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Abstract 

A series of rail image inspection algorithms have been developed for Tata Steels 

Scunthorpe rail production line. The following thesis describes the contributions 

made by the author in the design and application of these algorithms. A fully 

automated rail inspection system that has never been implemented before in any such 

company or setup has been developed. An industrial computer vision system (JLI) 

already exists for the image acquisition of rails during production at a rail 

manufacturing plant in Scunthorpe. An automated inspection system using the same 

JLI vision system has been developed for the detection of rail‟s surface defects 

during manufacturing process. This is to complement the human factor by 

developing a fully automated image processing based system to recognize the faults 

with an improved efficiency and to allow an exhaustive detection on the entire rail in 

production. 

 

A set of bespoke algorithms has been developed from a plethora of available image 

processing techniques to extract and identify components in an image of rail in order 

to detect abnormalities. This has been achieved through offline processing of the rail 

images using the blended use of different object recognition and image processing 

techniques, in particular, variation of standard image processing techniques. Several 

edge detection methods as well as adapted well known Artificial Neural Network 

and Principal Component Analysis techniques for fault detection on rail have been 

developed. A combination of customised existing image algorithms and newly 

developed algorithms have been put together to perform the efficient defect 

detection. The developed system is fast, reliable and efficient for detection of unique 

artefacts occurring on the rail surface during production followed by fault 

classification on the rail imaging system. Extensive testing shows that the defect 

detection techniques developed for automated rail inspection is capable of detecting 

more than 90% of the defects present in the available data set of rail images, which 

has more than 100,000 images under investigation. This demonstrates the efficiency 

and accuracy of the algorithms developed in this work. 
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1 Introduction 

 

 

1.1 An Introduction to Rail Inspection 

Trains have become a convenient and popular means of travel throughout the world. 

In Europe alone millions of people depend on trains. Hence, safer and more secure 

trains are an important need of today. The rail network has a lot of areas to work on; 

in order to provide secure and reliable services to its users. Hence, the quality control 

of rail‟s design, production and maintenance is of utmost importance and concern. A 

well manufactured rail means reduced incidents and increased endurance that 

immediately results in more satisfied customers.   

Due to the growing railway traffic, companies all over the world are interested in 

making an automatic inspection system to detect the defects on the surface of the 

rail, and also missing or damaged infrastructure of the railway tracks; such as 

missing or damaged sleeper fastenings. An automated system can increase the 

efficiency of the maintenance of railways and reduce the inspection time. Despite the 

fact that many advances has been made in rail engineering, production and 

inspection technology in the last few decades, threat to the safe operation of railways 

is still there due to its high usage and continuous increase in its service demands. 

Efforts are being made to check the rail manufacturing quality and understand the 

rail behaviour when submitted to the stress of hundreds of trains running on it. 

Serious research is being carried out to detect and treat the faults on the rail both 
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during production and on site; before they become a threat. Researchers around the 

world are concentrating on different aspects to ensure more reliable rails. 

 

An important part of the modernization of the rail industry is the capacity to use 

advanced techniques drawn from digital image processing to reduce the time and 

cost of both rail production and rail maintenance. In this context, rail inspection for 

defects on a production line has become a hurdle in the constantly evolving rail 

industry, as it still depends on humans who have not the capabilities for exhaustive, 

fast and accurate inspection. There is need of a tool for high speed assessment of rail 

quality and defect detection to complement the ageing methods. Such assessment 

would permit a complete inspection of the rails and increase the accuracy and the 

speed of defect detection. This thesis is a step towards the completion of such a tool. 

In this thesis, a progressive approach has been used to investigate the surface defects 

that occur during the rail production process and develop adequate solutions to detect 

them. At first, the rail inspection system as existing on the production line has been 

characterized. It has been decided to use the existing camera acquisition system 

named JLI vision system, and provide software to analyse rail images. An exhaustive 

list of defects to be detected has been provided by Tata Rail Technologies – the 

sponsor of the project. There are many defects that require special attention both in 

production and maintenance. However, the manufacturing defects, which occur 

during the production process of the rails, need to be detected before the rails can be 

put on site, are the main topic discussed in this research. A set of the most frequent 

defects that can occur on rail surface, during production, have been identified and 

studied. Estimation by the experts in the field suggest that more than 95% of all the 

defects that subsequently lead to substantial threats can be identified into four types. 

Rolled in scrap, tiger stripes, gouged lines on the top of rails and wire defects, are the 

main production line defects. Detailed descriptions with the examples of these four 

faults have been presented in chapter 5. This thesis discusses these defects and a 

designed algorithmic tool capable of finding them. 

 

A machine vision system in the production process could replace the visual 

assessment of the rail surface quality currently done by technicians. Currently, from 

images of rail rolling out of a manufacturing mill, only one out of five to ten rails are 

being checked by a human operator. Many defects might therefore be missed and a 
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vision system capable of efficiently inspecting all rails would be a great step toward 

safe and secure rails during the manufacturing process. A machine vision system in 

maintenance would augment manual visual inspection by providing alternatives to 

laborious and labour intensive inspection that sometimes fail due to human operator 

task monotony. The rail inspection would not only be more reliable, secure and 

consistent, but also it would prevent rail workers from being in a hazardous and 

potentially deadly environment. 

 

The role of the machine vision systems would be to process rail images in order to 

extract and classify anomalies both in production and maintenance. Rolling contact 

fatigue cracks, wheel burn marks, squats, corrugation, sleeper anomalies as well as 

missing sleeper fastenings and associated nuts and bolts; are the defects that need to 

be detected for track maintenance (Liu et al., 2010). Rolled in scrap, pin wire 

defects, line on the top and many other faults are the manufacturing defects 

(Mandriota et al., 2004). An automated machine vision system may have the 

potential to detect a comprehensive set of these types of defects. The algorithms used 

to detect these anomalies range from simple edge detection techniques to more 

complex feature extraction and automatic pattern recognition algorithms such as 

Artificial Neural Networks (ANNs) (Ruvo1 et al., 2008) and Template matching 

(Cole et al., 2002). Typical applications of such methods range from the recognition 

of missing rail objects in scenes of varying complexity to the detection of faults 

found on the rail surface and their classification (Sawadisavi  et al., 2008)(Edwards 

2009) (Resendiz et al., 2010). 

 

The software being developed is to emulate the expert inspector in discriminating 

faults occurring from rolling mill to those occurring naturally at other stages of a 

rail‟s production. Prior studies using standard edge filters and object detection 

techniques such as Canny have been applied to rails (Babenko 2009). However, all 

those techniques when applied to the image types presented in this report, results in 

considerable false alarms (that may be referred as over detection). Hence, new 

approaches needed to be considered and tailor fitted to each fault /defect.  

A comprehensive defect examination procedure is therefore necessary to facilitate 

the development of suitable algorithms. It has been done through the blended use of 

different object recognition and image processing techniques that include different 
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edge detectors, filters, thresholding, Artificial Neural Networks, Principal 

Component Analysis and other possible effective imaging techniques. The diversity 

of faults such as shapes, textures, positions, etc. has required the use of existing 

digital image processing techniques as well as the use of novel algorithms for the 

detection and classification to be a reliable process, i.e. with few false positives and 

negatives. Hence, the thesis involves efforts done to improve the existing algorithms 

and developing better and more efficient new methods, to detect rail surface defects 

caused during its production; fit for the particular purpose described here.  

 

1.2 Research Objectives. 

 

The basic aim of this research is to create fast, reliable and efficient methods of fault 

detection for the unique artefacts produced during the rail manufacturing. The main 

purpose is to reduce the need for manual visual inspection in favour of a reliable and 

faster machine vision system. Hence, objectives are to find a more effective and 

efficient ways for locating and classifying defects on the rail system. 

 

An automated rail inspection system is to be achieved for detection and classification 

of defects occurred on the rail surface while in production, from the images obtained 

from the mounted digital cameras (Stella et al., 2002). Another strand is that of 

defect detection and classification on rail structure on a production line using digital 

images available through a high speed line scan camera inspection system (R. T. C. 

limited 2006)(Deutschl et al., 2004).  

 

The basic objectives of the research can be summarised as follows: 

1. To test various existing object recognition techniques on rail images, 

comparing their performance, find drawbacks or problems with them, with 

a view to finding improved techniques.  

 

2. Explore existing fault detection and identification techniques and assess 

their efficiency when applied to rail images. 

 

3. To suggest new techniques or make effective changes in existing methods 

to produce better or more efficient results in both object recognition and 

fault detection/identification.  
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4. Ensure the new methods are robust for industrial use. 

 

5. Exploration of the range of application of the new methods. 

 

1.3 Structure of Thesis 

The thesis has been structured as follows. Chapter 2 introduces machine vision 

systems and rail inspection. Chapter 2, the literature survey covers the relevant major 

developments and advancements in the field of rail inspection. It discusses common 

rail inspection methods in use as reported in the literature, concentrating mainly on 

machine vision rail inspection methods and technology in use or under investigation.  

Chapter 3 is the introductory chapter for the vision system installed at the site and 

the main defects under investigation. Defect detection software that has been 

developed for this research, makes use of the existing vision system setup, called JLI 

vision system.  The first part of the chapter gives an insight into the JLI vision 

system, viewing camera locations, image saving formats, system analysis and 

limitations. The second part of this chapter describes rail defects, their important 

features, and the representative images.  

 

Chapter 4 describes, discusses and evaluates the general image processing 

techniques that have been initially explored, tested and used at various detection 

stages of rail inspection. This chapter has been sectioned into image pre-processing, 

processing and post-processing methods. All the tested techniques, resulting images 

produced, their evaluation and significance have been covered. 

 

Chapter 5 presents the description of developed detection algorithms of rail 

inspection. Individual defects, step by step detection methods and the results 

produced have been provided in detail in this chapter. A combination of customised 

existing image algorithms and newly developed algorithms have been put together to 

perform the defect detection. The developed algorithms are efficient and reliable. 

 

Chapter 6 explains an alternate rail inspection method to the ones discussed in 

chapter 5. The alternate method is based on using Principal Component Analysis 

(PCA). This chapter concentrates on explaining an attempt to design an adaptable 

and trainable single technique for classification of all defect types. This chapter 
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explains principal component analysis (PCA) features and their characteristics 

followed by classification of those features using neural networks.  

 

Chapter 7 presents results from the algorithms described in chapter 5 and chapter 6. 

This chapter analyses and evaluates the performance of developed detection 

methods. This chapter also discusses processing time, detection success rate and the 

comparison of various algorithms used. A fast, reliable and highly efficient 

automated rail inspection system for the detection of unique artefacts found on the 

rail during its manufacturing process has successfully been developed.  

 

Finally, chapter 8 summarizes and concludes the thesis and also highlights the future 

perspective of the current research done. The defects investigated in this research 

have never been discussed before and the devised solution has not been implemented 

before in any such company or organisation.  The automatic detection of these 

defects is the basic novelty of the work. 

 

1.4 Contribution to Knowledge 

Fully automated defect detection software that makes use of the existing setup, and 

which has never been implemented before in any such company or setup has been 

developed. This is the basic novelty of the work. The developed automated detection 

system performs the detection using a bespoke combination of existing algorithms 

that have been customized specially for the purpose, and new image processing 

based algorithms for detection of the defects. 

The objectives set at the initial stages of the research have been fully met. All the 

faults under investigation were thoroughly explored individually. Their feature 

characteristics were observed and studied in detail in order to detect them properly. 

Various object recognition techniques were tested on the rail images; their 

performance was compared and evaluated. Final detection techniques have been 

developed based on the evaluation results obtained from the previous techniques. It 

was quite a lengthy process and most of the existing techniques failed to give 

satisfactory results. Hence, new techniques have been developed using a bespoke 

combination of effectively altered existing techniques and several newly developed 

methods to perform accurate defect detection.  



Introduction 

 

7 

 

Finally, the new developed methods were tested on a huge data set to confirm if they 

are robust for industrial use. This was again a very lengthy procedure as there were 

four different defects and for each type, there were so many images available that 

needed to be tested by the software. Random testing of the software was also 

performed at the site by the Tata steel experts on time to time basis during the 

research to confirm the effective working of the software. 

Eventually fully automated system which is fast, reliable and efficient for detection 

of surface defects on the rail, that occur during production followed by fault 

classification on the rail imaging system have been developed. 
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2 Literature Review 

 

 

 

2.1 Introduction 

Significant research has been done to develop and improve automated applications to 

perform track inspection around the world. The growth in railway traffic has made 

railway maintenance operators interested in providing automatic methods of railway 

inspection; such as a Machine Vision inspection System (MVS). An MVS can be 

used to control both the quality of rail during production and on-site inspection of 

rail.  

Rail defects during manufacturing or production process can include surface defects 

such as rolled in scrap, wire and line defects, tiger stripes etc. Meanwhile, on-site rail 

inspection looks for features such as sleepers and the missing rail infrastructure as 

well as inspecting the rail head for surface bound defects. Currently the most of the 

rail inspection both installed and during production is manual, which can be both 

dangerous and time consuming.  Hence, an automated system can increase the 

efficiency of the maintenance of railways and reduce the inspection time. Machine 

vision for automated inspection using modern digital cameras together with high 

speed communications and very high processing power, extended the vision 

application to a commendable extent. 
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The research described here primarily is about the automated detection of defects 

mainly caused during the production. There is no specific literature available on rail 

inspection during the manufacturing process especially on the types of defects being 

considered in the current research. However, the machine vision methods explored 

and currently being used to detect on-site rail defects have been found to have 

significance for the detection of the defects being considered for the current research. 

Hence, the literature survey that has been done for the research covers the evolution 

of rail inspection by machine vision, current rail inspection technologies that are in 

use around the world and concentrates mainly on machine vision inspection of 

metals, mostly rails and rail parts. 

2.2 Machine Vision Systems 

“Machine vision (MV) is the process of applying a range of technologies to 

provide imaging-based automatic inspection, process control and robot 

guidance in industrial applications” (Steger et al., 2008) (Graves et al., 2003). 

MV may be explained as the analysis of images using highly efficient machines such 

as high resolution cameras, computers and image algorithms etc. to extract data for 

controlling a process or activity. Machine vision systems are currently in use or 

under development for different type of inspections in various industries including 

railways. Its advantages are: high speed, efficiency, reliability, consistency, ability to 

store, process and recall large quantity of data and no human dependency. 

Disadvantages can be the unusual or unseen situations that might occur at any stage 

in the future. 

2.2.1 Fundamental Steps in Machine Vision Systems 

Machine vision systems mainly have three basic sub systems or works in three main 

steps: 

1. First step is the image or data acquisition system. 

2. Image analysis or processing that has further two parts; image enhancement 

and feature extraction. In the image enhancement or pre-processing stage, 

edge enhancement and noise reduction can be done by applying specially 

designed filters to the image. In feature extraction or the image processing 
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stage, data are processed using various machine vision algorithms to detect 

and identify areas of interests. There is a detailed chapter on image 

processing later in the thesis. 

 

3. Classification stage: The features extracted from the data during image 

analysis stage are classified in the final stage; which could provide basic 

information for identifying objects. Classification techniques have been 

discussed in detail in the later chapters. 

 

 

Figure 2.1: Components of typical image processing system 

 

2.3 Machine Vision Cameras 

Machine vision cameras acquire images in a video or still image medium and in the 

visible or infrared spectrum. There are mainly two types of machine vision cameras: 

1. Area Scan Cameras: Area scan cameras read the image as a whole or frame 

by frame. Moving systems use this type of camera to avoid blurred images. 

 

2. Line Scan Cameras: Line scan cameras need a continuous stream of data to 

acquire images. They are high resolution cameras used for very fast moving 
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systems. 

 

2.3.1 Machine Vision Lighting 

The quality and correctness of lighting are decisive aspects for any MV inspection 

system. The use of proper lighting is as important as the use of the right camera or 

the right lens for MV image acquisition. There are various factors that help to design 

a proper lighting system for MV. These factors include inspection environment, 

camera and lenses used, other light interactions etc. (Martin 2007). In an MV system 

the lights coming from the environment can be detrimental because of the variations 

in it. Controlled lighting is a recommendation for an MV inspection so as to 

highlight required features. 

The importance of proper lighting is evident from the currently working machine 

vision systems using special illumination systems. The Vision System for Real-Time 

Infrastructure Inspection (VISyR) system is fully automatic and is FPGA-based 

vision system to inspect real-time infrastructure. VISyR is a patented real time 

Visual Inspection System for Railway maintenance uses a high resolution line scan 

camera to acquire images using a suitable illumination setup, equipped with six 

OSRAM 41850 flood light sources to overcome the effects caused by changes in the 

natural light. (Stella & Marino et al., 2007). 

The Federal Rail Road Association America is using a machine vision based joint 

bar inspection system. The inspection system uses high speed, high resolution line 

scan cameras with a lighting system to capture the images of joint bars from the 

moving vehicles. The acquired images are then processed by a computer using 

imaging methods and defects are finally reported. The lighting system uses xenon 

lights, which are mounted on a beam outside the vehicle at a position where their 

emitted light pattern is in a line with a view of the camera. The lighting system 

provides uniform and consistent illumination and also overcome the effect of 

ambient light. The position and intensity of the lights have been set up in a way to 

provide most favourable lighting conditions for both the contrast and brightness. The 

system is efficient which is mainly due to the proper lighting system being used. 

(Berry et al. 2008).  
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2.4 Rail Inspection Research 

Efforts are being made to check the manufacturing quality of the rail and understand 

the rail behaviour when submitted to the stress of large number of trains running on 

it. It is very obvious that the rail inspection is not something new, it started in the 

early 19
th
 century. Researchers around the world are concentrating on different 

aspects to ensure more reliable rails. Many different image processing and other 

techniques have been tested and used at different times for the rail inspection.  

Various form of literature is available on rail inspection ranging from visual, guided 

waves, ultrasonic, eddy current, magnetic induction and the new machine visions 

systems. Automated machine vision techniques and hybrid systems have been 

introduced recently for the high-speed inspection of rail tracks. Accelerometers, 

ground penetrating radar, light detection and ranging systems are among the 

emerging rail inspection systems.   

However, It is noteworthy here that the defects currently under inspection in this 

research have never been researched or considered before. Hence, there is not any 

literature available specifically addressing on these types of defects that are being 

investigated for this work. Still there is related literature available for similar types of 

artefacts e.g. cracks, blobs on the metal surface in other areas, which has been 

reviewed in this section.  

2.4.1 Common Rail Inspection Methods 

Rail tracks are usually inspected for defects or missing components either visually, 

or by using ultrasonic testing, eddy current testing, magnetic flux and particle based 

methods. (Clark 2004) (Papaelias. et al., 2008) 

Rail inspection has extensively applied non-destructive evaluation techniques, such 

as guided waves (Wilcox, P. et al., 2003) and ultrasonic waves (McNamara & Scalea 

2002) (Kenderian et al., 2003) (Palmer 2005) (Rizzo et al., 2009) (Rizzo et al. 2010). 

The potential of guided waves and ultrasonic methods to inspect the defects on the 

rail has been vastly explored. Guided wave inspection has been found better than 

ultrasonic inspection as guided waves can propagate and penetrate to the longer 
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lengths and are more sensitive to some cracks in a particular plane. (Wilcox et al., 

2003). The use of guided waves was found to be quite reliable for the detection of 

both surface and internal defects; being fast at the same time. However, it is found 

that lower frequencies are unable to detect small defects. The ultrasonic based 

detection technique is found very effective but again ultrasonic fail to detect surface 

and the near surface defects. Poor resolution of ultrasonic‟s results in decreased 

efficiency. 

At Jindal Steel & Power Ltd., India, an efficient and reliable defect detection ion 

system has been installed. The system uses laser technology to detect straight lines 

and edges of the railway track surfaces, eddy current and ultrasonic testing systems 

for defecting typical defects and also some internal imperfections on the railway 

tracks being manufactured in the company. (Raj et al., 2012)  

Several alternative techniques have been researched, used and few are still under 

development for the rail inspection, such as electromagnetic induction (Clark 2004) 

(Edwards et al. 2006), eddy Current (Heckel et al. 2009), radiography and AC field 

measurement techniques. (Rose et al., 2002) (Gilchrist, 2006) (Innotrack 2008) and 

Acoustic emission (AE) techniques (Yılmazer et al., 2011)). However, an automated 

machine vision inspection system is the basic objective of rail inspection problem 

under investigation for this project. 

2.4.2 Current MV Rail Inspection Technologies  

Many machine vision systems are currently being used for various types of rail 

inspections and there are still many under development. ENSCO, Inc. developed a 

system for joint bar inspection. This system uses a high speed and high resolution 

line scan digital camera with some lights, all mounted under the vehicle to acquire 

images. Acquired images are processed by a powerful computer using some adaptive 

image processing algorithms to inspect the joint bar defect. The system finds 

external cracks in joint bars with 80% efficiency under ideal conditions. (Nejikovsky 

et al. 2005). 

Another machine vision system, using area scan cameras, is under development by 

National Taiwan University of Science and Technology to detect elastic rail clips. 

The system pre-processes the acquired images to get noise free grey scale images. 
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Grey level variation identifies the rail position and wavelet transform finds the 

elastic clips. Finally, after thresholding and morphological processing, clips are 

identified using object recognition and other image processing methods. The results 

proved it to be a reliable and feasible visual recognition system (Hsieh et al. 2007).  

A variety of machine vision systems are in use for rail and track inspection. 

Researchers in America have developed an automated system to inspect surface 

cracks in the rail, missing plates, fastening objects and improper gauge. Video data 

are gathered by area scan camera with strobe lights, lasers and sun shields (Resendiz 

et al. 2010). There is another system called Aurora system (Wamani & Villar 2009), 

which is mounted on high-rail vehicles, to inspect wood and concrete ties for rail 

seat abrasion, missing fasteners and improper gauge.  

MERMEC Group, an Italian company for rail inspection and diagnostics has 

developed a machine vision system known as “Track Surface Detection System” to 

detect track defects. The system uses line scan cameras, works in three modules and 

is capable of functioning at speeds up to 160 km/hr. It can be installed on any vehicle 

and can inspect and classify tie type, fastening and surface defects, and ballast 

irregularities etc.  (Sawadisavi et al. 2008) (Edwards 2009). 

2.4.3 Automated MV& Hybrid Inspection Systems Survey 

Automated vision techniques and hybrid systems have been introduced recently for 

the high-speed inspection of rail tracks. Mandriota et al., (2001) proposed a machine 

vision inspection technique based on texture analysis of rail surface. The texture 

analysis was performed using Gabor filtering to detect and classify a particular class 

of rail defects known as rail corrugation. Later on, they presented a machine vision 

system using PCA with neural networks for the detection and classification of the 

missing bolts from the rail. A line scan camera was used to capture the images which 

were then processed using wavelet transforms and principle component analysis to 

represent them in reduced number of coefficients. Artificial neural networks have 

been finally used for the classification (Stella et al. 2002). Filter-based feature 

selection was analysed further in the later years to perform texture analysis for the 

rail corrugation detection. Gabor filter, wavelet transform and Gabor wavelet 

transform were tested to extract the textural features from the images and results 
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were compared. Gabor filter was found to be the best of the three approaches. 

(Mandriota et al., 2004). Another approach to detect rail defects using wavelet 

transformation was presented.  Wavelet coefficients were extracted from the signals 

acquired by magnetic coil and Hall sensors. These coefficients were then used to 

differentiate healthy rail from defective rail (Toliyat et al., 2003). The results 

presented in the various papers show very good detection rate and closely related to 

current work, hence the approach can be very useful. Textural analysis approach and 

use of principal components and artificial neural networks all together can give a 

successful direction to the current research. 

Shrutisagar  and Hayagreev (2004) explored an automated dual track approach for 

detecting defects on surface and subsurface regions of a rail. A Canny Edge 

Detection algorithm was used on a real-time basis to detect the surface defects that 

are visually visible. Ground penetrating radar was used to observe the substructures 

such as thickness of the ballast and sub ballast layers, variations in layer thickness 

along the track, pockets of water trapped in the ballast etc. A line scan camera with a 

light source to get the video images, which are to be analysed using imaging 

techniques, gives a specific direction to the current research.  

