twenty four times faster), compact and lightweight.  Later 

versions of this board are capable of resolutions of better than 0.1 mV and even faster 

acquisition rates were used when reliable true real-time data acquisition was needed.

Issues with the prototype were that the range finding ability was limited to 7 m and 

associated noise and alignment issues using  acoustics.  The embedded processor was  

regularly fully loaded and the MMIC receivers from MMIC Solutions Ltd are no longer 

manufactured.
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5.6.1 Proposed Improvements

Several potential improvements were considered.  For example, the incorporation of a 

homodyne radar replacing the ultrasonic range finder to improve the alignment and size of 

the range finder was considered.  In order to reduce the processing load of the embedded 

computer, some of pre-processing of the data from the receiver may be offloaded onto a 32 

bit PIC, freeing up the embedded PC to focus on the video stream and user interface.  The 

receivers used in this and earlier prototypes are no longer available due to the closure of 

MMIC Solutions Ltd and identification of alternative parts will be necessary.
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5.7 Prototype Four: Mirlin

Figure 5.25: Image of prototype four

Mirlin is the latest portable prototype, and with homodyne RF ranging capabilities.  FFT 

processing has been offloaded to a 32 bit micro controller, freeing up the embedded PC to 

process video and GUI.  Signal acquisition rates have increased to minimise spatial 

blurring of the ranger finder data and the MMIC receivers have been replaced with 

alternatives manufactured by Farran.   The system top level diagram is shown in Figure 

5.26.
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Figure 5.26: Top level system diagram for Mirlin
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Video Camera uEye UI-1226LE-C-HQ digital USB camera

Multiplier Millitech AMC-10-RFH00 active chain multiplier

VCO Sivers IMA VO3260P/02 wide band voltage controlled oscillator

Detectors Farran FLNA40 and Farran WDP-10 

Control 

Electronics

B269, B271, B273, B276, B277, B278, B279 and PIC32 DM320001 

board.

Range Finder Homodyne

Lens Polyethylene lens designed by Sarah Smith

Power Supplies B272 Direct Detector RF PSU board

Computer Support 

Board

B273 provides power conditioning, data connection aggregation, 

battery backup for the RTC and an external buzzer interface.

Temperature 

Sensors

Four channel temperature monitoring system.

Embedded PC A Eurotech ISIS PC-104 embedded PC

Table 5.4: Prototype four top level parts list

Mirlin differs from the previous prototype by reducing the load on the host PC by 

performing the Fourier transform required for ranging and converting frequency domain 

data into the time domain for classification by the ANN.  The additional processing 

capability is provided by a 32 bit PIC32.  Replacing the MMIC receivers, with a part 

consisting of an ultra wide band low noise amplifier (LNA) with matched zero biased 

detector manufactured by Farran.  Replacement of the ultrasonic range finder with a 

homodyne radar providing an unambiguous target detection range of 8.78 m.  Co and cross 

receiver signals remain at 256 samples per channel, but the rate of sampling has increased 

to 170 kHz to improve inspection speed and system responsiveness.

The control electronics consists of a Microchip PIC32 DM320001 development board with 

various custom made daughter boards to handle signal conversion.  
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Figure 5.27: Top level system diagram of Mirlin control electronics
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Figure 5.28: Mirlin homodyne range finder top level system diagram

The homodyne range finder works by mixing a fraction of the transmitted signal with the 

received signal directly at the detector to generate a phase sensitive baseband signal.  The 

non-ideal behaviour of the directional coupler permits a fraction of the transmitted signal 

onto the detector due to leakage.  The detector acts as the first interface of Equation (4.25) 

in Section 4.6, with L1 = 0 and the front surface of the target acts as the second interface at 

distance L2.  By applying a Fourier Transform to the swept frequency phase sensitive 

baseband response, the time domain response may be obtained and the distance to the 

target determined (Currie et al., 1992).

5.7.1 Future Work

Testing and experimentation with the prototype identified  scope for improvement. For 

example, normalisation of the received signal may be enhanced by amplifying it 

electrically with a programmable front-end amplifier prior to conversion using a DAC, 

instead of numerically by multiplying the digitised value.  Optical depth resolution could 

be improved by either increasing the bandwidth of the system or by interpolation.  This 

would allow signal analysis to work at a finer granularity, maybe improving detection 

performance.  Off loading processing of the neural network into hardware will improve 

inspection rates and is another step closer to making the embedded PC redundant and its 

removal.
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5.8 Interpolation of FFT Binned Data for Improved Di electric 
Detection

Using a FFT to process the FMCW signal results in a range of measurement bins of finite 

size and the binning error can be up to one half a bin (±0.5).  Interpolation can be used to 

improve the resolution by accounting for the influence of adjacent bins.
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Figure 5.29: Interpolation of FFT example

The nominal optical depth of a dielectric block is the bin with the greatest amplitude and 

without interpolation the optical depth of the dielectric would be determined to be 6 in the 

example shown in Figure 5.27.  With interpolation, if the adjacent bins are equal, then it 

can be concluded the measurement is correct.  However when as in Figure 5.29 the 

adjacent bins are not equal the true measurement lies somewhere between the two bins of 

greatest amplitude.

Quadratic interpolation may be used to improve the measurement using  the output of the 

FFT.  For a quadratic defined by:

y=ax2+bx+c  (5.37)

where the peak lies at an offset from the central bin given that the centre bin is y0, the bins 

either side are y-1 and y1 respectively the interpolated peak will be found at (Smith et al., 

2011):
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x̂=
y�1�y1

2( y�1+ y1�2y0)
 (5.38)

Therefore using values from Figure 5.29, y-1 = 6, y0 = 15 and y1 = 10:

x̂=
6�10

2(6+10�30)
=

�4
2(�14)

=
1
7

 (5.39)

therefore the interpolated peak may be found at 6 + 1/7.  For example, with a radar 

resolution of 4.3 mm and a target refractive index of 1.5 the physical optical thickness of 

the dielectric can be determined:
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6Data Classification and 
Results

Results! Why, man, I have gotten a lot of results. I know 

several thousand things that won't work.

THOMAS  A. EDISON

This Chapter describes the classification techniques implemented by the prototypes for 

object detection and discrimination.  The results of classified data are presented with a 

discussion of the effects of post processing of neural network outputs on threat detection 

performance.

6.1 Artificial Neural Networks

A good data analysis engine is needed to discriminate the characteristic signature of a 

concealed threat from that of a body only and body with mundane item target.  The 

Artificial Neural Network (ANN) is an established pattern recognition tool (Tsai et al., 

1996) and is able to generate the probability that a concealed threat is present from a 

dataset.  It has been shown that ANN are effective for the classification of RADAR returns 

(Tatuzov, 2002)  to identify remote targets, for example aircraft (Guo & Li, 2010), weather 

(Li et al., 2003; Yong et al., 2010) and even concealed threats (Hausner, 2009; Andrews, 

2008).  

Other techniques for the classification of radar returns include signature and model based 

approaches; feature vectors; and data fusion methods.  Each approach has advantages and 

limitations (Zyweck & Bogner, 1996; Li & Yang, 1993; Subotic et al., 1998; Jain et al., 
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2000).  ANN are favoured because knowledge of underlying patterns within a data set are 

not required to apply them, unlike rule based approaches and the availability of efficient 

training methods (Guo & Li, 2010).  ANNs are biologically inspired software models, 

simulating the parallel processing of information by the brain.  An ANN is formed from 

hundreds of single units, artificial neurons or processing elements (PE), connected by 

coefficients (weights).  All ANNs consists of an input layer, an output layer and zero or 

more hidden layers.  Generally modern ANNs contain one or more hidden layers, the 

addition of which permits the modelling of more complex systems.

Figure 6.1: ANN with six inputs, a hidden layer of three neurons and a single output

Figure 6.1 shows the basic structure of an ANN with an input layer of six neurons 

connected to a single hidden layer of three neurons; and an output layer consisting of a 

single neuron.  The behaviour of the neural network is determined by the transfer function 

of the neurons, the training method and the structure of the network.  Each neuron has one 

or more weighted inputs, a transfer function and a single output.  The sum of weighted 

inputs is the activation level of the neuron and the transfer function introduces non-

linearity to the network.  The connection weights are adaptable and during training are 
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modified until the network achieves a specified level of accuracy (Negnevitsky, 2005).  

Construction and training of an optimally generalised ANN can be fraught with difficulty.  

Identifying the correct number of layers and neurons and their type to sufficiently 

generalise without over training can be challenging  (Lawrence et al., 1998) although the 

problem of local minima is generally ignored (Whittle et al., 1994)  

There are three major ways of training an ANN.  These are supervised learning, 

unsupervised learning and reinforcement learning.  Training occurs until predefined 

training criteria (tolerances) are met or there is no remaining training data left.

Supervised Learning is the approach adopted for the project and the most widely used 

algorithm for supervised learning of ANN with feed-forward structures (Guo & Li, 2010).  

The ANN is provided with input data X and the desired output Y.  

(x , y) , x∈X , y∈Y  (6.1)

Knowledge of the correct output is required for supervised training.  The aim of this 

approach is to adjust the set weights or connection strengths between the inputs and the 

output(s) such that the network produces the correct outputs when exposed to previously 

unseen inputs.

f : X →Y  (6.2)

Unsupervised learning consists of providing the ANN with inputs x and a cost function f to 

be minimised.  The cost function is designed to produce a correct classification for the 

minimum cost and the network is is left to make sense of its inputs.
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6.1.1 Prototype Artificial Neural Network Structure

The final neural network used by the prototypes is a feed forward three layer back 

propagation network with a single hidden layer consisting of ten sigmoid neurons.  A 

hidden layer with ten neurons was selected after varying the number of neurons in the layer 

between three and twenty and grading the performance.  The input layer was configured to 

accept preprocessed and distance normalised target data.

