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I 

Abstract 

The work presented in this thesis aimed to get more insight into the previously reported 

positive effects of mirror visual feedback in children with spastic hemiparetic cerebral 

palsy (SHCP) and into visuo-proprioceptive interactions in children and adolescents with 

SHCP during goal-directed matching tasks. Individuals with SHCP have unilateral motor 

impairments that hamper them in accurate movement performance. In conjunction with the 

motor problems, these individuals experience sensory problems. The first study in this 

thesis (chapter two) found that mirror visual feedback of the impaired arm in SHCP led to 

significantly higher levels of neuromuscular activity than mirror visual feedback of the 

less-impaired arm. This indicates that the mirror-effect was not just caused by the illusory 

perception of symmetry between two limbs, and confirmed that the beneficial effect is 

dependent on mirror visual feedback of the less-impaired arm. In chapter three and four it 

was demonstrated that the ability of children with SCHP to match one (matching) hand 

with the position of the other (reference) hand, without visual information, is deteriorated 

when compared to typically developing children. However, if visual information of the 

static reference arm was available to the participants, the matching accuracy of the 

matching hand was significantly higher. Mirror visual feedback of the reference arm, 

generated by placing a mirror in between the arms in the sagittal plane, created the illusion 

that both hands were already at the endpoint. However, this did not impact upon the 

matching accuracy of the matching arm and resulted in similar error scores as regular 

feedback of the reference arm. Chapter five showed that moving the less-impaired arm in 

synchrony with the impaired arm resulted in higher matching accuracy than moving the 

impaired arm alone. Moreover, mirror visual feedback of the less-impaired arm improved 

matching accuracy for a subset of the participants. The effects of a short practice of a 

bimanual matching task with (mirror) visual feedback of the less-impaired arm on 

matching accuracy of the impaired arm was studied in chapter six. The results showed a 

higher matching accuracy of the impaired arm after the practice period. However, the role 

of the mirror is still inconclusive in this respect. From this it can be concluded that for 

individuals with SHCP practice of a matching movement can induce a transfer from visual 

to proprioceptive control of movement. Taken together, the work in this thesis showed that 

the deficit in position sense of the impaired arm in individuals with SHCP can be modified 

by visual feedback of the less-impaired arm. Although the role of mirror visual feedback is 

still inconclusive, it seems that motor learning can induce a transfer from visual to 

proprioceptive control of movement, which can have implications for therapy.
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Introduction 

In daily life, we use our upper limbs for almost every movement and they are therefore 

extremely important for functional independence. The importance of our arms for 

everyday life is especially highlighted when one cannot use his/her arms due to e.g. a 

particular motor disorder. This is the case in children with spastic hemiparetic cerebral 

palsy (SHCP). Due to brain damage during early development these children have motor 

disorders (i.e. loss of motor function) on one side of the body (i.e. one arm and one leg; 

Bax et al., 2005; Miller, 2007). As a result of this unilateral impairment these children 

experience problems with the performance of daily movements, predominantly of 

movements that require the involvement of both arms, which severely hampers their 

capacities and functional independence. We can thus state that adequate control of both 

hands is essential for everyday movement performance. Another vital factor for accurate 

movement execution, which we are unaware of, is proprioception, i.e. the sense of body 

movement and position. The importance of proprioception can be illustrated by the story of 

Ian Waterman (Rawlence, 1998, BBC Horizon: The man who lost his body). At the age of 

19 he lost permanently all touch and sense of movement and position below the neck due 

to, what is believed to be, an auto-immune reaction (McNeill, Quaeghebeur, & Duncan, 

2008). When his limbs were out of sight, Ian had no idea where they were. As a result of 

this lack of all somatosensory feedback of the limbs, the brain could not initiate movement. 

The immediate behavioural effect was immobility and it was thought that Ian would spend 

the rest of his life confined to a wheelchair. However, already after a few weeks Ian found 

out that he was able to move his arms while constantly looking at them. Although the 

mental effort to do this was enormous, Ian is now able to make movement under visual 

control. This example is of course highly exceptional. There are only a few people in the 

world that lost their proprioceptive sense completely, like Ian Waterman. However, an 

impairment of the proprioceptive sense is not uncommon and can e.g. be seen in children 

with cerebral palsy (Chrysagis, Skordilis, Koutsouki, & Evans, 2007; Goble, Hurvitz, & 

Brown, 2009; Wann, 1991; Wingert, Burton, Sinclair, Brunstrom, & Damiano, 2009). 

Although the motor deficit in SHCP has been examined in great detail, there is still less 

attention to movement-related sensory impairments, like proprioceptive deficits. Therefore, 

this thesis will focus on the proprioceptive abilities of the upper limbs in children and 

adolescents with SHCP and the effects of visual feedback on this ability, i.e. visuo-

proprioceptive interactions. 
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Cerebral Palsy 

Cerebral Palsy (CP) is a group of permanent disorders of movement and posture due to a 

non-progressive lesion in the foetal or infant brain (Bax et al., 2005; Miller, 2007). This 

lesion can be the result of different factors such as a lack of oxygen to the immature brain, 

infection, or intoxication (Stanley, Blair, & Alberman, 2000). With an incidence of 2-2.5 

per 1000 living births, CP is one of the most common childhood disabilities (Lin, 2003). 

The classification of CP is typically based on the type of the motor disorder and the 

number of limbs affected. The former classification encompasses the spastic, dyskinetic, 

and ataxic form. Ataxia is associated with abnormalities of the cerebellum. It is 

characterised by loss of orderly muscular coordination. Movements are performed with 

abnormal force, rhythm and accuracy and low muscle tone is a common feature. About 4% 

of all CP cases is ataxic. Dyskinetic CP occurs, similar to ataxic CP, especially in term 

born children. 6% of all CP cases are of the dykinetic subtype. It is the result of lesions to 

the basal ganglia and is characterised by involuntary, uncontrolled, recurring, occasionally 

stereotyped movements. The muscle tone is varying and primitive reflex patterns 

predominate. Finally, the most common subtype is spastic CP, with around 90% of the 

reported cases. The motor impairment in spastic CP is characterized by an abnormal 

control of voluntary limb movements, spasticity (i.e. an increased muscle tone and a 

velocity dependent resistance to stretch which is often related to damage in the motor 

cortex and/or the pyramidal tract (Dietz & Sinkjaer, 2007; Lance, 1980; Priori, 

Cogiamanian, & Mrakic-Sposta, 2006), muscle weakness (Ross & Engsberg, 2007), 

pathological reflexes such as increased reflexes or hyperreflexia and an enduring positive 

Babinski reflex (indicating a lesion of the pyramidal tract; Krägeloh-Mann & Staudt, 2008). 

Moreover spastic CP is characterised by an abnormal pattern of movements and posture. In 

the lower limbs this is visible in equines foot, crouch gait, hip internal rotation and 

adduction. In the upper limbs this abnormal pattern is characterised by arms in flexion, 

hands fisted with the thumb adducted or stiff and poorly directed movements of the fingers 

(Krägeloh-Mann & Staudt, 2008). The more distal body parts are usually affected most. 

These motor impairments lead to problems with functioning in daily life for walking, 

reaching and grasping. 

  In addition to their motor impairments, children with spastic CP also show 

cognitive problems like learning difficulties, memory deficits, and delayed language 

development (Bottcher, 2010; Kolk & Talvik, 2000; Krägeloh-Mann & Staudt, 2008). 

Cerebral visual problems as hemianopsia, blindness and visuo-spatial deficits can also 

occur in this patient group and epilepsy is commonly seen; it is encountered in about 30% 
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to 50% of the patients. (Krägeloh-Mann & Staudt, 2008). Moreover, several studies 

demonstrated that children with SHCP show motor planning deficiencies (e.g. Steenbergen, 

Meulenbroek, & Rosenbaum, 2004; Steenbergen & van der Kamp, 2004), which may be 

just as limiting for the performance of activities of daily living as the motor impairments.  

Within spastic CP there is a variety of subdivisions1 (Cans et al., 2007; Krägeloh-Mann 

& Staudt, 2008). Diplegia/diparesis 2  and quadriplegia/quadriparesis (or 

tetraplegia/tetraparesis) describe the bilateral involvement, i.e. both sides of the body are 

affected. In diplegia the legs are more involved than the arms, whereas the term 

quadriplegia is used only when the arms are as much involved as the legs (diplegia and 

quadriplegia together account for 60% of all CP cases). In this thesis I will focus on the 

unilateral spastic subtype of CP, spastic hemiparetic cerebral palsy (SHCP; also called 

spastic hemiplegia). SHCP accounts for 30% of all CP cases and results in motor 

impairments (see above) that are lateralized to one side of the body (the impaired side of 

the body, contralateral to the lesioned hemisphere). A lesion on the left side of the brain 

(left hemispheric lesion; LHL) leads to motor impairments on the right side of the body 

and a lesion on the right side of the brain (right hemispheric lesion; RHL) results in deficits 

on the left side of the body. In general, the upper limb is more severely affected than the 

lower limb. It is therefore not surprising that the manual abilities of the impaired body side 

in SHCP have been studied extensively. Several studies showed that reaching and grasping 

with the impaired arm and hand is characterised by an increased movement time, 

decreased peak velocity, irregular and more segmented movement pattern, and increased 

trunk involvement. However, a very large variety within and between subjects was 

reported (Utley & Steenbergen, 2006).  

Despite the unilateral character of the disorder, the other side of the body (ipsilateral to 

the lesioned hemisphere) is not completely free of impairments (less-impaired side of the 

body; Brown et al., 1989; Gordon, Charles, & Duff, 1999; Steenbergen & Meulenbroek, 

2006). Steenbergen and Meulenbroek (2006) for example examined upper limb function 

for a repetitive reach-and-grasp task towards targets placed at different locations. They 

showed that movements of the less-impaired side were slower and peak velocity was 

reached later than in the control group. Moreover, elbow amplitude of this arm was smaller 
                                                           
1 In clinical practice, there is currently a tendency to use unilateral CP (i.e. hemiplegia) and 
bilateral CP (i.e. diplegia and quadriplegia pooled together; Cans, et al., 2007). For reasons of 
clarity we decided to explain the subtypes as described in different handbooks (Ferrari & Cioni, 
2010; Miller, 2007; Stanley, et al., 2000), but note that in literature both terminologies are used. 
 
2 Literally, ‘plegia’ means complete paralysis whereas ‘paresis’ means partial paralysis or 
weakening of the muscles. However, in daily practice the terms ‘-plegia’ and ‘-paresis’ are mixed. 
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for the 60% and 100% arm-length target distances as compared to controls. This is 

suggested to be due to deficient agonist (Triceps) innervations in the less-impaired arm of 

the SHCP-group. Despite the deficits of the less-impaired arm, individuals with SHCP 

usually tend to avoid the use of their impaired arm and are remarkably adept at reaching 

with the less-impaired extremity towards objects that are located in the contralateral 

hemispace. In fact, these children actually may have never learned to use their impaired 

arm for certain motor tasks or may only use it in the simplest manner. The result is that 

individuals with SHCP tend to perform inherently bimanual tasks of daily living with the 

less-impaired arm only rather than with both arms (Gordon & Steenbergen, 2008).  

Taking into account that a proportion of our daily tasks can be performed with one 

hand only, the unilateral impairments itself may not largely hamper these children in daily 

life. Moreover, children with SCHP often develop compensation strategies in order to 

overcome the unilateral impairment (i.e. they can perform movements with one hand that 

healthy individuals perform with two hands). Nevertheless, in tasks where the use of both 

hands is required, the compensations seen in children with SHCP are inefficient and the 

possible reinforcement of these compensations may make rehabilitation more difficult over 

time, which highlights the need for early and goal-directed interventions (Charles & 

Gordon, 2006). 

 

Upper-limb rehabilitation in SHCP 

As for any other disorder, rehabilitation of SHCP is a challenge and different approaches to 

improve the functionality of the impaired arm (sometimes together with the less-impaired 

arm) do exist, such as constraint-induced movement therapy (CIMT), goal oriented 

training and bimanual movement therapy. Because each of these approaches is intended to 

meet a different purpose (Eliasson, 2007), I will not discuss here which approach is the 

most efficient. For two reasons, I will focus in the remainder of this paragraph on the use 

of bimanual symmetrical movements in therapy. First, it has been speculated that repetitive 

training involving symmetrical movements of the impaired and the less-impaired arms 

might allow the impaired arm to perform at/close to the level of the less-impaired arm. 

Second, further on in this thesis I will introduce the concept of mirror therapy. This is a 

specific form of bilateral training and inherently involves bimanual symmetrical 

movements.  

In healthy adults there is a natural tendency towards bimanual symmetry (i.e. inter-

limb coupling). The most likely contributors to inter-limb coupling are inter-hemispheric 

coupling within the cerebral cortex and neural crosstalk. During the performance of 
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bimanual symmetrical movements, simultaneous activation of both hemispheres is often 

seen and intra-cortical inhibition via the corpus callosum is reduced (Kazennikov et al., 

1999; Stinear & Byblow, 2004). Moreover, motor commands generated in the motor cortex 

are sent to the contralateral side but also to the ipsilateral side of the body (i.e. 10% of the 

fibers remain uncrossed). This crosstalk is speculated to lead to homologous muscle 

activation (Cattaert, Semjen, & Summers, 1999). In individuals with unilateral brain 

damage as in SHCP, bilateral activation does not seem a plausible mechanism to explain 

the coupling (Volman, Wijnroks, & Vermeer, 2002). Therefore the mechanism of neural 

crosstalk is believed to play a major role in the coupling between the limbs and the 

facilitation of the movements of the impaired body side in SHCP.  

Indirect support for the use of bimanual symmetrical movements in therapy for 

SCHP has been provided by studies on the behavioural level (see Goble, 2006 for a 

review). Sugden and Utley (1995) examined the mutual influence of the impaired and the 

less-impaired arm in bimanual reaching movements at preferred speed. Temporal 

synchronization between the hands was found when moving bimanually, but the way in 

which this was established differed between participants. Either one of the two or both 

hands adapted during the bimanual movement execution when compared to the unimanual 

movement. In a follow up study in 1998, Utley and Sugden showed that speeding up the 

impaired hand resulted in a stronger coupling between the hands, particularly in the first 

part of the movement (Utley & Sugden, 1998). Steenbergen, Hulstijn, de Vries and Berger 

(1996) showed, in a separate series of studies, similar coupling between the hands when 

participants were asked to place as quickly as possible two balls in a hole (one with each 

hand). However, in this study the temporal coupling was established in a uniform manner, 

i.e. for all participants the less-impaired arm slowed down under bimanual responding 

whereas the performance of the impaired arm was relatively unaffected. In addition, 

Volman, Wijnroks and Vermeer (2002) showed that bimanual symmetrical movements 

may facilitate and enhance the movement of the impaired arm in SHCP. They compared 

unimanual and bimanual performance for a circle drawing task. In the unimanual condition, 

performance of the impaired arm was less smooth and more variable than that of the less-

impaired arm. However, moving both arms in a symmetric fashion resulted for the 

impaired arm in smoother and less-variable movements when compared to the unimanual 

condition.   

Taken together, these results suggest that despite their unilateral impairment, 

individuals with SHCP are able to couple their movements to a similar extent as typically 

developing (TD) people. In performing these bimanual symmetrical movements, the less-
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impaired arm might be useful in providing a template for the impaired arm and this might 

enhance impaired upper limb performance (within a single session). However, until now 

studies have mainly focused on kinematic variables (such as speed, trajectory or timing of 

the two limbs) and it remains to be determined whether bimanual symmetry has an effect 

on proprioception as well.  

 

Proprioception 

When we close our eyes we still know where our body parts are in space and relative to 

each other. This sense is termed proprioception and consists of two components: (joint-) 

position sense (the sense of static limb position) and kinaesthesia (the sense of limb 

movement). Proprioception is mediated by so called propioceptors in the skin, muscles, 

tendons, ligaments and joint capsules (Proske & Gandevia, 2009; Sherrington, 1906). The 

receptors in the muscles, the muscle spindles, are accepted to make a major contribution to 

proprioception. The primary endings of the muscle spindle respond to changes in the size 

of the muscle length and its speed and are therefore believed to contribute to both position 

sense and kinaesthesia. The secondary endings of the muscle spindle signal the change of 

the length and therefore only contribute to the sense of position (Proske & Gandevia, 2009; 

Sherrington, 1906). 

Proprioception is essential for movement performance and has been shown to be 

important in the production of coordinated movements in multiple ways (Goble, Lewis, 

Hurvitz, & Brown, 2005). It plays a major role in controlling muscle interaction torques 

(Sainburg, Ghilardi, Poizner, & Ghez, 1995), in timing the coordination between limb 

segments (Cordo, Carlton, Bevan, Carlton, & Kerr, 1994), in monitoring movement 

trajectories (Ghez, Gordon, Ghilardi, Christakos, & Cooper, 1990), and in establishing 

internal representations used during the acquisition and adaptation of skilled movement 

(Kawato & Wolpert, 1998). It is therefore not surprising that impaired proprioception is 

found to be implicated in motor disorders such as hemiparetic stroke (Niessen et al., 2008) 

or CP (e.g. Chrysagis et al., 2007; Cooper, Majnemer, Rosenblatt, & Birnbaum, 1995; 

Opila-Lehman, Short, & Trombly, 1985; Wingert et al., 2009).  

Research has shown that during motor development and learning, a shift in reliance 

from vision to proprioception takes place (Fleishman & Rich, 1963; Smyth & Marriott, 

1982). It is suggested that monitoring of limb movements is delegated from vision to 

proprioception as learning proceeds (Smyth & Marriott, 1982). Moreover, Fleishman and 

Rich (1963) showed that individuals with high proprioceptive sensitivity (measured as 

small difference limens for judgments of lifted weights) could make use of this 
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proprioceptive information during a practice period of a two-hand coordination task and 

were suggested to be able to switch rapidly from a visual to a proprioceptive control of 

movement. In contrast, individuals who relied more on visual information made a rapid 

progress in the beginning of learning but could not switch as accurate as the other group 

from visual to proprioceptive control during learning. In individuals with SHCP both 

learning and the shift from vision to proprioception during learning are thought to be 

considerably hampered due to a disturbed proprioception of the impaired arm (Chrysagis et 

al., 2007; Goble et al., 2009; Wingert et al., 2009) and an increased reliance on visual 

information (Verrel, Bekkering, & Steenbergen, 2008). Therefore, any therapeutic 

intervention that aims to improve motor function with the involvement of visual feedback 

in children with SHCP depends on its effect on proprioception.  

Different studies already examined proprioception in SHCP and showed 

predominantly deficits of the impaired arm (Chrysagis et al., 2007; Goble et al., 2009; 

Wingert et al., 2009). However, proprioception in itself is difficult to evaluate because 

different factors, such as memory, can affect the measurement. The studies described in 

this thesis focused on one aspect of proprioception, i.e. the sense of static limb position or 

position sense. Different methods to measure position sense are reported in literature 

(Goble et al., 2005) and have been used in the examination of proprioception in SHCP. In 

ipsilateral matching tasks the same arm serves both as reference arm and as matching arm. 

It is thus inherent to the task that participants need to memorize the target position to 

match it accurately. Children with CP are prone to having memory problems (Bottcher, 

2010) and thus it is likely that a portion of the matching error reflects cognitive and/or 

memory deficits rather than a deterioration of proprioception (Goble, 2010). A similar 

problem occurs for the contralateral remembered matching task in which one (reference) 

hand is moved to the target and (after a few seconds) is returned to the start position. 

Subsequently, the participant is required to reproduce the same movement with the 

contralateral hand. To circumvent the involvement of memory in this thesis we used a 

contralateral matching task to measure position sense (chapter three) and visuo-

proprioceptive interactions (chapter four). In this task, the reference arm is moved to a 

target and remains there while the participant matches this target location with the 

contralateral hand. There is thus ‘online’ proprioceptive information about the reference 

position available. With this task it is difficult to pinpoint whether the error that is 

measured arises from one arm or the other (Goble, 2010), but it can provide information 

about how problems with proprioception influence tasks that involve both arms. This is 
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particular relevant for the study of children with SHCP whose motor impairments are 

lateralized to one body side but are known to hamper bimanual actions.    

The validity and reliability of position matching tests have rarely been evaluated, 

but it is generally accepted that the magnitude of the matching errors is a useful indicator 

of position sense (Goble, 2010). In this thesis it was therefore chosen to take the absolute 

matching error as a measure for the matching accuracy, which in turn is an indicator of 

position sense. The absolute matching error is the absolute difference in centimetres at the 

end of the movement between the moving hand and the target position (defined by the 

contralateral hand [chapter three and four] or by an external visual target [chapter five and 

six]). A shorter distance/smaller error is related to a higher movement accuracy and thus 

indicates a better position sense.  

 

Mirror visual feedback 

Mirror visual feedback is created by placing a mirror in between the two upper limbs along 

the mid-sagittal plane. The reflection of one limb seen in the mirror is superimposed on the 

position of the limb behind the mirror (Altschuler et al., 1999; Holmes & Spence, 2005; 

Ramachandran & Rogers-Ramachandran, 1996). When now moving the limbs, the illusion 

is created of a zero lag symmetric movement between the two arms (Altschuler et al., 1999; 

Ramachandran & Rogers-Ramachandran, 1996). The use of mirror visual feedback in 

experimental studies is twofold: on the one hand it is used to manipulate visual feedback to 

create a conflict between the visual and proprioceptive information (e.g. by visually 

manipulating the position of a hand before the start of a movement). In doing so one can 

examine e.g. the relative ‘weighting’ of two sources of sensory information (i.e. vision and 

proprioception; Holmes & Spence, 2005). On the other hand, studies examined the effects 

of mirror visual feedback on movement performance in patients with unilateral pain and 

movement disorders to get more insight into its possible application in therapy (e.g. 

Altschuler et al., 1999; McCabe et al., 2003).  

Ramachandran and Rogers-Ramachandran (1996) were the first to describe the use 

of mirror visual feedback in the treatment of phantom limb pain in amputees. After a short 

period of ‘mirror therapy’, which involved bilateral mirror-symmetric movements, 

amputees reported a decrease in phantom pain. Based on the effect of visual feedback 

through a mirror in patients with phantom limb pain, a number of subsequent studies were 

performed on the effects of mirror visual feedback in other acquired unilateral motor or 

pain disorders. It was found that chronic stroke patients could benefit from this type of 

therapy, showing increases in range of motion, speed and accuracy of arm movements 
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(Altschuler et al., 1999; Stevens & Stoykov, 2003), an improved functional use and a 

recovery of grip strength (Sathian, Greenspan, & Wolf, 2000). Likewise, in patients with 

Chronic Regional Pain Syndrome 1 (CRPS1) mirror visual feedback of the unaffected limb 

reduced the perception of pain and stiffness (McCabe et al., 2003).  

Mirror visual feedback is suggested to act by restoring the congruence between 

motor output and sensory input (Ramachandran, 2005; Ramachandran & Altschuler, 2009). 

In individuals without movement impairment, motor commands sent from the motor cortex 

are normally damped by sensory feedback. However, if a movement is impaired there is a 

discrepancy between the centrally generated efference copy of the motor commands and 

the sensory feedback. This is thought to amplify the motor output, which in turn is 

suggested to deteriorate motor performance even further. Mirror visual feedback may act 

by interrupting this ‘loop’. In other words, the mirror provides patients with ‘proper’ visual 

input which is suggested to reduce movement difficulties and reverse elements of learned 

disuse of the impaired arm which in turn could lead to a ‘relearning’ of the use of the 

impaired arm (Altschuler et al., 1999). 

In addition to the studies on mirror visual feedback in acquired disorders like stroke 

and CRPS1, more recent studies examined the effects of mirror visual feedback in a patient 

group with a congenital unilateral disorder. Feltham, Ledebt, Bennett, Deconinck, Verheul, 

and Savelsbergh (2010) recently showed that the positive effects of mirror visual feedback 

may potentially be extended to individuals with congenital disorders such as SHCP. When 

performing a symmetrical bimanual circular movement, mirror visual feedback reduced the 

movement variability in comparison with a condition in which only the less-impaired limb 

was visible. Moreover, mirror feedback resulted in a reduction of the excessive 

neuromuscular intensity in the shoulder muscles and a decrease in undue eccentric and 

concentric activity in the elbow muscles of the impaired limb, indicating improved 

efficiency (Feltham, Ledebt, Deconinck, & Savelsbergh, 2010). According to Feltham, 

Ledebt, Deconinck et al. (2010) and Feltham, Ledebt, Bennett et al. (2010) these results 

suggest that mirror visual feedback can be used to improve the motor control in children 

with SHCP and could thus be suitable for non-acquired disorders as well. Indeed, a more 

recently published study by Gygax, Schneider and Newman (2011) showed improvements 

in grip strength and the position of the upper limb during achievement of specific tasks 

(dynamic position analysis; subscale of the SHUEE assessment). To summarize, mirror 

visual feedback seems to have a positive effect on different aspects of movement in 

individuals with SHCP such as the excessive eccentric muscle activity, force and 

movement symmetry. However, literature on this topic is still scarce and more research is 
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needed in order to scrutinize the effects of mirror visual feedback on other factors that are 

essential for movement performance such as proprioception.  

 

Outline of the thesis 

The work presented in this thesis followed on previous work of Feltham, Ledebt, 

Deconinck et al. (2010) and Feltham, Ledebt, Bennett et al. (2010) who were the first to 

examine the effects of mirror visual feedback on movement behaviour and neuromuscular 

activity in children with SHCP. Despite the fact that they reported positive effects of 

mirror visual feedback in SHCP, it remained unclear from their studies whether the 

positive effects were the result of visual symmetry (irrespective of which arm is viewed in 

the mirror) or of the illusion that the impaired arm has been substituted by the mirror 

image of the less-impaired arm. Our first study was designed to answer this question. As 

described in chapter two, we compared two situations on the level of movement 

kinematics and neuromuscular activity: the mirror condition and the reversed mirror 

condition. In the mirror condition participants received mirror visual feedback of their less-

impaired arm whereas in the reversed mirror condition participants received mirror visual 

feedback of the impaired arm. By this means we could get more insight into the positive 

effects of mirror visual feedback in SHCP as reported by Feltham, Ledebt, Deconinck et al. 

(2010) and Feltham, Ledebt, Bennett et al. (2010). Subsequently, we were interested in the 

effects of mirror visual feedback on one aspect of proprioception, position sense. In 

chapter three we therefore first measured position sense with a contralateral matching 

task. This task can provide us with important information about how problems with 

proprioception may affect movements that involve both arms. One arm was fixed on a 

target position and participants were asked to match the other arm into the same (mirror 

symmetric) position while no visual information of either arm was available. In order to 

get good insight into their deficiencies we compared the SHCP children with typicalle 

developing (TD) peers. In chapter four we then scrutinized the effects of (mirror) visual 

feedback of a static reference arm on the position sense of the moving matching arm in 

individuals with SHCP. Previous studies in TD children showed that visual information of 

a static reference hand improved matching accuracy (Von Hofsten & Rösblad, 1988), but 

for individuals with quadriplegia with bilateral brain damage no such improvement was 

found (Wann, 1991). Individuals with SHCP have unilateral brain damage and thus we 

were interested whether visual feedback of a reference arm could improve the matching 

accuracy of the matching arm in this patient group. A similar contralateral matching task as 

in chapter three was used, but now an opaque screen or a mirror was placed in between the 
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arms in the sagittal plane so that the impaired arm was invisible. In the screen condition the 

participants could see their less-impaired arm, in the mirror condition the less-impaired 

arm and its mirror reflection was visible. These two conditions were compared with a 

condition in which the participants did not receive any visual feedback of their movement.  

In chapters five and six we aimed to get more insight into the possibilities to use 

mirror visual feedback in the rehabilitation of individuals with SHCP. In chapter five the 

aim was twofold: on the one hand we aimed to examine the effect of bimanual symmetrical 

movements on matching accuracy. To this end, we compared for the impaired arm the 

accuracy of matching a visual target under unimanual and bimanual conditions. On the 

other hand we aimed to examine the effects of mirror visual feedback during bimanual 

symmetrical movements on the matching accuracy of the impaired arm. We placed an 

opaque screen or a mirror in between the arms in the sagittal plane so that participants 

either saw their less-impaired arm (screen) or their less-impaired arm and its mirror 

reflection (mirror). Matching accuracy in these two conditions were compared to reveal the 

effects of mirror visual feedback. The studies reported in chapter three, four and five all 

examined ‘immediate’ effects of (mirror) visual feedback, while the effects of mirror 

visual feedback after a short period of practice remained to be determined. Therefore, 

chapter six describes the effects of a short practice of a matching movement with (mirror) 

visual feedback. Children and adolescents with SHCP performed a 20 minute bimanual 

practice with mirror visual feedback (mirror-group) or ‘regular’ visual feedback of the 

less-impaired arm (screen-group). In the pre-, post-, and retention-test the matching 

accuracy was determined (without visual feedback) and compared between the two 

training groups. The general discussion in chapter seven summarizes the findings of each 

chapter and discusses the main results.  At last, suggestions for future research are given. 
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Abstract 

Mirror visual feedback has previously been found to reduce disproportionate interlimb 

variability and neuromuscular activity in the arm muscles in children with Spastic 

Hemiparetic Cerebral Palsy (SHCP). The aim of the current study was to determine 

whether these positive effects are generated by the mirror per se (i.e. the illusory 

perception of two symmetrically moving limbs, irrespective of which arm generates the 

mirror visual feedback) or by the visual illusion that the impaired arm has been substituted 

and appears to move with less jerk and in synchrony with the less-impaired arm (i.e. by 

mirror visual feedback of the less-impaired arm only). Therefore we compared the effect of 

mirror visual feedback from the impaired and the less-impaired upper limb on the 

bimanual coupling and neuromuscular activity during a bimanual coordination task. 

Children with SHCP were asked to perform a bimanual symmetrical circular movement in 

three different visual feedback conditions (i.e. viewing the two arms, viewing only one arm, 

and viewing one arm and its mirror image), combined with two head orientation conditions 

(i.e. looking from the impaired and looking from the less-impaired body side). It was found 

that mirror visual feedback resulted in a reduction of the eccentric activity of the Biceps 

Brachii Brevis in the impaired limb compared to the condition with actual visual feedback 

from the two arms. More specifically, this effect was exclusive to mirror visual feedback 

from the less-impaired arm and absent when mirror visual feedback from the impaired arm 

was provided. Across conditions the less-impaired arm was the leading limb, and the 

nature of this coupling was independent from visual condition or head orientation. Also, 

mirror visual feedback did not affect the intensity of mean neuromuscular activity or the 

muscle activity of the Triceps Brachii Longus. It was concluded that the positive effects of 

mirror visual feedback in children with SHCP are not just the result of the perception of 

two symmetrically moving limbs. Instead, in order to induce a decrease in eccentric 

neuromuscular activity in the impaired limb, mirror visual feedback from the ‘unaffected’ 

less-impaired limb is required. 
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Introduction  

Children with Spastic Hemiparetic Cerebral Palsy (SHCP), who have unilateral motor 

impairments in both their arm and leg due to brain and/or pyramidal tract damage (Miller, 

2007) 1 , perform tasks requiring only the less-impaired hand reasonably well (e.g. 

Steenbergen, Hulstijn, de Vries, & Berger, 1996; Utley & Sugden, 1998). In contrast, tasks 

requiring bimanual coordination pose a huge challenge because of the inevitable 

involvement of the impaired arm and hand. In recent years, bimanual reaching and 

grasping has been thoroughly investigated in individuals with SHCP (e.g. Steenbergen et 

al., 1996; Sugden & Utley, 1995; Utley & Sugden, 1998; Volman, Wijnroks, & Vermeer, 

2002). Interestingly, these studies suggest that, despite the unilateral impairment, bimanual 

actions of children with SHCP seem to be facilitated by bilateral connections at multiple 

levels of the central nervous system similar to what has been found in typical populations 

(e.g. corticospinal, cerebellar, brain stem, and propriospinal; Wiesendanger, Kaluzny, 

Kazennikov, Palmeri, & Perrig, 1994). For example, Volman et al. (2002) showed that 

when drawing circles in an in-phase (symmetrical) coordination mode the spatiotemporal 

interlimb variability decreased. Furthermore, movement smoothness of the impaired limb 

increased compared to single-handed performance. Steenbergen, Charles and Gordon 

(2008) observed close temporal synchrony of the hands when grasping an object 

bimanually, which contrasted with the timing differences between both hands when they 

performed separately. It should be noted that some of these findings indicate adaptations of 

the less-impaired side to the behaviour of the affected side (e.g. Steenbergen et al., 1996), 

but combined these studies suggest that bilateral interactions exist in children with SHCP 

and that they can lead to favourable effects in the impaired arm.  

A paradigm that has been used to further our understanding of how visual and 

spatial processes influence coordination and perception of the two hands is the ‘mirror box 

illusion’ (e.g. Franz & Packman, 2004; Holmes & Spence, 2005). This illusion is 

manifested when a mirror is placed in between the two upper limbs along the mid-sagittal 

plane. The reflection of the arm viewed in the mirror seems superimposed on the visual 

image of the arm behind the mirror. When the arm facing the reflective side is moved this 

creates the illusory perception of a zero lag symmetrical movement of the two limbs. The 

effects of mirror visual feedback were first investigated by Ramachandran and Rogers-

                                                           
1
 Cerebral Palsy (CP) is a group of permanent disorders of movement and posture due to a non-progressive 

lesion in the fetal or infant brain (Miller, 2007). CP is the most common cause of childhood disability and has 
an incidence of 2-2.5 per 1000 living births (Lin, 2003). A common form of CP is Spastic Hemiparetic 
Cerebral Palsy (SHCP). Children with SHCP have a brain lesion in one hemisphere and as a result have 
spasticity on the other side of the body. 
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Ramanchandran (1996) in amputees with phantom pain. After a short period of ‘mirror box’ 

therapy, which involved (bilateral) mirror-symmetric movements, amputees reported a 

decrease in phantom pain. These encouraging findings led to the adoption of mirror visual 

feedback in treating other acquired unilateral motor or pain disorders where the illusion 

appeared to result in positive effects on motor performance and pain perception (for a 

review see Ramachandran & Altschuler, 2009). For instance, it was found that chronic 

stroke patients could benefit from therapy using mirror visual feedback, showing increases 

in range of motion, speed and accuracy of arm movements (Altschuler et al., 1999; Stevens 

& Stoykov, 2003), and an improved functional use and a recovery of grip strength (Sathian, 

Greenspan, & Wolf, 2000). Likewise, in patients with Chronic Regional Pain Syndrome 1 

(CRPS1) mirror visual feedback of the unaffected limb reduced the perception of pain and 

stiffness (McCabe et al., 2003).  

Interestingly, Feltham, Ledebt, Bennett et al. (2010) and Feltham, Ledebt, 

Deconinck et al. (2010b) demonstrated that the positive effects of mirror visual feedback 

may potentially be extended to individuals with congenital disorders such as SHCP, a 

finding that was recently supported by Gygax, Schneider and Newman (2011) who showed 

that mirror therapy in children with hemiplegia may improve strength and dynamic 

function of the impaired arm. Feltham, Ledebt, Bennett et al. (2010) and Feltham, Ledebt, 

Deconinck et al. (2010b) used a task where participants performed continuous symmetrical 

circular movements with both upper limbs in three visual conditions (glass: seeing the two 

arms; screen: seeing only the less-impaired arm; mirror: seeing the less-impaired arm and 

its mirror reflection). An effect of mirror visual feedback was found on the nature of the 

bimanual coordination (Feltham, Ledebt, Bennett et al., 2010) and on the neuromuscular 

activation in children with SHCP (Feltham, Ledebt, Deconinck et al., 2010b). More 

specifically, in the first study it was demonstrated that movement variability of the 

interlimb coupling was lower in the mirror condition in comparison with the screen 

condition. In addition, mirror visual feedback resulted in a reduction of the neuromuscular 

intensity in the shoulder muscles of the less-impaired limb and a shortening of the duration 

of eccentric and concentric activity in the elbow muscles of the impaired limb. In 

accordance with Perry, Davis and Luciano (2001), a phase where a flexor muscle (e.g. 

Biceps Brachii Brevis, BBB) was actively contributing to a flexion movement was defined 

as concentric, whereas flexor activity was eccentric when it contributed to an extension 

movement. For extensor muscles (e.g. Triceps Brachii Longus, TBL) the opposite 

classification was used. Note that an earlier study showed that children with SCHP 

performed this bimanual coordination task with higher levels of neuromuscular intensity in 
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elbow and wrist muscles and longer periods of concentric and eccentric activity in elbow 

and shoulder muscles compared to typically developing children (Feltham, Ledebt, 

Deconinck, & Savelsbergh, 2010a). More eccentric activity of the BBB might suggest 

more counteraction to the extension movement, and hence indicates that the neuromuscular 

control is less efficient in children with SHCP. The finding of a decrease in interlimb 

variability and a reduction of eccentric and concentric muscle activity in a condition with 

mirror visual feedback thus shows that the mirror has the capacity to induce a general 

improvement of the kinematics and the neuromuscular efficiency during bimanual 

movements in children with SHCP. 

A pertinent question is, however, whether the mirror effects observed in these 

children are caused by the illusory perception of seeing two arms moving in perfect 

symmetry, irrespective of which arm is seen in the mirror, or by the illusion that the 

impaired limb has been substituted with a less-impaired limb, which is not spastic. The 

studies by Feltham, Ledebt, Bennett et al. (2010) and Feltham, Ledebt, Deconinck et al. 

(2010b) described above have only investigated the effect of mirror visual feedback from 

the unaffected arm and therefore were not able to discriminate between these two 

explanations. When Franz and Packman (2004) found that mirror visual feedback was 

powerful enough to enhance spatial coupling of the two hands in healthy adults performing 

a circle drawing task in a similar manner as actual vision of both hands, this effect was 

independent of the laterality of the mirror visual feedback. In a condition where only one 

hand was visible, the circles drawn by the hand in vision were found to be significantly 

larger than for the hand hidden behind the screen. Mirror visual feedback, regardless of 

which hand was viewed, had the capacity to wipe out this between-hand difference in 

circle size. Franz and Packman (2004) hypothesised that the illusion of the perfect 

symmetry between the two hands created by the mirror promoted the sensorimotor 

coupling at the central level.  

In children with SHCP, however, the movement produced by the impaired and less-

impaired arm is qualitatively different, and hence the mirror visual feedback created by 

either arm is considerably different as well. Whilst there is an illusion of perfect symmetric 

movement in both situations, the mirror visual feedback of the impaired arm shows a less 

smooth movement hampered by the motor deficits. This discrepancy between the two sides 

and the mirror visual feedback they elicit enables us to investigate the mirror box illusion 

in this group of children in more detail. More specifically, the aim of the present study was 

to determine whether the mirror effects as found previously by Feltham, Ledebt, Bennett et 

al. (2010) and Feltham, Ledebt, Deconinck et al. (2010b) are the result of the perception of 
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visual symmetry per se, irrespective of which arm is viewed, or by the illusion that the 

impaired arm has been substituted and appears to move smoother and in synchrony with 

the less-impaired arm. For this purpose, we compared the effect of mirror visual feedback 

generated by the less-impaired and the impaired arm on the bimanual coupling and the 

neuromuscular activity in children with SHCP during a bimanual coordination task similar 

to the one used by Feltham, Ledebt, Bennett et al. (2010) and Feltham, Ledebt, Deconinck 

et al. (2010b). Based on the studies of Feltham and colleagues we anticipate that mirror 

visual feedback from the less-impaired arm will result in increased interlimb coupling and 

reduced eccentric activity in the arm muscles of the impaired limb compared to the visual 

feedback of both arms (glass condition). If the illusion of visual symmetry is the main 

trigger for the changes induced by the mirror, mirror visual feedback of the less-impaired 

arm is expected to induce similar effects on the kinematics and the neuromuscular activity 

as compared to mirror visual feedback of the impaired arm. Alternatively, if the mirror 

effect in children with SHCP is caused by a mechanism involving substitution of the visual 

information of the impaired arm by visual feedback from the less-impaired arm, we expect 

to find less favourable changes to the control of the movement when viewing the impaired 

upper limb and its mirror reflection than when viewing mirror visual feedback of the less-

impaired limb. 

 
Methods 

Participants 

Ten children (eight males and two females) with SHCP participated in the study (mean age 

12.7 ± 3.2 years). Further participant characteristics can be found in Table 2.1. A subset of 

the data from seven children who took part in a previous study (Feltham, Ledebt, 

Deconinck et al., 2010b) was identified to be included in the present analysis. The 

participants did not have impaired vision or any neuromuscular disorders other than SHCP. 

Severity of the impairment was assessed by a single experimenter with the Modified 

Ashworth Scale (MAS; spasticity levels increase from 1 to 4), Gross Motor Function 

Classification System (GMFCS; function deteriorates from I to V) and the functional 

independence measure for children (WeeFIM; motor items only, with a possible score 

range of 13 to 91. A higher score denotes a better functional independence of the child). 

Written informed consent was obtained from all participating children and their parents. 

The experiment was conducted in accordance with the Declaration of Helsinki and all 

experimental procedures were approved by the institutional research ethics committee.  
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Table 2.1: Participant characteristics. For each participant the age in years, sex, impaired arm, MAS, 

GMFCS and WeeFIM score and aetiology are represented. 

P Age 
(years) 

Sex Impaired 
arm 

MAS GMFCS WeeFIM Aetiology 

1 12.8 M Right 1 I 90 Unknown 
2 9.3 F Right 1+ I 89 Cerebral haemorrhage 
3 13.2 M Right 1 I 91 Unknown 
4 14.3 M Right 1+ I 91 Cerebral haemorrhage 

during birth and 
meningitis just after 
birth 

5 11.0 M Right 1 II 55 Meningitis just after 
birth 

6 6.8 M Right 1 I 83 O2 shortage during 
birth 

7 17.1 M Right 2 I 91 Cerebral haemorrhage  
8 11.1 M Left 1 I 91 Unknown 
9 14.7 M Left 2 II 62 Schizencephaly  
10 16.3 F Left 1 I 79 O2 shortage during 

birth 

 

Test procedures 

Each participant was seated on a height adjustable chair at a table with both feet flat on the 

floor and the knees 90° flexed. The elbows were flexed over 90° and in each hand the 

participant grasped a handle attached to a wooden disc (radius 0.10 m) which spun freely 

360° around a vertical axis. The axes were fixed to a wooden plateau and were located 

0.31 m apart.  

Participants were asked to perform a continuous inward symmetrical circular 

bimanual movement (the right arm rotated anti-clockwise and the left arm rotated 

clockwise). Starting at the inner most part of each circle (nine o’clock for the right arm and 

three o’clock for the left arm) children were asked to rotate the discs continuously at a self-

selected speed until they were instructed to stop. Additionally, they were instructed to keep 

the movement time per cycle (i.e. movement frequency) constant across the experimental 

trials and the different conditions. The type of visual feedback was varied so that the 

participant 1) viewed both arms, 2) viewed only one arm, 3) viewed one arm and its mirror 

reflection, by placing a glass, opaque screen, or mirror divide, respectively (all: width 0.06 

m, depth 0.75 m, height 0.39 m), between the arms along the mid-sagittal plane (Figure 

2.1). The glass and the screen condition were added as control conditions. In addition, in 

order to examine the difference between mirror visual feedback of the less-impaired arm 

(referred to as ‘uncompromised’ mirror visual feedback) and mirror visual feedback of the 

impaired arm (referred to as ‘compromised’ mirror visual feedback) on the nature of the 

bimanual coupling and the neuromuscular activity in the BBB and TBL muscle the 
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orientation of the head (i.e. viewing side) was varied; the participants orientated their head 

either towards the impaired side of the body (ViewImp) or towards the less-impaired side 

of the body (ViewLessImp).  

The six conditions (3 visual feedback x 2 viewing side conditions) were presented 

in a random order and per condition, three trials, each lasting approximately 15 seconds, 

were recorded. Prior to data collection, practice trials were conducted to familiarise the 

participants with the test setup. Short breaks were given between the trials in order to 

recover from any fatigue or decrease in concentration that might have occurred during the 

performance of the experiment. In order to keep the participants motivated they were told 

that rotating the discs more symmetrically resulted in more points. At the end of the 

experiment the children could trade their points for a small gift.  

 

Figure 2.1: Experimental setup showing one of the experimenters demonstrating the task during the glass 

(left panel), screen (middle panel), and mirror (right panel) condition. The participant viewed the bimanual 

task either from the impaired or from the less-impaired side of the body. Note that the participants were 

considerably smaller than the experimenter and that their posture was more erect than shown in this picture. 
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Recording and analysis procedures  

The 3D position of the wrist, elbow and shoulder was determined by two serially-

connected units containing three infrared cameras at 200 Hz (3020 Optotrak, Northern 

Digital Inc., Waterloo, Canada). Light emitting diodes were bilaterally attached to the skin 

with double-sided tape over the dorsal tuberculum of the radius (wrist), lateral epicondyle 

of the humerus (elbow), greater tubercle of the humerus (shoulder) and the trochantor of 

the femur (hip). The phase of each limb was calculated according to the following 

formulas: 

 

φD = arctan [(dSD ·dt-1) / SD], 

and 

φND =  arctan [(dSND ·dt-1) / SND], 

 

where φD and φND are the phase of the dominant (less-impaired) and the non-dominant 

(impaired) hand respectively, SD and SND are the position time series, and dSD ·dt-1 and 

dSND ·dt-1 represent the instantaneous velocity. Before the calculation of φND, the sign of 

the position time series of the non-dominant arm was inversed to an anti-clockwise 

trajectory. The continuous relative phase (CRP) indicating the degree of coupling (i.e. 

synchronicity) between the arms is then: 

 

CRP  =  φD – φND, 

 

where a positive value for CRP implied the less-impaired arm lead and a negative value the 

impaired arm lead.  

  Superficial EMG (electromyography) was bilaterally recorded from the main 

muscles around the elbow: the Biceps Brachii Brevis (BBB) and the Triceps Brachii 

Longus (TBL), according to the SENIAM guidelines for surface EMG measurement 

(Hermens, Freriks, Disselhorst-Klug, & Rau, 2000). The ground electrode was placed over 

the acromion on the side of the less-impaired hand. Disposable Ag/AgCl surface EMG 

electrodes with a gel-skin contact, active detection area of 15mm2 for each electrode and a 

20mm centre to centre inter-electrode distance, were placed in parallel with the muscle 

fibre direction over the muscle bellies after cleaning and gentle abrasion of the skin. The 

EMG signals were amplified 20 times high-pass pre-filtered at 10 Hz and AD-converted at 

1000 Hz with a 22-bit resolution and stored on a computer. The EMG signals were band-

pass filtered with a zero lag 2nd order Butterworth filter between 10 and 400 Hz and then 
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full-wave rectified. Finally, the EMG signals were smoothed with a zero-lag 2nd order low-

pass Butterworth filter at 6 Hz.  

Bilateral EMG recordings were analyzed from the first two cycles of each trial2. 

Typically, EMG amplitudes are scaled to activation levels recorded either during an 

isometric maximal voluntary contraction or a specified steady-state sub-maximal 

contraction. However, this procedure is likely to be unreliable in people with neurological 

conditions since they are often unable or unwilling to perform maximum contractions 

(Smith, Coppieters, & Hodges, 2008; van Dieën, Selen, & Cholewicki, 2003). Therefore, 

to determine the intensity of the mean neuromuscular activity of each muscle during the 

bimanual movement, the mean amplitude was calculated from the smoothed raw EMG 

signals. In addition, the amount of concentric and eccentric muscle activity was determined. 