Deutschl et al (2004) developed an automatic vision based inspection technique for 

rail surface defects. Colour line-scan cameras and a special image acquisition 

method called spectral image differencing procedure (SIDP) followed by image 

processing methods were used to detect the rail surface defects. The image 

acquisition part consisted of a colour line scan camera with two monochrome light 

sources, blue and red, positioned before and after the camera in the direction of the 

movement. The resulting light reflection appears uniform on flat surfaces but 

different on non-flat surfaces.  The final image was computed by a non-linear 

differencing function, that weakened the small differences but intensify others, 

resulting in an image called SIDP. The SIDP image is then segmented into defective 

and non-defective areas, using convolution filters and some morphological image 

techniques. The system produced reliable results even for heavily scaled surfaces and 

is already installed as an inline system at a rail manufactory. A special illumination 

system with post image processing is the key idea of the research. Convolution 

filters and morphological image methods used will be useful for this work. 
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Nejikovsky et al (2005) developed a very effective and feasible video system for 

automated joint bar inspection from a moving vehicle. The system uses high speed 

line scan cameras mounted under the vehicles, which capture high resolution images 

of the join bars. The images are then presented to an adaptive image processing 

algorithm that notifies the vehicle operator whenever it encounters any crack. The 

operator reviews the image of the crack and gives his confirmation or rejection on 

the issue. It is an automated machine vision system using series of imaging 

techniques and some adaptive approaches to detect cracks in the joint bar. The 

system is functional and works at a very high speed but false detection rate is high 

(“40% of detected cracks were confirmed and 60% were rejected by the system 

operators”). 

Frayman, Zheng, and Nahavandi (2005) used a combination of image processing 

algorithms for the automatic inspection of surface defects in aluminium die casting. 

A web cam and ring light in a box are used for image acquisition module. Image 

information processing is performed using genetic algorithm to extract parameters 

for optimal structuring element and thresholds for segmentation and noise removal. 

These parameters are then used for morphological operations to perform detection. 

The system is 99% accurate and being used in industry as part of normal production. 

However, the results can be improved by improving image quality simply by using 

high resolution cameras instead of a web cam. The system gives an insight into 

variety of image processing algorithms and their usefulness. Genetic algorithms and 

morphological operations used can be useful for the current study and might give 

good results. Moreover, the importance of uniform lighting is also evident from the 

system. 

Singh, et al., (2006) proposed automated machine vision system for railway track 

inspection. Their work concentrated on detecting missing and replaced clips. A video 

camera records the condition of the railway track and the video produced is analysed 

using imaging techniques to perform the detection. A Gaussian smoothing is used to 

remove noise from the images; canny edge detector detects the edges; and finally 

lines of required length are stored while rest are ignored. As clips are found on a 

well-defined area on the track, the edges on those images are analysed and values 

greater than some threshold value determine the absence or presence of the clips. 
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Gaussian smoothing and canny edge operator are quite useful and are tested for 

detection of defects under investigation in this work. 

Yella and Gupta (2007) presented an approach for automating human condition 

monitoring procedure for wooden sleepers. They proposed automatic testing 

procedures using two methods; impact acoustic analysis and vision analysis. 

Acoustic examination gives sharp sound when struck with an axe or hammer. A 

hammer was used to strike the wooden beam and the signals were recorded on the 

computer as a WAV file. Then using the signal processing techniques; the signals 

were interpreted and features were extracted. In the machine vision method two sets 

of images were acquired by the help of the camera placed on the inspection vehicle. 

Three features (number of cracks, average crack length and width) were extracted 

from the first set and a measure of how far the plate had gone into the sleeper from 

the second set of images. All the features were fused to form a single vector which 

was then passed to pattern recognition stage. However, there was destructive testing 

and disagreement on certain detections. But the suggestion made for the use of 

sensors on an intelligent vehicle that runs and collects the data, processes it and 

notifies the operator at the same time for the future work, was useful Marino and 

Stella (2007) developed a fully automatic and configurable FPGA based vision 

system for real-time infrastructure inspection called ViSyR. The ViSyR works at a 

very high velocity and is highly flexible, configurable due to an FPGA-based 

hardware implementation. It is capable of detecting the defects of the rails and at the 

same time presence or absence of the fastenings accurately. It acquires images using 

line scan camera, camera link protocol and a frame grabber. Image acquisition was 

done under a lighting setup to reduce the effect of variable natural lighting 

conditions. Here, the system performs rail defect detection and tracking in two 

phases. Firstly, Principal Component Analysis (PCA) reduced the data, which in the 

second phase was fed to a neural network to perform the classification. The detection 

of missing fastening objects was performed in three phases, a prediction phase that 

predicts the areas that might have the bolts missing, followed by a data reduction 

phase which used 2 dimensional wavelet transform, and finally a neural network 

based supervised classification phase, which showed the missing bolts. A very 

helpful research about rail defect detection based on PCA and neural networks that 

will be useful for the current work.  
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Edwards et al., (2007) investigated the use of machine vision to inspect railcar safety 

appliances using combination of machine vision algorithms. It was concluded that 

use of machine vision enhances both the performance and speed of inspection and 

reduces the cost at the same time. Later on, J. Riley Edwards and Steven Sawadisavi 

(2008) started a project to use machine vision to detect irregularities and defects on 

the rail tracks and fastening objects. The objective was to perform the inspection 

according to the regulations of American Federal Railroad Administration. They 

used edge detection and texture information to detect rail, ties and tie plates. They 

proposed that in addition to machine vision, interim approaches to automated track 

inspection will surely make the inspection system more effective and efficient. This 

was to be achieved by using vehicle mounted cameras for capturing digital videos 

and performing image enhancement procedures. The work was aimed to improve the 

existing algorithms and the hardware. It provides very useful information related to 

the automated machine vision inspection of rails together with image processing 

procedures, as machine vision inspection no doubt enhances efficiency and speed of 

inspection.  

Papaelias, Roberts, and Davis (2008-2009) researched on various non-destructive 

evaluations (NDE) techniques for inspecting internal and surface defects of the rail. 

They presented an idea was to use automated optical cameras and a current sensor to 

detect the surface defects damage and to use ultrasonic inspection for internal 

defects. Later on in 2009, they applied ACFM (alternating current field 

measurement) technique to detect the induced notches that successfully detected the 

majority of the abnormalities. The paper suggests use of automated camera and 

various techniques for rail inspection which forms basis of the current research. 

Jie. et al., (2009) presented a vision based inspection technique for detecting 

particular kind of rail head surface defects, which are called Rolling Contact Fatigue 

(RCF) defects. Automatic detection system constituted of pre-processing, defect 

location and identification, followed by a post-processing subsystems was 

implemented. They also proposed a simple and fast algorithm to locate the defects 

which was found to give better results and higher precision. It involved some 

geometrical analysis adopted directly on a grey-level histogram curve of the 

smoothed rail head surface image. The paper gives a good insight into negative 
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effects of noise in the images and how they can be reduced to make better detection 

possible. 

Liu, Wang, Zhang and Jia (2010) proposed automated machine vision system for rail 

surface defects inspection.  They mainly worked on spalling of rail head and surface 

cracks. The system involves noise removal by applying mean filters followed by 

extraction of an accurate defect region. The defects are then identified by dynamic 

threshold and feature matching. Finally, the detected defects are evaluated by 

calculating percentage of wear of rail head and length of cracks in surface. It is a 

very recent useful paper in reference to noise removal and feature matching 

procedures that will be helpful for the current work.  

Li  et al., (2011) proposed an automated machine vision inspection and monitoring 

system for a railroad company. The proposed system has four modules for data 

acquisition, track condition monitoring, defect severity analysis and long-term 

predictive assessment. Data acquisition captures videos of the track using the 

cameras mounted on a moving vehicle. The data are transferred to the next module 

for monitoring; which detects important rail components and determines any 

abnormality existing in those components or their location. The results are 

transferred to the next module which determines the severity of defects detected by 

the previous module. Finally the appropriate maintenance and measures are taken to 

solve the severe problems; and also long term assessment is performed after 

examining the condition of the working components so far. The proposed system 

was theoretical and different imaging techniques were yet to be tested and also a use 

of artificial illumination was being considered. They claimed good performance in 

their preliminary study and the overall system is comparable to the one that has to be 

developed for current work. Later on, based on the proposed system, an automatic 

machine vision based rail inspection system was presented last year (2010) to detect 

important rail components, with main focus on detecting anchors. Image acquisition 

is performed by four cameras with special settings; connected at a specific location 

on a moving bus, to guarantee maximum coverage of the track. The main imaging 

techniques used by the system were Hough transform for detecting straight lines, and 

Sobel operator for the edges. Learning-based Adaboost discriminative classifier, 

using multiple cascade classifiers, has been used to detect anchors. These techniques 
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in combination with some post mathematical operations have been applied to 

perform the detection. The system is accurate and efficient and currently better than 

other advanced rail inspection systems in anchors detection. (Trinh et al., 2012) 

Another machine vision system has been proposed recently, using imaging 

algorithms to identify surface defects of the thermal-state heavy rail. The system 

uses 6 CCD (Charge-Coupled device) cameras installed at different angles, some 

high frequency fluorescent lamp for illumination and image processing work 

stations. The images are taken by the cameras and transferred to the work stations. 

Enhancement and noise removal is performed using the image algorithms of colour 

adaptive median filtering and histogram equalization. Edges are detected on 

enhanced images of the hot rail using common operators of Sobel, Roberts, LoG and 

Canny. Finally some mathematics were applied to detect the defects using the 

contrast obtained from the shape of former and last pixel lines of the rail images. The 

algorithm can effectively and rapidly identify several types of surface defects on hot 

heavy rails. However, it was concluded that the algorithm is not capable of detecting 

few of the specific type of defects. The paper provides useful information regarding 

image enhancement, noise removal and edge detection. All the applied imaging 

techniques have also been used at several stages for the inspection algorithms 

developed for the current project. (Xue et al, 2012) 

2.5 Metal Surface Inspection 

There is not specific literature available for the type of images that needs to be 

inspected for the current work. Moreover, the defects to be detected occur during 

manufacturing process, hence, can be considered as metal surface inspection to some 

extent. Therefore, literature related on machine vision inspection of metal surface 

has also been studied in detail and useful information from it has been summed up in 

this section. 

Wu and Hou (2003) proposed an automated visual inspection of metal surfaces. Co-

occurrence matrices are the basis of the proposed method, as they play an important 

role in texture analysis. Feature descriptors such as difference Moment and Entropy 

are computed from the reduced grey level co-occurrence matrices of a metal image. 

These features are finally analysed; and if they fall in some specific predefined 
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interval they are classified as defects and vice versa. It is a good statistical approach 

with reliable detection rate to some extent, which can further be improved by using 

modified grey-level co-occurrence matrices. The rail images provided for the current 

research work are also grey level images and have been tested using simple statistics 

such as standard deviation, variance and mean to perform the surface inspection. 

Bonnot, Seulin and Merienne (2004) searched the defects on the metallic industrial 

parts. The defects searched mainly are due to scratches and lack of machining. 

Particular surface features are acquired using images taken in annular lighting in 

bright field and rotating lighting in a dark field.  The lighting device was designed to 

make an efficient revelation of the scratches. Dark field images are then processed 

individually and combined to get one image revealing most of the defects. The 

resulting image was then segmented using a threshold into the defects classes. A 

trained classification based on discriminant analysis, was finally performed to 

recognize the different classes of defects. The system implemented on an 

experimental industrial production line gives very little rate of false detection. The 

images of the defects show that they are somewhat similar to the defects under 

consideration here. The paper suggests that considering the defects under different 

lighting conditions from various angles can help enhancing different defects. 

Xie (2008) surveyed and dealt the visual surface inspection of different types of 

surfaces such as steel, stone, textile, wood etc. as a texture analysis problem. It was a 

comprehensive study covering and classifying all the previous work done in the 

field. It focuses on texture analysis based image processing methods that perform 

visual surface inspection. Surface defects are either textural irregularities or tonality 

deviations. The study emphasized on first type of defects that is local abnormality or 

texture irregularity detection; which covers most of the problems. Survey suggested 

that the current methods to perform texture feature extraction and analysis can be 

divided in four categories; statistical approaches (histogram statistics, co-occurrence 

matrices, local binary patterns and autocorrelation), structural approaches (primitive 

measurement, edge features, skeleton representation and morphological operations), 

filter based methods (special and frequency domain analysis) and model based 

approaches (fractal models, random field model, texem models). A very useful 

survey concluding statistical and filter based approaches to be the most useful and 
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Tonality defect detection as a considered approach. It also suggests that when good 

prior knowledge of normal and defective samples is available, then supervised defect 

classification can be used as in the current work. The study also suggests localising 

the defective regions to understand the formation and nature of defects more, rather 

than classifying the whole surface as a defect. Finally, it concludes that real time 

performance is highly desirable, which is the important objective of this research as 

well. The research work in short gives several effective directions for the future 

study. 

Blackledge and Dubovitskiy (2008) developed a new machine vision system for a 

steel surface inspection based on Euclidean and Fractal geometric of an object in the 

image, to monitor the quality of steel sheets during production. The system uses a 

Weiner filter to remove noise and light flecks and then detects edges of the defects 

and localise them using an automatic iterative algorithm. Euclidean and Fractal 

geometry based features of the localised objects are computed which are finally 

classified using fuzzy logic. The system is believed to be accurate with some 

innovations of using fractal analysis and fuzzy logic. The noise filter used and fractal 

analysis can be tested for the future study and might give some good results. 

Moreover, fuzzy logic or more generally Artificial Neural Networks can be 

implemented for defect classification in the future work. 

A machine vision system based on Gabor filtering and adaptive threshold to detect 

scarfing of slabs has been developed by Choi, Jeon and Kim (2011). Scarfing results 

by non-uniform ignition produced by a scarfing machine, which during rolling 

develops into serious defects. These defects appear in the form of discontinuous 

bright bands and borderlines. Gabor sine and cosine filters are used with high and 

low threshold values. These threshold values are determined adaptively using the 

mean and standard deviation values. The results presented in the paper shows its 

effectiveness. Gabor filters are widely being used for texture analysis and hence, can 

be useful for the future study. 

2.6 Concluding Remarks 

The rails are being inspected currently for surface and internal defects using many 

different non-destructive evaluation techniques all around the world. Visual 
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inspection having the lowest speed has been speeded up by automated visual 

inspection methods, but the process has still a low inspection speed. Ultrasonic have 

been used mostly for rail inspection, but it fails to detect surface and near surface 

defects. Eddy currents are reliable for surface defects detections and also has high 

testing speed. However, they can detect up to certain depths and fail to detect deep 

defects. They are also sensitive to electromagnetic noise and irregularities present. 

Guided waves can efficiently detect both surface and internal defects at high speed 

but their lower frequencies sometimes miss small defects. Hence, none of the current 

detection method is 100% efficient and fully automated. However, it is clear from 

the literature survey that nothing has been done till now on the types of defects being 

dealt in the current research work. Most of the literature found is on detecting 

missing rail objects, rolling contact fatigues or cracks on joint bars.  Moreover, 

automated detection of such defects is the basic novelty of the work. 

Current rail inspection extensively uses high speed cameras for image acquisition 

along with image processing methods and techniques to detect different faults and 

missing objects on the rails, which form the basis of the current research. Hence, the 

image acquisition methods, and pre and post processing image techniques, imaging 

procedures and fault detection and classification methods used in the above studies 

provide useful grounds for future work. Especially various image processing 

techniques such as edge detection methods, morphological image processing, 

convolution filters, feature extraction methods, PCA and neural networks previously 

been used will be the starting point for this work. 
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3 Description of Rail Manufacturing Computer Vision (JLI) 

System and Main Defects 

 

 

 

3.1 Introduction 

An industrial computer vision system (JLI) exists for the inspection of rails during 

production at a rail manufacturing plant in Scunthorpe. The JLI system has been 

designed by JLI Vision for Tata Steel and has been implemented at the rail 

production line.  The system consists of 6 cameras and powerful halogen lighting 

units positioned around the path of rails during the cooling process, giving 6 

complementary viewing aspects. Videos of each rail rolling pass the camera are 

recorded and each frame is converted to a single image.  

Each rail is 110 m in length which in images is 440 images on average, by each 

camera per rail. The time between successive rails while in heavy production is 

typically 1 min 30 sec. Currently, a human operator in the control room checks the 

images for defect on the rails, but due to the amount of images that needs to be seen; 
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only few rails are randomly assessed. Hence, to perform real time analysis of the rail, 

the software has to be capable of processing a complete rail within approximately a 

minute.  

There are many types of serious defects found on the rails of which rolled in scrap, 

tiger stripes (a pattern of defects that is stripe like in appearance), a line on the top of 

rail and wire defect are noteworthy and have mainly be investigated with in the 

current research. The following chapter describes the main properties of the said 

defects, a description of the JLI system in detail, type and properties of images taken 

by it and also the camera angles that acquire particular defects. 

3.2 JLI Vision System 

The first industrial vision system was developed in 1980, which led to the 

establishment of a company called Jørgen Læssøe Ingeniørfirma ApS. The company 

is developing, manufacturing and installing the advanced and dedicated computer 

vision systems for industries and laboratories, since 1985. Jørgen Læssøe 

Ingeniørfirma ApS was renamed in 1998 to JLI vision a/s (JLI).  

JLI's vision systems provide reliable and flexible control for the production for years 

and results in high quality product. Some important characteristics of the system are 

as follows: 

1. It is independent and a customised system, designed especially for the 

problem.  

2. Each JLI system is designed after a careful study of the installed production 

lines to ensure the necessary functionality. 

3. All the systems are fully automatic using digital cameras and customised 

software and come with internet connection. 

4. Designed to perform quality control tasks and gives excellent reliability. 

3.2.1 JLI Vision Rail Inspection Setup 

The JLI Company has developed and installed a customised inspection system for 

Corus, which is now known as Tata Steel. The JLI system is found at the Scunthorpe 

site of Tata Steel. The installed JLI system has six cameras and floodlights, which 
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are mounted on a circular holding ring through which the rails and sections pass at 

speed up to 4 m/sec. A set of six cameras are available at the site, as seen in Figure 

3.1. 

 

Figure 3.1: On-site area scans cameras and high intensity lighting. 

 

The images from all the six cameras are recorded electronically as the rail enters the 

ring, at a frame rate of 16 frames/second on each camera. The installed flood lights 

are driven by special electronic drivers to make steady illumination in order to avoid 

shaky or blurred images.  

The images of the entire rail which are approximately 2000 images per rail are 

compressed and successively saved on a 500 GB hard disk. The system has the 

ability of hot swapping to a new drive if the current one is full or if the current 

images are to be retained. The images are in JPEG format and resolution varies for 

different camera angles. Usual resolution of the images is 1380 x 760 for most of the 

defects and 1380 x 400 for Tiger Stripe type defects. 

3.2.2 Current JLI Inspection and analysis 

The images saved by the cameras in the hard disk are then inspected by an operator 

in an office at his/her own speed and not by the production flow. All images are 

inspected one by one and the defective ones are marked. The serial number and 

distance of the defective rail from the start of the rail is saved in a report on a 

computer. The marked rails and sections are further scrutinised after cooling and if a 
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fault is identified, the operators examines the nature and complexity of the defect and 

might figure out the underlying cause. For example, the mill might have been 

causing a defect which necessitates stopping the production and correcting the fault. 

Defective mills roll collars or uneven timing for cooling water results in defective 

rails. The fast and automatic storage of the data makes the early detection of faults 

possible and ensure a high production rate and quality assurance.  

3.3 Main Defects and their Description 

There are 4 types of defects that, according to Tata Steel who are experts on the 

subject, cover more than 95% of all defect found on rails during production. It is the 

algorithms for the effective detection of the defects that form the substance of this 

thesis. 

The defects have been referred over the years as rolled in scrap, as can be seen in 

Figure 3.2 (a), a line on top of the rail, as can be seen in Figure 3.2 (b), tiger stripe, 

as can be seen in Figure 3.2 (c), and a wire defect, as can be seen in Figure 3.2 (d). 

All of the mentioned defects appear on the top view of the camera system and on the 

bottom view and are very difficult to detect by established computer vision 

techniques. 

 

Figure 3.2: Types of defect, (a) Rolled in scrap, (b) Line on top, (c) Tiger stripes, (d) 

Wire defect 
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3.3.1 Rolled in Scrap 

The rolled in scrap defect is a type of defect that appears when the rail exits the 

furnace. It appears on the side of the foot of the rail. It is due to the side of the rail 

being scratched by any sharp surface or material coming out of mill while passing, 

leading to protruding and/or extruding material on the edge of rail‟s foot. It can be 

detected by measuring any irregularities at the bottom of the rail edges i.e. deviation 

from a straight line.  

Rolled in scrap can usually be seen from a particular camera viewpoint as 

indentations at the edge of the rail. Isolating them involves the detection of the edge 

of the rail followed by detection of non-straight lines or derivatives in the edges, in 

other words the detection of the defect. 

Rolled in scrap can be seen clearly in Figure 3.3. The uneven edge of the side of the 

foot of the rail is clearly visible, in this image. 

 

Figure 3.3: Rolled in scrap captured by camera 0 
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Figure 3.4: Irregularities marked for rolled in scrap manually 

 

3.3.2 Line on Top of Rail 

A line on top of rail appears as a straight line at the top of the rail and can have 

various origins. They are repetitive and short pitch; typically less than 400 mm. They 

are horizontal straight lines right in the middle of the rail surface. One of the causes 

might be the worn vertical entry roller guide, in one of the finishing mill stands. It 

can be avoided by replacing the roller with a clean set and adjusting to give more 

clearance if possible.  

Figure 3.5 and Figure 3.6, represents line on the top of the rail defect, example 

images. It can be seen from the example images that lines on the top are horizontally 

running lines, which may break after a certain length and might not be present on the 

successive images. The random lines present on the rail‟s surface need to have some 

reasonable length to quality to be a line defect. The lines have to be present across 

most of the consecutive images to be a valid defect. 

I
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Figure 3.5: Original rail image showing Line on the top of rail type defect 

highlighted with while color. 

 

Figure 3.6: Another example image of a rail with Line on the top of rail type defect. 

3.3.3 Tiger Stripes 

Tiger stripes appear as dark areas suggesting patterns on a tiger. They occur when 

the rail is left for a longer time under the cooling water than required. They occur at 

the top of the rail as known as crown of the rail. Hence, they are mostly captured by 

the top camera which is camera 4 or the side ones; camera 3 and 5. 

They are also referred as “flow marks” and are actually uneven distribution of 

metallic outer surface. They might be caused by unequal or uneven spray pattern of 

cooling water. Even the tilted or too close spray of cooling water on the hot rail 

surface can cause the tiger stripes to appear on the surface. 

The marks are of variable sizes depending on the cause, which makes them difficult 

to detect. They can either be as large as shown in the Figure 3.7 or as small as shown 

in Figure 3.8. However, they have characteristic shape, which appears like a roughly 

drawn less than “<” sign of various shapes and sizes. Moreover, they are generally 

present on many successive images. These features help in Tiger Stripes detection. 
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Figure 3.7: Large tiger stripe pattern – Original image 

 

Figure 3.8: Original rail image with small tiger stripe type defect pattern 

 

Figure 3.9: Small size tiger stripe pattern – Close view of the image displayed in 

figure 3.8. 

 

3.3.4 Wire Defect 

A wire defect is a line type defect that affects the base of the foot in a central region. 

It appears under the rail and is the most difficult and complicated defect of all to 

detect from a computer vision aspect. This defect can appear as straight lines, curves 



Description of Rail Manufacturing Computer Vision (JLI) System and Main Defects 

 

32 

 

or even random arbitrary shapes, with varying size.  

Wire defect is caused by materials forcing out through the roll collars. Its maximum 

frequency is 4 instances per rail and it can be up to 0.5 mm deep. This defect can be 

avoided by rectifying the mill. Its early detection and quantification is necessary to 

reduce the cost and safety by very large margins. However, the variation in this type 

of defect made them extremely hard to detect, while maintaining an acceptable level 

of false positives.  

 

Figure 3.10: Original rail image with wire defect captured by camera 1. 

3.4 Significance of Image Names  

Images taken by the JLI system are in grey scale and saved in JPEG format. Each 

image taken by the JLI system is saved with a unique name. The name of each Image 

has different parts in it and includes distance from the start, camera number, date and 

the time it has been taken. For example there is an image named “0000000_1 19-05-

2009 at 08.52.49.jpg”. The first 8 bits show the distance in meters from the start. The 

example shows that this is the first image of the rail, starting point of the head of the 

rail. Then the number „1‟ shows that it has been taken by the camera number one. 

There are 6 cameras and their numbering starts from 0 to 5. The next part of the 

name is the date followed by the time at which the image was captured. 