The artificial neural network produces a linear output between 0 and 100% representing 

the confidence that a threat item is present.  By thresholding the linear output at 50% a 

binary classifier was created.

It was found that the best results were achieved by normalising the data before processing 

by the ANN; this was achieved by scaling the data based on range.  Data was simplified 

and normalised prior to classification by the ANN as either a threat or benign item.

Fragmentation-based explosives can be detected in the same way as guns, using the 

polarisation altering property.  Non-fragmentation-based explosives generate a return 

signal containing a depth spectrum of related to the optical distance between the front and 

back surfaces of the object.  To train the ANN, static and dynamic sets of data for body 

only; threat and body; and body and mundane object were compiled for the scenarios 

described in section 4.2.  The ANN was then optimised to produce the correct output 

through supervised learning.

The fragmentation-based explosives and gun detection algorithm is trained on the 

amplitude of the signal scattered from the target.  The detection algorithm for non-

fragmentation-based explosives is trained on the optical depth of the target.  Therefore two 

different detection algorithms can be employed, each suited to a different target type. 
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6.2 Alternative Classifiers
6.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical technique for feature extraction.  

Useful for dimensionality reduction, PCA can be applied to a system consisting of many 

independent variables, to extract the eigenvectors describing the most significant variables. 

Applications are varied and include classification of RADAR signatures of aircraft (Jia et 

al., 2008), weather classification (Bajwa & Hyder, 2005) and face detection (Gottumukkal 

& Asari, 2003; Lang & Gu, 2009; Paul & Gavrilova, 2011).  It was thought that PCA could 

be applied to the raw radar returns to reduce the dimensionality and thereby reduce the 

complexity of the ANN.  However trials of applying PCA to the raw data to find patterns 

and features it was concluded that it was unsuitable due to a lack of repeatability.

6.2.2 Thresholding

Thresholding is programmatic and possibly the simplest approach to classification of a 

input.  The linear input is compared with a threshold value and the classification generated. 

Thresholding is computationally efficient, but does requires an understanding and 

knowledge of the input to be processed and also the threshold level to generate a correct 

classification.

The frequency components of the radar returns were checked individually and also  their 

collective intensity were checked.  It was found that complex metal objects could be 

detected by thresholding the sum of the intensities of the cross-polar return, see section 

4.10, but guns could not be distinguished from other benign objects with polarisation 

altering properties.

6.2.3 Self Organising Maps

A neural network that undergoes unsupervised training is a Self Organising Map (SOM).  

The technique leaves the neural network to form its own classifications of the training data 

and assumes the network will be able to classification those features across the range of 
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input patterns.  Training consists is based on competitive learning, where output neurons 

compete to be activated with an end result is that only one is active at any one time.

SOM object detection performance was found to be similar to that of simple thresholding 

and provided inferior discrimination between objects compared to a neural network 

generated with supervised training.

6.3 Performance Metrics

Performance metrics provide a means of comparing the performance of different systems 

and configurations in a standardised manner.  The results presented later in this chapter use 

these metrics to assist comparison.

The combination of user and prototype make for an overall system that is less than 100% 

accurate for detecting concealed objects.  The system provides an indication of the 

presence of a concealed threat, as a probability.  To assess and compare the performance of 

a detection system, the combination of the classification, probability of detection (PD), the 

probability of false alarm (PFA) and the confidence in these figures must be considered.  

The following section describes this process.  A basic approach to classifying the 

performance is shown in the confusion matrix, see Table 6.1.

Predicted Classification

Negative Positive

True Classification
Negative True Negative (TN) False Positive (FP)

Positive False Negatives(FN) True Positives (TP)

Table 6.1: Performance metric confusion matrix

TN = number of correct predictions that an instance is negative

FP = number of incorrect predictions that an instance is positive

FN = number of incorrect predictions that an instance is negative

TP = number of correct predictions that an instance is positive
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Several standard terms have been defined for the matrix:

The accuracy (AC) is the proportion of the total predictions that were correct and is 

determined by:

AC=
TN+TP

TN+TP+FN+FP
(6.3)

The true positive rate (TPR) is the proportion of positive cases that were correctly 

identified, given by:

TPR=
TP

FN+TP
(6.4)

The false positive rate (FPR) is the proportion of negative cases that were incorrectly 

classified as positive, given by:

FPR=
FP

TN+FP
(6.5)

The true negative rate (TNR) is the proportion of negative cases that were correctly 

classified, determined by:

TNR=
TN

TN+FP
(6.6)

The false negative rate (FN) is the proportion of positive cases that were incorrectly 

classified as negative, determined by:

FNR=
FN

FN+TP
(6.7)

The accuracy stated by Equation 6.3, relies on a comparable count of positive and negative 

cases.

6.4 Detection of Non-Fragmentation Based Explosives

In this section practical results taken in a manner similar to the laboratory test results 

described in section 4.6.5, using a VNA system, are presented and analysed using ANN 

techniques.  The target  movement with body rotation of approximately ±10° combined 
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with Doppler blur, produces a complex response from the body as seen in Figure 6.2.  

Therefore it would be necessary to scan faster than the VNA in a practical system.  The 

VNA takes approximately 200 ms to complete the aforementioned scan.   To overcome the 

complication of responses varying with different body position, multiple scans were 

aligned on the front edge of the body peak as shown in Figure 6.2. 

Figure 6.2: Superimposed time domain scans for body only aligned on the body peak 

The presence of an extra peak in front of the main body peaks, shown by the arrow in 

Figure 6.3, indicates the presence of the wax block.  This peak is absent in Figure 6.2, 

when the wax block was not present.  
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Figure 6.3: Superimposed time domain scans for body and wax block aligned on the body 

peak

The method of aligning multiple scans from (Andrews et al., 2008b) was to translate in 

time the signal so that  it reaches a fixed fraction (25%) of its maximum height at a fixed 

time.  This process was used to align the heterodyne generated data for processing.  For 

direct detector generated data, this process is unnecessary.

6.4.1 ANN Classification of Direct Detector Generate d Data

Using a direct detection based system operating between 75 and 110 GHz with a back end 

ANN configured with a confidence threshold of 50%, normalised datasets consisting of 40 

scans for body only and body with wax block and using the depth spectrum data, produced 

the results below, in Table 6.2 and continued in Table 6.3.  Training datasets are shaded.
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Dataset Range 

(m)

Optical Depth Spectrum Frequency Spectrum

Threat No Threat Threat No Threat

Body only 1 2 0 40 0 40

Body only 2 13 27 13 27

Body only 3 14 26 9 31

Body with wax 1 40 0 40 0

Body with wax 2 27 13 33 7

Body with wax 3 27 13 25 15

Body only 1 3 0 40 0 40

Body only 2 14 26 11 29

Body only 3 9 31 9 31

Body with wax 1 40 0 40 0

Body with wax 2 18 22 33 7

Body with wax 3 40 0 36 4

Body only 1* 4 0 40 0 40

Body only 2 11 29 10 30

Body only 3 13 27 9 31

Body with wax 1 40 0 39 1

Body with wax 2 18 22 24 16

Body with wax 3 18 22 23 17

Table 6.2: ANN classification of body only and body with wax for normalised datasets 

generated using a direct detector system
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Range Optical Depth Spectrum Frequency Spectrum

Correct Incorrect Correct Incorrect

2 107 53 116 44

3 115 45 129 31

4 92 68 108 52

Table 6.3: Sum of test data results for correctly and incorrectly classified by ANN supplied 

with dataset from a direct detection system operating between 75 – 105 GHz 

This data can be expressed for comparison purposes in the performance metrics of TP, TN, 

FP and FN, shown in Figures 6.4 and 6.5.
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Figure 6.4: Performance metrics for ANN classification of direct detector generated optical  

depth spectrum in the 75 – 105 GHz band at ranges 2 – 4 m
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Figure 6.5: Performance metrics for ANN classification of direct detector generated  

frequency spectrum in the 75 – 105 GHz band at ranges 2 – 4 m

Tables 6.4 and 6.5 contain the performance rates against range for ANN classification of 

optical depth and frequency spectrum respectively.

Range (m) AC TPR FPR TNR FNR

2 66.88% 67.50% 33.75% 66.25% 32.50%

3 71.88% 72.50% 28.75% 71.25% 27.50%

4 57.50% 45.00% 30.00% 70.00% 55.00%

Table 6.4: Optical depth spectrum performance metrics for direct detector operating 

between 75 – 105 GHz using a concealed paraffin wax block

Range (m) AC TPR FPR TNR FNR

2 72.50% 72.50% 27.50% 72.50% 27.50%

3 80.63% 86.25% 25.00% 75.00% 13.75%

4 67.50% 58.75% 23.75% 76.25% 41.25%

Table 6.5: Frequency spectrum performance metrics for direct detector operating between 

75 – 105 GHz using a concealed paraffin wax block
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These results show the direct detector system is capable of target discrimination at ranges 

of at least 3 m.  Ideally for this type of the system the TPR should be as high as possible, 

while the FNR should be as small as possible.  For the case of the direct detector, the 

frequency spectrum data provides the better results.

The accuracy of the system could be improved by combining successive measurements 

thereby averaging out the variability of the body response and also including different 

orientations of the explosive target, hence potentially reducing the FNR.

6.4.2 ANN Classification of Super-heterodyne Generat ed Data

With a thresholded confidence of 50% the ANN classification for the super-heterodyne 

data is given in Table 6.6 for datasets containing 200 scans.  The range gated limits are 

varied and shown for each data set.  Training datasets are shaded.