To this end, the EMG profile of each muscle was broken down into active and inactive 

phases, after the threshold for muscle contraction was determined. Consistent with Perry et 

al. (2001) it was assumed that a purposeful activation of a muscle causes an increase in the 

EMG signal within the frequency range of 0 – 160 Hz. The active/inactive threshold value 

was then calculated as follows: T = 15 + 1.5R, where T is the threshold value, R is the 

mean value of the EMG signal above 160 Hz and the constants are derived from Perry et al. 

(2001). A muscle was classified as active if the smoothed raw EMG signal was above the 

threshold level. Subsequently, the active phases were classified as eccentric, concentric, or 

isometric depending on the observed elbow movement and the primary mechanical 

function of the muscle (i.e. flexion or extension). For example, BBB muscle activity above 

threshold was classified as concentric when the elbow was being flexed and as eccentric 

when the elbow was being extended. Above threshold TBL muscle activity was classified 

as concentric for elbow extension and as eccentric activity for elbow flexion. If the muscle 

was active but no change in elbow angle was observed, it was classified as isometric 

activity. However, this isometric activity was not included in further analysis of this study 

since the task involved a dynamical movement with accordingly very short relative 

durations of isometric activity (1.25% of the total muscle activity). The duration of all 

eccentric and concentric phases was summed and expressed as a percentage of the total 

movement time (i.e. the movement time of the first two cycles), giving the relative 

duration of eccentric activity and the relative duration of concentric activity for each 

muscle. 
                                                           
2
 Only the first two cycles of each trial could be analyzed since some children with SHCP could only fulfil 2 

cycles before they adopted a different coordination mode than the one they were instructed to produce. 
Moreover, for some children the movement time allowed them to complete only 2 cycles within the allocated 
time of each trial or the hand slipped off the handle at which point the trial had to be terminated. 
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Statistical analysis 

The effect of viewing side and visual feedback condition on the bimanual coupling, EMG 

intensity and the phases of muscle activity in each arm, was tested using a repeated 

measurement ANOVA with three within factors: Limb (impaired, less-impaired), Viewing 

side (view impaired [ViewImp], view less-impaired [ViewLessImp]), and Visual condition 

(mirror, screen, glass). These analyses were conducted using mean data calculated from the 

three trials per combination of independent variables. In the event that the sphericity 

assumption was violated, Greenhouse-Geisser adjustments were applied. Fisher’s LSD 

tests were used for post-hoc analysis and the level of significance was set at 0.05.  

 

Figure 2.2: Data from a representative trial showing the rectified EMG activity (light grey) from the Biceps 

Brachii Brevis and the smoothed EMG (dark grey line). In addition, the elbow angle (thick black line) and 

the active/inactive threshold for the muscle contraction (dashed line) are depicted. Muscle activation is 

classified as eccentric (E), concentric (C), isometric (I) and inactive (N). 
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Results 

Bimanual coupling  

The CRP did not significantly differ between the three visual conditions (mirror = 6.6° ± 

6.3°; screen = 13.2° ± 7.2°; glass = 10.8° ± 7.4°) and the viewing side did not have an 

effect on the interlimb coupling either (ViewImp = 11.1° ± 6.4° and ViewLessImp = 9.3° ± 

7.0°; see Table 2.2 for values per individual condition). The overall mean was 10.2° ± 6.6°, 

indicating that the less-impaired arm was the leading limb. 

 
Table 2.2: Mean and SE values of the continuous relative phase (CRP) in degrees for each visual condition 

and viewing condition. 

 ViewImp ViewLessImp 
Mirror 8.1 ± 7.7 5.0 ± 6.6 

9.3 ± 8.6 
13.6 ± 8.6 

Screen 17.2 ± 7.1 
Glass 8.0 ± 6.6 

 

Intensity of the mean neuromuscular activity in BBB and TBL 

There were no significant main or interaction effects on the mean neuromuscular activity 

in BBB and TBL of either Viewing side or Visual condition (see Table 2.3). This means 

that the mean EMG intensity in BBB and TBL did not change as a function of viewing side 

or the nature of visual feedback. Viewing the impaired arm and its mirror reflection did not 

result in higher levels of EMG intensity (BBB: 24.1 ± 3.1 µV; TBL: 9.9 ± 1.2 µV) than 

viewing the less-impaired arm and its mirror reflection (BBB: 21.7 ± 3.6 µV; TBL: 11.2 ± 

2.0 µV). Inspection of Table 2.3 seems to indicate a trend (F2,18 = 2.76, p = 0.09) towards 

lower intensities of neuromuscular activity in the mirror condition compared to the glass 

and screen condition (especially in the BBB of the less-impaired limb in the ViewLessImp 

condition). In addition, the mean neuromuscular intensity tended to be higher in the 

impaired than in the less-impaired arm for both the BBB and TBL muscles (BBB: 29.0 ± 

4.9 µV vs. 19.5 ± 3.9 µV; TBL: 14.7 ± 3.3 µV vs. 8.5 ± 1.1 µV), however, the ANOVA 

indicated that this effect of Limb was not statistically significant (BBB: F1,9 = 2.29, p = 

0.17; TBL: F1,9 = 3.40, p = 0.10). 
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Table 2.3: Mean and SE values of  the intensity of mean neuromuscular activity (µV) for the BBB and the 

TBL muscle of the impaired and the less-impaired limb presented for each viewing condition (ViewImp, 

ViewLessImp). 

BBB 
 ViewImp ViewLessImp 

Impaired limb  
Mirror 29.9 ± 4.2 27.4 ± 5.7 

27.3 ± 5.6 Screen 27.9 ± 4.2 
Glass 31.0 ± 6.3 30.6 ± 5.2 

   
Less-impaired limb   

Mirror 18.2 ± 3.8 16.2 ± 3.2 
Screen 17.6 ± 3.4 21.3 ± 4.4 
Glass 17.5 ± 4.5 26.2 ± 7.2 

   

TBL 
 ViewImp ViewLessImp 

Impaired limb   
Mirror 12.4 ± 2.2 13.9 ± 3.5 
Screen 12.4 ± 2.0 17.3 ± 5.4 
Glass 15.4 ± 4.3 16.8 ± 3.9 

   
Less-impaired limb   

Mirror 7.3 ± 1.1 8.4 ± 1.4 
Screen 8.8 ± 1.3 8.8 ± 1.4 
Glass 6.8 ± 1.1 10.6 ± 1.9 

   

 

Relative duration of concentric and eccentric activity in the BBB muscle 

No significant main or interaction effects were found for the concentric activity of the 

BBB muscle (see Table 2.4). Mirror visual feedback, irrespective of which arm was 

viewed, did not have an effect on the relative contribution of concentric BBB activity to 

execution of the movement in the impaired or less-impaired arm (F2,18 = 0.36; p = 0.70). 

Additionally, there tended to be more concentric activation in the impaired limb than in the 

less-impaired limb (25.8 ± 3.9% vs. 17.2 ± 4.4%), but this difference was insignificant (F1,9 

= 2.74, p = 0.13).  

For the eccentric activity of the BBB muscle a significant main effect of Limb was 

found (F1,9 = 7.53, p = 0.02) with the impaired limb having 16.3% more eccentric activity 

than the less-impaired limb. This effect was accompanied by a three-way interaction 

between Limb, Viewing side and Visual condition (F2,18 = 4.67, p = 0.02). Figure 2.2 

illustrates this interaction using the difference in eccentric activity between the two 

viewing sides (i.e. ViewImp and ViewLessImp) for the impaired and less-impaired limb 

and for each visual condition. This difference score was determined by subtracting the 

eccentric activity in the ViewImp condition from the eccentric activity in the ViewLessImp 
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condition. A negative difference score then indicates lower eccentric activity in the 

ViewLessImp condition whereas a positive difference score represents higher eccentric 

activity in the ViewLessImp condition. Inspection of Figure 2.2 and post-hoc examination 

of the three-way interaction indicated that there were no effects of Visual condition or 

Viewing side on the eccentric activity of the less-impaired arm. For the impaired arm, 

however, mirror visual feedback from the impaired arm resulted in 10.3% more eccentric 

activity than mirror visual feedback from the less-impaired arm (p = 0.007). Furthermore, a 

significant effect of Viewing side was also present in the glass condition, where looking 

from the less-impaired side resulted in more eccentric activity than looking from the 

impaired side (mean difference score = 8.7%, p = 0.02). Viewing side did not have an 

effect on the eccentric activity of the BBB in the screen condition. Finally, focusing on the 

differences in eccentric activity between the visual conditions (see Table 2.4) it was found 

that mirror visual feedback of the less-impaired arm resulted in less eccentric activity in 

the impaired arm than the glass condition when viewing from the same side (mean 

difference = 12.8%, p = 0.001). In addition, for the ViewLessImp condition, the glass 

condition was performed with more eccentric activity in the impaired arm than the screen 

condition (mean difference = 8.2%, p = 0.02).  
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Figure 2.3: Difference scores of the relative duration of eccentric activity (in percentage) in the BBB muscle 

of the impaired (left side of the figure) and the less-impaired limb (right side of the figure) for the mirror 

(black bars), screen (white bars), and glass (dashed bars) condition. A positive difference score means that 

the eccentric activity is higher in the ViewLessImp compared to the ViewImp condition and a negative 

difference score means that the eccentric activity is lower in the ViewLessImp condition compared to the 

ViewImp condition. 

 

Relative duration of concentric and eccentric activity in the TBL muscle 

For the concentric activity of the TBL muscle a significant interaction effect between Limb 

and Viewing side was found (F1,9 = 10.47, p = 0.01; see Table 2.4). The concentric activity 

in the impaired limb was larger than in the less-impaired limb for both the ViewImp and 

the ViewLessImp condition (mean difference = 8.56% and 4.56%, respectively). 

Furthermore, viewing from the less-impaired side resulted in longer durations of 

concentric activity in the less-impaired limb than viewing from the impaired side, 

irrespective of the visual condition (mean difference = 3.49%). For the eccentric activity of 

the TBL, no effect of Limb, Visual condition, or Viewing side was found.  

 

 

  

-20

-15

-10

-5

0

5

10

15

20

Impaired limb Less- impaired limb

Mirror

Screen

Glass

%activity is higher in 
ViewLessImp

%activity is higher in 
ViewImp

D
if

fe
re

n
ce

 s
c

o
re

 in
 %



Chapter 2 

 

 

33 

Table 2.4: Mean and SE values of the eccentric and concentric muscle activity, expressed as a percentage of 

the total movement, of the Biceps Brachii Brevis (BBB) and the Triceps Brachii Longus (TBL) in the 

impaired and less-impaired limb for theViewImp (viewing the movement from the impaired side of the body) 

and ViewLessImp (viewing the movement from the less-impaired side of the body) conditions. 

 BBB     

  
(%muscle 
activity)    

  Eccentric   Concentric   

 ViewImp ViewLessImp ViewImp ViewLessImp 

Impaired limb     

Mirror 34.2 ± 4.9 23.9 ± 6.5 26.6 ± 3.7 26.1 ± 4.2 

Screen 30.2 ± 5.5 28.5 ± 7.2 25.7 ± 4.7 22.5 ± 3.6 

Glass 28.0 ± 6.1 36.7 ± 6.3 25.1 ± 5.4 28.6 ± 4.1 

     

Less-impaired limb     

Mirror 12.5 ± 4.1 13.2 ± 4.5 16.4 ± 5.1 16.2 ± 4.5 

Screen 12.2 ± 4.1 16.3 ± 4.3 17.4 ± 5.0 18.8 ± 4.6 

Glass 15.1 ± 5.6 14.5 ± 3.7 16.2 ± 5.3 18.3 ± 5.2 

     

  TBL   
 
  

(%muscle 
activity)   

  Eccentric   Concentric   

 ViewImp ViewLessImp ViewImp ViewLessImp 

Impaired limb     

Mirror 7.3 ± 2.8 11.6 ± 4.2 10.5 ± 3.7 9.9 ± 4.9 

Screen 9.1 ± 3.4 11.7 ± 4.0 11.8 ± 3.4 13.5 ± 5.2 

Glass 10.8 ± 4.6 13.0 ± 4.8 12.7 ± 4.5 13.0 ± 4.7 

     

Less-impaired limb     

Mirror 3.4 ± 1.6 4.9 ± 2.3 1.7 ± 0.7 3.8 ± 1.4 

Screen 5.2 ± 1.8 3.2 ± 1.2 4.3 ± 1.5 5.7 ± 2.0 

Glass 2.2 ± 1.5 8.3 ± 2.6 1.8 ± 1.2 8.8 ± 3.0 

     

 
Discussion 

This study investigated the effect of mirror visual feedback from the impaired arm 

(‘compromised’) compared to mirror visual feedback from the less-impaired arm 

(‘uncompromised’) on the interlimb coupling and the neuromuscular control during a 

bimanual coordination task in children with SHCP. In doing so, we wanted to determine 

whether previously found effects of the mirror box illusion in these children (Feltham, 

Ledebt, Bennett et al., 2010; Feltham, Ledebt, Deconinck et al., 2010b) were the result of 

the mirror and the related perception of visual symmetry per se or of the illusion that the 

impaired arm appears to move with less jerk and in synchrony with the less-impaired arm. 
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While the former would mean that ‘compromised’ as well as ‘uncompromised’ mirror 

visual feedback can trigger an improvement of the bimanual coupling and/or the 

neuromuscular activation, the latter can only be elicited by ‘uncompromised’ mirror visual 

feedback.  

The CRP, which gives an indication of the nature of the bimanual coupling during 

this task, i.e. the synchronicity of the two limbs, indicates that the less-impaired arm was 

‘leading’ the impaired arm across all conditions. This is in congruence with earlier studies 

on bimanual coordination in typically developing children (Pellegrini, Andrade, & Teixeira, 

2004) and adults (e.g. Amazeen, Amazeen, Treffner, & Turvey, 1997; Stucchi & Viviani, 

1993; Treffner & Turvey, 1995).  The asynchrony of approximately 10° falls within the 

higher range of previously reported values in children with SHCP (Feltham, Ledebt, 

Bennett et al., 2010: -0.3°; Volman et al., 2002.: -5° to 9°), but is still acceptable given the 

unilateral impairment of the children. Note that the phase lag between the two hands may 

indicate that the movement of the lagging impaired hand may be guided by visual feedback 

from the less-impaired hand. However, the CRP did not change as a function of visual 

condition or viewing side, which suggests that the bimanual coupling is clearly not solely 

governed by a visual feedback mechanism and that processes relying on central 

representations of action do contribute to the coupling as well (addressed below).  

It thus seems that mirror visual feedback did not influence the interlimb coupling 

and there was no difference between ‘compromised’ and ‘uncompromised’ mirror visual 

feedback. Interestingly, however, the mirror did have an effect on the neuromuscular 

activity required to perform the task. This suggests that, although the movement 

performance itself remained the same, the muscular effort responsible for this movement 

did change in response to the available visual information. Our results demonstrate that 

mirror visual feedback led to a reduction of eccentric BBB activity in the impaired arm 

compared to the glass condition and, importantly, this effect was exclusive to 

‘uncompromised’ mirror visual feedback, i.e. viewing the less-impaired arm and its mirror 

reflection (ViewLessImp). In the impaired arm, mirror visual feedback of the less-impaired 

arm appears to have the capacity to improve the neuromuscular efficiency of the impaired 

arm by reducing the disproportionally high eccentric activity. The finding that 

‘compromised’ mirror visual feedback did not elicit a similar effect, shows that the mirror 

effect in children with SHCP is not just a response to the visual symmetry, but is also 

dependent on the type of visual information generated by the mirror. The latter nuances the 

findings of Franz and Packman (2004) who found that mirror visual feedback enhanced the 

bimanual coupling (i.e. similarity in range of motion of the two hands) in typical adults, 
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irrespective of viewing mirror feedback from the left or the right hand. However, unlike in 

typical adults, in children with SHCP the nature of mirror visual feedback from the left and 

right hand is qualitatively different, which might explain the apparent discrepancy between 

the two studies.  

The finding from the present study that mirror visual feedback of the impaired arm 

has the opposite effect of ‘uncompromised’ apparent symmetrical motion in children with 

SCHP, qualifies the findings of Feltham, Ledebt, Deconinck et al. (2010b) who only 

looked at the effect of mirror feedback from the less-impaired arm. We demonstrated that 

the favourable results (i.e. the reduction in eccentric BBB activity in the impaired arm) are 

not just due to the visual perception of apparent bimanual symmetry per se. Instead 

children with SHCP appear to benefit specifically of mirror visual feedback from the less-

impaired arm, which seems to be in line with the notion of Ramachandran (2005). 

Ramachandran hypothesised that mirror visual feedback may assist the central control of 

movement in people with unilateral motor problems by restoring the congruence between 

disrupted sensory information and the central motor command signals. According to this 

view, the information provided by the mirror could assist in the neuromuscular control of 

the movement by replacing conflicting visual feedback of the impaired limb with feedback 

that is in accordance with the intended movement (i.e. ‘uncompromised’ visual feedback 

of the less-impaired limb). By showing that the mirror-effect on motor performance in 

children with SHCP is specifically related to mirror visual feedback of the less-impaired 

arm, the current study provides a valuable contribution to the discussion about the 

underlying mechanisms of this effect. Nevertheless, the actual neural underpinnings will 

only be revealed using advanced neuro-imaging techniques. In addition, it may be 

surprising that a short exposure to the mirror already induces these effects on the 

neuromuscular activity and future studies should examine the impact of longer exercise or 

interventions with mirror feedback. Related to this issue is the fact that no (major) effect of 

the mirror was observed on the bimanual coupling or neuromuscular measures such as the 

intensity of mean neuromuscular activity, the eccentric activity in the TBL muscle, and 

concentric activity in the BBB muscle. Furthermore, we cannot exclude the limited number 

of trials (three per condition) and the large age range of the participants to affect the 

precision and generalization of the results. The precision of the measurement might be 

enhanced with larger number of trials, but in the current study it was high enough to reveal 

significant differences between the conditions. One can expect that a larger number of 

trials will enhance the actual results but one must also consider that the limited attention 

span and fatigability of the participants with cerebral palsy might interfere. Considering 
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that the present study used a repeated measures design each participant was his own 

control and the variability that the large age range may have introduced was nevertheless 

small enough to show a significant effect of the experimental conditions. While we did not 

anticipate an age effect, we cannot exclude it and suggest that this should be further 

investigated. 

In conclusion, this study provided more insight into the effects of mirror visual 

feedback in children with SHCP. We showed that the effects found by Feltham, Ledebt, 

Bennett et al. (2010) and Feltham, Ledebt, Deconinck et al. (2010b) on neuromuscular 

activity and bimanual coordination, are likely not caused by the perception of two 

symmetrically moving limbs per se. Instead, for an increase in neuromuscular efficiency of 

bimanual movement (i.e. a decrease in excessive eccentric activity in the arm flexors), 

children with SHCP require mirror visual feedback of the (‘unaffected’) less-impaired limb.  
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Abstract 

This study examined the arm position sense in children with Spastic Hemiparetic Cerebral 

Palsy (SHCP) and typically developing children (TD) by means of a contralateral matching 

task. This task required participants to match the position of one arm with the position of 

the other arm for different target distances and from different starting positions. Results 

showed that children with SHCP exhibited with both arms larger matching errors than the 

TD group, but only when the distance between the arms at the start of the movement was 

large. In addition, the difference in errors between the less-impaired and the impaired limb 

changed as a function of the distance in the SHCP group whereas no interlimb differences 

were found in the TD group. Finally, spasticity and restricted range of motion in children 

with SHCP were not related to the proportion of undershoot and size of absolute error. 

This suggests that SHCP could be associated with sensory problems in conjunction with 

their motor problems. In conclusion, the current study showed that accurate matching of 

the arms is greatly impaired in SHCP when compared to TD children, irrespective of 

which arm is used. Moreover, this deficit is particularly present for large movement 

amplitudes. 
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Introduction 

Proprioception refers to the sense of body parts in space and comprises a static (sense of 

static limb position or position sense) and a dynamic component (sense of movement or 

kinaesthesia). It is a complex somatosensory modality that is imperative for the control of 

movement.  

A large body of evidence details the critical role of proprioception in controlling muscle 

interaction torques (e.g. Sainburg, Ghilardi, Poizner, & Ghez, 1995) in timing the 

coordination between limb segments (Cordo, Carlton, Bevan, Carlton, & Kerr, 1994), in 

monitoring movement trajectories (Ghez, Gordon, Ghilardi, Christakos, & Cooper, 1990), 

and in establishing internal representations used during the acquisition and adaptation of 

skilled movement (Kawato & Wolpert, 1998). It is therefore not surprising that impaired 

proprioception is often suggested to be implicated in motor dysfunction such as in 

Parkinson’s disease (Adamovich, Berkinblit, Hening, Sage, & Poizner, 2001), hemiparetic 

stroke (Niessen et al., 2008), cerebellar disorders (Cody, Lovgreen, & Schady, 1993) or 

cerebral palsy (CP; Cooper, Majnemer, Rosenblatt, & Birnbaum, 1995; Opila-Lehman, 

Short, & Trombly, 1985). Still, to facilitate the design of tailored therapeutic interventions, 

empirical research is required to get a detailed and more complete view of the deficits 

encountered by disabled individuals. 

A number of studies have already shed light on proprioception in CP. CP is a group 

of permanent disorders of movement and posture due to a non-progressive lesion in the 

foetal or infant brain (Miller, 2007). In children with Spastic Hemiparetic CP (SHCP) 

impaired control of muscle tone and spasticity in the limbs on one side of the body (the 

impaired side) severely complicates normal daily movement function. These deficits in 

daily functioning become predominantly evident for movements executed with the arm, 

which is usually more affected than the lower extremity (Charles & Gordon, 2006).  Goble, 

Hurvitz, and Brown (2009) examined joint-position sense in this population using an arm 

flexion/extension task. This task required the participants to match the position of the 

elbow (occluded from view) to a target position to which the elbow had been extended 

passively before the start of the trial. Larger errors were made with the impaired limb than 

with the less-impaired limb, and the latter was as accurate as the limbs of typically 

developing (TD) control children. It should be noted however, that in a sub-sample of the 

CP-population the condition is accompanied with memory deficits (Bottcher, 2010; Kolk 

& Talvik, 2000), which may have contributed to the reduced ability to match a previously 

felt position and complicates the interpretation of the results. Indeed, the contrasting 

findings of Chrysagis, Skordilis, Koutsouki, and Evans (2007) who showed with a similar 
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task that children with SHCP made significantly larger errors than TD children with the 

impaired as well as the less-impaired arm, might be due to differences in the children’s 

ability to memorize positions. Wingert, Burton, Sinclair, Brunstrom and Damiano (2009) 

used an alternative approach and tested joint-position sense using a forearm 

pronation/supination task in which the position of the occluded hand was to be aligned 

with a visual target. The ‘cross-modal matching’ required in this task, i.e. mapping 

between visual and proprioceptive information, adds another degree of difficulty (e.g. von 

Hofsten & Rosblad, 1988; Wann, 1991) and again implies that this task cannot be 

completed using somatosensory information only. In agreement with other work, this study 

showed that larger errors were made with the impaired limb than with the less-impaired 

limb. However, the overall performance of the hemiplegic group did not differ from the 

control group. Taken together, it thus seems that the accuracy of the joint-position sense 

(and the associated proprioceptive cues) is dependent on the joint (and the related muscle 

group) tested. In addition, these studies illustrate that it is difficult to assess joint-position 

sense in isolation (i.e. without confounding factors such as memory load or multi-modal 

mapping). Still, one aspect of joint-position sense that has not been considered in the study 

of SHCP is the ability to match the position of limbs in a contralateral matching task where 

the participant is instructed to copy the position of one limb by placing the other, 

contralateral limb, in the same mirror symmetric position. Such an intra-modal matching 

test, which does not require re-mapping between sensory inputs and in which the 

involvement of memory is considerably reduced, can provide us with useful information 

about how problems with proprioception influence tasks that involve both arms. This is 

particularly relevant for the study of children with SHCP whose motor impairments appear 

to be limited to one body side, but are known to hamper bimanual actions (Charles & 

Gordon, 2006). Therefore, in this study we will explore to what extent matching 

movements, in which both hands are involved, are hindered in children with SHCP by 

means of a contralateral matching task. 

It has been suggested that position sense is dependent on the location (relative to 

the body) at which the measurement is performed. Localization of the hand is more precise 

in proximity of the body (i.e. at smaller distances relative to the body) than at larger 

distances from the body (van Beers, Sittig, & Denier van der Gon, 1998; Wilson, Wong, & 

Gribble, 2010). This phenomenon has been reported in studies of young (Goble & Brown, 

2008; Goble, Lewis, & Brown, 2006) and elderly (Adamo, Martin, & Brown, 2007), 

supporting the notion that this effect is common and probably robust against 

neurodegeneration. Van Beers et al. (1998) suggested that better localization at distances 
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closer to the body may be understood from the geometry of the arm, alongside anatomical 

and physiological properties such as the fact that the number of muscle spindles acting 

about the joints in the arm increase in proximal direction (Scott & Loeb, 1994 In: van 

Beers et al., 1998). Verifying whether the accuracy in a proprioceptive-guided matching 

task in children with SHCP follows a similar trend (i.e. decrease in precision for locations 

further away from the body) may thus serve to test whether they are subject to similar 

anatomical and physiological constraints and use similar cues to localize the position of 

their hands as compared to TD children. To the best of our knowledge, this aspect has been 

largely overlooked in previous research into position sense of children with SHCP. 

The aim of this study was therefore to add to the existing body of knowledge on 

proprioception in children with SHCP, and more specifically to gain insight into the 

accuracy of position sense of the impaired and less-impaired arm in a contralateral 

matching task. In a case study (N=2) using a similar task Lee, Daniel, Turnbull, and Cook 

(1990) found that children with SHCP experienced difficulties with matching for both the 

impaired and less-impaired arm. The purpose of the current study was to substantiate these 

findings. In addition, considering the location-dependent effect on position sense, this 

study aimed to examine whether the accuracy of matching performance and possible 

differences between the SHCP and TD group on a contralateral matching task are location-

dependent (i.e. dependent on the distance relative to the body). If the distance effect in 

children with SHCP does not significantly deviate from TD children, this could suggest 

that both groups use similar sensory cues to localize the hand and are subject to similar 

anatomical and physiological constraints, despite possible disturbances in the input and/or 

processing of sensory information.  

 

Methods 

Participants 

Fourteen children with SHCP participated in this study (mean age 12.5 ± 1.9 years) of 

which six had a right and eight had a left hemiplegia (see Table 3.1 for further details). The 

participants were free from any neuromuscular disorders other than CP, did not have visual 

impairments or pain in either of the upper limbs, and they were not treated with Botulinum 

toxin in the past six months preceding the measurement. The children with SHCP were 

recruited through the Dutch society for children with a physical handicap and their parents. 

Before the actual start of the experiment, the Manual Ability Classification System 

(MACS), Functional Independence Measure (WeeFIM) and Tardieu score for spasticity 

were defined for the SHCP group in order to get an indication of the severity of the 
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disorder (Table 3.1). The MACS describes how children use their hands during object 

handling and their need for assistance to perform manual skills in everyday life (Eliasson 

et al., 2006). The severity of performance limitation and the degree of required assistance 

increases for each MACS level from 1 to 5. Seven children were classified in MACS level 

3, five children in level 2 and two children in level 1. The WeeFIM scores range from 13 

to 91 with a higher score representing a better functional independence. In the current 

population the WeeFIM scores ranged from 52 to 91. Finally, the Tardieu score was 

determined by a qualified physiotherapist as an indication of the children’s spasticity level. 

Individual scores were measured for the Biceps Brachii Brevis and the Triceps Brachii 

Longus and combined into one total score. All children showed mild to moderate spasticity 

with Tardieu scores ranging from 0.5 to 2.  

In addition, a reference group of twenty TD children without any history of 

neuromuscular disorders and within the same age range as the children with SHCP (mean 

age 12.9 ± 2.6 years) were recruited among the university staff’s families and friends. The 

TD children all had normal or corrected-to-normal vision and all but one were right hand 

dominant (determined by means of the Edinburgh Handedness Inventory; Oldfield, 1971). 

Participant characteristics can be found in Table 3.1 (SHCP) and Table 3.2 (TD). Prior to 

testing the participant’s parents provided written informed consent. All procedures were 

approved by the institutional research ethics committee and were in accordance with the 

Declaration of Helsinki.  

 

Materials and procedure 

The child was seated on a height adjustable chair without armrests at a height adjustable 

table with the knees 90° flexed. Position sense was assessed using a custom made device 

consisting of two handles, each on a separate track fixed to a horizontal panel. The tracks 

were 20 cm apart, parallel to each other, and perpendicular to the medio-lateral axis of the 

trunk. The children were positioned such that the centre of the body was located in 

between the two tracks, and with the beginning of the track at 15 cm from the upper body. 

Vision of the limbs was blocked with an opaque cover on top of the wooden construction. 

The experimental setup is depicted in Figure 3.1. The position of two parallel handles 

outside the box was recorded using one Optotrak unit with three infrared cameras (3020 

Optotrak, Northern Digital Inc., Waterloo, Canada), which enabled us to calculate the 

position of the hands inside the box.  

Before the start of the actual experiment, the maximum reaching distance of both arms was 

determined (MRD) in order to scale the different matching positions across subjects. MRD 
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corresponds to the distance from the start of the track (position most proximal to the body) 

to the position of the handles when the elbows were extended as far as possible without 

bending the trunk forward. The MRD was used to determine the three target positions to be 

tested in the matching task, i.e. 25%, 50%, and 75% of the MRD. In case the MRDs of the 

left and right arm were different, the three target positions were based on the smallest 

MRD (this was applied for both groups). This means that for the children with SHCP the 

target positions were always based on the MRD of the impaired arm. The MRDs for each 

individual are reported in Table 3.1 and 3.2.  

 

Table 3.1: Participant characteristics of the SHCP group. For each participant the age in years, sex, 

dominant hand, WeeFIM score, MACS level, Tardieu Scale, aetiology, and the Maximum Reaching Distance 

(MRD) for the dominant and non-dominant arm are presented. 

P Age 
(years) 

Sex Dominant 
arma 

WeeFIM/MACS 
 

TSb  Aetiology MRD  
D/NDc 

1 13.4 M Right 78/3 2 O2 shortage during birth 41/27.2 
2 10.5 M Right 88/3 2 Cerebral infarction 47/30 
3 10.8 M Right 91/2 1.5 Unknown 33/31.5 
4 14.5 M Right 62/3 2 Schizencephaly 48/36.5 
5 13.6 M Right 91/2 2 Cerebral infarction 34/31.5 
6 10.8 F Right 52/3 1.5 Cerebral haemorrhage 31/26 
7 12.1 

 
 

F Left 91/3 1 Cerebral infarction 
(thalamus) 

46/42 

8 15.5 M Left 76/1 2 Unknown 47/46.5 
9 9.3 M Left 91/1 1 Cerebral infarction 25.5/24.5 
10 13.1 F Left 91/2 2 Cerebral infarction 39/38 
11 14.4 M Left 81/2 1 Cerebral haemorrhage 33.5/24.5 
12 12.5 M Left 59/3 2 Cerebral infarction 34/22.2 
13 14.3 M Left 71/3 2 Unknown 38/36.5 
14 10.6 M Left 87/2 0.5 O2 shortage during birth 31/30.3 
a The dominant arm is the less-impaired arm. 
bTardieu Score = mean of the individual scores of the Biceps and the Triceps. 
cMRD = Maximum Reaching Distance; D = dominant/less-impaired limb; ND = non-dominant/impaired 
limb. 
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Table 3.2: Participant characteristics of the TD group. For each subject the age in years, sex, dominant 

hand, score of the Edinburgh Handedness Inventory, and the Maximum Reaching Distance (MRD) for the 

dominant and non-dominant arm are depicted.  

P Age 
(years) 

Sex Dominant 
hand 

EHI scorea MRD D/NDb

1 13.0 M Right 100 42/41 
2 13.2 F Right 100 37/37 
3 12.3 F Right 100 33/35 
4 13.4 M Right 100 36/34.5 
5 8.3 F Right 89 30/29 
6 10.0 F Right 80 30.5/29.5 
7 16.9 F Right 100 33.5/32.5 
8 12.9 F Right 90 34/33 
9 13.3 F Right 90 36/34 
10 15.1 M Right 90 40/40 
11 11.4 M Right 50 36/37 
12 16.3 F Right 40 32.5/34 
13 10.9 F Right 70 32.5/32.5 
14 
15 
16 
17 
18 
19 

12.1 
16.5 
17.4 
14.9 
10.6 
10.6 

F 
F 
F 
M 
F 
M 

Right 
Right 
Right 
Right 
Right 
Right 

60 
100 
70 
70 
100 
100 

38/37 
42/42 
35.5/34.5 
34/34 
28/27 
40/40 

20 10.1 F Left -50 31/30 
aEHI score = Edinburgh Handedness Score. +100 is complete right 
handedness; -100 is complete left handedness. If EHI was between -50 and +50 
(ambidexter), the writing hand was identified as the dominant hand. 
bMRD = Maximum Reaching Distance; D = dominant limb; ND = non-
dominant limb. 

 

The contralateral matching task required participants to match the position of one limb 

(reference limb), which was moved to the predetermined target position passively, by 

actively moving the other limb (matching limb) to the (mirror symmetric) position at the 

same distance as the reference arm. Three target positions (25%, 50%, and 75% of the 

MRD) were tested and the matching was done with either the less-impaired limb 

(dominant for TD children) or the impaired limb (non-dominant for TD children). The 

matching limb started at MRD (distally) or at the beginning of the track (proximally). The 

combination of all independent variables (3 target positions of the reference limb, 2 

matching limbs, and 2 start positions of the matching limb), resulted in 12 trial types. Each 

trial type was performed once. The total amount of trials was divided in two blocks: 1) 

matching with the impaired (non-dominant) arm, 2) matching with the less-impaired 

(dominant) arm. The order of blocks was randomized over participants and within each 

block the order of the trial types was randomized to reduce possible thixotropic effects on 

the matching accuracy (Proske, 2006). Prior to data collection 3 practice trials were 
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conducted to familiarize the participant with the test setup and to check if the children were 

able to perform the movement properly. If the participant was unable to grip the handle 

due to his/her physical impairment, the experimenter placed the hand on top of the handle. 

However, in none of the participants the handle slipped out of the hands during a trial. In 

order to keep the children motivated they were told that the better their performance the 

more points they would earn. At the end of the experiment they could trade their points for 

a small gift.  

 

Data analysis 

The position data of the reference and the matching limb were imported into Matlab 

(version 7.1, The Mathworks Inc.). Then, absolute endpoint error was determined as the 

distance between the two handles at the end of the movement using custom-written 

routines. The end of the movement was verified by visual inspection of the plot showing 

the time series of the matching limb’s position (inter-rater reliability r = 0.98, p < 0.001).  

In addition, we calculated the proportion of trials in which the matching arm overshot or 

undershot the position of the reference target, resulting in amplitudes that were larger or 

smaller than the actual reaching distance respectively. 

 

Statistical analysis 

The MRDs of the SCHP group and the TD group were compared with a two-way repeated 

measures ANOVA with Limb (dominant/less-impaired, non-dominant/impaired) as a 

within factor and Group (SHCP, TD) as a between factor. The endpoint error in the 

contralateral matching task was analysed using a four-way repeated measures ANOVA 

with Limb (non-dominant/impaired, dominant/less-impaired), Position of the reference 

limb (25%, 50%, 75% MRD; i.e. the distance relative to the body), and Start position 

(distal, proximal) as within subjects factors and Group (SHCP, TD) as a between subjects 

factor. In case the sphericity assumption was violated, Greenhouse-Geisser adjustments 

were made. Fishers’ LSD was used for post hoc analysis. To compare the proportions of 

undershoots and overshoots, a non-parametric Mann-Whitney U test was performed on the 

relative number of undershoots between the TD and the SHCP group. The significance 

level was set at 0.05.  
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Figure 3.1: (A) Top view of the experimental setup with the two handles that could be slid back and forth 

along the track. The screen between the arms prevented the hands from touching each other. The position of 

the handles outside the box was measured with an Optotrak camera (not depicted here). In this picture the 

opaque cover on top of the construction is not visible. 

(B) Side view of the experimental setup. The starting positions (proximal, distal) and the three target 

positions (25%MRD, 50%MRD, 75%MRD) are indicated. Please note that the target positions and the distal 

start positions (MRD) were determined based on the Maximum Reaching Distance of the child and thus 

differed per participant. 

(C) Real-life picture of the experimental setup with an opaque cover on top of the construction.  

 

Results 

Maximum Reaching Distance (MRD) 

A Limb x Group interaction (F1,32 = 17.31, p < 0.001) revealed that in children with SHCP 

the MRD of the less-impaired limb was larger than the MRD of the impaired limb  
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(p < 0.001; 37.7cm vs. 31.9cm), while no such difference was found in TD children (p = 

0.63; 35.1cm vs. 34.7cm, for dominant and non-dominant arm respectively). Further post-

hoc analysis of the Limb x Group interaction did not show differences in MRD between 

the limbs of the SHCP group and the limbs of the TD group (Dominant arm: 37.7cm 

[SHCP] vs. 35.1cm [TD]; Non-dominant arm: 31.9cm [SHCP] vs. 34.7cm [TD]).  

 

Endpoint error 

All children were able to complete the experiment, but due to technical problems with the 

motion capture system during a number of trials of participants 7 (1 trial), 11 (2 trials), and 

12 (2 trials) of the SHCP group, the data of these participants could not be included in the 

statistical analysis.  

Analysis of the absolute error in the matching task revealed a two-way interaction 

between the factors Position reference and Start position (F2,58 = 32.73, p < 0.001), which 

was also present in two three-way interactions: Position reference x Start position x Group 

(F2,58 = 5.26, p = 0.008) and Position reference x Start position x Matching limb (F2,58 = 

3.29, p = 0.04). Inspection of this Position reference x Start position interaction (see Figure 

3.2) showed an almost symmetrical picture for trials starting at a distal point and trials 

starting in proximity of the body, for both groups. Absolute error at 25%MRD in trials 

starting in the proximity of the body (i.e. 0%MRD) was similar to the absolute error at 

75%MRD in trials starting at the most distal point from the body (100% MRD). Likewise, 

absolute error at 75%MRD in trials starting proximal to the body (i.e. 0%MRD) was not 

different from absolute error at 25%MRD in trials starting at the most distal point from the 

body (100% MRD). Finally, a distal or proximal start of the matching limb did not affect 

the amplitude of the error when the reference limb was positioned at 50%MRD. In fact, 

this Position reference x Start position interaction reveals a Distance effect indicating 

gradually larger absolute errors for larger reaching distances, i.e. the distance that has to be 

covered by the matching hand in order to achieve an error of 0. A secondary 3-way 

repeated measures ANOVA (Limb x Distance x Group), in which the dependent variables 

Position reference and Start position were combined into one factor (Distance), yielded 

identical results as the initial 4-way ANOVA (Figure 3.3 explains the relation between the 

factors Position reference and Start position and Distance.) For reasons of clarity and 

comprehensibility, the results of the secondary analysis, in which all participants were 

included, will be presented here.  
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Figure 3.2: The absolute endpoint errors (in cm) on different positions of the reference limb (25%MRD, 

50%MRD, 75%MRD) for the different starting positions (distal, proximal) for the SHCP (top graph) and the 

TD group. The solid line represents the errors when the matching position was at 25%, 50% or 75%MRD 

when starting the movement proximally to the body. The dashed line represent the errors when matching the 

arms at a target position at 25%, 50% and 75%MRD when starting the movement distally from the body. 

0

1

2

3

4

5

6

25%MRD 50%MRD 75%MRD

SHCP

Distal

Proximal

0

1

2

3

4

5

6

25%MRD 50%MRD 75%MRD

TD

Distal

Proximal

E
rr

o
r

in
 c

m



Chapter 3 

 

 

51 

 

Figure 3.3: Conversion from Position reference (25%MRD, 50%MRD, 75%MRD) and Start position 

(proximal, distal) into Distance (small [S], medium [M], and large [L]). It can be seen that e.g. moving 

towards 25%MRD when starting proximally results in the same distance as moving towards 75%MRD when 

starting distally.  

 

This secondary analysis revealed main effects of Group (F1,32 = 72.41, p = 0.002) and 

Distance (F2,64 = 29.51, p = 0.002) on absolute error, which were superseded by a Group x 

Distance interaction (F1.4, 44.3 = 5.47, p = 0.006; see Figure 3.4) and a Group x Distance x 

Limb interaction (F2,64 = 3.78, p = 0.028; see Figure 3.5). Post-hoc examination showed 

that the accuracy in this matching task dropped as a function of the reaching distance in 

both groups, but this drop in accuracy (i.e. increase in error) was significantly greater in 

the children with SHCP than in the TD children. This finding was further supported by the 

fact that there was no difference in absolute error between the SHCP and TD children for 

the small distance. In the medium distance the less-impaired limb of the SHCP group 
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showed larger errors than the dominant arm of the TD group whereas no differences 

between the impaired arm and the non-dominant arm were found. Finally, when the 

reaching distance was large the errors made by both the impaired and the less-impaired 

arm were larger than in their counterparts of the TD group. Furthermore, no difference 

between the arms was found in TD children. In children with SHCP, however, matching 

with the impaired arm resulted in significantly larger absolute errors than matching with 

the less-impaired arm for the large distance condition (5.25cm vs. 3.99cm), while the 

opposite was found for the medium distance condition (2.64cm vs. 3.93cm). There was no 

difference between the impaired and less-impaired matching limb when the reaching 

distance was small. 

 

 

Figure 3.4: The absolute errors (in cm) of the typically developing (TD) and the Cerebral Palsy (SHCP) 

group for the different distances (small, medium, large).The black line represents the errors of the SHCP 

group and the grey line represents the errors of the TD group.  
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Figure 3.5: The absolute errors (in cm) of both upper limbs for the Typically Developing (TD) group (grey 

lines) and the Spastic Hemiparetic Cerebral Palsy (SHCP) group (black lines) depticted for each distance 

seperately. The distances (small, medium, large) are depicted on the horizontal axis. The solid grey line 

represents the errors of the non-dominant arm, the dashed grey line represents the errors of the dominant 

arm. The error of the impaired arm of the SHCP group are depicted with a solid black line and the error of 

the less-impaired arm is represented by the dashed black line.  

 

Relative number of undershoot and overshoot 

The proportion of trials resulting in an overshoot or undershoot is depicted in Table 3.3. 

All children undershot the target in the majority of the trials (TD: 80.8%, SHCP: 74.1%). 

These proportions were not significantly different (U = 103.0, z = -1.31, p = 0.19, average 

ranks = 19.4 and 14.9 for TD and SHCP respectively). In addition, inspection of Table 3.3 

shows that the relative number of undershoots increased with increasing distance in both 

groups. The differences in the proportion of undershoots between the arms were small, 

especially in the SHCP group.  
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Table 3.3: Percentages (and proportions) of the overshoots and undershoots in the SHCP (impaired and 

less-impaired arm) and the TD group (non-dominant and dominant arm) in the small, medium and large 

distance. In the last column the total relative number of under- and overshoots is depicted.  The range (in cm) 

of the total percentage overshoots (positive values) and undershoots (negative values) is indicated between 

brackets.  

Undershoot Small Medium Large Total 
SHCP Impaired 66.7%  

(18/27*) 
63%  
(17/27) 

89.3%  
(25/28) 

74.1% 
(-18.3 - -0.1) 

 Less-impaired 73.1%  
(19/26)  

71.5% 
(20/28) 

81.5%  
(22/27) 

TD Non-dominant 67.5%  
(27/40) 

70%  
(28/40) 

87.5%  
(35/40) 

80.8% 
(-7.0 - -0.01) 

 Dominant 80%  
(32/40) 

87.5%  
(35/40) 

90%  
(36/40) 

Overshoot 
SHCP Impaired 33.3%  

(9/27**) 
37% 
(10/27) 

10.7%  
(3/28) 

25.9% 
(0.03-5.7) 

 Less-impaired 26.9%  
(7/26) 

28.5%  
(8/28) 

18.5%  
(5/27) 

TD Non-dominant 32.5%  
(13/40) 

30%  
(12/40) 

12.5%  
(5/40) 

19.2% 
(0.02-3.3) 

 Dominant 20%  
(8/40) 

12.5% 
 (5/40) 

10% 
 (4/40) 

* Number of trials with undershoot/total number of trials 
** Number of trials with overshoot/total number of trials 

 

Relation with the level of spasticity and MRD 

Two additional analyses were performed in order to examine whether the level of 

spasticity (Tardieu score) and the difference in MRD between the limbs have an influence 

on the magnitude of the absolute errors and on the number of trials with undershoot in 

children with SHCP.  

For the first additional analysis, the children with SHCP were divided into two groups 

based on their spasticity level as indicated by the Tardieu score. One group (‘mild 

spasticity group’) included all children with a Tardieu score equal to or below 1 (n = 4) and 

the other group (‘moderate spasticity group’) included the children with a score above 1 (n 

= 10). The results of the Mann-Whitney U test revealed that the ‘mild spasticity group’ did 

not differ significantly from the ‘moderate spasticity group’ on the percentage undershoots 

(U = 15.5, z = -0.65, p = 0.51, average ranks = 8.6 and 7.0 respectively). Likewise, no 

differences between the group with scores equal to or below 1 and the group with scores 

above 1 were found for the absolute error when matching with the impaired limb on all 

three distances (Small: U = 14.0, z = -0.85, p = 0.39, average ranks = 6.0 vs. 8.1; Medium: 

U = 13.0, z = -0.99, p = 0.32, average ranks = 9.3 vs. 6.8; Large: U = 10.0, z = -1.14, p = 

0.16, average ranks = 10.0 vs. 6.5).  
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For the second additional analysis, we compared the children with SHCP based on 

the relative difference of MRD between the less-impaired and the impaired arm. For each 

individual, the difference between the two MRDs (see Table 3.1) was divided by the 

largest MRD (expressed as a percentage) in order to minimize the inter-individual 

variability in arm length. The first group included the children with less than 10% relative 

difference (n = 8) and the second group included children with more than 10% relative 

difference (n = 6). 

When comparing these two groups on relative number of undershoots, the Mann-

Whitney U test did not reveal a significant difference between the groups (U = 14.5, z = -

1.26, p = 0.21). The ‘more than 10% group’ showed an average rank of 5.9 and the ‘less 

than 10% group’ had an average rank of 8.7. This then suggests that both groups did not 

significantly differ on relative numbers of undershoot. 

Also when focusing on the absolute error, no differences were demonstrated. The 

absolute error on the small distance when matching with the impaired limb showed similar 

ranks for the groups with large and the small differences in MRD (U = 22.0, z = -0.26, p = 

0.8, average ranks 7.2 and 7.8 respectively). Also for the medium and the large distance no 

differences were found between the ‘less than 10% group’ and the ‘more than 10% group’ 

(Medium: U = 12.0, z = -1.55, p = 0.12, average ranks = 5.5 vs. 9.0; Large: U = 15.0, z = -

1.16, p = 0.25, average ranks = 9.0 vs. 6.4). 