Example: Image Name = 0000259_1 19-05-2009 at 18.14.39.jpg 
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1. 0000259 – Image is at the distance 259 meters away from the rail head. 

2. “_1” – The camera number one captured this image. 

3. “19-05-2009” – The image has been taken on 19
th
 may 2009. 

4. “18.14.39” – The image was captured at 18:14:39 hours.  

5.” Jpg” – The image has been saved as jpg format. 

3.5 Defects and Viewing Cameras 

All the four defects are at different locations on the rail. Hence, they are all captured 

by different camera angles. Figure 3.11 shows the schematic of the camera 

positioning around the rail. The cameras have been numbered from 0 to five, started 

from the bottom left camera. 

 

Figure 3.11: Schematic of the camera positioning around the rail 

 

Moreover the name, with which each image is saved to the memory, clearly 

represents the camera it has been captured from. All the defects with their location 

on the rail and the camera numbers capturing them have been presented in Table 3.1. 
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Table 3.1: Defects, their Location on the Rail and Respective Detecting Camera 

Number 

Defects Location Camera Number 

Rolled in Scrap Side of Foot of the Rail 0  and 2 

Wire Defect Base of the Foot in Central 

Region 

1 

Tiger Stripes Top of the Rail 3, 4 and 5 but usually 

camera 4 

Line on Top of the Rail Top of the Rail 3, 4 and 5 but usually 

camera 4 

 

3.6 Limitations with JLI System 

The JLI system installed at the site had been designed for human visual inspection 

and lacks some characteristics, such as optimal lighting or camera positioning for 

optimal defect detection. The importance of lighting and camera positioning is 

evident from the rail inspection literature available so far.  

Marino and Stella used a special illumination setup, equipped with six flood light 

sources to overcome the effects caused by changing natural light. The system has 

been discussed before in chapter 2 (Marino et al. 2007). The Federal Rail Road 

Association America is using a joint bar inspection system with a lighting system 

made of xenon light, which provides uniform and consistent illumination and also 

overcome the effect of ambient light (Berry et al. 2008). Deutschl et al 

(2004) presented a rail surface inspection technique called spectral image 

differencing procedure (SIDP). Two monochrome light sources, blue and red, 

positioned before and after the camera in the direction of the movement, have been 

used to facilitate detection of defects on the rail surfaces.  

Mandriota et al., (2001) proposed a machine vision inspection technique based on 

texture analysis of rail surface. A line scan camera DALSA with 512 pixels of 

resolution was installed below a diagnostic trolley with an appropriate illumination 

setup using six OSRAM 41850 FL lights, to reduce the effect of day light.  

However, in the JLI Vision system installed at the site, there is no special attention 

given to the design for an optimal lighting for optimal image processing, or camera 
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positioning for better defect viewing, as had been done by some successful working 

systems around the world. Hence, the requirement of the inspection system to be 

developed was to be easily implemented on-site with minimum disruption of the 

existing setup, which made the task more difficult. 

The setup results in images of uneven lighting, as can be seen in Figure 3.12 and 

with varying level of blurring as shown in Figure 3.13. The uneven lighting 

condition is firstly due to the use of non-diffuse light sources (spotlights) that causes 

the appearance of some very bright areas of the image while other areas appear very 

dark, as can be seen in Figure 4(a), and secondly to rail positioning not being 

constant, leading to varying light between successive images of the same view as can 

be seen from Figure 4(a) to Figure 4(d). An extra varying level of blurriness caused 

due to a deposit of dust, that occurs over time as the rails are produced, can also be 

observed. Human intervention to physically clean the lenses is required to avoid such 

noise. An air blowing system is fitted but has limited success with keeping the lenses 

clean. The algorithms for detecting the type of defects identified above have to be 

robust to the change of light and the clarity of the image. 

 

(a) (b) (c) (d) 

Figure 3.12: Light variation on successive images. 

 

Figure 3.13: An example of blurred rail image. 
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A set of four highly probable and critical defects that would require dressing, 

chopping or even destruction of the rail have been selected by the technical 

managers at Tata steel. The critical aspects of the faults reside in their return and 

rejection rate by the rail customers, i.e. the companies that purchase the rail from 

Tata steel, and in their rate of appearance, as combined they represent more than 

95% of the entire defects library observed over the years by the highly qualified 

personnel.  

3.7 Summary 

Description JLI system found at TATA Steel Scunthorpe site has been explained in 

detail in this chapter. The system components, working, features and limitations have 

been summed up. Moreover, the main defects that are to be investigated in the 

current research work have been discussed in detail. Each defect‟s properties, main 

feature, naming convention and its representative images have been provided and 

explained in detail. Next chapter gives a review of general image processing 

techniques that have been tested in the research process and those methods that are 

also used in the defect detection techniques that have been developed for the current 

work. 
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4 A Review of General Image Processing Techniques 

 

 

 

4.1 Introduction 

This section presents the algorithms tested, studied and used for the detection of each 

defect.  These are generally a bespoke combination of existing image processing 

techniques and new algorithms developed specially to be fit for purpose. There are 

many image processing methods that have been studied, explored and tested. 

Moreover, few novel methods have been developed as well to perform the detection. 

This chapter contains the brief overview of the image processing methods that has 

been used at different stages of the defect detection. 

The detection process for all the defects has the following distinct phases. 

 Image Pre-Processing stage that includes noise removal and 

enhancement followed by image thresholding. 

 A processing stage that includes edge detection, straight line detection 

or feature detection depending on the type of defect. 
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 A classification stage to classify the detected fault to a particular class 

of defects. 

4.2 Image Pre-Processing  

Most of the images have lot of noise due to dust, rain and other climatic factors. 

Sometimes they also have non-defect scratches and marks caused for various 

reasons. This noise needs to be removed before any further processing, to avoid false 

detection. Moreover, in the current scenario the most important aspect that needed 

correction is the uneven light. All such non-defects abnormalities need to be ignored 

before performing actual defect detection as the noise often seems similar to the 

defects and can cause confusion in their detection. Image pre-processing is a major 

part of the research as it helps to get better detection results. It involves:- 

1. Noise Removal, 

2. Image Enhancement , 

3. Light Adjustment - critical for the current inspection. 

All the image processing techniques tested to enhance the image quality for better 

detection have been discussed in detail with the result images in this section. 

4.3 Image Filtering 

Filtering is a technique for smoothing, sharpening, de-blurring, removing noise, and 

enhancing edges in an image. It can be used to apply various effects on the image. A 

2D filter matrix, termed as mask or kernel, is used to filter a 2D image by different 

filtering methods. Filters with convolution or correlation either in the spatial or 

frequency domain is relatively simple or is more commonly used. 

Convolution is performed using a mask, which can have an arbitrary shape, 

depending on the application. Standard masks generally have odd number (3, 5, 7, 

etc.) of elements in each dimension, and at every location have their centres aligned 

with the current pixel. Moreover, sum of all elements of a mask should be one in 

order to have the same level of brightness as the original image. The mask is applied 

to each pixel and its neighbours within an image. Any small size of mask is chosen 

depending on the requirement and is moved \ slides over the whole image, generally 
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starting from the top left corner. The function to be performed is repeated for every 

position of the mask. Each position of the mask corresponds to a single output pixel. 

For convolution filtering values of the mask and the corresponding underlying image 

pixels are multiplied and finally added to get the output value.  

There are different types of filters available to perform different tasks. Matlab has 

some predefined filter masks and few in built functions such as „imfilter‟ and „filter‟ 

to apply those masks on the images. There is another Matlab function called 

„fspecial‟ used to create predefined 2D filters. Several types and sizes of filters were 

tested to remove the noise, enhance the defects and reduce the non-defect detections. 

4.4 Noise Removal / Image Smoothing 

Noise in the rail images during production is mainly due to environmental factors. 

The presence of dust and marks left by cooling water that is sprayed on the rail 

appear similar to the defect marks. There is burn marks that form during the 

moulding process and scratches caused due to material being forced out from the 

mill while the rail is still hot. All these marks and deposited materials can appear 

similar to a defect on rail images. Moreover, the metallic grey colour of the rail with 

the same comparatively darker shade of background and poor lighting adds to the 

noise. The image showing defect and defect similar noise is presented in Figure 4.1. 

Wire type defect has been marked with red in the image and non-defect noise areas 

with blue. It can be seen that how similar both the areas look, leading to subsequent 

confusion in their detection and differentiation. Hence, this noise needs to be 

removed before performing any test for accurate defect detection. A range of 

different types of filter has been tested for the reduction and removal of noise from 

the image. Some of the noise reduction methods have been found useful and are used 

during the pre-processing stage of the defect detection. 
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Figure 4.1: Original image showing wire defect marked in red and non-defect noise 

appearing similar to the defect as blue. 

 

4.4.1 Noise Removal by Average Filter 

Average or mean filter replaces all the values under the sliding window by one 

average. Average filter smoothens the image data hence removes the noise from the 

image. It performs special filtering on each of the pixel in an image using a square or 

rectangular window surrounding the pixel. It is the simplest way of removing the 

noise or in other words reducing the variation difference between the neighbouring 

pixels.  

The use of large size filters results in increased computation time. The result of 

average filter tested on image with artificially added noise image has been shown in 

Figure 4.2. The image used to test the filter has been manually drawn similar to the 

wire defect lines that appear on the rail. This image has been referred as handcrafted 

image in this chapter, and has been used only for the testing purposes. Although, the 

large mask size remove noise more efficiently but also blur the edges in the image at 

the same time, which is obvious from the Figure 4.2. Hence, the direct application of 

the average filter didn‟t give good results. It was tested at various stages of detection 

and has been found very useful for the particular form of rail images, in very few 

cases. However, modified form of an average filter has been used to perform image 
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equalization in one of the developed detection method. 

 

(a) (b) (c) 

Figure 4.2: Noise removal results using average filter. From left (a) image with 

manually added noise (b) Noise removal result image obtained using 3x3 average 

filter (c) Noise removal result image obtained using 10x10 average filter. 

 

4.4.2 Noise Removal by Median Filter 

Median filter is another type of filter available to remove unwanted noise for an 

image. Median filter takes the median value of all the pixels in the mask window. It 

sorts all the value under the mask in ascending order and assigns the output pixel to 

the middle value. Masks of various shapes can be used which help to save line 

structures. The results of median filters applied on manually added noisy defect 

image have been shown in Figure 4.3.  The filter was tested on various images and 

results were comparatively better than the average filters as can be seen in the figure 

below. However, it failed as such to remove the desired amount of noise keeping the 

image sharpness intact.  
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(a) (b) (c) 

Figure 4.3: Noise removal result by median filter. From left (a) Handcrafted defect 

image with lot of noise (b) Result of 3x3 median filter (c) Result of 6x6 median 

filters. 

 

4.4.3 Noise Removal by Gaussian Filter 

The Gaussian smoothing operator or Gaussian filter is also used to remove details 

and noise from an image. It is similar to previous filters discussed and it is applied 

by the same convolution process but it uses a different type of filter. The Gaussian 

kernel (filter) which is used for smoothing has a shape of a Gaussian bulge and has 

special properties. The result of Gaussian smoothing when applied on handcrafted 

defect image with manually added noise has been shown in Figure 4.4. 

 

(a) (b) 

Figure 4.4: Noise removal result by Gaussian filter. From left (a) Handcrafted 

defect image with lot of noise (b) Result of 3x3 Gaussian filters with sigma equals to 

2. 
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Gaussian smoothing is comparatively better than the previous filters tested for noise 

removal. However, it also failed to remove the desired amount of noise while 

keeping the defect details in a rail image intact. 

4.4.4 Noise Removal by Fourier Transform 

A Fourier transform is a mathematical operation that breaks a function into its 

constituent frequencies. The initial wave form is time dependant, so it is referred as 

time domain representation. The resulting frequency spectrum is in the frequency 

domain. In image processing, the Fourier Transform is an important tool that splits 

the image into its sine and cosine component functions. The input image is in special 

domain and the resulting image is in frequency domain. 

The transform has been used to remove both the noise and any unwanted edges in 

the defect detection research. The image is converted into its frequency domain and 

particular frequencies are removed and then inverse Fourier transform is applied to 

get the original image without the noise or with the edges highlighted. The results 

are shown in Figure 4.5. The technique manages to remove some unwanted non-

defect edges and marks; however, it is found that using the Fourier Transform 

method also loses some important information such as the defect lines. 
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(a) (b) 

 

(c) (d) 

Figure 4.5: Result of noise reduction using Fourier transform. From left (a) Original 

image with wire defect (b) Original image after canny edge detection (c) Fourier 

transform of the original image with central frequencies of diameter equal to 75 

pixels removed in frequency domain(d) Canny edges image result after removing 

central frequencies.  

 

4.4.5 Evaluation of Noise Removal Techniques 

The noise removal techniques tested has been compared in Table 4.1. All the noise 

removal methods had their own advantages and disadvantages. As mentioned earlier 

the defects and the noise appears similar on the images, hence it was very difficult to 

find any technique that removes all the noise, but keep all the defects with their 

sharpness intact.  
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Table 4.1: Comparison of noise removal techniques tested 

Noise Removal  

Techniques 

Advantages Disadvantages 

Average Filter  Easy and simple technique  

 Efficiently smoothens the 

image data and removes the 

noise  

 Large size filters increase 

the computation time 

 Large mask size though 

efficient, but blur the 

edges in the image. 

Median Filter  Masks of various shapes can 

be used which helps to save 

line structures 

 Cannot keep the desired 

sharpness of the image 

Gaussian 

Smoothing 
 Reduces noise efficiently 

 Reduces edge blurring 

 It takes time 

 Reduces details 

Fourier 

Transform 
 Efficiently manages to get 

rid of unwanted noise  

 Loses some useful image 

information with the 

noise as well 

 

The images produced by all these methods have been shown in Figure 4.6.  The 

Fourier Transform method gave the best results but at the cost of losing some desired 

information such as few defect lines and their parts. Hence, the final detection 

methods were designed in a way so as to reduce the effect of noise without losing 

any useful information. For this purpose modified forms of these mentioned methods 

were tested and used at various detection stages. 

 

 

 

 



A Review of General Image Processing Techniques 

 

46 

 

 

(a) (b) 

 

(c) (d) 

Figure 4.6: Comparison of tested noise removal methods. From left (a) Original 

wire defect image (b) Noise removed by average filter of size 5x5 (c) Noise removed 

by median filter of size 3x3(d) Noise removed by Fourier transform with central 

frequencies of diameter equal to 75 pixels removed from the image. 

 

4.5 Image Light Adjustment & Enhancement 

There is an uneven lighting condition in the rail images of JLI system due to the use 

of non-diffuse light sources (spotlights) and inconstant rail positioning which results 

in varying light between successive images. Lighting limitations and problems 

provided by the JLI system have been discussed in the last chapter in detail. 

Inadequate lighting results in light variation and varying level of blurriness in 

successive rail images. This causes bright and dark regions with in an image or 

successive images. Darker defective areas of the rail are comparatively more difficult 

to detect. Therefore, uniformly bright images are an important requirement   for 

performing efficient and accurate fault detection. For light adjustment purpose, 

various techniques were tested and the findings were quite useful. Image 

equalization methods were also tested and to adjust the lighting on the images and 
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also to enhance the features at the same time. The tested and used methods and their 

results have been summed up in this section. Hue saturation value (HSV) adjustment 

and Gamma correction methods were also tested for the purpose and their details and 

findings have been annexed at the end of report. 

4.5.1 Histogram Equalization \ Normalization 

Equalization is a method of contrast adjustment using histogram or other similar 

methods. It is done to enhance the image or to improve the shades or lighting.  

Histogram  equalization  defines  a mapping  of  grey levels  into  other grey  levels  

such  that  the  distribution  of other grey  level is uniform. This mapping stretches 

contrast for grey levels or in other words expands the range of grey levels near the 

histogram maxima. Since contrast is expanded for most of the image pixels, the 

transformation improves the detection ability of many image features.  The main 

advantage of this method is that it is very simple and straightforward and is an 

invertible operator.  However, its disadvantage is that it is indiscriminate, i.e. it 

cannot differentiate between noise and the defects for the type of images being 

investigated for this project. There is a possibility that it may increase the noise and 

un-sharp the desired defects to be detected instead of doing the vice versa. The 

results of histogram equalization produced by inbuilt Matlab function called “histeq” 

have been shown in Figure 4.7. It was not found to be useful for the particular kind 

of rail images under investigation as can be seen in the figure. However, a 

customised histogram method using average filter has been developed, which is 

presented later in the section. 

  

(a) (b) 

Figure 4.7: Histogram equalization result. (a) Original image with wire defect (b) 

Image after Histogram equalization 
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4.5.2 Adaptive Histogram Equalization (AHE) 

Adaptive Histogram Equalization (AHE) is an extension of the conventional 

Histogram Equalization technique. It is a more effective and broadly applicable 

contrast enhancement method. It works by dividing whole image into several small 

regions and computes the histogram of each of these sub regions. Bilinear 

interpolation is used to combine the neighboring regions of the image to remove 

pseudo boundaries. However, it has very slow speed and can also enhance noise. The 

results of AHE have been shown in Figure 4.7. It can be seen that it effectively 

enhanced the contrasts, but also the noise in the image, which is not the requirement 

of the images being investigated. Hence, this method has not been used for the final 

detection. 

  

(a) (b) 

Figure 4.8: Adaptive histogram equalization result. (a) Original image with wire 

defect (b) Image after Adaptive histogram equalization. 

 

4.5.3 Intensity Scaling 

A general observation of most rail images provided is that their left part is darker and 

their right sides appear to be brighter. This occurs due to the positioning of the spot 

lights installed on the JLI system. Hence, the images require some intensity to look 

uniform. Requirement was to brighten the darker part and make the brighter part 

little dark for the image to appear uniform. Hence, for every image the intensity 

scaling factor was different depending on the frequency of increasing or decreasing 

light intensity. Therefore, intensity scaling was tested and has been used. The scaling 
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factor was calculated by taking the differences of intensity levels from right to left 

(bright to dark) and successively adding incrementing scaling factor to the column‟s 

pixel values. The results produced by self-written code can be seen in Figure 4.9. 

The resulting image looks quite uniform and facilitated the detection process later 

on. 

(a) 

(b) 

Figure 4.9: Result image from intensity scaling. From left (a) Original image (b) 

Image after non-linear Intensity scaling from right to left. 

 

Intensity scaling factor is determined using the mathematics shown below in Eq. 

(4.1). Average pixel value of first column of the image which appears the darkest is 

subtracted from the average value of pixels from the last column. The result is 

divided by total number of columns to find the scaling factor for a particular image. 

The scaling factor is incremented and added to the successive columns throughout 

the width of the image using the Eq. (4.2), shown below. For each column (x), the 

same scaling factor is added to all the values. The scaling factor is incremented from 

right to left for successive columns. 
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Eq. (4.2) 

 

Where, 

I = Image of size m x n 

m = total number of columns in the image 

n = number of rows in the image 

Scaling Factor = Intensity scaling factor computed from the image 

 

4.5.4 Evaluation of Light Adjustment and Enhancement Techniques 

Light adjustment and enhancement techniques discussed in this section have been 

compared in Table 4.2. Few other techniques such as hue saturation value and 

gamma correction were also tested and their details have been given in appendix B at 

the end of the report. All the evaluated light adjustment techniques have their 

advantages and disadvantages. However, none of them was found to be ideal or 

perfect for the type of rail images under consideration. Intensity scaling was found to 

be a simple and effective method that brightens the dark areas of the image, without 

disturbing or altering important image information. Hence, has been used for the 

images with poor lighting contrast, to adjust their brightness before performing the 

actual defect detection. 
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Table 4.2: Comparison of light adjustment and enhancement techniques tested and 

used 

Techniques Advantages Disadvantages 

Histogram Equalization It is simple and 

straightforward and an 

invertible operator 

It is indiscriminate, cannot 

differentiate between noise 

and features to be 

enhanced. 

Adaptive Histogram 

Equalization 

 It Improves the local 

contrast and enhance the 

details 

slow computation speed 

and can over enhance the 

noise 

Intensity Scaling It is simple and effective 

for the current type of grey 

scale rail images  

Scaling factor is different 

for each image for each 

location, which needs to 

be computed every time. 

 

4.6 Image Equalization Performed for Tiger Stripes Using an Average 

Filter 

Image equalization is applied at the pre-processing stage in one of the detection 

algorithm for Tiger stripes, as lighting is non-uniform even on the successive 

images. Hence, to get uniform effect of lighting and a more smoothed image, 

equalization has been applied. A range of standard histogram equalisation algorithms 

were previously unsuccessfully applied, both local and global, before the customized 

method was developed. 

Equalization has been performed using specially made method of finding the 

background lighting of the image. The algorithm then uses that background lighting 

to correct the original image. An average filter with a length equal to the height of 

the original image and a width of one pixel is applied to the original image. The 

result is an image representing the lighting, which is then inverted and added to the 

captured frame. The result of equalisation performed on Tiger stripes has been 

shown in Figure 4.10 and is explained in more details in the Methods chapter. 
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(a) (b) 

Figure 4.10: Image equalization result (a) Original Tiger stripe image (b) Tiger 

stripe image after equalization. 

 

4.7 Binarization \ Thresholding 

The operation that converts a grey scale image into a binary image is known as 

binarization that is performed by applying a threshold on the image. Thresholding 

perform this segmentation (binarization) on the basis of the different intensities or 

colors in the foreground and background regions of an image. In addition, it is often 

useful to be able to see what areas of an image consist of pixels whose values lie 

within a specified range, or band of intensities (or colors). The input to a 

thresholding operation is typically a greyscale or color image. In the simplest 

implementation, the output is a binary image representing the segmentation. Black 

pixels correspond to background and white pixels correspond to foreground (or vice 

versa). In simple implementations, the segmentation is determined by a single 

parameter known as the intensity threshold. In a single pass, each pixel in the image 

is compared with this threshold. If the pixel‟s intensity is higher than the threshold, 

the pixel is set to, say, white in the output. The result of thesholding can be seen in 

Figure 4.11. 
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Figure 4.11: (a) Original rail image with a wire type defect (b) Rail image after 

thresholding. 

 

The faults under consideration are all types of marks or lines. Thresholding is used in 

all the detection algorithms developed in order to segment out the regions of interest 

from the backgrounds. The threshold value is different for different defects and is 

provided by the user in all the developed algorithms. 

4.8 Edge Detection 

Edge is defined as a jump in intensity of that image. Edges are placed in the image 

with strong intensity contrast or a strong illumination gradient, which can be 

highlighted often by calculating the derivatives of the image.  

Various methods have been developed to ease the process of edge detection. The 

methods can be classified into two main categories, Gradient methods and Laplacian 

methods. The method involving first derivatives is a gradient method and the method 

involving second derivatives would be a Laplacian method. 
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Gradient edge detectors have been used in this research. There are many types of 

gradient edge detectors of which Sobel, Canny, Prewitt, Robinsons and Roberts have 

been tested and results have been presented in the next section. However, the 

Robinson Compass and then Susan edge detector came out to be the best ones for 

detecting the edges from the images used in the research. They have been used to 

detect edges for the rolled in scrape, line on top and wire type defects. 

4.8.1 Robinson Edge Detection used for Rolled in Scrap Detection 

Compass Edge Detectors are the alternative to the differential gradient edge 

detection. The template closest to the local area of the pixel is used to determine the 

magnitude and orientation of the edge. These detectors have eight kernels each, 

which are produced by taking one kernel of the respective type and by rotating its 

coefficients circularly. Each of the resultant kernels is sensitive to an edge 

orientation.  An input image is convolved with these kernels to calculate the 

gradients along different directions such as South, South-East, East, North-East, 

North, North-West, West and South-West directions. The maximum gradient value 

gives the magnitude of the edge ( Sudeep K C and Dr. Jharna Majumdar 2011).  

The Robinson Compass is one of the types of the kernel that has been used in the 

research. Robinson‟s compass masks or kernels are as follows: 

 

Figure 4.12: Robinson’s compass masks 
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Figure 4.13: (a) Original image (b) Edges detected by Robinson edge detection. 

 

4.8.2 SUSAN Filtering 

In some applications the results produced by SUSAN are found better than those 

from Sobel and Canny. Hence, it was tested for detection process and found very 

useful at various places. This algorithm performs corner and edge detection without 

needing any sort of noise reduction or calculation of image derivative. 

SUSAN is an acronym for Smallest Univalue Segment Assimilating Nucleus. 