Dataset 205 – 270 cm 205 – 225 cm only 205 – 215 cm only

Threat No threat Threat No threat Threat No threat

Body only 

1

40 160 23 177 11 189

Body only 

2

49 151 38 162 10 190

Body only 

3

0 200 0 200 7 193

Body with 

wax 1

154 46 140 60 113 87

Body with 

wax 2

162 38 156 44 193 7

Body with 

wax 3

200 0 200 0 200 0

Table 6.6: ANN classification of body only and body with wax for normalised, body 

aligned datasets generated using a super-heterodyne detector
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The effect of segmenting the signal in time and using a reduced range of signals for 

training and testing the ANN, focuses on the response of the dielectric and generally 

improves accuracy of detection, by removing unrelated data from the classification 

process.
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Figure 6.6: Performance metrics for ANN classification of super-heterodyne generated  

data in the 14 – 40 GHz for concealed wax block with segmented range 

These results produce the performance metrics shown in table 6.7.

Range (cm) AC TPR FPR TNR FNR

205 – 270 78.38% 79.00% 22.25% 77.75% 21.00%

205 – 225 79.38% 74.00% 15.25% 84.75% 26.00%

205 – 215 85.63% 76.50% 5.25% 94.75% 23.50%

Table 6.7: Performance metrics for super-heterodyne data, segmented by range for body 

only and body with wax
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These results indicate that accuracy rates can be improved by selectively range gating the 

data to remove clutter, unrelated to the range of interest and classifying only data relating 

to the region immediately in front of the target.

The results show the possibility of remotely detecting the presence of a pure dielectric 

explosive stimulant concealed upon the human body by everyday clothing.   The 

mechanism of detection is based on the interference of reflected radiation from the front 

and back surfaces of the dielectric.  Using the phase of the return signal allows the removal 

of background clutter and on the whole improves the rate of accuracy, compared to direct 

detector generated data.

6.5 Detection of Fragmentation Based Explosives

Fragmentation based explosives give a clear radar signal, due to the embedded particles.  

The embedded particles give the explosive a complex structure with many scattering 

corners and the property similar to that of guns, see section Error: Reference source not 

found, of altering the polarisation of scattered radiation and this property is used as the 

detection mechanism.  The behaviour of networks for classification of fragmentation based 

explosives is found to be similar or somewhat easier to that found for gun detection, which 

is discussed in the next section.

6.6 Detection of Concealed Handguns

Hand guns, like fragmentation based explosives, exhibit a clear radar signal.  However an 

important difference is that unlike fragmentation based explosives, with the random 

distribution of embedded particles, the signal return produced by a handgun has more 

structure.  For example the aspect independent return from a gun barrel is a distinctive 

feature and that does not exist with fragmentation based explosives. 
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Typically a handgun is carried against the body in the waistband either in front of or 

behind the torso.  Aligning the scans at 25% of the largest signal Figure 6.8 shows the 

range gated results for a handgun in front of a moving torso.  Note in this case only the co-

polar receiver is used and classification is based on changes to the co-polar signal alone.

Figure 6.7: Aligned time domain responses of a stationary body 14 – 40 GHz

Figure 6.8: Aligned time domain responses of body with gun in front 14 – 40 GHz
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The effect on the time domain response by the handgun can be clearly seen in Figure 6.8, 

with an early time response in front of the main peak produced by the surface of the body.

The results of classifying the data using the ANN are presented in Table 6.8 and shows 

clearly that the ANN can already clearly identify the presence of a gun.

Dataset Threat No threat

Body 1 0 200

Body 2 19 181

Body 1 and starter pistol 200 0

Body 2 and starter pistol 167 33

Body 1 and Glock 197 3

Body 2 and Glock 199 1

Table 6.8: ANN classification of body only and body with gun for normalised, distance 

gated, body aligned datasets generated using a co-polar heterodyne detector

0

100

200

300

400

500

600

TP
TN
FP
FN

A
cc

u
m

u
la

tiv
e

 F
re

q
u

e
n

cy

Figure 6.9: Performance for ANN classification of heterodyne range gated data between 14  

– 40 GHz for concealed guns
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AC TPR FPR TNR FNR

93.00% 93.83% 9.50% 90.50% 6.17%

Table 6.9: Performance metrics for the ANN classification of range gated co-polar 

heterodyne generated data between 14 – 40 GHz for concealed guns 

Since an ANN can be configured with multiple outputs, a modified network was 

configured and trained to identify not only the presence but also the type of gun.  Table 

6.10 show the results with training datasets indicated with shading.

Dataset No threat Threat – starter 

pistol

Threat – Glock

Body 1 200 0 0

Body 2 156 36 0

Body 1 and starter pistol 0 200 0

Body 2 and starter pistol 23 132 43

Body 1 and Glock 0 0 200

Body 2 and Glock 0 25 175

Table 6.10: ANN classification of body only, body with two different guns for normalised, 

distance gated, body aligned datasets generated using a co-polar heterodyne detector

Figure 6.10 shows the performance for each training set and cross tested for the presence a 

gun.
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Figure 5.9: Performance of two ANN trained on a starter pistol or Glock and cross tested  

using range gated data from a heterodyne system operating between 14 – 40 GHz

The performance metrics are:

Type of gun AC TPR FPR TNR FNR

Starter Pistol 84.87% 88.38% 18.75% 81.25% 11.62%

Glock 90.82% 100.00% 18.75% 81.25% 0.00%

Table 6.11: Performance metrics for cross testing of two ANNs trained on a starter pistol  

and Glock using range gated data from a heterodyne system between 14 – 40 GHz

Though the classification is less definite for the simpler decision 'gun' or 'no gun', these 

results show the feasibility of detecting gun type, as well as gun presence.

The network trained on the Glock dataset is more accurate by almost 6% and a lower false 

negative rate compared to the starter pistol dataset.  This information can be used to 

produce better training datasets, resulting in a superior classification accuracy.
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Analysis of the cross-polar return of a target can be included be analysed to provide further 

confirmation of the target type present.  Objects with smooth conducting surfaces like a 

metal plate or the human torso are polarisation conserving – in that they do not 

significantly change the polarisation of reflected radiation.  Conversely, our investigations 

confirm that complex objects or objects with lots of edges or points, generate multiple 

reflections, resulting in multiple reflections and a change of polarisation of the reflected 

radiation.  The gun in this case is a Brocock, a small handgun.

Dataset Threat No threat Threat 90% No threat 90%

Body 1 0 40 0 40

Body 2 5 35 2 31

Body 3 3 37 0 32

Body 1 and gun 40 0 40 0

Body 2 and gun 38 2 38 0

Body 3 and gun 36 4 25 1

Table 6.12: ANN classification with 50% threshold of body only and body and gun using  

a heterodyne system operating between 14 – 40 GHz

The results given in Table 6.12, show that the classification is very good with low false 

positive rates (FPR).
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Figure 6.10: Performance of an ANN with variable output thresholding using range gated  

data from a heterodyne system operating between 14 – 40 GHz

Confidence AC TPR FPR TNR FNR

Gun 50% 91.25% 92.50% 10.00% 90.00% 7.50%

Gun 90% 97.84% 98.65% 3.08% 96.92% 1.35%

Table 6.13: Performance metrics for an ANN network with variable output thresholding  

using range gated data from a heterodyne system operating between 14 – 40 GHz

Also shown in Table 6.12, is the effect of including only results where the ANN output 

was above a 90% threshold.  This process rejects inspections, which the ANN is uncertain 

in its classification and leaves these as unclassified.  The effect of output thresholding in 

this case generates 13.125% fewer outputs, requiring a longer inspection time.  However, 

remaining classifications yield a better than four-fold reduction in false responses and the 

subsequent improvement of accuracy, increasing from 91.25% to 97.84%.  The effect upon 

dataset utility and accurate classification is explored later in this chapter.
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6.7 Identifying The Effect Of Thresholding On Accura cy and Data 
Utility

The measured TPR, PNR, FPR and FNR are functions of the threshold levels applied to the 

output of the ANN.  The effects of various thresholds are shown in tabular format with 

desirable regions highlighted in progressively lighter shades of green.  The ideal result for 

TPR and TNR is 1 and for FNR and FPR it is 0.  Tables 6.14 to 6.17 show the effect of 

various confidence thresholds on TPR, FPR, TNR and FNR, for a dataset consisting of 

body only; camera in the waistband; keys; gun held in the waistband and in the hand, at 

ranges of 2, 4 and 6 metres.  The upper confidence threshold is across the top of the table 

and the lower confidence threshold is down the left hand side of the table.  Table elements 

containing hashes denote an invalid result, likely this is due a divide by zero.

