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Summary: Thermoplastic polyurethane (TPU) - calcium carbonate 

interactions were studied using flow micro-calorimetry (FMC) and diffuse 

reflectance Fourier transform infrared spectroscopy (DRIFTS). FMC enabled 

the determination of adsorption and desorption energies; in this study a model 

compound approach was used to acquire insight in to the effect of calcium 

carbonate type and presence of stearate coating on polymer – filler 

interactions. It was anticipated that this data will assist in the understanding of 

differing responses obtained from parallel plate rheometry and viscoelastic 

measurements of the filled polyurethanes. Three calcium carbonates (coated 

and uncoated precipitated calcium carbonate, and natural ultramicronized 

uncoated calcium carbonate) were used. A stronger TPU-filler interaction was 

shown in the uncoated precipitated calcium carbonate due to the fact that more 

of the surface was available for interaction. 
 

Keywords: FMC; DRIFTS; thermoplastic polyurethane; adhesive; calcium 

carbonate.  
 

 

Introduction  
 

The structure of the polyurethanes determines their properties and this can be altered by 

adding fillers due to the creation of polymer-filler interactions [1, 2]. For a given 

interfacial area in the composite, the overall strength of these interactions is dependent on 

the native surface chemistry of the filler and any surface modification that may be applied 

to it. In order to fully understand the properties of the filled polyurethane as adhesive, 

these interactions must be understood and controlled. Parallel plate rheometry and 

viscoelastic measurements can be used to assess the polyurethane-filler interactions but 

they are limited due to the absence of quantitative data concerning the polymer – filler 

interactions at a molecular level. In this study, flow micro-calorimetry (FMC) 



measurements, supported by diffuse reflectance Fourier transform infrared spectroscopy 

(DRIFTS) will be targeted towards quantification of these interactions.  

 

FMC can be used to investigate the interfacial interactions between solids and liquids by 

determination of the heats of adsorption/desorption [3, 4]. Different fillers including 

carbon black, silica, and organo-clays have been examined using FMC. The latter fillers in 

particular are often modified using chemical treatments in order to improve the chemical 

and/or physical adsorption characteristics of polymer matrix chains on to their surfaces [4-

9]. For example, silica is able to interact with polar adsorbates via hydrogen bonding 

interactions with surface silanol groups (i.e., isolated, germinal, vicinal varieties) and 

siloxane bridges [9]. However, some grades of carbon black and calcined silicas typically 

show van der Waals or hydrophobic bond interactions with polymers.  

 

Akoum et al. [10] modified fumed silica by grafting with trimethylchlorosilane and 

analysed the adsorption of poly(dimethylsiloxane) elastomers on silica by using FMC. 

They concluded that the conformation of the macromolecules on silica depends on the 

silica surface area which was correlated with surface-polymer interactions.  During the last 

five years, FMC has been used in studies of: bio-diesel fuel manufacture, waste control, 

organic pollutants and catalysts, within the pharmaceutical, chemical and polymer 

industries [11, 12]. However, the use of FMC in studies of interfacial interactions in 

thermoplastic polyurethane (TPU) composite adhesives has not been reported in the 

literature. In this study a model compound will be used to simulate the structural units of a 

TPU adhesive. As the segmented structure of TPUs used for adhesive applications, is 

mainly dominated by polyester polyol based soft segments, dimethyl adipate was selected 

for use as a probe molecule to simulate the interactions between polyester polyol and the 

various filler samples investigated.  

 

Experimental Part 

 

Materials 

Two coated (Socal®312) and uncoated (Socal®31) precipitated calcium carbonates (PCC) 

supplied by Solvay Specialités (Salin de Giraud, France), and natural ultra-micronized 

uncoated calcium carbonate Microcarb®95 (GCC) supplied by Reverté (Barcelona, Spain) 



Dp : 50-95 nm Dp : 25-315 nmCoated PCC Uncoated natural 

were investigated. Selected properties of these calcium carbonates are given in Table 1. 

The filler particle shape, size and size distribution of some of them were visually assessed 

using TEM (Figure 1). The PCC samples had primary particles which were on average 

less than 100 nm and could be accurately described as nanoparticles, GCC however, had 

particles closer to 1 m in size [13], the latter were also rather random in shape. 

 

Table 1. Selected properties of the calcium carbonates (taken from the technical data 

sheets) [14, 15]. 