SUSAN is a digital approximation of circular masks, either with constant or 

Gaussian weighting to get isotropic responses. The mask is passed throughout the 

image. At every placement of the mask a central point called nucleus is defined and 

the brightness of all other points within that mask‟s placement is compared with the 

brightness of the nucleus. After that process, an area of the mask with same 

brightness can be marked. In SUSAN each point of an image is associated with a 
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local area of similar brightness. This association forms the basis of SUSAN and that 

area of similar brightness is called Univalue Segment Assimilating Nucleus, which 

contains most of the structural information of the image as shown in the figure 1.13. 

The USAN area is at a maximum when the nucleus lies in a flat region of the image 

surface, it falls to half of this maximum very near to a straight edge and falls even 

further when inside a corner (S.M. Smith 1995). 

 

Figure 4.14: Susan functioning (Smith 1995). 

Susan algorithm was tested on wire defects with reasonable results. Different 

customized input masks were tested and applied. The masks tested and results 

obtained from Susan filtering have been given and explained in wire defect chapter. 

The result of Susan filtering has been shown in Figure 4.15. 

 

(a) (b) 

Figure 4.15: Result of Susan edge detector. From left (a) Original image with wire 

defect (b) Susan edges detected 
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4.8.3 Comparison of Different Edge Detectors 

The results of various edge detectors when applied on original rail image have been 

shown in Figure 4.17. The original image is presented in Figure 4.16. It is obvious 

from the images presented that Robinson and SUSAN edge detectors are the best 

working edge detectors for the type of rail images under investigation. All the other 

edge detectors either completely failed to detect the defect or picked up lot of noise 

and non-defect marks from the rail.  

 

Figure 4.16: Original rail image with wire defect 
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Figure 4.17: Comparison of the results produced by various edge detectors. 

4.9 Straight Line Algorithms 

There are many different methods and image analysis techniques to find the straight 

lines in an image. The edge / line tracking algorithms were reviewed and applied on 

the test images before making an attempt to write a new method. Hough and Radon 

transform are an example. Hough transform was tested but was not found very 

effective due to the presence of random similar non-defect lines on the rail. A very 

simple line detector algorithm was required that followed only the horizontally 

spreading lines. Hence, own code has been written, that has been explained below. 
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4.9.1 Hough Transform 

There are an infinite number of possible potential lines that can pass through any 

point, each with different orientation. The standard Hough Transform determines 

which line, out of these, passes through most features in an image. A Hough 

Transform is used for detecting lines automatically. It works by determining which 

edge point belongs to which line. It may be called as a global method for detecting 

edges. In the process first step is to acquire an image and detect edges by applying 

any edge detector like Sobel, Canny etc. Hough transform is then performed on 

edges found to make a histogram. Peaks are detected from the Histogram and the 

peak point in a Hough space is accumulative value of all the sinusoids, using which 

straight lines can be defined in the input space. Finally the prominent lines are 

extracted (Hamarneh et al. 1999).  

4.9.2 Specially Made Straight Line Algorithm Used for Lines on Top of the 

Rail 

A simple line detection algorithm has been designed and used for line defect 

detection. This algorithm detects the high pixels in the columns, as the defect to be 

detected occurs in the form of horizontal lines. Hence, if the pixel is found high next 

to it, it starts storing lines. In this way, it stores all the possible connected lines in the 

horizontal direction in an array. The algorithm was tested to detect line on the top 

and wire defects. The results obtained are shown in Figure 4.18. 
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Figure 4.18: Results of wire defect detection using straight line algorithm 

However, it was found more useful for detecting lines on the top than wire defect. As 

can be seen from the figure above, the algorithm was picking irrelevant features as 

well. Moreover, the wire defects have arbitrary shapes and mostly appear in the form 

of curves. Hence, the new line detecting algorithm has been used only for line type 

defects. The results have been shown and discussed in detail in the next chapter. 

4.10 Principal Component Analysis 

PCA involves a mathematical procedure that transforms a number of possibly 

correlated variables into a smaller number of uncorrelated variables called principal 

components. 

PCA involves the calculation of the Eigen value decomposition of a data covariance 

matrix or singular value decomposition of a data matrix, usually after mean centring 

the data for each attribute. The results of a PCA are usually discussed in terms of 

component scores and loadings. Often, its operation can be thought of as revealing 

the internal structure of the data in a way which best explains the variance in the data 

(Mudrov´a and Proch´azka 2005).  

The most important use for PCA is that once a pattern or a feature is known in any 

data, it can be compressed efficiently without any loss of important data. 
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PCA is the next step for the current research. The plan is to improve the current 

detection by the use of PCA. It has currently been tested on line on top, tiger stripes 

and wire type defects. Their application method and results have been given in the 

later chapters. 

4.11 Post Processing 

Once the edges, lines and features or in other words defect areas have been extracted 

from the images, the next step is to classify them. However, before the classification 

stage, the images need to be processed to get rid of any non-defect areas to avoid the 

false detection in the latter stage. For this purpose post processing is applied in order 

to drop all or most of the noise or non-defect areas that have been picked up during 

the previous processing stage, in order to reduce the false positive detection. 

Morphological operators have been used for the purpose. 

4.11.1 Morphological Operators 

Morphology deals with processing the images based on their shapes. Morphological 

operators usually take binary image and some structuring element as their input. 

Binary morphology is indifferent to the value of grey level or colour of the pixel. 

The input image is combined with some structuring element to produce an output 

image of the same size. Set of operators such as intersection, union, difference, 

reflection and complement are used to combine input image with the structuring 

element (Wamani and Villar 2009).  

Morphological operation is the comparison of each pixel in the input image with its   

neighbours. Size and shape of the neighbourhood and shape sensitive morphological 

operation can be selected in the input image. 

Dilation and erosion are the basic morphological operations. Dilation expands the 

object in the image by adding pixels to its boundaries while erosion removes the 

boundary pixels from an image object. The size and shape of the structuring element 

used determines the number of pixels to be added or removed from the objects in an 

image
1
. 

                                                
1 http://www.mathworks.co.uk/help/toolbox/images/f18-12508.html 

http://www.mathworks.co.uk/help/toolbox/images/f18-12508.html
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Morphological operators have been used at various stages of detection to enhance the 

defects and to reduce the back ground noise detected at the same time. Inbuilt 

functions for open, close, dilate and erode are already available in Matlab and 

OpenCv library to perform different morphological operations. The example result 

of dilation operator has been shown in the Figure 4.19. Morphological operators 

have the ability to join the shapes or areas of interest in an image.  

It can clearly be seen that the dilation operation function joined the broken edges and 

made the defect clearer. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4.19: (a) Original image (b) Canny edges (C) Canny edges after dilation 

operation 
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4.11.2 Morphological Operation Performed at Post Processing Stages 

Inbuilt functions to perform morphological operations exist in both Matlab and 

OpenCv and it removes all the blobs (white connected dots) that are >= “size". That's 

very useful to clean up images. This OpenCV version also fills in gaps smaller than 

the user defined “size", within larger white areas that are smaller. The function has 

been modified and used with customized variables to achieve the best results in 

almost all the detection algorithms developed. The example result image has been 

shown in. It is very obvious from the result shown that the method helps to get rid of 

unwanted non-defect detection.  

 
(a) 

 
(b) 

 
(c) 

 

Figure 4.20: (a) Original rail image (b) Canny edges (c) Canny edges after 

morphological operations. 
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4.12 Classification Stage 

The final stage is the classification stage. The resulting images after all the 

processing are finally examined for the presence of any type of defect out of the four 

defects. The defective image is then classified to a particular defect type. 

Different classification procedures have been used for different defects. Template 

matching has been tested on various defects for classification. Neural networks are 

the next plan to perform the classification. The existing neural network functions 

have been applied and tested. To date, more work need to be undertaken to complete 

this work. The future work might be based on neural networks depending on the 

quality of results achieved in near future. Currently they are under consideration and 

being researched on.  

4.12.1  Template Matching 

Template matching is a technique in image processing where an image is segmented 

or its areas of interests are separated out from the image using a small template. It 

may also be defined as comparing the parts of the image against each other. The 

template or the mask or the sample image is matched by moving it to all possible 

locations on the source image and where ever it finds something similar, it is marked 

out. The result is numerical index of the highly similar locations. 

Template matching can either be feature based or template based. Feature based 

method uses features such as corners or edges to do the search. Template approach 

uses the entire template to perform the matching. Matching is performed pixel by 

pixel and fast template matching can be performed by using cross correlation method 

(Brunelli 2009) (Lewis 1995). 

Inbuilt template matching function of Matlab was tested on wire defects to get the 

results shown in Figure 4.21. The result image clearly shows extra noise and non-

defect detection at the same time. Hence, template matching technique isn‟t of much 

success for the purpose. 
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Figure 4.21: Results of wire defect detection using template matching 

4.12.2  Artificial Neural Networks 

Neural networks are an advanced technique of computer programming. They are 

efficient at pattern recognition and solving other such problems. An Artificial neural 

network works in the same way as biological nervous system (brain) works. It is 

made up of large number of interconnected units, called neurons that are capable of 

processing information. These neurons work in coordination with each other to solve 

some problem. As human brain learns by experiences or examples, artificial 

networks are also configured for a specific application through a learning process. 

A neuron is the basic processing unit of a neural network. They receive input in the 

form of information from some source, process them according by using the learned 

behaviours, and output the results.  

Input layer neurons get input from some real source and the output layer provides the 

output. All the other processing neurons are hidden. Single neuron is not really 

helpful, but their combination into multilayer structures, called neural networks, is a 

solution to many problems. 

Neural network has been used in combination to edge detection algorithms and 

morphological operators in the research. The detection results produced by neural 

networks have been presented and discussed in the next chapter.  

The Feed Forward Back-Propagation architecture is currently the most efficient, 

simple and popular neural network solution for complex, multi-layered networks. It 

is used in many applications, as provides workable non-linear solutions to ill-defined 

problems. 
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The typical model has an input layer, at least one or more hidden layer(s) and an 

output layer. Theoretically, there is no limit on the number of hidden layers but 

typically they are one or two. Feedback is the basic characteristic stage of this type 

of network. In this stage the output of one layer is directed back to a previous layer. 

The information flows through in and out layers during recall. The process of 

simulation of a network with an unknown set of data to get the answer is called 

recall. Back- propagation occurs only during training and is not used during recall. 

4.13 Summary 

This chapter has outlined all the image processing techniques that have been tested 

in order to develop an efficient detection method for the defects under investigation 

in this research. It has also covered the methods that have been used as part detection 

in the final developed algorithms. The chapter has been sectioned into pre-

processing, processing, post processing and the classification stages for the better 

understanding of the imaging processes. Next chapter explains the defect detection 

algorithms developed for the current research in detail. 
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5 Developed Defect Detection Algorithms 

 

 

 

5.1 Introduction 

This chapter presents the description of the algorithms developed specifically to 

process the JLI images together with some of the results of the defect detection being 

produced on individual defect images provided by Tata Steel, for each type of defect. 

The offline images were to be treated by the software and a report of the detection 

was shown on screen for experts to assess. 

The software was run on an Intel Core I7 CPU 920 at 2.67 GHz, with 8 GB of RAM, 

Windows XP 64 Bits Professional. The software was developed using the OpenCV 

image processing library encapsulated in EMGU for C# (Microsoft Visual Studio 

Professional). The running time for a rail of on average 110 m long with on average 

440 images per camera view is on average 55 s. The time between each rail while in 

heavy production is more than 1 min 30 seconds, making the software capable of 

analysing rails in real-time. 
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5.2 Rolled In Scrap (RIS) 

During the manufacturing process, the rail gets rolled in scrap when it exits the 

furnace on the side of its foot. Rolled in scrap occurs due to the  scratching caused by 

some sharp objects (e.g. corners) left out of the mill‟s surface while the rail is 

passing through it. The defect appears in the form of protruding and/or extruding 

material on the edge of rail‟s foot. It can be detected by measuring any irregularities 

of the rail edges. The defect can be seen in the Figure 5.1. 

 

Figure 5.1: Rail image with rolled in scrap 

5.2.1 RIS Detection Methodology  

The RIS defect appears only on the side of the foot of the rail. They can usually be 

seen from a particular camera viewpoint as indentations at the edge of the rail. 

Isolating them involves the detection of the edge of the rail, followed by detection of 

non-straight lines on the edges. Finally, calculating the depth of the cavities 

appearing in the processed images due to presence of the defect, which are classified 

as a defect if exceed certain threshold. An example of RIS has been highlighted in 

Figure 5.2. 
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Figure 5.2: Rail image with rolled in scrap defect highlighted by a red rectangle. 

Figure 5.3 shows a typical Image after rolled in scrap detection; this represents the 

initial detection of the defect on the edge of the rail, performed by the developed 

detection technique which explained in the later section 5.2.3 in detail. 

 

Figure 5.3: Image after RIS detection 

The basic logic or methodology behind the detection of RIS can be divided into three 

basic steps that have been summarised below: 

1. A threshold is applied to the image to obtain its shape or in other words 

separate the edge of the rail from its back ground. The background of the rail 

in all the images appears to be very dark when compared to the rail that 

appear grey / lighter and hence, simple thresholding results in black and 

white image shows the exact shape of the rail. This action is independent of 

the lighting conditions. This step is shown in Figure 5.4 . 
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(a) 

 

(b) 

 

(c) 

Figure 5.4: Step for rail edge detection, (a) Original image, (b) After threshold, (c) 

After edge detection 

2. The second step of the algorithm is a standard edge detection using the 

Robinson kernel to find the edge of the rail, as can be seen in Figure 5.4 (c). 

Many other edge detectors were also applied and tested, their comparisons 

have been provided in section 0. However Robinson kernel for the edge 

detection was found comparatively better. The edge detection process and the 

Robinson kernel have been explained before in detail in section 4.8.1. The 

Robinson Compass is one of the types of kernel that came out to be the best 

for detecting the edges from the images used in the research because most of 

the defects appear to be in the form of horizontal lines. Hence, the Robinson 

kernel detecting horizontal spread of edges has been found quite useful and 

been used. 

3. The final step is to find the distance of the edge from the edge of the image in 

terms of total number of pixels in between.  

5.2.2 Parameters Required for RIS Detection 

There are few main parameters that are required by the algorithm to perform 

detection, which can be determined by the user at run time in order to make the 

system more flexible. These are: 

1. Threshold: A low threshold value is determined by the user to produce the 

binary image. This threshold is used to separate the rail from its background.  

2. Gradient: It determines the minimum length of a difference or slope of the 

edge found to qualify as a defect 
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3. Length of Deviation (L): Deviations of some certain lengths are classified as 

defects. Length parameter helps to determine the minimum length required 

by the anomaly to qualify as a defect. 

4. Gap: It determines the distance between two consecutive pixels for deviation 

to be computed. Usually the Gap is empirically chosen to be 50 pixels, which 

means that the length of each pixel from the top or the bottom is compared 

with the length of another pixel, 50 pixels away from it. 

5.2.3 Algorithm Implementation for RIS 

The detection algorithm for Rolled in Scrap has following steps: 

1. Thresholding: 

User defined threshold value is applied to an input, which is a grey scale 

image to turn it to its binary form. All the pixels having value greater than the 

threshold level are assigned maximum value which is 255 or 1 for white. 

While all other values which are less than the threshold value are assigned 0 

for black. The result of the thresholding operation can be seen in Figure 5.5.  

(a) 

 

(b) 

Figure 5.5: (a) Original image with RIS defect (b) Image after applying threshold 
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2. Morphological Operation: 

A morphological close operation is then applied to close the broken edges 

and get better view of the binary image. The functions usually need 

parameters for structuring element, operation specification (close or open 

etc.) and number of time the operation is to be performed (iteration). A 

rectangular structuring element of size 5x2 has been used to perform 

morphological close operation for RIS detection. The operation makes the 

edges look smooth and continuous in the binary image form of a rail and is 

performed only once 

3. Edge Detection: 

RIS can appear at either top or bottom edges of the rail. Hence, top and 

bottom edge lines need to be searched. The gradient edge detection has been 

performed using a bespoke algorithm based on the Robinson gradient edge 

detector method. Edges pixels are at local maxima of gradient magnitude and 

gradient direction is always perpendicular to the edge direction. This 

observation has been used to develop an algorithm that finds the maxima of 

gradient magnitude and classifies them as TopLine and BottomLine. TopLine 

refers to the top edge of the rail and BottomLine refers to the bottom edge. 

A Robinson edge detector has 8 kernels in different directions as explained in 

chapter 4, section 4.8.1. For each location in the image, the gradient is 

calculated using neighbors of that pixel, for each kernel. The maximum 

gradient is assigned to that image location, which eventually gives the edges 

of the image. However, the kernels detecting horizontal lines have mostly 

been used according to the requirement in most cases and in some cases the 

two or three kernel results have been added together to get better edges. The 

result of edge detection is presented in Figure 5.6.  

 



Developed Defect Detection Algorithms 

 

73 

 

 

Figure 5.6: Result of edge detection step using Robinson kernel for RIS defect 

4. Top & Bottom Line Distance: 

Once top and bottom edge lines are marked, their respective distances from 

top and bottom far edges of the image are calculated respectively. Distances 

for each edge pixel in both the top and bottom lines are stored in their 

respective arrays. This can be written as follows: 

Top Distance Array = Distance of each point of top edge line from the top 

edge of the image in terms of total number of pixels. 

Bottom Distance Array = Distance of each point of bottom edge line from the 

bottom edge of the image in terms of total number of pixels. 

These expressions can be represented in general equation form as shown 

below:  

 (   ∑ (  

 

   

 

 

Eq. (5.1) 

 

 

Where, 

p = Array containing distances of all the points on the top or bottom line from 

their respective image edges. 

d = Total number of pixels from any point 'i' at the top or bottom line from 

respective image edge. 

k = Maximum number of pixels in the top or bottom line. 

The graphical representation of the above equation is shown below in Figure 

5.7.  
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Figure 5.7: Graphical representation of distance 

Top and bottom lines with significant deviation are marked or drawn on a 

blank copy of the image as shown in Figure 5.8. 

(a) 

(b) 

Figure 5.8: RIS detection result (a) Rail image with RIS (b) RIS top and bottom lines 

marked 

5. Gradient \ Deviation Calculation: 

The defective edge areas are then marked or classified as defects by 

calculating deviation of the distances of the rail edges. The deviation is the 

absolute difference between the deviations (in terms of number of pixels) 
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calculated in the last step some G gap apart. The deviation is assessed over k 

successive pixels, as follow: 

 (   ∑  (    (     

 

   

 

 

Eq. (5.2) 

 

Here, 

D(i) = Deviation between distances at point i and i+G 

p(i) = Distance from the edge at point i 

G = Distance between two consecutive pixels for deviation to be computed 

k = Total number of pixels or length of the area to be scanned in an edge line 

In the above Eq. (5.2), p(i) represents the distance from the edge of the image 

and G represents an arbitrary gap between the comparisons of the pixel 

values. G is defined as the width at which a deviation becomes significant, 

i.e. at the position of the extrusion / protrusion. The deviation between two 

successive pixels where there is defect is close to the deviation of two 

successive pixels where there is no defect, whereas the deviation between an 

area with no defect and an area with defect is high. The resulting deviation, D 

provided a close overview of the condition of the edge of the rail and each of 

its values can be then assessed as being part of a defect or not, the higher the 

value, the bigger the defect. The parameter   allows the variation of the 

length of protrusion / extrusion to be detected, whereas the parameter   is for 

the depth. 

5.2.4 Classification of RIS 

For rolled in scrap detection, the final step is to find the degree of unevenness 

calculated in the previous steps, which is found out using a specially developed 

algorithm. The whole process can be summarised as finding the distance of the edge 

of the rail from edge of the image in number of pixels followed by calculating the 

deviation of the each distance value from another value G pixels apart. Finally, in the 
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classification stage, the areas of a certain length where the deviation values are all 

greater than predefined gradient value are marked as a defect. The bigger the area, 

the larger the defect and the higher the value of the deviation, the deeper is the 

defect. This is done for both top and bottom line of the rail.  

The classification process is done by comparing the value of deviation computed in 

the last step, with a gradient value defined by the user. Hence, every deviation value 

greater than gradient triggers the program to start counting the occurrences of 

deviation for which it is greater than the gradient value, from that pixel point 

onwards.  

Finally, if the number of consecutive occurrences of deviation values greater than 

gradient equals or exceeds the Length of Deviation (L), the area is marked as a 

defect. 

  ∑ (    

 

   

 

 

Eq. (5.3) 

 

             

 

Eq. (5.4) 

 

Where, 

N = Number of consecutive occurrences of deviation values greater than gradient 

D(i) = Deviation of distances between two points on the edge 

L= Length of Deviation 

X = Gradient value defined by the user 

k = Total number of pixels or length of the area to be scanned in an edge line 

The gradient value of 2 pixels has been found to be the best empirically and has been 

normally used for detection. The minimum length of deviation, again decided 
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empirically is usually 5 pixels. Hence, every deviation found at the edges which is 

more than 5 pixels wide and 2 pixels deep is classified as a RIS defect. A typical 

result from Rolled in Scrap detection has been shown in Figure 5.9. 

 

Figure 5.9: RIS defect detected and marked on original image 

5.2.5 Detection Rate 

The rolled in scrap detection rate is very high with almost 100% positive. The results 

have been concluded after performing successful detection on the data set of rail 

images only with RIS type defect, provided by TATA steel. The available data set 

has over 1000 images with the RIS type defect. All the rolled in scrap type defects 

that were present on the set of images submitted by Tata Steel were successfully 

detected, with a small amount of false positive. False positive RIS detection rate is 

only 5% for the current algorithm which occurs due to dust particles appearing on 

the images close to the rail edge, incorrectly detected as faults. 

5.3 Line on Top of the Rail 

Line on top of the rail appears in the form of horizontally running lines on the middle 

of the top surface of the rail. It is usually captured by the top middle camera of the 

JLI system. Detection of line on the top of the rail is a different challenge that 

involves edge detection, using a customized edge detector, followed by detection of 

straight lines. Once again standard image processing routines failed to detect the line. 

Hough transform and radon transform for line detection were considered and Hough 

transform was even tested, but were not found effective. The testing details have 

been provided in section 4.9. A representative image for line on the top of rail is 

shown in Figure 5.10. The defect line has been highlighted for the better viewing 

with a white colour line. 
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Figure 5.10: Original Image with Line on the Top of Rail Defect 

The general observation according to the information provided by Tata is that these 

defect lines are present right in the middle of top surface of the rail; and run on 

successively on consecutive images. This observation gives a clue as to where to 

look for the defect or what part of the rail is to be examined closely and also the 

minimum length of any detected line, on that special area, to be classified as a defect.  

5.3.1 Line Detection Methodology 

There are various existing line following or line detection algorithms such as the 

Hough and Radon transforms. Many of them were exhaustively tried on the line 

defect images, but none of them gave any satisfactory results (details provided in 

section 4.9). Actually, the defects mainly under investigation had horizontal lines in 

them, so a relatively simple line detections algorithm was needed, which has been 

designed and used.  

The methodology for detection of lines has following basic steps: 

1. Find all the possible lines in the horizontal direction, only at the middle part 

of the rail‟s tip surface by filtering. This is done by detecting high pixels in 

each column and other high pixels next to it in the horizontal direction. If the 

adjacent connected pixels are found high, the algorithm starts storing lines. In 

this way an accumulation of all the possible connected lines in the horizontal 

direction is stored in arrays.  

 

2. Compare the lengths of the detected lines to a pre-determine length of the 
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line defect. 

 

3. Any of these lines with a length equal to or greater to the predefined length 

and also runs on successive images is classified as a defect.  

5.3.2 Parameters Required for Line Defect Detection 

The parameters that are required by the algorithm to perform detection can be 

determined by the user at run time. The detection algorithm developed here uses 

these parameters: 

5. Threshold: A threshold value is determined to separate all the visible lines 

from the average value on the rail surface.  

6. Minimum Length: The minimum length parameter for detecting straight 

lines is used. Only the lines with the lengths greater than this minimum 

length are classified as defects. 

7. Threshold for Morphological Operation: Threshold value to perform 

morphological operation is used to clear blobs and noise from the image. In 

other words filter out lines and places of significant lengths and areas. 

5.3.3 Algorithm Implementation for Detection of a Line on the Top of the Rail 

The line on top of the rail is again detected in two steps. The algorithm consists of 

edge detection coupled with a straight line finder algorithm.  