TPR = TP/(TP+FN)
TP 0 0 0 286 421 522 603 667 724 786 852 901 949 990 1037 1087 1125 1149 1177 1198 1200
FP 0 0 0 1 11 28 42 67 97 135 169 221 287 381 485 611 764 922 1155 1553 1799

TN FNThreshold1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
0 0 0.00 ### ### ### 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

246 2 0.05 0.00 0.00 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
644 23 0.10 0.00 0.00 0.00 0.93 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
877 51 0.15 0.00 0.00 0.00 0.85 0.89 0.91 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96

1035 75 0.20 0.00 0.00 0.00 0.79 0.85 0.87 0.89 0.90 0.91 0.91 0.92 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94
1188 113 0.25 0.00 0.00 0.00 0.72 0.79 0.82 0.84 0.86 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91
1314 163 0.30 0.00 0.00 0.00 0.64 0.72 0.76 0.79 0.80 0.82 0.83 0.84 0.85 0.85 0.86 0.86 0.87 0.87 0.88 0.88 0.88 0.88
1418 210 0.35 0.00 0.00 0.00 0.58 0.67 0.71 0.74 0.76 0.78 0.79 0.80 0.81 0.82 0.83 0.83 0.84 0.84 0.85 0.85 0.85 0.85
1512 251 0.40 0.00 0.00 0.00 0.53 0.63 0.68 0.71 0.73 0.74 0.76 0.77 0.78 0.79 0.80 0.81 0.81 0.82 0.82 0.82 0.83 0.83
1578 299 0.45 0.00 0.00 0.00 0.49 0.58 0.64 0.67 0.69 0.71 0.72 0.74 0.75 0.76 0.77 0.78 0.78 0.79 0.79 0.80 0.80 0.80
1630 348 0.50 0.00 0.00 0.00 0.45 0.55 0.60 0.63 0.66 0.68 0.69 0.71 0.72 0.73 0.74 0.75 0.76 0.76 0.77 0.77 0.77 0.78
1664 414 0.55 0.00 0.00 0.00 0.41 0.50 0.56 0.59 0.62 0.64 0.66 0.67 0.69 0.70 0.71 0.71 0.72 0.73 0.74 0.74 0.74 0.74
1702 476 0.60 0.00 0.00 0.00 0.38 0.47 0.52 0.56 0.58 0.60 0.62 0.64 0.65 0.67 0.68 0.69 0.70 0.70 0.71 0.71 0.72 0.72
1732 533 0.65 0.00 0.00 0.00 0.35 0.44 0.49 0.53 0.56 0.58 0.60 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.68 0.69 0.69 0.69
1757 597 0.70 0.00 0.00 0.00 0.32 0.41 0.47 0.50 0.53 0.55 0.57 0.59 0.60 0.61 0.62 0.63 0.65 0.65 0.66 0.66 0.67 0.67
1771 678 0.75 0.00 0.00 0.00 0.30 0.38 0.44 0.47 0.50 0.52 0.54 0.56 0.57 0.58 0.59 0.60 0.62 0.62 0.63 0.63 0.64 0.64
1788 779 0.80 0.00 0.00 0.00 0.27 0.35 0.40 0.44 0.46 0.48 0.50 0.52 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.60 0.61 0.61
1798 914 0.85 0.00 0.00 0.00 0.24 0.32 0.36 0.40 0.42 0.44 0.46 0.48 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.56 0.57 0.57
1799 1200 0.90 0.00 0.00 0.00 0.19 0.26 0.30 0.33 0.36 0.38 0.40 0.42 0.43 0.44 0.45 0.46 0.48 0.48 0.49 0.50 0.50 0.50
1799 1200 0.95 0.00 0.00 0.00 0.19 0.26 0.30 0.33 0.36 0.38 0.40 0.42 0.43 0.44 0.45 0.46 0.48 0.48 0.49 0.50 0.50 0.50
1799 1200 1.00 0.00 0.00 0.00 0.19 0.26 0.30 0.33 0.36 0.38 0.40 0.42 0.43 0.44 0.45 0.46 0.48 0.48 0.49 0.50 0.50 0.50

Table 6.14: TPR for various confidence thresholds on gun and mundane item classification  

using a direct detection system operating between 75 – 110 GHz
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FPR = FP/(FP+TN)
TP 0 0 0 286 421 522 603 667 724 786 852 901 949 990 1037 1087 1125 1149 1177 1198 1200
FP 0 0 0 1 11 28 42 67 97 135 169 221 287 381 485 611 764 922 1155 1553 1799

TN FNThreshold1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
0 0 0.00 ### ### ### 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

246 2 0.05 0.00 0.00 0.00 0.00 0.04 0.10 0.15 0.21 0.28 0.35 0.41 0.47 0.54 0.61 0.66 0.71 0.76 0.79 0.82 0.86 0.88
644 23 0.10 0.00 0.00 0.00 0.00 0.02 0.04 0.06 0.09 0.13 0.17 0.21 0.26 0.31 0.37 0.43 0.49 0.54 0.59 0.64 0.71 0.74
877 51 0.15 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.07 0.10 0.13 0.16 0.20 0.25 0.30 0.36 0.41 0.47 0.51 0.57 0.64 0.67

1035 75 0.20 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.06 0.09 0.12 0.14 0.18 0.22 0.27 0.32 0.37 0.42 0.47 0.53 0.60 0.63
1188 113 0.25 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.08 0.10 0.12 0.16 0.19 0.24 0.29 0.34 0.39 0.44 0.49 0.57 0.60
1314 163 0.30 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.09 0.11 0.14 0.18 0.22 0.27 0.32 0.37 0.41 0.47 0.54 0.58
1418 210 0.35 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.06 0.09 0.11 0.13 0.17 0.21 0.25 0.30 0.35 0.39 0.45 0.52 0.56
1512 251 0.40 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.08 0.10 0.13 0.16 0.20 0.24 0.29 0.34 0.38 0.43 0.51 0.54
1578 299 0.45 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.08 0.10 0.12 0.15 0.19 0.24 0.28 0.33 0.37 0.42 0.50 0.53
1630 348 0.50 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.08 0.09 0.12 0.15 0.19 0.23 0.27 0.32 0.36 0.41 0.49 0.52
1664 414 0.55 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.06 0.08 0.09 0.12 0.15 0.19 0.23 0.27 0.31 0.36 0.41 0.48 0.52
1702 476 0.60 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.18 0.22 0.26 0.31 0.35 0.40 0.48 0.51
1732 533 0.65 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.18 0.22 0.26 0.31 0.35 0.40 0.47 0.51
1757 597 0.70 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.18 0.22 0.26 0.30 0.34 0.40 0.47 0.51
1771 678 0.75 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.18 0.21 0.26 0.30 0.34 0.39 0.47 0.50
1788 779 0.80 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.18 0.21 0.25 0.30 0.34 0.39 0.46 0.50
1798 914 0.85 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.17 0.21 0.25 0.30 0.34 0.39 0.46 0.50
1799 1200 0.90 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.17 0.21 0.25 0.30 0.34 0.39 0.46 0.50
1799 1200 0.95 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.17 0.21 0.25 0.30 0.34 0.39 0.46 0.50
1799 1200 1.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.11 0.14 0.17 0.21 0.25 0.30 0.34 0.39 0.46 0.50

Table 6.15: FPR for various confidence thresholds on gun and mundane item classification  

using a direct detection system operating between 75 – 110 GHz

TNR = TN/(TN+FP)
TP 0 0 0 286 421 522 603 667 724 786 852 901 949 990 1037 1087 1125 1149 1177 1198 1200
FP 0 0 0 1 11 28 42 67 97 135 169 221 287 381 485 611 764 922 1155 1553 1799

TN FNThreshold1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
0 0 0.00 ### ### ### 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

246 2 0.05 1.00 1.00 1.00 1.00 0.96 0.90 0.85 0.79 0.72 0.65 0.59 0.53 0.46 0.39 0.34 0.29 0.24 0.21 0.18 0.14 0.12
644 23 0.10 1.00 1.00 1.00 1.00 0.98 0.96 0.94 0.91 0.87 0.83 0.79 0.74 0.69 0.63 0.57 0.51 0.46 0.41 0.36 0.29 0.26
877 51 0.15 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.84 0.80 0.75 0.70 0.64 0.59 0.53 0.49 0.43 0.36 0.33

1035 75 0.20 1.00 1.00 1.00 1.00 0.99 0.97 0.96 0.94 0.91 0.88 0.86 0.82 0.78 0.73 0.68 0.63 0.58 0.53 0.47 0.40 0.37
1188 113 0.25 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.92 0.90 0.88 0.84 0.81 0.76 0.71 0.66 0.61 0.56 0.51 0.43 0.40
1314 163 0.30 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.91 0.89 0.86 0.82 0.78 0.73 0.68 0.63 0.59 0.53 0.46 0.42
1418 210 0.35 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.94 0.91 0.89 0.87 0.83 0.79 0.75 0.70 0.65 0.61 0.55 0.48 0.44
1512 251 0.40 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.90 0.87 0.84 0.80 0.76 0.71 0.66 0.62 0.57 0.49 0.46
1578 299 0.45 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.90 0.88 0.85 0.81 0.76 0.72 0.67 0.63 0.58 0.50 0.47
1630 348 0.50 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.91 0.88 0.85 0.81 0.77 0.73 0.68 0.64 0.59 0.51 0.48
1664 414 0.55 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.94 0.92 0.91 0.88 0.85 0.81 0.77 0.73 0.69 0.64 0.59 0.52 0.48
1702 476 0.60 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.82 0.78 0.74 0.69 0.65 0.60 0.52 0.49
1732 533 0.65 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.82 0.78 0.74 0.69 0.65 0.60 0.53 0.49
1757 597 0.70 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.82 0.78 0.74 0.70 0.66 0.60 0.53 0.49
1771 678 0.75 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.82 0.79 0.74 0.70 0.66 0.61 0.53 0.50
1788 779 0.80 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.82 0.79 0.75 0.70 0.66 0.61 0.54 0.50
1798 914 0.85 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.83 0.79 0.75 0.70 0.66 0.61 0.54 0.50
1799 1200 0.90 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.83 0.79 0.75 0.70 0.66 0.61 0.54 0.50
1799 1200 0.95 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.83 0.79 0.75 0.70 0.66 0.61 0.54 0.50
1799 1200 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.98 0.96 0.95 0.93 0.91 0.89 0.86 0.83 0.79 0.75 0.70 0.66 0.61 0.54 0.50

