
SMOOTHED PARTICLE HYDRODYNAMICS

ON GRAPHICS PROCESSING UNITS

CHRISTOPHER MCCABE

A thesis submitted in partial fulfilment of the requirements

of the

Manchester Metropolitan University for the degree of

Doctor of Philosophy

School of Computing, Mathematics & Digital Technology

the Manchester Metropolitan University

July 2012

Abstract

A recent development in Computational Fluid Dynamics (CFD) has been the meshless

method called Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH), which

is a Lagrangian method that tracks physical quantities of a fluid as it moves in time and

space. One disadvantage of WCSPH is the small time steps required due to the use of

the weakly compressible Tait equation of state, so large scale simulations using WCSPH

have so far been rare and only performed on very expensive CPU-based supercomputers.

As CFD simulations grow larger and more detailed, the need to use high performance

computing also grows. There is therefore great interest in any computer technology that

can provide the equivalent computational power of the CPU-based supercomputer for a

fraction of the cost. Hence the excitement aroused in the SPH community by the Graphics

Processing Unit (GPU).

The GPU offers great potential for providing significant increases in computational

performance due to its much smaller size and power consumption relative to the more es-

tablished and traditional high performance computers comprising hundreds or thousands

of CPUs. However, there are some disadvantages in programming GPUs. The memory

structure of the GPU is more complex and more variable in speed, and there are other

factors that can seriously affect performance, such as the thread grid dimensions which

drives the occupancy of the GPU.

The aim of this thesis is to describe how WCSPH can be efficiently implemented on

multiple GPUs.

First, some CFD methods and their success or otherwise in simulating free surfaces

are discussed, and examples of previous attempts at implementing CFD algorithms on

GPUs are given. The mathematical theory of WCSPH is then presented, followed by

a detailed examination of the architecture of a GPU and how to program a GPU. Two

different implementations of the same WCSPH algorithm are then described to simulate a

well known experiment of a collapse of a column of water to highlight two possible uses

of the GPU memory. The first method uses the fast shared memory of the GPU, which

is recommended by the GPU manufacturer, while the second method uses the texture

i

memory of the GPU, which acts as a cache. It is shown that due to the theory of WCSPH,

which allows particles to only interact with other particles a short distance apart, that

despite the speed of the shared memory and the power of coalescing data into the shared

memory, the texture memory method is currently the most efficient, but that this method

of implementing WCSPH on a single GPU requires a much higher degree of complexity

of programming than the shared memory method. It is also shown that the size of the

thread block can have a significant effect on performance.

Riemann solvers add more computational effort but can provide more accuracy. The

use of Riemann solvers in WCSPH and their success or otherwise is then examined, and

the results and performance of one particular WCSPH algorithm that uses an approximate

Riemann solver when executed on a GPU are reported.

The treatment of boundaries has been and continues to be a problem in WCSPH, and

there are a number of creative proposals for boundary treatments. Some of these are de-

scribed in detail before a new boundary treatment is proposed that builds upon a boundary

treatment that was recently proposed, and improves its performance in execution time on

a GPU by using the registers and not the slower memories of the GPU. This new boundary

treatment builds a unique private grid of boundary particles for each fluid particle close to

the boundary. All computation is performed in the registers, the properties of the bound-

ary particles depend on the fluid particle only, and there is no requirement to recall data

from the slower global or texture memories of the GPU. The new boundary treatment is

also shown to propagate a solitary wave further, preserves the wave height more and takes

less execution time to compute than the original boundary treatment this new treatment

builds on.

A unique and simple implementation of WCSPH on multiple GPUs is then described,

and the results of a simulation of a collapse of a column of water in 3D are reported and

compared against the results from a simulation of the same problem with the same WC-

SPH algorithm executed on a large cluster of multi core CPUs. The conclusion is that

simulations on a small cluster of GPUs can achieve greater performance than from a clus-

ter of multi core CPUs, but to achieve this the slow GPU memories, including the texture

ii

memory, must be avoided by using the registers as much as possible, and the architecture

of the network linking the GPUs together must be exploited. The former was achieved

by using the new boundary treatment proposed in this thesis and discussed above, and

the latter was achieved by the use of the MPI Group functionality. The GPUs used for

this thesis were already connected together in boxes of 4 by the manufacturer. The clus-

ter used for this thesis consisted of 8 of these boxes, giving a total of 32 GPUs. These

boxes of 4 GPUs were connected together through a common host, but the communication

speed over the connection between the box and the host is much slower than that between

the GPUs inside the box. The total communication time was minimized by grouping the

GPUs inside a box together with their private unique MPI communicator, and a com-

munication procedure was created to minimize communication over the relatively slow

connection between the boxes of GPUs and the host.

Finally, some conclusions are drawn and suggestions for further work are made.

iii

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for any other degree or qualification at this or any other institution.

Apart from those parts of this thesis which contain citations to the work of others

and apart from the assistance mentioned in the acknowledgements, this thesis is my own

work.

Christopher McCabe

iv

Acknowledgments

I would like to thank the following.

• my Director of Studies Professor Derek Causon and Second Supervisor Professor

Clive Mingham for their support, encouragement and generosity in providing the

computational resources required for this work,

• the EPSRC for the Doctoral Training Account research grant that financed this re-

search,

• the UK STFC Daresbury Laboratory for their permission to use the NVIDIA S1070

cluster based there,

• Igor Kozin formerly at UK STFC Daresbury Laboratory for his guidance on how to

use the NVIDIA S1070 cluster at Daresbury Laboratory,

• and finally my family and friends for helping and supporting me during challenging

times.