1. Filter Horizontal Lines \ Horizontal Edges: 

In this step of detection all the horizontal lines existing in the image are filtered 

out using a kernel. The edge detection process has been explained in detail in 

the previous chapter. The mask is convolved with the original image and 

gradient is calculated at every point in both x and y directions to detect both 

vertical and horizontal lines. However, here only horizontal lines are to be 

detected. There are inbuilt functions available both in Matlab and OpenCV to 

detect the edges. However, to apply the mask mentioned above, a bespoke C# 

algorithm has been written. The code convolves the mask with the original 

image to find edges/horizontal lines, and is based on simple logic using loops 
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and conditions.  

An input of grey scale image is convolved with a kernel in order to filter out all 

the horizontal lines in the image. The example of the kernel used is shown 

below. 

k= 

















 121

000

121

 

 

The above kernel filters out the horizontal line in an image only. The resulting 

convolved image contains all the horizontal lines and the example of the image 

obtained is shown in Figure 5.11.  

 

(a) 

 

(b) 

Figure 5.11: Result of horizontal line detection (a) Original Image (b) Image with 

Lines Filtered Out in Horizontal Direction 

 

2. Threshold to Binary: 

Grey level slicing is used to highlight a specific range of grey levels in an 

image. The images being investigated for the research are all grey level 

images. The defect lines appear at different grey levels than rest of the back 

ground of the rail. Hence, grey level slicing has been used to separate 
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background from the defect using a certain threshold. User defined threshold 

value is applied to slice the image resulted from the last step to generate a 

binary image. All the pixels having the value greater than the threshold level 

are assigned maximum value which is 255 or 1 for white. While all other 

values which are less than the threshold value are assigned 0 for black. For this 

specific type of defect the best working range of threshold slicing values 

empirically calculated is between 60 and 70.  Level slicing graph has been 

shown in Figure 5.12: Grey-Level Slicing of Image. 

 

Figure 5.12: Grey-Level Slicing of Image 

The resulting image obtained after thresholding or grey level slicing has been 

shown in Figure 5.13. 
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(a) 

 

(b) 

Figure 5.13: Threshold result (a) Image after filtering horizontal Lines (b) 

Thresholding Result. 

 

2. Select Middle Area: 

Once all the horizontal lines are known, the region of interest is set to the 

middle area. Hence, only that part is processed for the later investigations, rest 

of the image is ignored. This is done in order to reduce the computation to be 

done as line defect only appears \ runs on the middle area of the rail. The result 

of region of interest selection is shown in Figure 5.14. 
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(a) 

 

(b) 

Figure 5.14: Middle area selection result for Line on top of the rail defect (a) Binary 

Image with Horizontal Lines (b) Region of Interest set to middle area 

 

3. Removing Non-defect Lines and Noise: 

The lines with some minimum area or length are the significant points; the rest 

are noise that needs to be removed from the image obtained at the end of last 

step. Modified form of morphological operation method is used to draw only 

the contours that have length greater than some predefined threshold value, all 

other lines or edges are dropped. Typically BWAreaOpen method is used for 

the purpose, which is available in both Matlab and OpenCV. The method 

accepts two parameters, an image and a threshold value. It removes all the 

objects that are smaller than that given threshold. However, a customized 

method for morphological operation has been defined in C# and used. The 

method uses three parameters, an image, and threshold and thickness values. 

The method gets an image and finds all the edges \ contours in it and redraws 

the ones that have area greater than the threshold provided; on new blank copy 
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of the image. The edges drawn have width equal to the thickness value 

provided. Hence, the function generates an image with size exactly equal to the 

original image (image received by the method) but containing only those 

significant edges \ lines that has length \ area greater or equal to the threshold 

value provided; and pre-defined thickness. In other words the resulting image 

contains only the lines that possibly are a defect. 

5.3.4 Classification \ Storing Horizontal straight lines 

The next step is finding straight line/lines; this is again a specially made 

algorithm. This part includes eliminating all the lines that are not growing or 

spreading horizontally and are smaller than a certain length. The whole image 

is scanned column wise and any pixel found high is stored in an array. That 

ever pixel stored in that array is checked horizontally. Every pixel stored in the 

array when taken from left to right must have its successive pixels on 

successive columns of the image, to be a line defect. Lengths for all the lines 

are saved this way and finally filtered by using the length parameter. The code 

for the purpose have been written using combination of simple programming 

routines such as arrays, loops with simple checks such as high pixel value 

check etc. 

 

A small recursive routine has been written to follow all the lines horizontally, 

originating anywhere in the selected middle region of the image. For each high 

pixel stored in the array, that routine is called to follow the pixel‟s horizontal 

spread. The routine is called recursively until the line ends and saves the length 

of the horizontal spread. Number of time the routine is called is actually the 

length of the line found, which is compared with threshold.  

The final step is to compare the length of all the detected lines with minimum 

length parameter. The lines with certain length are finally classified as defects 

and marked on the output image, while all other lines are dropped. Example of 

line defect detected by the software is shown in Figure 5.15. 
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(a) 

 

(b) 

Figure 5.15: Result of Line on the top of rail type defect’s detection (a) Original 

Image (b) Line Defect Detected 

5.3.5 Detection Rate 

The line on top detection rate of current algorithm is of 92%. There are 8% of the 

lines not detected by the system. The results have been concluded after performing 

successful detection on the data set of rail images only with Line on the Top type 

defect, provided by TATA steel. The available data set has more 1000 images 

defected by Line on the Top type defect.  However, those are faint lines that 

according to expert are not as critical as the deep appearing defects detected by the 

algorithm. There is a very small percentage of false positive, which is found to be 

only 1% that is negligible. 

5.3.6 Neural Networks Testing for Line on the Top of the Rail 

An alternative approach has been investigated that involves the use of neural 

networks. This section covers the method and results obtained by the application of 

neural network method for the defect detection. A Feed Forward Back propagation 

neural network has been used to get the results.   
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Neural networks are an advanced pattern recognition technique of computer 

programming. They are proving to be very efficient at solving other similar 

problems. Hence, it is worth trying to use them for defect detection. The results 

obtained so far, are very encouraging and expected to be improved to a greater extent 

in future.  

Different operations and filters are applied to digital images by convolution with a 

mask. A certain size of mask is chosen empirically and is moved over the whole 

image. The function to be performed or the calculation is repeated for every position 

of the mask. A range of statistical measures have been tested and are used mainly to 

represent the image. Statistical measures has been used as the rail images provided 

by Tata Steel are noise and textured. The basic statistics mainly used in the research 

are as follow: 

• Mean 

• Variance 

• Standard Deviation 

• Median 

The Mask size can be chosen at run time but most of the experimental results listed 

here are produced by mask size of 6 by 6 or 11 by 11. 

The mask is moved by a step of one or more over the whole image with the 

statistical information stored in arrays. The combined statistics array has every of 

these statistic as one of its row. All or combination of the statistics have been tested 

to get the results. 

Implementation:  

For training purpose, the part of the image containing the defect is taken as the 

target. The statistical values of this area are stored into an output array. The input 

array contains the statistical values calculated by masking the whole image. The 

network is then trained on this data.  

The trained network is then used to classify the statistical values of any image, to 
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detect any similar defect/statistics it has been trained on initially. This process is 

called simulating the network.  

The results from neural network based detection of line on the top of the rail are 

shown below in Figure 5.16.  

 

Figure 5.16: the detection of a Line on the top of the rail detection using neural 

networks 

The detection results obtained from the neural networks testing contains lot of noise 

detected as well, as can been seen in the Figure 5.16 above. The results are not very 

satisfactory as compared to the detection results produced by the previous method 

explained before in this section (results provided in section 5.3.4). 

5.4 Tiger Stripe (TS) 

“Tiger stripes” are dark areas that appear on the rail top surface when the rail is left 

under the cooling water longer than required. They occur at the top of the rail as 

known as crown of the rail. Hence, they are mostly captured by the top middle 

camera and sometimes also by the right and left cameras on the tops edge. 

The marks are of variable sizes but with a characteristic shape, which appears like a 

roughly sideways drawn zigzag pattern of various sizes. Their successive occurrence 

on many images together helps in their detection. However, their detection is not 
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straightforward as last two defects, due to their largely different sizes. An example 

image is shown Figure 5.17.  

 

Figure 5.17: Large tiger stripe pattern – Light adjusted image 

The TS can be as large as shown in the figure above and can be as small as shown in 

Figure 5.18 below. Both the example images presented here are contrast adjusted in 

Matlab to suggest the clear \ better view of the defect. 

 

Figure 5.18: Small tiger stripe pattern histogram adjusted 

5.4.1 Light Adjustment 

The use of non-diffuse light sources (spotlights) and inconstant rail positioning has 

resulted in non-uniform lighting conditions for the images, which results in changing 

brightness within various parts of the same image and also between successive 

images. A poor lighting condition on the images with tiger stripes makes the defect 

detection almost impossible. Image shown in Figure 5.19 is an example of 

unprocessed image with TS defect. It can be seen that not only whole image is dark 

but left part is darker to an extent that the defect seems not to be present on that side.  
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Figure 5.19: Original tiger stripe image 

An average filter has been used to adjust the lighting of the images. A range of 

standard histogram equalisation algorithms were previously unsuccessfully applied 

on both local and global, necessitating the generation of an  new, effective average 

filter. 

The Image is equalised using a method of finding the background lighting of the 

image, which has been used to correct the original image. An average filter with a 

length equal to the height of the image and a width of one pixel is applied to the 

original image. The result is an image representing the lighting, which has been 

shown in Figure 5.20. 

 

Figure 5.20: Extracted light field of the image in Figure 5.19.  

 

The light field image is then inverted and added to the captured frame. Image 

smoothing uses an average filter and has been found very effective as can be seen in 

Figure 5.21. The equalization/averaging process and filters have been explained 

before in the section 5.4.1.  
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(a) 

 

(b) 

Figure 5.21: Result of Tiger stripes image equalization (a) Original image with tiger 

stripes (b) image after equalization. 

 

5.4.2 TS Detection Methodology  

Detection of TS artefacts involves the normalization of the image intensity followed 

by detection of the dark zones. 

The tiger stripe detection is performed in three steps: 

1. Image equalization: Image is equalised using a combination of an average 

filter and image subtraction technique explained in the last section to make 

the image lighting uniform. 

2. Thresholding: A simple threshold is used to extract the dark areas or in other 

words all the edges in an image from the equalised image of the last step. 

3. Classification \ Area size selection: A parameter has been empirically defined 

for the size of dark zone. This parameter is used for the classification of 

defects. Dark zones of some distinct size and their presence on successive 

images; is characteristic of this defect that helps in its detection.  

5.4.3 Parameters Required for TS Detection 

There is only one main parameter that can be controlled externally by the user, 

which is the size of the dark zone. The number of pixels covered by the detected 

dark zone is compared with the size variable provided and if the size is found equal 

or bigger than that, it is classified as a defect. The selected dark zone can be seen in 

Figure 5.22.  
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(a) 

 

(b) 

Figure 5.22: Example image for Tiger Stripe type defect (TS) detection (a) TS 

original image (b) TS dark zones selected 

5.4.4 Algorithm Implementation for TS 

The detection algorithm for Tiger Stripes can be summed up in the following 

steps: 

 Input image is again a grey scale image. The first step is image 

equalization to adjust the lighting on the image, which is applied 

using specially developed algorithm. The method works in the 

following steps: 

 

 A convolution border is added to the original image. Image is padded 

on its top and bottom sides only, with 0‟s. The zero borders have size 

equal to that of an image. In other words it can be said that a black 

copy of the image is padded on top and bottom of the image, to serve 

as convolution border. Hence, the resulting image has same width as 
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that of orginal image but three times the height.  

 

Figure 5.23: Convolution border added to the original image 

 A filter with a length equal to the height of the image and a width of 

one pixel, having all 1‟s in it, is convolved with the bordered image 

obtained after padding, in the last step. Convolved image is 

subsequently scaled by a factor of 1 / (height*width) of the filter used.  

Convolution with an average filter results in an image representing 

the lighting. Convolution operation shown in Eq. (5.5) has been 

performed to extract the above light field. 

(    (     
 

   
∑  (     (        

       

           

 

 

Eq. (5.5) 

 

f = Convolution filter used 

h = Height of the filter f 

w = Width of the filter f 

k = Image to be convolved with the convolution border padded. 

x = width of the image k 

y = Height of the image k 
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 The resulting image representing the lighting is then inverted. Image 

inversion is done using a typical grey scale reversal process. For 

example, if there is a grey scale image I with values ranging from 0 to 

255 then inverted Image for I is given by 

    (          (     

 

Eq. (5.6) 

 

  Iinv = Inverted Image of original image I(x,y) 

I(x,y) = Original Image 

 The inverted image is finally subtracted from the captured frame to 

make the image look uniformly bright everywhere. Original image, 

the light field obtained after using the average filter and finally the 

adjusted  image obtained after subtracting the inverted light field from 

the original image has been shown below in Figure 5.24. 
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(a) 

 

(b) 

 

(c) 

Figure 5.24: Light adjustment result for tiger stripes (TS) (a) Original image with TS 

(b) Light field extracted for TS image (c) Light adjusted for TS image 

2. The resulting image is then binarized using threshold to binary conversion 

method. The inverse thresholding method has been used that works in inverse 

way of the normal thresholding method explained in the last section. In the 

inverse method if the pixel value is greater than threshold; it is assigned as 0 

rather than 1 as done in typical thresholding method. Image obtained after 

thresholding has been shown in Figure 5.25. 
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Figure 5.25: TS image after thresholding 

3. Next step is to find dark zones on the image. There is a small method defined 

to help in finding the dark zones. The method accepts 3 parameters. These 

parameters are for Image, threshold and the thickness. The function works in 

three steps: 

 First it makes the blank copy of the image. 

 The function then finds all the contours in the original image that have 

area greater than the threshold value provided.  

 The next step is to draw all the contours on the blank image created 

with thickness provided in the arguments. 

4. The final step is classification based on the size of the dark zones detected. It 

is explained in the following section. 

5.4.5 Classification Method Used for Tiger Stripes 

A special classification technique has been developed. Size variable is used to 

perform the classification. The variable is defined by the user and the dark zones 

detected, as a result of pre-processing and thresholding stages, compared with the 

variable. If the size of the dark zone is found bigger than the defined variable, they 

are marked as defects. The final classification is based on the presence of similar size 

dark zones on successive images. This is the key and the useful point for the defect 

detection. The result of tiger stripe detection is shown in Figure 5.26. 
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(a) 

 

(b) 

Figure 5.26: Result of Tiger stripe detection (a) Light adjusted original image with 

TS (b) TS defect marked / detected 

5.4.6 Detection Rate 

The tiger stripe detection rate, using the explained algorithm, is 80% only, when 

tested on almost 1000 images with tiger stripes. Varying size of the defect and some 

cases where the stripes are faint; the algorithm fails and is still critical to the quality 

of the rail itself. However, there is not false positive detection, which means all 

marked rails have tiger stripes on them are detected. Several other techniques have 

been tested to improve the detection rate, which have been explained in the later 

sections.  

5.5 Wire Defects 

A “wire defect” is a line type deep scratch, found at central area of the base of the 

foot. The variation in this type of defect made them extremely hard to detect from 

computer vision aspect, while maintaining an acceptable level of false positives.  

They have various shapes and sizes and can appear as straight lines, curves or even 

random arbitrary lines of different sizes.  
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However, it has been observed that the wire defects have occurrences of dark / light 

lines next to each other. This unique property of the defect has been helpful for its 

detection, which is done by measuring deviation of intensity of dark and light lines 

within a window. Many other techniques were also tried on wire defects less 

successfully, which have been explained with their results later in this chapter 

(section 5.6). An original rail image with a wire defect can be seen in Figure 5.27.  

 

Figure 5.27: Original rail image with wire defect. 

5.5.1 Wire Defect Detection Methodology 

The defection of the wire defect is based on a characteristic of the defect‟s 

appearance with the original lighting. This type of defect has some special 

characteristic that have been used to detect it. An empirical observation is that it 

always appears as a dark line contiguous to a light line on the entire set of provided 

images and on all type of shapes. The algorithm for detecting this type of defect 

takes advantage of the continuity of dark and light lines. An XY plot of a line drawn 

vertically through the fault, showing the adjacent high and low intensities is shown 

below in Figure 5.28. It is very obvious that how intensity varies at the cross section 

of a wire defect, showing the presence of dark and light lines next to each other. 
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Figure 5.28: XY plot of a line drawn vertically through the wire defect 

A sliding window was used to detect the local variation and deviation of a pixel‟s 

grey values, a defect is considered to be present using two criteria, the deviations of 

grey level should be significant (i.e. above a manually determined threshold) 

compared to the average pixel value in the window, and the light and dark line 

should be contiguous. The result of the detection can be seen in Error! Reference 

source not found. for line type of wire defect. A post-processing filtering that 

involves morphological operations, is necessary to remove all detected blobs and 

marks which are too small to be a defect, i.e. with a „defect area‟ too small or a 

„defect length‟ too short. Consultations with experts enabled the setting of the 

threshold, necessary for this algorithm to work. 

 

 

(a) 

 

(b) 

Figure 5.29:  (a) A successful detection of a line (b) A successful non detection of an 

artifact 
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5.5.2 Parameters Required for Wire Defect Detection 

The defined detection algorithm for wire defect uses three main parameters: 

1. Window Size: Size of the average window, which is to be convolved with 

the image to perform average filtering, is required and can be manually 

determined by the user. This average window can have variable number of 

rows and columns. 

2. Low Threshold: A low threshold value to determine dark lines during 

detection is needed. 

3. High Threshold: A high threshold value to find light \ bright lines in an 

image is required. 

4. Detected Zone Size: Minimum size required by a detected dark and bright 

line \ zone is used. The zones having some certain size which is greater than 

this parameter value are assigned as defects, remainder are all ignored. 

5.5.3 Algorithm Implementation Steps for the Wire Defect 

The detection algorithm of wire defect detection has following steps: 

1. Extract Edges by Un-sharp Masking: An average filter of size equal to the 

window size variable; with all its values as 1‟s was created. The filter was 

convolved with the original image to produce a smoothed image. Average 

filtering was used to remove noise by removing pixel values from an image 

which are different from their surroundings. The result of smoothing was 

shown in Figure 5.30. 
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(a) 

 

(b) 

Figure 5.30: Result of image smoothing step for wire defect detection (a) Original 

image with wire defect (b) wire defect image after smoothing 

The filtered smooth image is then subtracted from the original image to 

obtain the edge image. The resulting edge image can be seen in Figure 5.31. 

 

(a) 

 

(b) 

Figure 5.31: Result of edge extraction using un-sharp masking for wire defect (a) 

Original image with wire defect (b) Edges extracted from original image by un-

sharp masking technique. 
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The process is called un-sharp masking which is a sharpening operator used to 

enhance the edges and other high frequency components in an image. It has been 

used to extract all the edges from an original image. The process of un-sharp 

masking has been shown in Equation Eq. (5.7). 

   (       (            (     Eq. (5.7) 

Where, 

IE = Edge image of the input image 

Ii = Input image 

Ismooth = Smoothed version of the input image Ii 

Deviation of Pixel’s Grey Values: Average value of the smoothed image is 

calculated and is used to find the deviation or variation of pixel‟s grey value. 

There is some manually determined threshold value, which is used as cut off 

band. All the pixel values in the edge image are compared to the average 

value. The edge values that lie in the cut off band are all dropped, being their 

insignificant deviation from the average value. This step results in an edge 

image with only significant pixel value deviation from the average value. The 

image obtained is shown in Figure 5.32. 

 

Figure 5.32: Image of significant deviation edges 
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The above explained process has been expressed in. 

 

I(x,y) = I E (x,y) > (Avg+ ε) + I E (x,y) <(Avg – ε) 

 

Eq. (5.8) 

 

Where, 

I = Output image 

Avg = Average value of Ismooth 

ε = Threshold limit for deviation 

IE = Edge image of the input image 

 

2. Detection of Bright & Dark Lines \ Edges: The image resulting from the 

last step is then scanned for all the dark and bright edges present in it. All the 

edges with pixel values greater than „0‟ are assigned to positive image and all 

the edges with values less than „0‟ are assigned to negative image. The result 

is two images, one with all the bright \ light edges and one with the dark edge 

lines separated from input image, that came from step 2. The resulting images 

are shown in Figure 5.33. 
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(a) 

 

(b) 

Figure 5.33: Detection result for bright and dark lines in a wire defect image (a) 

Image showing positive edges of an image with wire defect (b) image showing 

negative edges of an image with wire defect.  

The process can be expressed by the following equations. 

Ipos(x,y) = Iin(x,y)>0 

 

Eq. (5.9) 

 

Ineg (x,y)= Iin(x,y)<0 

 

Eq. (5.10) 

 

Where, 

Iin = output of step 2 which is I 

Ipos  = All the edges with pixel values greater than „0‟ 

Ineg  = All the edges with pixel values less than „0‟ 

3. Threshold to Binary: Resulting images from the last step are then binarized 

using the thresholding to binary method. Ipos is binarized using high threshold 

value provided and Ineg is binarized using low threshold value provided. Two 

threshold values, one for low and one is for high, are used keeping in view 

that the defect occurs in the form of light and dark lines next to each other. 
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Hence, image is binarized using the two threshold values. The resulting two 

images can be seen in Figure 5.34. 

 

 

(a) 

 

(b) 

Figure 5.34: Threshold result showing bright and dark edges for wire defect image 

(a) Image showing only dark edges/lines in the image (b) Image showing only bright 

edges detected in the image 

4. Morphological Operations:  

A morphological operation is then applied to both images in order to get 

better view of their binary image forms by clearing unnecessary small edges 

and objects from the images. A function has been defined for this purpose, 

which makes a blank copy of the input image. It then finds all the edges that 

have area greater than the value of size zone provided in the input image and 

redraws those areas on the blank copy. Hence, clears small and unnecessary 

blobs and objects from the input image. The clean images produced 

containing only areas of interests that can be seen in Figure 5.35. 
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(a) 

 

(b) 

Figure 5.35: Result of wire defect negative and positive edge images after 

morphological operations applied. (a) Clean positive edge image (b) Clean negative 

edge image 

Another morphological operation of Dilation is applied to the two images 

which causes bright regions (edges in this case) to grow. The elliptical 

shaped structuring element of empirically defined size has been used to 

perform the dilation operation on both images. Hence, both the negative and 

positive edges found as bright regions are dilated to connect any broken 

edges \ areas. 

This step results in binary images of Ipos and Ineg containing only significant 

size areas of interests, further dilated to make them more significant. The 

final images can be seen in Figure 5.36. 
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(a) 

 

(b) 

Figure 5.36: Result of edge dilation step for wire defect detection (a) Clean positive 

edge image after dilation (b) Clean negative edge image after dilation 

 

5. The resulting two images from step 5 are fianlly multiplied with each other to 

find if the positive \ bright edges are located right next to negative \ dark 

edges. The multiplication process outputs „0‟ if either of the inputs is „0‟. 

Hence, the resulting image will have only the edges that are present in both 

Ipos and Ineg at the same locations. The result of multiplication between the 

images from step 5 can be seen in Figure 5.37. 

 

Figure 5.37: Multiplication result of negative and positive edge images 

In other words, the output image will have only contiguous light and dark 

lines on it. The process has been expressed in the following equation form. 
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Iout  = Ipos  x Ineg Eq. (5.11) 

 

Where, 

Iout  = final output image 

Ipos  = morphologically processed image with all positive pixel values \ bright 

lines 

 Ineg = morphologically processed image with all negative pixel values \ dark 

lines 

5.5.4 Classification of Wire Defect 

The classification of the defects depends on the length of the wire defected and 

hence, uses a size variable for comparison. The function explained in step 5 of the 

algorithm‟s implementation draws only the contours/edge lines that have size greater 

than the detected zone size parameter provided; all other lines or edges are dropped. 

Hence, the two images (negative and positive edge images) are formed containing 

only the contours of specific lengths. Finally, both the images are multiplied together 

to get the image with only those lines which are present in both the images. Hence, if 

there is anything present on the final product, it will be classified as a defect. The 

final detection result can be seen in Figure 5.38 and Figure 5.39. 

 

 

(a) 
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(b) 

Figure 5.38: Detection result for wire defect (a) Original image (b) Wire defect 

marked on the original image 

Another example of wire defect detection can be seen Figure 5.39.  