Table 6.16: TNR for various confidence thresholds on gun and mundane item  

classification using a direct detection system operating between 75 – 110 GHz
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FNR = FN/(FN+TP)
TP 0 0 0 286 421 522 603 667 724 786 852 901 949 990 1037 1087 1125 1149 1177 1198 1200
FP 0 0 0 1 11 28 42 67 97 135 169 221 287 381 485 611 764 922 1155 1553 1799

TN FNThreshold1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
0 0 0.00 ### ### ### 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

246 2 0.05 1.00 1.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
644 23 0.10 1.00 1.00 1.00 0.07 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
877 51 0.15 1.00 1.00 1.00 0.15 0.11 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04

1035 75 0.20 1.00 1.00 1.00 0.21 0.15 0.13 0.11 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06
1188 113 0.25 1.00 1.00 1.00 0.28 0.21 0.18 0.16 0.14 0.14 0.13 0.12 0.11 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09
1314 163 0.30 1.00 1.00 1.00 0.36 0.28 0.24 0.21 0.20 0.18 0.17 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.12 0.12
1418 210 0.35 1.00 1.00 1.00 0.42 0.33 0.29 0.26 0.24 0.22 0.21 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.15 0.15
1512 251 0.40 1.00 1.00 1.00 0.47 0.37 0.32 0.29 0.27 0.26 0.24 0.23 0.22 0.21 0.20 0.19 0.19 0.18 0.18 0.18 0.17 0.17
1578 299 0.45 1.00 1.00 1.00 0.51 0.42 0.36 0.33 0.31 0.29 0.28 0.26 0.25 0.24 0.23 0.22 0.22 0.21 0.21 0.20 0.20 0.20
1630 348 0.50 1.00 1.00 1.00 0.55 0.45 0.40 0.37 0.34 0.32 0.31 0.29 0.28 0.27 0.26 0.25 0.24 0.24 0.23 0.23 0.23 0.22
1664 414 0.55 1.00 1.00 1.00 0.59 0.50 0.44 0.41 0.38 0.36 0.35 0.33 0.31 0.30 0.29 0.29 0.28 0.27 0.26 0.26 0.26 0.26
1702 476 0.60 1.00 1.00 1.00 0.62 0.53 0.48 0.44 0.42 0.40 0.38 0.36 0.35 0.33 0.32 0.31 0.30 0.30 0.29 0.29 0.28 0.28
1732 533 0.65 1.00 1.00 1.00 0.65 0.56 0.51 0.47 0.44 0.42 0.40 0.38 0.37 0.36 0.35 0.34 0.33 0.32 0.32 0.31 0.31 0.31
1757 597 0.70 1.00 1.00 1.00 0.68 0.59 0.53 0.50 0.47 0.45 0.43 0.41 0.40 0.39 0.38 0.37 0.35 0.35 0.34 0.34 0.33 0.33
1771 678 0.75 1.00 1.00 1.00 0.70 0.62 0.57 0.53 0.50 0.48 0.46 0.44 0.43 0.42 0.41 0.40 0.38 0.38 0.37 0.37 0.36 0.36
1788 779 0.80 1.00 1.00 1.00 0.73 0.65 0.60 0.56 0.54 0.52 0.50 0.48 0.46 0.45 0.44 0.43 0.42 0.41 0.40 0.40 0.39 0.39
1798 914 0.85 1.00 1.00 1.00 0.76 0.68 0.64 0.60 0.58 0.56 0.54 0.52 0.50 0.49 0.48 0.47 0.46 0.45 0.44 0.44 0.43 0.43
1799 1200 0.90 1.00 1.00 1.00 0.81 0.74 0.70 0.67 0.64 0.62 0.60 0.58 0.57 0.56 0.55 0.54 0.52 0.52 0.51 0.50 0.50 0.50
1799 1200 0.95 1.00 1.00 1.00 0.81 0.74 0.70 0.67 0.64 0.62 0.60 0.58 0.57 0.56 0.55 0.54 0.52 0.52 0.51 0.50 0.50 0.50
1799 1200 1.00 1.00 1.00 1.00 0.81 0.74 0.70 0.67 0.64 0.62 0.60 0.58 0.57 0.56 0.55 0.54 0.52 0.52 0.51 0.50 0.50 0.50

Table 6.17: FNR for various confidence thresholds on gun and mundane item classification 

using a direct detection system operating between 75 – 110 GHz

By inspection, the areas containing preferred results overlap in a very small area.  Table 

6.18 combines the previous four tables using the accuracy metric, see Equation (6.3).

Accuracy = (TP+TN)/(TP+TN+FP+FN)
TP 0 0 0 286 421 522 603 667 724 786 852 901 949 990 1037 1087 1125 1149 1177 1198 1200
FP 0 0 0 1 11 28 42 67 97 135 169 221 287 381 485 611 764 922 1155 1553 1799

TN FNThreshold1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
0 0 0.00 ### ### ### 1.00 0.97 0.95 0.93 0.91 0.88 0.85 0.83 0.80 0.77 0.72 0.68 0.64 0.60 0.55 0.50 0.44 0.40

246 2 0.05 0.99 0.99 0.99 0.99 0.98 0.96 0.95 0.93 0.91 0.88 0.87 0.84 0.81 0.76 0.72 0.68 0.64 0.60 0.55 0.48 0.45
644 23 0.10 0.97 0.97 0.97 0.97 0.97 0.96 0.95 0.94 0.92 0.90 0.89 0.86 0.84 0.80 0.77 0.73 0.69 0.65 0.61 0.54 0.50
877 51 0.15 0.95 0.95 0.95 0.96 0.95 0.95 0.94 0.93 0.92 0.90 0.89 0.87 0.84 0.81 0.78 0.75 0.71 0.68 0.63 0.56 0.53

1035 75 0.20 0.93 0.93 0.93 0.95 0.94 0.94 0.93 0.92 0.91 0.90 0.89 0.87 0.85 0.82 0.79 0.76 0.72 0.69 0.64 0.58 0.54
1188 113 0.25 0.91 0.91 0.91 0.93 0.93 0.92 0.92 0.91 0.90 0.89 0.88 0.86 0.84 0.82 0.79 0.76 0.73 0.69 0.65 0.59 0.56
1314 163 0.30 0.89 0.89 0.89 0.91 0.91 0.91 0.90 0.90 0.89 0.88 0.87 0.85 0.83 0.81 0.78 0.76 0.72 0.69 0.65 0.59 0.56
1418 210 0.35 0.87 0.87 0.87 0.89 0.89 0.89 0.89 0.88 0.87 0.86 0.86 0.84 0.83 0.80 0.78 0.75 0.72 0.69 0.66 0.60 0.57
1512 251 0.40 0.86 0.86 0.86 0.88 0.88 0.88 0.88 0.87 0.87 0.86 0.85 0.84 0.82 0.80 0.78 0.75 0.72 0.69 0.66 0.60 0.57
1578 299 0.45 0.84 0.84 0.84 0.86 0.87 0.87 0.86 0.86 0.85 0.84 0.84 0.83 0.81 0.79 0.77 0.75 0.72 0.69 0.65 0.60 0.57
1630 348 0.50 0.82 0.82 0.82 0.85 0.85 0.85 0.85 0.85 0.84 0.83 0.83 0.82 0.80 0.78 0.76 0.74 0.71 0.69 0.65 0.60 0.57
1664 414 0.55 0.80 0.80 0.80 0.82 0.83 0.83 0.83 0.83 0.82 0.82 0.81 0.80 0.79 0.77 0.75 0.73 0.70 0.68 0.64 0.59 0.56
1702 476 0.60 0.78 0.78 0.78 0.81 0.81 0.82 0.82 0.81 0.81 0.80 0.80 0.79 0.78 0.76 0.74 0.72 0.70 0.67 0.64 0.59 0.56
1732 533 0.65 0.76 0.76 0.76 0.79 0.80 0.80 0.80 0.80 0.80 0.79 0.79 0.78 0.77 0.75 0.73 0.71 0.69 0.66 0.63 0.58 0.56
1757 597 0.70 0.75 0.75 0.75 0.77 0.78 0.78 0.79 0.78 0.78 0.78 0.77 0.76 0.75 0.74 0.72 0.70 0.68 0.66 0.63 0.58 0.55
1771 678 0.75 0.72 0.72 0.72 0.75 0.76 0.76 0.77 0.77 0.76 0.76 0.76 0.75 0.74 0.72 0.71 0.69 0.67 0.65 0.62 0.57 0.55
1788 779 0.80 0.70 0.70 0.70 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.72 0.71 0.69 0.67 0.65 0.63 0.61 0.56 0.54
1798 914 0.85 0.66 0.66 0.66 0.69 0.71 0.71 0.72 0.72 0.71 0.71 0.71 0.70 0.70 0.68 0.67 0.65 0.64 0.62 0.59 0.55 0.52
1799 1200 0.90 0.60 0.60 0.60 0.63 0.65 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.64 0.63 0.61 0.60 0.58 0.56 0.52 0.50
1799 1200 0.95 0.60 0.60 0.60 0.63 0.65 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.64 0.63 0.61 0.60 0.58 0.56 0.52 0.50
1799 1200 1.00 0.60 0.60 0.60 0.63 0.65 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.64 0.63 0.61 0.60 0.58 0.56 0.52 0.50

Table 6.18: Accuracy for various confidence thresholds on gun and mundane item 

classification using a direct detection system operating between 75 – 110 GHz

By inspection an accuracy of almost 1 could be achieved by selecting a lower threshold 

near 0% and upper threshold near 100%, however this also discards the most data.  To 

account for this a metric for data utility was created and defined as:
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Utility=
Numberof valid classifications
Totalnumberof classifications

 (6.8)

Table 6.19 shows the utility of the original dataset for different confidence thresholds.  