v

Contents

Abstract i

Declaration iv

Acknowledgments v

Table of Contents vi

List of Figures xi

List of Tables xvii

Nomenclature xix

1 Introduction 1

2 Smoothed Particle Hydrodynamics 5

2.1 What is a Particle in SPH? . 5

2.1.1 The Continuous Approximation 6

2.1.2 Error in Particle Approximation 8

2.1.3 The Summation Approximation 8

2.2 The Particle Approximation of

the Navier-Stokes Equations . 10

2.3 Density . 14

2.4 Smoothing Functions . 14

2.4.1 Gaussian . 14

vi

2.4.2 Parshikov Cubic Spline . 14

2.4.3 Wendland Quintic Spline . 15

2.5 Smoothing Length . 15

2.6 Boundary Conditions . 16

2.6.1 On-Boundary Particles . 16

2.6.2 Ghost Particles . 16

2.6.3 Hybrid Boundary Treatment . 17

2.6.4 Wall Functions . 17

2.7 Corrections in SPH . 17

2.7.1 Density Correction . 17

2.7.2 Kernel Correction . 18

2.7.3 Tensile Correction . 19

2.7.4 XSPH . 20

2.7.5 Hughes and Graham Correction 20

2.8 Equations of State . 21

2.8.1 Tait EoS . 21

2.8.2 Morris EoS . 21

2.9 Time Step and Integration Schemes . 22

2.9.1 Leapfrog . 22

2.9.2 Predictor-Corrector . 22

2.9.3 Runge-Kutta Schemes . 24

2.10 Finding Particle Interactions . 25

3 GPU Programming 26

3.1 The Architecture of the NVIDIA Graphics Processing Unit 27

3.1.1 Memory Hierarchy . 27

3.1.2 Coalescing . 29

3.2 The Fundamentals of CUDA . 32

3.2.1 Data types . 32

3.2.2 A CUDA Program . 33

vii

3.3 A Closer Look at Memory Hierarchy . 47

3.3.1 Global Memory . 47

3.3.2 Texture Memory . 48

3.3.3 Shared Memory . 49

3.3.4 Constant Memory . 51

3.3.5 Registers . 52

3.4 Pinned Memory and Streams . 52

3.5 Limit on Kernel Parameter List . 55

3.6 Warp Divergence . 57

3.7 Padding . 57

3.8 Error Reporting . 58

4 SPH on a GPU 59

4.1 The SPH Algorithm . 60

4.2 Shared Memory and Coalesced Implementation 61

4.2.1 Calculation of Rates of Change 64

4.2.2 Integration . 69

4.3 Texture Memory Implementation . 69

4.3.1 Cell ID . 71

4.3.2 Sorting . 73

4.3.3 Reordering . 74

4.3.4 Calculation of Acceleration and Density Change 76

4.4 Performance of the two implementations 81

4.5 Verification . 84

4.6 The Effect of Thread Block Size on Execution Time 85

4.6.1 Occupancy . 91

4.7 Conclusions . 93

5 Riemann Solvers in SPH 95

5.1 SPH Algorithms using Approximate Riemann Solvers 96

5.2 Dissipation in SPH with Riemann Solver 98

viii

5.2.1 Monaghan & Kos Boundary Treatment 99

5.2.2 Monaghan Lennard-Jones Boundary Treatment 104

5.2.3 Dalrymple & Knio Boundary Treatment 108

5.3 A Solitary Wave . 111

5.4 Conclusions . 116

6 Boundary Treatment 118

6.1 Known Boundary Treatments . 118

6.1.1 On-Boundary Particles . 118

6.1.2 Ghost Particles . 120

6.1.3 Mixed or Hybrid Boundary Particles 120

6.2 The SPH Algorithm . 121

6.3 A New Boundary Treatment . 124

6.4 A Solitary Wave . 133

6.5 Conclusion . 135

7 SPH on Multiple GPUs 136

7.1 Message Passing Interface . 137

7.1.1 MPI Gather . 140

7.1.2 MPI Bcast . 140

7.1.3 MPI Allgather . 142

7.1.4 MPI Group . 142

7.2 Rank Allocation . 144

7.3 Implementation of a SPH Algorithm

on Multiple GPUs . 145

7.3.1 The Amended Ferrari SPH on Multiple GPUs 148

7.3.2 The Application of MPI Groups and Sequential Allocation 149

7.3.3 The Application of CUDA Streams 151

7.4 Full Simulation of 3D Dambreak . 155

7.5 Conclusion . 155

ix

8 Conclusions and Suggestions for Further Work 162

8.1 Conclusions . 162

8.2 Further Work . 164

8.2.1 Use of Riemann Solvers in Different SPH Equations in Different

Situations . 164

8.2.2 Use of GPU Shared Memory . 164

8.2.3 Volume Domain Decomposition 165

8.2.4 Improving Communication on Multiple GPUs 165

8.2.5 Incompressible SPH on GPUs 167

8.2.6 Implementation on NVIDIA Fermi GPUs 167

A A Simple CUDA Program 168

B The Calculation of Forces for the Shared Memory Implementation 171

C The Calculation of Forces for the Texture Memory Implementation 175

Bibliography 181

x

List of Figures

3.1 The architecture of the NVIDIA Tesla GPU 28

3.2 Valid coalescing rules . 31

3.3 A simple structure in C to define a particle 31

3.4 Reading a linear array . 32

3.5 Reading a structure to access a component 32

3.6 Accessing components of a float4 variable 33

3.7 Allocating memory on the device with cudaMalloc 36

3.8 Deallocating memory on the device with cudaFree 37

3.9 Specifying the thread grid for a kernel 37

3.10 A Simple thread grid . 39

3.11 Specifying the thread grid for the inckernel 39

3.12 Each thread calculates its unique thread ID 39

3.13 Assigning thread ID . 40

3.14 Transfer of data from device to host . 40

3.15 Specification of cudaMemcpy . 40

3.16 A simple CUDA program . 42

3.17 General kernel specification . 43

3.18 Simple kernel specification . 43

3.19 Simple kernel specification . 45

3.20 The declaration of a linear 1D texture 48

3.21 The binding, use and unbinding of a texture 49

3.22 The declaration of a shared memory variable 49

3.23 Assigning a shared memory variable to a register 50

xi

3.24 A simple data transfer to and from the device 53

3.25 Declaring and creating an array of streams 54

3.26 Destroying an array of streams . 54

3.27 Using an array of streams for concurrent kernel execution and data transfer 54

3.28 Declaring pinned memory . 55

3.29 Creating a structure on the device to pass a list of variables to a kernel . . 56

3.30 Passing a structure on the device to pass a list of variables to a kernel . . . 56

3.31 Dereferencing variables passed in a structure in a kernel 56

4.1 N Body simulation . 63

4.2 Pseudo code for implementation of main 64

4.3 The Intermediate CalcForces function 65

4.4 The Initialisation of calculateforceskernel kernel 66

4.5 The calculateforceskernel kernel main loop 66

4.6 Coalescing global data into shared memory 67

4.7 Process the interaction between two distinct particles 67

4.8 The Coalesced Write of Acceleration and Rate of Change of Density to

Global Memory . 67

4.9 The predictor phase integration . 69

4.10 The corrector phase integration . 70

4.11 The pseudo code for SPH calculations 70

4.12 The calcHash function . 72

4.13 The calcHashD kernel . 72

4.14 The calcGridPos device function . 72

4.15 The calcGridHash device function . 73

4.16 The sorting and reordering of particles in a grid 74

4.17 Binding a texture . 75

4.18 Declaring a texture . 75

4.19 Unbinding a texture . 76

4.20 The nested loop to investigate neighbouring cells 77

xii

4.21 The loop to step through particles . 78

4.22 The statement to check that two particles are not the same 79

4.23 Checking for interaction . 79

4.24 Fetch texture values into registers for use in SPH calculations 79

4.25 Calculate the acceleration and density change for the texture implementation 80

4.26 The coalesced write of accumulation of acceleration and density change

to global memory . 81

4.27 The set up of fluid particles . 82

4.28 The collapse at t=0.9 s from the texture memory method with 2628 fluid

particles . 83

4.29 The collapse at t=0.9 s from the shared memory method with 2628 fluid

particles . 83

4.30 The computation of rate of change of density for each particle interaction 84

4.31 The simulation of column collapse at t=0s 86

4.32 The simulation of column collapse at t=0.2s 86

4.33 The simulation of column collapse at t=0.4s 87

4.34 The simulation of column collapse at t=0.6s 87

4.35 The simulation of column collapse at t=0.8s 88

4.36 The simulation of column collapse at t=1.0s 88

4.37 Photographs taken by Koshizuka & Oka of the collapse 89

4.38 The location of the water column front in the simulation of column collapse 90

4.39 The resources required for each kernel 91

4.40 The occupancy for the CalculateForces kernel with variable block size . . 92

5.1 The front of the column for the Vila SPH algorithm with different bound-

ary treatments . 100

5.2 The height of the column for the Vila SPH algorithm with different bound-

ary treatments . 101

5.3 Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos bound-

ary treatment at 0 s . 102

xiii

5.4 Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos bound-

ary treatment at 0.2 s . 102

5.5 Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos bound-

ary treatment at 0.4 s . 103

5.6 Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos bound-

ary treatment at 0.6 s . 103

5.7 Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos bound-

ary treatment at 0.8 s . 104

5.8 Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos bound-

ary treatment at 1 s . 104

5.9 Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0 s . 105

5.10 Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.2 s . 106

5.11 Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.4 s . 106

5.12 Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.6 s . 107

5.13 Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.8 s . 107

5.14 Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 1 s . 108

5.15 Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio

boundary treatment at 0 s . 109

5.16 Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio

boundary treatment at 0.2 s . 109

5.17 Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio

boundary treatment at 0.4 s . 110

xiv

5.18 Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio

boundary treatment at 0.6 s . 110

5.19 Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio

boundary treatment at 0.8 s . 111

5.20 Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio

boundary treatment at 1 s . 111

5.21 The solitary wave at 0 s with the Vila SPH algorithm 113

5.22 The solitary wave at 1 s with the Vila SPH algorithm 113

5.23 The solitary wave at 4 s with the Vila SPH algorithm 114

5.24 The solitary wave at 0 s with the Ferrari SPH algorithm 114

5.25 The solitary wave at 1 s with the Ferrari SPH algorithm 115

5.26 The solitary wave at 4 s with the Ferrari SPH algorithm 115

6.1 The On-Boundary Treatment of Monaghan 119

6.2 The On-Boundary Treatment of Dalrymple & Knio 120

6.3 The Hybrid Boundary Treatment of Lo & Shao 121

6.4 The initial set up of the water collapse 122

6.5 Boundary particles on a regular grid structure 124

6.6 Boundary particles on a lattice structure 125

6.7 (a) shows the private boundary cell created for fluid particle i at position

(X,Y,Z), and (b) shows how the ghost particles are created by local point

symmetry for each fictitious boundary particle in the cell created in (a). . 126

6.8 Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 0 s with

new boundary treatment . 127

6.9 Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 0.6 s with

new boundary treatment . 127

6.10 Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 1.2 s with

new boundary treatment . 128

6.11 Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 1.5 s with

new boundary treatment . 128

xv

6.12 Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 2.0 s with

new boundary treatment . 129

6.13 The height of water at probe A . 130

6.14 The height of water at probe B . 131

6.15 The height of water at probe B . 132

6.16 The solitary wave at 0 s with the Ferrari SPH algorithm and new boundary

treatment . 133

6.17 The solitary wave at 1 s with the Ferrari SPH algorithm and new boundary

treatment . 134

6.18 The solitary wave at 4 s with the Ferrari SPH algorithm and new boundary

treatment . 134

7.1 MPI Processes on a single node . 138

7.2 The gather and broadcast functionality for four processes 141

7.3 The allgather functionality for four processes 143

7.4 Each process has a copy of all particle data but manages only a fraction

of the particles . 146

7.5 The use of variable GPUindex to assign the properties of the particle being

managed by the device . 147

7.6 The use of variable realindex . 148

7.7 The communication flow for two NVIDIA S1070s with sequential allocation152

7.8 3D view of simulation at 0.6 s . 155

7.9 3D view of simulation at 1.2 s . 156

7.10 3D view of simulation at 1.5 s . 156

7.11 3D view of simulation at 2.0s . 157

7.12 Images from the Ferrari simulation at 0.6 s, 1.2 s, 1.5 s and 2 s 158

8.1 The hybrid method processing only a few blocks of sorted data 166

xvi

List of Tables

3.1 Memory alignment for a simple particle structure 30

3.2 Memory alignment using arrays of variables 30

4.1 The device variables required for shared memory implementation 62

4.2 The extra device variables required for texture implementation 71

4.3 The execution times in minutes for Koshizuka & Oka simulation for 1

second of real time for three different particle resolutions 84

4.4 The components of a contribution to the rate of change of density 85

4.5 The execution times for variable block size with 2628 fluid particles . . . 93

5.1 The execution times for the Vila and Ferrari algorithms to simulate 4 s of

a solitary wave . 116

6.1 The simulation times to reach the given real times 129

6.2 The execution times for the Vila and Ferrari algorithms to simulate 4 s of

a solitary wave . 135

7.1 The MPI global ranks for a 8 process MPI program with Round Robin

allocation . 144

7.2 The MPI global ranks for a 8 process MPI program with Sequential allo-

cation . 145

7.3 The benchmark times for 1000 iterations 149

7.4 The execution times for 1000 iterations with MPI groups and sequential

allocation . 151

xvii

7.5 The execution times for 1000 iterations with MPI groups and sequential

allocation for 8 GPUs and variable number of streams 153

7.6 The execution times for 1000 iterations with MPI groups and sequential

allocation for 16 GPUs and variable number of streams 154

7.7 The execution times for 1000 iterations with MPI groups and sequential

allocation for 32 GPUs and variable number of streams 154

7.8 The execution times for 1000 iterations with MPI groups and sequential

allocation for 32 GPUs, 2 streams and a variable thread block size 154

xviii

Nomenclature

Operations

∇ Gradient

Ω Support domain

Scalars

µ Absolute or dynamic viscosity

ρ Density

c Speed of sound

h Smoothing length

m Mass

P Pressure

W Smoothing function

Vectors

v Velocity

x Position

xix

Chapter 1

Introduction

Modeling of free surfaces in fluid dynamics is notoriously difficult due to rapidly chang-

ing structures of fluids and/or moving boundaries which interact with those fluids. Finite

difference, volume and element methods have been used to model this family of complex

problems with reasonable success. These methods require a mesh of nodes at which phys-

ical properties are calculated at each time step, but also require that mesh to be altered to

account for the rapidly changing structure of the problem. This mesh alteration adds to

the computation time. However, recently a method of modeling fluids called Smoothed

Particle Hydrodynamics (SPH) has been the focus of investigation in free surface prob-

lems. SPH requires no mesh of nodes to both update and restructure, but instead tracks a

set of particles as they move and interact with each other and any surrounding boundaries.