Calcium 

carbonates 

CaCO3 

content 

(wt%) 

Free flowing 

density 

(g/l) 

Specific surface 

area 

(m2/g) 

Mean particle 

size 

(nm) 

Uncoated natural 98.96 500 13 605 

Uncoated PCC 98.90 210 20 70 

Coated PCC 98.90 286 19 70 

 

 

Figure 1. TEM micrographs of coated precipitated and uncoated natural calcium 

carbonate [13]. 

 

The coated PCC is treated to a level of 4 % wt stearate (most likely ammonium stearate). 

Figure 2 shows the TGA curve (together with the associated derivative (DTGA) data) of 

the coated PCC where the mass losses at 386 ºC and 459 ºC correspond to loss of stearate 

[16, 17]. It is highly probable that PCC was coated with ammonium stearate as no traces 

of calcium or other metals can be detected in the chemical analysis of the coated filler by 

X-ray fluorescence spectroscopy.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. TGA and DTGA data obtained for the coated PCC.  

 

Experimental Techniques 

 

Characterization of the calcium carbonates 

 

Transmission electron microscopy (TEM). A Jeol TEM-2010 instrument (Tokyo, Japan) 

was used to analyse the topography and measure the particle size of calcium carbonates; 

an acceleration voltage of 100 kV was used.  A low concentration suspension of particles 

in ethanol was prepared and was treated by using an ultrasonic bath during 3-4 minutes. A 

drop of dispersion was put on a Lacey grid of 3.05 mm of diameter and ethanol was 

removed at room temperature.  

 

Thermogravimetric analysis (TGA). The mass loss versus temperature characteristics of 

coated calcium carbonate was measured in a TA Instruments (New Castle, USA) Q500 

TGA instrument. The samples (10 – 15 mg) were contained in platinum pans and were 

heated from room temperature to 800ºC at a heating rate of 10ºC/min under a nitrogen 

atmosphere (flow rate: 100 ml/min). 

 

Characterization of the TPU films 

 

Dynamic mechanical thermal analysis (DMTA). The viscoelastic properties (closely 

related to the strength of filler-polymer interactions) of the filled polyurethanes were 

measured using a TA Instruments (New Castle, USA) DMA Q800 instrument. The 



experiments were carried out in the shear sandwich mode (sample dimensions: 10 mm x10 

mm x 1 mm), over the temperature range -100ºC to 80ºC, heating rate was 5ºC / min.  

Oscillation frequency and strain amplitude were 1 Hz and 0.5%, respectively.  

 

Quantification of polyurethane-calcium carbonate interactions 

 

Flow Micro-Calorimetry (FMC). The FMC instrument used was a Microscal 3V with 

PTFE cell. The cell outlet was connected to a Waters 410 differential refractometer. The 

data outputs were handled by Perkin-Elmer Nelson 970 series interface connected to PC. 

The volume of the sample chamber was 0.15 cm3 (sufficient filler was used to fill the 

chamber), experiments were carried out at cell temperature of 20 °C (± 1 °C). Adsorption 

experiments were carried out from both heptane and butan-2-one, at a flow rate of 4.0 

ml/h. The concentration of the probe solution was 0.3 % w/v. Decahydronaphthalene was 

used as the non-adsorbing probe. 

 

The butan-2-one and heptane were HPLC grade and dried over 3A molecular sieves. The 

adsorption and desorption of dimethyl adipate (99%, Aldrich, UK), from both heptane and 

butan-2-one, on to the calcium carbonate samples was investigated at 20 °C according to 

established FMC methods [4-12]. After completion of the FMC experiments, the fillers 

were oven dried at 70 ºC for 20 hours, and were examined using diffuse reflectance 

Fourier transform infrared spectroscopy (DRIFTS). The adsorption of the actual TPU 

from butan-2-one was also attempted, but unfortunately the cell blocked due to formation 

of a plug of what was effectively a TPU/calcium carbonate composite in the cell.  

Therefore an adsorption isotherm type approach (described below) had to be adopted for 

studying adsorption of the TPU from butan-2-one. 

 

Solution adsorption of TPU on to the filler samples.  TPU adhesive solutions (0.1-5.0 

wt%) in butan-2-one were used for the adsorption study, which was carried out by stirring 

9 ml of each TPU solution with calcium carbonate (0.5 g). After 12-16 hours the samples 

were filtered, washed with fresh heptane and dried at 70ºC for 4 hours in an oven and were 

analysed using DRIFTS. 