 
Discussion 

In order to better understand the impact of Spastic Hemiparetic Cerebral Palsy (SHCP) on 

position sense during bimanual tasks, the current study compared the performance of 

children with SHCP and TD children in a typical contralateral arm matching task. We 

found that children with SHCP matched the position of the reference arm less accurately 

than TD children as reflected in larger matching errors for both the impaired and less-

impaired arm. Previously, Wann (1991) has shown similar bilateral deficits in a small 

group of children with mixed CP-diagnosis, i.e. quadriplegia and diplegia where the 

condition is caused by a lesion to the left and right hemisphere. Yet, our results 

demonstrate that also children with unilateral brain damage have difficulties with matching 

the position of the upper limbs (without visual information), which is in congruence with 

Lee et al. (1990) who reported similar findings in a case study with two children with 

SHCP. Interestingly, the performance in the current contralateral matching task appeared 

to depend on the range of the reaching movement required to match the target. In both the 

SHCP and the TD children endpoint error gradually increased as a function of the initial 
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distance between the reference limb and the matching limb, i.e. at the start of the trial. In 

contrast to previous research that showed a drop in precision when localizing targets 

further away from the body (i.e. larger distance relative to the body; Adamo et al., 2007; 

van Beers et al., 1998), the distance effect found in the current study was independent of 

the target position relative to the body. Rather, the accuracy in this matching task was 

affected by the distance of the reaching movement irrespective of whether the movement 

was to a proximal or a distal target. It should be noted that this effect was stronger for the 

SHCP than for the TD children. In addition, further analysis showed that performance of 

the two groups only differed significantly in the medium and large distance condition.  

What makes matching more prone to error when the initial distance between the 

effector and the target is larger? The cause of this distance effect might be related to the 

nature of movements children perform and practice as part of their daily routine. Daily 

movements in which both limbs are involved are usually movements in which the limbs 

are relatively close to each other, for example cutting a piece of bread, typing on the 

computer, or playing with a doll. As a result it is conceivable that the joint-position sense 

is better developed within the daily range of motion and less developed (less specific) 

outside that range. Furthermore, larger reaching movements are also more prone to signal-

dependent noise as they require neural command signals of a greater intensity, which come 

with increased variance of noise (Goble, 2010; Harris & Wolpert, 1998). This phenomenon 

is expected to amplify the endpoint error of movements with larger amplitudes.  In addition, 

for children with SHCP, involuntary muscle contractions associated with spasticity can 

lead to a situation in which the muscle tends to remain in a shortened position. This 

restriction in range of motion may cause length-related changes in the muscle-tendon 

complex and can eventually lead to a loss of joint range, or contracture (Ada, O'Dwyer, & 

O'Neill, 2006). Although spasticity may impede the movement required in the present 

study, it has to be noted that the movement was self-paced and within the range of motion 

of the impaired limb which should have limited the impact of the (high) velocity depended 

reaction. If the restriction in range of motion would explain the difference in matching 

accuracy between the SHCP and the TD group, more undershoot would be expected in the 

SCHP group (in particular for the spastic impaired arm) compared to the TD group. Yet, 

both groups undershot the target in the majority of the trials and there was no difference 

between the children with SHCP and the controls, or between the impaired and the less-

impaired arm. Moreover, children with low levels of spasticity undershot the target in as 

many trials as the children exhibiting higher levels of spasticity and the size of the absolute 

error neither differed between these groups. A similar finding was demonstrated for the 
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difference in MRD: the group with larger differences in MRD between the impaired and 

less-impaired arm did not show significantly more frequent undershoots or larger absolute 

errors than the group with smaller differences in MRD. Therefore, although we cannot 

exclude that the restricted range of motion in children with SHCP may have contributed to 

the larger endpoint errors at the large distance, the present results suggest that a 

compromised motor system cannot fully account for the lower matching accuracy in the 

SHCP group and the high prevalence of undershoot.  

In addition to the diminished matching ability of the impaired arm, larger endpoint 

errors for the less-impaired arm compared to the dominant arm in the medium and large 

distance condition indicate, in agreement with previous research (Chrysagis et al., 2007; 

Goble, Hurvitz et al., 2009; Wingert et al., 2009), that SHCP could be associated with 

sensory problems in conjunction with their motor problems. The performance in the 

contralateral matching task is the combined result of a number of interacting factors. 

Afferent proprioceptive signals determine the position of the reference arm. This 

information is processed at cortical level leading to efferent motor commands which move 

the contralateral arm to the felt target position. Finally, afferent proprioceptive signals 

coming from the matching arm may be used to fine tune and match the position of the 

reference arm. It is impossible to pinpoint the origin of a matching problem on the basis of 

our findings, however a detailed comparison of the performance of the impaired and less-

impaired limb may provide more insight into the specific difficulties encountered by 

children with SHCP in tasks requiring bimanual control. A first question that needs to be 

addressed is whether the matching difficulties may be explained by a deficit at the cortical 

level only. A deficiency in mapping proprioceptive signals from the reference arm onto an 

egocentric reference frame is likely to result in distance independent matching errors for 

both arms, i.e. the matching error would be the same for both arms on each distance. 

However, the finding that performance of the limbs of children with SHCP was only 

comparable (with each other and with the TD group) in the small distance condition 

appears to be inconsistent with this notion and suggests that deficits occur both at cortical 

level and at the level of the muscle. Secondly, while the impaired arm located the target 

less accurately than the less-impaired in the large distance condition, the opposite was 

found in the medium distance condition. This is in contrast with the TD children where the 

endpoint error was similar for both arms in all three conditions and raises the question 

whether position sense may be affected in the less-impaired arm of children with SHCP 

too. Based on purely unimanual pointing tasks, Goble et al. (2009) and Wingert et al. 

(2009) concluded that position sense of the less-impaired arm was not reduced. The 
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implication would then be that the larger matching errors of the less-impaired limb for the 

medium distance condition in our study were caused by disturbed afferent information 

originating from the impaired reference limb only. This would suggest that SHCP would 

affect the accuracy of position sense when the impaired limb is used as a static reference 

(or target) more than when it is actively involved in the reaching movement. However, 

given the fact that involuntary spastic contractions primarily emerge when the affected 

muscle is stretched (i.e. dynamic rather than static conditions) the aforementioned 

suggestion seems to be counterintuitive. Thus while decreased position sense of the 

impaired limb is likely to contribute to the matching errors of the less-impaired limb, at 

this moment the contralateral matching task does not allow us to exclude difficulties at the 

level of the less-impaired arm either. At last it should also be noted that in the current 

study the differences between the impaired and the less-impaired side may also be related 

to the fact that the target locations were based on the smaller maximum reaching distance 

of the impaired limb. This meant that the less-impaired limb operated within smaller range 

of movement relative to its maximal range than the impaired limb, which may be partly 

responsible for the smaller error of the less-impaired limb at large distances.  

To summarize, although the contralateral matching task is unable to isolate position 

sense deficits of the impaired and less-impaired arm, the current results demonstrate that 

children with SHCP are clearly disadvantaged when performing skills that involve both 

arms. Accurate positioning of one arm relative to the position of the other arm, which is 

required in numerous manual skills, is impaired regardless of which arm is used.  

Finally, it has been suggested that tasks requiring processing and mapping of 

proprioceptive information are subserved by a fronto-parietal network that is mainly 

located within the right hemisphere (reflected in a left hand proprioceptive advantage for 

right handers; Goble & Brown, 2008). This is consistent with findings of Goble et al. 

(2009) demonstrating poorer proprioceptively guided matching in individuals with right 

hemispheric damage than in individuals with a left hemispheric damage. Reinspection of 

our data (6 children with right hemispheric damage vs. 8 children with left hemispheric 

damage) did not reveal such a difference. Since we were unable to match these two groups 

for size and specific location of the lesion, caution is warranted when interpreting these 

results. Moreover, other findings of Goble show that left-handed individuals have a right 

hand advantage for proprioceptive tasks (Goble, Noble, & Brown, 2009), indicating that 

other factors related to practice and specific function of the hand are likely to contribute to 

the left – right differences in position sense. Altogether without controlling for important 

confounding factors, such as specific location of the lesion, size of the lesion, functionality 
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of the impaired arm etc., we believe it is premature to compare SHCP children with left 

and right hemispheric damage.  

In conclusion, the results of the present study demonstrate that children with SCHP 

exhibit severe deficiencies in accurate positioning of one arm relative to the position of the 

other arm when compared to TD children. Despite the fact that with a contralateral 

matching task we cannot draw conclusions on the origin of the proprioceptive deficits, it is 

suggested that the unilateral proprioceptive deficits reported by previous studies, severely 

hamper the matching of the limbs. This deficit is particularly visible when the initial 

distance between the target and the matching arm is large (irrespective of target position 

relative to the body).  
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Abstract 

This study examined the active joint-position sense in children with Spastic Hemiparetic 

Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual 

feedback, of the non-moving limb, on the joint-position sense. Participants were asked to 

match the position of one upper limb with that of the contralateral limb. The task was 

performed in three visual conditions: without visual feedback (no vision); with visual 

feedback of the non-moving limb (screen); and with visual feedback of the non-moving 

limb and its mirror reflection (mirror). In addition to the proprioceptive measure, a 

functional test (Quality of Upper Extremity Skills Test [QUEST]) was performed and the 

amount of spasticity was determined in order to examine their relation with proprioceptive 

ability. Results showed that the accuracy of matching was significantly influenced by the 

distance that had to be covered by the matching limb; a larger distance resulted in a lower 

matching accuracy. Moreover it was demonstrated that static (mirror) visual feedback 

improved the matching accuracy. A clear relation between functionality, as measured by 

the QUEST, and active joint-position sense was not found. This might be explained by the 

availability of visual information during the performance of the QUEST. It is concluded 

that static visual feedback improves matching accuracy in children with SHCP and that the 

initial distance between the limbs is an influential factor which has to be taken into account 

when measuring joint-position sense. 
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Introduction 

Cerebral palsy (CP) is, with an incidence of 2-2.5 per 1000 living births, one of the most 

common childhood disorders (Lin, 2003). The condition is caused by damage to the brain 

and/or pyramidal tract and depending on the location of the lesion and the clinical outcome 

of the damage, different forms of CP are distinguished. In Spastic Hemiparetic Cerebral 

Palsy (SHCP) the damage is limited to one side of the brain leading to impaired control of 

muscle tone and spasticity in the lower and upper limbs on the contra-lesional side of the 

body (Albright, 1996). Although SHCP is classed as a unilateral condition, recent studies 

have highlighted that children with SHCP have motor difficulties beyond their unilateral 

deficits. The spasticity of the impaired limb limits the performance of bimanual tasks and 

evidence suggests mild motor impairments in the unaffected limb as well (Steenbergen & 

Meulenbroek, 2006).  

Impairments as spasticity are often accompanied by disturbances in proprioception 

(Cooper, Majnemer, Rosenblatt, & Birnbaum, 1995; Odding, Roebroeck, & Stam, 2006). 

Proprioception is a complex somatosensory modality that consists of two components: 

kinaesthesia and joint-position sense. Kinaesthesia is defined as the sense of limb 

movement whereas joint-position sense is referred to as static limb position (Goble, Lewis, 

Hurvitz, & Brown, 2005). Proprioception plays a major role in performing and controlling 

movements including updating motor plans based on e.g. monitoring movement execution 

through comparison of predicted and actual movement outcomes (Goble, 2006). A number 

of studies have demonstrated that the proprioceptive ability of children with SHCP is 

impaired (Goble, Hurvitz, & Brown, 2009; Wann, 1991; Wingert, Burton, Sinclair, 

Brunstrom, & Damiano, 2009), and there are indications that the impaired limb has a 

poorer proprioception than the less-impaired limb (Goble, Hurvitz et al., 2009; Wingert et 

al., 2009). Furthermore, in addition to the differences in proprioception between the limbs, 

Goble, Hurvitz et al. (2009) also found a difference in proprioceptively guided matching 

tasks between individuals with a left brain lesion and individuals with a right brain lesion. 

In individuals with a right hemispheric lesion (RHL) the proprioceptive ability was more 

impaired than in individuals with a left hemispheric lesion (LHL). Goble’s findings can be 

supported by neuroimaging studies which showed that the right hemisphere is more 

activated during the performance of a proprioceptive task (Naito et al., 2005). 

Although proprioception is impaired in individuals with SHCP, they are still able to 

sustain a certain level of movement accuracy, implying that visual information is used to 

attain this movement accuracy (van Roon, Steenbergen, & Meulenbroek, 2005). Indeed, 

studies by Wingert et al. (2009) and Wann (1991) on individuals with CP demonstrated 
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that vision of the moving upper limb improved the performance on the joint-position task 

compared to a situation in which no visual feedback of the moving upper limb was 

available. However, Wann (1991) also showed that visual information of the non-moving 

hand did not improve movement accuracy in a joint-position sense task for individuals 

with bilateral CP. According to Wann (1991) this suggests that individuals with bilateral 

CP have difficulties encoding the visual and proprioceptive information into a common 

reference frame. However, the possibility that visual feedback of the non-moving limb 

might afford a reference frame for the proprioceptive information of the moving limb has 

not been investigated in individuals with hemiplegia. One of the explanations for the 

problems in encoding proprioceptive and visual information that Wann (1991) presents is 

that the cortical damage may have destroyed the neural structures that are necessary for 

egocentric mapping. This might indeed be the case for diplegic patients, but children with 

hemiplegia have a lesion in one hemisphere. It therefore might be possible that patients 

with hemiplegia are able to encode proprioceptive and visual information into a common 

reference frame.  Therefore, the present study will examine the effect of visual feedback of 

the non-moving limb on the contralateral matching performance of the moving limb in this 

population. Given the asymmetry in proprioception in hemiplegia but also given the fact 

that only one hemisphere is damaged, it can be expected that the visual and proprioceptive 

information of the non-moving (less-impaired) upper limb might be integrated into one 

egocentric reference frame for the moving (impaired) upper limb (Jeannerod, 1986; von 

Hofsten & Rosblad, 1988; Wann, 1991), facilitating the contralateral matching in 

comparison to a situation in which no visual feedback is available.  

In addition to the effect of visual information of the non-moving limb, the current 

study investigates the effect of mirror visual feedback of the non-moving limb on the 

matching accuracy during a contralateral matching task in children with SHCP. Mirror 

visual feedback has been demonstrated to have a positive effect on the bimanual 

coordination and neuromuscular activity in children with SHCP (Feltham, Ledebt, Bennett, 

Deconinck, Verheul, and Savelsbergh 2010; Feltham, Ledebt, Deconinck, & Savelsbergh, 

2010). However, Holmes & Spence (2005) showed that manipulating the position of the 

moving hand (behind the mirror) influenced unimanual reaching movements in typically 

developed (TD) adults negatively. They suggested that this was the result of an integration 

of visual and proprioceptive information of the non-moving limb which caused a bias in 

the felt initial position of the moving hand. It can thus be hypothesized that providing 

mirror visual feedback of the non-moving (less-impaired) upper limb (thus seeing two non-

moving upper limbs), would deteriorate the contralateral matching performance of the 
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impaired upper limb in children with SHCP. In the forthcoming, visual feedback of the 

non-moving limb will be referred to as static visual feedback and visual feedback of the 

moving limb will be referred to as dynamic visual feedback. Mirror visual feedback of the 

non-moving limb will be referred to as static mirror visual feedback.  

Literature on the relationship between impaired proprioception and other 

impairments in CP as well as the relationship with the activity level is scarce. The 

relationship with spasticity was assessed in the study of Chrysagis, Skordilis, Koutsouki 

and Evans (2007) who showed that an increase in spasticity was related to a decreased 

performance on an active joint-position sense task. Accordingly, Tardieu, Tardieu, 

Lespargot, Toby, and Bret (1984) stated that spasticity causes disturbances in the muscle 

spindle functioning leading to inappropriate kinaesthetic feedback (Chrysagis et al., 2007). 

However, the relationship between arm/hand functionality and joint-position sense has, to 

the best of our knowledge, not been examined yet. In order to get more insight into the 

influence of spasticity on joint-position sense and to clarify the impact of an impaired 

joint-position sense on daily functioning, the current study will investigate these two 

relationships. 

In general, the present study aimed to get more insight into the proprioceptive 

impairments of the impaired and the less-impaired upper limb in children with SHCP. We 

assessed the role of static visual feedback and static mirror visual feedback on joint-

position sense of the upper limbs using three different visual conditions: a no vision 

condition without any visual feedback of both limbs, a screen condition in which only the 

non-moving reference limb was visible (static visual feedback) and a mirror condition in 

which the non-moving reference limb was visible and its reflection in the mirror (static 

mirror visual feedback). It was hypothesized that static visual feedback of the less-

impaired limb would improve the movement accuracy of the impaired limb compared to 

the situation without visual feedback. In addition, it was expected that static mirror visual 

feedback would create a conflict situation between the visual and proprioceptive feedback 

which would result in a deteriorated performance.  

Furthermore, the current study aimed to examine the relationship between one of 

the main impairments in CP, spasticity, and the impaired proprioception in CP, and 

between the impaired proprioception and the arm/hand functionality. It was hypothesized 

that a higher degree of spasticity would be related to an impaired joint-position sense 

which would in turn be linked to a deteriorated arm/hand functionality. Finally, differences 

in joint-position sense impairment between left and right hemispheric brain lesions were 

examined. Following the findings of Goble, Hurvitz et al. (2009) it was hypothesized that 
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individuals with a right hemispheric lesion would have a more deteriorated joint-position 

sense than individuals with a left hemispheric lesion.  

 

Methods 

Participants 

Fourteen children with SHCP participated in the study (age 12.6 ± 1.95 years). 6 children 

had a right hemispheric lesion and 8 children had a left hemispheric lesion. Individual 

participant characteristics can be found in Table 4.1. None of the participants had any 

neuromuscular disorder other than SHCP, pain in either of the upper limbs, visual neglect, 

visual impairments not corrected to normal, mental retardation, or received a treatment 

with Botulinum toxin in either of the arms in the past six months preceding the 

measurement. The children with SHCP were recruited through the Dutch society for 

children with a physical handicap and their parents (BOSK). Participants’ parents provided 

written informed consent prior to testing. All procedures were approved by the institutional 

research ethics committee and in accordance with the Declaration of Helsinki.  

 

Measures of functionality 

Before the actual start of the experiment different measures were performed to examine the 

participants’ body functions. Additional information about the child’s disorder was 

obtained from a general questionnaire, filled in by the parents, with questions about e.g. 

the cause and severity of the disorder and limitations the child faces in daily life. In 

addition, the parents were asked to fill in The Functional Independence Measure for 

children (WeeFIM). The WeeFIM measures the functional abilities in activities of daily 

life like the ability to feed, dress and bathe (Ottenbacher, Hsu, Granger, & Fiedler, 1996). 

For the current study only the WeeFIM motor items were used.  

Grip strength was determined for each upper limb, using a hand-held dynamometer 

measuring the average of three maximum voluntary contractions in kilograms (JAMAR, 

digital hand dynamometer, Clifton, USA).  
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Table 4.1: Participant characteristics. For each participant the age in years, sex, side of the brain lesion, 

grip strength of the (less-) impaired arm, score of the Tardieu, WeeFIM, and MACS and aetiology are 

presented. 

P Age  
(years) 

Sex Side brain 
lesiona 

Grip 
strength 
impaired/ 
less-
impaired 
limb (kg) 

TSelbow 

(flex-ext)/ 
TSwrist 

(flex-ext)
b 

WeeFIM/ 
MACS 

Aetiology 

1 13.4 M Right 11.7/52.3 3-1/2-2 78/3 O2 shortage 
during birth 

2 10.5 M Right 4.0/44.0 3-1/3-0 88/3 Thrombosis 
3 10.8 M Right 12.3/30.0 2-1/1-0 91/2 Unknown 
4 14.5 M Right 7.3/52.3 2-2/2-0 62/3 Schizen-cephaly 
5 13.6 M Right 14.7/52.0 2-2/0-0 91/2 Cerebral 

infraction 
6 10.8 F Right 4.7/22.0 2-1/0-0 52/3 Cerebral 

Haemorrhage 
7 12.1 F Left 2.0/63.7 2-0/2-1 91/3 Thalamus 

infarction at 
birth 

8 15.5 M Left 60.3/105.7 2-0/0-0 76/1 Unknown 
9 9.3 M Left 23.3/49.7 2-0/0-0 91/1 Cerebral 

infarction 
10 13.1 F Left 25.0/69.7 2-2/0-0 91/2 Cerebral 

infarction 
11 14.4 M Left 0.0/104.0 2-0/0-0 81/2 Cerebral 

haemorrhage 
12 12.5 M Left 0.0/62.0 2-2/2-0 59/3 Cerebral 

infarction 
13 14.3 M Left 13.6/101.3 2-2/1-0 71/3 Unknown 
14 10.6 M Left 24.7/69.0 0-1/0-0 87/2 O2 shortage 

during birth 
aThe impaired arm is the arm contralateral to the brain lesion. 
bTS = Tardieu Score of the impaired limb. (flex/ext) are separate scores for flexion and extension. 

 

The Quality of Upper Extremity Skills Test (QUEST; DeMatteo et al., 1992) was 

performed to qualify the functional ability of the arms and hands of each participant. This 

test consists of 7 domains, however for this study only the parts about “Dissociated 

movements” (part A) and “Grasps” (part B) were conducted since these two domains were 

specifically related to the task the children had to perform during the measurement. The 

QUEST is validated for children between 18 months and 8 years of age (DeMatteo et al., 

1992). However, although the mean age of our population is 12.6 years it was still chosen 

to use the QUEST since this test is more extensive than other tests that measure the 

functioning of the upper limbs. Based on the items of the two included parts of the QUEST 

and the related scoring criteria we calculated separate scores for the impaired and the less-

impaired limb. A higher score on this selection of QUEST items represents a better 
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functionality. Table 4.2 presents the individual QUEST scores. The performances of the 

QUEST were recorded with a digital video camera (JVC Hard disk Camcorder, HDD F1.2, 

GZMG40E) in order to score the performances afterwards. Two experimenters analyzed 

the video tapes independently. The inter-rater reliability was high (r = 0.92, p < 0.001). 

 In addition to the QUEST, the Manual Ability Classification System (MACS) level 

was determined. The MACS describes how children use their hands during object handling 

and their need for assistance to perform manual skills in everyday life (Carnahan, Arner, & 

Hagglund, 2007). The severity of performance limitation and the degree of required 

assistance increases for each MACS level from 1 to 5. The MACS levels and their 

specifications are depicted in Table 4.3.  

The degree of spasticity was determined by a qualified physiotherapist using the 

Tardieu Scale. The assessment involved passive movement of the arm in the sagittal plane, 

first as slow as possible and second as fast as possible, while the child was seated on a 

chair with the knees bend in 90°. The physiotherapist quantified the spasticity of the arm 

muscles (Biceps Brachii Brevis, Triceps Brachii Longus, flexors and extensors of the wrist) 

during the fast velocity stretch according to the criteria of muscle reaction for grades 0-3. 

The definition of each grade is depicted in Table 4.4. The Tardieu score averaged for the 

Biceps and the Triceps was further used for analysis.  

 

Table 4.2: QUEST scores; Total score and scores of Part A (dissociated movements) and Part B (grasps) for 

each limb. 

P Total  
score 

Part A  
impaired limb 

Part A  
less-impaired limb 

Part B  
impaired limb 

Part B 
 less-impaired limb 

1 72.2 60.0 99.2 86.7 100 
2 51.1 57.0 100 50.0 80.0 
3 82.5 86.6 99.1 81.7 88.3 
4 65.3 72.5 100 60.0 80.0 
5 68.5 66.5 100 73.3 90.0 
6 52.6 64.8 99.2 48.3 85.0 
7 77.4 71.5 100 85.0 100 
8 96.4 98.4 100 96.7 98.3 
9 95.9 99.2 100 93.3 93.3 
10 81.7 78.1 100 86.7 100 
11 55.2 54.8 100 60.0 100 
12 51.4 54.7 100 55.0 93.3 
13 63.0 70.7 98.4 65.0 95.0 
14 85.1 77.3 98.4 95.0 95.0 
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Table 4.3: Description for each MACS level. 

MACS level Description 

1 Handles objects easily and successfully. 
2 Handles most objects but with somewhat reduced quality or speed of achievement. 
3 Handles objects with difficulty; needs help to prepare or modify activities. 
4 Handles a limited selection of easily managed objects in adapted situations. 
5 Does not handle objects and has severely limited ability to perform even simple actions. 

 

Table 4.4: Tardieu scale scoring the quality of muscle reaction to stretch. 

0 No catch, no resistance. 
1 Light resistance without clear catch. 
2 Clear catch followed by a release. 
3 Clear catch, no release. 

 

Procedures 

The child was seated on a height adjustable chair at a height adjustable table with the knees 

90° flexed. Joint-position sense was assessed using a custom made device consisting of 

two handles, each on a separate track fixed to a horizontal panel. The tracks were 20 cm 

apart, parallel to each other, and perpendicular to the medio-lateral axis of the trunk. The 

handles could be moved within a range of 56 cm. The children were positioned such that 

the centre of the body was located in between the two tracks, and with the beginning of the 

track at 15 cm from the upper body. The position of the handles was recorded outside the 

wooden device using one Optotrak unit with three infrared cameras (3020 Optotrak, 

Northern Digital Inc., Waterloo, Canada). The experimental setup is depicted in Figure 4.1. 

Before the start of the measurement, the maximum reaching distance of the 

impaired arm was determined (MRD) in order to scale the different matching positions 

across subjects. MRD was the distance from the start of the track to the position of the 

handles when the elbows were extended as far as possible without bending the trunk 

forward. If a participant was unable to grip the handle due to physical impairment, the 

experimenter placed the hand on top of the handle. All participants were able to hold the 

handles during the whole experiment.  

The active joint-position sense task required participants to match the position of 

one limb (reference limb), fixed at 25%, 50%, or 75% of the MRD, by actively moving the 

other limb (matching limb). The task was performed with either the less-impaired limb or 

the impaired limb and the matching started at the MRD (distal) or at the beginning of the 

track (proximal). The matching task was performed in three different visual conditions: a 

no vision condition (both hands were not visible), a screen condition (only the reference 

hand was visible), and a mirror condition (only the reference hand was visible and its 

reflection in the mirror). The position of the reference limb (3), the matching limb (2), the 
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start position of the matching limb (2), and the visual conditions (3) resulted in 36 trials. 

The conditions were randomly presented to the participant but all trials with the same 

matching limb were kept together even as the trials within one visual condition. Prior to 

data collection 3 practice trials were conducted to familiarize the participant with the test 

setup. In order to keep the children motivated they were told that the better their 

performance the more points they could get. At the end of the experiment they could trade 

their points for a small gift.  

 

Figure 4.1: Experimental setup during the no vision (left panel), screen (middle panel), and mirror (right 

panel) condition. 

 

Data analysis 

A custom made Matlab program (The Mathworks, Inc.) was used to determine the absolute 

difference (error) between the position of the reference limb and the position of the 

matching limb at the end of the movement. The end of the movement was indicated by 

visual inspection (see Figure 4.2).  

Goble, Coxon, Wenderoth, Van Impe, & Swinnen (2009) stated that several studies 

that measured proprioceptive acuity found larger errors for the matching of targets farther 

from the body in contrast to targets closer to the body. However, in these studies the 

starting position was the same for all trials and hence it can be argued that the distance that 

has to be covered by the matching limb is the influencing factor instead of the position 

relative to the body. This idea is supported by Smorenburg, Ledebt, Deconinck, & 

Savelsbergh (2012) who found larger errors when the distance covered by the matching 

limb was larger. Therefore the current study combined the two starting positions (distal, 

proximal) of the matching limb and the three positions of the reference limb (25%, 50%, 

75% of the MRD) into three distances that had to be covered by the matching limb (small, 

medium, large).   
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Figure 4.2: Example of a movement pattern. The arrow indicates the distance between the limbs at the end of 

the movement. 

 

Statistical analysis 

A repeated measurement ANOVA was performed with Distance (small, medium, large), 

Matching limb (impaired, less-impaired) and Visual condition (mirror, screen, no vision) 

as within factors. Lesion side (left hemispheric lesion [LHL], right hemispheric lesion 

[RHL]) was taken as between factor. If the sphericity assumption was violated, 

Greenhouse Geisser adjustments were made. Post hoc comparisons for the interaction 

effects were performed with the Fishers’ LSD test. 

 

Correlations 

Correlations were calculated using the Pearson’s correlation coefficient (r). For the 

correlations with the Tardieu Scale, Spearman’s correlation coefficient was used (rs).  
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Results 

Matching accuracy 

The accuracy of active matching was significantly influenced by Distance (F(1.2, 14.1) = 8.71, 

p = 0.008), showing a general trend that the absolute error became gradually larger with 

larger matching distances. Other main effects were absent, but all factors were involved in 

second order interactions (Hand x Distance: F(2,24) =3.99, p = 0.032; Visual condition x 

Distance: F(4,48) = 3.81, p = 0.009) and a third order interaction (Hand x Distance x Visual 

condition: F(4,48) = 3.26, p = 0.019; see Figure 4.3). Figure 4.3 reveals similar trends for all 

visual conditions in the less-impaired limb and the screen and mirror conditions in the 

impaired limb. In accordance with the main Distance-effect smaller errors were made in 

the small distance condition, except for matching with the less-impaired limb in the mirror 

condition where no significant differences between distances were found. The differences 

between the two limbs and between the visual conditions were related to the deviant 

profile of the no vision condition for the impaired hand. Matching large distances with the 

impaired limb without visual information resulted in significantly larger errors than in the 

mirror or screen condition. In addition, the impaired limb showed a similar or larger error 

as the less-impaired limb with exception of the medium matching distance in the no vision 

condition. Matching with the impaired limb in this condition (medium, no vision) yielded 

smaller errors than for the less-impaired limb, whereas the latter was more accurate than 

the impaired limb in the large distance, no vision condition. Finally, no differences in 

accuracy of active matching were found between LHL and RHL. 
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Figure 4.3: Absolute error (in cm) in the three visual conditions (no vision, screen, mirror) for the impaired 

(solid line) and the less-impaired arm (dashed line) on the three distances (small, medium, large). 
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Functionality (QUEST) and Spasticity 

QUEST vs. active joint-position sense  

A significant negative correlation was revealed between the QUEST part A (dissociated 

movements) of the impaired limb and the error on the active joint-position sense task of the 

impaired limb in the screen condition for the large distance (r = -0.70, p = 0.006).  

 

QUEST for left- and right hemispheric lesions 

The QUEST score part A (dissociated movements) and the QUEST score part B (grasps) 

of the impaired upper limbs were not significantly different between the LHL and the RHL 

group. Moreover, for the less-impaired limb no difference between the two groups was 

revealed for the QUEST score part A, but for the QUEST score part B the RHL group had 

a higher score than the LHL group (mean difference = 9.65, p = 0.006).   

 

Spasticity vs. active joint-position sense 

A significant correlation between the mean Tardieu score of the Biceps and the Triceps 

and the absolute error on the active task was found. A higher Tardieu score was related to a 

smaller error of the impaired limb in the no vision condition for the large distance  

(rs = -0.54, p = 0.047). This relation is depicted in Figure 4.4. 

 

Figure 4.4: Correlation between the Tardieu score averaged for the Biceps and Triceps and the error on the 

active joint-position sense task of the impaired limb in the no vision condition for the large distance. 
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Discussion 

The current study aimed to get more insight into the integrity of proprioception in the 

impaired and less-impaired limb in children with SHCP. In an active joint-position sense 

task, different visual conditions were used in order to investigate the effect of static visual 

feedback and static mirror visual feedback on joint-position sense. In addition, the relation 

between joint-position sense and spasticity and joint-position sense and arm/hand 

functionality was investigated. Finally, following the findings of Goble, Hurvitz et al. 

(2009) we examined differences in joint-position sense between individuals with a right 

hemispheric lesion and individuals with a left hemispheric lesion. 

A general finding in this study was that the position of the reference limb could be 

matched with greater accuracy when the distance to be covered was smaller, irrespective of 

which limb was used to match and irrespective of the initial position of the reference limb 

(in the proximity of the body or further away). This finding is in agreement with previous 

results in typically developing children (Goble & Brown, 2008; Goble, Lewis, & Brown, 

2006) and children with SHCP (Smorenburg et al., 2012) A physiological phenomenon 

that may explain the larger absolute errors for longer reaching or matching distances is the 

signal-dependent noise on a motor command. According to this principle the variance of 

the noise on a neural control signal increases with the size of the signal (Harris & Wolpert, 

1998). This would suggest that for larger distances, requiring the generation of a larger 

command signal, the variance of noise becomes larger, which will hamper the accurate 

matching of the upper limbs. In addition to this physiological explanation, it is assumed 

that factors associated with daily functioning may play a role in the distance-effect, 

especially when considering the matching task used in the current study. Goble et al. (2005) 

suggested that the improvements in the acuity of joint-position sense when comparing 

children and adolescents are partly the result of experience-driven processes. Our daily 

movement repertoire is diverse, but with respect to grasping and reaching movements the 

range of motion is typically kept relatively small, which may lead to a distance-specific 

specialization of proprioception. In this respect it is interesting to note that in the current 

experiment the error score was highest when matching large distances with the impaired 

arm. Due to the spasticity, which tends to shorten the muscles leading to partial immobility 

of this arm (Love et al., 2001), children with SHCP might avoid using the arm for tasks 

involving larger ranges of motion. This substantial increase in absolute error for the large 

distance condition was absent when matching with the less-impaired arm. Although a 

better acuity of this less-affected arm can be expected, this finding is still remarkable 
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because the contralateral matching task involves the utilization of afferent proprioceptive 

information from both the reference (impaired) and the matching (less-impaired) arm.  

Comparison of the error score across visual conditions indicates that static visual 

feedback of the reference limb has the capacity to improve joint-position sense, in 

particular when matching large distances with the impaired arm. This finding is in contrast 

to those of Wann (1991) who found that a group of children with mixed diagnoses of CP 

did not benefit from visual information of the reference limb and target in a similar 

matching task. Wann (1991) showed that the performance of the children with CP for tasks 

requiring crossmodal matching (between sensory modalities, i.e. vision and 

proprioception), was lower than in all other conditions where intramodal matching was 

possible (within one sensory modality). It was concluded that CP was associated with a 

reduced ability to generate an egocentric frame of reference needed for accurate mapping 

between sensory modalities. It is important to note that the children participating in 

Wann’s study all had suffered bilateral damage to the brain (diplegia and quadriplegia). 

Our results then imply that in children with unilateral damage to the brain, crossmodal 

mapping is not disturbed to a similar extent as in diplegic and quadriplegic patients, and 

still allows the encoding of sensory signals into a common egocentric frame of reference. 

The beneficial effect of vision in a situation where spasticity compromises matching acuity 

most (large distance matching with impaired hand), suggests that joint-position sense in 

children with SHCP seems to be affected by a distortion of the physiological function of 

the somatosensory organs, rather than by a deficit in higher sensory motor function.  Our 

finding that static visual feedback of the less-impaired limb improves the matching 

accuracy might potentially be interesting for therapeutic interventions in order to improve 

the joint-position sense of the impaired limb. If training with static visual feedback of the 

less-impaired limb can improve the joint-position sense of the impaired limb, this might 

have implications for the daily functioning of the children. The focus nowadays is 

primarily on improving motor behaviour by practicing, but since proprioception is an 

important factor in movement control, this might be another angle of approach in order to 

improve daily functioning in children with SHCP.  

Despite the beneficial effects of static visual feedback, no detrimental effects of 

static mirror visual feedback were found. Based on the findings of Holmes and Spence 

(2005) it was expected that static mirror visual feedback would deteriorate the matching 

accuracy, especially of the impaired limb. However, Holmes and Spence (2005) showed 

also that a longer exposure time to the mirror resulted in larger errors. The short exposure 

time in the current study might explain why we did not find an effect of the mirror in the 
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active joint-position sense task. Moreover, in general, proprioceptive information is more 

reliable under active than under passive conditions. It can be expected that perceived hand 

position will be less affected by (discrepant) mirror visual feedback in an active compared 

to a passive condition (Chokron, Colliot, Atzeni, Bartolomeo, & Ohlmann, 2004; Holmes 

& Spence, 2005; Van Beers, Wolpert, & Haggard, 2002). It is therefore suggested to 

examine the differences in mirror effect between an active and a passive joint-position 

sense task. 

 Based on the study of Goble, Hurvitz et al. (2009) we expected that differences in 

joint-position sense between the upper limbs and the effects of visual information would be 

different for individuals with a left hemispheric lesion and individuals with a right 

hemispheric lesion, but in the present study no effect of lesion side was found. Differences 

in task (ipsilateral remembered vs. contralateral matching) between our study and the study 

of Goble, Hurvitz et al. (2009) might have caused these discrepant findings. Moreover, in 

both studies no specific information about the location of the brain lesion is present which 

makes it difficult to draw clear conclusions. However, the current study examined the 

functional level of the participants by means of the QUEST, which might shed a light on 

the severity of the condition. It was shown that participants with a LHL and participants 

with a RHL had the same mean QUEST scores for the impaired side of the body. Although 

both groups in the study of Goble, Hurvitz et al. (2009) had similar spasticity scores, no 

information about the functional level was available. Without this information it is 

impossible to determine whether differences in joint-position sense between individuals 

with LHL and RHL are actually caused by the side of the lesion or by other factors related 

to the severity of the condition.  

Finally, we looked at the relation between spasticity and joint-position sense and 

between arm/hand functionality and joint-position sense. One significant correlation 

between spasticity and joint-position sense was found. However, a close look on the 

significant correlation shows that seven individuals with a mean Tardieu score of 2 had a 

relative small error. The other seven participants showed a more scattered distribution. 

Hence it can be argued that this is not a clear-cut relationship. It is possible that the 

participants adapted their movement velocity in order to minimize the effect of their 

spasticity. Since the Tardieu scale is determined at a (fast) speed by the physiotherapist, it 

is plausible that this speed does not match with the movement speed during the active task. 

The current findings are in contrast with the findings of Chrysagis et al. (2007) who found 

that a higher degree of spasticity was related to a more deteriorated joint-position sense. 

However, Chrysagis et al. (2007) used the Modified Ashworth Scale (MAS) to determine 
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the degree of spasticity whereas we used the Tardieu scale. Although both scales are 

frequently used as clinical measure, the inter-rater reliability and test-retest reliability are 

better for the Tardieu than for the MAS (Fosang, Galea, McCoy, Reddihough, & Story, 

2003; Mehrholtz et al., 2005). Nevertheless, the question remains, irrespective of the scale 

used, whether such clinical measures are suitable to use in studies like the current study 

where the participants were free to move at their own pace. We therefore suggest that the 

relationship between proprioception measured with self-paced movement and the level of 

spasticity (measured with the Tardieu or the MAS) should take into account both the 

velocity of the self induced movement and the velocity of the passive movement used to 

evaluate spasticity.   

Correlations between the arm/hand functionality and joint-position sense revealed 

that a higher QUEST score was related to a higher accuracy on the active joint-position 

sense task. However, this was only found for the QUEST score part A (dissociated 

movements) in relation with the accuracy of the impaired limb in the screen condition for 

the large matching distance. A possible explanation for the small amount of correlations 

between the QUEST and the active joint-position sense might be that the QUEST is 

performed under full vision. The visual information could compensate for the deteriorated 

joint-position sense whereas in the active joint-position sense task used in this study, no 

full compensation could take place since no visual feedback of the moving limb was 

available. Therefore, the absence of a significant relationship might indicate that on 

average the participants were able to compensate for the impaired proprioception with 

online visual control. 

In sum, it can be concluded that static visual feedback of the less-impaired limb 

improved the active joint-position sense of the impaired limb in children with SHCP. Static 

mirror visual feedback did not have a detrimental effect on active joint-position sense. In 

addition, it was demonstrated that the distance that had to be covered by the matching limb 

had an influence on the differences between the limbs and the differences between the 

visual conditions. In general the error became smaller with a smaller matching distance. 

The relationship between matching accuracy and arm/hand functionality and matching 

accuracy and spasticity remains indecisive.  
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Abstract  

In the present study participants with Spastic Hemiparetic Cerebral Palsy (SHCP) were 

asked to match the position of a target either with the impaired arm only (unimanual 

condition) or with both arms at the same time (bimanual condition). The target was placed 

at 4 different locations scaled to the individual maximum reaching distance. To test the 

effect of mirror visual feedback of the less-impaired arm on the matching accuracy, an 

opaque screen or a mirror was placed in between the arms which masked vision of the 

impaired arm. Absolute endpoint error was smaller in the bimanual condition compared to 

the unimanual condition, but there was no effect of mirror visual feedback. Inspection of 

the individual data, however, showed that 13 out of 23 participants did experience a 

positive effect of mirror visual feedback. A positive correlation between the baseline error 

(screen) and the improvement in accuracy with mirror visual feedback seems to suggest 

that individuals with lower proprioceptive accuracy in the baseline condition may benefit 

more from mirror visual feedback. Together these findings indicate that bimanual therapy 

and therapy with mirror visual feedback might be valuable approaches for rehabilitation 

for a subset of the individuals with SHCP.  
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Introduction 

Cerebral palsy (CP) is the most common pediatric physical disability (Stanley, Blair, & 

Alberman, 2000). The condition comprises a group of permanent disorders of movement 

and posture due to a lesion in the foetal or infant brain. In children with spastic hemiparetic 

cerebral palsy (SHCP), the motor impairments are mainly lateralized (i.e. one-sided) and 

the upper limb is usually more affected than the lower limb (Charles & Gordon, 2006; 

Humphreys, Whiting, & Pham, 2000). The brain damage in SHCP might also include areas 

that are involved in bimanual coordination such as the supplementary motor area (SMA) 

and areas in the parietal lobe (Serrien, Nirkko, Lovblad, & Wiesendanger, 2001; Serrien, 

Strens, Oliviero, & Brown, 2002; Steyvers et al., 2003). For this reason and because many 

daily activities require both hands, SHCP is often found to have a detrimental effect on 

bimanual tasks, and hence on many tasks of daily living (Gordon, 2011; Gordon & 

Steenbergen, 2008; Hung, Charles, & Gordon, 2004). Yet in tasks that typically require 

bimanual coordination using the non-dominant (impaired) hand is avoided and while they 

may become adept at using this compensatory strategy, this behaviour is considered to be 

inefficient and slow (Charles & Gordon, 2006; Gordon & Steenbergen, 2008). 

Interestingly though, there is evidence to suggest that the kinematics of the impaired arm 

are improved when the contralateral (less-impaired) arm performs an identical 

(symmetrical) action (Sugden & Utley, 1995; Utley & Sugden, 1998). These studies have 

mainly focused on kinematic variables (e.g. speed, trajectory or timing of the two limbs) 

and it remains to be determined whether accuracy of matching (of the impaired arm) is also 

favoured in a bimanual (symmetrical) condition.  This will be the focus of our study.  

Steenbergen, Hulstijn, de Vries and Berger (1996) studied the arm kinematics of 

young adolescents with SHCP during a reach-grasp-placement task. The participants were 

asked to pick up a ball and place it into a hole as quickly as possible with either one hand 

(one ball) or with two hands (two balls). It was found that the large differences in reaction 

time and total movement time between the hands in the unimanual condition decreased 

under bimanual conditions, indicating a tendency to move the impaired and less-impaired 

arm and hand in a symmetrical manner (interlimb coupling). Note though, that in this study 

the coupling was mainly unidirectional, i.e. the result of adaptations of the less-impaired 

hand to the movement of the impaired hand. Using similar reaching and grasping tasks 

Utley and Sugden (1998) further found that coupling (temporal and to a lesser extent also 

spatial) happened predominantly in the first part of the movement (and not in the grasping 

phase) and was facilitated when movements were performed under speeded conditions. 

However, in contrast to the findings of Steenbergen et al. (1996) the coupling was not 
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unidirectional, i.e. temporal synchrony was the result of adaptations in both hands (see also 

Sugden & Utley, 1995). Finally, Volman (2005) demonstrated that interlimb coupling in 

children with SHCP is not just restricted to timing of the movement but also extends to 

spatial features. When children with hemiplegia were asked to draw a line with one hand 

and a circle with the other hand, the lines became more circular and the circles became 

more linear compared to a single handed condition. Neither the impaired nor the less-

impaired arm dominated the coupling. Taken together, these findings demonstrate that 

even in individuals that have suffered unilateral brain damage that led to SHCP, typical 

bilateral neural interactions facilitating interlimb coupling seem to be present.  This 

coupling appears to be dependent on a number of factors such as speed and the nature of 

the movement. It is however not known whether this coupling influences the accuracy of a 

matching action. Therefore, the first question that this study will address is: Is the accuracy 

of matching with the impaired arm better when the less-impaired arm is moving towards 

the target simultaneously than when moving in isolation? 

Matching accuracy can serve as a measure of proprioceptive accuracy, the sense of 

body parts in space, which is essential for movement performance. A previous study by 

Smorenburg, Ledebt, Deconinck and Savelsbergh (2012) has shown that children with 

SHCP perform poorer than their typically developing peers in a task where the position of 

one arm has to be matched with the other arm, which is indicative of deteriorated 

proprioceptive accuracy. If simultaneous movement of the less-impaired arm towards a 

target would improve the accuracy when matching with the impaired arm, this would 

support the integration of symmetric bimanual tasks in the training of impaired arm 

function. 

A second phenomenon that has received a lot of attention with respect to the 

treatment of unilateral movement and pain disorders is mirror visual feedback (see 

Ramachandran & Altschuler, 2009 for a review). It is generated by placing a mirror 

between the upper limbs in the sagittal plane, so that one sees the real less- (or non-) 

impaired arm and its mirror reflection, which now is superimposed on the impaired arm. 

This creates the illusion of two hands moving in perfect symmetry. Mirror visual feedback 

has been demonstrated to alleviate (phantom) pain (McCabe et al., 2003; Ramachandran & 

Rogers-Ramachandran, 1996) and to improve movement performance in individuals with 

hemiparetic stroke (e.g. Altschuler et al., 1999; Stevens & Stoykov, 2003; Yavuzer et al., 

2008). In addition, Feltham, Ledebt, Bennett, Deconinck, Verheul and Savelsbergh (2010) 

suggested that mirror visual feedback might be a feasible therapeutic tool for children with 

SHCP. Performing a bimanual inward symmetrical movement with mirror visual feedback 
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of the less-impaired arm decreased the variability of the interlimb coupling compared to a 

situation in which only the less-impaired arm was visible. Furthermore, in a subsequent 

study the authors showed that mirror visual feedback had favourable effects on the 

neuromuscular activity during a symmetric bimanual movement (Feltham, Ledebt, 

Deconinck, & Savelsbergh, 2010). The suggestions of Feltham and colleagues were 

supported by a recently published study showing that 3 weeks of mirror therapy in children 

with SHCP resulted in improved grasp strength  and upper limb dynamic position (Gygax, 

Schneider, & Newman, 2011). Smorenburg, Ledebt, Deconinck and Savelsbergh (2011), 

on the other hand, found that mirror visual feedback of the less-impaired arm did not 

influence endpoint accuracy of the impaired arm during unimanual matching. In this task 

the individuals were instructed to move the impaired limb to the position of the less-

impaired limb, which was held passively at a target. In contrast to Feltham, Ledebt, 

Bennett et al. (2010), Feltham, Ledebt, Deconinck et al. (2010) and Gygax et al. (2011) 

mirror visual feedback in the Smorenburg et al. study (2011) was ‘static’, i.e. the less-

impaired arm was held at the target. This discrepancy in findings seems to suggest that 

mirror visual feedback might only be effective when both arms are intending to move 

symmetrically, which is a pertinent issue that needs to be clarified before therapy with 

mirror visual feedback can actually be integrated in the treatment of SHCP. Therefore, the 

current study will examine if mirror visual feedback might have a positive effect on the 

endpoint accuracy of a matching task (a measure of proprioceptive acuity) when the less-

impaired arm is moving simultaneously with the impaired arm (symmetric bimanual 

movement), and thus when the mirror visual feedback is dynamic.  