Previous attempts at modeling free surfaces have been made, some of which involve

the idea of particles but do not use particles explicitly.

The Finite Difference Method was advanced by Harlow & Welch[1] for free surfaces

with their Marker-and-Cell method, or MAC, in which the free surface is tracked by a set

of marker particles, or cells, in a background mesh. Each cell then simply identifies if it

contains fluid or not.

The Finite Volume Method was used by Mingham & Causon[2] with the HLL Rie-

mann solver to model bore waves and dam breaks. Building on the Finite Volume method

the Cartesian Cut Cell Method has been successfully developed at Manchester Metropoli-

tan University, where this method has been implemented in their AMAZON codes. Re-

1

CHAPTER 1. INTRODUCTION 2

garding the application to free surface hydrodynamic problems, the method was proved

by Qian et al.[3] to be accurate in simulating a collapse of a water column against a rect-

angular obstacle. Later the method was extended by Qian et al.[4] to accurately model

flows involving two fluids with moving bodies.

The Volume of Fluid (VoF) Method was first proposed by Hirt & Nichols[5] as an

improvement on the MAC method to track the free surface and they compared their nu-

merical results with the experimental results of Martin & Moyce[6] who had earlier stud-

ied the collapse of a water column on perspex. The European Research Community on

Flow, Turbulence and Combustion (ERCOFTAC) Special Interest Group for Smoothed

Particle Hydrodynamics, called SPHERIC, use a study by Kleefsman et al.[7] as a test

case involving free surfaces which studied the collapse of a column of water against an

object. Kleefsman et al.[7] had used a VoF method to simulate that collapse. Greaves[8]

combined both the Finite Volume and Volume of Fluid methods to model breaking waves.

Wang et al.[9] built on the work of Greaves and Borthwick[10] in using Finite Volume,

VoF and quadtrees to refine the background mesh close to the free surface.

The Moving Particle Semi-implicit Method was developed by Koshizuka and Oka[11]

and successfully simulated the collapse of a small water column in a tank.

Archibald[12] recently implemented the Boundary Element Method on a single GPU

and accurately simulated a variety of wave interactions with structures.

To decrease the execution time of code simulating a particular free surface problem the

Computational Fluid Dynamics community has been using High Performance Computing

facilities across the world. In the UK The Meteorological Office uses several high per-

formance computers connected in a cluster to predict the weather and climate. Such high

performance computers are relatively large and expensive, both to purchase and maintain.

But recently a type of processor that was initially developed only for graphics processing

has been receiving interest from the scientific community. High Performance Comput-

ers made from such processors are much cheaper and smaller than the high performance

computers that The Meteorological Office, for example, use, and initial studies of imple-

menting scientific software on graphics processing units (GPUs) indicates that they offer

CHAPTER 1. INTRODUCTION 3

great potential, both in computing power and in reducing the financial costs of initial

purchase, maintenance, storage and energy consumption.

In the UK some of the first academics to look at using GPUs were in CFD and related

applications. Steve Gratton has been looking at implementing codes for cosmological

simulations[13], while his colleagues in the Engineering Department at Cambridge To-

bias Brandvik and Graham Pullan have been implementing mesh-based CFD codes on

GPUs[14][15]. GPUs are now being taken seriously by the CFD community. A particle-

based CFD algorithm on GPUs has been proposed by Westphal[16], while Griebel et

al.[17] have reported the implementation of a 3D two-phase solver for the incompressible

Navier-Stokes Equations on multiple GPUs. Astrophysical implementations of SPH on

GPUs include those of Berentzen[18] and the award-winning work of Spurzem et al.[19]

in which a simulation was run using upto 170 GPUs over 3 continents.

This thesis will try to answer such questions as

• how can a computer initially designed for graphics processing be used for CFD,

and in particular for SPH?

• can SPH code be implemented and executed efficiently on GPUs?

• how can SPH be implemented on multiple GPUs?

• how does GPU performance compare with a cluster of multicore CPUs?

In trying to answer these questions this thesis will look at the NVIDIA Tesla C1060 multi-

processor, its architecture and how its architecture can be used for scientific programming,

and how SPH can be implemented on such multiprocessors.

Riemann solvers have also been a topic of interest in CFD due to their ability to accu-

rately resolve shocks. The application of Riemann solvers in SPH will also be examined

in this thesis.

This thesis is concerned primarily with the implementation of SPH on multiple GPUs,

i.e. it focuses more on the high performance computing aspect of the subject so the novel

elements of this thesis are more concerned with the computational engineering imple-

mentation of SPH on GPUs. Therefore SPH will be described in some but not great detail

CHAPTER 1. INTRODUCTION 4

when compared to other PhD theses in the field of SPH. Consequently SPH is briefly

introduced in one chapter, introducing the basic mathematics and components of SPH al-

gorithms so that readers can then understand how to eventually implement a simple SPH

scheme on multiple GPUs. The open source code SPHysics by Gomez-Gesteira et al.[20]

has been a reference, and also a valuable aid to understanding SPH and its implementation

on a CPU, and as such some but not all aspects of SPHysics is covered in the chapter on

SPH.

The NVIDIA GPU language CUDA is based on the computing language C, so it is

assumed that readers wishing to understand code snippets in this thesis and implement or

amend codes using CUDA have a sound knowledge of C.

Chapter 2

Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics is a relatively new method in Computational Fluid

Dynamics that has its roots in astrophysics. Since its first introduction variants of SPH

have been developed, two being Weakly Compressible SPH (WCSPH) and Incompress-

ible SPH (ISPH).

ISPH attempts to solve the Poisson equation for pressure assuming constant density.

WCSPH uses an equation of state to calculate pressure from a fluctuating particle density

instead of solving the Poisson equation. Lee et al.[21] and Lee et al.[22] compare the ac-

curacy and performance of these two variants of SPH, describing the differences between

the two, particularly the calculation of pressure.

The first section of this chapter will address the mathematical theory of WCSPH,

explaining how mathematical expressions, such as divergence, can be manipulated for

particles so that differential equations can be written in terms of particles. The remainder

of this chapter will then address the components of a SPH algorithm.

2.1 What is a Particle in SPH?

This is perhaps the most important question, and is answered by Liu & Liu[23].

A particle is a point in space with properties defined by a smoothing function W

centred on that point. A particle can have

• a support domain

5

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 6

• an influence domain

A particle’s support domain is defined to be the set of particles that have influence on the

value of the properties at that point in space. A particle’s influence domain is the set of

particles that it interacts with to influence their properties.

2.1.1 The Continuous Approximation

A field variable f(x), such as density, of a particle with position x can be written as

f(x) =

∫
Ω

f(x
′
)δ(x− x′

)dx (2.1)

where the Dirac delta function is defined as

δ(x− x′
) =

1, x = x

′

0, otherwise.
(2.2)

and Ω is the support domain of the particle at x.

If the Dirac delta function is replaced by a smoothing function W (x− x′
, h) then the

integral of f(x) becomes

f(x) =

∫
Ω

f(x
′
)W (x− x′

, h)dx (2.3)

where h is the smoothing length defining the influence domain of the smoothing function

W .

This is the continuous representation of a particle, and is written in the SPH convention

< f(x) >=

∫
Ω

f(x
′
)W (x− x′

, h)dx (2.4)

The smoothing function W should satisfy the following seven conditions.

1. unity

2. compact support

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 7

3. positivity

4. decay

5. Delta function

6. symmetry

7. smoothness

The unity condition states that

∫
Ω

W (x− x′
, h)dx = 1 (2.5)

The compact condition states that

W (x− x′
, h) = 0 when |x− x′ | > kh (2.6)

The positivity condition states that for any particle at position x′ in the support domain

of the particle at position x

W (x− x′
, h) ≥ 0 (2.7)

The decay condition states that the smoothing function should be monotonically de-

creasing.

The Delta function condition states that

lim
h→0

W (x− x′
, h) = δ(x− x′

) (2.8)

where the Dirac delta function δ is defined in Equation (2.2).

The symmetry condition states that the smoothing function should be even.

The smoothness condition states that the smoothing function should be sufficiently

smooth.