Lower utility is highlighted in darker shades of red. 

Dataset Utility % of original dataset used
TP 0 0 0 286 421 522 603 667 724 786 852 901 949 990 1037 1087 1125 1149 1177 1198 1200
FP 0 0 0 1 11 28 42 67 97 135 169 221 287 381 485 611 764 922 1155 1553 1799

TN FNThreshold1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
0 0 0.00 0.00 0.00 0.00 0.10 0.14 0.18 0.22 0.24 0.27 0.31 0.34 0.37 0.41 0.46 0.51 0.57 0.63 0.69 0.78 0.92 1.00

246 2 0.05 0.08 0.08 0.08 0.18 0.23 0.27 0.30 0.33 0.36 0.39 0.42 0.46 0.49 0.54 0.59 0.65 0.71 0.77 0.86 1.00 1.08
644 23 0.10 0.22 0.22 0.22 0.32 0.37 0.41 0.44 0.47 0.50 0.53 0.56 0.60 0.63 0.68 0.73 0.79 0.85 0.91 1.00 1.14 1.22
877 51 0.15 0.31 0.31 0.31 0.41 0.45 0.49 0.52 0.55 0.58 0.62 0.65 0.68 0.72 0.77 0.82 0.88 0.94 1.00 1.09 1.23 1.31

1035 75 0.20 0.37 0.37 0.37 0.47 0.51 0.55 0.59 0.61 0.64 0.68 0.71 0.74 0.78 0.83 0.88 0.94 1.00 1.06 1.15 1.29 1.37
1188 113 0.25 0.43 0.43 0.43 0.53 0.58 0.62 0.65 0.68 0.71 0.74 0.77 0.81 0.85 0.89 0.94 1.00 1.06 1.12 1.21 1.35 1.43
1314 163 0.30 0.49 0.49 0.49 0.59 0.64 0.68 0.71 0.74 0.77 0.80 0.83 0.87 0.90 0.95 1.00 1.06 1.12 1.18 1.27 1.41 1.49
1418 210 0.35 0.54 0.54 0.54 0.64 0.69 0.73 0.76 0.79 0.82 0.85 0.88 0.92 0.95 1.00 1.05 1.11 1.17 1.23 1.32 1.46 1.54
1512 251 0.40 0.59 0.59 0.59 0.68 0.73 0.77 0.80 0.83 0.86 0.89 0.93 0.96 1.00 1.05 1.10 1.15 1.22 1.28 1.37 1.51 1.59
1578 299 0.45 0.63 0.63 0.63 0.72 0.77 0.81 0.84 0.87 0.90 0.93 0.97 1.00 1.04 1.08 1.13 1.19 1.26 1.32 1.40 1.54 1.63
1630 348 0.50 0.66 0.66 0.66 0.76 0.80 0.84 0.87 0.90 0.93 0.97 1.00 1.03 1.07 1.12 1.17 1.23 1.29 1.35 1.44 1.58 1.66
1664 414 0.55 0.69 0.69 0.69 0.79 0.84 0.88 0.91 0.94 0.97 1.00 1.03 1.07 1.11 1.15 1.20 1.26 1.32 1.38 1.47 1.61 1.69
1702 476 0.60 0.73 0.73 0.73 0.82 0.87 0.91 0.94 0.97 1.00 1.03 1.07 1.10 1.14 1.18 1.23 1.29 1.36 1.42 1.50 1.64 1.73
1732 533 0.65 0.76 0.76 0.76 0.85 0.90 0.94 0.97 1.00 1.03 1.06 1.10 1.13 1.17 1.21 1.26 1.32 1.39 1.45 1.53 1.67 1.76
1757 597 0.70 0.78 0.78 0.78 0.88 0.93 0.97 1.00 1.03 1.06 1.09 1.13 1.16 1.20 1.24 1.29 1.35 1.41 1.48 1.56 1.70 1.78
1771 678 0.75 0.82 0.82 0.82 0.91 0.96 1.00 1.03 1.06 1.09 1.12 1.16 1.19 1.23 1.27 1.32 1.38 1.45 1.51 1.59 1.73 1.82
1788 779 0.80 0.86 0.86 0.86 0.95 1.00 1.04 1.07 1.10 1.13 1.16 1.20 1.23 1.27 1.31 1.36 1.42 1.49 1.55 1.63 1.77 1.86
1798 914 0.85 0.90 0.90 0.90 1.00 1.05 1.09 1.12 1.15 1.18 1.21 1.24 1.28 1.32 1.36 1.41 1.47 1.53 1.59 1.68 1.82 1.90
1799 1200 0.90 1.00 1.00 1.00 1.10 1.14 1.18 1.22 1.24 1.27 1.31 1.34 1.37 1.41 1.46 1.51 1.57 1.63 1.69 1.78 1.92 2.00
1799 1200 0.95 1.00 1.00 1.00 1.10 1.14 1.18 1.22 1.24 1.27 1.31 1.34 1.37 1.41 1.46 1.51 1.57 1.63 1.69 1.78 1.92 2.00
1799 1200 1.00 1.00 1.00 1.00 1.10 1.14 1.18 1.22 1.24 1.27 1.31 1.34 1.37 1.41 1.46 1.51 1.57 1.63 1.69 1.78 1.92 2.00

Table 6.19: Data Utility (%) for various confidence thresholds on gun and mundane item 

classification using a direct detection system operating between 75 – 110 GHz

It is clear by comparison of Tables 6.18 and 6.19 that more data is discarded as accuracy 

improves.  To aid selection of an optimum threshold pair, an efficiency metric was created 

to allow simultaneous optimisation of both accuracy and data utility and is defined as:

Efficiency=
Utility

(1�Accuracy)
 (6.9)

The aim of the Efficiency metric was to balance the conflicting requirements of a detection 

system with finite processing and data acquisition to produce an accurate and timely 

classification.  Table 6.20 shows the calculated Efficiency for the dataset in tabular form.
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Efficiency = Utility / (1 – Accuracy)
TP 1200 1198 1177 1149 1125 1087 1037 990 949 901 852 786 724 667 603 522 421 286 0 0 0
FP 1799 1553 1155 922 764 611 485 381 287 221 169 135 97 67 42 28 11 1 0 0 0

TN FNThreshold1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
0 0 0.00 #DIV/0!#DIV/0!#DIV/0! 27 6 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2

246 2 0.05 10 10 10 32 12 7 6 5 4 3 3 3 3 2 2 2 2 2 2 2 2
644 23 0.10 6 6 6 13 12 10 9 7 6 5 5 4 4 3 3 3 3 3 3 2 2
877 51 0.15 6 6 6 9 10 9 9 8 7 6 6 5 5 4 4 3 3 3 3 3 3

1035 75 0.20 5 5 5 9 9 9 9 8 7 7 6 6 5 5 4 4 4 3 3 3 3
1188 113 0.25 5 5 5 7 8 8 8 8 7 7 6 6 5 5 4 4 4 4 3 3 3
1314 163 0.30 4 4 4 6 7 7 7 7 7 6 6 6 5 5 5 4 4 4 4 3 3
1418 210 0.35 4 4 4 6 6 7 7 7 7 6 6 6 6 5 5 4 4 4 4 4 4
1512 251 0.40 4 4 4 6 6 6 7 7 6 6 6 6 6 5 5 5 4 4 4 4 4
1578 299 0.45 4 4 4 5 6 6 6 6 6 6 6 6 6 5 5 5 4 4 4 4 4
1630 348 0.50 4 4 4 5 5 6 6 6 6 6 6 6 5 5 5 5 4 4 4 4 4
1664 414 0.55 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4
1702 476 0.60 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4
1732 533 0.65 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4
1757 597 0.70 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4
1771 678 0.75 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 4 4 4 4 4 4
1788 779 0.80 3 3 3 3 4 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4 4
1798 914 0.85 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1799 1200 0.90 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1799 1200 0.95 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1799 1200 1.00 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 6.20: Efficiency metric for various confidence thresholds on gun and mundane item 

classification using a direct detection system operating between 75 – 110 GHz

Figure 6.11 shows the plot of Efficiency with respect to upper and lower thresholds, 

illustrating graphically the effect of confidence thresholds upon Utility and Accuracy.

Figure 6.11: Plot of Efficiency metric for various confidence upper thresholds on gun and  

mundane item classification using a direct detection system operating between 75 – 110  

GHz

For this particular network and training set, the greatest value of Efficiency is obtained 

with upper and lower confidence thresholds of 0.85 and 0.05 respectively.  Note the 

asymmetry of the thresholds and the sum of the pair is not equal to 1.  For classification 
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without emphasis on a particular metric primitive (TPR, TNR, FPR and FNR), the 

Efficiency metric may be used to select an optimal threshold pair for a real time system, by 

concurrently maximising both Accuracy and Utility.

6.7.1 Receiver Operating Characteristic (ROC) Space

ROC curves are graphical plots within the ROC space to show the performance of a binary 

classifier by comparing TPR and FPR.  Conventionally a single ROC curve is plotted from 

a number of points generated by varying a threshold within the ROC space.  Figure 6.12 

shows the ROC space with marked points to assist with an explanation.