 

(a) 

 

(b) 

Figure 5.39: Detection result of wire defect example 2(a) Original image (b) Wire 

defect marked on the original image 

5.5.5 Detection Rate 

The algorithm for wire defect has a perfect detection rate of 100% of all the wires. 
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The success rate has been computed after performing successful detection on the 

data set of rail images having wire type defect. The available data set has over 1000 

images of wire defect. The algorithm does have 5% of false positives due to 

occasional water drop that are incorrectly labelled as being faults. However, the false 

detections can always be assessed by a post-viewing as being safe. 

5.6 Alternate Techniques Tested for the Wire Detection  

This fault was the most difficult defect to detect, with a comprehensive range of 

methods exhaustively tested and applied to the wire defect images. Many algorithms 

and image analysis techniques such as Fourier transform and Susan Filtering, 

Straight line algorithms, neural networks, Principle Component Analysis were 

tested, with generally negative results. All these algorithms detected non-defect 

marks and noise also. There is a very fine line between the defect and other lines and 

marks present on the track that are not defects. So there had to be a technique to 

detect only the defects. The other techniques applied and tested on the wire defects 

and the results produced by them have been provided in this section.  

5.6.1 SUSAN Function 

The details of SUSAN filtering and how it works; have been explained in the 

previous chapter in detail in edge detection section. Matlab code has been written 

manually to get the results. All the parameters and the kernel used are user defined. 

Various masks with their empirically determined sizes and angles are used, which 

are slided over the whole image using „nested for loops‟ to perform the SUSAN 

operation. 

The best combination of optimised parameters produced the results shown in the 

images in Figure 5.40.  It can be seen in the images that they are detecting the wire 

defect lines, but also picking up extra noise and dust of the back ground, which made 

it difficult to differentiate defect from non-defect.  

SUSAN filtering combined with other techniques was also tested to get some 

improved detection, which has been discussed in the next section. 
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Figure 5.40: Results of wire defect detection using SUSAN function 

5.6.2 Fourier Transform and SUSAN Filtering 

As seen in the Figure 5.40, noise picked up by the SUSAN filter was a problem. 

Hence, Fourier transform was tested and used along with the same optimised 

SUSAN filtering as discussed before, to get image with reduced noise.  

Fourier transforms and the steps to remove noise from an image using it have been 

explained in detail in the previous chapter 4 in the noise removal section (section 

4.4). Fourier transform of the image is taken and circular area containing the noise is 

removed. The SUSAN filtering is applied after taking the inverse Fourier transform 

of the resulting image. It can be clearly seen from the results shown in Figure 5.41  

that still a significant number of non-defect areas are being detected. Hence, it 

cannot be classified as a good detection method. 
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Figure 5.41: Results of wire defect detection using Fourier transform with SUSAN 

filter 

The above results have been obtained using Matlab. “fftshift” and “ifft2” functions 

have been used to take the Fourier and its inverse after removing certain frequencies. 

SUSAN filter has again been applied using the manually written code in Matlab. 

5.6.3 Neural Network Wire Defect Detection 

A back propagation neural network has been used to process the wire defect images 

shown in Figure 5.42. A small size of mask is chosen and is moved over the whole 

image; to calculate statistical measures such as standard deviation, mean and 

variance of the area under the mask etc. Statistics calculated from the defective area 

were used to train the network. After training, the trained network is simulated by the 

statistic values of any image to detect any similar defect. The details of 

implementation steps have been provided at the end of the report in appendix A. The 

results from neural network based wire defect detection are shown in Figure 5.43. 
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Figure 5.42:  Original images showing wire defects 

The results obtained are better than other techniques previously tested but still the 

neural network is struggling to identify the defects form the non-defect marks \ edges 

on the rail, which can clearly be seen in the images shown. Neural networks are still 

being tested in different training sets and in combination with other detection 

methods to get better results. Matlab existing function called “newff” has been used 

for the testing purposes. The function creates feed forward back propagation neural 

networks. 
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Figure 5.43: Results obtained for wire defects using neural networks 

Back propagation networks are very efficient at prediction and classification 

(segmentation) but they have few practical consideration. They are comparatively 

slow only to train, however once trained they are a lot quicker. There is no 

explanation about the learning of the network available i.e. a learned network does 

not contain any information about its learning. Anything can be fed on network and 

it becomes a problem, even the irrelevant data. For example, noise on the images 

cause a problem. Sometimes overtraining of the network usually occurs that results 

in error. Considering industrial application data might change over change, and the 

network working today might not work tomorrow. Hence, these things have to be 

evaluated before using neural networks in industry. Although the results are good 

and comparable to the results produced by previous method explained in section 5.5, 

however, the neural network implementation needs some further testing before this 

method can be implemented in the field which needs more time. 
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5.7 Summary 

The list of adapted existing imaging procedures, and also lists the special algorithms 

that have been written for the detection have been provided in Table 5.1. For each 

defect specific logic and detection steps were defined and have been implemented 

using the combination of existing imaging methods, their adapted forms and 

specially written algorithms.  
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Table 5.1: List of Developed & Adapted Algorithms 

Algorithms Advantages \ Comments 

Logic 

Detection 

Steps 

 For each defect specific logic and detection steps have 

been defined. The logic has been implemented using the 

combination of existing imaging methods, their adapted 

forms and specially written algorithms. 

Image 

Equalization  
 Image Equalization has been applied using Average Filter 

for Tiger Stripes to adjust the lighting. 

 The code has been written manually to perform 

equalization 

Straight Line 

Algorithm 
 Helps find the defects that appear as straight lines by 

detecting all the lines in the image that have horizontal 

spread. 

 Code has been written manually to find the lines with 

horizontal spread for line on the top of rail type defect. 

Adapted 

Morphological 

Operation for 

Tiger strips 

 A code has been written manually to perform the 

morphological operations. Various inbuilt morphological 

function exist in Matlab and OpenCV operation. But has 

been modified and re-written for the specific use for the 

detection of tiger stripes. 

Rolled in 

Scrap Finder  
 A code has been written manually to find the deviation of 

the edge of the rail to find rolled in scrap type defect. 

Wire Defect 

Finder 
 A sliding window is used to detect local variation and 

deviation of pixel grey values. A code has been written 

manually to perform the operation. 

Classification 

Procedures 

Classification algorithm routines have been written that 

 Compares the size of dark zones in tiger stripes,  

 Compares line size in Line on the top,  

 Compares wire size for wire defect  

 Compares deviation calculated for rolled in scrap 

All with a defined parameter in a specific manner to 

classify them as defects for each case. 

Statistics for 

Training 

Neural 

networks 

 Methods have been written to scan the whole image and 

computer statistics of mean, variance, standard deviation. 
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Optimised edge detectors, thresholding methods and other image processing 

methods have been applied to achieve the current results. Neural Networks which are 

very flexible, efficient and simple to handle and implement. Their training is found 

to be much faster as compared to the self-organizing maps or any other neural 

networks presently being used for image processing.  

Detection of each defect involves specific algorithmic steps that have been defined 

using the best combination of existing imaging methods, their adapted forms and 

specially written algorithms. The results obtained, success rates, detection speed and 

performance evaluation of the developed detection algorithms has been described in 

detail in the next chapter. 
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6 PCA Method for Defect Detection 

 

 

 

6.1 Introduction 

This chapter describes an alternate rail defect detection method based on Principal 

Component Analysis technique to those methods, described in the last chapter. A 

single adaptable, trainable and efficient detection method for the detection of all the 

rail defects under investigation has been explained in detail in this chapter. Chapter 

covers the implementation steps of PCA based detection method, analysis and 

comparison of PCA statistics computed followed by classification of those features 

using back propagation neural networks. 

6.2 Principal Component Analysis (PCA) 

“Principal Component Analysis (PCA) is a mathematical procedure that uses 

an orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal 

components.” (Yinglin and Li, 2011) 
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PCA is a method of identifying similarities or differences in a data, in other words it 

can be referred as a technique that recognizes patterns present in a data. PCA reduces 

dimensionality of data, retaining the useful information. This technique has been 

chosen for rail images because of two of its main characteristics; it is known useful 

for handling high dimension data and extracting useful features of the data. That is 

the basic need for inspecting rail images, as rail image data under investigation is 

very large and all the defects to be detected have specific features.  

PCA technique is tested with an aim of developing a generic detection technique for 

the different types of defects found on these manufactured rails. The major objective 

is to design an adaptable and trainable single technique for detecting the different 

types of faults. A system is to be developed that can learn and adapt itself to the 

changing types of faults with the time. It is hoped to develop a more generic 

approach rather than the series of bespoke and tailored algorithms presented so far in 

Method-1 (chapter 5), using different new and developing techniques such PCA and 

neural networks. Idea is to find the PCA features of defects and clear rails and train 

the neural network in order to classify them. The defect detection steps using PCA 

method have been presented in a form of a flow chart in Figure 6.1. 
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Figure 6.1: Flowchart of steps for PCA based Defect Detection Method 

 

6.2.1 Principal Component Analysis (PCA) Calculation 

PCA calculation involves the computing of covariance matrix of any given data. 

Covariance is to find out that how different variables change together, with respect to 

each other. It is calculated using the following steps: 

1. Centralise the data: The mean of each dimension of the data is subtracted 

from each element in that dimension. This process results in a data set which 

has mean equal to 0.  

2. Covariance: Centralised data is used to calculate covariance matrix. For 

example, if (x,y) is a 2 dimensional data set, its covariance is  calculated 

http://en.wikipedia.org/wiki/Covariance_matrix
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using the following formula: 

   (      
∑ (   ̅ (   ̅  

   

   
 

 

Eq. (6.1) 

 

Where, 

x = data in X dimension 

y = Data in Y dimension 

 ̅ = Mean of x  

 ̅ = mean of y  

3. Calculate Eigen vectors and Eigen values: Eigen vectors and Eigen values 

of the covariance matrix are then calculated using matrix algebra. Eigen 

vectors are certain vectors which when multiplied by any matrix change only 

their magnitude, and direction remains either unchanged or exactly reversed. 

The factor by which the magnitude changes is called Eigen value, which is 

positive if vector‟s direction remains unchanged and is negative if the 

direction is reversed after multiplication. Eigen and Eigen values are related 

in a following way. 

 

                        I * Evector = Evalue * Evector 

 

I = Matrix of any dimention 

Evector = Eigen Vector 

Evalue = Eigen Value 

If I is a matrix of any dimension, then Evalue is an Eigen value of I, if they are 

related to each other by a non-zero Eigen vector Evector.  

4. Select Eigen vectors with largest Eigen value: In the final step Principal 

components are chosen. The Eigen vectors with highest Eigen values are the 

principal components of the data. 

6.2.2 Computation of PCA Projection Image 

An in built OpenCv PCA library functions \ methods are available which have been 

tested on the rail images. The said functions work in similar steps explained above to 

perform PCA analysis and computes Eigen vectors, Eigen values and projects the 
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principal Eigen vectors which are known as Principal Components.   Specific region 

of interests from the image can be inputted to the system in matrices form, which 

computes covariance matrix using the covariance equation from Eq. (6.1). . Eigen 

vectors and Eigen values are then calculated from that covariance matrix following 

the steps explained in section 6.2.1. Finally, the vectors with highest Eigen values 

are assigned as PCA features or Principal Components of that particular matrix.  

A code has been written that slides a window mask of some defined size over the 

whole image and PCA features of area covered by the mask at every location are 

calculated. The PCA result for the mask size 6 has been presented in Figure 6.2(b).  
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(a) 

 

(b) 

Figure 6.2: PCA result of rail image with a wire defect (a) Original rail image with 

wire defect (b) PCA Projection image obtained by simply plotting the principal 

components computed for each location of a sliding window of size 6, from a 

complete image.  

The PCA image from the original image is computed by the following steps. 

1. Grey scale input rail image is enhanced if needed for light adjustment and 

noise removal, using the procedures explained earlier in chapter 4 only if any 

pre-processing is required.  
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2. A small mask \ window size is defined, which is slided over the whole image 

and principal components of each location under that window are computed. 

Mask sizes of 4, 5 and 6 give the best results. Further increase of the mask 

size picks the background noise as well. Possible explanations for better 

result for smaller mask sizes are the method of compression used to save the 

image and the nature of the light source on the rails. 

 

3. Variables to store input vector, average vector, Eigen vectors, Eigen values, 

Eigen vectors projections or decomposition coefficients (referred as PCA 

features as well) are defined.  

 

4. A PCA method is called which performs PCA analysis of the input vector set 

provided to the method. First, average vectors are calculated followed by the 

computation of covariance matrix. Finally Eigen values and Eigen vectors are 

calculated and then all the values are stored in array vectors. The details of 

the PCA computation have been explained in the previous section of 

Principal Component Analysis Calculation, section 6.2.1. 

 

5. The computed Eigen vectors are arranged in descending order of their 

respective Eigen values. Therefore, the first column of the Eigen vector are 

those vectors with maximum Eigen values, these represent the Principal 

Components.  

 

6. Eigen vectors are finally projected into vector‟s subspace using another 

OpenCV method. This method computes the decomposition coefficients 

matrix. In other words, the input vectors are projected into subspace of the 

first column of Eigen vectors \ principle components.  

 

7. These PCA projections of Eigen vectors, for every position of the sliding 

window over the whole image, are assigned to the corresponding location of 

a blank copy of the image. Resulting PCA image after the complete 

computation is displayed. The window sliding step can be chosen. However, 

for best results the step size is one pixel in horizontal direction and window 
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size in vertical direction. Therefore, only the first column of the Eigen 

vectors that have maximum Eigen values are chosen. The result of the 

procedure up till this step can be seen in Figure 6.2. PCA projections have 

been referred as PCA features in the chapter. 

6.2.3 Statistic for PCA Projection Image 

The algorithms steps explained in the last section allow the user to calculate PCA 

representative image, which is the projection of principal Eigen vectors or principal 

components of the image.  Defective and clean areas of rail can be clearly seen on 

this PCA projection image shown in Figure 6.2. Representative areas for the defects 

and clear rails can be marked and selected on this image. Statistics such as mean, 

variance and standard deviation (STD) of the selected areas can then be calculated 

for the selected regions of the rail. PCA representative image like the one presented 

in Figure 6.2 is used to compute the statistics for either the whole image or for the 

defective and clear area of the rail that can be selected manually by a user. The 

software allows selecting any area of the image for which whole statistics needs to 

be computed, using a mouse. This can either be a rectangular region from the image 

or only an area around a selected point from the image. The processes by which 

these statistics are computed for complete image are listed below: 

1. Standard deviation, mean, variance and other statistics of these PCA features 

are computed using a defined method. This method scans the whole PCA 

projection image by sliding a small vertical window of defined length and 

width of one pixel. The width is chosen as one pixel as most of the defects 

are in the form of horizontal lines, therefore standard deviation usually varies 

vertically and not horizontally.  The window is convoluted over the whole 

image with step size of 1 in both columns and rows direction.  

2. A blank copy of the input image as saved for each statistical mask. Statistics 

that are calculated for each location of the mask are assigned to their 

respective location on their blank copies. 

3. At the end, each statistical test has its representative image saved for further 

processing or classification purposes. 

In case of selected regions of the rail image, the selected \ marked area is stored in an 
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array. The statistics of that small area are computed sliding the similar vertical 

window of defined length and width of one pixel over the region, with step size 1. 

Statistics for each location of the window are finally computed and saved in 

respective arrays. 

The calculated statistics are then plotted against each other to see the variation 

clearly. The next section covers the PCA statistics plots, their comparison and 

evaluation for each type of defect. 

6.3 PCA Statistical Profile Analysis 

The Eigen vectors, Eigen values and PCA projection vectors \ features extracted 

from the clear and defective rail images have been analyzed. Their values and 

statistical relationships between these values, such as variance, standard deviation 

and mean for defects and clear rails, were computed and described in the last section. 

These statistics have been compared and plotted together on the same graph each 

other to find the relation that best describes the data in this section. These plot 

obtained have been presented and analysed in this section. This has been done to 

differentiate the profiles of defective and clear parts of the rail. The plots have 

number of points on X axis and the PCA features, their variance and standard 

deviation respectively on graph b, c and d on Y-axis. Defects are plotted in blue 

color lines and values from clear areas/non-defect areas are plotted in orange color. 

6.3.1 PCA Statistical Plots for Tiger Stripes  

Principal Components (Eigen vectors with high Eigen values), their decomposition 

coefficients (Principal components projections) and the statistics of variance and 

standard deviation between them, for the tiger stripes and clear rails have been 

plotted against each other.  

Statistics of the selected regions of rail images from the defected and clear rails, 

calculated as explained in last section (section 6.2.3), are saved in their respective 

variables. The original image with the graphs obtained by plotting the statistical 

points calculated on the clear and defective rail areas can be seen in Figure 6.3. 

The PCA features for defects and non-defect areas are plotted as shown in Figure 6.3 
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(b). It can be seen that the plots obtained are very distinct from each other. The plots 

of variance and standard deviation of PCA features shown in Figure 6.3 (c) and (d) 

are even more distinctive for defects and non-defect areas of the rail with tiger 

stripes.  

 
(a) 

 

 

 
 (b)  
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 (c)   

 

 

 
(d) 

Figure 6.3: (a) Original rail image with tiger stripe type defect (b) Principal 

components\PCA features computed on tiger stripe rail areas plotted against the 

clear rail areas (c) Variance of PCA features of computed on the rail areas defected 

with tiger stripes and clear areas of the rail plotted together (d) Standard Deviation 

of PCA features of rail areas defected with tiger stripes and clear areas of the rail 

plotted together. 

Therefore, it has been concluded that PCA features and statistics computed from 

them for Tiger Stripes type defect are able to differentiate the defective areas from 

the clear areas of the rail.  



PCA Method for Defect Detection 

 

128 

 

6.3.2 PCA Statistical Plots for Wire Defect 

PCA features and their statistics were computed and plotted for wire defects, with 

the resulting plots of wire defects shown in Figure 6.4. It can be seen from the plot in  

Figure 6.4 (b) that features of defects and non-defects are quite distinct and are even 

more differentiable for the statistics plots in  Figure 6.4 (c) and (d). 

 
(a) 
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(c) 

 

 

 
(d) 

Figure 6.4: (a) Original rail image with wire defect (b) Principal Components\PCA 

features of wire defect and non-defect rail areas plotted against each other (c) 
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Variance of PCA features of wire defect and non-defect rail areas plotted together 

(d) Standard Deviation between PCA features of wire defect and non-defect rail 

areas plotted together. 

The above plots show that PCA have a great potential to detect the defects. 

6.3.3 PCA Statistical Plots for Line on the Top of Rail  

PCA features, their variance and standard deviation when plotted for line on the top 

of rail, comparatively similar results are obtained. The respective PCA statistics plots 

can be seen in Figure 6.5. 

The lines for defective and clear region of the rail can be seen in different regions of 

the plots. Hence, PCA also appears to be effective for the line on the top type rail 

defects. 

 
(a) 

 

 

 
(b) 
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(c) 

 

 

 
(d) 

Figure 6.5: (a) Original rail image with Line on the top of rail type defect (b) 

Principal Components/PCA features of line defect and non-defect rail area plotted 

against each other (c) Variance between PCA features of the line defect and non-

defect rail areas plotted together (d) Standard Deviation among PCA features of line 

on the top of rail and non-defect areas of the rail plotted together 
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6.3.4 PCA Statistical Plots for Rolled in Scrap  

PCA statistics when plotted for Rolled in scrap type rail defects, the results were not 

very distinctive. The plotted lines for clear and defective rail‟s PCA features and 

statistics are overlapping each other as can be seen inFigure 6.6.  Hence, PCA 

doesn‟t appear to be very effective for the rolled in scrap type rail defect. 

 
(a) 

 

 

 
(b) 
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(c) 

 

 

 

 
(d) 

Figure 6.6: (a) Original rail image with rolled in scrap type defect (b) Principal 

Components/PCA features of RIS and non-defect edge plotted together (c) Variance 

of PCA features of RIS and clear/smooth edge of the rail plotted together (d) 

Standard Deviation among PCA features of RIS and non-defect/clear edge of the rail 

plotted together 
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The range and average values for PCA features and the statistics computed for all the 

types of defects have been compared and analyzed in the next section. 

6.3.5 Analysis of PCA Statistics 

The PCA features and statistics of those components have been compared for the all 

the types of defects in Table 6.1 and their average values have been presented in 

Table 6.2.  PCA features and their statistical relationship for clear and defective rails 

were computed for a large number of selected rail areas. More than 60,000 values 

from several rail images for both clear and defective regions were saved and 

compared to get the results shown in tables below. It is very obvious that PCA 

features and statistical plots differentiates the defective and clean areas of the rail 

exceptionally well for tiger stripes, wire and line on the top type defects. When the 

similar plots are done for Rolled in Scrap type defects, PCA did not work as well. 

Rolled in scrap, being an irregularity on the edge and being different from the three 

other defect types under investigation, can be detected by separating the rail from its 

background and measuring the irregularity of the edge. However, the existing 

detection method for Rolled in scrap explained in last chapter is already 100% using 

the developed algorithm.  
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Table 6.1: Comparison of PCA statistical values of clear and defective regions 

selected from several rail images. More than 60,000 values for Principal 

Components and their statistics from various rail images were computed and 

compared to get the results. 

 Clear Rail 

Surface 

 

Wire 

Defect 

Tiger 

Stripes 

Line on the 

Top 

Straight 

Edge  

Rolled 

in Scrap  

PCA 

Feature

s Range  

-23 to 21 

 

-158 to 

130 

-229 to 300 -96 to 77 -130 to 

107 

-163 to 

212 

Varianc

e Range 

6 to 63 62 to 4360 85 to 11000 32 to 7000 90 to 471 75 to 

2069 

STD 

Range 

3 to 8 10 to 67 11 to 105 6 to 84 10 to 22 9 to 46 

 

Hence, the first observation that can simply be made on the data available is; that the 

rail with PCA projection values within the range provided for clear/normal rail 

(between -23 to 21) in the Table 6.1 can be clearly marked out as a clear rail. The rail 

with PCA values out of the safe range needs to be investigated. Moreover, when the 

average values of PCA features and statistics were computed they reflected clearly 

different values. This suggests that the detection of the defects is possible. The 

average statistical values for clear rail and different types of defects are presented in 

Table 6.2. 

Table 6.2: Average statics values for PCA clear rail surface, straight rail edge, wire, 

tiger stripes and line on the top of rail and RIS Type Defects  

 Clear Rail 

Surface 

Wire 

Defect 

Tiger 

Stripes 

Line on the 

Top 

Straight 

Edge 

Average 

RIS 

Average 

PCA Projection 

Values Average 

0.66 -1.33 1.25 0.72 0.49 2.84 

Variance Average 27 854 2013 544 220.1 339.62 

STD Average 5.1 27.5 37 21 14.5 17.71 
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It can be concluded, therefore, from the data values presented in the table above that 

defect detection is possible using the PCA data and neural networks trained on the 

PCA data of the rail images and the statistics calculated on this data should also be 

able to recognize and classify them accordingly. The next section describes and 

analyzes the rail defect detection based on PCA features and their statistics. 

6.4 Statistical Output for PCA Projection Images 

Simple standard deviation computed over the whole image of PCA projections, as 

explained in section 6.2.3, when displayed gives exceptionally clear defects lines as 

can be seen in Figure 6.7 for wire defect, in Figure 6.8 for line defect, in Figure 6.9 

for rolled in scrap defect and Figure 6.10 for tiger stripes.   

These result images have been obtained by simply displaying the standard deviation 

obtained by sliding a window of variable height (mostly between 2 and 20 pixels) 

and width of 1 pixel, oriented vertically over complete PCA projection image. 

Vertical window has been used as most of the defects under investigation have 

horizontal spread of defect lines. Hence, statistics such as standard deviation and 

variation vary vertically. For each location of the window, the standard deviation is 

computed for all the values underneath the mask. The value computed is assigned to 

the top most location of the area of image currently under the window, because the 

window is moved with a step of 1 pixel both in x and y directions. The vertical 

window is moved by a step size of 1 in both vertical and horizontal directions over 

the image. 

A standard deviation image for a wire defect PCA projection image; presented in 

Figure 6.7, shows the wire clearly running through the image length. However, some 

noise next to the defect mark can also be noticed. Though those non-defects marks 

are broken and faint but their PCA projection‟s statistics are comparable to that of 

the defects. That is why they are quite visible in the image. 
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(a) 

(b) 

Figure 6.7: Wire defect detection using PCA Standard deviation values. (a) Original 

rail image with wire defect. (b) Standard deviation image computed from a PCA 

projection image using window size 6. 