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 8

2.1.2 Error in Particle Approximation

The error in the particle approximation can be found by using a Taylor series expansion

of f(x) around x′ . The truncated Taylor expansion gives

f(x) = f(x′) + (x− x′
)f

′
(x

′
) +O(x− x′

)2 (2.9)

Substituting this into Equation (2.4) gives

< f(x) >=

∫
Ω

[f(x′) + (x− x′
)f

′
(x

′
) +O(x− x′

)2]W (x− x′
, h)dx (2.10)

When Equation (2.10) is expanded, the second term becomes

f
′
(x

′
)

∫
Ω

(x− x′
)W (x− x′

, h)dx (2.11)

Assuming that the smoothing functionW is even with respect to x then the integral in this

term equals zero because (x − x′
)W (x − x′

, h) will be odd. So removing this term, and

using the unity condition Equation (2.5) and the property that

x− x′
= O(h) (2.12)

the approximation error becomes

< f(x) >= f(x) +O(h2) (2.13)

2.1.3 The Summation Approximation

The particle approximation, which can be made by replacing the continuous integral by

a summation over a finite set of N particles in a support domain and replacing the in-

finitesimal volume dx′ of each particle in the support domain with the finite volume of

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 9

the particle, is

f(x) =
N∑
j=1

f(x
′
)W (x− x′

, h)Vj (2.14)

But Vj = mj/ρj , where m is the mass and ρ is the density, so the particle is then approx-

imated by

f(x) =
N∑
j=1

mj

ρj
f(x

′
)W (x− x′

, h) (2.15)

If W is a differentiable function then the particle approximation can be differentiated

exactly to give

∂f(x)

∂x
=

N∑
j=1

mj

ρj
f(x

′
)
∂W (x− x′

, h)

∂x
(2.16)

Thus

∇fi =
N∑
j=1

mj

ρj
fj∇Wij (2.17)

where∇ is the Gradient operator.

But as Monaghan[24] pointed out, this does not vanish if f is constant. To guarantee

that this does vanish the first derivative of the particle approximation can be found from

using the identity

∂f

∂x
=

1

Φ

(∂(Φf)

∂x
− f ∂Φ

∂x

)
(2.18)

where Φ is any differentiable function. Then for any particle

∂fi
∂x

=
1

Φi

(∂(Φifi)

∂x
− fi

∂Φi

∂x

)
(2.19)

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 10

Substituting for the partial derivatives with Equation (2.16) gives

∂fi
∂x

=
1

Φi

(N∑
j=1

mj

ρj
Φjfj

∂W

∂x
− fi

N∑
j=1

mj

ρj
Φj
∂W

∂x

)
(2.20)

which simplifies to

∂fi
∂x

=
1

Φi

N∑
j=1

mj

ρj
Φj(fj − fi)

∂W

∂x
(2.21)

from which follows

∇fi =
1

Φi

N∑
j=1

mj

ρj
Φj(fj − fi)∇Wij (2.22)

2.2 The Particle Approximation of

the Navier-Stokes Equations

This thesis examines the implementation of the weakly compressible SPH method. The

compressible Navier-Stokes Equations are thus the governing equations, but for simplicity

they shall be reduced to the Euler equations plus a viscous term Θ, which will be discussed

later, and an external forces vector F .

dρ

dt
= −ρ∇ · v (2.23)

dv

dt
= −1

ρ
∇P + θ + F (2.24)

The particle approximation of Equation (2.23), the continuity equation, can be found

by using Equation (2.21) with Φ = ρ, the density, and the variable f taken to be the

components of the velocity v = (u, v, w) then

∂ui
∂x

=
1

ρi

N∑
j=1

mj

ρj
ρj(uj − ui)

∂W

∂x
(2.25)

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 11

∂vi
∂y

=
1

ρi

N∑
j=1

mj

ρj
ρj(vj − vi)

∂W

∂y
(2.26)

∂wi
∂z

=
1

ρi

N∑
j=1

mj

ρj
ρj(wj − wi)

∂W

∂z
(2.27)

Adding these three equations together gives

∇ · vi =
1

ρi

N∑
j=1

mj

(
(uj − ui)

∂W

∂x
+ (vj − vi)

∂W

∂y
+ (wj − wi)

∂W

∂z

)
(2.28)

The continuity equation, Equation (2.23), then becomes

dρi
dt

=
N∑
j=1

mjvij · ∇iWij (2.29)

where vij = vi − vj .

Similarly, by setting Φ = 1 in Equation (2.21) the continuity equation becomes

dρi
dt

= ρi

N∑
j=1

mj

ρj
vij · ∇iWij (2.30)

Monaghan[24] argues that in multiphase problems if the density ratios are ≤ 2 then ei-

ther Equation (2.29) or Equation (2.30) can be used, otherwise Equation (2.30) is more

accurate.

The momentum equation, Equation (2.24), can be written in particle form, ignoring

the viscosity term Θ and external forces F for now, by using Equation (2.17) substituting

pressure P to give

∇Pi =
N∑
j=1

mj

ρj
Pj∇Wij (2.31)

This then gives the momentum equation

dvi
dt

= − 1

ρi

N∑
j=1

mj

ρj
Pj∇Wij (2.32)

But this does not conserve linear or angular momentum. Conservation was ensured by

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 12

Gingold and Monaghan[25] using

dvi
dt

= −
N∑
j=1

mj

(Pi
ρ2
i

+
Pj
ρ2
j

)
∇Wij (2.33)

This equation can also be derived by substituting pressure f = P and Φ = 1/ρ in Equa-

tion (2.18) to give

∇P = ρ
(
∇
(P
ρ

)
− P∇

(1

ρ

))
(2.34)

Applying the quotient rule to the second term gives

∇P = ρ
(
∇
(P
ρ

)
+
P

ρ2
∇ρ
)

(2.35)

Then using Equation (2.22) again, first for f = P/ρ and then for f = ρ the particle

momentum equation, Equation (2.33), is obtained.

So the final particle approximation of the momentum equation is

dvi
dt

= −
N∑
j=1

mj

(Pi
ρ2
i

+
Pj
ρ2
j

)
∇Wij + Θ + F (2.36)

The viscous term Θ has been modelled with particles by several authors. Monaghan &

Gingold[26] proposed the simple viscous term Πij which conserves linear and angular

momentum and works well under most circumstances.

Πij = −νijφij (2.37)

where

νij =
αhijcij
ρij

(2.38)

where c is the speed of sound,

φij =
vij · xij∣∣xij∣∣2 + εh

2

ij

(2.39)

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 13

cij =
1

2
(ci + cj) (2.40)

ρij =
1

2
(ρi + ρj) (2.41)

hij =
1

2
(hi + hj) (2.42)

vij = vi − vj (2.43)

xij = xi − xj (2.44)

The parameter α is typically set to equal 1 but must be tuned for each individual simula-

tion, and ε is typically set to equal 0.01

This was later amended by Monaghan[27] such that

νij =
hij
ρij

(
αcij − βhijφij

)
(2.45)

Note that this artificial viscosity has two parameters to tune, α and β.

A similar type of artificial viscosity was proposed by Cleary[28] with

Πij = − ξ

ρiρj

4µiµj
(µi + µj)

vij · xij
(
∣∣xij∣∣2 + εh

2

ij)
(2.46)

where µ is the dynamic visosity of the particle. This allows multiphase problems to be

simulated. Cleary showed that the parameter ξ should be approximately 5 and is indepen-

dent of µ.

When this type of artificial viscosity is used the momentum equation becomes

dvi
dt

= −
N∑
j=1

mj

(Pi
ρ2
i

+
Pj
ρ2
j

+ Πij

)
∇Wij + F (2.47)

where in Equation (2.36) the viscosity term

Θ = −
N∑
j=1

mjΠij∇Wij (2.48)

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 14

2.3 Density

The density can be calculated using the rate of change of density, as in Equation (2.29) or

Equation (2.30). Another method is to use the summation approach, in which the density

is found by substituting ρ for f in Equation (2.15), to give

ρi =
∑
j

mjWij (2.49)

2.4 Smoothing Functions

There are a number of smoothing functions proposed in the SPH literature, and Liu &

Liu[23] dedicate a whole chapter in their book on deriving smoothing functions. The

smoothing functions that have been used here are now given. In this section the term

q = |xi − xj|/h.

2.4.1 Gaussian

In their seminal paper, Gingold & Monaghan[29] proposed the following smoothing func-

tion, the Gaussian.

W (q, h) = αe−q
2

(2.50)

where α = 1/(h
√
π)D for dimension D = 2, 3.

This smoothing function does not satisfy the compactness condition, but because it

approaches zero very quickly is virtually compact.

2.4.2 Parshikov Cubic Spline

Parshikov et al.[30] used a cubic spline for their work using approximate Riemann solvers

in SPH. This smoothing function was used when looking at implementing the Parshikov

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 15

model.

Wij = α

1− 1.5q2 + 0.75q3 if 0 ≤ q < 1,

0.25(2− q)3 if 1 ≤ q < 2,

0 otherwise

(2.51)

where α = 1/(0.7πh2), 1/(πh3) for 2 and 3 dimensions respectively.

2.4.3 Wendland Quintic Spline

The Wendland quintic spline was used for the implementation of the Vila SPH algorithm

on the GPU, and takes the simple form

W = α(1− q

2
)4(2q + 1) (2.52)

where α = 7/(4πh2), 21/(16πh3) for 2 and 3 dimensions respectively. This smoothing

function was examined in some detail by Robinson[31] in a chapter on particle clumping.

2.5 Smoothing Length

The smoothing length of the particle can be either constant or variable. The purpose of

varying the smoothing length is to maintain the number of particles in the support domain.