 

Methods 

Participants 

Twenty five individuals with SHCP took part in the study, but 23 participants were 

included for analysis (14.2 ± 2.9 years, 5 females). All participants were recruited through 

the Dutch society for people with a physical handicap and their parents (BOSK) and the 

Werkenrode school in Groesbeek (The Netherlands), a special education school. Two 

participants were not included for analysis; one participant was not able to finish the 

experiment due to fatigue, and another participant had absolute error values that were more 

than 2 standard deviations of the mean. The participants did not have a visual impairment 

(which was not corrected to normal), hearing impairment, pain in either of the upper limbs, 

visual neglect, Botox treatment in the past six months preceding the measurement, or any 

other neuromuscular disorder than SHCP. Moreover, participants were required to 
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understand basic instructions in order to perform the measurement. Table 5.1 represents 

the participant characteristics. For each participant the level of spasticity was determined 

with the Tardieu scale which ranges from 0 to 3, with a higher score indicating higher 

levels of spasticity. Individual scores were obtained for the Biceps Brachii Brevis and 

Triceps Brachii Longus and combined into one total score. Functional independence in 

daily life, taking into account caregiver assistance and the use of special equipment, was 

measured with the motor items of the Functional Independence Measure for children 

(WeeFIM). The participant’s parents filled in the WeeFIM questionnaire. WeeFIM scores 

can range from 13 to 91, with a higher score representing a better functional independence. 

Finally, the Manual Ability Classification System (MACS) describes how children use 

their hands during object handling and the degree of required assistance (Eliasson, et al., 

2006). The severity of performance and the degree of required assistance increases from 

MACS level 1 to 4. For more detailed information about the Tardieu, WeeFIM and MACS 

we refer to the Appendix. Prior to testing, the participant’s parents provided written 

informed consent. All procedures were approved by the institutional research ethics 

committee and in accordance with the Declaration of Helsinki. 

 

Materials and procedures 

The participant was seated on a height adjustable chair at a height adjustable table with the 

knees flexed to 90°. On the table a custom made wooden construction was placed which 

consisted of two handles on two separate parallel tracks 20 cm apart (see Figure 5.1). The 

participant grasped the two handles (one in each hand), which could be moved in the 

anterior-posterior direction. The children were positioned such that the centre of the body 

was located in between the two tracks, with the beginning of the track 15 cm from the 

trunk. The position of the handles was recorded outside the wooden construction using one 

Optotrak unit with three infrared cameras (3020 Optotrak, Northern Digital Inc., Waterloo, 

Canada) at a sample rate of 200 Hz. A mirror or opaque screen, which was placed in 

between the tracks and perpendicular to the chest, served to elicit mirror visual feedback of 

the less-impaired arm or visual feedback of the less-impaired arm only. 

Before the start of the measurement, the maximum reaching distance was 

determined (MRD). The child was asked to grasp the handles and extent the elbows as far 

a possible without bending the trunk forward. The MRD of the impaired arm was used to 

calculate the different target positions for the matching task. If a participant was unable to 

grip the handle due to physical impairment, the experimenter placed the hand on top of the 

handle. Each participant performed two tasks: a unimanual matching task and a bimanual 



Chapter 5 

 

 

89 

matching task. The order of the tasks was randomly assigned to the participants. In the 

following paragraphs the procedures for the unimanual and the bimanual matching task 

will be explained.  

 

Table 5.1: Participant characteristics. For each participant (P) the age in years, sex and impaired arm are 

indicated. In addition, the Tardieu scale for spasticity, the WeeFIM score and MACS level are mentioned. In 

the last two columns the aethiology of the disorder and the maximum reaching distances (MRD) of the 

impaired and less-impaired arm are given.  

P Age 
(years) 

Sex Impaired 
arm 

TSa WeeFIM/ 
MACS 

Aetiology MRD I/LI 
(cm)b 

1 11.1 M Left 1.5 91/2 Unknown 35.5/38 
2 14.8 M Left 2 62/3 Schizencephaly right 33/36 
3 13.7 M Left 2 78/3 O2 shortage during birth 33/40 
4 14.0 M Left 2 91/2 Cerebral infarction 

 
31.5/33.7 

5 13.3 M Left 2 70/2 Unknown (twins) 29/32 
6 13.8 F Left 1.5 91/2 O2 shortage (twins) 27.3/29.5 
7 13.0 M Left 1 91/2 Hydrocephalus 20/24 
8 14.5 M Left 1 91/2 Stroke 30/31 
9 14.6 M Left 1 59/3 Streptococcen infection 

at 5 weeks 
24/40 

10 17.8 M Left 1.5 90/1 Cerebral infarction 38/39 
11 17.0 M Left 1 91/1 Unknown 25/29 
12 18.7 M Left 0.5 88/2 Cerebral infarction 25.5/29 
13 9.6 M Right 1 91/1 Cerebral infarction 34.5/35.5 
14 14.7 M Right 2 71/3 Unknown 33/38 
15 12.8 M Right 2 59/3 Cerebral infarction 26.5/38 
16 9.3 F Right 2 85/2 Hydrocephalus 30/33.3 
17 16.2 M Right 2 76/1 Unknown 40/40 
18 12.7 F Right 1 91/3 Thalamus infarction at 

birth 
30/32.5 

19 18.7 M Right 1.5 91/3 Cerebral infarction 33/39 
20 7.9 F Right 1 91/1 Feverish convulsion 25/26 
21 17.2 M Right Unknown 89/3 Cerebral infarction 22/28.5 
22 17.7 F Right 1.5 91/2 Stroke 22/29 
23 14.5 M Right 0.5 91/2 Unknown 25/27 
aTS = Tardieu scale for spasticity; mean of the individual scores for the Biceps and the Triceps. 
bMRD = maximum reaching distance in cm for the impaired (I) and the less-impaired arm (LI). 

 

Unimanual matching task 

In the unimanual mathing task, a target was placed at 25%, 50%, 65%, or 80% of the MRD 

on the side of the less-impaired hand. The less-impaired hand was placed on the lap and 

the impaired hand was holding the handle on the other side of the mirror/screen and was 

not visible. The participant was asked to match the position of the target by actively 

moving the impaired arm (the impaired hand always started proximal to the body at the 

start of the track, i.e. 0%MRD). The task was performed in two different visual conditions: 
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a screen condition in which only the target was visible and a mirror condition in which the 

target and its mirror reflection were visible. Each combination of visual condition (2) and 

target position (4) was performed twice, which resulted in 16 trials. The order of the visual 

condition and the target positions were randomly assigned to the participants. 

 

Bimanual matching task 

In the bimanual matching task a target was placed at 25%, 50%, 65%, or 80% of the MRD 

on the side of the less-impaired arm. The participant was asked to match the target position 

with both hands, i.e. to move both hands towards the target as symmetrically as possible 

starting with the handles at the beginning of the track, i.e. 0%MRD. Similar to the 

unimanual task, the bimanual task was performed in two different visual conditions: a 

screen condition in which the target and the (moving) less-impaired arm could be seen and 

a mirror condition in which the participant saw the target, the (moving) less-impaired arm 

and its mirror reflection. Each combination of visual condition (2) and target position (4) 

was performed twice (16 trials in total) and the order of the visual condition and the target 

positions were randomly assigned to the participants. 

 

Data analysis 

Custom-made Matlab programs (The Mathworks, version 7.1) were used to analyze the 

kinematics and matching accuracy (absolute error) of the movement. The start of the 

movement was defined as the moment at which the movement velocity rose above 5 mm/s 

for the first time and the hand was moving in a forward direction. The end of the 

movement was defined as the moment at which the velocity finally fell below 5 mm/s (van 

Roon, Steenbergen, & Meulenbroek, 2005). Absolute error was determined as the 

difference in cm between the target and the impaired arm at the end of the movement. In 

addition, we calculated average movement velocity (cm/sec; total distance covered divided 

by total movement time) and relative movement smoothness. Relative movement 

smoothness was defined as the number of peaks in the velocity plot of the entire movement 

divided by the total distance covered during each movement. The number of peaks was 

determined by searching the velocity curve for local minima and maxima. An increase in 

velocity between an adjacent minimum and maximum that exceeded the threshold value 

(10% of the maximum velocity) was counted as a peak (Chang, Wu, Wu, & Su, 2005; 

Kamper, McKenna-Cole, Kahn, & Reinkensmeyer, 2002; Ledebt, Smorenburg, & 

Savelsbergh, in preparation). 
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Statistical analysis 

In order to examine differences in absolute error, mean velocity and movement smoothness 

of the impaired arm between the unimanual and bimanual task and to examine the effects 

of visual feedback and target distance on these variables, a 3-way ANOVA was performed 

with repeated measures on the factors Task (unimanual, bimanual), Visual condition 

(mirror, screen), and Distance (25%, 50%, 65%, 80%MRD).  

In addition, for the bimanual task differences in kinematics between the impaired and the 

less-impaired arm and the effect of Visual condition and Distance were investigated with a 

3-way repeated measures ANOVA with Arm (impaired, less-impaired), Visual condition 

(mirror, screen), and Distance (25%, 50%, 65%, 80%MRD) as within factors.  

The significance level was set at 0.05. In case sphericity assumptions were violated, 

Greenhouse-Geisser adjustments were made. Post hoc comparisons were performed with 

the Fishers’ LSD test. 
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Figure 5.1: (A) Top view of the experimental setup with the two handles that could be moved back and forth 

along the track. The divide between the arms was either an opaque screen or a mirror. The position of the 

handles outside the box was measured with an Optotrak camera (not depicted here). (B) Side view of the 

experimental setup. The proximal starting position and the four target positions (25%MRD, 50%MRD, 

65%MRD, 80%MRD) are indicated. Note that the target positions were determined based on the maximum 

reaching distance of each child and thus differed per participant. (C) Real-life picture of the experimental 

setup.  

 

 

  



Chapter 5 

 

 

93 

Results 

All 23 participants were able to complete the experiment according to the instructions and 

all participants could perform a bimanual symmetrical movement as indicated by the small 

differences in starting time between the arms (difference between arms in mirror condition: 

M = -0.05 sec, SD = 0.25, t22 = -0.96, p = 0.035; difference between arms in screen 

condition: M = 0.04 sec, SD = 0.28, t22 = 0.74, p = 0.47). Although slightly larger, the 

differences in end time between the arms were also relatively small (difference between 

arms in mirror condition: M = 0.48 sec, SD = 1.19, t22 = 1.95, p = 0.06; difference between 

arms in screen condition: M = 0.59 sec, SD = 0.94, t22 = 3.04, p = 0.006). 

Nevertheless, one trial was excluded because participant 15 did not perform a symmetrical 

bimanual movement, i.e. the movement of the impaired hand was initiated after the 

movement of the less-impaired arm was finished. In addition, 14 out of 368 trials in the 

bimanual condition had to be excluded from the analysis (PP 1 [2 trials], 3 [4], 15 [3], 8 [2], 

23 [2], 12 [1]) because the less-impaired arm was not on the target location at the end of 

the movement. In case the difference between less-impaired arm and target was more than 

half of the distance between two consecutive target locations, the trials could not be 

assigned to either target distance and therefore they were excluded from analysis. This 

exclusion of trials meant that for some participants the value for a certain condition was 

based on one trial instead of the mean of two trials.   

 

Unimanual vs. bimanual task (impaired arm) 

Matching accuracy 

Matching accuracy differed significantly between the unimanual and the bimanual task, 

and a significant Task by Distance effect indicated that this difference was distance 

dependent (F3,66 = 3.16, p = 0.03; see Figure 5.2). Absolute error was smaller in the 

bimanual task compared with the unimanual task for all but the 25%MRD target position. 

In addition, absolute error was found to increase with increasing distance for both the 

unimanual and the bimanual task. However, between 50% and 65% and between 65% and 

80%MRD the increase in error was not significant for either task.  
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Figure 5.2: The absolute error (in cm; mean and SE values) increased with increasing distance (25%, 50%, 

65%, 80%MRD on the horizontal axis) for both the unimanual (dark grey) and the bimanual task (light grey). 

 

Despite the significant Task-effect (unimanual vs. bimanual) on matching accuracy at 

group level, close inspection of the individual data showed that the advantage of moving 

simultaneously with the two hands was not present in all participants. In 14 out of 23 

individuals absolute error in the bimanual condition was smaller than in the unimanual 

condition for 3 or 4 of the 4 target distances (see Table 5.2; Bi+ group). However, for both 

the Bi+ and the Bi- group it was demonstrated that the absolute error in the unimanual 

condition was positively correlated with the size of the decrease in error in the bimanual 

condition (Table 5.3), i.e. a larger error in the unimanual condition was related to a greater 

improvement in the bimanual condition. 

 Furthermore, as the repeated measures ANOVA showed, there was no effect of 

Visual condition on matching accuracy of the bimanual task (i.e. no interaction effect 

between Visual condition and Task), thus mirror visual feedback of the target did not affect 

absolute error. Inspection of the individual data of the bimanual task, however, indicated 

that in 13 out of 23 participants absolute error was smaller in the mirror condition 

compared to the screen for 3 or 4 of the 4 distances (see Table 5.2; Mirror+ group). In 

Figure 5.3 the mean errors in the screen and the mirror condition are depicted for the 

Mirror+ and the Mirror- group.   

In order to reveal whether this variability in response to mirror visual feedback was 

related to the proprioceptive accuracy of the impaired arm when no mirror visual feedback 
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was available, we examined for both groups (Mirror+ and Mirror-) the correlation 

between the error in the screen condition (‘baseline condition’) and the improvement in 

accuracy due to the mirror, i.e. the difference in error between the screen and the mirror 

condition. Table 5.4 shows these correlations and the corresponding p-values for the 

Mirror+ and the Mirror- group. No significant correlations were found for the Mirror- 

group, whereas significant positive correlations between the baseline error and the 

improvement in accuracy due to the mirror were observed for the Mirror+ group on all 

four distances. This suggests that for individuals who do better in the mirror than in the 

screen condition in the majority of the target distances (Mirror+ group), a larger error in 

the screen condition is related to a larger decrease in error in the mirror condition, i.e. to a 

higher degree of improvement in the mirror condition.  

In addition, we examined with a Mann-Whitney U test whether the Mirror+ and 

Mirror- group differed in terms of scores on the MACS, WeeFIM and Tardieu scale. No 

differences between the groups were found for the MACS (z = -0.69, p = 0.52; mean rank 

Mirror+ = 12.81, Mirror- = 10.95) and the WeeFIM (z = -0.40, p = 0.74; mean rank 

Mirror+ = 11.54, Mirror- = 12.60). However, the Mirror+ group showed a higher average 

Tardieu score when compared to the Mirror- group (1.65 and 1.17 respectively; z = -2.17, 

p = 0.04; mean rank Mirror+ = 13.88, Mirror- = 8.06). However, no significant correlation 

was found between the degree of improvement (mean improvement over the four distances) 

in the mirror condition and the Tardieu score for the Mirror+ group (Spearman’s rho = -

0.34, p = 0.26), the Mirror- group (Spearman’s rho = 0.36, p = 0.34) and both groups 

together (Spearman’s rho = 0.32, p = 0.15). 
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Table 5.2: Classification of the participants into groups. For each participant and each target distance (25%, 

50%, 65%, 80%MRD)  an asterisk (*) indicates when the error was smaller in the bimanual condition 

compared to the unimanual condition (left part of the table) and when the error was smaller in the mirror 

compared to the screen condition in the bimanual condition only (right part of the table). When in 3 or 4 out 

of 4 distances the error was smaller in the bimanual condition, the participant was assigned as performing 

better in the bimanual condition compared to the unimanual condition (Bi+). For the screen/mirror 

comparison the same principle was used. When the error was smaller in the mirror condition compared to 

the screen condition (indicated with *) the participant was assigned to the Mirror+ group (i.e. Mirror+ = +). 

P Bi+ vs. Bi- Mirror+ vs. Mirror- 
25% 50% 65% 80% Bi+ or Bi-?  25% 50% 65% 80% Mirror+ or 

Mirror-? 
1 * *  * + * * * * + 
2 *   * -  * * * * + 
3  * * * +    * * - 
4 * * *  +  * *  * + 
5  *  * -  *  * * + 
6 * * * * +  *    - 
7 * * * * +  *  * * + 
8 * * * * +  * * * * + 
9     -  *    - 
10 * * * * +  *    - 
11   * * -   *   - 
12  * * * +      - 
13 * * * * +  *  *  - 
14  *   -   * * * + 
15  *  * -   * * * + 
16 * * * * +  * * * * + 
17 * * * * +  *  * * + 
18 * * * * +  * * * * + 
19 * * * * +   * * * + 
20 * * * * +  * *  * + 
21  *   -    *  - 
22   * * -   *   - 
23  * *  -    *  - 

 

Average velocity 

There was no effect of Task on average velocity (F1,21 = 0.45, p = 0.51; Unimanual = 5.1 

cm/s, Bimanual = 4.8 cm/s). Moreover, Visual condition did not have an effect on the 

average velocity (F1,21 = 1.25, p = 0.28; Mirror: 4.7 cm/s Screen: 5.2 cm/s). However, a 

significant main effect of Distance was found (F1.76, 38.61 = 30.40, p < 0.001), indicating an 

increase in velocity with increasing distance (25%: 3.50 ± 0.32 cm/s; 50%: 4.83 ± 0.47 

cm/s; 65%: 5.45 ± 0.59 cm/s; 80%: 5.99 ± 0.52 cm/s).  

 

Movement smoothness  

A main effect of Distance (F2.33, 51.26 = 57.03, p < 0.001) and a significant interaction effect 

between Task and Distance were found (F1.92, 42.27 = 60.21, p = 0.005) for movement 
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smoothness. No differences between the unimanual and the bimanual task were found on 

all of the four distances. However, for both the unimanual and the bimanual task the 

relative number of velocity peaks decreased (i.e. movement smoothness increased) with 

increasing distance (except for the unimanual task between 50% and 65%MRD and for the 

bimanual task between 65% and 80%MRD).  

 

Table 5.3: For each distance the correlations are reported between the error in the unimanual task (U25, 

U50, U65, U80) and the difference in error between the unimanual and the bimanual condition, i.e. error in 

the unimanual condition minus the error in the bimanual condition (DifUB25, DifUB50, DifUB65, DifUB80) 

for the Bi+ and the Bi- group. The table shows Pearson’s r value and the corresponding p-value. Significant 

correlations are indicated with an asterisk. 

Group Correlation Pearson r p-value 

Bi+ (n=14) U25 vs. DifUB25 0.51 0.16 
 U50 vs. DifUB50 0.98 <0.001* 
 U65 vs. DifUB65 0.73 0.03* 
 U80 vs. DifUB80 0.61 0.08 

 
Bi- (n=9) U25 vs. DifUB25 0.36 0.21 
 U50 vs. DifUB50 0.74 0.002* 
 U65 vs. DifUB65 0.72 0.003* 
 U80 vs. DifUB80 0.76 0.002* 

 

Table 5.4: For each distance the correlations are reported between the error in the screen condition (S25, 

S50, S65, S80) and the difference in error between the screen and the mirror condition, i.e. error in screen 

condition minus the error in mirror condition (DifMS25, DifMS50, DifMS65, DifMS80) for the Mirror+ and 

the Mirror- group. The table shows the Pearson’s r value and the corresponding p-value. 

Group Correlation Pearson r p-value 

Mirror+ (n=13) S25 vs. DifMS25 0.69 0.009* 
 S50 vs. DifMS50 0.76 0.002* 
 S65 vs. DifMS65 0.70 0.007* 
 S80 vs. DifMS80 0.69 0.009* 

 
Mirror- (n=10) S25 vs. DifMS25 0.13 0.73 
 S50 vs. DifMS50 -0.007 0.99 
 S65 vs. DifMS65 0.31 0.39 
 S80 vs. DifMS80 -0.43 0.22 

 

 

Bimanual task  

In order to examine differences in kinematics between the impaired and the less-impaired 

arm, a repeated measures ANOVA was performed with Visual condition (mirror, screen), 

Distance (25%, 50%, 65%, 80%MRD) and Arm (impaired, less-impaired) as within factors. 

Moreover, in order to examine differences between the Mirror+ and the Mirror- group this 
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factor (Mirror-group) was included as between factor in the 3-way repeated measures 

ANOVA.  

 

Figure 5.3: Absolute error (in cm) for the Mirror+ and the Mirror- group in the screen and the mirror 

condition. The Wilcoxon signed rank test revealed a significantly higher error in the screen compared to the 

mirror condition for the Mirror+ group (z = -3.18, p < 0.00). For the Mirror- group the error was higher in 

the screen compared to the mirror condition (z = -2.50, p = 0.01). 

 

Average velocity 

The ANOVA revealed a significant main effect of Visual condition (F1,21 = 5.84, p = 0.03). 

The average velocity was 0.7 cm/sec lower in the mirror condition (4.6 ± 0.5 cm/s) 

compared to the screen condition (5.3 ± 0.7 cm/s). Furthermore, the significant main 

effects of Arm (F1,21 = 5.14, p = 0.03)  and Distance (F1.95, 41.03 = 21.22, p < 0.001) were 

modified by a significant interaction effect between Arm and Distance (F2.57, 53.90 = 9.62, p 

< 0.001) and a significant interaction between Arm, Distance, and Mirror-group (F3,63 = 

3.16, p = 0.03; see Table 5.5).  

Inspection of the 3-way interaction showed no differences between the Mirror+ 

and the Mirror- group. For both the Mirror+ group and the Mirror- group and both arms a 

significant increase in Vaverage was found when the distance that had to be covered 

increased. Moreover, comparing the average velocity between the impaired and the less-

impaired arm showed for both groups higher velocities in the less-impaired than in the 

impaired arm, but only for larger distances (65% and 80%MRD). 
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Movement smoothness  

The analysis of the relative movement smoothness revealed a significant effect of Distance 

(F1.86, 38.97 = 33.96, p < 0.001) and a significant interaction effect between Arm and 

Distance (F1.71, 36.00 = 3.76, p = 0.04). For both the impaired and the less-impaired arm the 

relative number of velocity peaks decreased (i.e. movement smoothness increased) with 

increasing distance (except for the 65% to 80%MRD). In addition, the number of velocity 

peaks was higher in the impaired compared to the less-impaired arm, indicating a lower 

relative movement smoothness for the impaired arm, but only for the 80%MRD (impaired 

arm = 0.32 peaks/cm vs. less-impaired arm = 0.25 peaks/cm). 

 

Table 5.5: Mean and SE values for the Vaverage and Movement Smoothness. Values are given for each distance 

(25%, 50%, 65%, 80%MRD) in the unimanual and bimanual movement condition for the impaired and the 

less-impaired arm. Note that no values are reported for the less-impaired arm in the unimanual condition 

because this task was not performed in the present study. 

 Unimanual  Bimanual 

 Distance Impaired arm  Impaired arm Less-impaired arm 
Vaverage (cm/s) 25% 3.71 ± 0.40  3.19 ± 0.40 3.16 ± 0.34 

50% 4.88 ± 0.52  4.79 ± 0.56 5.20 ± 0.59 
65% 5.54 ± 0.57  5.36 ± 0.73 6.08 ± 0.82 
80% 6.19 ± 0.56  5.80 ± 0.63 6.40 ± 0.64 

      
Movement 
smoothness  
(peaks/cm) 

25% 0.68 ± 0.069  0.51 ± 0.074 0.57 ± 0.088 
50% 0.43 ±  0.048  0.39 ± 0.071 0.38 ± 0.073 
65% 0.37 ± 0.044  0.33 ± 0.049 0.28 ± 0.054 
80% 0.30 ± 0.042  0.32 ± 0.071 0.25 ± 0.051 

 

Discussion 

This study examined the difference in matching accuracy of the impaired hand between a 

unimanual and a bimanual condition and the effects of mirror visual feedback on matching 

accuracy in children and adolescents with SHCP. Consistent with earlier studies that 

showed beneficial effects on the timing and the control of the impaired hand and arm when 

moving the two hands simultaneously (e.g. Steenbergen et al., 1996; Sugden & Utley, 

1995; Utley & Sugden, 1998), we found a significant increase in matching accuracy (37.5% 

on average) in the bimanual condition compared to the unimanual condition. In addition, 

mirror visual feedback led to better matching in 13 out of 23 participants. Together, these 

findings support the application of bimanual symmetrical movements and the use of mirror 

visual feedback in the treatment of upper limb function, though additional research is 

warranted to determine under what circumstances and for whom this approach is effective. 

The underlying mechanism of the improved matching accuracy in the bimanual 

condition is probably related to facilitative processes resulting from bilateral connections 
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throughout the central nervous system. For example, neural crosstalk is suggested to 

constrain homologous muscle groups to act as a single coordinative structure during 

bimanual symmetrical movements, which enhances the coupling between the limbs and 

also more abstract parameters (e.g. amplitude, force, direction; Cattaert, Semjen, & 

Summers, 1999; Swinnen & Wenderoth, 2004). In addition, we suggest that in the present 

study congruent visual and proprioceptive information of the less-impaired arm, which was 

available in the bimanual condition and presumably served as a frame of reference, may 

have facilitated accurate placement of the impaired arm (see also Smorenburg et al., 2011).  

Consistent with other research (Ledebt et al., in preparation; Smorenburg et al., 

2011, 2012; van Beers, Sittig, & Denier van der Gon, 1998), larger errors were made in 

(unimanual and bimanual) matching movements with larger amplitude. Note that larger 

movements were also relatively faster and smoother. This counterintuitive finding for this 

population suffering from spasticity may be explained by the rather slow overall speed of 

movement execution. Spastic movement disruptions are commonly observed at higher 

speeds, and in this self-paced task it is likely that participants avoided detrimental effects 

of spasticity.  

Concentrating on the effects of mirror visual feedback, the results of the present 

study showed that both hands moved slower in the mirror condition compared to the screen 

condition. Further, there was no improvement in accuracy of the impaired hand when 

mirror visual feedback of the less-impaired hand was available. Remarkably though, 

inspection of individual data revealed a positive effect of mirror visual feedback on 

matching accuracy in a considerable number of individuals (13 out of 23). In fact, mirror 

visual feedback seemed to hamper accurate placement of the impaired arm in the 

remainder of the group, which may explain the absence of a statistical effect at group level.  

Explaining the mechanisms underlying the positive effect of the mirror remains 

speculative, but using transcranial magnetic stimulation (TMS) and advanced brain 

imaging techniques in healthy individuals, researchers have begun to uncover the neural 

basis of the mirror effects. For example, Garry, Loftus, and Summers (2005) have shown 

that the excitability of the ipsilateral 1  primary motor cortex (M1) is facilitated when 

healthy adults were viewing a mirror reflection of the moving hand (see also Nojima et al., 

2012; Tominaga et al., 2011). In addition, mirror visual feedback was found to alter touch 

perception by enhancing the tactile sensitivity in the ipsilateral posterior parietal cortex 

(PPC; Ro, Wallace, Hagedorn, Farne, & Pienkos, 2004) and, further, to lead to increased 

activation within the ipsilateral superior temporal gyrus (STG; Matthys et al., 2009). 

                                                           
1 Ipsilateral refers to the hemisphere at the same side of the moving arm which was visible in the mirror.  
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Finally, the findings of Hamzei et al. (2012) suggest a remodelling of the motor system 

with a pivotal role for the contralateral2 sensorimotor cortex (SMC) after training with the 

mirror (see also Michielsen et al., 2011). Apparently, mirror visual feedback has the 

capacity to induce plastic changes in brain regions directly involved in motor control (M1, 

SMC) and regions that have been linked with the mirror neuron system (PPC, STG). 

The involvement of (part of) these specific regions might also (partly) explain the 

variability in response to mirror visual feedback across individuals. Staudt et al. (2002) 

found that the SHCP population may be functionally classified on the basis of the size of 

the lesion. Larger lesions are accompanied with a cortical reorganisation of the primary 

motor cortex and premotor areas towards the contralesional cortex, whereas no 

reorganisation is observed when the lesion is small. Wilke et al. (2009) on the other hand, 

found that the primary sensory cortex was preserved in the contralateral, lesioned 

hemisphere, irrespective of the extent of the lesion, which means that the sensorimotor 

control loop is disrupted when motor areas are relocated to the contralesional side. This 

variety in clinical picture might then be related to the variability in behavioural response to 

mirror visual feedback found in the current study. The idea that heterogeneity in patient 

groups, and more in particular variance in the neural resources, can explain the varying 

success of interventions is consistent with earlier findings in individuals with SHCP or a 

hemiparesis after stroke (McCombe Waller & Whitall, 2008; Ramachandran & Altschuler, 

2009).  

Our findings highlight that it is essential to determine which children might benefit 

most from therapy with mirror visual feedback e.g. by using data on the side of the lesion 

or corticospinal reorganisation. Unfortunately, lack of brain imaging and other 

neurophysiological data do not allow us to identify in which particular groups of children 

and adolescents mirror visual feedback may be favourable. However, behavioural evidence 

indicates that the extent of improvement in the mirror condition is related to the size of the 

error in baseline conditions. A similar result was found for the improvement under 

bimanual conditions, i.e. the improvement was larger when the error in the unimanual 

condition was greater. Both bimanual practice and practice with the mirror thus seem to be 

more effective in individuals with more severe problems of position sense. Still, it is 

possible that the children, who did not show an improvement in the mirror condition at 

present, need more practice before effects can be detected. A higher level of spasticity also 

seemed to be related to the efficacy of the mirror, given that the Mirror+ group showed 

higher levels of spasticity of the Mirror- group. However, the difference between the two 

                                                           
2 Contralateral refers to the hemisphere contralateral to the moving arm which was visible in the mirror. 
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groups was very small and no significant correlations were found between the degree of 

improvement and the Tardieu score. Moreover, it is questionable whether a (coarse) 

clinical measure for spasticity can be related to a sensitive measure for position sense as 

used in the present study.  

In conclusion, the current study showed that for children and adolescents with 

hemiplegia matching with the impaired hand is more accurate in a bimanual than in a 

unimanual matching condition. Similarly, mirror visual feedback had a positive effect on 

movement accuracy of the impaired arm, however, only in a subset of the individuals with 

SHCP. This variability in response may be related to differences in size and location of the 

brain lesions of the CP population and/or to the initial position sense of the impaired arm. 

Further research examining the relation between spasticity, position sense and 

improvements due to mirror visual feedback together with advanced brain imaging is 

warranted to determine which children might benefit most from bimanual practice with 

mirror visual feedback. 
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Appendix 

The Tardieu Scale measures spasticity using two parameters: the spasticity angle and the 

spasticity grade (Gracies et al., 2010). The spasticity angle is the difference between the 

angles of arrest at slow speed and of catch-and-release at fast speed. The spasticity grade is 

an ordinal variable that grades the intensity and measures the muscle’s reaction to fast 

passive stretch.   

In this study we used the spasticity grade as an indication for the level of spasticity. 

Gracies et al. (2010) showed for this measure high intrarater and interrater reliability for 

experienced raters; 90% ± 8% and 81% ± 13% respectively. 

The Functional Independence Measure for children (WeeFIM) includes 18 items 

covering six areas in two dimensions (i.e. motor and cognitive). Motor: self-care (eating, 

grooming, bathing, dressing upper body, dressing lower body, toileting); sphincter control 
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(bladder management, bowel management); transfer (chair/bed/wheelchair transfer, toilet 

transfer, tub/shower transfer); locomotion (crawling/walking/wheelchair, stair climbing). 

Cognitive: communication (comprehension, expression) and social cognition (social 

interaction, problem solving, memory; Sperle, Ottenbacher, Braun, Lane, & Nochajski, 

1996; Tur et al., 2009). In the present study we only used the motor items of the WeeFIM. 

Ottenbacher et al. (1996) showed high test-retest responses for the WeeFIM with an 

intraclass correlation coefficient of 0.97. 

The Manual Ability Classification System (MACS) is designed to classify how 

children with CP use their hands for object handling in daily life (Eliasson et al., 2006). It 

reports the collaboration of both hands together and is not an assessment of each hand 

separately. As shown in the study of Eliasson et al. (2006), the MACS has a good validity 

and reliability: intra-class correlation coefficient between therapists was 0.97. 
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Abstract  

Individuals with spastic hemiparetic cerebral palsy (SHCP) have proprioceptive deficits, 

which hamper them to perform and to learn new tasks. Mirror visual feedback has been 

shown to improve movement performance in individuals with SHCP. Therefore, the 

current study examined the effect of practice of a matching task with (mirror) visual 

feedback of the less-impaired arm on the matching accuracy of the impaired arm in this 

patient group.  

The practice consisted of 40 trials of bimanual target matching, where one group received 

regular visual feedback and a second group received mirror visual feedback of the less-

impaired arm. On three occasions (pre, post, and after a one-week-retention) position sense 

of the impaired arm was tested with a unimanual and bimanual matching task, performed 

without any visual information of either hand. Matching accuracy of the impaired arm was 

higher in the post-test than in the pre-test, but this improvement was similar for both 

training groups. In the retention-test, accuracy had returned to pre-test-level, which might 

be ascribed to the short duration of the training. These outcomes suggest that practicing a 

matching task with visual feedback of the less-impaired arm might help to improve the 

matching accuracy of the impaired arm in SHCP. 
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Introduction 

Proprioception can broadly be described as the sense of body parts in space, which is an 

important aspect in the control of movement. Proprioception consists of two components: 

position sense (sense of static position) and kinesthesia (sense of movement). In children 

and adolescents with Spastic Hemiparetic Cerebral Palsy (SHCP) both components of 

proprioception are deteriorated compared to typically developing peers (Chrysagis, 

Skordilis, Koutsouki, & Evans, 2007; Goble, Hurvitz, & Brown, 2009; Smorenburg, 

Ledebt, Deconinck, & Savelsbergh, 2012a; Wann, 1991; Wingert, Burton, Sinclair, 

Brunstrom, & Damiano, 2009). Individuals with this congenital disorder show spasticity 

and motor impairments lateralized to one side of the body as a result of a unilateral lesion 

in the developing foetal or infant brain (Krägeloh-Mann & Staudt, 2008). To the best of 

our knowledge, it has not been examined whether proprioception in children with SHCP, 

and more specifically the position sense of the impaired arm, is susceptible to practice.  

Research has shown that during motor development and learning, a shift in reliance 

from visual to proprioceptive control takes place (Fleishman & Rich, 1963; Smyth & 

Marriott, 1982). The visual control of the effector is important early in learning whereas 

the monitoring of the limbs is delegated to proprioception as learning proceeds. In children 

with SHCP this shift from visual to proprioceptive control is expected to be hampered 

considerably due to disturbed proprioception and increased reliance on visual feedback 

(Verrel, Bekkering, & Steenbergen, 2008). Therefore, any therapeutic intervention that 

aims to improve motor function with the involvement of visual feedback in children with 

SHCP depends on its effect on proprioception.  

Recently, mirror visual feedback (i.e. mirror therapy) has been introduced as a 

possible way to improve motor function of individuals with SHCP (Feltham, Ledebt, 

Bennett, Deconinck, Verheul, & Savelsbergh, 2010; Feltham, Ledebt, Deconinck, & 

Savelsbergh, 2010; Gygax, Schneider, & Newman, 2011). However, the effects of mirror 

visual feedback on position sense in this population remain unknown. Mirror visual 

feedback is generated by placing a mirror in between the arms in the sagittal plane. When 

the participant looks into the mirror from the less-impaired side, the mirror image of the 

less-impaired arm is superimposed on the impaired arm and the illusion is created that both 

arms are moving in perfect symmetry. Smorenburg, Ledebt, Deconinck and Savelsbergh 

(2012b) suggested that movement accuracy1 of the impaired arm may be improved by 

                                                           
1 Proprioception is a difficult concept to measure. Therefore, researchers often fall back on the assessment of 
position sense which can be measured with a position matching task. It is generally well accepted that the 
magnitude of the matching error, i.e. matching accuracy can be a useful indicator of the proprioceptive acuity 
and is thus used as outcome variable. (Goble, 2010) 
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moving bimanually with mirror visual feedback of the less-impaired arm. In their study, 

participants moved towards a target either with the impaired arm only (unimanual) or with 

both arms symmetrically (bimanual). Vision of the impaired arm was blocked by an 

opaque screen in between the arms, but the less-impaired arm was always visible. 

Smorenburg et al. 2012b demonstrated that the matching error of the impaired arm 

decreased when moving in symmetry with the less-impaired arm, compared to when 

moving only with the (invisible) impaired arm. Moreover, for a subset of the participants 

with SHCP, mirror visual feedback of the less-impaired arm improved the movement 

accuracy of the impaired arm during the bimanual condition compared to ‘regular’ visual 

feedback of the less-impaired arm (screen condition). Consequently, with the present study 

we aimed to examine whether the proprioceptive component of a movement can be 

practiced in individuals with SHCP by repetitively performing a matching movement with 

mirror visual feedback of the less-impaired arm.  

 

Methods 

Participants 

The participants for this study were recruited in 2 schools for special education in The 

Netherlands (Werkenrode school, Groesbeek and De Piramide, The Hague). From the 

seventeen children with SHCP that participated in the study, 16 children were included for 

analysis (15.8 ± 2.5 years; 3 females; see Table 6.1). One participant dropped out after less 

than half of the training because he was too fatigued. The participants did not have a visual 

impairment (which was not corrected to normal), pain in either of the upper limbs, Botox 

treatment in the past six months preceding the measurement or any other neuromuscular 

disorder than CP. All participants understood the basic instructions in order to perform the 

measurement. An indication of the severity of the children’s impairment is provided by 

means of the Tardieu score for spasticity (Gracies et al., 2010), the Functional 

Independence Measure for children (WeeFIM; Sperle, Ottenbacher, Braun, Lane, & 

Nochajski, 1996), and the Manual Ability Classification System (Eliasson et al., 2006; 

MACS; Table 6.1). Participant’s parents provided written informed consent prior to testing. 

All procedures were approved by the institutional research ethics committee and in 

accordance with the Declaration of Helsinki. 
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Table 6.1: Participant characteristics. For each participant the age (in years), sex (Male, Female), Impaired 

arm, Tardeu score, WeeFIM and MACS score, aethiology and Maximum reaching distance (MRD) of the 

impaired and less-impaired arm (in cm) are given. The last column (C) represents the number of completed 

practice trials and the condition in which the trials were practiced (i.e. Mirror-group = M; Screen-group = 

S). 

P Age  
(years) 

Sex Impaired 
arm 

TSa WeeFIM/MACS Aetiology MRD 
I/LI 

C

1 14.3 M Left 0.5 91/1 Unknown 30.5/32 M40 
2 15.3 M Left 1 91/2 Cerebral infarction 33/36 S35 
3 17.6 M Left 2 91/1 Premature 37/38 M40 
4 17.7 M Left 1.5 91/2 Unknown 40/46 M35 
5 13.7 M Left 1 91/1 Perinatal origin 40/40 S40 
6 19.3 M Left 1 88/2 Right cerebral infarction 39/41 M35 
7 18.3 M Left 1 90/1 Perinatal cerebral 

infarction 
37/41 S30 

8 15.1 M Left 1.5 59/3 Streptococcen infection at 
5 weeks 

37/41 S30 

9 13.2 F Left 1 89/2 Unkown 25/28 S20 
10 16.4 M Left 1 62/3 Schizencephaly right 39/46.5 S30 
11 15.2 M Right 1.5 91/2 Premature 26/28 M40 
12 13.0 F Right 1 90/2 Unknown 23/28 S30 
13 18.0 M Right 1.5 91/2 Unkown 24/42 S20 
14 16.8 F Right 0.5 91/1 Perinatal asphyxia 29/30 M35 
15 19.3 M Right 1 91/3 Premature (twins) 30/34 S40 
16 10.3 M Right 1 91/1 Unkown 29/37 M30 
aTS = Tardieu score for spasticity; mean of the individual scores for the Biceps and the Triceps. 

 

Procedure of pre-test, post-test and retention-test 

Matching accuracy was measured pre, post and after one-week retention. The post-test was 

performed immediately after the training, after a 5-10 minute break. The retention-test was 

performed exactly one week after the post-test. 

In order to do so, children were seated on a height adjustable chair behind a height 

adjustable table with the knees flexed to 90°. On the table a custom made wooden box was 

placed with two handles in a slit, one at each side of an opaque divide, running parallel in 

the sagittal and horizontal plane (Figure 6.1). The handles were located 20 cm apart and 

the maximum anterior-posterior range was 56 cm. The handles inside the box were 

attached to two handles outside the box on which light emitting diodes were attached. One 

unit with three infrared cameras (3020 Optotrak Northern Digital Inc., Waterloo, Canada) 

was used to measure the position of the markers at a sample rate of 200 Hz. An opaque 

sheet was placed on top of the arms (not touching the arms) so that they were not visible 

during the movement. Before the start of the measurement, the maximum reaching 

distance was determined (MRD). For this, the participant was asked to grasp the handles 

and extend the elbows as far a possible without bending forward. The MRD of the 
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impaired arm was used to calculate the different target positions to be used in the test and 

practice. If a participant was unable to grip the handle due to physical impairment, the 

experimenter placed the hand on top of the handle. The test consisted of a unimanual and a 

bimanual matching task, the order of which was randomly assigned to the participants. 

In the unimanual task the participants were asked to move the handle towards a 

target with the impaired or with the less-impaired arm. Target positions were scaled to the 

individual’s MRD and were located at 20%, 40%, 60%, 70%, and 80%MRD. With each 

arm, two trials per target position2 (i.e. 10 trials per arm in total) were performed. The 

trials were grouped into two blocks, one for each arm, with the target positions randomised 

within one block. The procedure of the bimanual task was the same, except for the fact that 

participants were instructed to move the two handles to the target with the impaired and the 

less-impaired arm simultaneously and in a symmetrical fashion. Two trials per target 

position were executed.   

 

Procedure of the practice period 

The practice of the matching task was performed after the pre-test, varying from one day to 

one week. In this training the participants were instructed to perform bimanual 

symmetrical matching movements towards a target placed at 40% or 60%MRD. The hand 

started either from a proximal (with the handle at 0%MRD) or distal position (at 

100%MRD). The different combinations of target position (2) and starting position (2) 

were randomly presented to the participants and repeated ten times resulting in total 

number of 40 trials. A short break was given after 20 trials. The participants were 

randomly allocated to one of the two training groups. One training group (mirror group; n 

= 7) practiced the bimanual movements with mirror visual feedback, i.e. a mirror was 

placed in between the arms and so that the participant saw the less-impaired arm and its 

mirror reflection. The other group (screen group; n = 9) practiced the movement with an 

opaque screen in between the arms, so that visual feedback of the less-impaired arm only 

was available. For both groups the impaired arm was invisible. After each practice trial the 

experimenter provided feedback (knowledge of results; KR) indicating the size of the 

endpoint error made by the impaired arm (see below), both verbally (e.g. ‘you are 3 cm 

from the target’) and visually by scaling her fingers. In addition, proprioceptive feedback 

was given by passively moving the impaired arm to the target location so that the 

participant could ‘feel’ the correct location. Since not all children were able to complete 

                                                           
2 The post-test was an exception to this. There, each target was presented only once. This was decided based 
on the fatigue of the participants and time constraints.  
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the total of 40 training trials due to fatigue or concentration problems, Table 6.1 reports the 

number of training trials completed by each participant. For the purpose of analysis, the 

training was divided into three parts, irrespective of the total number of trials that was 

executed. The first part of the training consisted of the first 5 trials, the middle part of the 

training consisted of the middle 5 trials of the training and the last part of the training 

consisted of the last 5 trials of the training. 

 

 

 

Figure 6.1: Experimental setup. (A) Top view of the setup. (B) Side view of the setup with the different target 

positions (20%, 40%, 60%, 70%, 80%MRD). The hands of the participants were covered by an opaque sheet 

in the pre-, post-, and retention-test (grey line). The target is depicted as a circle.   
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Data analysis 

Pre- and post-training and after a retention period of 1 week, absolute error of the impaired 

and the less-impaired arm was calculated using custom-written Matlab routines (The 

Mathworks, version 2011) for both the unimanual tasks and the bimanual task. The 

absolute error corresponds to the distance in cm between the target and the position of the 

(less-) impaired arm at the end of the movement. The end of the movement was 

determined as the moment where the movement velocity dropped below 5 mm/s (van Roon, 

Steenbergen, & Meulenbroek, 2005). 

 

Statistical analysis 

Two sets of analysis were conducted. The aim of the first analysis was to determine 

whether the period of practice was effective in improving overall position sense and to 

check if mirror visual feedback resulted in larger gains. We therefore created an overall 

error score, i.e. the mean absolute error of the impaired arm averaged across the 5 target 

positions and across the two tasks (unimanual and bimanual matching).  Then a repeated 

measures ANOVA was conducted on the overall error score with Test moment (pre-test, 

practice phase (early, mid, late), post-test and, retention-test) and Arm (impaired vs. less-

impaired arm) as a within factor and Training group (mirror vs. screen) as a between factor. 

Secondly, a repeated measures ANOVA was conducted to study the effect of Arm 

(impaired vs. less-impaired), Task (unimanual vs. bimanual), Target location (20%, 40%, 

60%, 70%, and 80%MRD) and Training group (mirror vs. screen) on the matching 

accuracy in the pre- and the post-test. The significance level was set at 0.05. In case 

sphericity assumptions were violated, Greenhouse-Geisser adjustments were applied. 

Fisher’s LSD test was used for post-hoc comparisons. 

 

Results 

Effects of practice 

A significant effect of Test moment indicates a positive influence of the practice period on 

the matching accuracy (F2.36, 33.0 = 14.01, p<0.001). For both training groups a significantly 

larger error in the pre-test (no visual information) compared to the post-test was found, 

suggesting that matching accuracy of the impaired arm improved after a period of practice. 

After the retention period, however, mean absolute error returned to the level of the pre-

test.  

Mean absolute error during the practice period was smaller than for all three tests (pre-, 

post-, and retention-test), indicating that adding visual information of the less-impaired 
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arm and KR had an immediate positive effect. During the training the error of both groups 

decreased significantly (from 1.71 cm in the first part to 1.23 cm in the last part; p = 0.001). 

Finally, the analysis revealed a main effect of Arm (F1,14 = 13.53, p = 0.002), showing that 

overall the impaired arm (2.89 ± 0.31 cm) had larger errors than the less-impaired arm 

(1.82 ± 0.11 cm). 

 

 

Figure 6.2: Absolute error for the impaired and the less-impaired arm in the pre-test, training parts (early, 

middle, late), post-test and retention-test. 