Figure 6.12: ROC space

The dashed line shows the performance of a classifier with a randomised output with an 

Accuracy of 0.5.  The perfect classifier has a TPR of 1 and FPR of 0, a point representing 

its performance is indicated on the plot at (0,1).  When comparing thresholds a point closer 

to perfect is generally considered superior, however the selection of an optimal point is a 

trade-off.  Each point in has different characteristics and maybe or may not be more suited 
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to a specific application.  Point A for example, has the lowest TPR, but also the lowest 

FPR; point B has a better TPR, but suffers from an increased FPR and similarly point C 

has the best TPR, but a suffers from the greatest FPR.  For an application that requires the 

lowest FPR point A would be selected despite having the lowest TPR.  It is the ability to 

easily interpret independently of all other operating parameters that makes ROC space so 

useful.  As mentioned earlier conventionally the points making up a ROC curve represent a 

single varying threshold; fortunately with dual thresholding of the output the plot is only a 

little more complex with the ROC space containing multiple curves.  Each ROC curve 

shown in Figure 6.13 represents a single upper threshold value with points obtained by 

varying the lower threshold.

Figure 6.13: ROC curves for various upper thresholds of an unseen dataset consisting of  

body only; camera in the waistband; keys; gun held in the waistband and in the hand, at  

ranges of 2, 4 and 6 metres

ROC curves for upper thresholds of 0.95 and 0.90 are not shown due to a lack 

classifications meeting the threshold.  By inspection, the 0.85 upper threshold represents 

the best performance with a higher TPR and lower FPR than the other curves.  However, 
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ROC curves do not indicate Utility, TNR and FNR.  These metrics are also important when 

designing a real-time detection system.  The Efficiency metric does not suffer this 

limitation, as it incorporates these essential metrics.

A comparison of optimally thresholded (85/05) and unthresholded (50/50) ANN 

classifications of an unseen dataset consisting of body only; camera in the waistband; keys; 

gun held in the waistband and in the hand, at ranges of 2, 4 and 6 metres, is given in Table 

6.21.

Metric Efficiency selected thresholds

(85/05)

Unthresholded classification

(50/50)

TPR 0.99 0.71

TNR 1.00 0.91

FPR 0.00 0.09

FNR 0.01 0.29

Accuracy 0.99 0.83

Dataset utility 0.18 1.00

Efficiency 32.00 6.00

Table 6.21: Comparison of Efficiency selected threshold pair (85/05) with the standard  

classification threshold (50/50) for an unseen dataset of body only; camera in the  

waistband; keys; gun held in the waistband and in the hand, at ranges of 2, 4 and 6 metres

The Efficiency selected threshold pair provide an performance improvement compared to 

unthresholded classification at the expense of discarding 72% of the data.

6.8 Identification of Features Used In Classificatio n: Signal 
Intensity or Structure

Another feature which was investigated was whether the network is classifying the shape 

of signals or analysing just the amplitude.  In this particular example, horn antennas were 

used as simple polarisers and tests were conducted with a variety of objects concealed on 
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different areas of the body.  The following results, shown in Table 6.22 were generated by 

a direct power detector based system with a single cross-polar receiver to establish whether 

the ANN was classifying the structure or just the magnitude of the returns.  In the 'scaled' 

column the data has been rescaled so all the signals were of the same magnitude.  The 

results show that even after rescaling, the ANN is able to correctly classify in most cases.  

This indicates that the shape as well as the magnitude of the cross polar signal is important 

and has implications in the selection of measured signals to be presented to the ANN.

Dataset Range Threat No Threat Threat 

(scaled)

No Threat 

(scaled)

Body 1 2 0 40 0 40

Body 2 2 0 40 1 39

Body 3 2 0 40 3 37

Body 1 and gun 2 40 0 40 0

Body 2 and gun 2 40 0 37 3

Body 3 and gun 2 40 0 38 2

Body 4 5 0 40 0 40

Body 5 5 0 40 4 36

Body 6 5 0 40 2 38

Body 4 and gun 5 40 0 40 0

Body 5 and gun 5 40 0 32 8

Body 6 and gun 5 40 0 27 13

Table 6.22: ANN classification results for original and normalised data from a direct  

power detector based system with a single cross-polar receiver between 80 – 100 GHz
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Figure 6.14: Performance of an ANN classifying unscaled and scaled data for body only  

and body with gun at 2 m using a direct power detect based system with a single cross-

polar receiver operating between 80 – 100 GHz

Dataset AC TPR FPR TNR FNR

Unscaled 100.00% 100.00% 0.00% 100.00% 0.00%

Scaled 95.57% 96.15% 5.00% 95.00% 3.85%

Table 6.23: Performance metrics for ANN classifying unscaled and scaled data for body  

only and body with gun at 2 m using a direct power detect based system with a single  

cross-polar receiver operating between 80 – 100 GHz
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Figure 6.15: Performance of an ANN classifying unscaled and scaled data for body only  

and body with gun at 5 m using a direct power detect based system with a single cross-

polar receiver operating between 80 – 100 GHz

Dataset AC TPR FPR TNR FNR

Unscaled 100.00% 100.00% 0.00% 100.00% 0.00%

Scaled 83.13% 73.75% 7.50% 92.50% 26.25%

Table 6.24: Performance metrics for ANN classifying unscaled and scaled data for body  

only and body with gun at 5 m using a direct power detect based system with a single  

cross-polar receiver operating between 80 – 100 GHz

6.9 Evaluation

To be effective a stand-off screening system must satisfy several very substantial 

performance requirements.  The energy used by the system must be able to penetrate 

commonly worn materials and reveal information about concealed objects with sufficient 

detail that they can be identified or detected as suspicious. The system must be able to 
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operate at sufficiently high rate of frames per second to provide prompt identification.  

Information presented to the user must be easy to interpret or be automatically analysed 

and interpreted.

The original remit of this work was the investigation, design and evaluation of signal 

processing and classification techniques for metallic items concealed upon a human body.  

During the project it was evident that the capability to detect explosives was also possible, 

although not necessarily as reliably for fragmentation free explosives and this ability 

increases the usefulness of the prototype.

The results earlier in this Chapter show the constructed device has strengths in different 

areas.  The device is strong at detecting metallic items and fragmentation based explosives. 

Analysis of the return signal also indicates the likelihood that a metallic object is a threat or 

benign item.  The main advantages of the prototype are:

 High throughput - detects concealed objects in as little as 0.5 second.

 Privacy - no anatomical details; personal privacy issues eliminated.

 Safe – use of non-ionising radiation is at levels well below agreed safe levels, see 

Appendix A.

 Seamless integration – the prototype can use in conjunction with existing systems.

 Real-time - monitoring and detection status is displayed for the operator in real-

time.

 Stand-off detection – the prototype can be deployed remotely further reducing the 

level of danger the operator may be exposed to. 

 Minimal training required to use the prototype with its automated threat detection 

algorithms.
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The final prototype compares favourably with the similar Kapilvich hand held and bench-

top systems described in Section 2.3.3.2.  The specifications of these systems are compared 

in Table 6.25.

Property (Kapilevich & Einat, 

2007)

(Kapilevich et al., 

2011)

Mirlin

Operating frequency 94 GHz 90 – 96 GHz 75 – 110 GHz

Operating mode AM FM FM

Spatial resolution N/A 25 mm 4.3 mm

Unambiguous Range N/A Estimated at 20 m 8.78 m

Maximum operating 

range

< 3 m < 10 m 7 m

Receiver 

polarisations

1 1 Co and cross-polar

3 dB spot size at 3 m 0.38 m 0.11 m 0.07 m

Size Hand-held unit 

approx. 30 x 25 x 40 

cm

Approx. 1500 x 1000 

x 600 cm

26 x 18 x 40 cm

Weight Unknown Static deployment Approx. 3 kg

Indicates object 

nature

No No Yes

Self contained No, a computer 

running LabVIEW 

and MATLAB is 

required 

No, a computer and 

bench equipment are 

required

Yes

Table 6.25: Comparison of Kapilevich detection systems and Mirlin
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7Conclusion and Future 
Work

If you want something done well, do it yourself.  

NAPOLEON BONAPARTE

7.1 Conclusion

The aim of the project was to develop and realise a system for the remote detection of guns 

and explosives concealed upon the human body.  A bench top feasibility system was 

initially built and successfully tested.  This system was succeeded by a series of three 

incremental portable active non-imaging prototypes operating in the 75 to 110 GHz 

frequency band as FMCW radars.  The final system has a range of 7 m using a highly 

directional antenna and lens arrangement to focus the EM radiation on to the target during 

inspection and can be used effectively inside or outdoors.  Inspection of targets is achieved 

by manually scanning the beam over the target to indicate the presence, location, size, 

shape and nature of concealed object upon the body of an individual.

The significant contribution to knowledge represented by this project, is a system capable 

of remotely indicating the nature of concealed objects in addition to identifying their 

presence, location, size and shape and operating at multiple times per second.  Results 

indicate it is possible to detect the presence of a concealed threat by numerical analysis of 

the target’s signal response.
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Discoveries identified during the project include:

 There exist different mechanisms of detection for hand guns and explosives.

 A small area of fragmentation and non-fragmentation based explosives is 

representative of the whole device.

 The area of illumination required for detection varies with target - hand guns 

should be completely illuminated, whereas only a representative patch is needed for 

explosives.

 The optimum beam size for effective illumination of concealed threats is 

approximately 20 – 30 cm.

 The non-polarisation conserving property of complex metal objects is a good 

indicator that a handgun is present. 

 A ultra-wideband system is required to detect thin sections of non-fragmentation 

based explosives.

 The mechanism of detection for fragmentation-based explosives and guns is similar 

and uses of the polarisation altering properties of the object.

 Classification of radar returns using ANNs enables threat objects to be detected and 

distinguished from mundane objects.

 The creation of an Efficiency metric to aid the selection of ANN confidence 

thresholds optimising both Accuracy and Utility metrics for use by real-time 

systems.