A very simple method to vary the smoothing length h is

hi = ν

√
mi

ρi
(2.53)

where ν is the number of dimensions.

Sigalotti et al.[32] proposed a more complex method to vary the smoothing length

which uses the summation density, as opposed to the continuity density, in a three phase

procedure.

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 16

2.6 Boundary Conditions

The modeling of the physical boundary continues to be a problem in SPH. Particle pene-

tration of the boundaries can also completely destroy the credibility of a SPH simulation.

Due to this a number of boundary treatments have been proposed, and shall be covered

briefly here. A later chapter focusing explicitly on boundary treatment will explore these

boundary treatments in more detail, and will propose a new boundary treatment that when

implemented on the GPU can significantly accelerate computation.

2.6.1 On-Boundary Particles

Virtual particles can be used to model solid boundaries. One method of implementing

virtual particles is to use a Lennard-Jones repulsive force introduced by Monaghan[33]

in which a virtual particle placed on the boundary exerts a repulsive force similar to that

in electrodynamics on any fluid particle within a defined radius of the virtual particle.

Monaghan & Kos[34] proposed another form of virtual particle on the boundary using

the normal and tangential velocity of a particle close to the boundary. This was amended

later by Monaghan et al.[35]. More recently yet another boundary particle method was

proposed by Monaghan & Kajtar[36].

Other methods of modeling the boundary with particles on the boundary have been

proposed by Morris et al.[37], and by Dalrymple & Knio[38] with their properties exam-

ined by Crespo et al.[39].

2.6.2 Ghost Particles

Another popular method of implementing virtual particles is the ghost particle, of which

there are several variants. Ghost particles do not exist on the boundary as described above,

but are created with a temporary existence when required to create a virtual boundary.

Ghost boundary particle methods have been proposed or used by Colagrossi[40], Cum-

mins & Rudman[41], and Ferrari et al.[42].

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 17

2.6.3 Hybrid Boundary Treatment

Liu & Liu[23] have proposed a hybrid of ghost and repulsive virtual particles, in which a

layer of particles on the boundary is reinforced by ghost particles which mirror the fluid

particles. A similar approach was taken by Lo & Shao [43].

A different hybrid boundary treatment has been used by Violeau & Issa[44] and Lee

et al.[21] in which the boundary is modeled by four layers of particles which do not move

but assume properties that are dependent on the fluid particle they are interacting with.

2.6.4 Wall Functions

Harada et al.[45] proposed a weighted wall function, in which for a set of perpendicular

distances from the wall the contribution to the fluid particle density and viscosity from

the wall is precomputed. During the simulation this contribution to the fluid particle from

the wall is calculated as a linear interpolation between two of the precomputed values

depending only on perpendicular distance of the fluid particle from the wall.

2.7 Corrections in SPH

Several proposals have been made to improve the accuracy of WCSPH. These corrections

include the following.

2.7.1 Density Correction

There are two ways to calculate density in SPH. The continuity approach, that uses a rate

of change continuity equation, an example of which is Equation (2.29). The second is the

summation approach, an example of which is Equation (2.49), which respects the essence

of SPH, but requires more computation than the continuity approach. So to accelerate a

simulation the continuity approach has been preferred. However, the continuity approach

does not conserve mass, unlike the summation approach. So when using the continuity

approach it is useful to occasionally correct the density to conserve mass. Two density

corrections have been proposed.

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 18

With the Shepard Filter[46], after every N iterations the density for each fluid particle

is reset as

ρi =
∑
j

mjW̃ij (2.54)

where

W̃ij =
Wij∑
j
mj
ρj
W̃ij

(2.55)

The Moving Least Squares[47] density correction is 1st order accurate and is much

more complex than the Shepard Filter, requiring the inversion of a matrix for every particle

every N time steps. This correction has been implemented by Colagrossi[40]. As with

the Shepard filter, with MLS after every N time steps the density is reset with Equation

(2.54), but with MLS, and for simplicity in 2 dimensions,

W̃j(xi) = [β0(xi) + β1(xi)(xi − xj) + β2(xi)(yi − jj)]Wij (2.56)

where

β(xi) =

β0

β1

β2

 = A−1(xi)

1

0

0

 (2.57)

A(xi) =
∑
j

Wj(xi)Ãij (2.58)

Ãij =

1 (xi − xj) (yi − yj)

(xi − xj) (xi − xj)2 (xi − xj)(yi − yj)

(yi − yj) (yi − yj)(xi − xj) (yi − yj)2

 (2.59)

2.7.2 Kernel Correction

Bonet & Lok[48] described two methods for correcting particle deficiency, particularly

at boundaries and free surfaces where the support domain of a fluid particle is truncated,

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 19

before proposing combining both.

The first method involves correcting the kernel gradient via a correction matrix L. The

corrected kernel gradient ∇̃W is used in the SPH equations where

∇̃Wj(xi) = Li∇Wj(xi) (2.60)

and

Li =
(N∑
j=1

mj

ρj
Wj(xi)⊗ (xj − xi)

)−1

(2.61)

The second method involves correcting the kernel itself, but they dismiss this method as

computationally expensive and instead suggest a simpler linear correction for the velocity

v(x) =

∑N
j=1 VjvjWj(x)∑N
j=1 VjWj(x)

(2.62)

where Vj = mj/ρj , but with the caveat that this does not preserve angular momentum.

2.7.3 Tensile Correction

In SPH Tensile Instability leads to particles forming clumps. Swegle[49] identified a ten-

sile instability in SPH for solid mechanics. Monaghan[50] proposed a simple correction

designed to create a repulsive force between two particles very close together which is

added to the momentum equation. This Monaghan tensile correction takes the form of

Rfnij , and if using one of the artificial viscosities discussed above, the momentum equa-

tion becomes

dvi
dt

= −
N∑
j=1

mj

(Pi
ρ2
i

+
Pj
ρ2
j

+ Πij +Rfnij

)
∇Wij + F (2.63)

For a cubic spline n = 4. The function fij has the form

fij =
W (rij)

W (∆P)
(2.64)

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 20

where rij is the vector between two particles, and ∆P is the initial particle spacing. The

variable R = Ri +Rj , where

Rk =

0.01Pk/ρ
2
k, Pk > 0

0.2|Pk|/ρ2
k, Pk < 0

0, otherwise.

(2.65)

for k = i, j.

2.7.4 XSPH

Monaghan[51] proposed a term to add to the velocity during integration which helps to

keep a particle moving with a speed close to average speed of those particles close to it,

which should reduce particle penetration. The XSPH correction is

XSPH i = ε
∑
j

mj

(ρi + ρj)
(vj − vi)Wij (2.66)

with a typical value of ε=0.5, though Liu & Liu[23] recommend ε=0.3. The integration of

the position then becomes

dxi
dt

= vi +XSPH i (2.67)

2.7.5 Hughes and Graham Correction

Hughes & Graham[52] proposed a correction for the density of boundary particles when

using boundary treatments in which the density of a boundary particle can evolve, such

as in the Dalrymple & Knio boundary treatment. This correction involves calculating the

density of the boundary paricles every 20th time step and either resetting the density of

the boundary particle to the reference density if it is found to be less than the reference

density, or renormalizing the density using either the Shephard or MLS density correction

method described above.

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 21

2.8 Equations of State

To calculate pressure an equation of state (EoS), a function of the density, is used. The

two most common equations of state for water are the Tait and Morris equations of state.

If using air particles in a SPH simulation, the ideal gas equation of state is frequently used

for the air particles.

2.8.1 Tait EoS

The Tait equation of state[53] takes the form

Pi = B
((ρi

ρ0

)γ
− 1
)

(2.68)

The speed of sound for each particle is then

ci = co

(ρi
ρ0

)3

(2.69)

where γ = 7, ρ0 is the reference density of water, and B = c2
0ρ0/γ where c0 is the speed

of sound at the reference density.

2.8.2 Morris EoS

The Morris equation of state[37] is

Pi = c2
0(ρi − ρ0) (2.70)

where ρo is the reference density of water, and c0 is the speed of sound at the reference

density ρo. Morris et al. state that the parameter co can require some degree of tuning, but

once tuned is constant for all particles.

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 22

2.9 Time Step and Integration Schemes

The following integration and time step schemes have been used in the implementations

of SPH algorithms used for this thesis.

2.9.1 Leapfrog

Leapfrog integration is a second order scheme, but also has the interesting and useful

property of time reversibility, which guarantees conservation of energy and momentum.

The term leapfrog derives from the first integration in which the position and velocity

integrate out of synchronisation, with all variables except position integrating a half time

step while position integrates a full time step. All subsequent integrations then use the full

time step for all variables. So from the open source code in the book by Liu & Liu[23],

the scheme is written as, for the first integration

ρ
1/2
i = ρ0 +

∆t

2

dρi
dt

(2.71)

v
1/2
i = v0

i +
∆t

2

dvi
dt

+XSPH0
i (2.72)

x1
i = x0

i + ∆tv
1/2
i (2.73)

For all subsequent integrations, the scheme is written as

ρ
t+1/2
i = ρt−1/2 + ∆t

dρi
dt

(2.74)

v
t+1/2
i = v

t−1/2
i + ∆t

dvi
dt

+XSPH
t−1/2
i (2.75)

xt+1
i = xti + ∆tv

t+1/2
i (2.76)

When this integration scheme is used for this thesis the time step is constant.

2.9.2 Predictor-Corrector

The following 2nd order Predictor-Corrector scheme has been implemented for this thesis

from the SPHysics[20] open source code, with the vector Q = (ρ, x, v). The prediction

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 23

uses values at time step n.