 
Effects of Arm, Task, Distance and Training group on the accuracy in pre- and post-test 

This analysis revealed a main effect of Arm (F1,14 = 12.08, p = 0.004) and a main effect of 

Test (F1,14 = 7.65, p = 0.015), which were combined into a significant Arm x Test 

interaction effect (F1,14 = 4.88, p = 0.044). Post-hoc analysis demonstrated for the impaired 

arm a significant decrease in error between the pre-test and the post-test, whereas the error 

of the less-impaired arm was the same on both test moments (see Figure 6.2). Moreover, it 

was found that the error in the impaired arm was always greater than the error in the less-

impaired arm. No effects of Target location were observed (i.e. no differences in absolute 

error between the 5 target locations). Finally, a main effect of Task was found (F1,14 = 5.27, 

p = 0.038), demonstrating that the error in the unimanual task (2.79 ± 0.30 cm) was 

significantly smaller than the error in the bimanual task (3.17 ± 0.35 cm).  
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Discussion 

The present study examined the effects of practicing a matching task on the matching 

accuracy of the impaired arm in children and adolescents with SHCP and looked for 

potential differences between practice with and without mirror visual feedback of the less-

impaired arm. A positive effect of the practice on position sense was found. After practice, 

endpoint error of the impaired arm had dropped with 26.6% but the error increased again 

to the level at pre-test after a 1 week retention period. Moreover, it is interesting to note 

that this training effect not just occurred for the target positions that were practiced (i.e. 40% 

and 60%MRD). This implies that the effect of practice is not distance specific and suggests 

a transfer so that position sense is improved over a larger range of motion.   

Although the overall effect of the training was positive, no differences were found 

between the screen-practice group and the mirror-practice group. It thus seems that mirror 

visual feedback of the less-impaired arm (i.e. ‘illusory’ visual feedback of the impaired 

arm) does not provide extra information to improve matching accuracy of the impaired arm 

as compared to ‘regular’ visual feedback of the less-impaired arm. This seems to be in 

contrast with previous findings showing positive effects of mirror visual feedback on 

movement accuracy in SHCP (Smorenburg et al., 2012b), although it must be noted that 

Smorenburg et al. did show that only a subset of the individuals with hemiplegia benefited 

from the mirror. Post-hoc inspection of the current individual data indicated a decrease in 

the overall error score after practice (pre vs. post-test) in 5 out 7 participants of the mirror-

group and 8 out of 9 participants of the screen-group. We thus see some variation in 

response to the training with and without mirror visual feedback, but overall there is a 

positive effect of practice. As suggested by Smorenburg et al. (2012b) the variation might 

be due to the nature and the severity of the brain lesion, but attention might also be a 

confounding factor as suggested by Moseley et al. For some participants looking towards 

the impaired arm (i.e. seeing the mirror reflection of the less-impaired arm) might augment 

attention towards the impaired arm, which in turn enhances the learning process (Moseley 

& Wiech, 2009). For others, focusing attention on the mirror reflection might have 

perturbed sensory-motor integration due to problems with dividing attention over multiple 

processes or a decreased sense of agency of the movement seen in the mirror (Moseley & 

Wiech, 2009). However, the lack of a difference between the two practice groups might 

also be due to the nature of the feedback during the practice period. Participants received 

verbal/visual feedback about the size of the error and the impaired arm was passively 

displaced to the correct position. This combination of feedback might have turned away 
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the learning effects from the mirror and might be another reason for not finding a 

difference between the two methods of practice.  

The decrease in error of the impaired arm after practice with (mirror) visual 

feedback of the less-impaired arm and KR suggests that a transfer from visual to 

proprioceptive control occurred during learning. Although this is in line with earlier studies 

on motor learning (Adams, Gopher, & Lintern, 1977; Fleishman & Rich, 1963), this study 

is, to the best of our knowledge, the first to show that this transfer can even occur for 

individuals with deficits in position sense (Chrysagis et al., 2007; Goble et al., 2009; 

Smorenburg et al., 2012a; Wingert et al., 2009) and a high dependence on visual 

information (Verrel et al., 2008). This has important implications for therapy. Bimanual 

movement coordination has been shown to be deteriorated in individuals with SHCP when 

compared to typically developing individuals (Hung, Charles, & Gordon, 2004). If practice 

can lead to a more proprioceptive control of movements and less visual control is needed, 

this might facilitate the bimanual coordination so that activities of daily living can be 

performed more effectively. We cannot ascribe the improved accuracy in the present study 

to the availability of visual feedback only, since the participants also gained KR. However, 

given the immediate decrease in error in the early practice phase with visual feedback of 

the less-impaired arm (compared to the pre-test without visual information) it can be 

suggested that the congruent visual and proprioceptive information of the less-impaired 

arm served as a frame of reference. The participant learned to link the visual and 

proprioceptive information which in turn helped to improve (the use of) the position sense 

of the impaired arm and decreased the reliance on visual information as learning proceeds. 

However, the positive effect of practice was not present on the retention-test. Therefore, 

longer training experiments should verify whether indeed a (long-term) transfer in 

movement control takes place in this patient group and whether this can lead to 

improvements in everyday functioning. 

In conclusion, the current study showed that practice of a matching movement with 

visual feedback of the less-impaired arm together with KR temporarily improved position 

sense of the impaired arm in children with spastic hemiplegia. At this moment the effects 

of practice cannot be ascribed to mechanisms that are particularly related to mirror visual 

feedback, but it seems that active practice of a matching movement with visual feedback 

can reduce the dependence on visual feedback in individuals with SHCP. 
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Finishing this thesis I realised that after three years of PhD-research I have more questions 

than when I started. Nevertheless, the work in this thesis provided more insight into the 

previously reported positive effects of mirror visual feedback in children with SHCP and 

the visuo-proprioceptive interactions in children and adolescents with SHCP. In this final 

chapter of my thesis I will first briefly explain the main findings of each chapter. 

Subsequently, I will discuss the results and elaborate further on the implications of our 

findings. Finally, I will provide ideas for future studies based on the work in this thesis. 

 

Main findings 

The study described in chapter two elaborated upon the experiments of Feltham, Ledebt, 

Bennett et al. (2010) and Feltham, Ledebt, Deconinck et al. (2010). From their studies it 

was unclear whether the positive effects of mirror visual feedback on neuromuscular 

activity and bimanual symmetry were the result of viewing a symmetrical movement 

(irrespective of which arm was viewed) or were the result of the illusion that the impaired 

arm had been substituted by the less-impaired arm. Therefore we investigated in chapter 

two the effect of (mirror) visual feedback of the impaired arm on the neuromuscular 

activity and the movement symmetry. It was found that the amount of neuromuscular 

activity in the Biceps muscle of the impaired arm was higher when receiving mirror visual 

feedback of the impaired arm than receiving mirror visual feedback of the less-impaired 

arm. No effects on movement kinematics were found. This suggests that the effects 

reported by Feltham, Ledebt, Bennett et al. (2010) and Feltham, Ledebt, Deconinck et al. 

(2010) are likely not caused by the perception of two symmetrically moving limbs per se, 

but by the illusion that the impaired arm is substituted.  

Chapter three aimed to get more insight into deficits in position sense in children 

with SHCP when compared to typically developing (TD) children for a task that involve 

both arms. To this end, a contralateral matching task was performed. We found that 

children with SHCP have difficulties matching the position of one arm with the position of 

a static reference arm (without any visual information available) when compared to TD 

children. Moreover, the matching accuracy was lower when the distance that had to be 

covered by the matching arm was larger.  

In chapter four we examined the effect of (mirror) visual feedback of the non-

moving (reference) arm on the matching accuracy of the moving arm in children with 

SHCP. When participants looked into the mirror they saw their static arm and its mirror 

reflection, which created the illusion that both arms were already at the target position. It 

was demonstrated that static (mirror) visual feedback improved the matching accuracy of 
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the moving arm compared to a situation without visual information. Moreover, a similar 

distance effect was found as in chapter three: a larger distance to target resulted in a lower 

matching accuracy.  

In chapter five we examined the effect of moving the impaired arm in synchrony 

with the less-impaired arm. In addition, the effect of mirror visual feedback on the 

matching accuracy of the impaired arm was investigated. We showed that the accuracy of 

the impaired arm improved when moving in synchrony with the less-impaired arm, than 

when moving alone. Furthermore, we demonstrated that mirror visual feedback in the 

bimanual movement condition can lead to a greater matching accuracy of the impaired arm 

for a subset of the individuals with SHCP. For this group, a poorer position sense in a 

condition without mirror visual feedback was related to greater improvements in accuracy 

when mirror visual feedback was available.  

Finally, chapter six was designed to examine the effects of practicing a matching 

movement with (mirror) visual feedback of the less-impaired arm on the matching 

accuracy of the impaired arm in individuals with SHCP. Overall, a positive effect of the 

practice with visual feedback was found. That is to say, the matching error was smaller in 

the post-test when compared to the pre-test. However, practice with the mirror did not 

seem to have a differential effect on the accuracy than training with ‘regular’ feedback of 

the less-impaired arm. Nevertheless, practicing a matching movement with visual feedback 

seems to induce a transfer from visual to proprioceptive control of movement. 

 

Position sense in individuals with SHCP 

Given the important role of proprioception in motor control, the effectiveness of any 

therapeutic intervention that aims to improve motor function in SHCP is partly dependent 

on its effect on proprioception. Mirror visual feedback might be a possible tool for 

rehabilitation and therefore the work in this thesis examined the effects of mirror visual 

feedback on the static component of proprioception, position sense. A number of studies 

already showed an impaired position sense in SHCP by actively moving one limb towards 

a visible or remembered target (Chrysagis, Skordilis, Koutsouki, & Evans, 2007; Goble, 

Hurvitz, & Brown, 2009; Wingert, Burton, Sinclair, Brunstrom, & Damiano, 2009). 

However, the ability to match the position of one arm by actively moving the other arm 

had not been considered. With a contralateral matching task we demonstrated that 

individuals with SHCP are clearly disadvantaged for the accurate positioning of one arm 

relative to the position of the other arm, which is required in multiple manual tasks.    
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But what causes the impaired proprioception in individuals with SHCP? Is there a 

deficit on the peripheral level (i.e. sensory system and/or muscle) so that perturbed signals 

are sent from the muscle to the brain? And/or, are the signals unperturbed and lies the 

problem in the processing of these signals in the brain (i.e. a problem on central level)? 

Malformation and injury to cortical and subcortical structures as the parietal lobe and the 

thalamus are believed to impair sensation (Clayton, Fleming, & Copley, 2003 In: 

Majnemer, Bourbonnais, & Frak, 2008). However, in chapter three we stated that if the 

matching difficulties can be explained by a deficit on cortical level only, this would result 

in distance independent matching errors for both arms. We found that matching error 

increased when the distance to cover was larger, so it seems that in children with SHCP 

deficits occur not only at central level but more likely at both the central and the peripheral 

level. 

Focusing on the peripheral level, spasticity is a major symptom of SHCP which 

may affect position sense. Spasticity causes the muscle to be shortened and stiffened 

(Friden & Lieber, 2003), which may increase or disturb the discharge of the muscle 

spindles (Wingert et al., 2009). This would suggest that higher levels of spasticity would 

result in larger proprioceptive impairments. However, in chapter four we did not find a 

clear relationship between spasticity and matching accuracy and also in chapter five the 

relation between spasticity and improvement in accuracy due to the mirror was 

inconclusive. Chrysagis and colleagues (2007) on the other hand reported a significant 

negative relation between the degree of spasticity (measured with the Modified Ashworth 

Scale) and the position sense. Differences in velocity between the matching movements 

and the measurement of the spasticity might be a confounding factor in this respect. 

Moreover, it is questionable whether (coarse) clinical scales for spasticity can be related to 

sensitive measures of position sense. Thus, although the exact role of the spastic muscle in 

the proprioceptive deficits remains to be determined, it is conceivable that deficits on 

muscle level also contribute to the position sense deficits in certain circumstances.  

Some caution is warranted when interpreting the results of position matching 

experiments. There are several ways to measure position sense, but the matching error 

might be influenced by different factors (Goble, 2010). One of these factors (and maybe 

the most important one) is the type of matching task. The choice for a particular matching 

task might seem trivial but the characteristics of the task can greatly influence your results. 

In the ipsilateral paradigm, the participant needs to memorize the target position before 

matching it with the same (ipsilateral) hand. It is likely that in these situations, part of the 

matching error measured is due to cognitive or memory deficits rather than a decrease in 
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position sense. The contralateral (concurrent) matching task used in the present thesis 

(chapters three and four) eliminates the involvement of memory, but has limitations of its 

own. Because of the involvement of both arms, it is difficult to ascertain from which arm 

the matching error arises (reference arm, matching arm or both). Moreover, matching with 

the opposite limb requires greater inter-hemispheric transfer, as proprioceptive information 

from one limb likely crosses the hemispheric divide through the transcallosal pathways of 

the corpus callosum. This could lead to increased cognitive load that might influence the 

matching error (Goble, 2010). For healthy children, adolescents and elderly, no significant 

differences between these two matching tasks were found (Adamo, Martin, & Brown, 2007; 

Goble, Lewis, Hurvitz, & Brown, 2005; Ledebt, Smorenburg, & Savelsbergh, submitted), 

but for individuals with asymmetric brain injuries and memory problems the matching 

errors can be greatly influenced by the type of task used.  

 

A transfer from visual to proprioceptive control of movement? 

In healthy individuals it has been suggested that during learning a shift from visual to 

proprioceptive control takes place. In the early stages of learning visual control is 

dominant whereas in later stages of learning, people rely more on proprioceptive 

information (Fleishman & Rich, 1963; Smyth & Marriott, 1982). Moreover, it has been 

suggested that higher sensitivity to proprioceptive cues could facilitate this transfer of 

control (Fleishman & Rich, 1963). In individuals with SHCP this transfer is expected to be 

considerably hampered due to an increased reliance on visual information and a disturbed 

proprioception, which can have a detrimental effect of the efficacy of e.g. mirror therapy. 

Therefore, we examined in chapter six whether in individuals with SHCP the control of 

movement can be delegated from vision to proprioception during practice of a matching 

movement. If matching accuracy improves (i.e. smaller errors on the proprioceptive post-

test) after a period of practice with visual information, this could suggest that the sense of 

limb position is modulated which in turn facilitates the proprioceptive control of 

movement. Indeed, we demonstrated that learning a matching movement with both arms in 

synchrony under visual control of the less-impaired arm, led to smaller matching errors of 

the impaired arm when the movement was subsequently performed without visual 

information (proprioceptive control only). This is in agreement with studies on motor 

learning in TD-individuals (Adams, Gopher, & Lintern, 1977; Fleishman & Rich, 1963). 

However, to the best of our knowledge this is the first study that showed that this transfer 

can also occur in individuals with impaired proprioception and increased reliance on visual 

information. 
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How can we explain the change in movement accuracy we observed? First of all it 

has been suggested that during learning vision improves accuracy by providing a detailed 

spatial structure (i.e. frame of reference) for the storage of movement-related information 

(Laabs & Simmons, 1981 In: Proteau, Marteniuk, Girouard, & Dugas, 1987). Indeed, as 

shown in chapter four and six, vision seems to play an important role given the fact that 

adding visual information led to a greater accuracy than matching with proprioceptive 

information only. Although we cannot ascribe the improvement in accuracy to visual 

feedback of the less-impaired arm only (we also provided knowledge of results), the 

immediate decrease in error from pre-test to the first phase of practice suggests that visual 

feedback plays an important role in the improvement after practice and possibly in the 

transfer to a more proprioceptive control of movement. In addition, as Wong, Wilson and 

Gribble (2011) suggested, improvements in proprioception after motor learning could 

reflect a sensory component of short-term sensorimotor plasticity that occurred during 

learning (see also: Ostry, Darainy, Mattar, Wong, & Gribble, 2010). Motor learning is 

dependent upon plasticity in the motor areas, but changes in proprioception have been 

found in conjunction with improvements in motor performance. It is therefore suggested 

that motor learning can modify both the motor areas and the somatosensory systems 

(processing of somatosensory information), which is visible in increased matching 

accuracy after practice. This possible link between motor learning and sensory changes 

could lead to novel approaches to rehabilitation for individuals with SHCP (Wong et al., 

2011).   

 

The effects of mirror visual feedback in SCHP 

The studies presented in this thesis used mirror visual feedback for two purposes: on the 

one hand we used the mirror as a tool to manipulate visual feedback of the position of the 

matching hand to examine visuo-proprioceptive interactions in a contralateral matching 

task (i.e. both hands seemed to be on the endpoint position already at the beginning of the 

movement). On the other hand we explored the possibilities to use the mirror for therapy 

purposes in individuals with SHCP, as described in chapter five and six. In chapter four, 

we examined whether the illusion that both hands were already at the endpoint position 

could alter the perceived location of the hand behind the mirror. We showed that mirror 

visual feedback of a static reference arm did not alter the matching accuracy when 

compared to the screen condition in which only the reference arm was visible. In other 

words, the participants were, despite the illusion, able to sense the position of their hidden 

limb. In contrast with the results of Holmes and Spence (2005), the illusion created by 
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mirror visual feedback in the present study did thus not influence the matching accuracy of 

the participants. However, in the study of Holmes and Spence (2005) the position of the 

reference hand was manipulated in the medio-lateral plane whereas in the present study the 

bias was created in the anterior-posterior plane. Furthermore, Holmes and Spence (2005) 

showed that a longer exposure time to the mirror increasingly biased the endpoint error 

towards the direction specified by the mirror visual feedback. The short exposure time to 

the mirror before the start of the movement might be the reason for the fact that the conflict 

situation in the present study did not affect the matching accuracy.   

The positive findings in a range of patients with acquired unilateral motor and/or 

pain disorders suggests that mirror therapy may be a suitable method to improve upper 

limb function. However, it is still unclear whether the positive effects of mirror therapy in 

patients with acquired disorders can be extrapolated to individuals with unilateral 

congenital disorders such as SHCP. The work presented in this thesis followed on the work 

of Feltham, Ledebt, Bennett et al. (2010) and Feltham, Ledebt, Deconinck et al. (2010) 

who showed for a bimanual symmetric inward circular movement that the presence of 

mirror visual feedback led to decreased interlimb movement variability (i.e. more stable 

pattern of movement symmetry) and decreased levels of eccentric neuromuscular activity 

in the Biceps muscle of the impaired arm. These effects were immediate, i.e. the children 

were exposed to mirror visual feedback for 2 minutes and within this time frame the effects 

were visible. More recently, Gygax and colleagues (2011) examined the effects of a period 

of training with mirror visual feedback in children with SHCP. After a 3-week training 

consisting of three repetitive symmetrical upper limb exercises either with or without 

mirror visual feedback (divided over two groups; cross-over design), improvements were 

reported in grasp strength and the position of the upper limbs during achievement of 

specific tasks (dynamic position analysis measured with the SHUEE evaluation). The work 

in this thesis added to the existing body of knowledge by showing that mirror visual 

feedback can enhance matching accuracy in individuals with SHCP, which is an indicator 

of position sense. However, in chapter five we showed that mirror visual feedback seems 

to improve matching accuracy of the impaired arm for a subset of the participants only. 

This variability in responsiveness to the mirror is interesting because until now, no studies 

examined/mentioned the possibility that mirror visual feedback might only be suitable for 

a part of the CP-population. Correspondingly, Ramachandran and Altschuler (2009) 

pointed out in their review article that the variability in results in stroke patients suggests 

that the procedure of mirror visual feedback might help some patients more than others. 

They proposed as well that this variability in stroke patients may depend in part on the 
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exact location of the lesion. Our study together with the notion of Ramachandran and 

Altschuler thus indicates that more research is warranted in order to establish which 

individuals will benefit from therapy with mirror visual feedback. On the other hand, one 

could argue that there is no reason why mirror therapy should not be implemented 

routinely given the simplicity of the procedure (Ramachandran & Altschuler, 2009). Still, 

in daily practice it takes a lot of time before the best suitable therapy for a patient is found; 

time that could have been spend to actually improve arm/hand functionality. It would 

therefore be very useful to know which therapy might be most suitable for a specific 

individual.  

In line with our suggestions, Kuhnke et al. (2008) showed differential efficacy of a 

12 day constraint-induced movement therapy (CIMT) protocol for different types of 

corticospinal reorganisation in SHCP (identified by transcranial magnetic stimulation). 

They showed a lower efficacy of CIMT for patients whose paretic hand is controlled by the 

ipsilateral (i.e. contralesional) hemisphere (ipsi-group) than for patients whose paretic hand 

is controlled by the contralateral (i.e. lesioned) hemisphere (contra-group). Two possible 

reasons for the differential effect of CIMT have been put forward by the authors. First, it is 

suggested that CIMT ‘rebalances’ the (disbalanced) interhemispheric inhibition in 

hemiparesis (i.e. in SHCP the more active contralesional hemisphere inhibits the activity in 

the less active affected hemisphere). Constraining the less-affected arm can reduce the 

cortical activity in the contralesional hemisphere and intensive repetitive training of the 

impaired arm can increase the cortical activity in the affected hemisphere. However, since 

in the ipsi-group the motor representations of both the impaired and the less-impaired arm 

are located in the same hemisphere, targeting interhemispheric inhibition with CIMT is 

thought to be ineffective. Bimanual therapy might be a better option for this group. Second, 

in the ipsi-group the sensorimotor loop is disrupted, as S1 is located in the lesioned 

hemisphere, whereas for the contra-group this sensorimotor loop is preserved (with M1 

receiving immediate somatosensory feedback from the moving hand via S1; see also Wilke 

et al., 2009). This intact sensorimotor loop might be crucial for effective motor learning 

during CIMT and can thus explain the differences in efficacy of CIMT between the groups. 

Although this study focused only on the effects of CIMT, the results of this study confirm 

the suggestions that there is an interaction between treatment type and corticospinal 

reorganisation in SHCP. Further research is thus warranted to investigate this for other 

treatment types, such as mirror therapy. 
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Underlying mechanisms of mirror visual feedback 

As suggested in chapter five mirror visual feedback might be a possible tool for 

rehabilitation for a subset of the individuals with SHCP rather than for the population as a 

whole. Moreover, in the previous paragraph some neurological evidence is provided for 

dissociation in therapy effects within one patient group. Nonetheless, before being able to 

draw conclusions on which patients will benefit from mirror therapy and why, it is also 

necessary to get more insight into the working mechanisms of mirror visual feedback. 

Although unravelling the underlying mechanisms of mirror visual feedback was not within 

the scope of my thesis, I would like to discuss the different hypotheses that have been put 

forward in the literature (see Ramachandran & Altschuler, 2009 for a review). 

First of all, it has been suggested that the mirror might restore the congruence 

between discrepant visual feedback and motor output leading to an unlearning of (learned) 

non-use in unilateral disorders like stroke. Ramachandran (2005) assumes that, at least part 

of, the (learned) paretic movement in stroke can be attributed to a discrepancy between the 

internal copy of the motor command sent by the central nervous system (i.e. efference 

copy) and the afferent sensory information. When the motor commands are not confirmed 

by the proprioceptive feedback, motor output is amplified which is believed to further 

deteriorate motor performance. Mirror visual feedback may help to restore the congruence 

between the two systems. 

Another hypothesis focuses on the mirror neurons, a network of neurons in the 

parietal and frontal lobe of the brain, which is activated when observing or imaging motor 

tasks and is involved in action planning (Rizzolatti & Craighero, 2004). It is suggested that 

mirror visual feedback might activate (dormant) mirror neurons in the damaged parts of the 

brain thereby facilitating neural plasticity or revival. This in turn could improve movement 

on the impaired side of the body.  

A third mechanism that has been put forward is the (enhanced) recruitment of 

ipsilateral pathways. Most of our motor function is controlled by corticospinal tracts that 

are crossed over at the level of the medulla oblongata and therefore the right hemisphere 

controls the left side of the body and the left hemisphere controls the right side of the body. 

However, a small portion of the tract does not cross over. These tracts are called the 

ipsilateral pathways. In healthy individuals the majority of these ipsilateral pathways is 

withdrawn during the perinatal period, but when there is a damage which impairs the 

contralateral tract to function properly, e.g. as a result of cerebral damage, the ipsilateral 

pathways may persist. Staudt and colleagues (2002) showed differences in the amount of 

ipsilateral projections in SHCP depending on the size of the lesion: individuals with large 
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lesions did not have any contralateral projections but instead only showed ipsilateral 

projections. Individuals with small lesions only showed preserved contralateral projections 

and no functional ipsilateral projections. Mirror visual feedback is suggested to act upon 

the ipsilateral pathways but it remains to be determined if this actually happens and in what 

way. 

Finally, Garry, Loftus and Summers (2005) showed that the excitability of the 

primary motor cortex ipsilateral to the moving hand was facilitated significantly more in 

the condition with mirror visual feedback of the moving hand than in the other conditions. 

According to the authors, this increased M1 excitability could lead to practice-induced 

neuroplasticity within the affected M1 in patients with a unilateral brain lesion (Garry et al., 

2005; Ramachandran & Altschuler, 2009). In summary, the range of positive findings in 

patients with (acquired) unilateral motor problems (Feltham, Ledebt, Bennett et al., 2010; 

Feltham, Ledebt, Deconinck et al., 2010; Gygax et al., 2011; McCabe et al., 2003; Sathian, 

Greenspan, & Wolf, 2000) suggest that mirror therapy may be a suitable method for 

improvement of upper limb function. Still, the underlying mechanisms of mirror therapy 

remain poorly understood.   

 

Future directions 

The experiments in this thesis were designed to get more insight into the proprioceptive 

abilities and the visuo-proprioceptive interactions (i.e. the effects of (mirror) visual 

feedback on the proprioceptive abilities) in individuals with SHCP. This research, however, 

was a first step and future research is warranted to unravel the sensory problems of 

individuals with spastic hemiplegia and to determine how we can use mirror visual 

feedback in the therapy regime of this patient population.  

 

Mirror therapy 

First of all, research should elaborate further on the effects of mirror visual feedback 

(mirror therapy) on motor performance in individuals with spastic hemiplegia. Different 

studies showed positive effects of mirror therapy in different unilateral patient groups and, 

although limited, the first results in children with SHCP are promising. Moreover, mirror 

therapy is easy to apply, inexpensive and non invasive and as such may be considered an 

interesting complement to the rehabilitation of children and adolescents with spastic 

hemiplegia (not excluding other established forms of therapy; Gygax et al., 2011). I 

therefore believe that the use of mirror visual feedback in therapy for SHCP deserves 

further attention. Future research is needed to confirm the positive effects of this treatment 
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on different areas of motor control and sensation (Gygax et al., 2011). Furthermore, as 

mentioned earlier in this thesis (chapter five), it is suggested that not all children will 

benefit (to the same extent) from mirror therapy due to e.g. differences in size and location 

of the brain lesion. It is therefore recommended to determine which children might benefit 

from practice with mirror visual feedback and for what reason. Extensive documentation 

on the characteristics of the disorder in each individual might help in this respect. Studies 

incorporating brain imaging techniques such as TMS or (f)MRI might provide us with 

more insight into different types of brain reorganisation and the relation to the efficacy of a 

therapy. Moreover, it can be interesting to see whether cortical reorganisation occurs after 

prolonged training with mirror visual feedback. 

On the level of therapy implementation there are also certain aspects that deserve 

attention. For example, it remains to be determined whether mirror therapy can function as 

a therapy on its own, or whether some children would benefit more by first ‘jump-starting’ 

with e.g. CIMT (Gordon & Steenbergen, 2008) followed by mirror therapy, or the other 

way around. In order to start with CIMT a certain level of functionality is needed, but for 

mirror therapy no such requirements are set (yet). It is possible that mirror therapy is 

effective to get some movement in a spastic arm which can then be followed by another 

period of therapy with e.g. CIMT or HABIT. In this respect, it is interesting to note that 

little is known about the effect of mirror training in severely affected individuals since 

most studies to date have focused on mildly to moderately impaired individuals. In order to 

know for which patients mirror therapy might be most effective it is therefore unavoidable 

to examine the effects in severely afflicted individuals as well. Moreover, it is necessary to 

determine the timing and modalities of intervention (Gygax et al., 2011). What kind of 

tasks should be incorporated in the training, what should be the intensity of the training 

and what are the long-term effects (determined in a large patient population with a 

Randomised Controlled Trial)? Eventually detailed guidelines could be developed for 

accurate application of mirror therapy in SHCP.  

 

Accuracy vs. precision 

A limitation of the studies in this thesis was that we only focused on the absolute error. 

Although it is generally accepted that absolute matching error is a useful indicator for 

deficits in position sense, the precision of a matching task might also provide insight into 

the noise within the information processing system, which can arise from the sensory 

signals or from the processing of these signals (van Beers, Sittig, & Denier van der Gon, 

1998). 
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Active vs. passive examination 

The majority of the studies that examined position sense in TD individuals or patients with 

SHCP used active matching tasks, requiring the generation of a motor command. It is 

worth noting that Paillard and Brouchon (1968) showed smaller errors in an active 

matching task than in a passive matching task in a small group of healthy adults. 

Apparently position sense is more accurate under active than under passive conditions in 

healthy individuals and signals related to motor commands also contribute to position 

sense (see also Gandevia, Smith, Crawford, Proske, & Taylor, 2006). It is unknown, 

however, if this is also the case in individuals with a unilateral brain damage and muscle 

spasticity. It is therefore recommended to investigate the contribution of ‘passive’ 

receptors and ‘active’ motor commands to position sense in individuals with SHCP. A 

similar contralateral matching task as used in chapters three and four could be used. In the 

active condition the participant actively moves one arm until both arms are at the same 

position. In the passive condition the arm is moved passively towards the target position 

and the participant has to indicate when both arms are at the same position.  

 

Proprioception vs. somatosensation 

In this thesis the focus is on one aspect of proprioception, the position sense. However, I 

would like to stress that proprioception is not the same as somatosensation. The term 

somatosensation encompasses both the proprioceptive sensation (i.e. kinaesthesia and 

position sense) and the cutaneous sensation (e.g. tactile discrimination, vibration 

perception and texture discrimination). Somatosensory impairments may modulate motor 

performance, and it is therefore essential to evaluate these as part of the rehabilitation 

management of children with neurological conditions such as CP. Rather than focusing 

only on position sense, it might thus be interesting to examine the cutaneous sensation in 

conjunction with the proprioceptive sensation. Previous research showed for individuals 

with SHCP impairments on the level of stereognosis and two-point discrimination in 

conjunction with deficits in pressure sensitivity, vibration sense and directionality (see 

Majnemer et al., 2008 for a review). Although there is a paucity of studies that actually 

looked at the relationship between sensation and hand function in SHCP, it can be assumed 

that impaired cutaneous sensation also affects motor performance in children with SHCP 

(Auld, Boyd, Moseley, Ware, & Johnston, 2012a; Tachdjian & Minear, 1958).  

In order to be able to programme planning and selection of therapeutic approaches 

to optimize function it is crucial to get a comprehensive documentation of the extent and 

the range of somatosensory impairments in these children. However, due to a lack of 
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(reliable) tools, and the fact that feasibility of accurate assessment of sensory abilities is 

constrained by physical, cognitive and behavioural impairments (assessment of many 

modalities requires good attention and concentration skills), it is challenging to assess the 

sensory impairments in children and youth with SHCP (Majnemer et al., 2008). Despite 

these demerits, it is recommended to focus future research on the assessment of the 

different components of proprioception and cutaneous sensation in this patient group and 

examine the effects on and the relationship with arm/hand functionality. For example, a 

weight differentiation experiment, in which the detection threshold is determined, can give 

more insight into the ‘overall’ proprioceptive ability in individuals with SHCP. A more 

detailed insight into the different abilities can be obtained by specific tests for each sensory 

modality (e.g. two-point discrimination, stereognosis, position sense, kinaesthesia, pressure 

sensitivity). Understanding the nature and the severity of the impairments in 

proprioception and cutaneous sensation in individuals with SHCP might assist to direct 

treatment to improve sensation but might also facilitate the overall rehabilitation process in 

terms of learning new motor tasks (Auld, Boyd, Moseley, Ware, & Johnston, 2012b). 
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Accuracy of 

unimanual vs. bimanual matching in individuals with Spastic Hemiparetic Cerebral Palsy. 

8th FENS forum of neuroscience. Barcelona, Spain, 14-18 July 2012. 

 

Kinematics of the impaired arm in children with Spastic Hemiparetic Cerebral Palsy 

(SHCP) improve during symmetrical bimanual movements. However, to the best of our 

knowledge no study examined the effect of symmetrical bimanual movements on 

movement accuracy. Movement accuracy can serve as a measure of proprioceptive 

accuracy, which has been shown previously to be deteriorated in SHCP-children. 

Therefore, the present study focused on movement accuracy in unimanual and bimanual 

symmetrical movements. Moreover, in the light of the positive reports about mirror 

therapy for treating arm dysfunction we also examined the effect of mirror visual feedback 

(MVF) of the less-impaired arm on movement accuracy of the impaired arm.  

Participants with SHCP were asked to match the position of a target either with the 

impaired arm only (unimanual condition) or with both arms at the same time (bimanual 

condition). In both conditions a divide (opaque screen or mirror) in between the arms 

masked vision of the impaired arm. Matching accuracy was measured by the absolute 

difference between the impaired arm and the target at the end of the movement. 

The results showed that absolute endpoint error was smaller in the bimanual 

compared to the unimanual condition, while there was no effect of MVF (i.e. similar error 

with screen and mirror). Inspection of individual data, however, showed that 13 out of 23 

participants did experience a positive effect of MVF. Moreover, significant positive 

correlations seem to suggest that individuals with lower proprioceptive accuracy in the 

baseline condition (screen) seem to benefit more from MVF. This then suggests that MVF 

might be a valuable tool for rehabilitation but only for a subset of the individuals with 

SHCP. It is suggested that the large variability in response is caused by the heterogeneity 

in the CP population related to e.g. size and location of the lesion.  
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. The effects of a 

short proprioceptive training with (mirror) visual feedback in individuals with congenital 

hemiplegia. New strategies to optimize the acquisition and consolidation of motor skills, a 

satellite symposium of the FENS forum of neuroscience. Barcelona, Spain, 12-13 July 2012. 

 

Objectives:  

To examine the effects of a short proprioceptive training with (mirror) visual feedback in 

individuals with Spastic Hemiparetic Cerebral Palsy (SHCP). 

Methods:  

16 participants with SHCP (15.8 ± 2.5 years) performed a proprioceptive training which 

consisted of 40 bimanual symmetrical movements towards a visible target. A divide in 

between the arms occluded the impaired arm from view. To test the effect of mirror visual 

feedback, the divide was either an opaque screen or a mirror. For the screen-group, only 

the less-impaired arm was visible during training. For the mirror-group the less-impaired 

arm and its mirror reflection were visible. At the end of each trial, participants received 

feedback about the accuracy of the impaired arm.  

A pretest was performed one week before training and the training was followed by a 

posttest (immediately after training) and a retention-test (1 week after training). Procedures 

of the pre-, post-, and retention-test were similar: participants were asked to match 5 target 

positions, scaled to the individual maximum reaching distance, with either the less-

impaired arm only, the impaired arm only or both arms at the same time, without vision of 

either arm. The difference between the impaired arm and the target at the end of the 

movement (absolute error) was measured.  

Results:  

Movement accuracy of the impaired arm improved as a result of the training (error in 

posttest was smaller than error in pretest), but this improvement was similar for both 

training groups (i.e. mirror-group and screen-group). The error in the retention-test 

returned to pretest level indicating that the training was probably too short to see long-term 

effects. Finally, adding visual feedback of the less-impaired arm in the training 

immediately decreased the matching error of the impaired arm with respect to the pretest. 

This suggests that visual feedback of the less-impaired arm provides an important source 

of information to match the impaired arm accurately.  
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Conclusions:  

Proprioceptive training with visual feedback of the less-impaired arm improves movement 

accuracy of the impaired arm in children and adolescents with congenital hemiplegia. 

However, mirror visual feedback did not have an additional (beneficial) effect on the 

training.  
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Accuracy of 

unimanual vs. bimanual matching in individuals with Spastic Hemiparetic Cerebral Palsy. 

Congress Mastery of Manual Skills ‘Recent insights into typical and atypical development 

of manual ability’. Groningen, The Netherlands, 19-21 April 2012. 

 
Previous studies demonstrated that the kinematics of the impaired arm in children with 

Spastic Hemiparetic Cerebral Palsy (SHCP) improve during specific symmetrical bimanual 

movements (e.g. Steenbergen et al., 2006). However, to the best of our knowledge no 

study examined the effect of symmetrical bimanual movements on movement accuracy. 

Movement accuracy can serve as a measure of proprioceptive accuracy, which has been 

shown previously to be deteriorated in children with SHCP compared to typically 

developing peers (Smorenburg et al. in press). Therefore, the present study focused on the 

movement accuracy in unimanual and bimanual symmetrical goal-directed movements. 

Moreover, in the light of the positive reports about mirror therapy for treating arm 

dysfunction (e.g. Altschuler et al., 1999) we also examined the effect of mirror visual 

feedback of the less-impaired arm on the movement accuracy of the impaired arm.  

23 participants with SHCP (mean age 14.2 ± 2.9; 5 females, 18 males) were asked 

to match the position of a target either with the impaired arm only (unimanual condition) 

or with both arms at the same time (bimanual condition). In both conditions a divide in 

between the arms masked the vision of the impaired arm. To test the effect of mirror visual 

feedback of the less-impaired arm on the matching accuracy, the divide was either an 

opaque screen or a mirror. For 4 target positions, scaled to the individual maximum 

reaching distance, the difference between the impaired arm and the target at the end of the 

movement (absolute error) was measured.  

The results showed that the absolute endpoint error was smaller in the bimanual 

condition compared to the unimanual condition (3.1 vs. 4.3 cm), while there was no effect 

of mirror visual feedback (i.e. absolute error with opaque screen and mirror were similar). 

Inspection of the individual data, however, showed that 13 out of 23 participants did 

experience a positive effect of mirror visual feedback (error was smaller in the mirror 

compared to the screen condition). A significant positive correlation between the error in 

the screen condition and the difference score between the screen and the mirror condition 

further seems to suggest that individuals with lower proprioceptive accuracy in the 

baseline condition (screen) seem to benefit more from mirror visual feedback. This then 

suggests that mirror visual feedback might be a valuable tool for rehabilitation but only for 
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a subset of the individuals with SHCP. It is thought that the large variability in response is 

caused by the heterogeneity in the CP population related to e.g. size and location of the 

lesion.  
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Joint-position 

sense of the impaired limb can be improved by visual feedback of the non-moving limb in 

children with Spastic Hemiparetic Cerebral Palsy. VUMC day of science and technology. 

Amsterdam, The Netherlands, 9 March 2012. 

 

Introduction 

In this study we examined the effect of static visual feedback and static mirror visual 

feedback (i.e. a mirror image of the non-moving limb) on one component of proprioception, 

the joint-position sense (JPS) in children with Spastic Hemiparetic Cerebral Palsy (SHCP).  

Methods 

Participants were asked to match the position of one arm to that of the contra-lateral arm, 

using a device consisting of two moveable handles on a sagittal track. The task was 

performed in three conditions: 1) without visual feedback (no vision), 2) with visual 

feedback of the non-moving limb (screen), and 3) with visual feedback of the non-moving 

limb and its mirror reflection (mirror). The endpoint error, distance between the hands at 

the end of the movement, was used as indicator of JPS. 

Results 

JPS of the impaired limb was more accurate when static visual feedback was available 

compared to the no vision condition. However, static mirror visual feedback did not have 

any additional effect on JPS. These results indicate that children with SHCP can integrate 

static visual and proprioceptive feedback into an egocentric reference frame, which 

improves their JPS. Additionally, while static mirror visual feedback does not seem to add 

information to this reference frame, the mirror image did not lead to a sensory conflict. 

Conclusions 

Static visual feedback of the less-impaired limb improves the matching accuracy of the 

impaired limb in children with SHCP indicating that they are able to integrate visual and 

proprioceptive feedback into one egocentric reference frame. This provides possibilities for 

proprioceptive training. 
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Visual feedback 

of the non-moving limb improves active joint-position sense of the impaired limb in 

Spastic Hemiparetic Cerebral Palsy.  3rd Annual MOVE Research Meeting. Amsterdam, 

The Netherlands, 28 September 2011. 

 

This study examined the active joint-position sense in children with Spastic Hemiparetic 

Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual 

feedback, of the non-moving limb, on the joint-position sense. Participants were asked to 

match the position of one upper limb with that of the contralateral limb. The task was 

performed in three visual conditions: without visual feedback (no vision); with visual 

feedback of the non-moving limb (screen); and with visual feedback of the non-moving 

limb and its mirror reflection (mirror). In addition to the proprioceptive measure, a 

functional test (Quality of Upper Extremity Skills Test [QUEST]) was performed and the 

amount of spasticity was determined in order to examine their relation with the 

proprioceptive ability. Results showed that the accuracy of matching was significantly 

influenced by the distance that had to be covered by the matching limb; a smaller distance 

resulted in smaller errors. Moreover it was demonstrated that static (mirror) visual 

feedback improved the matching accuracy. A clear relation between functionality, as 

measured by the QUEST, and active joint-position sense was not found. This might be 

explained by the availability of visual information during the performance of the QUEST. 

It is concluded that static visual feedback improves matching accuracy in children with 

SHCP and that the initial distance between the limbs is an influential factor which has to 

be taken into account when measuring joint-position sense. 
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Visual feedback 

of the non-moving limb improves active joint-position sense of the impaired limb in 

Spastic Hemiparetic Cerebral Palsy. Annual Meeting of the Society for the Neural Control 

of Movement, San Juan, Puerto Rico, 26-30 April 2011. 

 

This study examined the active joint-position sense in children with Spastic Hemiparetic 

Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual 

feedback, of the non-moving limb, on the joint-position sense. Participants were asked to 

match the position of one upper limb with that of the contralateral limb. The task was 

performed in three visual conditions: without visual feedback (no vision); with visual 

feedback of the non-moving limb (screen); and with visual feedback of the non-moving 

limb and its mirror reflection (mirror). In addition to the proprioceptive measure, a 

functional test [Quality of Upper Extremity Skills Test (QUEST)] was performed and the 

amount of spasticity was determined in order to examine their relation with the 

proprioceptive ability. Results showed that the accuracy of matching was significantly 

influenced by the distance that had to be covered by the matching limb; a smaller distance 

resulted in smaller errors. Moreover it was demonstrated that static (mirror) visual 

feedback improved the matching accuracy. A clear relation between functionality, as 

measured by the QUEST, and active joint-position sense was not found. This might be 

explained by the availability of visual information during the performance of the QUEST. 

It is concluded that static visual feedback improves matching accuracy in children with 

SHCP and that the initial distance between the limbs is an influential factor which has to 

be taken into account when measuring joint-position sense. 
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Joint-position 

sense of the impaired limb can be improved by visual feedback of the non-moving limb in 

children with Spastic Hemiparetic Cerebral Palsy. VUMC day of science and technology. 

Amsterdam, The Netherlands, 11 March 2011. 

 

Introduction 

In this study we examined the effect of static visual feedback and static mirror visual 

feedback (i.e. a mirror image of the non-moving limb) on one component of proprioception, 

the joint-position sense (JPS) in children with Spastic Hemiparetic Cerebral Palsy (SHCP).  

Methods 

Participants were asked to match the position of one arm to that of the contra-lateral arm, 

using a device consisting of two moveable handles on a sagittal track. The task was 

performed in three conditions: 1) without visual feedback (no vision), 2) with visual 

feedback of the non-moving limb (screen), and 3) with visual feedback of the non-moving 

limb and its mirror reflection (mirror). The endpoint error, distance between the hands at 

the end of the movement, was used as indicator of JPS. 

Results 

JPS of the impaired limb was more accurate when static visual feedback was available 

compared to the no vision condition. However, static mirror visual feedback did not have 

any additional effect on JPS. These results indicate that children with SHCP can integrate 

static visual and proprioceptive feedback into an egocentric reference frame, which 

improves their JPS. Additionally, while static mirror visual feedback does not seem to add 

information to this reference frame, the mirror image did not lead to a sensory conflict. 

Conclusions 

Static visual feedback of the less-impaired limb improves the matching accuracy of the 

impaired limb in children with SHCP indicating that they are able to integrate visual and 

proprioceptive feedback into one egocentric reference frame. This provides possibilities for 

proprioceptive training. 
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Children with 

Spastic Hemiparetic Cerebral Palsy show deficits in joint-position sense of the upper limbs. 

VUMC day of science and technology. Amsterdam, The Netherlands, 11 March 2011. 

 

Introduction 

Contradictory findings exist regarding the integrity of proprioception, i.e. sense of body 

parts in space, in individuals with Spastic Hemiparetic Cerebral Palsy (SHCP). Aim of this 

study was to get more insight into one component of proprioception, the joint-position 

sense (JPS) of the upper limbs in this population. 

Methods 

We compared the ability to match the position of one arm to that of the contra-lateral arm 

in a group of children with SHCP and typically developing (TD) children. The task was 

performed without visual information using a device consisting of two moveable handles 

on a sagittal track, with either the dominant or non-dominant limb as reference. The 

endpoint error, distance between the limbs at the end of the movement, was used as 

indicator of JPS.  

Results 

In the SHCP group, JPS of the impaired limb was worse than that of the less-impaired limb 

and both limbs showed less accurate JPS compared to the limbs of the TD group. 

Furthermore, larger errors were made when the distance to be covered was larger and this 

was more pronounced in the SHCP group.  

Conclusions 

These results show that in children with SHCP, JPS of both upper limbs is affected and 

therefore should be targeted in therapy. Moreover, the distance to be covered is suggested 

to take into account when determining joint-position sense.  
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Smorenburg, A.R.P., Ledebt, A., Feltham, M.G., Deconinck, F.J.A., Savelsbergh, G.J.P. 

Visual feedback of the impaired limb provided by a mirror increases neuromuscular  

activity of the impaired limb in Spastic Hemiparetic Cerebral Palsy. VUMC day of science 

 and technology. Amsterdam, The Netherlands, 11 March 2011. 

 

Introduction 

When during a bimanual movement task, children with Spastic Hemiparetic Cerebral Palsy 

(SHCP) have access to mirror visual feedback (MFB) of their less-impaired limb, 

excessive interlimb variability and neuromuscular intensity in arm muscles decrease. Aim 

of the current study was to determine whether these positive effects were specific to the 

type of information provided by the mirror image or were generic responses to the visual 

illusion. 

Methods 

Children with SHCP were instructed to produce a symmetrical circular movement with 

both hands in two conditions: 1) with MFB of the less-impaired arm, 2) with MFB of the 

impaired arm. MFB was generated by means of a mirror that was placed in between the 

two arms, perpendicular to the chest.  

Results 

Seeing two impaired arms (the real arm and its mirror image) was found to increase the 

relative duration of eccentric muscle activity in the Biceps Brachii Brevis of the impaired 

arm whereas seeing two less-impaired arms decreased the relative duration of eccentric 

muscle activity of the Biceps.  

Conclusions 

This finding suggests that the positive effects of MFB are specific to the type of 

information provided and that the mechanism underpinning these effects possibly involves 

the elimination of a conflict between an internal motor representation and afferent 

feedback.  
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Children with 

Spastic Hemiparetic Cerebral Palsy show deficits in joint-position sense of the upper limbs. 