Seven publications have been made (Bowring et al., 2007b; Andrews et al., 2008b; Rezgui 

et al., 2008; Andrews et al., 2008a, 2009; Harmer et al., 2011, 2012) describing aspects of 

the work undertaken.

208



The Academic Aims defined in Section 1 have been fulfilled, see Table 7.1 below.

Academic Aim Section

Identification of optimum frequency bands and power levels 2.3.1 - 2.3.4, 4.4,  4.5, 

4.6 and Appendix A

The effects of commonly worn materials on EM transmissions 4.5

The use of continuous and pulsed illumination for the use of 

concealed object detection

3.2.2, 3.3.1 and 4.3.2

Signal processing and classification 4.2.2, 4.3.1, 4.3.2, 4.6, 

4.7,5.2, 5.8, 6.1.1 and 

6.7

Construction of radar  4.9,  5.5, 5.6 and 5.7

Development of analysis routines  3.2.4 - 3.2.8, 4.7.2, 

5.4, 6.1.1  6.4, 6.6, 6.7 

and 6.8

Table 7.1: Sections relating to fulfilment of Academic Aims

Independent trials carried out in conjunction with our sponsors using Prototypes 3 and 4 

have shown that the system provides a real time remote threat detection capability in an 

easily deployable, robust and lightweight unit for use inside or outdoors, which could 

satisfy an operational need not currently being addressed.  These trials have provided 

essential feedback about system effectiveness during simulated deployment scenarios for 

comparison with our lab results.

209



7.2 Future Work

User feedback has helped identify areas for potential future development.  These include:

 Increasing the operating frequency and hence reducing the size of the radar optics.

 Construction of a super heterodyne system for improved sensitivity.

 Incorporation of target contextual awareness, by automatically matching the part of 

the target being inspected with  appropriate detection algorithms.

 Incorporation of gyroscopic sensors to aid image stabilisation during a manual 

inspection.

 Ruggedisation for use in operational environments.

 Improved power management systems for improved battery life.

 Enhance the hardware to to acquire and process inspections at higher rates.

  Investigate the use of genetic algorithms to improve ANN training by automatic 

selection  of datasets  for peak detection performance.

The technology and expertise gained during the development of the prototypes describe in 

this thesis, have been successfully employed within the Sensing and Imaging Group to 

develop a longer range device for detecting PBIEDs at distances up to 25m (Harmer et al., 

2011).  This has bigger radar optics and is also pedestal mounted, but otherwise uses 

similar technology and data processing, that has been developed for the hand held devices 

described here.
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A Radiation Safety

There are two types of radiation ionising and non-ionising.  The difference is basically due 

to energy levels, non-ionising radiation does not carry enough energy to knock an electron 

from atoms or molecules that is passes through and ionising radiation has sufficient energy 

to do so.  Ionising radiation consists of five major kinds: alpha particles, beta particles, 

gamma rays, x-rays and neutrons.  Non-ionising radiation consists of extremely low 

frequencies waves, radio waves, microwaves and visible light.

Radiation intensity must be considered alongside its ability to ionise.  In an ideal world the 

level of microwave radiation used for illuminating targets would be minuscule as no 

radiation is completely safe.  The purpose of providing target illumination is to supplement 

and control the illumination already detected by the system, otherwise the system would be 

passive and have performance limitations.

‘Safe’ threshold levels have been devised by international regulators below which it is 

believed that people are not adversely affected by radiation.  These levels have yet to be 

settled scientifically and there is a degree of controversy about them, so the recommended 

approach is to minimise unnecessary radiation exposure.

The current International Commission on Non-Ionising Radiation Protection (ICNIRP) 

guidelines specify maximum levels for general public and occupational exposure.  The 

guidelines covering the frequencies of use give a power density limit for the general public 

of 10W/m2 and occupational exposure levels of 50W/m2.  The calculations below use the 

public limit of 10W/m2 and our maximum output power of 10dBmW sufficient to drive 

multipliers are used.  All values are to three significant figures.
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Assuming range to target is one metre the power density with an isotropic antenna would 

be:
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Using a 20dB gain horn antenna to focus the transmitted power the theoretical power 

density would be:
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Supporting this calculation a metal sheet reflector was used to empirically quantify the 

radiation pattern of the 20dB horns at one metre.  The radiation pattern was approximately 

sixty centimetres wide by thirty centimetres tall.  The power density assuming no losses for 

this area at one metre would be:
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Hence the gain of the delivery system is approximately:
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This value is similar and supports the theoretical value calculated above.

In summary, the power density generated at the target at a distance of one metre by our 

system is 79.6mWm-2, is approximately one hundred and thirty times smaller than the 

maximum level set by the ICNIRP of 10Wm-2.

234



B PCB Polariser

Transmitter polarisation H Normalised

Fill ratio: 1:1 1:2 1:3 1:4 None 1:1 1:2 1:3 1:4

Mirror tilt angle Mirror orientation 0.5 0.333333 0.25 0.2

Co signal strength

45 H 0 0.01 0.03 0.1 0.67 0 0.014925 0.044776 0.149254

0 H 0 0.02 0.05 0.14 0.67 0 0.029851 0.074627 0.208955

45 V 0.6 0.59 0.58 0.59 0.67 0.895522 0.880597 0.865672 0.880597

0 V 0.62 0.6 0.61 0.62 0.67 0.925373 0.895522 0.910448 0.925373

Range signal strength (3.4m)

45 H 0 0 0.05 0.1 0.86 0 0 0.05814 0.116279

0 H 0 0 0.05 0.5 0.86 0 0 0.05814

45 V 0.83 0.85 0.85 0.85 0.86 0.965116 0.988372 0.988372 0.988372

0 V 0.82 0.83 0.85 0.85 0.86 0.953488 0.965116 0.988372 0.988372

Range signal strength (1m)

45 H 0 0.2 0.5 1.8 10 0 0.02 0.05 0.18

0 H 0 0.1 0.7 5 10 0 0.01 0.07

45 V 9.1 9.4 9.5 9.4 10 0.91 0.94 0.95 0.94

0 V 9 9.5 9.4 9.5 10 0.9 0.95 0.94 0.95

Co signal strength again

45 H 0.04 0.1 0.99 0.040404 0.10101

0 H 0.07 0.22 0.99 0.070707 0.222222

45 H 0.02 0.05 0.52 0.038462 0.096154

0 H 0.03 0.1 0.52 0.057692 0.192308

Range signal again

45 H 0.5 1.8 10 0.05 0.18

0 H 1 2 10 0.1 0.2

45 H 0.15 0.25 2 0.075 0.125

0 H 0.2 0.35 2 0.1 0.175
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C Comparison of PIC Compiler USB 
Throughput

To aid USB development a C# application was written as a replacement for Windows 

Hyper Terminal to provide a means of benchmarking and verifying the integrity of 

hardware to host PC data transmissions. The lightweight code was written to interface at 

standard and arbitrary serial rates and support isochronous transmissions not supported by 

Hyper Terminal.  The code was used extensively for C# applications that interfaced with 

hardware including the final analysis program.  Figure 1 shows the original application 

GUI.

Figure 1: GUI of test and verify data terminal application
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CCS (2007) and Microchip (2007) compilers, drivers and USB frameworks for the 

PIC18F2550 were tested.  Data was sent using the USB functional calls in different size 

packets to establish small packet efficiency.  Tests were conducted five times and the three 

median results averaged to produce a throughput.  The best result from the two compilers 

is given.  

ASCII Pattern (Length) USB Throughput

01234 (5) 560 kbaud

0123456789 (10) 712 kbaud

01234567890123456789 (20) 710 kbaud

0123456789... (40) 714 kbaud

0123456789... (80) 712 kbaud

0123456789... (160) 712 kbaud

Table 1: PIC18F2550 USB data throughput using usb_cdc_putc(“payload”)

The Microchip drivers provided a slightly higher throughput for packetised data than the 

CCS drivers, but suffered poor throughput with small byte count packets.  By using the 

alternate usb_cdc_putc('1') within a loop the compilers were tested.  The superior results of 

the CCS compiler are shown in in Table 2.

Loop size USB Throughput

10 689 kbaud

20 687 kbaud

40 688 kbaud

80 692 kbaud

160 688 kbaud

250 680 kbaud

Table 2: PIC18F2550 USB data throughput using looped usb_cdc_putc('1')
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By using ten usb_cdc_putc('1') function calls within a loop an throughput was found to 

improve, see Table 3.

Loop size USB Throughput

80 756 kbaud

500 750 kbaud

1000 750 kbaud

2000 750 kbaud

Table 3: PIC18F2550 USB data throughput using looped usb_cdc_putc('1')

A 750 kbaud data rate represents a significant 650% increase in throughput compared to a 

standard serial port at 115.2 kbaud.  However this rate was insufficient for our needs and 

fell well short of the supported 12 Mbaud of Full Speed USB 1.0.

The library files were checked and it was found that Endpoint 2 in Bulk transfer mode was 

being used.  For further details about USB coding refer to the official USB specifications 

(USB, 2007).  Changing the default mode to isochronous transfers, not supported by Hyper 

Terminal and the reason for the custom application and manually flushing the Endpoint, 

produced the following results:

Message Length USB Throughput

50 1020 kbaud

40 816 kbaud

30 609 kbaud

20 406 kbaud

Table 4: PIC18F2550 USB data throughput using isochronous transfers and manual 

buffer flushing of the Endpoint and sending data using putsrsUSBUART (“payload”)
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From these results it appears the USB framework sends packets every 0.5 ms 

approximately.  Checking for a maximum throughput using function call putrsUSBUART 

a maximum packet size of 59 bytes was found to exist, anything larger was split into two 

packets before transmission, effective halving throughput.
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