Qn+1/2 = Qn +
∆t

2

dQ

dt

n

(2.77)

and if using an equation of state for pressure, P n+1/2 = P (ρn+1/2). The predictions are

then corrected using the values just calculated for time step n+ 1/2.

Qn+1/2 = Qn +
∆t

2

dQ

dt

n+1/2

(2.78)

The final integration to time step n+ 1 is

Qn+1 = 2Qn+1/2 −Qn (2.79)

and P n+1 = P (ρn+1) with P (ρ) being the Tait or Morris Equation of State.

The size of the time step δt itself is calculated as

δt = CFL×min(δtf , δtvisc) (2.80)

where CFL is the CFL number, and

δtf = min
i

(
√
h/|fi|) (2.81)

in which h is the smoothing length, fi is the total force per unit mass exerted on particle

i, and

δtvisc = min
i

(
h/(cmax + max

j

hrij · vij
r2
ij

)
)

(2.82)

in which h is the smoothing length, cmax is the maximum speed of sound over all fluid

particles, and the term involving the dot product is the viscous term proposed in Equation

(2.39) and for each fluid particle the maximum value of this term is calculated from each

interaction and the maximum of these is used in the calculation of the time step.

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 24

2.9.3 Runge-Kutta Schemes

This integration scheme is used by Ferrari et al.[42] in which the governing SPH equations

are a system of ODEs of the form

dQ

dt
= S(Q, t) (2.83)

A 3rd Order TVD Runge-Kutta scheme has been implemented in which the vector Q =

(ρ, x, v), and

Qn+1 = Qn +
∆t

4
(k1 + 3k3) (2.84)

where

k1 = S(Qn, tn) (2.85)

k2 = S(Qn +
1

3
∆tk1, t

n +
1

3
∆t) (2.86)

k3 = S(Qn +
2

3
∆tk2, t

n +
2

3
∆t) (2.87)

The time step is calculated by

∆t = σmin
i

(hi
α

)
, α = max

i
(ci, |vi|) (2.88)

where σ is the CFL number, the smoothing length h is calculated by Equation (2.53), and

ci =

√
γ
B

ρ0

(ρi
ρ0

)(γ−1)

(2.89)

where γ=7, and ρ0 is the reference density of water.

A 4th Order Runge-Kutta (RK4) scheme has also been implemented in SPH. Oger

et al.[54] proposed an SPH algorithm and used different integration schemes, and found

that there can be advantages in using schemes of order greater than two, with the larger

time step dominating the extra computation. Colagrossi & Landrini[40] also implemented

CHAPTER 2. SMOOTHED PARTICLE HYDRODYNAMICS 25

a RK4 scheme but also used the Moving-Least-Square density reinitialization described

above.

2.10 Finding Particle Interactions

A naive method of finding particle interactions is to consider every particle and investigate

if it interacts with all other particles in the simulation. The computational effort for this is

O(N2), where N is the number of particles.

However, the definition of a particle can be used to reduce the computational effort in

finding particle interactions. Depending on the smoothing function being used, the parti-

cles can be assigned to cells in a simple background grid. For example, if the smoothing

function states that its value is zero beyond βh from the centre of the particles then when

looking for a particle’s support domain only neighbouring cells of the cell containing that

particle need be searched if the cells are set to be of size βh x βh in 2 dimensions. Usu-

ally β = 2, but some definitions for smoothing functions have β > 2. The computational

effort for this method is O(N). Variable smoothing lengths can be easily accounted for

with this background mesh by resizing the cells so that they are of size βhmax, where

hmax is the maximum smoothing length of all particles. This will lead to some particles

with smaller smoothing lengths checking for interactions with particles in neighbouring

cells that are beyond a distance βhi, but this method will still be more efficient.

Chapter 3

GPU Programming

The main manufacturer of graphics processing units is NVIDIA. Early scientific programs

executed on these GPUs used graphics programming languages such as OpenGL and Di-

rectX, and the program had to be written such that the problem being solved could be

written using the functionality of these languages. But then in 2006 NVIDIA released a

language to run on some but not all of their latest processors. These later NVIDIA pro-

cessors did not have the capability to produce graphics, but their architecture was derived

from their graphics processors, and they were designed specifically for high performance

computing. The language NVIDIA created is called Compute Unified Device Architec-

ture, or CUDA. CUDA allows parallel computation of highly parallel algorithms using

multiple blocks of lightweight threads. Some but not all NVIDIA graphics processors

can execute hybrid graphics/CUDA code to run interactive applications. Processors that

can run CUDA code only are the Tesla and more recently the Fermi groups of NVIDIA

processors. This chapter will introduce the architecture of the NVIDIA GPU, and also

address the functionality of CUDA that has been used in the SPH codes developed for

this thesis.

26

CHAPTER 3. GPU PROGRAMMING 27

3.1 The Architecture of the NVIDIA Graphics Process-

ing Unit

3.1.1 Memory Hierarchy

The NVIDIA processor used for the work in this thesis is the NVIDIA Tesla 10 series

(T10). This processor consists of 240 cores, divided into 30 blocks of 8 cores. Such a

block of 8 cores is called a thread processor array (TPA), but is also called a multipro-

cessor in some NVIDIA literature. Each core in a TPA is connected to a block of 16

KB shared memory which is shared between the 8 cores in the TPA. The clock speed of

each core is 1.3 GHz. This processor forms the basis for the NVIDIA C1060 which has

4 GB of hard memory operating at 800 Mhz. An illustration of a general NVIDIA Tesla

processor is shown in Figure 3.1[55]. For the T10, in Figure 3.1 the variables M = 8 and

N = 30.

The T10 was one of the first NVIDIA Tesla GPUs with double precision, but all the

work done for this thesis was done using single precision.

Also shown in Figure 3.1 are the different kinds of memory on a NVIDIA GPU;

device, texture, shared, constant and registers. Each has a different purpose, speed and

size. For the NVIDIA C1060, which incorporates the T10,

• the device memory is 4 GB and its purpose is to hold the bulk of the data to be

processed.

• the texture memory is cached device memory and is between 6 KB and 8 KB.

• the shared memory is 16 KB for each TPA, and its purpose is to hold reusable data

close to the registers for fast recycling of data.

• the constant memory is for data that is constant for the lifetime of the application

and is 64 KB.

• each core has 2048 registers.

CHAPTER 3. GPU PROGRAMMING 28

Figure 3.1: The architecture of the NVIDIA Tesla GPU

CHAPTER 3. GPU PROGRAMMING 29

The shared memory is arranged into 16 banks. This number 16 is important because it is

the size of a half warp. A warp is 32 threads. The parallelism of the GPU comes from

the warp. All threads in a warp execute in parallel if they all execute the same code, so

if there is a logical statement, such as an if-else or switch statement which could force

threads in a warp to execute different paths of the same piece of code, then those threads

in that warp will execute in serial, thus losing their parallelism. This execution of the

warp in serial is called Warp Divergence. And with the core frequency of 1.3 GHz on the

GPU and modern CPUs operating at 3 GHz, it is advisable to avoid Warp Divergence as

much as possible, but sometimes this is impossible.

3.1.2 Coalescing

NVIDIA recommend that CUDA programs use the shared memory together with the con-

cept of coalescing to achieve maximum efficiency[55]. The efficiency of the shared mem-

ory is due to its proximity to the registers. But to transfer data into the shared memory

that data must first be read from the large and slow global memory. Coalescing allows

multiple items of data to be read from global memory in one instruction. NVIDIA state

that one read instruction from global memory can take between 400 and 600 clock cycles,

which is slow, so any opportunity to read multiple items of data from global memory into

shared memory in one instruction would be very efficient and should be used as often as

possible.

NVIDIA have introduced a concept called Compute Capability to describe the func-

tionality of their GPUs. The first Tesla GPUs, C870 and D870, were of Compute Capa-

bility 1.0. The C1060 is of Compute Capability of 1.3. Coalescing rules for Compute

Capability 1.0 were strict. For coalescing to occur for Compute Capability 1.0 the data in

the global memory had to be contiguous and linear, i.e. for threads in a half warp to coa-

lesce a read of data from array x in global memory then thread i must address x[i], thread

i+1 must address x[i+1], etc. For devices of Compute Capability 1.3 this rule has been

relaxed slightly so that threads in a half warp can coalesce a read of data from array x in

global memory if all the data required by the half warp is in a block of the array x that is

CHAPTER 3. GPU PROGRAMMING 30

X1 Y1 Z1 RHO1 MASS1 X2 Y2 Z2 RHO2 MASS2

Table 3.1: Memory alignment for a simple particle structure

X1 X2 ... Y1 Y2 ... Z1 Z2 ... RHO1

Table 3.2: Memory alignment using arrays of variables

of a certain size, depending on the data type being read. This means that if thread i wants

to read x[i+i] and thread i+1 wants to read x[i] then on a device of Compute Capability

1.3 this read could be coalesced if x[i] and x[i+1] are in the same segment of array x.

This subtle difference is shown in Figure 3.2[55] in which the left diagram shows that for

items of data to be coalesced for Compute Capability 1.0 the data had to be contiguous

and linear, while for Compute Capability 1.3 the pattern of access can be more complex

but so long as the required data is in the same segment of global memory the access can

be coalesced in one or two instructions, depending on the data type being used. CUDA

code should also be written to exploit coalescing by using arrays of variables instead of

arrays of structures. For example, and because this thesis examines Smoothed Particle

Hydrodynamics, a particle could be defined in C as proposed in the structure in Figure

3.3. where x, y, z are the coordinates of the particle, mass is the particle mass and rho is

the density of the particle.