 

Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). The species 

adsorbed on the calcium carbonates were analysed quantitatively by using a Thermo-



Nicolet Nexus spectrometer fitted with the standard DTGS detector and Spectra-Tech 

DRIFTS cell. Prior to analysis, the samples were diluted to 5 % wt with finely ground 

KBr; care was taken to gently fold the sample in to the KBr, in order to avoid damaging 

the filler particles.  Spectra were made up of 160 scans with resolution set to 4 cm-1. The 

spectra were normalized by using the automatic baseline correct tool and the peak area 

ratio (A1731/A1794) was determined from peak areas at 1731 cm-1 (νst C=O from urethane) 

and 1794 cm-1 (νst C=O from calcium carbonate) by using Omnic 5.1 software. 

 

Results and Discussion 

 

DMTA studies  

Coated calcium carbonate may be used to control the rheology of the adhesive solution, 

and to improve the viscoelastic properties of the polyurethane [13]. DMTA studies 

revealed (Figure 3(a)) that at 5 wt % filler content, stearate coated PCC led to lower G′ 

than the uncoated GCC. The behaviour observed may be related to differences in filler-

matrix interaction; there is higher filler-matrix interaction in the composite based on 

uncoated GCC due to the somewhat depressed tan delta peak (Figure 3(b)). The increased 

interfacial area in the coated PCC based composite was overshadowed the increased filler–

matrix interaction in the composite based on untreated GCC, thereby indicating that the 

reduction in filler-matrix interaction arising from stearate modification is significant. FMC 

studies will confirm the effect of stearate treatment on filler–matrix interaction. 

 

FMC studies of adsorption of dimethyl adipate onto the calcium carbonates 

Data in Figure 4(a) shows the heats of adsorption and desorption of dimethyl adipate (DA) 

from heptane on to the various calcium carbonate samples, whilst data for adsorption of 

DA from the more polar butan-2-one on to the same substrates are shown in Figure 4(b). It 

is immediately apparent that the untreated calcium carbonates generally show more 

energetic adsorption relative to the stearate treated sample, this is consistent with other 

studies [18-21] that come to the same conclusion. The other obvious effect is that the heats 

of adsorption from butan-2-one are substantially lower due to the stronger interactions 

between the solvent and the substrates (Figure 4(c)). In this case the highest energy 

adsorption sites may be blocked by the solvent molecules. Despite the latter, the uncoated 

PCC sample still showed more energetic adsorption of DA. However, the uncoated GCC 
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showed much less energetic adsorption of DA than the uncoated PCC, an effect that may 

be related to the interaction of natural organic matter on the surface of the GCC with the 

butan-2-one. The heats of desorption of DA from heptane (Figure 4(a)) are greater than 

the heats of adsorption of DA. This is most likely to be an artefact of the peak integration 

process, though it may be also associated with water being desorbed together with the DA. 

Desorption of filtration aids cannot be ruled out either.  The DRIFTS data (see below) 

clearly shows retention of DA on the filler surfaces. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a. DMTA data showing storage modulus (G′) as a function of the temperature for 

TPU composites containing 5 wt% of the indicated calcium carbonate samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3b. DMTA data showing Tan delta as a function of the temperature for TPU 

composites containing 5 wt% of the indicated calcium carbonate samples. 

 

 



 
 

Figure 4. Heats of adsorption/desorption of indicated probes from indicated solvents on to 

the calcium carbonate samples: (a) dimethyl adipate from heptane; (b) dimethyl adipate 

from butan-2-one; (c) butan-2-one from heptane.  

 

Figure 5 shows substrate subtracted spectra of dried fillers after adsorption and desorption 

of DA from heptane (Figure 5(a)) and butan-2-one (Figure 5(b)). The lower levels of 

adsorption from butan-2-one are immediately apparent as the ester carbonyl of samples 

where DA was adsorbed from butan-2-one is rather weak relative to equivalent samples 

where DA was adsorbed from heptane. In both cases, the two uncoated samples (PCC and 

GCC) show weak ester carbonyls that have been significantly shifted to lower energy 

indicating strong interaction of dimethyl adipate with the surface via its ester carbonyl 

groups. The coated PCC, however, shows a relatively large unperturbed carbonyl band at 

1740 cm-1. The absence of shifting of this band may be significant in that a large fraction 

of the carbonyls are not interacting with the coated PCC surface; but instead resting on, 

and within, the stearate coating. The fact that the carbonyl groups are not perturbed by the 

surface interactions may mean that they can vibrate more freely and therefore absorb more 

IR energy. 
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Figure 5. Substrate subtracted DRIFTS spectra of indicated samples isolated from the 

FMC cell after adsorption / desorption experiments; adsorptions from (a) heptane and (b) 

butan-2-one. The dimethyl adipate spectrum has been reduced to fit. 