Annual Research Conference Manchester Metropolitan University. Manchester, United 

Kingdom, 10 December 2010.  ISBN: 978-1-905476-54-1 

 

Spastic Hemiparetic Cerebral Palsy (SHCP) is a disorder characterized by spasticity on one 

side of the body. It is known that the impaired limb has a deteriorated functionality 

compared to the less-impaired limb. Nevertheless, contradictory findings exist with respect 

to the proprioception of the impaired and the less-impaired limb and the difference with 

both limbs of typically developing (TD) children. The current study aimed to get more 

insight into the joint-position sense of the upper limbs in children with SHCP and to 

compare this to the joint-position sense of TD children. Joint-position sense was showed to 

be influenced by the distance between the limbs at the start of the movement: larger 

distances resulted in bigger errors for both groups. However, this effect was more 

pronounced in the CP group. In addition, for the CP group the impaired limb showed an 

impaired joint-position sense compared to the less-impaired limb and to both limbs of the 

TD group. Furthermore, also the less-impaired limb showed a deteriorated joint-position 

sense compared to the dominant limb of the TD group. It is concluded that the joint-

position sense of both upper limbs in children with SHCP is deteriorated compared to the 

upper limbs of TD children. 
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Joint-position 

sense of the impaired limb in Spastic Hemiparetic Cerebral Palsy can be influenced by 

visual feedback of the non-moving limb. Annual Research Conference Manchester 

Metropolitan University. Manchester, United Kingdom, 10 December 2010.  

 ISBN: 978-1-905476-54-1 

 

Active joint-positions sense is deteriorated in individuals with Spastic Hemiparetic 

Cerebral Palsy. Visual feedback of the moving upper limb (dynamic visual feedback) 

improves the joint-position sense of that same limb. However, visual feedback of the non-

moving upper limb (static visual feedback) was showed not to be of influence in 

individuals with bilateral CP. The current study focused on the effect of static visual 

feedback on the joint-position sense in children with SHCP. In addition, the study 

examined the effect of mirror visual feedback of the non-moving upper limb on the joint-

position sense. It was expected that the mirror would either provide an extended reference 

frame in which the moving hand could be slid, facilitating the contralateral matching or 

would create a conflict situation resulting in deteriorated ability to use joint-position sense. 

It was found that joint-position sense of the impaired limb improved in a condition in 

which static visual feedback was available compared to a condition without any visual 

feedback. It is suggested that the static visual feedback and the proprioceptive feedback of 

the non-moving upper limb are integrated into one egocentric reference frame which 

facilitates the contralateral matching. Nevertheless, mirror static visual feedback did not 

had any additional effect on the joint-position sense. This might be caused by a short 

exposure time, the discrete movement or the involvement of self-induced movement in the 

task. 
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Smorenburg, A.R.P., Ledebt, A., Feltham, M.G., Deconinck, F.J.A., Savelsbergh, G.J.P. 

Visual feedback of the impaired hand provided by a mirror increases neuromuscular 

activity in Spastic Hemiparetic Cerebral Palsy. Annual Research Conference Manchester 

Metropolitan University. Manchester, United Kingdom, 10 December 2010.  ISBN: 978-1-

905476-54-1 

 

Mirror visual feedback has previously been showed to enhance the movement pattern of 

different patient groups like children with Spastic Hemiparetic Cerebral Palsy (SHCP). 

Mirror visual feedback of the less-impaired upper limb decreased the neuromuscular 

activity of the muscles in the impaired limb. In order to get more insight into the working 

mechanisms of the mirror, the current study investigated the effect of mirror visual 

feedback of the impaired upper limb on the neuromuscular activity of the muscles in the 

less-impaired limb. Seeing two impaired upper limbs in the mirror increased the 

neuromuscular activity of the muscles in the same limb whereas seeing two less-impaired 

limbs decreased the neuromuscular activity. This suggests that the type of visual feedback 

influences the neuromuscular activity and therefore creates opportunities for use in therapy. 
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Smorenburg, A.R.P., Ledebt, A., Deconinck, F.J.A., Savelsbergh, G.J.P. Joint-position 

sense of the impaired limb can be improved by visual feedback of the non-moving limb in 

children with Spastic Hemiparetic Cerebral Palsy. 2nd Annual MOVE Research Meeting 

2010. Amsterdam, Nederland, 24 September 2010. 

  

Individuals with Spastic Hemiparetic Cerebral Palsy are known to have a deteriorated 

proprioception in the impaired limb. The current study focused on the proprioception, or 

more specific joint-position sense, and the effect of static visual feedback (of the non-

moving limb) and static mirror visual feedback on this joint-position sense. It was expected 

that static visual feedback could provide a reference frame for the moving limb and that 

static mirror visual feedback could provide either a reference frame in which the moving 

limb could be slid or could create a conflict situation which would deteriorate the 

performance. It was shown that static visual feedback indeed provided a reference frame 

since the performance improved compared to a no vision situation. However, it seems that 

the static mirror visual information is not used since the performance was equal to the 

static visual feedback situation. The effect of visual feedback was only visible for the 

impaired hand. In addition it was showed that distance between the hands influenced the 

active joint-position sense.   
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Matching accuracy in hemiparetic cerebral palsy during unimanual and
bimanual movements with (mirror) visual feedback

Ana R.P. Smorenburg a,*, Annick Ledebt b, Frederik J.A. Deconinck a,c, Geert J.P. Savelsbergh a,b

a Institute for Biomedical Research into Human Movement and Health, School of Health Care Science, Manchester Metropolitan University, John Dalton Building,

Oxford Road, Manchester M1 5GD, United Kingdom
b MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
c Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium

1. Introduction

Cerebral palsy (CP) is the most common paediatric physical disability (Stanley, Blair, & Alberman, 2000). The condition
comprises a group of permanent disorders of movement and posture due to a lesion in the foetal or infant brain. In children
with spastic hemiparetic cerebral palsy (SHCP), the motor impairments are mainly lateralized (i.e., one-sided) and the upper
limb is usually more affected than the lower limb (Charles & Gordon, 2006; Humphreys, Whiting, & Pham, 2000). The brain
damage in SHCP might also include areas that are involved in bimanual coordination such as the supplementary motor area
(SMA) and areas in the parietal lobe (Serrien, Nirkko, Lovblad, & Wiesendanger, 2001; Serrien, Strens, Oliviero, & Brown,
2002; Steyvers et al., 2003). For this reason and because many daily activities require both hands, SHCP is often found to have
a detrimental effect on bimanual tasks, and hence on many tasks of daily living (Gordon, 2011; Gordon & Steenbergen, 2008;
Hung, Charles, & Gordon, 2004). Yet in tasks that typically require bimanual coordination using the non-dominant
(impaired) hand is avoided and while they may become adept at using this compensatory strategy, this behaviour is
considered to be inefficient and slow (Charles & Gordon, 2006; Gordon & Steenbergen, 2008). Interestingly though, there is
evidence to suggest that the kinematics of the impaired arm are improved when the contralateral (less-impaired) arm
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A B S T R A C T

In the present study participants with Spastic Hemiparetic Cerebral Palsy (SHCP) were

asked to match the position of a target either with the impaired arm only (unimanual

condition) or with both arms at the same time (bimanual condition). The target was placed

at 4 different locations scaled to the individual maximum reaching distance. To test the

effect of mirror visual feedback of the less-impaired arm on the matching accuracy, an

opaque screen or a mirror was placed in between the arms which masked vision of the

impaired arm. Absolute endpoint error was smaller in the bimanual condition compared to

the unimanual condition, but there was no effect of mirror visual feedback. Inspection of

the individual data, however, showed that 13 out of 23 participants did experience a

positive effect of mirror visual feedback. A positive correlation between the baseline error

(screen) and the improvement in accuracy with mirror visual feedback seems to suggest

that individuals with lower proprioceptive accuracy in the baseline condition may benefit

more from mirror visual feedback. Together these findings indicate that bimanual therapy

and therapy with mirror visual feedback might be valuable approaches for rehabilitation

for a subset of the individuals with SHCP.
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performs an identical (symmetrical) action (Sugden & Utley, 1995; Utley & Sugden, 1998). These studies have mainly focused
on kinematic variables (e.g., speed, trajectory or timing of the two limbs) and it remains to be determined whether accuracy
of matching (of the impaired arm) is also favoured in a bimanual (symmetrical) condition. This will be the focus of our study.

Steenbergen, Hulstijn, de Vries and Berger (1996) studied the arm kinematics of young adolescents with SHCP during a
reach-grasp-placement task. The participants were asked to pick up a ball and place it into a hole as quickly as possible with
either one hand (one ball) or with two hands (two balls). It was found that the large differences in reaction time and total
movement time between the hands in the unimanual condition decreased under bimanual conditions, indicating a tendency
to move the impaired and less-impaired arm and hand in a symmetrical manner (interlimb coupling). Note though, that in
this study the coupling was mainly unidirectional, i.e., the result of adaptations of the less-impaired hand to the movement
of the impaired hand. Using similar reaching and grasping tasks Utley and Sugden (1998) further found that coupling
(temporal and to a lesser extent also spatial) happened predominantly in the first part of the movement (and not in the
grasping phase) and was facilitated when movements were performed under speeded conditions. However, in contrast to
the findings of Steenbergen et al. (1996) the coupling was not unidirectional, i.e., temporal synchrony was the result of
adaptations in both hands (see also Sugden & Utley, 1995). Finally, Volman (2005) demonstrated that interlimb coupling in
children with SHCP is not just restricted to timing of the movement but also extends to spatial features. When children with
hemiplegia were asked to draw a line with one hand and a circle with the other hand, the lines became more circular and the
circles became more linear compared to a single handed condition. Neither the impaired nor the less-impaired arm
dominated the coupling. Taken together, these findings demonstrate that even in individuals that have suffered unilateral
brain damage that led to SHCP, typical bilateral neural interactions facilitating interlimb coupling seem to be present. This
coupling appears to be dependent on a number of factors such as speed and the nature of the movement. It is however not
known whether this coupling influences the accuracy of a matching action. Therefore, the first question that this study will
address is: is the accuracy of matching with the impaired arm better when the less-impaired arm is moving towards the
target simultaneously than when moving in isolation?

Matching accuracy can serve as a measure of proprioceptive accuracy, the sense of body parts in space, which is essential
for movement performance. A previous study by Smorenburg, Ledebt, Deconinck and Savelsbergh (2012) has shown that
children with SHCP perform poorer than their typically developing peers in a task where the position of one arm has to be
matched with the other arm, which is indicative of deteriorated proprioceptive accuracy. If simultaneous movement of the
less-impaired arm towards a target would improve the accuracy when matching with the impaired arm, this would support
the integration of symmetric bimanual tasks in the training of impaired arm function.

A second phenomenon that has received a lot of attention with respect to the treatment of unilateral movement and pain
disorders is mirror visual feedback (see Ramachandran & Altschuler, 2009, for a review). It is generated by placing a mirror
between the upper limbs in the sagittal plane, so that one sees the real less- (or non-) impaired arm and its mirror reflection,
which now is superimposed on the impaired arm. This creates the illusion of two hands moving in perfect symmetry. Mirror
visual feedback has been demonstrated to alleviate (phantom) pain (McCabe et al., 2003; Ramachandran and Rogers-
Ramachandran, 1996) and to improve movement performance in individuals with hemiparetic stroke (e.g., Altschuler et al.,
1999; Stevens & Stoykov, 2003; Yavuzer et al., 2008). In addition, Feltham, Ledebt, Bennett, Deconinck, Verheul, and
Savelsbergh (2010) suggested that mirror visual feedback might be a feasible therapeutic tool for children with SHCP.
Performing a bimanual inward symmetrical movement with mirror visual feedback of the less-impaired arm decreased the
variability of the interlimb coupling compared to a situation in which only the less-impaired arm was visible. Furthermore,
in a subsequent study the authors showed that mirror visual feedback had favourable effects on the neuromuscular activity
during a symmetric bimanual movement (Feltham, Ledebt, Deconinck, & Savelsbergh, 2010). The suggestions of Feltham,
Ledebt, Bennett, et al. (2010), and Feltham, Ledebt, Deconinck, et al. (2010) were supported by a recently published study
showing that 3 weeks of mirror therapy in children with SHCP resulted in improved grasp strength and upper limb dynamic
position (Gygax, Schneider, & Newman, 2011). Smorenburg, Ledebt, Deconinck and Savelsbergh (2011), on the other hand,
found that mirror visual feedback of the less-impaired arm did not influence endpoint accuracy of the impaired arm during
unimanual matching. In this task the individuals were instructed to move the impaired limb to the position of the less-
impaired limb, which was held passively at a target. In contrast to Feltham, Ledebt, Bennett, et al. (2010), Feltham, Ledebt, &
Deconinck (2010) and Gygax et al. (2011) mirror visual feedback in the Smorenburg et al. study (2011) was ‘static’, i.e., the
less-impaired arm was held at the target. This discrepancy in findings seems to suggest that mirror visual feedback might
only be effective when both arms are intending to move symmetrically, which is a pertinent issue that needs to be clarified
before therapy with mirror visual feedback can actually be integrated in the treatment of SHCP. Therefore, the current study
will examine if mirror visual feedback might have a positive effect on the endpoint accuracy of a matching task (a measure of
proprioceptive acuity) when the less-impaired arm is moving simultaneously with the impaired arm (symmetric bimanual
movement), and thus when the mirror visual feedback is dynamic.

2. Methods

2.1. Participants

Twenty-five individuals with SHCP took part in the study, but 23 participants were included for analysis (14.2� 2.9 years,
5 females). All participants were recruited through the Dutch society for people with a physical handicap and their parents (BOSK)
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and the Werkenrode school in Groesbeek (The Netherlands), a special education school. Two participants were not included for
analysis; one participant was not able to finish the experiment due to fatigue, and another participant had absolute error values
that were more than 2 standard deviations of the mean. The participants did not have a visual impairment (which was not
corrected to normal), hearing impairment, pain in either of the upper limbs, visual neglect, Botox treatment in the past six months
preceding the measurement, or any other neuromuscular disorder than SHCP. Moreover, participants were required to
understand basic instructions in order to perform the measurement. Table 1 represents the participant characteristics. For each
participant the level of spasticity was determined with the Tardieu scale which ranges from 0 to 3, with a higher score indicating
higher levels of spasticity. Individual scores were obtained for the biceps brachii brevis and triceps brachii longus and combined
into one total score. Functional independence in daily life, taking into account caregiver assistance and the use of special
equipment, was measured with the motor items of the Functional Independence Measure for children (WeeFIM). The
participant’s parents filled in the WeeFIM questionnaire. WeeFIM scores can range from 1 to 91, with a higher score representing a
better functional independence. Finally, the Manual Ability Classification System (MACS) describes how children use their hands
during object handling and the degree of required assistance (Eliasson et al., 2006). The severity of performance and the degree of
required assistance increases from MACS level 1 to 4. For more detailed information about the Tardieu, WeeFIM and MACS we
refer to Appendix A.

Prior to testing, the participant’s parents provided written informed consent. All procedures were approved by the
institutional research ethics committee and in accordance with the Declaration of Helsinki.

2.2. Materials and procedures

The participant was seated on a height adjustable chair at a height adjustable table with the knees flexed to 908. On the
table a custom made wooden construction was placed which consisted of two handles on two separate parallel tracks 20 cm
apart (see Fig. 1). The participant grasped the two handles (one in each hand), which could be moved in the anterior–
posterior direction. The children were positioned such that the centre of the body was located in between the two tracks,
with the beginning of the track 15 cm from the trunk. The position of the handles was recorded outside the wooden
construction using one Optotrak unit with three infrared cameras (3020 Optotrak, Northern Digital Inc., Waterloo, Canada) at
a sample rate of 200 Hz. A mirror or opaque screen, which was placed in between the tracks and perpendicular to the chest,
served to elicit mirror visual feedback of the less-impaired arm or visual feedback of the less-impaired arm only.

Before the start of the measurement, the maximum reaching distance was determined (MRD). The child was asked to
grasp the handles and extent the elbows as far a possible without bending the trunk forward. The MRD of the impaired arm

Table 1

Participant characteristics. For each participant (P) the age in years, sex and impaired arm are indicated. In addition, the Tardieu scale for spasticity, the

WeeFIM score and MACS level are mentioned. In the last two columns the aethiology of the disorder and the maximum reaching distances (MRD) of the

impaired and less-impaired arm are given. The ‘total’ row provides the M and (SD) for age; total number of (fe)males; total number of left and right impaired

arms; M and (SD) for Tardieu, WeeFIM, MACS and MRD of the (less-)impaired arm.

P Age (years) Sex Impaired arm Tardieua WeeFIM/MACS Aethiology MRD imp/less-imp (cm)b

1 11.1 M Left 1.5 91/2 Unknown 35.5/38

2 14.8 M Left 2 62/3 Schizencephaly right 33/36

3 13.7 M Left 2 78/3 O2 shortage during birth 33/40

4 14.0 M Left 2 91/2 Cerebral infarction 31.5/33.7

5 13.3 M Left 2 70/2 Premature (twins) 29/32

6 13.8 F Left 1.5 91/2 O2 shortage (twins) 27.3/29.5

7 13.0 M Left 1 91/2 Hydrocephalus 20/24

8 14.5 M Left 1 91/2 Stroke 30/31

9 14.6 M Left 1 59/3 Streptococcen infection at 5 weeks 24/40

10 17.8 M Left 1.5 90/1 Perinatal cerebral infarction 38/39

11 17.0 M Left 1 91/1 Premature 25/29

12 18.7 M Left 0.5 88/2 Cerebral infarction 25.5/29

13 9.6 M Right 1 91/1 Cerebral infarction 34.5/35.5

14 14.7 M Right 2 71/3 Unknown 33/38

15 12.8 M Right 2 59/3 Cerebral infarction 26.5/38

16 9.3 F Right 2 85/2 Hydrocephalus 30/33.3

17 16.2 M Right 2 76/1 Unknown 40/40

18 12.7 F Right 1 91/3 Thalamus infarction at birth 30/32.5

19 18.7 M Right 1.5 91/3 Cerebral infarction 33/39

20 7.9 F Right 1 91/1 Feverish convulsion 25/26

21 17.2 M Right Unknown 89/3 Cerebral infarction 22/28.5

22 17.7 F Right 1.5 91/2 Stroke 22/29

23 14.5 M Right 0.5 91/2 Premature 25/27

Total 14.2 (2.9) 5 F; 18 M 12L; 11 R. 1.4 (0.5) 83.4 (11.4)/2.1 (0.8) 29.3 (5.3)/33.4 (5.0)
a Tardieu scale for spasticity = mean of the individual scores for the biceps and the triceps.
b MRD = maximum reaching distance in cm for the impaired and the less-impaired arm.
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was used to calculate the different target positions for the matching task. If a participant was unable to grip the handle due to
physical impairment, the experimenter placed the hand on top of the handle. Each participant performed two tasks: a
unimanual matching task and a bimanual matching task. The order of the tasks was randomly assigned to the participants. In
the following paragraphs the procedures for the unimanual and the bimanual matching task will be explained.

2.2.1. Unimanual matching task

In the unimanual matching task, a target was placed at 25%, 50%, 65%, or 80% of the MRD on the side of the less-impaired
hand. The less-impaired hand was placed on the lap and the impaired hand was holding the handle on the other side of the
mirror/screen and was not visible. The participant was asked to match the position of the target by actively moving the
impaired arm (the impaired hand always started proximal to the body at the start of the track, i.e., 0% MRD). The task was
performed in two different visual conditions: a screen condition in which only the target was visible and a mirror condition
in which the target and its mirror reflection were visible. Each combination of visual condition (2) and target position (4) was

[(Fig._1)TD$FIG]

Fig. 1. (A) Top view of the experimental setup with the two handles that could be moved back and forth along the track. The divide between the arms was

either an opaque screen or a mirror. The position of the handles outside the box was measured with an Optotrak camera (not depicted here). (B) Side view of

the experimental setup. The proximal starting position and the four target positions (25% MRD, 50% MRD, 65% MRD, 80% MRD) are indicated. Note that the

target positions were determined based on the maximum reaching distance of each child and thus differed per participant. (C) Real-life picture of the

experimental setup.
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performed twice, which resulted in 16 trials. The order of the visual condition and the target positions were randomly
assigned to the participants.

2.2.2. Bimanual matching task

In the bimanual matching task a target was placed at 25%, 50%, 65%, or 80% of the MRD on the side of the less-impaired
arm. The participant was asked to match the target position with both hands, i.e., to move both hands towards the target as
symmetrically as possible starting with the handles at the beginning of the track, i.e., 0% MRD. Similar to the unimanual task,
the bimanual task was performed in two different visual conditions: a screen condition in which the target and the (moving)
less-impaired arm could be seen and a mirror condition in which the participant saw the target, the less-impaired arm and its
mirror reflection.

Each combination of visual condition (2) and target position (4) was performed twice (16 trials in total) and the order of
the visual condition and the target positions were randomly assigned to the participants.

2.3. Data analysis

Custom-made Matlab programmes (The Mathworks, version 7.1) were used to analyze the kinematics and matching
accuracy (absolute error) of the movement. The start of the movement was defined as the moment at which the movement
velocity rose above 5 mm/s for the first time and the hand was moving in a forward direction. The end of the movement was
defined as the moment at which the velocity finally fell below 5 mm/s (van Roon, Steenbergen, & Meulenbroek, 2005).
Absolute error was determined as the difference in cm between the target and the impaired arm at the end of the movement.
In addition, we calculated average movement velocity (cm/s; total distance covered divided by total movement time) and
relative movement smoothness. Relative movement smoothness was defined as the number of peaks in the velocity plot of
the entire movement divided by the total distance covered during each movement. The number of peaks was determined by
searching the velocity curve for local minima and maxima. An increase in velocity between an adjacent minimum and
maximum that exceeded the threshold value (10% of the maximum velocity) was counted as a peak (Chang, Wu, Wu, & Su,
2005; Kamper, McKenna-Cole, Kahn, & Reinkensmeyer, 2002).

2.4. Statistical analysis

In order to examine differences in absolute error, mean velocity and movement smoothness of the impaired arm between
the unimanual and bimanual task and to examine the effects of visual feedback and target distance on these variables, a
3-way ANOVA was performed with repeated measures on the factors Task (unimanual, bimanual), Visual condition (mirror,
screen), and Distance (25%, 50%, 65%, 80% MRD).

In addition, for the bimanual task differences in kinematics between the impaired and the less-impaired arm and the
effect of Visual condition and Distance were investigated with a 3-way repeated measures ANOVA with Arm (impaired, less-
impaired), Visual condition (mirror, screen), and Distance (25%, 50%, 65%, 80% MRD) as within factors.

The significance level was set at 0.05. In case sphericity assumptions were violated, Greenhouse-Geisser adjustments
were made.

3. Results

All 23 participants were able to complete the experiment according to the instructions and all participants could perform
a bimanual symmetrical movement as indicated by the small differences in starting time between the arms (difference
between arms in mirror condition: M =�0.05 s, SD = 0.25, t22 =�0.96, p = 0.035; difference between arms in screen
condition: M = 0.04 s, SD = 0.28, t22 = 0.74, p = 0.47). Although slightly larger, the differences in end time between the arms
were also relatively small (difference between arms in mirror condition: M = 0.48 s, SD = 1.19, t22 = 1.95, p = 0.06; difference
between arms in screen condition: M = 0.59 s, SD = 0.94, t22 = 3.04, p = 0.006).

Nevertheless, one trial was excluded because participant 15 did not perform a symmetrical bimanual movement, i.e., the
movement of the impaired hand was initiated after the movement of the less-impaired arm was finished. In addition, 14 out
of 368 trials in the bimanual condition had to be excluded from the analysis [PP 1 (2 trials), 3 (4), 15 (3), 8 (2), 23 (2), 12 (1)]
because the less-impaired arm was not on the target location at the end of the movement. In case the difference between
less-impaired arm and target was more than half of the distance between two consecutive target locations, the trials could
not be assigned to either target distance and therefore they were excluded from analysis. This exclusion of trials meant that
for some participants the value for a certain condition was based on one trial instead of the mean of two trials.

3.1. Unimanual vs. bimanual task (impaired arm)

3.1.1. Matching accuracy

Matching accuracy differed significantly between the unimanual and the bimanual task, and a significant Task by
Distance effect indicated that this difference was distance dependent (F3,66 = 3.16, p = 0.03, partial h2 = 0.13; see Fig. 2).
Absolute error was smaller in the bimanual task compared with the unimanual task for all but the 25% MRD target position.

A.R.P. Smorenburg et al. / Research in Developmental Disabilities 33 (2012) 2088–20982092



Author's personal copy

In addition, absolute error was found to increase with increasing distance for both the unimanual and the bimanual task.
However, between 50% and 65% and between 65% and 80% MRD the increase in error was not significant for either task.

Despite the significant Task-effect (unimanual vs. bimanual) on matching accuracy at group level, close inspection of the
individual data showed that the advantage of moving simultaneously with the two hands was not present in all participants. In
14 out of 23 individuals absolute error in the bimanual condition was smaller than in the unimanual condition for 3 or 4 of the 4
target distances (see Table 2; Bi+ group). However, for both the Bi+ and the Bi� group it was demonstrated that the absolute
error in the unimanual condition was positively correlated with the size of the decrease in error in the bimanual condition
(Table 3), i.e., a larger error in the unimanual condition was related to a greater improvement in the bimanual condition.

Furthermore, as the repeated measures ANOVA showed, there was no effect of Visual condition on matching accuracy
of the bimanual task (i.e., no interaction effect between Visual condition and Task), thus mirror visual feedback of the
target did not affect absolute error. Inspection of the individual data of the bimanual task, however, indicated that in 13
out of 23 participants absolute error was smaller in the mirror condition compared to the screen for 3 or 4 of the 4

[(Fig._2)TD$FIG]

Fig. 2. The absolute error in cm (mean and SE) increased with increasing distance (25%, 50%, 65%, 80% MRD on the horizontal axis) for both the unimanual

(dark grey) and the bimanual task (light grey).

Table 2

Classification of the participants into groups. For each participant and each target distance (20%, 50%, 65%, 80% MRD) an asterisk (*) indicates when the error

was smaller in the bimanual condition compared to the unimanual condition (left part of the table) and when the error was smaller in the mirror compared

to the screen condition in the bimanual condition only (right part of the table). When in 3 or 4 out of 4 distances the error was smaller in the bimanual

condition, the participant was assigned as performing better in the bimanual condition compared to the unimanual condition. For the screen/mirror

comparison the same principle was used. When the error was smaller in the mirror condition compared to the screen condition (indicated with *) the

participant was assigned to the Mirror+ group (i.e., Mirror+ = +).

Participant Bi+ vs. Bi� Mirror+ vs. Mirror�

25% 50% 65% 80% Bi+ or Bi�? 25% 50% 65% 80% Mirror+ or Mirror�?

1 * * * + * * * * +

2 * * � * * * * +

3 * * * + * * �
4 * * * + * * * +

5 * * � * * * +

6 * * * * + * �
7 * * * * + * * * +

8 * * * * + * * * * +

9 � * �
10 * * * * + * �
11 * * � * �
12 * * * + �
13 * * * * + * * �
14 * � * * * +

15 * * � * * * +

16 * * * * + * * * * +

17 * * * * + * * * +

18 * * * * + * * * * +

19 * * * * + * * * +

20 * * * * + * * * +

21 * � * �
22 * * � * �
23 * * � * �
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distances (see Table 2; Mirror+ group). In Fig. 3 the mean errors in the screen and the mirror condition are depicted for the
Mirror+ and the Mirror� group.

In order to reveal whether this variability in response to mirror visual feedback was related to the proprioceptive accuracy
of the impaired arm when no mirror visual feedback was available, we examined for both groups (Mirror+ and Mirror�) the
correlation between the error in the screen condition (‘baseline condition’) and the improvement in accuracy due to the
mirror, i.e., the difference in error between the screen and the mirror condition. Table 4 shows these correlations and the
corresponding p-values for the Mirror+ and the Mirror� group. No significant correlations were found for the Mirror� group,
whereas significant positive correlations between the baseline error and the improvement in accuracy due to the mirror
were observed for the Mirror+ group on all four distances. This suggests that for individuals who do better in the mirror than
in the screen condition in the majority of the target distances (Mirror+ group), a larger error in the screen condition is related
to a larger decrease in error in the mirror condition, i.e., to a higher degree of improvement in the mirror condition.

In addition, we examined with a Mann–Whitney U test whether the Mirror+ and Mirror� group differed in terms of scores
on the MACS, WeeFIM and Tardieu scale. No differences between the groups were found for the MACS (z =�0.69, p = 0.52;
mean rank Mirror+ = 12.81, Mirror� = 10.95) and the WeeFIM (z =�0.40, p = 0.74; mean rank Mirror+ = 11.54,
Mirror� = 12.60). However, the Mirror+ group showed a higher average Tardieu score when compared to the Mirror�
group (1.65 and 1.17, respectively; z =�2.17, p = 0.04; mean rank Mirror+ = 13.88, Mirror� = 8.06).

3.1.2. Average velocity

There was no effect of Task on average velocity (F1,21 = 0.45, p = 0.51, partial h2 = 0.02; unimanual = 5.1 cm/s,
bimanual = 4.8 cm/s). Moreover, Visual condition did not have an effect on the average velocity (F1,21 = 1.25, p = 0.28,
partial h2 = 0.06; Mirror: 4.7 cm/s; screen: 5.2 cm/s). However, a significant main effect of Distance was found
(F1.76,38.61 = 30.40, p< 0.001, partial h2 = 0.58), indicating an increase in velocity with increasing distance (25%:
3.50� 0.32; 50%: 4.83� 0.47; 65%: 5.45� 0.59; 80%: 5.99� 0.52).

3.1.3. Movement smoothness

A main effect of Distance (F2.33,51.26 = 57.03, p< 0.001, partial h2 = 0.72) and a significant interaction effect between Task
and Distance were found (F1.92,42.27 = 60.21, p = 0.005, partial h2 = 0.22) for movement smoothness. No differences between

Table 3

For each distance the correlations are reported between the error in the unimanual task (U25, U50, U65, U80) and the difference in error between the

unimanual and the bimanual condition, i.e., error in the unimanual condition minus the error in the bimanual condition (DifUB25, DifUB50, DifUB65,

DifUB80) for the Bi+ and the Bi� group. The table shows Pearson’s r value and the corresponding p-value. Significant correlations are indicated with an

asterisk.

Group Correlation Pearson r p-Value

Bi+ (n = 14) U25 vs. DifUB25 0.51 0.16

U50 vs. DifUB50 0.98 <0.001*

U65 vs. DifUB65 0.73 0.03*

U80 vs. DifUB80 0.61 0.08

Bi� (n = 9) U25 vs. DifUB25 0.36 0.21

U50 vs. DifUB50 0.74 0.002*

U65 vs. DifUB65 0.72 0.003*

U80 vs. DifUB80 0.76 0.002*
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Fig. 3. Absolute error for the Mirror+ and the Mirror� group in the screen and the mirror condition. The Wilcoxon signed rank test revealed a significantly

higher error in the screen compared to the mirror condition for the Mirror+ group (z =�3.18, p< 0.00). For the Mirror� group the error was higher in the

screen compared to the mirror condition (z =�2.50, p = 0.01).
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the unimanual and the bimanual task were found on all of the four distances. However, for both the unimanual and the
bimanual task the relative number of velocity peaks decreased (i.e., movement smoothness increased) with increasing
distance (except for the unimanual task between 50% and 65% MRD and for the bimanual task between 65% and 80% MRD).

3.2. Bimanual task

In order to examine differences in kinematics between the impaired and the less-impaired arm, a repeated measures
ANOVA was performed with Visual condition (mirror, screen), Distance (25%, 50%, 65%, 80% MRD) and Arm (impaired, less-
impaired) as within factors. Moreover, in order to examine differences between the Mirror+ and the Mirror� group this factor
(Mirror� group) was included as between factor in the 3-way repeated measures ANOVA.

3.2.1. Average velocity

The ANOVA revealed a significant main effect of Visual condition (F1,21 = 5.84, p = 0.03, partial h2 = 0.22). The average
velocity was 0.7 cm/s lower in the mirror condition (4.6� 0.5 cm/s) compared to the screen condition (5.3� 0.7 cm/s).
Furthermore, the significant main effects of Arm (F1,21 = 5.14, p = 0.03, partial h2 = 0.20) and Distance (F1.95,41.03 = 21.22, p< 0.001,
partial h2 = 0.50) were modified by a significant interaction effect between Arm and Distance (F2.57,53.90 = 9.62, p< 0.001, partial

h2 = 0.31) and a significant interaction between Arm, Distance, and Mirror group (F3,63 = 3.16, p = 0.03, partial h2 = 0.13; see Table
5).

Inspection of the 3-way interaction showed no differences between the Mirror+ and the Mirror� group. For both the
Mirror+ group and the Mirror� group and both arms a significant increase in average velocity was found when the distance
that had to be covered increased. Moreover, comparing the average velocity between the impaired and the less-impaired
arm showed for both groups higher velocities in the less-impaired than in the impaired arm, but only for larger distances
(65% and 80% MRD).

3.2.2. Movement smoothness

The analysis of the relative movement smoothness revealed a significant effect of Distance (F1.86,38.97 = 33.96, p< 0.001,
partial h2 = 0.62) and a significant interaction effect between Arm and Distance (F1.71,36.00 = 3.76, p = 0.04, partial h2 = 0.15).
For both the impaired and the less-impaired arm the relative number of velocity peaks decreased (i.e., movement
smoothness increased) with increasing distance (except for the 65–80% MRD). In addition, the number of velocity peaks was
higher in the impaired compared to the less-impaired arm, indicating a lower relative movement smoothness for the
impaired arm, but only for the 80% MRD (impaired arm = 0.32 peaks/cm vs. less-impaired arm = 0.25 peaks/cm).

Table 4

For each distance the correlations are reported between the error in the screen condition (S25, S50, S65, S80) and the difference in error between the mirror

and the screen condition, i.e., error in screen condition minus the error in mirror condition (DifMS25, DifMS50, DifMS65, DifMS80) for the Mirror+ and the

Mirror� group. The table shows the Pearson’s r value and the corresponding p-value. Significant correlations are indicated with an asterisk.

Group Correlation Pearson r p-Value

Mirror+ (n = 13) S25 vs. DifMS25 0.69 0.009*

S50 vs. DifMS50 0.76 0.002*

S65 vs. DifMS65 0.70 0.007*

S80 vs. DifMS80 0.69 0.009*

Mirror� (n = 10) S25 vs. DifMS25 0.13 0.73

S50 vs. DifMS50 �0.007 0.99

S65 vs. DifMS65 0.31 0.39

S80 vs. DifMS80 �0.43 0.22

Table 5

Mean and standard error for the Vaverage and Movement Smoothness. Values are given for each distance (25%, 50%, 65%, 80% MRD) in the unimanual and

bimanual movement condition for the impaired and the less-impaired arm. Note that no values are reported for the less-impaired arm in the unimanual

condition because this task was not performed in the present study.

Unimanual Bimanual

Distance Impaired arm Impaired arm Less-impaired arm

Vaverage (cm/s) 25% 3.71� 0.40 3.19� 0.40 3.16� 0.34

50% 4.88� 0.52 4.79� 0.56 5.20� 0.59

65% 5.54� 0.57 5.36� 0.73 6.08� 0.82

80% 6.19� 0.56 5.80� 0.63 6.40� 0.64

Movement smoothness (peaks/cm) 25% 0.68� 0.069 0.51� 0.074 0.57� 0.088

50% 0.43� 0.048 0.39� 0.071 0.38� 0.073

65% 0.37� 0.044 0.33� 0.049 0.28� 0.054

80% 0.30� 0.042 0.32� 0.071 0.25� 0.051
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4. Discussion

This study examined the difference in matching accuracy of the impaired hand between a unimanual and a bimanual
condition and the effects of mirror visual feedback on matching accuracy in children and adolescents with SHCP. Consistent
with earlier studies that showed beneficial effects on the timing and the control of the impaired hand and arm when moving
the two hands simultaneously (e.g., Steenbergen et al., 1996; Sugden & Utley, 1995; Utley & Sugden, 1998), we found a
significant decrease in matching accuracy (37.5% on average) in the bimanual condition compared to the unimanual
condition. In addition, mirror visual feedback led to better matching in 13 out of 23 participants. Together, these findings
support the application of bimanual symmetrical movements and the use of mirror visual feedback in the treatment of upper
limb function, though additional research is warranted to determine under what circumstances and for whom this approach
is effective.

The underlying mechanism of the improved matching accuracy in the bimanual condition is probably related to
facilitative processes resulting from bilateral connections throughout the central nervous system. For example, neural
crosstalk is suggested to constrain homologous muscle groups to act as a single coordinative structure during bimanual
symmetrical movements, which enhances the coupling between the limbs and also more abstract parameters (e.g.,
amplitude, force, direction; Cattaert, Semjen, & Summers, 1999; Swinnen & Wenderoth, 2004). In addition, we suggest that
in the present study congruent visual and proprioceptive information of the less-impaired arm, which was available in the
bimanual condition and presumably served as a frame of reference, may have facilitated accurate placement of the impaired
arm (see also Smorenburg et al., 2011).

Consistent with other research (Smorenburg et al., 2011, 2012; van Beers, Sittig, & Denier van der Gon, 1998), larger errors
were made in (unimanual and bimanual) matching movements with larger amplitude. Note that larger movements were
also relatively faster and smoother. This counterintuitive finding for this population suffering from spasticity may be
explained by the rather slow overall speed of movement execution. Spastic movement disruptions are commonly observed
at higher speeds, and in this self-paced task it is likely that participants avoided detrimental effects of spasticity.

Concentrating on the effects of mirror visual feedback, the results of the present study showed that both hands moved
slower in the mirror condition compared to the screen condition. Further, there was no improvement in accuracy of the
impaired hand when mirror visual feedback of the less-impaired hand was available. Remarkably though, inspection of
individual data revealed a positive effect of mirror visual feedback on matching accuracy in a considerable number of
individuals (13 out of 23). In fact, mirror visual feedback seemed to hamper accurate placement of the impaired arm in the
remainder of the group, which may explain the absence of a statistical effect at group level.

Explaining the mechanisms underlying the positive effect of the mirror remains speculative, but using transcranial
magnetic stimulation (TMS) and advanced brain imaging techniques in healthy individuals, researchers have begun to
uncover the neural basis of the mirror effects. For example, Garry, Loftus, and Summers (2005) have shown that the
excitability of the ipsilateral1 primary motor cortex (M1) is facilitated when healthy adults were viewing a mirror reflection
of the moving hand (see also Nojima et al., 2012; Tominaga et al., 2011). In addition, mirror visual feedback was found to alter
touch perception by enhancing the tactile sensitivity in the ipsilateral posterior parietal cortex (PPC; Ro, Wallace, Hagedorn,
Farne, & Pienkos, 2004) and, further, to lead to increased activation within the ipsilateral superior temporal gyrus (STG;
Matthys et al., 2009). Finally, the findings of Hamzei et al. (2012) suggest a remodelling of the motor system with a pivotal
role for the contralateral2 sensorimotor cortex (SMC) after training with the mirror (see also Michielsen et al., 2011).
Apparently, mirror visual feedback has the capacity to induce plastic changes in brain regions directly involved in motor
control (M1, SMC) and regions that have been linked with the mirror neuron system (PPC, STG).

The involvement of (part of) these specific regions might also (partly) explain the variability in response to mirror visual
feedback across individuals. Staudt et al. (2002) found that the SHCP population may be functionally classified on the basis of
the size of the lesion. Larger lesions are accompanied with a cortical reorganization of the primary motor cortex and
premotor areas towards the contralesional cortex, whereas no reorganization is observed when the lesion is small. Wilke
et al. (2009) on the other hand, found that the primary sensory cortex was preserved in the contralateral, lesioned
hemisphere, irrespective of the extent of the lesion, which means that the sensorimotor control loop is disrupted when
motor areas are relocated to the contralesional side. This variety in clinical picture might then be related to the variability in
behavioural response to mirror visual feedback found in the current study. The idea that heterogeneity in patient groups, and
more in particular variance in the neural resources, can explain the varying success of interventions is consistent with earlier
findings in individuals with SHCP or a hemiparesis after stroke (McCombe Waller & Whitall, 2008; Ramachandran &
Altschuler, 2009).

Our findings highlight that it is essential to determine which children might benefit most from therapy with mirror visual
feedback, e.g., by using data on the side of the lesion or corticospinal reorganization. Unfortunately, lack of brain imaging and
other neurophysiological data do not allow us to identify in which particular groups of children and adolescents mirror visual
feedback may be favourable. However, behavioural evidence indicates that the extent of improvement in the mirror
condition is related to the size of the error in baseline conditions. A similar result was found for the improvement under

1 Ipsilateral refers to the hemisphere at the same side of the moving arm which was visible in the mirror.
2 Contralateral refers to the hemisphere contralateral to the moving arm which was visible in the mirror.
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bimanual conditions, i.e., the improvement was larger when the error in the unimanual condition was greater. Moreover, a
higher level of spasticity seemed to be related to a larger improvement in the mirror condition. This might suggest that both
bimanual practice and practice with the mirror would be more effective in individuals with more severe problems of position
sense. On the other hand, it is possible that the children, who did not show an improvement in the mirror condition at
present, need more practice before effects can be detected.

In conclusion, the current study showed that for children and adolescents with hemiplegia matching with the impaired
hand is more accurate in a bimanual than in a unimanual matching condition. Similarly, mirror visual feedback had a positive
effect on movement accuracy of the impaired arm, however, only in a subset of the individuals with SHCP. This variability in
response may be related to differences in size and location of the brain lesions of the CP population and/or to the initial
position sense of the impaired arm. Further research examining the relation between spasticity, position sense and
improvements due to mirror visual feedback together with advanced brain imaging is warranted to determine which
children might benefit most from bimanual practice with mirror visual feedback.
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Appendix A

The Tardieu Scale measures spasticity using two parameters: the spasticity angle and the spasticity grade (Gracies et al., 2010).
The spasticity angle is the difference between the angles of arrest at slow speed and of catch-and-release at fast speed. The
spasticity grade is an ordinal variable that grades the intensity and measures the muscle’s reaction to fast passive stretch.

In this study we used the spasticity grade as an indication for the level of spasticity. Gracies et al. (2010) showed for this
measure high intrarater and interrater reliability for experienced raters; 90% W 8% and 81% W 13%, respectively.

The Functional Independence Measure for children (WeeFIM) includes 18 items covering six areas in two dimensions (i.e.,
motor and cognitive). Motor: self-care (eating, grooming, bathing, dressing upper body, dressing lower body, toileting); sphincter
control (bladder management, bowel management); transfer (chair/bed/wheelchair transfer, toilet transfer, tub/shower
transfer); locomotion (crawling/walking/wheelchair, stair climbing). Cognitive: communication (comprehension, expression)
and social cognition (social interaction, problem solving, memory; Sperle, Ottenbacher, Braun, Lane, & Nochajski, 1996; Tur et al.,
2009). In the present study we only used the motor items of the WeeFIM. Ottenbacher et al. (1996) showed high test-retest
responses for the WeeFIM with an intraclass correlation coefficient of 0.97.

The Manual Ability Classification System (MACS) is designed to classify how children with CP use their hands for object
handling in daily life (Eliasson et al., 2006). It reports the collaboration of both hands together and is not an assessment of each
hand separately. As shown in the study of Eliasson et al. (2006), the MACS has a good validity and reliability: intraclass correlation
coefficient between therapists was 0.97.
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1. Introduction

Proprioception refers to the sense of body parts in space and comprises a static (sense of static limb position or position
sense) and a dynamic component (sense of movement or kinaesthesia). It is a complex somatosensory modality that is
imperative for the control of movement.

A large body of evidence details the critical role of proprioception in controlling muscle interaction torques (e.g. Sainburg,
Ghilardi, Poizner, & Ghez, 1995) in timing the coordination between limb segments (Cordo, Carlton, Bevan, Carlton, & Kerr,
1994), in monitoring movement trajectories (Ghez, Gordon, Ghilardi, Christakos, & Cooper, 1990), and in establishing internal
representations used during the acquisition and adaptation of skilled movement (Kawato & Wolpert, 1998). It is therefore not
surprising that impaired proprioception is often suggested to be implicated in motor dysfunction such as in Parkinson’s disease
(Adamovich, Berkinblit, Hening, Sage, & Poizner, 2001), hemiparetic stroke (Niessen, Veeger, Koppe, Konijnenbelt, van Dieen, &
Janssen, 2008), cerebellar disorders (Cody, Lovgreen, & Schady, 1993) or cerebral palsy (CP) (Cooper, Majnemer, Rosenblatt, &
Birnbaum, 1995; Opila-Lehman, Short, & Trombly, 1985). Still, to facilitate the design of tailored therapeutic interventions,
empirical research is required to get a detailed and more complete view of the deficits encountered by disabled individuals.
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A B S T R A C T

This study examined the arm position sense in children with Spastic Hemiparetic Cerebral

Palsy (SHCP) and typically developing children (TD) by means of a contralateral matching

task. This task required participants to match the position of one arm with the position of

the other arm for different target distances and from different starting positions. Results

showed that children with SHCP exhibited with both arms larger matching errors than the

TD group, but only when the distance between the arms at the start of the movement was

large. In addition, the difference in errors between the less-impaired and the impaired limb

changed as a function of the distance in the SHCP group whereas no interlimb differences

were found in the TD group. Finally, spasticity and restricted range of motion in children

with SHCP were not related to the proportion of undershoot and size of absolute error. This

suggests that SHCP could be associated with sensory problems in conjunction with their

motor problems. In conclusion, the current study showed that accurate matching of the

arms is greatly impaired in SHCP when compared to TD children, irrespective of which arm

is used. Moreover, this deficit is particularly present for large movement amplitudes.
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A number of studies have already shed light on proprioception in CP. CP is a group of permanent disorders of movement and
posture due to a non-progressive lesion in the fetal or infant brain (Miller, 2007). In children with Spastic Hemiparetic CP (SHCP)
impaired control of muscle tone and spasticity in the limbs on one side of the body (the impaired side) severely complicates
normal daily movement function. These deficits in daily functioning become predominantly evident for movements executed
with the arm, which is usually more affected than the lower extremity (Charles & Gordon, 2006). Goble, Hurvitz, and Brown
(2009) examined joint-position sense in this population using an arm flexion/extension task. This task required the participants
to match the position of the elbow (occluded from view) to a target position to which elbow had been extended passively before
the start of the trial. Larger errors were made with the impaired limb than with the less-impaired limb, and the latter was as
accurate as the limbs of typically developing (TD) control children. It should be noted however, that in a sub-sample of the CP-
population the condition is accompanied with memory deficits (Bottcher, 2010; Kolk & Talvik, 2000), which may have
contributed to the reduced ability to match a previously felt position and complicates the interpretation of the results. Indeed,
the contrasting findings of Chrysagis, Skordilis, Koutsouki, and Evans (2007) who showed with a similar task that children with
SHCP made significantly larger errors than TD children with the impaired as well as the less-impaired arm, might be due to
differences in the children’s ability to memorize positions. Wingert, Burton, Sinclair, Brunstrom and Damiano (2009) used an
alternative approach and tested joint-position sense using a forearm pronation/supination task in which the position of the
occluded hand was to be aligned with a visual target. The ‘cross-modal matching’ required in this task, i.e., mapping between
visual and proprioceptive information, adds another degree of difficulty (e.g. von Hofsten & Rosblad, 1988; Wann, 1991) and
again implies that this task cannot be completed using somatosensory information only. In agreement with other work, this
study showed that larger errors were made with the impaired limb than with the less-impaired limb. However, the overall
performance of the hemiplegic group did not differ from the control group. Taken together, it thus seems that the accuracy of the
joint-position sense (and the associated proprioceptive cues) is dependent on the joint (and the related muscle group) tested. In
addition, these studies illustrate that it is difficult to assess joint-position sense in isolation (i.e. without confounding factors
such as memory load or multi-modal mapping). Still, one aspect of joint-position sense that has not been considered in the study
of SHCP is the ability to match the position of limbs in a contralateral matching task where the participant is instructed to copy
the position of one limb by placing the other, contralateral limb, in the same mirror symmetric position. Such an intra-modal
matching test, which does not require re-mapping between sensory inputs and in which the involvement of memory is
considerably reduced, can provide us with useful information about how problems with proprioception influence tasks that
involve both arms. This is particularly relevant for the study of children with SHCP whose motor impairments appear to be
limited to one body side, but are known to hamper bimanual actions (Charles & Gordon, 2006). Therefore, in this study we will
explore to what extent matching movements, in which both hands are involved, are hindered in children with SHCP by means of
a contralateral matching task.