In memory this would be allocated as shown in Table 3.1. When data is coalesced

neighbouring data elements are accessed together in one read or write. The structure

in Figure 3.3 does not lend itself well to coalescing because the data for a particular

parameter is not sequential, i.e. the x coordinates are not immediate neighbours but are

5 float variables apart in memory. The particle data could be rearranged in memory and

instead written as a list of separate arrays for x, y, z, rho, and mass. With the data arranged

in this format, the memory would look like that suggested in Table 3.2.

Using the second data structure in Table 3.2 a call could be issued in device code

to read the variable array x in a kernel as shown in Figure 3.4. Because the data ele-

ments in the linear array x are contiguous, then when considering neighbouring particles

in memory, the reading (or writing) of elements of x for these neighbouring particles can

be coalesced. However, if using the data structure particle declared in Figure 3.3, the x

CHAPTER 3. GPU PROGRAMMING 31

Figure 3.2: Valid coalescing rules

typedef struct
{

float x;
float y;
float z;
float rho;
float mass;

}particle;

Figure 3.3: A simple structure in C to define a particle

CHAPTER 3. GPU PROGRAMMING 32

__global__ ReadX()
{

int tid = threadIdx.x;
int myX = x[tid];

}

Figure 3.4: Reading a linear array

__global__ ReadX()
{

int tid = threadIdx.x;
int myX = ParticleArray[tid].x;

}

Figure 3.5: Reading a structure to access a component

components of that structure are not contiguous so may not necessarily be coalesced. In

order to access the same component x of the structure the code in Figure 3.5 would be

required; Such a call over a half-warp could take up to 16 times longer, if the structure

had many components, because reads would be required, not just the one read as when

the data is coalesced using the second memory allocation of arrays of variables.

3.2 The Fundamentals of CUDA

CUDA is a complex language, and a significant knowledge of computer science is re-

quired to understand it. Not all the functionality of CUDA has been explored in this

thesis, but that which has been employed in the source codes used for this thesis will now

be described.

3.2.1 Data types

CUDA builds on the standard data types of C, such as int and float, to provide vector types.

For example the CUDA data type float4 is a vector consisting of 4 components, each of

type float, and its components are referenced as x, y, z and w, as shown in Figure 3.6

The fourth component w could be used for a scalar quantity, such as pressure or density.

Similar data types and methods of component reference exist for the data types char

and uchar, short and ushort, int and uint, long and ulong, and double, and these vectors

can have one, two, three or four components which are referenced (x), (x,y), (x,y,z) and

CHAPTER 3. GPU PROGRAMMING 33

float4 position;
float x,y,z,density;
x = position.x;
y = position.y;
z = position.z;
density = position.w;

Figure 3.6: Accessing components of a float4 variable

(x,y,z,w) respectively.

3.2.2 A CUDA Program

NVIDIA have employed a system in which data is passed between the host, which also

acts as the master controlling the program and data flow, and the GPU, also called the

device which also acts as the servant doing most of the computational work. The host,

usually with much more memory than the device, holds the data and passes it to the device

as and when required. A typical CUDA program would involve

1. allocating memory and initializing data on the host

2. allocating memory and initializing data on the device

3. transferring data from the host to the device

4. the device performing computation

5. transferring computed data from the device back to the host

6. the host writing the returned data to file or standard output

7. deallocation of memory on both host and device

Until recently the device could not write to file or standard output but the latest NVIDIA

GPU, the Fermi, can now do this. Before this welcome addition to the functionality of

CUDA, in order for the user to read the result of a calculation performed on the GPU

the data must have been transferred back to the host from where a call to the standard C

functions printf or fprintf would have been made. The data can be initialised either on the

host and transferred to the device, which would occur if the initial data was first read from

CHAPTER 3. GPU PROGRAMMING 34

a file, or initialized on the device itself using a CUDA function cuMemset or initializing

by thread ID if testing, for example.

The structure of a CUDA program takes a very similar form to that of a C program,

and the source code can be written in modules so that C code to be executed on the

host can be kept separate from the CUDA functions to be executed on the device. These

CUDA functions that execute on the device only are called kernels. The main function is

still required and is executed on the host only, but the main function can be written using

C and CUDA functions, such as cudaMemcpy, which transfers data between the host and

device. The extension for a CUDA file is .cu and a header file for that CUDA file has the

extension .cuh, and any module calling a CUDA function must have the extension .cu and

also include the CUDA header file < cuda.h >.

Functions executed on the host only are declared in the usual fashion for C functions.

Functions that are executed on the device are declared as either

• void global

• void device

Any function declared as global is a kernel and all threads declared in the thread grid

specified for that kernel execute that kernel. A function declared as device is not

necessarily executed by all threads, but can only be executed on the device, and can only

be called from a global function or another device function.

When a kernel is executed a thread grid for that kernel must be specified. This grid

determines the total number of threads and the sequence in which the threads execute

that kernel. The method of specification of this thread grid is flexible and can consist of

two, three or four variables, either integers or of a special CUDA datatype called dim3

designed specifically for thread grid specification.

Kernels are limited in size, e.g. by register use, so it cannot be guaranteed that an

algorithm can be written in just one kernel, unless the programmer is fortunate enough

that the algorithm is small enough or the problem size is small enough to allow this. A

large and/or long algorithm will very probably need to be partitioned into several kernels,

but this partitioning must also be done taking into account any natural synchronisation

CHAPTER 3. GPU PROGRAMMING 35

points in the algorithm. These restrictions are of great importance, because thread syn-

chronisation is not that straightforward, as will be described later.

The NVIDIA CUDA compiler is called nvcc. To compile a CUDA file called

cudafile.cu the command is nvcc cudafile.cu, and the directories containing the CUDA

libraries and header files such as cuda.h must be supplied, either with the command or set

in the environment paths.

There are a number of options that can be added to this command to compile. These

options are

• -ptx which will compile the CUDA code into a ptx file, which is what the GPU

actually reads.

• –ptxas-options=”-v” which will provide information about the memory and register

use of each of the kernels declared. This is important because if a kernel is too big,

i.e. uses too many registers, then the code will not execute properly.

• -cubin which will compile the CUDA code as cubin, which is a machine code lan-

guage that can be manually altered to improve performance.

• -deviceemu which will compile the CUDA code to emulate the GPU for debugging,

to run on the CPU and in serial.

Besides these options it is also possible to specify a level of optimization similar to most

Fortran and C compilers such as that supplied by Gnu and Intel. The default is -O0,

and the others are -O1, -O2 and -O3, each providing increasing levels of optimization

and of similar levels as that provided by other compilers providing different levels of

optimization, but with optimization applied to the CUDA code as well as the C. As stated

above, it is possible to amend the machine code called cubin that nvcc produces in order

to optimize the executable code even further.

To execute a kernel on the GPU, memory must first be allocated on the GPU to contain

the data to be used in the kernel. This can be done in two ways and both can be used in

an application;

CHAPTER 3. GPU PROGRAMMING 36

int* d_array;
cudaMalloc((void**)&d_array,N*sizeof(int));

Figure 3.7: Allocating memory on the device with cudaMalloc

1. statically, by declaring a variable as device in the pre-processor. Such memory

is deallocated by the compiler.

2. dynamically, by allocating the memory in host code through a call to cudaMalloc,

but the programmer must remember to deallocate such memory through a call to

cudaFree.

As with static and dynamic memory, there are the usual advantages and disadvantages.

Static memory persists throughout the lifetime of the application, so if a program is run-

ning short of memory such static memory cannot be deallocated to free memory for re-

allocation for use for another variable. On the other hand, dynamic memory can be allo-

cated and deallocated at any point during execution to minimize memory use during the

lifetime of an application. This implies that data can be transferred between the device

and host more frequently than if the data variables were device variables and remain

on the GPU at all times, thus increasing execution time due to the transfer time but in-

creasing the effective memory of the device because memory is used only when and as it

is required.

Memory cannot be dynamically allocated in device code, but can be allocated dy-

namically in host code. This implies that a linked list cannot be created in device code.

However there is a subtle way in which a linked list could be created dynamically, but it

would involve returning data to the host and the host then dynamically allocating memory

and transferring data back to the device, which is not exactly dynamic in the usual sense

of the word in computer science and is probably highly inefficient. It may well be faster

to manipulate the device architecture.

To allocate memory dynamically in host code a call to the function cudaMalloc is

made. The code in Figure 3.7 allocates memory on the device for an array called d array

of N integers. This returns an address on the device pointing to the first element of

CHAPTER 3. GPU PROGRAMMING 37

cudaFree(d_array);

Figure 3.8: Deallocating memory on the device with cudaFree

kernelname<<<NUMBLOCKS,NUMTHREADS>>>(parameters);

Figure 3.9: Specifying the thread grid for a kernel

d array.

The code in Figure 3.8 deallocates memory on the device. A kernel is important for

synchronisation of threads, for it is only at the end of a kernel that a guarantee can be made

that all threads have written their data to global memory. There is a CUDA function called

syncthreads, but this only synchronises threads in a block, and it is very rare that only

one block is used in a kernel, and it is in fact discouraged, so organising synchronisation

through calls to synchthreads and by partitioning the algorithm into kernels to achieve

global synchronisation is very important.

A kernel is executed in blocks of threads, which themselves execute as warps, and the

arrangement of these blocks and their threads is specified in the call to a kernel. This call

to a kernel takes the form shown in Figure 3.9 in which

• kernelname is the name of the kernel

• NUMBLOCKS is the number of blocks of threads

• NUMTHREADS is the number of threads per block

• (parameters) is the list of parameters passed to the kernel, and must refer to data on

the device only unless data from the host is being passed by value

The values of NUMBLOCKS and NUMTHREADS do not have to be the same for all calls

to all kernels in an application, and can be tuned to some degree by using the occupancy

calculator that comes with the CUDA Software Development Kit.