Similar plots for the line defect can be seen in Figure 6.8. The defect line is clearly 

visible; however, the noise marks from the background can also be seen on the right 

side of the image.  
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(a) 

 

(b) 

Figure 6.8: Line on the top defect detection using PCA Standard deviation values. 

(a) Original rail image with line on the top defect. (b)Standard Deviation image 

computed on PCA projection image using window size 8 

STD plots for the PCA projection image with RIS type defect has been presented in 

Figure 6.9. The broken edge of the rail has clearly been marked out in the image.  

(a) 

(b) 

Figure 6.9: Edge Detection using PCA Standard deviation values. (a) Original rail 

edge image with RIS type defect. (b) Standard deviation image computed on PCA 

projection image using window size 8. 
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(a) 

 
(b) 

Figure 6.10: Tiger stripes detection using PCA Standard deviation values. (a) 

Original rail edge image with tiger stripes. (b) Standard deviation image computed 

on PCA projection image using window size 8. 

The image result shown in Figure 6.7, Figure 6.8 and Figure 6.9 are encouraging to 

some extent and defects can be seen clearly on them. However, even after some post 

processing operations including thresholding, clearing blobs and morphological 

operations, some non-defect noise has been picked up and some parts of the defects 

have been dropped as can be seen in the results obtained for each defect and the most 

for the tiger stripes, as presented in Figure 6.10.  Hence, classification of PCA 

statistics needs some further processing. Neural networks are tested for this purpose 

and have been discussed in the next section. 

6.5 Classification of PCA Statistics using Neural Networks 

The computation of the values for Eigen vectors, Eigen values, PCA projection 

values and statistics such as variance, means and standard deviation using PCA 

values have been explained and analyzed in detail in the previous sections. All the 

results obtained have been presented and discussed as well. In this section Neural 

Network has been trained on the principal components, their projections and their 

particular statistics to perform the classification of different types of defects. This 

section covers the implementation of neural network used, its training and 

classification and discussion of results produced for each type of defect. Neural 

Network somewhat succeeded in detecting tiger stripes and rolled in scrap type 

defect. However, wire and line type defects could not be successfully classified using 

neural networks so far.  
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6.5.1 Defect Classification using Back Propagation Neural Networks 

A back propagation neural network implemented in C# has been used to classify 

defects and non-defects PCA features and statistics. The basic model and working of 

back propagation neural network has been provided in Appendix A at the end of the 

report. The network implemented has one input layer and one output layer. Number 

of input neuron depends on number of input values. Hidden layers of varying 

numbers have been tested, and mostly one hidden layer with 5 or 9 neurons have 

been used. The structure of the implemented network has been presented below in 

Figure 6.11. 

 

Figure 6.11: Example of a Neural Network implemented with one input layer with 

two neurons, one hidden layer and one output layer. 

Various transfer functions such as linear, sigmoid, Gaussian and rational sigmoid 

transfer functions were tested for the classification purpose by neural networks. 

Hidden layers with sigmoid transfer function; in combination with output layer of 

linear function, give the better converging of the network, when trained on the 

statistical PCA data from the rail images. The classification results produced by 

neural networks and their evaluation have been presented in the next section. 
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6.5.2 Training Data 

The network was trained on a representative set of data points from the various areas 

of the rail, both clear and with the defects. For example, there was an image with a 

tiger stripe type defect on it. The PCA image for the original image was computed 

and saved. Areas of defects and clear rails then were selected and saved in respective 

arrays. The selection was done by choosing different areas from the same image or 

several regions from different images. A whole block region or area around a chosen 

point can be selected into defect and clear rail data point arrays. The statistics of each 

block or area around a selected point were calculated; their respective targets are 

assigned and saved in individual arrays. The target values were different for different 

transfer functions. They can be 0 or 1, -1 and 1 for sigmoid function, 1 and 2 for 

Gaussian function etc. Statistics are calculated using the masking process explained 

in chapter 3. A small size of mask is chosen and is moved over the whole image. The 

function to be performed or the calculation is repeated for every position of the mask 

and the values are stored in input array. Most commonly tested statistics are median, 

mean, variation and standard deviation. Neural network is created using input; output 

and defined number of hidden layers with specific transfer function are trained on 

the input data for defects and clear rails created by the area selection performed on 

the rail images.  

An example of the converged network plot has been presented in Figure 6.12. This 

has been obtained by plotting the values of error against epochs from the network 

training. The network was trained on statistical PCA data computed from an image 

with a tiger stripe type defect. 
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Figure 6.12: Example network training plot for a converged network trained on the 

statistics of Tiger stripes PCA features 

6.5.3 Neural Network Results and Evaluation 

The result of tiger stripes detected by neural networks trained on standard deviation 

of PCA features is shown in Figure 6.13. The back propagation neural network used 

to get these results had one input layer, 9 hidden layers with sigmoid transfer 

function and one linear transfer output layer. The network is converged reaching 

final error of only 0.000191 at 50000 epochs. 
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(a) 

 

 (b) 

Figure 6.13: Result of Tiger stripe detection by PCA neural network method. (a) 

Original rail image with tiger stripes (b) Tiger stripes detected by neural networks 

trained on standard deviation of PCA features using a window size of 6.   

Neural networks when trained on PCA statistics of rolled in scrap type defect also 

manages to differentiate the defective edge from the back ground. The result of rail 

edge with rolled in scrap can be seen in Figure 6.14.  It can be seen from the figure 

that neural networks manages to separate the rail well from its back ground.  
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(a) 

(b) 

Figure 6.14: Result of Rolled in Scrap by PCA based neural network classification 

method. (a) Original rail image with rolled in scrap defect (b) Rolled in scrap type 

defect detected by neural networks trained on standard deviation of PCA features 

using a window size of 6. 

6.6 Conclusion  

Principal Component Analysis yields important information of the rail images and 

the defects. The analysis shows that the Eigen vectors, Eigen values, PCA projection 

values and statistics computed on these figures gives important information about the 

defects and clear areas of the rail. The PCA based detection method is found to be 

quite efficient in detecting clear rail areas, tiger stripes type rail defects and rail 

edges for rolled in scrap type defects. The method is still under initial testing stages 

and more work in future is expected to be done on it. The results obtained so far for 

all the detection methods explained in this chapter and the last one, have been 

analyzed and discussed in the next chapter.  
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7 Results 

 

 

 

7.1 Introduction 

Previous two chapters describe the detection techniques developed for the rail 

surface defects occurred during the manufacturing process. The developed detection 

algorithms for all the four types of defects under investigation have been discussed 

in detail in chapter 5 while PCA based alternate method have been described and 

discussed in chapter 6. This chapter gives a comprehensive performance evaluation 

of the detection algorithms developed so far for rail inspection. It discusses the 

defect detection techniques, results produced by those techniques, their performance 

evaluation and comparison; when applied on images of a complete rail. The 

detection algorithms have been tested on set of rail images provided by Tata Steel 

and the comprehensive performance and efficiency evaluation of the developed 

algorithms have been performed.  

7.2 System & Software Requirements  
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The final software has been developed using the OpenCV image processing library 

encapsulated in EMGU for C# (Microsoft Visual Studio Professional). The software 

has been tested on an Intel Core I7 CPU 920 at 2.67 GHz, with 8 GB of RAM 

machine with Windows XP 64 Bits Professional operating system running on it. The 

offline images are treated by the software and a report of the detection is shown on 

screen for the experts to assess.  

7.3 Software Processing Times 

All the final implementation was performed on C# using an Intel I7 machine with 

8GB of RAM. Initial testing was done on Matlab and then the codes are transferred 

to C#, as Matlab processing was very slow. The processing time has greatly reduced 

by the use of C# as can be seen in the table below. 

Table 7.1: Comparison of processing time between Matlab and C# 

Matlab  C#  

•  Takes approximately 10 

minutes to process a rail. 

•  Multi-threading capabilities 

limited 

• Less than a minute for the 

same amount of processing 

• Higher processing power > 

less time to process a rail  

 

The Matlab implementation of the algorithms was approximately taking 10 minutes 

to process all the images of one rail however C# algorithm performed the similar job 

in less than a minute.  

The running time for a rail of approximately 110m length; with on average 440 

images per camera view; is 46 sec (average time). The time between each rail while 

in heavy production is more than 1 min 30 sec, making the software capable of 

analysing rails in real-time. 

All the algorithms were firstly developed on MATLAB as it has been specially 

designed for engineers and have packages/libraries specifically designed for general 

control applications. Hence, makes the programming quick and easy. However, 
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when the program becomes very large and requires more and more resources, Matlab 

does not perform very well and it becomes a necessity to switch to C\C++\C#. 

Hence, initial programming was done on Matlab to perform quick testing of the 

ideas. Once, the successful results came out, they were all coded into C#, which 

sometimes is a very lengthy and time consuming procedure. A trail was also made to 

convert the codes in to C language initially to get better performance in terms of 

speed. Moreover, OpenCV library is also available to be used in C environment that 

is a comprehensive open source computer vision library focusing on real-time image 

processing. However, finally the software has been developed using the OpenCV 

image processing library encapsulated in EMGU for C#. EMGU is a cross platform 

.Net wrapper that allows OpenCV functions to be called from .NET compatible 

languages such as C#, VB, VC++ etc. 

7.4 Method 1 - Validation of the Results 

Experimental results shows that the detection techniques developed for rail 

inspection, for this research work are successful with high efficiency and accuracy 

rates. They appear to work better than all the existing techniques applied as part of 

the investigation. They have the ability to identify and discriminate the different 

types of defects in these images.  

7.4.1 Report Generated 

A report is generated after processing each complete rail and apart from being 

displayed on the interface, it is also saved in the same folder that has been processed. 

The report contains the list of all the defects detected. The names of the defective 

images get written in the report file, while the algorithm processes the rail. The 

example of the report generated has been shown in Figure 7.1.  

http://www.emgu.com/wiki/index.php/OpenCV
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Figure 7.1: A typical report generated by the inspection software. 

It can be seen in the report shown in Figure 7.1 that complete name of the rail image 

is saved against the name of defect \ defects detected. The name of rail signifies the 

location of that image from the rail head, also the date and time at which the image 

was taken. Hence, with the name in the report, the defective part of the rail can be 

reached physically and examine easily. 
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7.4.2 Timing Information 

The time between each rail while in heavy production is more than 1 minute and 30 

seconds, making the software capable of analysing rails in real-time. Hence, one 

complete folder of images, which is for one complete rail, has to be examined by the 

software with in 1 minute and 30 seconds of time. The average software running 

time for a rail of on average 440 images per camera view is less than 50 seconds. 

Hence, making the software capable of analysing rails in real-time. Every time the 

rail is processed its timing information is saved in a text file, in the same folder. The 

screen shot of timing information file has been shown in Figure 7.2. The file stores 

the location of the folder that have been processed and time taken by the software to 

process the folder in seconds. 

 

Figure 7.2: Screen shot of text file containing the Timing information 

The timing information for the processing of several rails has been grouped together 

and shown in Table 7.2. The average processing time as calculated from the values 

in the table below is almost 46.23 seconds, after processing almost 40 rails, which is 

enough time to process a complete rail before the next rail images come in for 

inspection. 
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Table 7.2: Processing time for a complete rail in production 

 

 
Directory Name 

Processing 

Timing 
1 PIC 

0985785101_1 38.02 
2 PIC 

0985785104_1 47.15 
3 PIC 

0985785105_1 49.50 
4 PIC 

0985785201_1 48.14 
5 PIC 

0985785204_1 46.43 
6 PIC 

0985785205_1 48.1 
7 PIC 

0985785206_1 47.14 
8 PIC 

0985785301_1 46.35 
9 PIC 

0985785302_1 10.78 
10 PIC 

0985785303_1 46.85 
11 PIC 

0985785401_1 48.05 
12 PIC 

0985785402_1           44.12 
13 PIC 

0985785403_1 50.90 
14 PIC 

0985785404_1 46.67 
15 PIC 

0985785501_1 45.55 
16 PIC 

0985785504_1 49.12 
17 PIC 

0985785601_1 46.36 
18 PIC 

0985785604_1 50.45 
19 PIC 

0985828101_1 46.48 

20 PIC 

0985828103_1 47.93 
21 PIC 

0985828104_1 

49.63 

 
22 PIC 

0985828201_1 47.20 
23 PIC 

0985828203_1 35.74 
24 PIC 

0985828301_1 45.84 
25 PIC 

0985828401_1 47.11 
26 PIC 

0985828404_1 44.53 
27 PIC 

0985828501_1 46.66 
28 PIC 

0985828504_1 46.19 
29 PIC 

0985828601_1 45.20 
30 PIC 

0985910105_1 53.18 
31 PIC 

0985910106_1 49.55 
32 PIC 

0985910108_1 49.41 
33 PIC 

0985910204_1 49.76 
34 PIC 

0985910302_1 49.71 
35 PIC 

0985910303_1 46.64 
36 PIC 

0985910506_1 48.86 
37 PIC 

0985910603_1 49.96 

 
Total Images 

Average 

Time 

 
99,500 

46.2255 

Sec 
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7.4.3 Success Rate of Detection Algorithms 

Table 7.3 is an overview of the algorithm‟s defect detection efficiently when applied 

on large number of rail image data. As the results of the detection are to be assessed 

and sorted by a technician, a small amount of false positive is tolerable. Each rail to 

be examined has an average length of 110m, with on average 440 images per camera 

view. There are 6 cameras in the installed JLI system; which makes total of almost 

2700 rail images to be examined per rail. JLI system stores images for each rail in 

separate folders using specific naming convention explained in section 3.4. For every 

folder of images, covering complete length of a rail, a report is generated and saved 

in the same folder and the list of detected defects is also displayed on the screen. The 

software has been tested on more than 40 complete rails; which make more than 

100,000 images in number that have been tested by the software. The defect 

percentage is found to be 1.22% that implies that almost 89.9% of the rails processed 

are found to be clear and only 1.2% of the total processed rail images were marked 

as defective by the inspection software. Moreover, this data were validated by 

experts at Tata over several iterations of testing. 

Table 7.3: Occurrences of defects detected by the software after processing large 

number of rail images. 

Total 

Images 

Processed 

Occurrence 

of RIS 

Occurrence 

of Line on 

Top 

Occurrence 

of Tiger 

Stripe 

Occurrence 

of Wire  

Defect 

Percentage 

(%) 

105,600 207 42 644 399 1.22 % 

 

The rails that are marked as defected by the software are then inspected by an 

inspector who is an expert on rail defects. The inspector physically examines the site 

of defects and approves or rejects their occurrences. The Table 7.4 represents the 

detection success rates of the algorithms in the form of Receiver Operation 

Characteristic (ROC) table. It was very difficult and time consuming to examine 

every image individually in the huge data of more than 100, 000 rail images 

available. Hence, a small data set of images for each defect has randomly been 

selected from the large number of rail images available. That small sub-data has been 
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used to get the percentage values represented in the ROC table below. This has been 

done to get the overall performance overview of the developed rail inspection 

algorithm. 

Table 7.4: Algorithm detection accuracy represented by Receiver Operation 

Characteristic (ROC) table 

Type of 

defect 

True Positive 

(%) 

False Positive 

(%) 

True Negative 

(%) 

False 

Negative (%) 

Rolled in 

scrap 

99 1 99 1 

Line on top 92 8 96 4 

Tiger stripe 80 20 79 21 

Wire defect 95 5 97 3 

 

A True-positive means that the detection made by the algorithm, when examined 

physically was found to be a defect. Hence, it shows the correct and successful 

working of the algorithm.  

A False positive means a false alarm, i.e. the algorithm detected and classified 

something as a defect which actually is not a defect. It may also be referred as over 

detection.  

A True-negative means correct rejection that is the rail has been classified as clear 

(without any defect) by the algorithm, i.e. no occurrence of a defect under 

investigation. Hence, shows successful working of the algorithm. 

A False-negative means that the rail is classified as clear by the algorithm however, 

when examined physically was found to have that type of defect on it. In more 

simple terms false negative means a defect missed by the algorithm. 

7.4.4 Rolled in Scrap Detection Algorithm 

The rolled in scrap detection rate is highly accurate, almost all the defects that were 

present on the set of images submitted by Tata Steel were successfully detected. 

Rolled in scrap in the ROC Table 7.4 shows 99% of true positive, which implies that 
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99% of the time the alarm raised by the software for the occurrence of RIS is correct 

and the defect exists there when examined physically. There is however a small 

amount of false positive which is as low as 1% due to flying dust incorrectly 

detected as faults.  The inspection report generated by the software after processing 

the rail PIC 0985785404_1 has been shown in Table 7.5. The rail image with Rolled 

in scrap type defect, highlighted in red in the Table 7.5, has been shown in Figure 7.3 

which is a screen shot from actual software interface. 

Table 7.5: Inspection report generated by the software for the rail PIC 

0985785404_1. 

No. Image Name Detected Defect Type 

1 0000000_1 15-09-2009 at 04.02.56.jpg Wire Defect 

2 0000262_1 15-09-2009 at 04.02.56.jpg Rolled In Scrap 

3 0000787_1 15-09-2009 at 04.02.56.jpg Wire Defect 

4 0001049_1 15-09-2009 at 04.02.56.jpg Wire Defect 

5 0001311_1 15-09-2009 at 04.02.56.jpg Wire Defect 

6 0001574_1 15-09-2009 at 04.02.56.jpg Rolled In Scrap 

7 0001836_1 15-09-2009 at 04.02.56.jpg Wire Defect 

8 0002098_1 15-09-2009 at 04.02.56.jpg Wire Defect 

9 0003148_1 15-09-2009 at 04.02.56.jpg Wire Defect 

10 0004459_1 15-09-2009 at 04.02.57.jpg Wire Defect 

11 0018625_1 15-09-2009 at 04.03.00.jpg Wire Defect 

12 0107295_1 15-09-2009 at 04.03.34.jpg Wire Defect 

13 0107557_1 15-09-2009 at 04.03.34.jpg Wire Defect 

14 0116214_1 15-09-2009 at 04.03.36.jpg Rolled In Scrap 

15 0116477_1 15-09-2009 at 04.03.36.jpg Rolled In Scrap 

16 0116739_1 15-09-2009 at 04.03.36.jpg Wire Defect 
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Figure 7.3: Screen shot from the software interface for Rolled in scrap detection. 

The software generates report containing list of images with a defect type in the form 

of a table. Each defective image in the list can be navigated and original image along 

with the processed image with defect marked; can be viewed by the user as seen in 

the screen shot presented in Figure 7.3. Output also displays the image name, 

position of that occurrence of a particular defect from the start of the rail, time at 

which the image was taken and type of defect found on that image on the rail.  

7.4.5 Line on the Top of Rail Detection Algorithm 

The line on the top of rail‟s detection accuracy table shows 92% true positive. 
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However, 4% false negative detection as represented in Table 7.4, are mostly the 

faint lines. Those faint lines according to experts are not as critical as the deep 

appearing defects, successfully detected by the algorithm. The inspection report 

generated by the software after processing the rail PIC 0985785206_1 has been 

shown in Table 7.6. The rail image detected, having line on the top of rail type 

defect, by the software has been highlighted in red in Table 7.6 below. The 

representative image displayed by the software‟s has been shown by a screen shot 

presented in Figure 7.4. 

Table 7.6: Inspection report generated by the software for the rail PIC 

0985785206_1. 

No. Image Name Detected Defect Type 

1 0000000_1 15-09-2009 at 03.55.13.jpg Wire Defect 

2 0000262_1 15-09-2009 at 03.55.13.jpg Rolled In Scrap 

3 0000524_1 15-09-2009 at 03.55.13.jpg Rolled In Scrap 

4 0000786_1 15-09-2009 at 03.55.13.jpg Wire Defect 

5 0001048_1 15-09-2009 at 03.55.13.jpg Rolled In Scrap 

6 0001310_1 15-09-2009 at 03.55.13.jpg Rolled In Scrap 

7 0001572_1 15-09-2009 at 03.55.14.jpg Wire Defect 

8 0002620_1 15-09-2009 at 03.55.14.jpg Wire Defect 

9 0002882_1 15-09-2009 at 03.55.14.jpg Wire Defect 

10 0003144_1 15-09-2009 at 03.55.14.jpg Wire Defect 

11 0003406_1 15-09-2009 at 03.55.14.jpg Wire Defect 

12 0003942_1 15-09-2009 at 03.55.14.jpg Wire Defect 

13 0004192_1 15-09-2009 at 03.55.14.jpg Wire Defect 

14 0004454_1 15-09-2009 at 03.55.14.jpg Wire Defect 

15 0004716_1 15-09-2009 at 03.55.14.jpg Wire Defect 

16 0102713_1 15-09-2009 at 03.55.51.jpg Wire Defect 

17 0116862_1 15-09-2009 at 03.55.53.jpg Wire Defect 

18 0000000_4 15-09-2009 at 03.55.11.jpg Line on top 
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Figure 7.4: Screen shot from the software interface for Line on the top of rail type 

defect detected. 

Image name, position of the rail where the defect is found in meters, time at which 

image was taken and type of defect detected has been displayed in the output 

interface to facilitate the user with maximum information. 

7.4.6 Tiger Stripes Detection Algorithm 

The tiger stripes detection accuracy Table 7.4 shows 85% true positive, however, 

there are some cases where the stripes are faint and small where the algorithm fails 

and are still critical to the quality of the rail itself. Therefore, false negative is 

comparatively high for this type of defect which is 20%. The inspection report 

generated by the software for PIC 0985828101_1 has been shown in Table 7.7. The 

image of the rail detected to be having tiger strips type defect, has been shown as 
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highlighted in red in the said table below. The corresponding representative image 

displayed by the software‟s has been shown by a screen shot presented in Figure 7.5. 

Table 7.7: Inspection report generated by the software for the rail PIC 0985828101_1 

No. Image Name Detected Defect Type 

1 0000000_1 15-09-2009 at 04.35.34.jpg Wire Defect 

2 0000261_1 15-09-2009 at 04.35.35.jpg Rolled In Scrap 

3 0000523_1 15-09-2009 at 04.35.35.jpg Rolled In Scrap 

4 0000785_1 15-09-2009 at 04.35.35.jpg Wire Defect 

5 0002881_1 15-09-2009 at 04.35.35.jpg Wire Defect 

6 0007601_1 15-09-2009 at 04.35.36.jpg Wire Defect 

7 0013902_1 15-09-2009 at 04.35.38.jpg Wire Defect 

8 0116811_1 15-09-2009 at 04.36.15.jpg Rolled In Scrap 

9 0117075_1 15-09-2009 at 04.36.15.jpg Rolled In Scrap 

10 0117336_1 15-09-2009 at 04.36.15.jpg Rolled In Scrap 

11 0000261_4 15-09-2009 at 04.35.33.jpg Tiger Stripes 

12 0000523_4 15-09-2009 at 04.35.33.jpg Tiger Stripes 

13 0007341_4 15-09-2009 at 04.35.35.jpg Tiger Stripes 

14 0008392_4 15-09-2009 at 04.35.35.jpg Tiger Stripes 

15 0011547_4 15-09-2009 at 04.35.36.jpg Tiger Stripes 

16 0013909_4 15-09-2009 at 04.35.36.jpg Tiger Stripes 

17 0014956_4 15-09-2009 at 04.35.36.jpg Tiger Stripes 

18 0016006_4 15-09-2009 at 04.35.37.jpg Tiger Stripes 

19 0017056_4 15-09-2009 at 04.35.37.jpg Tiger Stripes 

20 0018107_4 15-09-2009 at 04.35.37.jpg Tiger Stripes 

21 0019157_4 15-09-2009 at 04.35.37.jpg Tiger Stripes 

22 0019419_4 15-09-2009 at 04.35.37.jpg Tiger Stripes 

23 0038849_4 15-09-2009 at 04.35.42.jpg Tiger Stripes 
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Figure 7.5: Screen shot from the software interface for Tiger Stripe type defect 

detected. 

Same as other example images presented for previous defects, image name, position 

of the defective rail part, and time at which image was taken and type of defect 

detected for tiger stripes; can also be seen in the output generated by the software; 

which has been shown in Figure 7.5 given above. 