It has been suggested that position sense is dependent on the location (relative to the body) at which the measurement is
performed. Localization of the hand is more precise in proximity of the body (i.e. at smaller distances relative to the body)
than at larger distances from the body (van Beers, Sittig, & Denier van der Gon, 1998; Wilson, Wong, & Gribble, 2010). This
phenomenon has been reported in studies of young (Goble & Brown, 2008; Goble, Lewis, & Brown, 2006) and elderly (Adamo,
Martin, & Brown, 2007), supporting the notion that this effect is common and probably robust against neurodegeneration.
van Beers et al. (1998) suggested that better localization at distances closer to the body may be understood from the
geometry of the arm, alongside anatomical and physiological properties such as the fact that the number of muscle spindles
acting about the joints in the arm increase in proximal direction (Scott & Loeb, 1994; c.i. van Beers et al., 1998). Verifying
whether the accuracy in a proprioceptive-guided matching task in children with SHCP follows a similar trend (i.e. decrease in
precision for locations further away from the body) may thus serve to test whether they are subject to similar anatomical and
physiological constraints and use similar cues to localize the position of their hands as compared to TD children. To the best
of our knowledge, this aspect has been largely overlooked in previous research into position sense of children with SHCP.

The aim of this study was therefore to add to the existing body of knowledge on proprioception in children with SHCP, and
more specifically to gain insight into the accuracy of position sense of the impaired and less-impaired arm in a contralateral
matching task. In a case study (N = 2) using a similar task Lee, Daniel, Turnbull, and Cook (1990) found that children with
SHCP experienced difficulties with matching for both the impaired and less-impaired arm. The purpose of the current study
was to substantiate these findings. In addition, considering the location-dependent effect on position sense, this study aimed
to examine whether the accuracy of matching performance and possible differences between the SHCP and TD group on a
contralateral matching task are location-dependent (i.e. dependent on the distance relative to the body). If the distance effect
in children with SHCP does not significantly deviate from TD children, this could suggest that both groups use similar sensory
cues to localize the hand and are subject to similar anatomical and physiological constraints, despite possible disturbances in
the input and/or processing of sensory information.

2. Methods

2.1. Participants

Fourteen children with SHCP participated in this study (mean age 12.5 � 1.9 years) of which six had a right and eight had a
left hemiplegia (see Table 1 for further details). The participants were free from any neuromuscular disorders other than CP, did
not have visual impairments or pain in either of the upper limbs, and they were not treated with Botulinum toxin in the past six
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months preceding the measurement. The children with SHCP were recruited through the Dutch society for children with a
physical handicap and their parents. Before the actual start of the experiment, the Manual Ability Classification System (MACS),
Functional Independence Measure (WeeFIM) and Tardieu score for spasticity were defined for the SHCP group in order to get an
indication of the severity of the disorder (Table 1). The MACS describes how children use their hands during object handling and
their need for assistance to perform manual skills in everyday life (Eliasson et al., 2006). The severity of performance limitation
and the degree of required assistance increases for each MACS level from I to V. Seven children were classified in MACS level 3, five
children in level 2 and two children in level 1. The WeeFIM scores range from 1 to 91 with a higher score representing a better
functional independence. In the current population the WeeFIM scores ranged from 52 to 91. Finally, the Tardieu score was
determined by a qualified physiotherapist as an indication of the children’s spasticity. Individual scores were measured for the
biceps brachii brevis and the triceps brachii longus and combined into one total score. All children showed mild to moderate
spasticity with Tardieu scores ranging from 0.5 to 2.

In addition, a reference group of 20 TD children without any history of neuromuscular disorders and within the same age
range as the children with SHCP (mean age 12.9 � 2.6 years) were recruited among the Universities staff’s families and friends.
The TD children all had normal or corrected-to-normal vision and all but one were right hand dominant (determined by means of
the Edinburgh Handedness Inventory (Oldfield, 1971)). Participant characteristics can be found in Table 1 (SHCP) and Table 2 (TD).
Prior to testing the participant’s parents provided written informed consent. All procedures were approved by the institutional
research ethics committee and were in accordance with the Declaration of Helsinki.

Table 1

Participant characteristics of the SHCP group. For each participant the age in years, sex, dominant hand, WeeFIM score, MACS level, Tardieu Scale, aetiology,

and the maximum reaching distance (MRD) for the dominant and non-dominant arm are presented.

Participant Age Sex Dominant handa WeeFIM/MACS TSb Aetiology MRD D/NDc

1 13.4 M Right 78/3 2 O2 shortage during birth 41/27.2

2 10.5 M Right 88/3 2 Cerebral infarction 47/30

3 10.8 M Right 91/2 1.5 Unknown 33/31.5

4 14.5 M Right 62/3 2 Schizencephaly 48/36.5

5 13.6 M Right 91/2 2 Cerebral infarction 34/31.5

6 10.8 F Right 52/3 1.5 Cerebral haemorrhage 31/26

7 12.1 F Left 91/3 1 Cerebral infarction (thalamus) 46/42

8 15.5 M Left 76/1 2 Unknown 47/46.5

9 9.3 M Left 91/1 1 Cerebral infarction 25.5/24.5

10 13.1 F Left 91/2 2 Cerebral infarction 39/38

11 14.4 M Left 81/2 1 Cerebral haemorrhage 33.5/24.5

12 12.5 M Left 59/3 2 Cerebral infarction 34/22.2

13 14.3 M Left 71/3 2 Unknown 38/36.5

14 10.6 M Left 87/2 0.5 O2 shortage during birth 31/30.3
a The dominant hand is the less-impaired hand.
b Tardieu Score = mean of the individual scores of the biceps and the triceps.
c MRD, maximum reaching distance; D, dominant/less-impaired limb; ND, non-dominant/impaired limb.

Table 2

Participant characteristics of the TD group. For each subject the age in years, sex, dominant hand, score of the Edinburgh Handedness Inventory, and the

maximum reaching distance (MRD) for the dominant and non-dominant arm are depicted.

Participant Age (years) Sex Dominant hand EHI scorea MRD D/NDb

1 13.0 M Right 100 42/41

2 13.2 F Right 100 37/37

3 12.3 F Right 100 33/35

4 13.4 M Right 100 36/34.5

5 8.3 F Right 89 30/29

6 10.0 F Right 80 30.5/29.5

7 16.9 F Right 100 33.5/32.5

8 12.9 F Right 90 34/33

9 13.3 F Right 90 36/34

10 15.1 M Right 90 40/40

11 11.4 M Right 50 36/37

12 16.3 F Right 40 32.5/34

13 10.9 F Right 70 32.5/32.5

14 12.1 F Right 60 38/37

15 16.5 F Right 100 42/42

16 17.4 F Right 70 35.5/34.5

17 14.9 M Right 70 34/34

18 10.6 F Right 100 28/27

19 10.6 M Right 100 40/40

20 10.1 F Left �50 31/30
a EHI score, Edinburgh Handedness Score. +100 is complete right handedness; �100 is complete left handedness. If EHI was between �50 and +50

(ambidexter), the writing hand was identified as the dominant hand.
b MRD, maximum reaching distance; D, dominant limb; ND, non-dominant limb.
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2.2. Materials and procedure

The child was seated on a height adjustable chair without armrests at a height adjustable table with the knees 908 flexed.
Position sense was assessed using a custom made device consisting of two handles, each on a separate track fixed to a
horizontal panel. The tracks were 20 cm apart, parallel to each other, and perpendicular to the medio-lateral axis of the trunk.
The children were positioned such that the centre of the body was located in between the two tracks, and with the beginning
of the track at 15 cm from the upper body. Vision of the limbs was blocked with an opaque cover on top of the wooden
construction. The experimental setup is depicted in Fig. 1. The position of two parallel handles outside the box was recorded
using one Optotrak unit with three infrared cameras (3020 Optotrak, Northern Digital Inc., Waterloo, Canada), which enabled
us to calculate the position of the hands inside the box.

Before the start of the actual experiment, the maximum reaching distance of both arms was determined (MRD) in
order to scale the different matching positions across subjects. MRD corresponds to the distance from the start of the
track (position most proximal to the body) to the position of the handles when the elbows were extended as far as
possible without bending the trunk forward. The MRD was used to determine the three target positions to be tested in the
matching task, i.e., 25%, 50%, and 75% of the MRD. In case the MRDs of the left and right arm were different, the three
target positions were based on the smallest MRD (this was applied for both groups). This means that for the children with
SHCP the target positions were always based on the MRD of the impaired arm. The MRDs for each individual are reported
in Tables 1 and 2.

The contralateral matching task required participants to match the position of one limb (reference limb), which was
moved to the predetermined target position passively, by actively moving the other limb (matching limb) to the (mirror
symmetric) position at the same distance as the reference arm. Three target positions (25%, 50%, and 75% of the MRD) were
tested and the matching was done with either the less-impaired limb (dominant for TD children) or the impaired limb (non-
dominant for TD children). The matching limb started at MRD (distally) or at the beginning of the track (proximally). The
combination of all independent variables (3 target positions of the reference limb, 2 matching limbs, and 2 start positions of
the matching limb), resulted in 12 trial types. Each trial type was performed once. The total amount of trials was divided in
two blocks: (1) matching with the impaired (non-dominant) arm, and (2) matching with the less-impaired (dominant) arm.
The order of blocks was randomized over participants and within each block the order of the trial types was randomized to
reduce possible thixotropic effects on the matching accuracy (Proske, 2006). Prior to data collection 3 practice trials were
conducted to familiarize the participant with the test setup and to check if the children were able to perform the movement
properly. If the participant was unable to grip the handle due to his/her physical impairment, the experimenter placed the
hand on top of the handle. However, in none of the participants the handle slipped out of the hands during a trial. In order to
keep the children motivated they were told that the better their performance the more points they would earn. At the end of
the experiment they could trade their points for a small gift.

2.3. Data analysis

The position data of the reference and the matching limb were imported into Matlab (version 7.1, The Mathworks Inc.).
Then, absolute endpoint error was determined as the distance between the two handles at the end of the movement using
custom-written routines. The end of the movement was verified by visual inspection of the plot showing the time series of
the matching limb’s position (inter-rater reliability r = 0.98, p < 0.001).

In addition, we calculated the proportion of trials in which the matching arm overshot or undershot the position of the
reference target, resulting in amplitudes that were larger or smaller than the actual reaching distance respectively.

2.4. Statistical analysis

The MRDs of the SCHP group and the TD group were compared with a two-way repeated measures ANOVA with Limb
(dominant/less-impaired, non-dominant/impaired) as a within factor and Group (SHCP, TD) as a between factor. The
endpoint error in the contralateral matching task was analysed using a four-way repeated measures ANOVA with Limb
(non-dominant/impaired, dominant/less-impaired), Position of the reference limb (25%, 50%, 75% MRD; i.e. the distance
relative to the body), and Start position (distal, proximal) as within subjects factors and Group (SHCP, TD) as a between
subjects factor. In case the sphericity assumption was violated, Greenhouse–Geisser adjustments were made. Fishers’ LSD
was used for post hoc analysis. To compare the proportions of undershoots and overshoots, a non-parametric Mann–
Whitney U test was performed on the relative number of undershoots between the TD and the SHCP group. The significance
level was set at 0.05.

3. Results

3.1. Maximum reaching distance (MRD)

A Limb � Group interaction (F1,32 = 17.31, p < 0.001) revealed that in children with SHCP the MRD of the less-
impaired limb was larger than the MRD of the impaired limb (p < 0.001; 37.7 cm vs. 31.9 cm), while no such difference
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was found in TD children (p = 0.63; 35.1 cm vs. 34.7 cm, for dominant and non-dominant arm respectively). Further post
hoc analysis of the Limb � Group interaction did not show differences in MRD between the limbs of the SHCP group and
the limbs of the TD group (dominant arm: 37.7 cm (SHCP) vs. 35.1 cm (TD); non-dominant arm: 31.9 cm (SHCP) vs.
34.7 cm (TD)).

Fig. 1. (A) Top view of the experimental setup with the two handles that could be slid back and forth along the track. The screen between the arms prevented

the hands from touching each other. The position of the handles outside the box was measured with an Optotrak camera (not depicted here). In this picture

the opaque cover on top of the construction is not visible. (B) Side view of the experimental setup. The starting positions (proximal, distal) and the three

target positions (25% MRD, 50% MRD, 75% MRD) are indicated. Please note that the target positions and the distal start positions (MRD) were determined

based on the Maximum Reaching Distance of the child and thus differed per participant. (C) Real-life picture of the experimental setup with an opaque cover

on top of the construction.
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3.2. Endpoint error

All children were able to complete the experiment, but due to technical problems with the motion capture system during
a number of trials of participants 7 (1 trial), 11 (2 trials), and 12 (2 trials) of the SHCP group, the data of these participants
could not be included in the statistical analysis.

Analysis of the absolute error in the matching task revealed a two-way interaction between the factors Position reference
and Start position (F2,58 = 32.7, p < 0.001), which was also present in two three-way interactions: Position reference � Start
position � Group (F2,58 = 5.3, p = 0.008) and Position reference � Start position � Matching limb (F2,58 = 3.4, p = 0.04).
Inspection of this Position reference � Start position interaction (see Fig. 2) showed an almost symmetrical picture for trials
starting at a distal point and trials starting in proximity of the body, for both groups. Absolute error at 25% MRD in trials
starting in the proximity of the body (i.e. 0% MRD) was similar to the absolute error at 75% MRD in trials starting at the most
distal point from the body (100% MRD). Likewise, absolute error at 75% MRD in trials starting proximal to the body (i.e. 0%
MRD) was not different from absolute error at 25% MRD in trials starting at the most distal point from the body (100% MRD).
Finally, a distal or proximal start of the matching limb did not affect the amplitude of the error when the reference limb was
positioned at 50% MRD. In fact, this Position reference � Start position interaction reveals a Distance effect indicating
gradually larger absolute errors for larger reaching distances, i.e., the distance that has to be covered by the matching hand in
order to achieve an error of 0. A secondary 3-way repeated measures ANOVA (Limb � Distance � Group), in which the
dependent variables Position reference and Start position were combined into one factor (Distance), yielded identical results
as the initial 4-way ANOVA (Fig. 3 explains the relation between the factors Position reference and Start position and
Distance). For reasons of clarity and comprehensibility, the results of the secondary analysis, in which all participants were
included, will be presented here.

This secondary analysis revealed main effects of Group (F1,32 = 72.4, p = 0.002) and Distance (F2,64 = 29.5, p = 0.002) on
absolute error, which were superseded by a Group � Distance interaction (F1.4, 44.3 = 5.5, p = 0.006; see Fig. 4) and a
Group � Distance � Limb interaction (F2,64 = 3.8, p = 0.028; see Fig. 5). Post hoc examination showed that the accuracy in
this matching task dropped as a function of the reaching distance in both groups, but this drop in accuracy (i.e. increase in
error) was significantly greater in the children with SHCP than in the TD children. This finding was further supported by the
fact that there was no difference in absolute error between the SHCP and TD children for the small distance. In the medium
distance the less-impaired limb of the SHCP group showed larger errors than the dominant arm of the TD group whereas no
differences between the impaired arm and the non-dominant arm were found. Finally, when the reaching distance was
large the errors made by both the impaired and the less-impaired arm were larger than in their counterparts of the TD
group. Furthermore, no difference between the arms was found in TD children. In children with SHCP, however, matching
with the impaired arm resulted in significantly larger absolute errors than matching with the less-impaired arm for the
large distance condition (5.25 cm vs. 3.99 cm), while the opposite was found for the medium distance condition (2.64 cm
vs. 3.93 cm). There was no difference between the impaired and less-impaired matching limb when the reaching distance
was small.

3.3. Relative number of undershoot and overshoot

The proportion of trials resulting in an overshoot or undershoot is depicted in Table 3. All children undershot the target in
the majority of the trials (TD: 80.8%, SHCP: 74.1%). These proportions were not significantly different (U = 103.0, z = �1.31,
p = 0.19, average ranks = 19.4 and 14.9 for TD and SHCP respectively). In addition, inspection of Table 3 shows that the
relative number of undershoots increased with increasing distance in both groups. The differences in the proportion of
undershoots between the arms were small, especially in the SHCP group.

Fig. 2. The absolute endpoint errors (in cm) on different positions of the reference limb (25% MRD, 50% MRD, 75% MRD) for the different starting positions

(distal, proximal) for the SHCP (left graph) and the TD group. The solid line represents the errors when the matching position was at 25%, 50% or 75% MRD

when starting the movement proximally to the body. The dashed line represents the errors when matching the arms at a target position at 25%, 50% and 75%

MRD when starting the movement distally from the body.
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3.3.1. Relation with the level of spasticity and MRD

Two additional analyses were performed in order to examine whether the level of spasticity (Tardieu score) and the
difference in MRD between the limbs have an influence on the magnitude of the absolute errors and to the number of trials
with undershoot in children with SHCP.

For the first additional analysis, the children with SHCP were divided into two groups based on their spasticity level as
indicated by the Tardieu score. One group (‘mild spasticity group’) included all children with a Tardieu score equal to or
below 1 (n = 4) and the other group (‘moderate spasticity group’) included the children with a score above 1 (n = 10). The
results of the Mann–Whitney U test revealed that the ‘mild spasticity group’ did not differ significantly from the ‘moderate
spasticity group’ on the percentage undershoots (U = 15.5, z = �0.65, p = 0.51, average ranks = 8.6 and 7.0 respectively).
Likewise, no differences between the group with scores equal to or below 1 and the group with scores above 1 were found for
the absolute error when matching with the impaired limb on all three distances (small: U = 14.0, z = �0.85, p = 0.39, average
ranks = 6.0 vs. 8.1; medium: U = 13.0, z = �0.99, p = 0.32, average ranks = 9.3 vs. 6.8; large: U = 10.0, z = �1.14, p = 0.16,
average ranks = 10.0 vs. 6.5).

For the second additional analysis, we compared the children with SHCP based on the relative difference of MRD between
the less-impaired and the impaired arm. For each individual, the difference between the two MRDs (see Table 1) was divided
by the largest MRD (expressed as a percentage) in order to minimize the inter-individual variability in arm length. The first
group included the children with less than 10% relative difference (n = 8) and the second group included children with more
than 10% relative difference (n = 6).

When comparing these two groups on relative number of undershoots, the Mann–Whitney U test did not reveal a
significant difference between the groups (U = 14.5, z = �1.26, p = 0.21). The ‘more than 10% group’ showed an average rank of
5.9 and the ‘less than 10% group’ had an average rank of 8.7. This then suggests that both groups did not significantly differ on
relative numbers of undershoot.

Fig. 3. Conversion from Position reference (25% MRD, 50% MRD, 75% MRD) and Start position (proximal, distal) into Distance (small (S), medium (M), and

large (L)). It can be seen that e.g. moving towards 25% MRD when starting proximally results in the same distance as moving towards 75% MRD when

starting distally.
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Fig. 4. The absolute errors (in cm) of the typically developing (TD) and the cerebral palsy (SHCP) group for the different distances (small, medium, and large).

The dashed line represents the errors of the SHCP group and the solid line represents the errors of the TD group.

Fig. 5. The absolute errors (in cm) of both upper limbs for the Typically Developing (TD) group (grey lines) and the Spastic Hemiparetic Cerebral Palsy (SHCP)

group (black lines) depticted for each distance separately. The distances (small, medium, large) are depicted on the horizontal axis. The solid grey line

represents the errors of the non-dominant arm, the dashed grey line represents the errors of the dominant arm. The error of the impaired arm of the SHCP

group are depicted with a solid black line and the error of the less-impaired arm is represented by the dashed black line.

Table 3

Percentages (and proportions) of the overshoots and undershoots in the SHCP (impaired and less-impaired arm) and the TD group (non-dominant and

dominant arm) in the small, medium and large distance. In the last column the total relative number of under- and overshoots is depicted. The range (in

cm) of the total percentage overshoots (positive values) and undershoots (negative values) is indicated between brackets.

Small Medium Large Total

Undershoot
SHCP

Impaired 66.7% (18/27a) 63% (17/27) 89.3% (25/28) 74.1% (�18.3 to �0.1)

Less-impaired 73.1% (19/26) 71.5% (20/28) 81.5% (22/27)

TD

Non-dominant 67.5% (27/40) 70% (28/40) 87.5% (35/40) 80.8% (�7.0 to �0.01)

Dominant 80% (32/40) 87.5% (35/40) 90% (36/40)

Overshoot
SHCP

Impaired 33.3% (9/27b) 37% (10/27) 10.7% (3/28) 25.9% (0.03 to 5.7)

Less-impaired 26.9% (7/26) 28.5% (8/28) 18.5% (5/27)

TD

Non-dominant 32.5% (13/40) 30% (12/40) 12.5% (5/40) 19.2% (0.02 to 3.3)

Dominant 20% (8/40) 12.5% (5/40) 10% (4/40)
a Number of trials with undershoot/total number of trials.
b Number of trials with overshoot/total number of trials.

A.R.P. Smorenburg et al. / Research in Developmental Disabilities 33 (2012) 971–981978



Author's personal copy

Also when focusing on the absolute error, no differences were demonstrated. The absolute error on the small distance
when matching with the impaired limb showed similar ranks for the groups with large and the small differences in MRD
(U = 22.0, z = �0.26, p = 0.8, average ranks 7.2 and 7.8 respectively). Also for the medium and the large distance no differences
were found between the ‘less than 10% group’ and the ‘more than 10% group’ (medium: U = 12.0, z = �1.55, p = 0.12, average
ranks = 5.5 vs. 9.0; large: U = 15.0, z = �1.16, p = 0.25, average ranks = 9.0 vs. 6.4).

4. Discussion

In order to better understand the impact of Spastic Hemiparetic Cerebral Palsy (SHCP) on position sense during bimanual
tasks, the current study compared the performance of children with SHCP and TD children in a typical contralateral arm
matching task. We found that children with SHCP matched the position of the reference arm less accurately than TD children
as reflected in larger matching errors for both the impaired and less-impaired arm. Previously, Wann (1991) has shown
similar bilateral deficits in a small group of children with mixed CP-diagnosis, i.e., quadriplegia and diplegia where the
condition is caused by a lesion to the left and right hemisphere. Yet, our results demonstrate that also children with
unilateral brain damage have difficulties with matching the position of the upper limbs (without visual information), which
is in congruence with Lee et al. (1990) who reported similar findings in a case study with two children with SHCP.
Interestingly, the performance in the current contralateral matching task appeared to depend on the range of the reaching
movement required to match the target. In both the SHCP and the TD children endpoint error gradually increased as a
function of the initial distance between the reference limb and the matching limb, i.e., at the start of the trial. In contrast to
previous research that showed a drop in precision when localizing targets further away from the body (i.e., larger distance
relative to the body) (e.g. Adamo et al., 2007; van Beers et al., 1998), the distance effect found in the current study was
independent of the target position. Rather, the accuracy in this matching task was affected by the distance of the reaching
movement irrespective of whether the movement was to a proximal or a distal target. It should be noted that this effect was
stronger for the SHCP than for the TD children. In addition, further analysis showed that performance of the two groups only
differed significantly in the medium and large distance condition.

What makes matching more prone to error when the initial distance between the effector and the target is larger? The
cause of this distance effect might be related to the nature of movements children perform and practice as part of their daily
routine. Daily movements in which both limbs are involved are usually movements in which the limbs are relatively close to
each other, for example cutting a piece of bread, typing on the computer, or playing with a doll. As a result it is conceivable
that the joint-position sense is better developed within the daily range of motion and less developed (less specific) outside
that range. Furthermore, larger reaching movements are also more prone to signal-dependent noise as they require neural
command signals of a greater intensity, which come with increased variance of noise (Goble, 2010; Harris & Wolpert, 1998).
This phenomenon is expected to amplify the endpoint error of movements with larger amplitudes. In addition, for children
with SHCP, involuntary muscle contractions associated with spasticity can lead to a situation in which the muscle tends to
remain in a shortened position. This restriction in range of motion may cause length-related changes in the muscle-tendon
complex and can eventually lead to a loss of joint range, or contracture (Ada, O’Dwyer, & O’Neill, 2006). Although spasticity
may impede the movement required in the present study, it has to be noted that the movement was self-paced and within
the range of motion of the impaired limb which should have limited the impact of the (high) velocity depended reaction. If
the restriction in range of motion would explain the difference in matching accuracy between the SHCP and the TD group,
more undershoot would be expected in the SCHP group (in particular for the spastic impaired arm) compared to the TD
group. Yet, both groups undershot the target in the majority of the trials and there was no difference between the children
with SHCP and the controls, or between the impaired and the less-impaired arm. Moreover, children with low levels of
spasticity undershot the target in as many trials as the children exhibiting higher levels of spasticity and the size of the
absolute error neither differed between these groups. A similar finding was demonstrated for the difference in MRD: the
group with larger differences in MRD between the impaired and less-impaired arm did not show significantly more frequent
undershoots or larger absolute errors than the group with smaller differences in MRD. Therefore, although we cannot
exclude that the restricted range of motion in children with SHCP may have contributed to the larger endpoint errors at the
large distance, the present results suggest that a compromised motor system cannot fully account for the lower matching
accuracy in the SHCP group and the high prevalence of undershoot.

In addition to the diminished matching ability of the impaired arm, larger endpoint errors for the less-impaired arm
compared to the dominant arm in the medium and large distance condition indicate, in agreement with previous research
(Chrysagis et al., 2007; Goble, Hurvitz, et al., 2009; Wingert et al., 2009), that SHCP could be associated with sensory
problems in conjunction with their motor problems. The performance in the contralateral matching task is the combined
result of a number of interacting factors. Afferent proprioceptive signals determine the position of the reference arm. This
information is processed at cortical level leading to efferent motor commands which move the contralateral arm to the felt
target position. Finally, afferent proprioceptive signals coming from the matching arm may be used to fine tune and match
the position of the reference arm. It is impossible to pinpoint the origin of a matching problem on the basis of our findings,
however a detailed comparison of the performance of the impaired and less-impaired limb may provide more insight into
the specific difficulties encountered by children with SHCP in tasks requiring bimanual control. A first question that needs to
be addressed is whether the matching difficulties may be explained by a deficit at the cortical level only. A deficiency in
mapping proprioceptive signals from the reference arm onto an egocentric reference frame is likely to result in distance
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independent matching errors for both arms, i.e., the matching error would be the same for both arms on each distance.
However, the finding that performance of the limbs of children with SHCP was only comparable (with each other and with
the TD group) in the small distance condition appears to be inconsistent with this notion and suggests that deficits occur both
at cortical level and at the level of the muscle. Secondly, while the impaired arm located the target less accurately than the
less-impaired in the large distance condition, the opposite was found in the medium distance condition. This is in contrast
with the TD children where the endpoint error was similar for both arms in all three conditions and raises the question
whether position sense may be affected in the less-impaired arm of children with SHCP too. Based on purely unimanual
pointing tasks, Goble, Hurvitz, et al. (2009) and Wingert et al. (2009) concluded that position sense of the less-impaired arm
was not reduced. The implication would then be that the larger matching errors of the less-impaired limb for the medium
distance condition in our study were caused by disturbed afferent information originating from the impaired reference limb
only. This would suggest that SHCP would affect the accuracy of position sense when the impaired limb is used as a static
reference (or target) more than when it is actively involved in the reaching movement. However, given the fact that
involuntary spastic contractions primarily emerge when the affected muscle is stretched (i.e. dynamic rather than static
conditions) the aforementioned suggestion seems to be counterintuitive. Thus while decreased position sense of the
impaired limb is likely to contribute to the matching errors of the less-impaired limb, at this moment the contralateral
matching task does not allow us to exclude difficulties at the level of the less-impaired arm either. At last it should also be
noted that in the current study the differences between the impaired and the less-impaired side may also be related to the
fact that the target locations were based on the smaller maximum reaching distance of the impaired limb. This meant that
the less-impaired limb operated within smaller range of movement relative to its maximal range than the impaired limb,
which may be partly responsible for the smaller error of the less-impaired limb at large distances.

To summarize, although the contralateral matching task is unable to isolate position sense deficits of the impaired and
less-impaired arm, the current results demonstrate that children with SHCP are clearly disadvantaged when performing
skills that involve both arms. Accurate positioning of one arm relative to the position of the other arm, which is required in
numerous manual skills, is impaired regardless of which arm is used.

Finally, it has been suggested that tasks requiring processing and mapping of proprioceptive information are subserved
by a fronto-parietal network that is mainly located within the right hemisphere (Goble & Brown, 2008). This is consistent
with findings of Goble, Hurvitz, et al. (2009) demonstrating poorer proprioceptively guided matching in individuals with
right hemispheric damage than in individuals with a left hemispheric damage. Reinspection of our data (6 children with right
hemispheric damage vs. 8 children with left hemispheric damage) did not reveal such a difference. Since we were unable to
match these two groups for size and specific location of the lesion, caution is warranted when interpreting these results.
Moreover, other findings of Goble show that left-handed individuals have a right hand advantage for proprioceptive tasks
(Goble, Noble, & Brown, 2009), indicating that other factors related to practice and specific function of the hand are likely to
contribute to the left–right differences in position sense. Altogether without controlling for important confounding factors,
such as specific location of the lesion, size of the lesion, functionality of the impaired arm, etc., we believe it is premature to
compare SHCP children with left and right hemispheric damage.

In conclusion, the results of the present study demonstrate that children with SCHP exhibit severe deficiencies in accurate
positioning of one arm relative to the position of the other arm when compared to TD children. Despite the fact that with a
contralateral matching task we cannot draw conclusions on the origin of the proprioceptive deficits, it is suggested that the
unilateral proprioceptive deficits reported by previous studies, severely hamper the matching of the limbs. This deficit is
particularly visible when the initial distance between the target and the matching arm is large (irrespective of target position
relative to the body).
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Abstract Mirror visual feedback has previously been

found to reduce disproportionate interlimb variability and

neuromuscular activity in the arm muscles in children with

Spastic Hemiparetic Cerebral Palsy (SHCP). The aim of

the current study was to determine whether these positive

effects are generated by the mirror per se (i.e. the illusory

perception of two symmetrically moving limbs, irrespec-

tive of which arm generates the mirror visual feedback) or

by the visual illusion that the impaired arm has been

substituted and appears to move with less jerk and in

synchrony with the less-impaired arm (i.e. by mirror visual

feedback of the less-impaired arm only). Therefore, we

compared the effect of mirror visual feedback from the

impaired and the less-impaired upper limb on the bimanual

coupling and neuromuscular activity during a bimanual

coordination task. Children with SHCP were asked to

perform a bimanual symmetrical circular movement in

three different visual feedback conditions (i.e. viewing the

two arms, viewing only one arm, and viewing one arm and

its mirror image), combined with two head orientation

conditions (i.e. looking from the impaired and looking

from the less-impaired body side). It was found that mirror

visual feedback resulted in a reduction in the eccentric

activity of the Biceps Brachii Brevis in the impaired limb

compared to the condition with actual visual feedback from

the two arms. More specifically, this effect was exclusive

to mirror visual feedback from the less-impaired arm and

absent when mirror visual feedback from the impaired arm

was provided. Across conditions, the less-impaired arm

was the leading limb, and the nature of this coupling was

independent from visual condition or head orientation.

Also, mirror visual feedback did not affect the intensity of

the mean neuromuscular activity or the muscle activity of

the Triceps Brachii Longus. It was concluded that the

positive effects of mirror visual feedback in children with

SHCP are not just the result of the perception of two

symmetrically moving limbs. Instead, in order to induce a

decrease in eccentric neuromuscular activity in the

impaired limb, mirror visual feedback from the ‘unaf-

fected’ less-impaired limb is required.

Keywords Cerebral palsy � Hemiparesis � Mirror visual

feedback � Neuromuscular activity � Electromyography �
Bimanual coordination

Introduction

Children with Spastic Hemiparetic Cerebral Palsy (SHCP),

who have unilateral motor impairments in both their arm
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and leg due to brain and/or pyramidal tract damage (Miller

2007),1 perform tasks requiring only the less-impaired

hand reasonably well (e.g. Steenbergen et al. 1996; Utley

and Sugden 1998). In contrast, tasks requiring bimanual

coordination pose a huge challenge because of the inevi-

table involvement of the impaired arm and hand. In recent

years, bimanual reaching and grasping has been thoroughly

investigated in individuals with SHCP (e.g. Utley and

Sugden 1998; Volman et al. 2002; Sugden and Utley 1995;

Steenbergen et al. 1996). Interestingly, these studies sug-

gest that, despite the unilateral impairment, bimanual

actions of children with SHCP seem to be facilitated by

bilateral connections at multiple levels of the central ner-

vous system similar to what has been found in typical

populations (e.g. corticospinal, cerebellar, brain stem, and

propriospinal; Wiesendanger et al. 1994). For example,

Volman et al. (2002) showed that when drawing circles in

an in-phase (symmetrical) coordination mode, the spatio-

temporal interlimb variability decreased. Furthermore,

movement smoothness of the impaired limb increased

compared with single-handed performance. Steenbergen

et al. (2008) observed close temporal synchrony of the

hands when grasping an object bimanually, which con-

trasted with the timing differences between both hands

when they performed separately. It should be noted that

some of these findings indicate adaptations of the less-

impaired side to the behaviour of the affected side (e.g.

Steenbergen et al. 1996), but combined these studies sug-

gest that bilateral interactions exist in children with SHCP

and that they can lead to favourable effects in the impaired

arm.

A paradigm that has been used to further our under-

standing of how visual and spatial processes influence

coordination and perception of the two hands is the ‘mirror

box illusion’ (e.g. Franz and Packman 2004; Holmes and

Spence 2005). This illusion is manifested when a mirror is

placed in between the two upper limbs along the midsag-

ittal plane. The reflection of the arm viewed in the mirror

seems superimposed on the visual image of the arm behind

the mirror. When the arm facing the reflective side is

moved, this creates the illusory perception of a zero lag

symmetrical movement of the two limbs. The effects of

mirror visual feedback were first investigated by Rama-

chandran and Rogers-Ramachandran (1996) in amputees

with phantom pain. After a short period of ‘mirror box’

therapy, which involved (bilateral) mirror-symmetric

movements, amputees reported a decrease in phantom pain.

These encouraging findings led to the adoption of mirror

visual feedback in treating other acquired unilateral motor

or pain disorders where the illusion appeared to result in

positive effects on motor performance and pain perception

(for a review see Ramachandran and Altschuler 2009). For

instance, it was found that chronic stroke patients could

benefit from therapy using mirror visual feedback, showing

increases in the range of motion, speed and accuracy of

arm movements (Altschuler et al. 1999; Stevens and

Stoykov 2003), an improved functional use and a recovery

of grip strength (Sathian et al. 2000). Likewise, in patients

with Chronic Regional Pain Syndrome 1 (CRPS1) mirror

visual feedback of the unaffected limb reduced the per-

ception of pain and stiffness (McCabe et al. 2003).

Interestingly, Feltham et al. (2010a, c) demonstrated that

the positive effects of mirror visual feedback may poten-

tially be extended to individuals with congenital disorders

such as SHCP, a finding that was recently supported by

Gygax et al. (in press) who showed that mirror therapy in

children with hemiplegia may improve strength and

dynamic function of the impaired arm. Feltham et al.

(2010a, c) used a task where participants performed con-

tinuous symmetrical circular movements with both upper

limbs in three visual conditions (glass: seeing the two arms;

screen: seeing only the less-impaired arm; mirror: seeing

the less-impaired arm and its mirror reflection). An effect

of mirror visual feedback was found on the nature of the

bimanual coordination (Feltham et al. 2010a) and on the

neuromuscular activation in children with SHCP (Feltham

et al. 2010c). More specifically, in the first study, it was

demonstrated that movement variability of the interlimb

coupling was lower in the mirror condition in comparison

with the screen condition. In addition, mirror visual feed-

back resulted in a reduction in the neuromuscular intensity

in the shoulder muscles of the less-impaired limb and a

shortening of the duration of eccentric and concentric

activity in the elbow muscles of the impaired limb. In

accordance with Perry et al. (2001), a phase where a flexor

muscle (e.g. Biceps Brachii Brevis, BBB) was actively

contributing to a flexion movement was defined as con-

centric, whereas flexor activity was eccentric when it

contributed to an extension movement. For extensor mus-

cles (e.g. Triceps Brachii Longus, TBL), the opposite

classification was used. Note that an earlier study showed

that children with SCHP performed this bimanual coordi-

nation task with higher levels of neuromuscular intensity in

elbow and wrist muscles and longer periods of concentric

and eccentric activity in elbow and shoulder muscles

compared with typically developing children (Feltham

et al. 2010b). More eccentric activity of the BBB might

suggest more counteraction to the extension movement and

hence indicates that the neuromuscular control is less

1 Cerebral Palsy (CP) is a group of permanent disorders of movement

and posture due to a non-progressive lesion in the foetal or infant

brain (Miller 2007). CP is the most common cause of childhood

disability and has an incidence of 2–2.5 per 1,000 living births (Lin

2003). A common form of CP is Spastic Hemiparetic Cerebral Palsy

(SHCP). Children with SHCP have a brain lesion in one hemisphere

and as a result have spasticity on the other side of the body.
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efficient in children with SHCP. The finding of a decrease

in interlimb variability and a reduction in eccentric and

concentric muscle activity in a condition with mirror visual

feedback thus shows that the mirror has the capacity to

induce a general improvement of the kinematics and the

neuromuscular efficiency during bimanual movements in

children with SHCP.

A pertinent question is, however, whether the mirror

effects observed in these children are caused by the illusory

perception of seeing two arms moving in perfect symmetry,

irrespective of which arm is seen in the mirror, or by the

illusion that the impaired limb has been substituted with a

less-impaired limb, which is not spastic. The studies by

Feltham et al. (2010a, c) described above have only

investigated the effect of mirror visual feedback from the

unaffected arm and therefore were not able to discriminate

between these two explanations. When Franz and Packman

(2004) found that mirror visual feedback was powerful

enough to enhance spatial coupling of the two hands in

healthy adults performing a circle drawing task in a similar

manner as actual vision of both hands, this effect was

independent of the laterality of the mirror visual feedback.

In a condition where only one hand was visible, the circles

drawn by the hand in vision were found to be significantly

larger than for the hand hidden behind the screen. Mirror

visual feedback, regardless of which hand was viewed, had

the capacity to wipe out this between-hand difference in

circle size. Franz and Packman (2004) hypothesised that

the illusion of the perfect symmetry between the two hands

created by the mirror promoted the sensorimotor coupling

at the central level.

In children with SHCP, however, the movement pro-

duced by the impaired and less-impaired arm is qualita-

tively different, and hence, the mirror visual feedback

created by either arm is considerably different as well.

Whilst there is an illusion of perfect symmetric movement

in both situations, the mirror visual feedback of the

impaired arm shows a less smooth movement hampered by

the motor deficits. This discrepancy between the two sides

and the mirror visual feedback they elicit enables us to

investigate the mirror box illusion in this group of children

in more detail. More specifically, the aim of the present

study was to determine whether the mirror effects as found

previously by Feltham et al. (2010a, c) are the result of the

perception of visual symmetry per se, irrespective of which

arm is viewed, or by the illusion that the impaired arm has

been substituted and appears to move smoother and in

synchrony with the less-impaired arm. For this purpose, we

compared the effect of mirror visual feedback generated by

the less-impaired and the impaired arm on the bimanual

coupling and the neuromuscular activity in children with

SHCP during a bimanual coordination task similar to the

one used in Feltham et al. (2010a, c). Based on the studies

of Feltham et al. (2010a, c) we anticipate that mirror visual

feedback from the less-impaired arm will result in smaller

interlimb variability and reduced eccentric activity in the

arm muscles of the impaired limb compared to the visual

feedback of both arms (glass condition). If the illusion of

visual symmetry is the main trigger for the changes

induced by the mirror, mirror visual feedback of the less-

impaired arm is expected to induce similar effects on the

kinematics and the neuromuscular activity as compared to

mirror visual feedback of the impaired arm. Alternatively,

if the mirror effect in children with SHCP is caused by a

mechanism involving substitution of the visual information

of the impaired arm by visual feedback from the less-

impaired arm, we expect to find less favourable changes to

the control of the movement when viewing the impaired

upper limb and its mirror reflection than when viewing

mirror visual feedback of the less-impaired limb.

Methods

Participants

Ten children (eight males and two females) with SHCP

participated in the study (mean age 12.7 ± 3.2 years).

Further participant characteristics can be found in Table 1.

A subset of the data from seven children who took part in a

previous study (Feltham et al. 2010c) was identified to be

included in the present analysis. The participants did not

have impaired vision or any neuromuscular disorders other

than SHCP. Written informed consent was obtained from

all participating children and their parents. The experiment

was conducted in accordance with the Declaration of

Helsinki, and all experimental procedures were approved

by the institutional research ethics committee.

Test procedures

Each participant was seated on a height adjustable chair at

a table with both feet flat on the floor and the knees 90�
flexed. The elbows were flexed over 90�, and in each hand,

the participant grasped a handle attached to a wooden disc

(radius 0.10 m) which spun freely 360� around a vertical

axis. The axes were fixed to a wooden plateau and were

located 0.31 m apart.

Participants were asked to perform a continuous inward

symmetrical circular bimanual movement (the right arm

rotated anti-clockwise and the left arm rotated clockwise).

Starting at the inner most part of each circle (9 o’clock for

the right arm and 3 o’clock for the left arm), children were

asked to rotate the discs continuously at a self-selected

speed until they were instructed to stop. Additionally, they

were instructed to keep the movement time per cycle (i.e.
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movement frequency) constant across the experimental

trials and the different conditions.

The type of visual feedback was varied so that the

participant (1) viewed both arms, (2) viewed only one arm

and (3) viewed one arm and its mirror reflection, by placing

a glass, opaque screen or mirror divide, respectively (all:

width 0.06 m, depth 0.75 m, height 0.39 m), between the

arms along the midsagittal plane (Fig. 1). The glass and the

screen conditions were added as control conditions. In

addition, in order to examine the difference between mirror

visual feedback of the less-impaired arm (referred to as

‘uncompromised’ mirror visual feedback) and mirror visual

feedback of the impaired arm (referred to as ‘compro-

mised’ mirror visual feedback) on the nature of the

bimanual coupling and the neuromuscular activity in the

BBB and TBL muscle, the orientation of the head (i.e.

viewing side) was varied; the participants orientated their

head either towards the impaired side of the body (Vie-

wImp) or to the less-impaired side of the body

(ViewLessImp).

The six conditions (3 visual feedback 9 2 viewing side

conditions) were presented in a random order and per

condition, three trials, each lasting approximately 15 s,

were recorded. Prior to data collection, practice trials were

conducted to familiarise the participants with the test setup.

Short breaks were given between the trials in order to

recover from any fatigue or decrease in concentration that

might have occurred during the performance of the

experiment. In order to keep the participants motivated,

they were told that rotating the discs more symmetrically

resulted in more points. At the end of the experiment, the

children could trade their points for a small gift.

Recording and analysis procedures

The 3D position of the wrist, elbow and shoulder was deter-

mined by two serially connected units containing three

infrared cameras at 200 Hz (3020 Optotrak, Northern Digital

Inc., Waterloo, Canada). Light emitting diodes were bilater-

ally attached to the skin with double-sided tape over the dorsal

Table 1 Participant characteristics

Participant Age Sex Hand dominance MAS GMFCS WeeFIM Aethiology

1 12.8 M Left 1 I 90 Unknown

2 9.3 F Left 1? I 89 Cerebral haemorrhage

3 13.2 M Left 1 I 91 Unknown

4 14.3 M Left 1? I 91 Cerebral haemorrhage during birth

and meningitis just after birth

5 11.0 M Left 1 II 55 Meningitis just after birth

6 6.8 M Left 1 I 83 O2 shortage during birth

7 17.1 M Left 2 I 91 Cerebral haemorrhage

8 11.1 M Right 1 I 91 Unknown

9 14.7 M Right 2 II 62 Schizencephaly

10 16.3 F Right 1 I 79 O2 shortage during birth

Severity of the impairment was assessed by a single experimenter with the Modified Ashworth Scale (MAS; spasticity levels increase from 1 to

4), Gross Motor Function Classification System (GMFCS; function deteriorates from I to V) and the functional independence measure for

children (WeeFIM; motor items only, with a possible score range of 13–91. A higher score denotes a better functional independence of the child)

Fig. 1 Experimental setup showing one of the experimenters dem-

onstrating the task during the glass (left panel), screen (middle panel)
and mirror (right panel) condition. The participant viewed the

bimanual task either from the impaired or from the less-impaired side

of the body. Note that the participants were considerably smaller than

the experimenter and that their posture was more erect than shown in

this picture
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tuberculum of the radius (wrist), lateral epicondyle of the

humerus (elbow), greater tubercle of the humerus (shoulder)

and the trochantor of the femur (hip). The phase of each limb

was calculated according to the following formulas:

uD ¼ arctan dSD � dt�1
� �

=SD

� �
;

and

uND ¼ arctan dSND � dt�1
� �

=SND

� �
;

where uD and uND are the phase of the dominant (less-

impaired) and the non-dominant (impaired) hand,

respectively, SD and SND are the position time series, and

dSD�dt-1 and dSND�dt-1 represent the instantaneous

velocity. Before the calculation of uND, the sign of the

position time series of the non-dominant arm was inversed

to an anti-clockwise trajectory. The continuous relative

phase (CRP) indicating the degree of coupling (i.e.

synchronicity) between the arms is then:

CRP ¼ uD� uND;

where a positive value for CRP implied the less-impaired

arm lead and a negative value the impaired arm lead.

Superficial EMG (electromyography) was bilaterally

recorded from the main muscles around the elbow: the

Biceps Brachii Brevis (BBB) and the Triceps Brachii

Longus (TBL), according to the SENIAM guidelines for

surface EMG measurement (Hermens et al. 2000). The

ground electrode was placed over the acromion on the side

of the less-impaired hand. Disposable Ag/AgCl surface

EMG electrodes with a gel-skin contact, active detection

area of 15 mm2 for each electrode and a 20 mm centre to

centre inter-electrode distance, were placed in parallel with

the muscle fibre direction over the muscle bellies after

cleaning and gentle abrasion of the skin. The EMG signals

were amplified 20 times, high-pass pre-filtered at 10 Hz

and AD-converted at 1,000 Hz with a 22-bit resolution and

stored on a computer. The EMG signals were band-pass

filtered with a zero lag 2nd order Butterworth filter between

10 and 400 Hz and then full-wave rectified. Finally, the

EMG signals were smoothed with a zero lag 2nd order low-

pass Butterworth filter at 6 Hz.

Bilateral EMG recordings were analyzed from the first

two cycles of each trial.2 Typically, EMG amplitudes are

scaled to the activation levels recorded either during an

isometric maximal voluntary contraction or a specified

steady-state sub-maximal contraction. However, this

procedure is likely to be unreliable in people with neuro-

logical conditions since they are often unable or unwilling to

perform maximum contractions (van Dieën et al. 2003;

Smith et al. 2008). Therefore, to determine the intensity of

the mean neuromuscular activity of each muscle during the

bimanual movement, the mean amplitude was calculated

from the smoothed raw EMG signals. In addition, the amount

of concentric and eccentric muscle activity was determined.