 

 

 

 

 

 

 

 



DRIFTS studies on solution adsorbed TPU 

Due to the previously mentioned experimental problems associated with FMC adsorption 

of TPU, solution adsorption studies were carried out instead. Figure 6 shows a plot of 

A1731/A1794 obtained from DRIFTS spectra of samples isolated from the adsorption flasks 

versus the level of TPU on the filler, which was calculated from the amount initially 

added.  The ratio A1731/A1794, a measure of the amount of TPU adsorbed, increases more 

rapidly in the case of the uncoated PCC, thereby indicating stronger and more prolific 

interaction relative to that observed with the stearate treated PCC.  This observation is 

entirely consistent with the FMC data for adsorption of DA, and the DMTA data for the 

TPU based composites.  The difference in nature of interaction was also apparent from 

inspection of the carbonyl bands in substrate subtracted DRIFTS spectra (Figure 7). 

Before this discussion, it is important to note that the solvent subtracted spectrum of the 

TPU in solution shows a weak shoulder, assignable to the urethane carbonyls,   at 1716 

cm-1 on its main carbonyl ester band at 1729 cm-1. Substrate subtracted DRIFTS spectra of 

the TPU on the unmodified PCC shows significant perturbation of the carbonyl bands to 

lower energy, when the addition level was below 0.00045 g/m2.  Though even at the 

highest addition level there is still significant band broadening with distinct skewing to 

lower energy.  In contrast the equivalent spectra of TPU on the stearate treated PCC show 

rather more Gaussian-like peaks, at low TPU levels the degree of perturbation to lower 

energy is substantially less than with the equivalent unmodified PCC samples.  Due to the 

close proximity of the ester and urethane carbonyl bands, together with the relatively low 

absorbance of the latter, it is not possible to distinguish whether or not the urethane groups 

are involved in adsorption.  However, it is clear that interaction of the TPU with the 

untreated PCC in not hindered, and judging by the level of carbonyl perturbation, it is 

highly likely that the TPU is adsorbed relatively flat with a significant fraction of the 

carbonyl groups interacting with the GCC surface.  The latter is particularly true when 

addition levels are low.  It may be that adsorption of TPU on the stearate treated PCC may 

be more loopy in nature; only a small fraction of the carbonyl groups interacted with the 

PCC. This was due to blockage of a significant fraction of the surface by the adsorbed 

stearate.  At high addition levels the TPU may be adsorbed on top of and amongst the 

adsorbed stearate anions. 
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Figure 6. Variation of A1731/A1794 ratio as a function of the PU level. A1731 means 

absorbance band area of νst C=O which corresponds to urethane and A1794 means 

absorbance band area of νst C=O which corresponds to calcium carbonate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Substrate subtracted spectra of (a) uncoated PCC and (b) stearate treated PCC 

after adsorption of the indicated initial levels of TPU from butan-2-one. The TPU spectra 

have been reduced to fit.  



Conclusions 

TPU - calcium carbonate interactions can be predicted by conducting FMC adsorption 

studies on calcium carbonate using dimethyl adipate as a model for the polyester polyol 

segments of the TPU. The FMC studies were supported by DRIFTS analysis of samples 

isolated from the FMC cell and DRIFTS studies on uncoated and stearate coated calcium 

carbonates treated with varying levels of TPU. Both dimethyl adipate and the TPU 

strongly adsorbed onto untreated calcium carbonate via the ester groups. Stearate 

treatment of calcium carbonate greatly reduced the strength of interaction with the TPU 

due to blockage of the surface adsorption sites. DMTA studies were also conducted on 

TPU / calcium carbonate composites both the G′ and tan delta versus temperature data 

indicated that stearate modification of PCC led to significant reduction in filler-matrix 

interaction.  The latter observation was entirely consistent with the adsorption studies. 
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