7.4.7 Wire Defect Detection Algorithm 

The algorithm for wire defect has again a high detection accuracy rate and detects 
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almost all the occurrence of wires, with 5% of false positive due to occasional water 

drops that are incorrectly labelled as being faults, but that can easily be assessed by a 

post-viewing as being safe. These values have been given in Table 7.4 in the 

previous section of success rate of detection algorithm. There is also small 

percentage (3%) of false negative which occurs occasionally due to very poor 

lighting condition on that particular image. The inspection report generated by the 

software for PIC 0985785104_1 has been shown in Table 7.8. The image of the rail 

defected by wire type defect, has been shown as highlighted in red in the given Table 

7.8 below. The corresponding representative image displayed by the software has 

been shown by a screen shot provided in Figure 7.6. 

Table 7.8: Inspection report generated by the software for the rail PIC 0985785104_1 

No. Image Name Detected Defect Type 

1 0000523_1 15-09-2009 at 04.07.59.jpg Rolled In Scrap 

2 0001047_1 15-09-2009 at 04.07.59.jpg Wire Defect 

3 0001309_1 15-09-2009 at 04.07.59.jpg Wire Defect 

4 0001571_1 15-09-2009 at 04.08.00.jpg Wire Defect 

5 0001833_1 15-09-2009 at 04.08.00.jpg Wire Defect 

6 0002095_1 15-09-2009 at 04.08.00.jpg Wire Defect 

7 0002357_1 15-09-2009 at 04.08.00.jpg Wire Defect 

8 0003143_1 15-09-2009 at 04.08.00.jpg Wire Defect 

9 0003405_1 15-09-2009 at 04.08.00.jpg Wire Defect 

10 0023838_1 15-09-2009 at 04.08.05.jpg Wire Defect 

11 0108190_1 15-09-2009 at 04.08.40.jpg Wire Defect 

12 0116573_1 15-09-2009 at 04.08.42.jpg Rolled In Scrap 

13 0116836_1 15-09-2009 at 04.08.42.jpg Rolled In Scrap 

14 0117099_1 15-09-2009 at 04.08.42.jpg Rolled In Scrap 
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Figure 7.6: Screen shot from the software interface for Wire defect detected. 

Once again for the wire defect; image name, position of the defective rail part, and 

time at which image was taken and type of defect detected can be seen in the output 

display generated by the software. The screen shot has been provided in the Figure 

7.6 given above. 

7.5 Method 2 - Principal Component Analysis (PCA) Method 

PCA based defect detection method is so far in its earlier stages. The method has 

been tested for individual defects and results for few of the defects have been found 

quite successful and encouraging. However, the testing for the complete rail has still 

not been fully implemented. The results obtained from method-1 are quite efficient 

and accurate and currently have been installed at the Scunthorpe site and is use in 

very initial testing stages. However, the need for another method was to develop a 
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single adaptable, trainable and efficient detection method for the detection of all the 

defects being investigated and specifically to improve the detection of tiger stripes 

type defect, whose detection success rate was comparatively as low as 80% as shown 

by the Table 7.4; which is mainly due to largely varying size of tiger stripes patterns 

on different rail images. 

Method-2 is based on PCA features and their statistics computation followed by the 

classification of those features and statistics using back propagation neural networks. 

The method has been explained in detail in chapter 6. This section covers the 

discussion of the results produced by method-2, their evaluation and analysis; for 

each type of the rail defect under investigation. 

7.5.1 Statistical Analysis of PCA Features 

First phase of PCA method was to analyze PCA statistical profiles of the defects and 

clear areas of the rail. A small window mask of variable size slides over the whole 

image and PCA features of area covered by the mask at each location are calculated.  

Similarly, sliding the window over the image again; statistics such as standard 

deviation and variance are computed for each location. The step and window size 

can be defined by the user. The statistics can be projected to have an overview of the 

results and values can also be plotted to see the trend being followed. The statistics 

obtained for defective and clear areas of the rail have been compared, plotted and 

discussed in detail in section 6.5 of the report.  

The respective ranges obtained from the statistics presented in Table 6.1 in the 

previous chapter have been drawn using colour bands in the Figure 7.7 below. 

Defects and clear rails have been represented by specific colours to clearly show the 

ranges obtained for PCA projection (PCA Features) values, standard deviation 

between those values and also their variance. 

  Normal Rail 

  Wire Defect 

  Tiger Stripes 

  Line on the Top 
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(a) 

 

(b) 

(c) 

Figure 7.7: Statistics ranges of PCA features represented by colour band. (a) PCA 

features range for clear rail against wire, line on the top and tiger stripes type 

defects. (b) PCA Variance range for clear rail against wire, line on the top and tiger 

stripes type defects. (c) PCA Standard Deviation range for clear rail against wire, 

line on the top and tiger stripes type defects. 

The range bands for PCA features shown in Figure 7.7 (a) shows that the upper and 

lower cut-offs of PCA features for defects and clear rail vary distinctively. Hence, 

from the bands provided above in Figure 7.7, it is clear that variance and standard 

deviation between the PCA features for defects and clear rails shall be the key 

factors for their detection. 

Standard deviation values acquired for the PCA projection images represent the most 

of the defects distinctively. The resulting images have been presented and discussed 

in section 6.6 of the previous chapter. The images obtained after displaying the 

statistical values obtained from PCA projection images are quite successful in defect 

detection process, and clearly shows the defects occurrence. However, some noise 

has also been picked up in the images obtained as visible in the images presented in 
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the figures 6.8, 6.9, 6.10 and 6.11 of the previous chapter. Hence, classification of 

PCA statistics has been tested further using neural networks to improve the results 

obtained up till that point. 

7.5.2 Neural Network Classification of PCA Features and Statistics 

Artificial Neural Network is trained on PCA features and their statistics to perform 

the classification of the rail defects. The classification method has so far been tested 

for tiger stripes and RIS type defect. 

The detection success rate for tiger stripes algorithm by method 1 is comparatively 

low. The main issue with previous method was greatly varying size of the tiger 

stripes. They can be very small at some occurrences and very large at others. Hence, 

the requirement is to make the adaptable algorithm which is sensitive to different 

sizes of the defect to make the detection accurate and more efficient. 

A small set of images have been processed using PCA detection method. The results 

obtained for tiger stripes are precise and better than the ones produced by method-1.  

The method has also been tested for RIS type defect and results are encouraging but 

not as accurate as method 1. The results for RIS produced by method 1 were efficient 

with 99% of true positive as can be seen in Table 7.4.  

These results have been produced by calculating PCA features and their statistics 

followed by the classification of those statistics by artificial neural networks. The 

method has been explained in detail in chapter 6. The success rate of method-2 for 

tiger stripes and RIS has been presented in Table 7.9.  

Table 7.9: PCA method accuracy represented by Receiver Operation Characteristic 

(ROC) for tiger stripes type defect. 

Type of defect True Positive 

(%) 

False Positive 

(%) 

True Negative 

(%) 

False 

Negative (%) 

Tiger Stripes 95 5 99 1 

RIS 90 10 80 20 

 

It is clear from the table that this method is better than method-1 for tiger stripes, 



Results 

 

165 

 

however RIS detection is good but not accurate as method-1.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.8: Result of defect classification by PCA based neural network method. (a) 

Original rail image with tiger stripes (b) Tiger stripes detected by neural networks 

trained on standard deviation of PCA features using a window size of 6 (c) Original 

rail image with rolled in scrap defect (d) Rolled in scrap type defect detected by 

neural networks trained on standard deviation of PCA features using a window size 

of 6. 

The resulted images produced by the classification of tiger stripes and RIS type 

defects; using neural networks has been presented in Figure 7.8. It can be seen from 

the above figure that the neural network classification for tiger stripes is quite good 

and for RIS, the background has been separated from the rail very efficiently. The 

irregularity in the edges obtained is finally classified as RIS defect. 

7.6 Discussion 

This chapter has described an objective performance evaluation of the detection 

techniques defined for the rail defects, being investigated in this research work.  

Different existing imaging techniques have been tested, used and adapted at several 
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detection stages. Those techniques have been compared in the following section to 

get the brief overview of the extensive research work that has been carried out. 

7.6.1 Detection Algorithm Comparison 

Different methods and image techniques have been exhaustively tested on the 

defects. Details of the extra work and testing have been given in Appendix A, B and 

C in the end of the report. However, generalised table has been developed to 

summarize the work. The summary of general imaging methods used and their 

contribution to the detection procedures have been summed up in Table 7.10. Table 

7.10 presents the list of existing image processing techniques used at various stages 

of the detection procedures that have been developed for the rail inspection. The 

table also sums up the advantages of those imaging techniques.  

Table 7.10: List of existing image techniques used and their advantages 

Image Techniques 

& Algorithms 

Advantages 

Image Filtering  Enhancement \ Equalization: improves contrast and 

hence adjust lighting in the rail images 

 Smoothing: remove noises from the rail images 

 Template matching: detects known patterns 

Image Binarization  Gives the images that have only one sample per pixel, 

hence makes processing easy 

 Help to see what areas of an image consist of pixels 

whose values lie within a specified range 

Edge Detectors  Helps to extract the areas of interest \ edges – defects 

in the current work.  

 Robinson and Susan Edge Detector are tested and 

used at various stages of detection. 

Morphological 

Operation 
 Enhances the defects by dilating \ erosion operation 

 Cleans up the images by reducing the back ground 

noise. 

Principal 

Component 

Analysis (PCA) 

 PCA is a method of identifying similarities or 

differences in a data 

 PCA reduces dimensionality of data, retaining the 

useful information. 

Artificial Neural 

Networks (ANN) 
 Advanced technique of computer programming; that 

is efficient at pattern recognition and solving other 

such problems 
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7.7 Conclusion  

All the results produced by the detection methods developed have been presented, 

discussed and evaluated in detail in this chapter.  

Method 1 that has further four different methods for the detection of each of the 

defect under investigation has been developed. Individual techniques of method 1 are 

a combination of customised existing image algorithms and newly developed 

algorithms; put together to perform the defect detection. The developed algorithms 

are efficient and reliable. The system has been handed over to the TATA steel group 

and is in initial testing phase before the proper installation is to be done in near 

future.  

 

Method 2 explains alternate rail inspection method to the method 1. The alternate 

method is an attempt on using Principal Component Analysis (PCA) to devise an 

adaptable and trainable single technique for classification of all defect types being 

investigated. The method is based on classifying PCA features using artificial neural 

networks. 

 

The performance of both the methods has been evaluated and discussed in detail in 

this chapter. The efficient performance of these novel techniques is evident by the 

resulting image, reports, table and timing information obtained by processing large 

number of image data.   

 

The next chapter concludes the report with a brief summary of the research work 

done and also accounts the future enhancement and scope of the project developed. 
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8 Conclusion 

 

 

 

8.1 Introduction 

This chapter will give an overall summary of all work done for this project. It will 

summarise the major developments done in the research and make conclusions on 

the basis of the results presented in chapter 7.  

Typical defects on rail in production line have been studied and characterised. The 

defects presented cover more than 95% of the defects that occur on the rail surface 

while in production. All the defects are considered critical by the customers and 

adequate action must be taken to avoid defective rails to be dispatched. 

Human inspection has the drawbacks firstly of being subject to human error in the 

form of tiredness and secondly of being too slow for an exhaustive inspection of all 

the rails produced. Automatic inspection software has been developed to 

complement the human inspection by pinpointing the suspected defects in rail and to 

perform an exhaustive inspection. 
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8.2 Analytical Outcome 

Standard image processing algorithms have been used as well as specially developed 

methods in order to design an automatic defect detection tool on images acquired 

with the JLI system at Tata Steel. Validation of the methods has shown that good 

results have been obtained and can be improved further in the case of PCA and 

Neural Networks techniques.  

8.2.1 Rolled in Scrap 

The rolled in scrap detection rate is perfect, all the defects that were present on the 

set of images submitted by Tata Steel were successfully detected, with a small 

amount of false positive due to flying dust incorrectly detected as faults. The 

algorithm developed detected 99% of the defects which shows the high success of it. 

Sometimes, due to uneven lighting and dust the background is not very clear from 

the rail that makes the detection difficult. The detection algorithm used the idea of 

separating rail edge from the background and then calculating unevenness in the rail 

edge, hence, better lighting conditions can clear the edge difference. A request has 

also been made to use the diffuse light instead of spot lights and also to improve the 

lighting condition to get the better view. If this happens a lot of pre-processing will 

be reduced and better detection will be possible. 

8.2.2 Line on Top  

The line on top detection rate is of 92%, the 8% not detected are faint lines that 

according to expert are not as critical as the deep appearing defects detected by the 

algorithm. It has been concluded from the results that written line algorithm is 

working fine. The only problem is with the edge detection, it missed the faint lines \ 

edges. Hence, the final detection is not 100%. Any other edge detector or different 

mask can be applied to improve the detection. However, rest of the steps and 

detection procedures are successful and producing good results. 

8.2.3 Tiger Stripe 

The tiger stripe detection rate is 80%, while the algorithm successfully detects all 

type of tiger stripes as presented in the table above, there are some cases where the 
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stripes are faint and small where the algorithm fails and are still critical to the quality 

of the rail itself. A different approach has been suggested to detect this type of defect 

and is currently under implementation and testing. Nonetheless, these faint stripes 

are rare in real cases and the high non detection rate observed here is due to the 

faults oriented images provided by Tata Steel that contained higher than usual 

defects of this type. More specific and clear images have been received recently and 

currently under testing. The main issue with the old images was them having very 

large patterns of tiger stripes. However, the defect size varies greatly. They can be 

very small and very large. Hence, the requirement is to make the adaptable algorithm 

which is sensitive to different sizes of the defect. Neural Networks and PCA are 

currently under consideration to get the better detection rate. The idea is to train the 

network on different areas of different sized from the defect. 

8.2.4 Wire Defect 

The algorithm for wire defect has a perfect detection rate of all the wires, with 5% of 

false positives due to occasional water drop that are incorrectly labelled as being 

faults, but that can easily be assessed by a post-viewing as being safe. This was the 

most difficult type to detect. However, smart observation of dark and light lines next 

to each other made it easy to detect.  

8.3 Comparison of Tested and Used Algorithms 

This section presents the comparison of the algorithms tested, studied and used for 

the detection of each defect.  There is a long list of image processing methods that 

have been studied, explored and tested. Moreover, few new detection algorithms 

have also been developed. Table 8.1 contains the brief comparison of the algorithms 

that have been tested and the ones that have been used at different stages of the 

defect detection. 
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Table 8.1: Comparison of tested and used algorithms for the defect detection process 

and their success rate 

 

Tested Image 

Techniques 

Success 

Rate 

Comment 

Image 

Filtering 

95% It has been used at various detection stages, as it 

successfully reduced noise and enhanced most of the 

images. 

Fourier 

Transform 

60% Some of the defects had similar frequencies as the 

defects. Hence, it didn‟t help much in removing the 

noise. 

Binarization 100% It has been used in all the algorithms as it segments the 

image making the processing simple and easy 

Robinson 

Edge 

Detectors 

90% Different edge operators were tested and Robinson 

kernel which is a gradient type has been used, as it gave 

comparatively high success rate. However, needs 

improvement as it is picking many irrelevant marks and 

non-defects as well.  

Susan 

Function 

65% Also picks up extra noise and dust of the back ground. 

Hence, not a best edge detector for the current problem 

to be used 

Hough 

Transform 

50% The algorithm picks up the lines in all direction. 

However, the line on top defect has lines only in 

horizontal direction. 

Developed 

Straight Line 

Algorithm 

92% The algorithm detected all the lines in horizontal spread 

apart from the faint lines missed by the edge detection 

process. 

Morphological 

Operators 

90% Dilate and erode operators have helped most of the time 

to extend the edges and remove the non-defect parts. 

Template 

Matching 

60% Template matching separates areas of interests out from 

the image using a small template or compares the parts 

of the image against each other 

Neural 

Networks 

65% They are still under consideration and needs to be trained 

cleverly on large number of defects to increase the 

detection date. However, the results so far are quite 

encouraging. 

Principal 

Component 

Analysis 

70% The process is still under inspection and being tried to be 

optimised to produce better detection 

 

The imaging methods with high success rates have been used in the developed 

detection algorithms. While the ones with low success rates such as Hough 

Transform to detect lines, Susan filter to detect edges and Fourier transform to 

reduce noise have been replaced by using own developed line detection algorithm, 
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Robinson edge detector and average filers for the time being. However, Neural 

Networks and PCA which are giving encouraging results are being considered for 

the future work.  

8.4 Future Enhancements and Scope 

Due to a large number defects that have to be detected in a short time and the very 

slow processing of some algorithms using neural networks, many aspects and points 

have been missed out. Noteworthy, the testing for PCA and Neural Networks based 

detection method has not been tested for large number of image data due to slow 

learning of ANN. Also that method 2 has not been yet tested for all the defected 

being investigated for the current research work. Therefore, the techniques used can 

be improved by applying some optimised application of artificial neural networks or 

the combination of both PCA and ANN. Implementation in any other software and 

finally on hardware can also improve the efficiency of the software developed. Their 

advance and practical form would definitely be a very great step forward in the field 

of image processing. 

The next step will be to make the implementation of an adaptable and trainable 

single technique complete and successful for detecting all the types of faults. A 

system is to be achieved that can learn and adapt itself to the changing types of faults 

with the time. It is hoped to develop some more generic approach rather than the 

series of bespoke and tailored algorithms using different new and developing 

techniques such as neural networks and PCA. 

Recent development in the field of neural networks has resulted in a large number of 

techniques and applications based on them. Neural networks are routinely being used 

for image processing, machine and computer vision. Back propagation neural 

networks are very efficient at prediction and classification (segmentation) but they 

are comparatively slow. There is no explanation about the learning of the network 

available i.e. a learned network does not contain any information about its learning.  

The project has been developed for Tata steel‟s Scunthorpe site for now. However, 

the developed software can be used at various similar sites around the world to 

replace the manual inspection to save time and money. There is also a proposal of 

designing a similar system to be used on another setup in Europe, known as Duris 
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system. Apart from rail inspection the software processes rails while in production, 

hence can also be used to inspect metal surfaces for other industries. 
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10 Appendix A - Back Propagation Neural Network Steps for Wire Defect 

Detection 

Back Propagation Neural Network (BPNN) are used for implementing image segmentation, 

different clustering techniques, image restoration and reconstruction, nonlinear image 

filtering, target detection, radar imaging, medical imaging, document analysis, character, 

signature, face and object recognition. In high-level image processing, they are helpful for 

three-dimensional object recognition, motion estimation, and stereo vision. 
2
 

The typical BPNN model has an input layer, at least one or more hidden layer(s) and an 

output layer. Theoretically, there is no limit on the number of hidden layers but typically they 

are one or two.  

The network works in two stages, Feed-Forward stage usually known as learning or training 

of the network, and a Back-Propagation Stage. To begin with, a network is created and the 

synaptic weights are set to some random values initially. Generally the network‟s need two 

different sets of data. One set is used for training and the other is used for testing by 

simulating the created network through it. Network can be tested on the same training data to 

avoid prediction or memorizing patterns. 

In feed forward stage the training data set is presented to the network. The data is processed 

by all the layers of the network in a sequence and processed data is moved towards the output 

layer. 

The output received after feed forward stage, contains error. These errors are the difference 

between the predicted output and the actual output produced. They inform the network that 

how far it is from the desired output. Hence, these errors are used to readjust the network. 

These are feed back to the network and new weights are assigned to each neuron. Back 

propagation method tries to minimize the sum of these errors for the training data, to make 

the network work in the most "desirable" way. Before training a BPNN, pre knowledge of the 

output attributes, number of epochs, learning rate, hidden layer nodes and test data set is 

necessary.  

                                                
2 “Applications of Artificial Neural Networks in Image Processing IX (EI15)”, 

http://electronicimaging.org/call/04/ [online] 

http://electronicimaging.org/call/04/
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10.1.1 Training Data and Targets 

The network is trained on a small set of data points. For example, there is an image with a 

wire defect on it. First step is to train the network with few points selected from the defect 

and the clear rail. The size of the mask can also be set by the user. When he clicks any point 

on the image for selection, the pixels surrounding that point gets selected in an array. The 

statistics of each points selected by the user are calculated; their respective targets are 

assigned and saved in individual arrays. Statistics are calculated using the masking process 

explained in chapter 3. A small size of mask is chosen and is moved over the whole image. 

The function to be performed or the calculation is repeated for every position of the mask and 

the values are stored in input array as rows. Most commonly used statistics are median, mean, 

variation, standard deviation, local minima and maxima. 

10.1.2 Training the Network 

The back propagation neural network is then trained by the input. The nodes in the input and 

output layer needs to be defined. This is determined by number of statistics used. For 

example, if only standard deviation and mean is used then input layer would have 2 neurons. 

Output layer would have only one neuron as an input can either be a defect or not. However, 

neurons in the hidden layer can be defined by the use. The input vectors pass through the 

network again and again, errors are propagated and weights are adjusted. Network is trained 

till the maximum epoch is reached.  Training plot and network can been seen in the figures 

below. 

10.1.3 Simulation and Testing 

Once the training of the network is finished, it can be tested on any data for verification. 

Simulation takes place very fast as compared to the Training, as the network that is already 

intelligent enough only has to classify the input to the known groups. Simulation sorts the 

input and divides them into the specified groups and resulting image can be viewed after that.  
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10.1.4 Wire Defect Detection Results Produced by Matlab 

Some of the results produced by BPNN have been presented in the figures below. 



Appendix A 

 

186 

 

 

(a) 

 

(b) 

Figure 10.1: Neural Network Result A. (a) Original rail image with wire defect (b) Wire 

defect detected  by Neural Networks 
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(a) 

 

(b) 

Figure 10.2: Neural Network Result B. (a) Original rail image with wire defect (b) Wire 

defect detected by Neural Networks 

10.1.5 Practical Considerations of BPNN 

Bach propagation networks are very efficient at prediction and classification (segmentation) 

but they are comparatively slow. There is no explanation about the learning of the network 

available i.e. a learned network does not contain any information about its learning. Back-

propagation networks have some practical consideration that needs to be considered before 

using them. 
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Speed: The neural networks are very fast on hardware but really slow when they are run on 

the computers. The small networks run faster it works. 

The right choice of data: Anything can be fed on network and it becomes a problem, even 

the irrelevant data. For example noise on the images cause a problem.  

Stability of a solution: Overtraining of the network usually results in error.  

Can we use our results: Considering practical applications, we need to sort out the fact that 

data might change, and the network working today might not work tomorrow.  
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11 Appendix B – Extra Light Adjustment Techniques Tested 

11.1 Hue Saturation Value (HSV) adjustment 

Conversion of the images from the standard Red, Green, Blue (RGB) standard colour space 

to an alternative colour space for enhanced colour segmentation helps in contrast and 

brightness adjustment. The Hue, Saturation, Value (HSV) also known as Hue, Saturation, 

Brightness (HSB) or Hue Saturation lightness (HSL) spaces as known to be useful for light 

adjustment in an image, has also been tested for the purpose. Hue is the colour in image, 

saturation is the intensity and lightness is for the brightness value of the image. 

The simple procedure involves the conversion of an image to HSV space, which returns an 

HSV colormap. An HSV colormap varies the hue component of the hue-saturation-value     

colour model.  The colours begin with red, pass through yellow, green, cyan, blue, magenta, 

and return to red.  The map is particularly useful for displaying periodic functions.  This step 

is done to perform segmentation based on colour difference. As with HSV function every 

colour, with whatever intensity is assigned same HSV value. That helps to segment that 

specific colour and in the current situation can be used to adjust the brightness of rail images. 

The result of the test has been shown in the Figure 11.1. The image HSV space was generated 

and then lightness value had been increased to make look bright. However, the problem with 

the grey scale rail images is the use of non-diffused light, making some part of the rail very 

bright leaving others very dark. Hence, making whole image bright using HSV space didn‟t 

help to make the image lighting look uniform. 

  

(a) (b) 

Figure 11.1: Result of light adjustment using HSV color space. From left (a) Original Image 

(b) Lightness Value Adjusted in HSV space 

11.2 Gamma Correction 
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Gamma correction handles the overall brightness of an image. It can be described as a 

relationship between and input and output image or in more technical terms the relationship 

between the numerical value of each of the pixel in an image and its actual luminance. 

Gamma correction can be applied to the images that are either too bright or too dark, to make 

them look proper. Gamma correction makes the features in an image more prominent without 

causing any washing out effect. However, it also didn‟t work well for type of rail images as 

can been seen in Figure 11.2. The results shown have been produced by self-written code. 

Gamma correction does make the image look brighter but fails to make it look uniform. 

 

(a) 

 

(b) 

Figure 11.2: Result of Gamma correction. (a) Original tiger stripe Image (b) Gamma 

Corrected Image 

 

 

 