To this end, the EMG profile of each muscle was broken

down into active and inactive phases, after the threshold for

muscle contraction was determined. Consistent with Perry

et al. (2001), it was assumed that a purposeful activation of a

muscle causes an increase in the EMG signal within the

frequency range of 0–160 Hz. The active/inactive threshold

value was then calculated as follows: T = 15 ? 1.5R, where

T is the threshold value, R is the mean value of the EMG

signal above 160 Hz and the constants are derived from

Perry et al. (2001). A muscle was classified as active if the

smoothed raw EMG signal was above the threshold level.

Subsequently, the active phases were classified as eccentric,

concentric or isometric depending on the observed elbow

movement and the primary mechanical function of the

muscle (i.e. flexion or extension). For example, BBB muscle

activity above threshold was classified as concentric when

the elbow was being flexed and as eccentric when the elbow

was being extended. Above threshold, TBL muscle activity

was classified as concentric for elbow extension and as

eccentric activity for elbow flexion. If the muscle was active

but no change in elbow angle was observed, it was classified

as isometric activity. However, this isometric activity was

not included in further analysis of this study since the task

involved a dynamical movement with accordingly very short

relative durations of isometric activity (1.25% of the total

muscle activity). The duration of all eccentric and concentric

phases was summed and expressed as a percentage of the

total movement time (i.e. the movement time of the first two

cycles), giving the relative duration of eccentric activity and

the relative duration of concentric activity for each muscle.

Statistical analysis

The effect of viewing side and visual feedback condition on

the bimanual coupling, EMG intensity and the phases of

muscle activity in each arm, was tested using a repeated

measurement ANOVA with three within factors: Limb

(impaired, less-impaired), Viewing side (view impaired

[ViewImp], view less-impaired [ViewLessImp]) and Visual

condition (mirror, screen, glass). These analyses were con-

ducted using mean data calculated from the three trials per

combination of independent variables. In the event that the

sphericity assumption was violated, Greenhouse-Geisser

adjustments were applied. Fisher’s LSD tests were used for the

post hoc analysis, and the level of significance was set at 0.05.

2 Only the first two cycles of each trial could be analyzed since some

children with SHCP could only fulfil 2 cycles before they adopted a

different coordination mode than the one they were instructed to

produce. Moreover, for some children the movement time allowed

them to complete only 2 cycles within the allocated time of each trial

or the hand slipped off the handle at which point the trial had to be

terminated.
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Results

Bimanual coupling

The CRP did not differ in the three visual conditions (mir-

ror = 6.6� ± 6.3�; screen = 13.2� ± 7.2�; glass = 10.8� ±

7.4�) and the viewing side did not have an effect on the in-

terlimb coupling either (ViewImp = 11.1� ± 6.4� and

ViewLessImp = 9.3� ± 7.0�; see Table 2 for values per

individual condition). The overall mean was 10.2� ± 6.6�,

indicating that the less-impaired arm was the leading limb.

Intensity of the mean neuromuscular activity in BBB

and TBL

There were no significant main or interaction effects on the

mean neuromuscular activity in BBB and TBL of either

Viewing side or Visual condition (see Table 3). This means

that the EMG intensity in BBB and TBL did not change as

a function of viewing side or the nature of visual feedback.

Viewing the impaired arm and its mirror reflection did not

result in higher levels of EMG intensity (BBB: 24.1 ± 3.1;

TBL: 9.9 ± 1.2) than viewing the less-impaired arm and

its mirror reflection (BBB: 21.7 ± 3.6; TBL: 11.2 ± 2.0).

Inspection of Table 3 seems to indicate a trend

(F2,18 = 2.76, P = 0.09) towards lower intensities of

neuromuscular activity in the mirror condition compared

with the glass and the screen conditions (especially in the

BBB of the less-impaired limb in the ViewLessImp con-

dition). In addition, the mean neuromuscular activity ten-

ded to be higher in the impaired than in the less-impaired

arm for both the BBB and TBL muscles (BBB: 29.0 ± 4.9

vs. 19.5 ± 3.9; TBL: 14.7 ± 3.3 vs. 8.5 ± 1.1); however,

the ANOVA indicated that this effect of Limb was not

statistically significant (BBB: F1,9 = 2.29, P = 0.17; TBL:

F1,9 = 3.40, P = 0.10).

Relative duration of concentric and eccentric activity

in the BBB muscle

No significant main or interaction effects were found for

the concentric activity of the BBB muscle (see Table 4).

Mirror visual feedback, irrespective of which arm was

viewed, did not have an effect on the relative contribution

of concentric BBB activity to the execution of the move-

ment in the impaired or less-impaired arm (F2,18 = 0.36;

P = 0.70). Additionally, there tended to be more concen-

tric activation in the impaired limb than in the less-

impaired limb (25.8 ± 3.9 vs. 17.2 ± 4.4), but this dif-

ference was insignificant (F1,9 = 2.74, P = 0.13).

For the eccentric activity of the BBB muscle, a signifi-

cant main effect of the Limb was found (F1,9 = 7.53,

P = 0.02) with the impaired limb having 16.3% more

eccentric activity than the less-impaired limb. This effect

was accompanied by a three-way interaction between

Limb, Viewing side and Visual condition (F2,18 = 4.67,

P = 0.02). Figure 2 illustrates this interaction using the

difference in eccentric activity between the two viewing

sides (i.e. ViewImp and ViewLessImp) for the impaired

and less-impaired limb and for each visual condition. This

difference score was determined by subtracting the

eccentric activity in the ViewImp condition from the

eccentric activity in the ViewLessImp condition. A nega-

tive difference score then indicates lower eccentric activity

in the ViewLessImp condition, whereas a positive differ-

ence score represents higher eccentric activity in the

ViewLessImp condition. Inspection of Fig. 2 and post hoc

examination of the three-way interaction indicated that

there were no effects of Visual condition or Viewing side

Table 2 Mean and SE values of the continuous relative phase (CRP)

in degrees for each visual condition and viewing condition

ViewImp ViewLessImp

Mirror 8.1 ± 7.7 5.0 ± 6.6

Screen 17.2 ± 7.1 9.3 ± 8.6

Glass 8.0 ± 6.6 13.6 ± 8.6

Table 3 Mean and SE values of the intensity of mean neuromuscular

activity (lV) for the BBB and the TBL muscle of the impaired and the

less-impaired limb presented for each viewing condition (ViewImp,

ViewLessImp)

BBB

ViewImp ViewLessImp

Impaired limb

Mirror 29.9 ± 4.2 27.4 ± 5.7

Screen 27.9 ± 4.2 27.3 ± 5.6

Glass 31.0 ± 6.3 30.6 ± 5.2

Less-impaired limb

Mirror 18.2 ± 3.8 16.2 ± 3.2

Screen 17.6 ± 3.4 21.3 ± 4.4

Glass 17.5 ± 4.5 26.2 ± 7.2

TBL

ViewImp ViewLessImp

Impaired limb

Mirror 12.4 ± 2.2 13.9 ± 3.5

Screen 12.4 ± 2.0 17.3 ± 5.4

Glass 15.4 ± 4.3 16.8 ± 3.9

Less-impaired limb

Mirror 7.3 ± 1.1 8.4 ± 1.4

Screen 8.8 ± 1.3 8.8 ± 1.4

Glass 6.8 ± 1.1 10.6 ± 1.9
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on the eccentric activity of the less-impaired arm. For the

impaired arm, however, mirror visual feedback from the

impaired arm resulted in 10.3% more eccentric activity

than mirror visual feedback from the less-impaired arm

(P = 0.007). Furthermore, a significant effect of Viewing

side was also present in the glass condition, where looking

from the less-impaired side resulted in more eccentric

activity than looking from the impaired side (mean dif-

ference score = 8.7%, P = 0.02). Viewing side did not

have an effect on the eccentric activity of the BBB in the

screen condition. Finally, focusing on the differences in

eccentric activity between the visual conditions (see

Table 4), it was found that mirror visual feedback of the

less-impaired arm resulted in less eccentric activity in the

impaired arm than the glass condition when viewing from

the same side (mean difference = 12.8%, P = 0.001). In

addition, the glass condition was performed with more

eccentric activity in the impaired arm than the screen

condition (mean difference = 8.2%, P = 0.02).

Relative duration of concentric and eccentric activity

in the TBL muscle

For the concentric activity of the TBL muscle, a significant

interaction effect between Limb and Viewing side was found

(F1,9 = 10.47, P = 0.01; see Table 4). The concentric

activity in the impaired limb was larger than in the less-

impaired limb for both the ViewImp and the ViewLessImp

condition (mean difference = 8.56 and 4.56%, respec-

tively). Furthermore, viewing from the less-impaired side

resulted in longer durations of concentric activity in the less-

impaired limb than viewing from the impaired side, irre-

spective of the visual condition (mean difference = 3.49%).

Table 4 Mean and SE values

of the eccentric and concentric

muscle activity, expressed as a

percentage of the total

movement, of the Biceps

Brachii Brevis (BBB) and the

Triceps Brachii Longus (TBL)

in the impaired and less-

impaired limb for theViewImp

(viewing the movement from

the impaired side of the body)

and ViewLessImp (viewing the

movement from the less-

impaired side of the body)

conditions

BBB (%muscle activity)

Eccentric Concentric

ViewImp ViewLessImp ViewImp ViewLessImp

Impaired limb

Mirror 34.2 ± 4.9 23.9 ± 6.5 26.6 ± 3.7 26.1 ± 4.2

Screen 30.2 ± 5.5 28.5 ± 7.2 25.7 ± 4.7 22.5 ± 3.6

Glass 28.0 ± 6.1 36.7 ± 6.3 25.1 ± 5.4 28.6 ± 4.1

Less-impaired limb

Mirror 12.5 ± 4.1 13.2 ± 4.5 16.4 ± 5.1 16.2 ± 4.5

Screen 12.2 ± 4.1 16.3 ± 4.3 17.4 ± 5.0 18.8 ± 4.6

Glass 15.1 ± 5.6 14.5 ± 3.7 16.2 ± 5.3 18.3 ± 5.2

TBL (%muscle activity)

Eccentric Concentric

ViewImp ViewLessImp ViewImp ViewLessImp

Impaired limb

Mirror 7.3 ± 2.8 11.6 ± 4.2 10.5 ± 3.7 9.9 ± 4.9

Screen 9.1 ± 3.4 11.7 ± 4.0 11.8 ± 3.4 13.5 ± 5.2

Glass 10.8 ± 4.6 13.0 ± 4.8 12.7 ± 4.5 13.0 ± 4.7

Less-impaired limb

Mirror 3.4 ± 1.6 4.9 ± 2.3 1.7 ± 0.7 3.8 ± 1.4

Screen 5.2 ± 1.8 3.2 ± 1.2 4.3 ± 1.5 5.7 ± 2.0

Glass 2.2 ± 1.5 8.3 ± 2.6 1.8 ± 1.2 8.8 ± 3.0
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Fig. 2 Difference scores of the relative duration of eccentric activity

(in percentage) in the BBB muscle of the impaired (left side of the

figure) and the less-impaired limb (right side of the figure) for the

mirror (black bars), screen (white bars) and glass (dashed bars)

condition. A positive difference score means that the eccentric

activity is higher in the ViewLessImp compared with the ViewImp

condition, and a negative difference score means that the eccentric

activity is lower in the ViewLessImp condition compared with the

ViewImp condition
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For the eccentric activity of the TBL, no effect of Limb,

Visual condition or Viewing side was found.

Discussion

This study investigated the effect of mirror visual feedback

from the impaired arm (‘compromised’) compared with the

mirror visual feedback from the less-impaired arm

(‘uncompromised’) on the interlimb coupling and the neu-

romuscular control during a bimanual coordination task in

children with SHCP. In doing so, we wanted to determine

whether previously found effects of the mirror box illusion

in these children (Feltham et al. 2010a, c) were the result of

the mirror and the related perception of visual symmetry per

se or of the illusion that the impaired arm appears to move

with less jerk and in synchrony with the less-impaired arm.

While the former would mean that ‘compromised’ as well

as ‘uncompromised’ mirror visual feedback can trigger an

improvement of the bimanual coupling and/or the neuro-

muscular activation, the latter can only be elicited by

‘uncompromised’ mirror visual feedback.

The CRP, which gives an indication of the nature of the

bimanual coupling during this task, i.e., the synchronicity

of the two limbs, indicates that the less-impaired arm was

‘leading’ the impaired arm across all conditions. This is in

congruence with earlier studies on bimanual coordination

in typically developing children (Pellegrini et al. 2004) and

adults (e.g. Amazeen et al. 1997; Stucchi and Viviani 1993;

Treffner and Turvey 1995). The asynchrony of approxi-

mately 10� falls within the higher range of previously

reported values in children with SHCP (Feltham et al.

2010a: -0.3�; Volman et al. 2002: -5� to 9�), but is still

acceptable given the unilateral impairment of the children.

Note that the phase lag between the two hands may indicate

that the movement of the lagging impaired hand may be

guided by visual feedback from the less-impaired hand.

However, the CRP did not change as a function of visual

condition or viewing side, which suggests that the biman-

ual coupling is clearly not solely governed by a visual

feedback mechanism and that processes relying on central

representations of action do contribute to the coupling as

well (addressed below).

It thus seems that mirror visual feedback did not influ-

ence the interlimb coupling, and there was no difference

between ‘compromised’ and ‘uncompromised’ mirror

visual feedback. Interestingly, however, the mirror did

have an effect on the neuromuscular activity required to

perform the task. This suggests that, although the move-

ment performance itself remained the same, the muscular

effort responsible for this movement did change in

response to the available visual information. Our results

demonstrate that mirror visual feedback led to a reduction

in eccentric BBB activity in the impaired arm compared

with the glass condition, and importantly, this effect was

exclusive to ‘uncompromised’ mirror visual feedback, i.e.,

viewing the less-impaired arm and its mirror reflection

(ViewLessImp). In the impaired arm, mirror visual feed-

back of the less-impaired arm appears to have the capacity

to improve the neuromuscular efficiency by reducing the

disproportionally high eccentric activity. The finding that

‘compromised’ mirror visual feedback did not elicit a

similar effect shows that the mirror effect in children with

SHCP is not just a response to the visual symmetry, but is

also dependent on the type of visual information generated

by the mirror. The latter nuances the findings of Franz and

Packman (2004) who found that mirror visual feedback

enhanced the bimanual coupling (i.e. similarity in range of

motion of the two hands) in typical adults, irrespective of

viewing mirror feedback from the left or the right hand.

However, unlike in typical adults, in children with SHCP,

the nature of mirror visual feedback from the left and right

hand is qualitatively different, which might explain the

apparent discrepancy between the two studies.

The finding from the present study that mirror visual

feedback of the impaired arm has the opposite effect of

‘uncompromised’ apparent symmetrical motion in children

with SCHP qualifies the findings of Feltham et al. (2010c)

who only looked at the effect of mirror feedback from the

less-impaired arm. We demonstrated that the favourable

results (i.e. the reduction in eccentric BBB activity in the

impaired arm) are not just due to the visual perception of

apparent bimanual symmetry per se. Instead, children with

SHCP appear to benefit specifically of mirror visual feed-

back from the less-impaired arm, which seems to be in line

with the notion of Ramachandran (2005). Ramachandran

hypothesised that mirror visual feedback may assist the

central control of movement in people with unilateral

motor problems by restoring the congruence between dis-

rupted sensory information and the central motor command

signals. According to this view, the information provided

by the mirror could assist in the neuromuscular control of

the movement by replacing conflicting visual feedback of

the impaired limb with feedback that is in accordance with

the intended movement (i.e. ‘uncompromised’ visual

feedback of the less-impaired limb). By showing that the

mirror effect on motor performance in children with SHCP

is specifically related to mirror visual feedback of the less-

impaired arm, the current study provides a valuable con-

tribution to the discussion about the underlying mecha-

nisms of this effect. Nevertheless, the actual neural

underpinnings will only be revealed using advanced neuro-

imaging techniques. In addition, it may be surprising that a

short exposure to the mirror already induces these effects

on the neuromuscular activity and future studies should

examine the impact of longer exercise or interventions with
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mirror feedback. Related to this issue is the fact that no

(major) effect of the mirror was observed on the bimanual

coupling or neuromuscular measures such as the intensity

of mean neuromuscular activity, the eccentric activity in

the TBL muscle and concentric activity in the BBB muscle.

Furthermore, we cannot exclude the limited number of

trials (three per condition) and the large age range of the

participants to affect the precision and generalisation of the

results. The precision of the measurement might be

enhanced with larger number of trials, but in the current

study, it was high enough to reveal significant differences

between the conditions. One can expect that a larger

number of trials will enhance the actual results but one

must also consider that the limited attention span and

fatigability of the participants with cerebral palsy might

interfere. Considering that the present study used a repe-

ated measures design each participant was his own control

and the variability that the large age range may have

introduced was nevertheless small enough to show a sig-

nificant effect of the experimental conditions. While we did

not anticipate an age effect, we cannot exclude it and

suggest that this should be further investigated.

In conclusion, this study provided more insight into the

effects of mirror visual feedback in children with SHCP.

We showed that the effects found by Feltham et al. (2010a,

c) on neuromuscular activity and bimanual coordination

are likely not caused by the perception of two symmetri-

cally moving limbs per se. Instead, for an increase in

neuromuscular efficiency of bimanual movement (i.e. a

decrease in excessive eccentric activity in the arm flexors),

children with SHCP require mirror visual feedback of the

(‘unaffected’) less-impaired limb.
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Visual feedback of the non-moving limb improves active joint-position
sense of the impaired limb in Spastic Hemiparetic Cerebral Palsy
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1. Introduction

Cerebral palsy (CP) is, with an incidence of 2–2.5 per 1000 living births, one of the most common childhood disorders (Lin,
2003). The condition is caused by damage to the brain and/or pyramidal tract and depending on the location of the lesion and
the clinical outcome of the damage, different forms of CP are distinguished. In Spastic Hemiparetic Cerebral Palsy (SHCP) the
damage is limited to one side of the brain leading to impaired control of muscle tone and spasticity in the lower and upper
limbs on the contra-lesional side of the body (Albright, 1996). Although SHCP is classed as a unilateral condition, recent
studies have highlighted that children with SHCP have motor difficulties beyond their unilateral deficits. The spasticity of the
impaired limb limits the performance of bimanual tasks and evidence suggests mild motor impairments in the unaffected
limb as well (Steenbergen & Meulenbroek, 2006).
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A B S T R A C T

This study examined the active joint-position sense in children with Spastic Hemiparetic

Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual

feedback, of the non-moving limb, on the joint-position sense. Participants were asked to

match the position of one upper limb with that of the contralateral limb. The task was

performed in three visual conditions: without visual feedback (no vision); with visual

feedback of the non-moving limb (screen); and with visual feedback of the non-moving

limb and its mirror reflection (mirror). In addition to the proprioceptive measure, a

functional test [Quality of Upper Extremity Skills Test (QUEST)] was performed and the

amount of spasticity was determined in order to examine their relation with

proprioceptive ability. The accuracy of matching was significantly influenced by the

distance that had to be covered by the matching limb; a larger distance resulted in a lower

matching accuracy. Moreover it was demonstrated that static (mirror) visual feedback

improved the matching accuracy. A clear relation between functionality, as measured by

the QUEST, and active joint-position sense was not found. This might be explained by the

availability of visual information during the performance of the QUEST. It is concluded that

static visual feedback improves matching accuracy in children with SHCP and that the

initial distance between the limbs is an influential factor which has to be taken into

account when measuring joint-position sense.
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Impairments as spasticity are often accompanied by disturbances in proprioception (Cooper, Majnemer, Rosenblatt, &
Birnbaum, 1995; Odding, Roebroeck, & Stam, 2006). Proprioception is a complex somatosensory modality that consists of
two components: kinaesthesia and joint-position sense. Kinaesthesia is defined as the sense of limb movement whereas
joint-position sense is referred to as static limb position (Goble, Lewis, Hurvitz, & Brown, 2005). Proprioception plays a major
role in performing and controlling movements including updating motor plans based on e.g. monitoring movement
execution through comparison of predicted and actual movement outcomes (Goble, 2006). A number of studies have
demonstrated that the proprioceptive ability of children with SHCP is impaired (Goble, Hurvitz, & Brown, 2009; Wann, 1991;
Wingert, Burton, Sinclair, Brunstrom, & Damiano, 2009), and there are indications that the impaired limb has a poorer
proprioception than the less-impaired limb (Goble, Hurvitz, et al., 2009; Wingert et al., 2009). Furthermore, in addition to the
differences in proprioception between the limbs, Goble, Hurvitz, et al. (2009) also found a difference in proprioceptively
guided matching tasks between individuals with a left brain lesion and individuals with a right brain lesion. In individuals
with a right hemispheric lesion (RHL) the proprioceptive ability was more impaired than in individuals with a left
hemispheric lesion (LHL). Goble’s findings can be supported by neuroimaging studies which showed that the right
hemisphere is more activated during the performance of a proprioceptive task (Naito et al., 2005).

Although proprioception is impaired in individuals with SHCP, they are still able to sustain a certain level of movement
accuracy, implying that visual information is used to attain this movement accuracy (van Roon, Steenbergen, &
Meulenbroek, 2005). Indeed, studies by Wingert et al. (2009) and Wann (1991) on individuals with CP demonstrated that
vision of the moving upper limb improved the performance on the joint-position task compared to a situation in which no
visual feedback of the moving upper limb was available. However, Wann (1991) also showed that visual information of
the non-moving hand did not improve movement accuracy in a joint-position sense task for individuals with bilateral CP.
According to Wann (1991) this suggests that individuals with bilateral CP have difficulties encoding the visual and
proprioceptive information into a common reference frame. However, the possibility that visual feedback of the non-
moving limb might afford a reference frame for the proprioceptive information of the moving limb has not been
investigated in individuals with hemiplegia. One of the explanations for the problems in encoding proprioceptive and
visual information that Wann (1991) presents is that the cortical damage may have destroyed the neural structures that
are necessary for egocentric mapping. This might indeed be the case for diplegic patients, but children with hemiplegia
have a lesion in one hemisphere. It therefore might be possible that patients with hemiplegia are able to encode
proprioceptive and visual information into a common reference frame. Therefore, the present study will examine the
effect of visual feedback of the non-moving limb on the contralateral matching performance of the moving limb in this
population. Given the asymmetry in proprioception in hemiplegia but also given the fact that only one hemisphere is
damaged, it can be expected that the visual and proprioceptive information of the non-moving (less-impaired) upper
limb might be integrated into one egocentric reference frame for the moving (impaired) upper limb (Jeannerod, 1986;
von Hofsten & Rosblad, 1988; Wann, 1991), facilitating the contralateral matching in comparison to a situation in which
no visual feedback is available.

In addition to the effect of visual information of the non-moving limb, the current study investigates the effect of mirror
visual feedback of the non-moving limb on the movement accuracy during a contralateral matching task in children with
SHCP. Mirror visual feedback has been demonstrated to have a positive effect on the bimanual coordination and
neuromuscular activity in children with SHCP (Feltham, Ledebt, Bennett, et al., 2010; Feltham, Ledebt, Deconinck, &
Savelsbergh, 2010). However, Holmes and Spence (2005) showed that manipulating the position of the moving hand (behind
the mirror) influenced unimanual reaching movements in TD adults negatively. They suggested that this was the result of an
integration of visual and proprioceptive information of the non-moving limb which caused a bias in the felt initial position of
the moving hand. It can thus be hypothesized that providing mirror visual of the non-moving (less-impaired) upper limb
(thus seeing two non-moving upper limbs), would deteriorate the contralateral matching performance of the impaired
upper limb in children with SHCP. In the forthcoming, visual feedback of the non-moving limb will be referred to as static
visual feedback and visual feedback of the moving limb will be referred to as dynamic visual feedback. Mirror visual feedback
of the non-moving limb will be referred to as static mirror visual feedback.

Literature on the relationship between impaired proprioception and other impairments in CP as well as the relationship
with the activity level is scarce. The relationship with spasticity was assessed in the study of Chrysagis, Skordilis, Koutsouki,
and Evans (2007) who showed that an increase in spasticity was related to a decreased performance on an active joint-
position sense task. Accordingly, Tardieu, Tardieu, Lespargot, Roby, and Bret (1984) stated that spasticity causes disturbances
in the muscle spindle functioning leading to inappropriate kinaesthetic feedback (Chrysagis et al., 2007). However, the
relationship between arm/hand functionality and joint-position sense has, to the best of our knowledge, not been examined
yet. In order to get more insight into the influence of spasticity on joint-position sense and to clarify the impact of an
impaired joint-position sense on daily functioning, the current study will investigate these two relationships.

In general, the present study aimed to get more insight into the proprioceptive impairments of the impaired and the less-
impaired upper limb in children with SHCP. We assessed the role of static visual feedback and static mirror visual feedback
on joint-position sense of the upper limbs using three different visual conditions: a no vision condition without any visual
feedback of both limbs, a screen condition in which only the non-moving reference limb was visible (static visual feedback)
and a mirror condition in which the non-moving reference limb was visible and its reflection in the mirror (static mirror
visual feedback). It was hypothesized that static visual feedback of the less-impaired limb would improve the movement
accuracy of the impaired limb compared to the situation without visual feedback. In addition, it was expected that static
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mirror visual feedback would create a conflict situation between the visual and proprioceptive feedback which would result
in a deteriorated performance.

Furthermore, the current study aimed to examine the relationship between one of the main impairments in CP, spasticity,
and the impaired proprioception in CP, and between the impaired proprioception and the arm/hand functionality. It was
hypothesized that a higher degree of spasticity would be related to an impaired joint-position sense which would in turn be
linked to a deteriorated arm/hand functionality. Finally, differences in joint-position sense impairment between left and
right hemispheric brain lesions were examined. Following the findings of Goble, Hurvitz, et al. (2009) it was hypothesized
that individuals with a right hemispheric lesion would have a more deteriorated joint-position sense than individuals with a
left hemispheric lesion.

2. Methods

2.1. Participants

14 children with SHCP participated in the study (age 12.6� 1.95). 6 children had a right hemispheric lesion and 8 children
had a left hemispheric lesion. Individual participant characteristics can be found in Table 1. None of the participants had any
neuromuscular disorder other than SHCP, pain in either of the upper limbs, visual neglect, visual impairments not corrected to
normal, mental retardation, or received a treatment with Botulinum toxin in either of the arms in the past six months preceding
the measurement. The children with SHCP were recruited through the Dutch society for children with a physical handicap and
their parents (BOSK). Participants’ parents provided written informed consent prior to testing. All procedures were approved by
the institutional research ethics committee and in accordance with the Declaration of Helsinki.

2.2. Measures of functionality

Before the actual start of the experiment different measures were performed to examine the participants’ body functions.
Additional information about the child’s disorder was obtained from a general questionnaire, filled in by the parents, with
questions about e.g. the cause and severity of the disorder and limitations the child faces in daily life. In addition, the parents
were asked to fill in The Functional Independence Measure (WeeFIM). The WeeFIM measures the functional abilities in
activities of daily life like the ability to feed, dress and bathe (Ottenbacher, Hsu, Granger, & Fiedler, 1996). For the current
study only the WeeFIM motor items were used.

Grip strength was determined for each upper limb, using a hand-held dynamometer measuring the average of three
maximum voluntary contractions in kilograms (JAMAR, digital hand dynamometer, Clifton, USA).

The Quality of Upper Extremity Skills Test (QUEST) (DeMatteo et al., 1992) was performed to qualify the functional ability of
the arms and hands of each participant. This test consists of 7 domains, however for this study only the parts about ‘‘Dissociated
movements’’ (part A) and ‘‘Grasps’’ (part B) were conducted since these two domains were specifically related to the task the
children had to perform during the measurement. The QUEST is validated for children between 18 months and 8 years of age
(DeMatteo et al., 1992). However, although the mean age of our population is 12.6 years it was still chosen to use the QUEST since
this test ismoreextensivethanother tests thatmeasure thefunctioningofthe upperlimbs.Basedontheitemsof thetwoincluded
parts of the QUEST and the related scoring criteria we calculated separate scores for the impaired and the less-impaired limb. A
higher score on this selection of QUEST items represents a better functionality. Table 2 presents the individual QUEST scores.

In addition to the QUEST, the Manual Ability Classification System (MACS) level was determined. The MACS describes
how children use their hands during object handling and their need for assistance to perform manual skills in everyday life

Table 1

Subject characteristics.

Participant Age

(years)

Sex Side brain

lesion

Grip strength

impaired/less-impaired

limb (kg)

TSelbow(flex-ext)/

TSwrist(flex-ext)
a

WeeFIM/MACS Aetiology

1 13.4 M Right 11.7/52.3 3-1/2-2 78/3 O2 shortage during birth

2 10.5 M Right 4.0/44.0 3-1/3-0 88/3 Thrombosis

3 10.8 M Right 12.3/30.0 2-1/1-0 91/2 Unknown

4 14.5 M Right 7.3/52.3 2-2/2-0 62/3 Schizen cephaly

5 13.6 M Right 14.7/52.0 2-2/0-0 91/2 Cerebral infraction

6 10.8 F Right 4.7/22.0 2-1/0-0 52/3 Cerebral haemorrhage

7 12.1 F Left 2.0/63.7 2-0/2-1 91/3 Thalamus infarction at birth

8 15.5 M Left 60.3/105.7 2-0/0-0 76/1 Unknown

9 9.3 M Left 23.3/49.7 2-0/0-0 91/1 Cerebral infarction

10 13.1 F Left 25.0/69.7 2-2/0-0 91/2 Cerebral infarction

11 14.4 M Left 0.0/104.0 2-0/0-0 81/2 Cerebral haemorrhage

12 12.5 M Left 0.0/62.0 2-2/2-0 59/3 Cerebral infarction

13 14.3 M Left 13.6/101.3 2-2/1-0 71/3 Unknown

14 10.6 M Left 24.7/69.0 0-1/0-0 87/2 O2 shortage during birth
a Tardieu score (TS) is only of the impaired limb. (flex/ext) are separate scores for flexion and extension.
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(Carnahan, Arner, & Hagglund, 2007). The severity of performance limitation and the degree of required assistance increases
for each MACS level from I to V. The MACS levels and their specifications are depicted in Table 3. The performances of the
QUEST were recorded with a digital video camera (JVC Hard disk Camcorder, HDD F1.2, GZMG40E) in order to score the
performances afterwards. Two experimenters analyzed the video tapes independently. The inter-rater reliability was high
(r = 0.92, p< 0.001).

The degree of spasticity was determined by a qualified physiotherapist using the Tardieu scale. The assessment involved
passive movement of the arm in the sagittal plane, first as slow as possible and second as fast as possible, while the child was
seated on a chair with the knees bend in 908. The physiotherapist quantified the spasticity of the arm muscles (biceps brachii
brevis, triceps brachii longus, flexors and extensors of the wrist) during the fast velocity stretch according to the criteria of
muscle reaction for grades 0–3. The definition of each grade is depicted in Table 4. The Tardieu score averaged for the biceps
and the triceps was further used for analysis.

2.3. Procedures

The child was seated on a height adjustable chair at a height adjustable table with the knees 908 flexed. Joint-position
sense was assessed using a custom made device consisting of two handles, each on a separate track fixed to a horizontal
panel. The tracks were 20 cm apart, parallel to each other, and perpendicular to the medio-lateral axis of the trunk. The
handles could be moved within a range of 56 cm. The children were positioned such that the centre of the body was located
in between the two tracks, and with the beginning of the track at 15 cm from the upper body. The position of the handles was
recorded outside the wooden device using one Optotrak unit with three infrared cameras (3020 Optotrak, Northern Digital
Inc., Waterloo, Canada). The experimental setup is depicted in Fig. 1.

Before the start of the measurement, the maximum reaching distance of the impaired arm was determined (MRD) in
order to scale the different matching positions across subjects. MRD was the distance from the start of the track to the
position of the handles when the elbows were extended as far as possible without bending the trunk forward. If a participant
was unable to grip the handle due to physical impairment, the experimenter placed the hand on top of the handle. All
participants were able to hold the handles during the whole experiment.

Table 2

QUEST scores; total score and scores of part A (dissociated movements) and part B (grasps) for each limb.

Participant Total score Part A impaired limb Part A less-impaired limb Part B impaired limb Part B less-impaired limb

1 72.2 60.0 99.2 86.7 100

2 51.1 57.0 100 50.0 80.0

3 82.5 86.6 99.1 81.7 88.3

4 65.3 72.5 100 60.0 80.0

5 68.5 66.5 100 73.3 90.0

6 52.6 64.8 99.2 48.3 85.0

7 77.4 71.5 100 85.0 100

8 96.4 98.4 100 96.7 98.3

9 95.9 99.2 100 93.3 93.3

10 81.7 78.1 100 86.7 100

11 55.2 54.8 100 60.0 100

12 51.4 54.7 100 55.0 93.3

13 63.0 70.7 98.4 65.0 95.0

14 85.1 77.3 98.4 95.0 95.0

Table 3

Description for each MACS level.

MACS level Description

I Handles objects easily and successfully.

II Handles most objects but with somewhat reduced quality or speed of achievement.

III Handles objects with difficulty; needs help to prepare or modify activities.

IV Handles a limited selection of easily managed objects in adapted situations.

V Does not handle objects and has severely limited ability to perform even simple actions.

Table 4

Tardieu scale scoring the quality of muscle reaction to stretch.

0 No catch, no resistance.

1 Light resistance without clear catch.

2 Clear catch followed by a release.

3 Clear catch, no release.
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The active joint-position sense task required participants to match the position of one limb (reference limb), fixed at 25%,
50%, or 75% of the MRD, by actively moving the other limb (matching limb). The task was performed with either the less-
impaired limb or the impaired limb and the matching started at the MRD (distal) or at the beginning of the track (proximal).
The matching task was performed in three different visual conditions: a no vision condition (both hands were not visible), a
screen condition (only the reference hand was visible), and a mirror condition (only the reference hand was visible and its
reflection in the mirror). The position of the reference limb (3), the matching limb (2), the start position of the matching limb
(2), and the visual conditions (3) resulted in 36 trials. The conditions were randomly presented to the participant but all trials
with the same matching limb were kept together even as the trials within one visual condition. Prior to data collection 3
practice trials were conducted to familiarize the participant with the test setup. In order to keep the children motivated they
were told that the better their performance the more points they could get. At the end of the experiment they could trade
their points for a small gift.

2.4. Data analysis

A custom made Matlab program (The Mathworks, Inc.) was used to determine the absolute difference (error) between the
position of the reference limb and the position of the matching limb at the end of the movement. The end of the movement
was indicated by visual inspection (see Fig. 2).

Goble, Coxon, Wenderoth, Van Impe, and Swinnen (2009) stated that several studies that measured proprioceptive acuity
found larger errors for the matching of targets farther from the body in contrast to targets closer to the body. However, in
these studies the starting position was the same for all trials and hence it can be argued that the distance that has to be
covered by the matching limb is the influencing factor instead of the position relative to the body. This idea is supported by
Smorenburg, Ledebt, Deconinck, and Savelsbergh (submitted for publication) who found larger errors when the distance
covered by the matching limb was larger. Therefore the current study combined the two starting positions (distal, proximal)

[()TD$FIG]

Fig. 1. Experimental setup during the no vision (left panel), screen (middle panel), and mirror (right panel) condition.

[()TD$FIG]

Fig. 2. Example of a movement pattern. The arrow indicates the distance between the limbs at the end of the movement.
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of the matching limb and the three positions of the reference limb (25%, 50%, 75% of the MRD) into three distances that had to
be covered by the matching limb (small, medium, large).

2.5. Statistical analysis

A repeated measurement ANOVA was performed with Distance (small, medium, large), Matching limb (impaired, less-
impaired) and Visual condition (mirror, screen, no vision) as within factors. Lesion side [left hemispheric lesion (LHL), right
hemispheric lesion (RHL)] was taken as between factor. If the sphericity assumption was violated, Greenhouse Geisser
adjustments were made. Post hoc comparisons for the interaction effects were performed with the Fishers’ LSD test.

2.6. Correlations

Correlations were calculated using the Pearson’s correlation coefficient (r). For the correlations with the Tardieu scale,
Spearman’s correlation coefficient was used (rs).

3. Results

3.1. Matching accuracy

The accuracy of active matching was significantly influenced by Distance (F(1.2,14.1) = 8.71, p = 0.008), showing a general
trend that the absolute error became gradually larger with larger matching distances. Other main effects were absent, but all
factors were involved in second order interactions (Hand�Distance: F(2,24) = 3.99, p = 0.032; Visual condition�Distance:[()TD$FIG]

Fig. 3. Hand by Distance by Visual condition (no vision, screen, mirror) interaction.
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F(4,48) = 3.81, p = 0.009) and a third order interaction (Hand�Distance�Visual condition: F(4,48) = 3.26, p = 0.019) (see Fig. 3).
Fig. 3 reveals similar trends for all visual conditions in the less-impaired limb and the screen and mirror conditions in the
impaired limb. In accordance with the main Distance-effect smaller errors were made in the small distance condition, except
for matching with the less-impaired limb in the mirror condition where no significant differences between distances were
found. The differences between the two limbs and between the visual conditions were related to the deviant profile of the no
vision condition for the impaired hand. Matching large distances with the impaired limb without visual information resulted
in significantly larger errors than in the mirror or screen condition. In addition, the impaired limb showed a similar or larger
error as the less-impaired limb with exception of the medium matching distance in the no vision condition. Matching with
the impaired limb in this condition (medium, no vision) yielded larger errors than for the less-impaired limb, whereas the
latter was less accurate than the impaired limb in the large distance, no vision condition. Finally, no differences in accuracy of
active matching were found between LHL and RHL.

3.2. Functionality (QUEST) and spasticity

3.2.1. QUEST vs. active joint-position sense

A significant correlation was revealed between the QUEST part A (dissociated movements) of the impaired limb and the
error on the active joint-position sense task of the impaired limb in the screen condition for the large distance (r =�0.70,
p = 0.006).

3.2.2. QUEST for left- and right hemispheric lesions

The QUEST score part A (dissociated movements) and the QUEST score part B (grasps) of the impaired upper limb were not
significantly different between the LHL and the RHL group. Moreover, for the less-impaired limb no difference between the
two groups was revealed for the QUEST score part A, but for the QUEST score part B the RHL group had a higher score than the
LHL group (mean difference = 9.65, p = 0.006).

3.2.3. Spasticity vs. active joint-position sense

A significant correlation between the mean Tardieu score of the biceps and the triceps and the absolute error on the active
task was found. A higher Tardieu score was related to a smaller error of the impaired limb in the no vision condition for the
large distance (rs =�0.54, p = 0.047). This relation is depicted in Fig. 4.

4. Discussion

The current study aimed to get more insight into the integrity of proprioception in the impaired and less-impaired limb in
children with SHCP. In an active joint-position sense task, different visual conditions were used in order to investigate the
effect of static visual feedback and static mirror visual feedback on joint-position sense. In addition, the relation between
joint-position sense and spasticity and joint-position sense and arm/hand functionality was investigated. Finally, following
the findings of Goble, Hurvitz, et al. (2009) we examined differences in joint-position sense between individuals with a right
hemispheric lesion and individuals with a left hemispheric lesion.

A general finding in this study was that the position of the reference limb could be matched with greater accuracy when
the distance to be covered was smaller, irrespective of which limb was used to match and irrespective of the initial position
of the reference limb (in the proximity of the body or further away). This finding is in agreement with previous results in
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Fig. 4. Correlation between the Tardieu score averaged for the biceps and triceps and the error on the active joint-position sense task of the impaired limb in

the no vision condition for the large distance.
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typically developing children (Goble & Brown, 2008; Goble, Lewis, & Brown, 2006) and children with SHCP (Smorenburg
et al., submitted for publication).

A physiological phenomenon that may explain the larger absolute errors for longer reaching or matching distances is the
signal-dependent noise on a motor command. According to this principle the variance of the noise on neural control signal
increases with the size of the signal (Harris & Wolpert, 1998). This would suggest that for larger distances, requiring the
generation of a larger command signal, the variance of noise becomes larger, which will hamper the accurate matching of the
upper limbs. In addition to this physiological explanation, it is assumed that factors associated with daily functioning may
play a role in the distance-effect, especially when considering the matching task used in the current study. Goble et al. (2005)
suggested that the improvements in the acuity of joint-position sense when comparing children and adolescents are partly
the result of experience-driven processes. Our daily movement repertoire is diverse, but with respect to grasping and
reaching movements the range of motion is typically kept relatively small, which may lead to a distance-specific
specialization of proprioception. In this respect it is interesting to note that in the current experiment the error score was
highest when matching large distances with the impaired arm. Due to the spasticity, which tends to shorten the muscles
leading to partial immobility of this arm (Love et al., 2001), children with SHCP might avoid using the arm for tasks involving
larger ranges of motion. This substantial in absolute error increase for the large distance condition was absent when
matching with the less-impaired arm. Although a better acuity of this less-impaired arm can be expected, this finding is still
remarkable because the contralateral matching task involves the utilization of afferent proprioceptive information from
both the reference (impaired) and the matching (less-impaired) arm.

Comparison of the error score across visual conditions indicates that static visual feedback of the reference limb has the
capacity to improve joint-position sense, in particular when matching large distances with the impaired arm. This finding is
in contrast to those of Wann (1991) who found that a group of children with mixed diagnoses of CP did not benefit from
visual information of the reference limb and target in a similar matching task. Wann (1991) showed that the performance of
the children with CP for tasks requiring crossmodal matching (between sensory modalities, i.e. vision and proprioception),
was lower than in all other conditions where intramodal matching was possible (within one sensory modality). It was
concluded that CP was associated with a reduced ability to generate an egocentric frame of reference needed for accurate
mapping between sensory modalities. It is important to note that the children participating in Wann’s study all suffered
bilateral damage to the brain (diplegia and quadriplegia). Our results then imply that in children with unilateral damage to
the brain, crossmodal mapping is not disturbed to a similar extent as in diplegic and quadriplegic patients, and still allows
the encoding of sensory signals into a common egocentric frame of reference. The beneficial effect of vision in a situation
where spasticity compromises matching acuity most (large distance matching with impaired hand), suggests that joint-
position sense in children with SHCP seems to be affected by a distortion of the physiological function of the somatosensory
organs, rather than by a deficit in higher sensory motor function. Our finding that static visual feedback of the less-impaired
limb improves the matching accuracy might potentially be interesting for therapeutic interventions in order to improve the
joint-position sense of the impaired limb. If training with static visual feedback of the less-impaired limb can improve the
joint-position sense of the impaired limb, this might have implications for the daily functioning of the children. The focus
nowadays is primarily on improving motor behaviour by practicing, but since proprioception is an important factor in
movement control, this might be another angle of approach in order to improve daily functioning in children with SHCP.

Despite the beneficial effects of static visual feedback, no detrimental effects of static mirror visual feedback were found.
Based on the findings of Holmes and Spence (2005) it was expected that static mirror visual feedback would deteriorate the
matching accuracy, especially of the impaired limb. However, Holmes and Spence (2005) showed also that a longer exposure
time to the mirror resulted in larger errors. The short exposure time in the current study might explain why we did not find
an effect of the mirror in the active joint-position sense task. Moreover, in general, proprioceptive information is more
reliable under active than under passive conditions. It can be expected that perceived hand position will be less affected by
(discrepant) mirror visual feedback in an active compared to a passive condition (Chokron, Colliot, Atzeni, Bartolomeo, &
Ohlmann, 2004; Holmes & Spence, 2005; Van Beers, Wolpert, & Haggard, 2002). It is therefore suggested to examine the
differences in mirror effect between an active and a passive joint-position sense task.

Based on the study of Goble, Hurvitz, et al. (2009) we expected that differences in joint-position sense between the upper
limbs and the effects of visual information would be different for individuals with a left hemispheric lesion and individuals
with a right hemispheric lesion, but in the present study no effect of lesion side was found. Differences in task (ipsilateral
remembered vs. contralateral matching) between our study and the study of Goble, Hurvitz, et al. (2009) might have caused
these discrepant findings. Moreover, in both studies no specific information about the location of the brain lesion is present
which makes it difficult to draw clear conclusions. However, the current study examined the functional level of the
participants by means of the QUEST, which might shed a light on the severity of the condition. It was shown that participants
with LHL and participants with RHL had the same mean QUEST scores for the impaired side of the body. Although both
groups in the study of Goble, Hurvitz, et al. (2009) had similar spasticity scores, no information about the functional level was
available. Without this information it is impossible to determine whether differences in joint-position sense between
individuals with LHL and RHL are actually caused by the side of the lesion or by other factors related to the severity of the
condition.

Finally, we looked at the relation between spasticity and joint-position sense and between arm/hand functionality and
joint-position sense. One significant correlation between spasticity and joint-position sense was found. However, a close
look at the significant correlation shows that seven individuals with a mean Tardieu score of 2 had a relative small error. The
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other seven participants showed a more scattered distribution. Hence it can be argued that this is not a clear-cut relationship.
It is possible that the participants adapted their movement velocity in order to minimize the effect of their spasticity. Since
the Tardieu scale is determined at a (fast) speed by the physiotherapist, it is plausible that this speed does not match with the
movement speed during the active task. The current findings are in contrast with the findings of Chrysagis et al. (2007) who
found that a higher degree of spasticity was related to a more deteriorated joint-position sense. However, Chrysagis et al.
(2007) used the Modified Ashworth Scale (MAS) to determine the degree of spasticity whereas we used the Tardieu scale.
Although both scales are frequently used as clinical measure, the inter-rater reliability and test–retest reliability are better
for the Tardieu than for the MAS (Fosang, Galea, McCoy, Reddihough, & Story, 2003; Mehrholtz et al., 2005). Nevertheless, the
question remains, irrespective of the scale used, whether such clinical measures are suitable to use in studies like the current
study where the participants were free to move at their own pace. We therefore suggest that the relationship between
proprioception measured with self-paced movement and the level of spasticity (measured with the Tardieu or the MAS)
should take into account both the velocity of the self induced movement and the velocity of the passive movement used to
evaluate spasticity.

Correlations between the arm/hand functionality and joint-position sense revealed that a higher QUEST score was related
to a higher accuracy on the active joint-position sense task. However, this was only found for the QUEST score part A
(dissociated movements) in relation with the accuracy of the impaired limb in the screen condition for the large matching
distance. A possible explanation for the small amount of correlations between the QUEST and the active joint-position sense
might be that the QUEST is performed under full vision. The visual information could compensate for the deteriorated joint-
position sense whereas in the active joint-position sense task used in this study, no full compensation could take place since
no visual feedback of the moving limb was available. Therefore, the absence of a significant relationship might indicate that
on average the participants were able to compensate for the impaired proprioception with online visual control.

In sum, it can be concluded that static visual feedback of the less-impaired limb improved the active joint-position sense
of the impaired limb in children with SHCP. Static mirror visual feedback did not have a detrimental effect on active joint-
position sense. In addition, it was demonstrated that the distance that had to be covered by the matching limb had an
influence on the differences between the limbs and the differences between the visual conditions. In general the error
became smaller with a smaller matching distance. The relationship between matching accuracy and arm/hand functionality
and matching accuracy and spasticity remains indecisive.
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