When this kernel is launched on the device a thread grid is created consisting of NUM-

BLOCKS blocks of NUMTHREADS threads. The blocks will initially execute in numer-

ical order, but the order may be changed during execution by the block scheduler. An

CHAPTER 3. GPU PROGRAMMING 38

illustration of a thread grid is shown in Figure 3.10[55].

Variable arrays declared on the device and passed to the kernel are passed by reference.

The parameter list of a kernel will usually consist of pointers to device variables, single

variables being passed explicitly by value, and possibly structures of device variables if

the number of variable arrays being passed to the kernel is excessive. This concept of

passing variables by structures is addressed later in this chapter.

For example, to execute a kernel called inckernel, which will simply increment ele-

ments in variable array d array declared on the device, with 3 blocks each of 32 threads,

the statement in Figure 3.11 is made. When this statement is executed control of execu-

tion of the program passes from the host to the device, which will create 3 blocks of 32

threads, giving a total of 96 threads. To enable each thread to calculate its unique ID each

thread makes the statement given in Figure 3.12, which is usually the first statement in

any kernel. The block scheduler on the device attempts to optimize occupancy of the

multiprocessor by scheduling the blocks of threads. It is possible, due to the latency in

reading from and writing to global memory, that one block of threads wishes to write to

global memory, but due to the slowness of the access to global memory the block sched-

uler could suspend the execution of that particular block of threads and execute another

block of threads while the data from the previous block is being read from global memory

at the same time. This allows different blocks of threads to be executing different parts

of a kernel, i.e. not all threads are executing the same piece of code at any one time.

The block scheduler estimates how long a sequence of statements for a block of threads

takes, and decides if one block of threads can use the processors and its registers while a

different block of threads currently using the registers executes a second set of statements

that could take a relatively longer time, e.g. a read from global memory. If this occurs

then the data in the registers is saved in on-chip memory ready for fast return of control to

the multiprocessor to the initial block of threads. This is called context switching and has

virtually zero overhead. The aim of this is to maximize occupancy of the multiprocessor.

Once a thread has calculated its unique ID it can then refer to data using that ID. In

the example above the array d array was passed to inckernel. For each thread to set the

CHAPTER 3. GPU PROGRAMMING 39

Figure 3.10: A Simple thread grid

inckernel<<<3,32>>>(d_array);

Figure 3.11: Specifying the thread grid for the inckernel

int threadid = blockDim.x*blockIdx.x + threadIdx.x;

Figure 3.12: Each thread calculates its unique thread ID

CHAPTER 3. GPU PROGRAMMING 40

d_array[threadid] = threadid;

Figure 3.13: Assigning thread ID

cudaMemcpy(h_array,
d_array,
N*sizeof(int),
cudaMemcpyDeviceToHost);

Figure 3.14: Transfer of data from device to host

values of d array to the ID of that thread the statement in Figure 3.13 is made using the

variable threadid calculated by the thread in Figure 3.12. Every thread in the kernel’s

thread grid will execute this statement. This statement in Figure 3.13 has the effect that

thread 0 will write 0 into d array[0], thread 1 will write 1 into d array[1], thread 2 will

write 2 into d array[2], etc, and this will be done more or less concurrently due to the

size of the kernel because there are only 96 threads when a maximum of 128 can execute

concurrently.

So there is now an array on the device initialized by thread ID.

But there is another piece of functionality that is generally not available on the NVIDIA

GPU, except on the Fermi, which is to write to standard output or to file while in device

code, i.e. in a kernel or device function. To perform either of these the data on the GPU

must be transferred from the device back to the host, and once on the host the data can

be written using the standard printf or fprintf C functions, but the latest NVIDIA Fermi

GPUs do allow writing directly from the kernel code. To write data to or read data from

the device a call to the function cudaMemcpy is made. The statement in Figure 3.14

reads data from the array d array previously allocated on the device into an array h array

residing on the host.

The form of this function is given in Figure 3.15.

cudaMemcpy(destination,
origin,
number of bytes,
direction);

Figure 3.15: Specification of cudaMemcpy

CHAPTER 3. GPU PROGRAMMING 41

So what can a basic CUDA program look like? As an example, using the simple

concepts above an array of 96 integers on the device will be initialised with the thread ID

and the values transferred back to the host to print the values. This will show

1. static and dynamic memory allocation.

2. data transfer between host and device.

3. how to calculate the thread ID and use it.

4. the difference between a device function and a kernel.

5. the difference between host code and device code.

The code in Appendix A should be saved as DeviceTest1.cu and can be compiled with the

command nvcc -o DeviceTest1 DeviceTest1.cu and executed with the command

./DeviceTest1

An illustration of this program is shown in Figure 3.16 (adapted from NVIDIA CUDA

Programming Guide 2.3.1[55]).

At line 7 an array of integers device array is statically declared on the device (GPU).

At line 10 the kernel device kernel to be executed on the GPU is declared. This kernel

is passed an array which will store the values in device array.

At line 11 the device function SetDeviceArray, which will be called from the kernel

to initialize device array with the thread IDs, is declared.

At line 13 the host function allocateArray, which will dynamically allocate memory

on the device, is declared.

At line 14 the host function freeArray, which will dynamically deallocate memory on

the device, is declared.

At line 18 the host array host array, which will reside on the host, is declared.

At line 19 the device array d host array, which will reside on the device, is declared

(but not allocated).

At line 25 the values of host array after initializing them to 0 are printed out.

CHAPTER 3. GPU PROGRAMMING 42

Figure 3.16: A simple CUDA program

At line 29 d host array is allocated on the device through a call to allocateArray,

which calls cudaMalloc. The size of d host array must be provided, which is

N x sizeof(int). So at this point in the program the following memory has been allocated;

1. device array on the device statically allocated in the preprocessor

2. host array on the host

3. d host array on the device dynamically allocated

This is three arrays required to read one array. This is excessive, but this is a simple

example to show how memory can be allocated on the device and how communication

between the host and device can be achieved.

At line 31 the number of blocks of threads in the dim3 variable dimGrid is defined,

which has three parameters dimGrid.x, dimGrid.y and dimGrid.z, each of which has the

default value of 1. The total number of blocks in this example

= dimGrid.x x dimGrid.y x dimGrid.z, so with this declaration 3 blocks are being

CHAPTER 3. GPU PROGRAMMING 43

kernelname<<<grid_dimensions, block_dimensions>>>(parameters)

Figure 3.17: General kernel specification

device_kernel<<<3,32>>>(d_array);

Figure 3.18: Simple kernel specification

created.

At line 32 the number of threads per block is defined in the dim3 variable dimBlock,

which has three parameters, dimBlock.x, dimBlock.y and dimBlock.z. The number of

threads per block = dimBlock.x x dimBlock.y x dimBlock.z, so with this declaration

each of the three blocks will contain 32 threads each, giving a total of 96 threads.

At line 36 the kernel device kernel is called and control of the program is passed to the

kernel. The call to a kernel takes the form given in Figure 3.17. Both grid dimensions and

block dimensions can simply be integers, such as G and B, where G would be the number

of blocks, while B would be the number of threads per block. The statement given in

Figure 3.18 will have the same effect as declaring and using the dim3 variables as above

in lines 31 and 32. Note that although d host array is actually memory on the device it

still needs to be passed by reference to the kernel from the host code because the kernel is

going to read values from d host array. It should also be noted that the second array that

has been declared on the device, device array declared in the preprocessor, does not need

to be passed because the compiler allocates this memory at compile time.

At line 39 the CUDA function cudaMemcpy is called to copy data between the de-

vice and the host, and takes four parameters, which are in order from left to right in the

parameter list

1. the memory address to write to

2. the memory address to write from

3. the total size of the data being transferred

4. the direction of the data transfer

CHAPTER 3. GPU PROGRAMMING 44

The direction takes one of three values

• cudaMemcpyDeviceToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToDevice

In this instance the data is initially held in d host array (which is on the device) and is to

be transeferred into host array (which is on the host) so the direction is cudaMemcpyDe-

viceToHost.

At line 4 the memory on the device which was dynamically allocated for d host array

is deallocated because it is no longer need it. Note that there is no need to deallocate the

array device array that was declared in the preprocessor.

At line 43 the values in the array host array are printed.

All the code above between lines 1 to 44 inclusive is called host code, because it

executes on the host only, and not the device.

Lines 47 to 78 inclusive are called device code because they are executed on the device

only, and are made to do so by the qualifiers global (which declares a kernel function)

and device (which declares a device function).

All threads created in the kernel thread grid, defined by the parameters declared be-

tween the chevrons, execute the kernel. There is a possibility that not all threads execute

the device function. A device function can be called from a kernel or another device func-

tion. A kernel cannot be called from a kernel or device function, only host code. Only

one kernel executes at any one time.

The grid specification described by the dim3 parameters dimGrid and dimBlock de-

fines the number of threads in total, and the arrangement and partitioning of those threads.

For this simple example, in Figure 3.10, there would be 3 blocks of 32 threads. If the num-

ber of threads is excessive then not all threads can be executed at once, so they are broken

up into and executed as blocks which in turn execute in warps. This can hide latency

in which for example a sequence of reads from global memory taking a long time can

be ’parked’ and another block of threads executes instead, in order to increase processor

occupancy.

CHAPTER 3. GPU PROGRAMMING 45

void __global__ kernelname(parameter list)

Figure 3.19: Simple kernel specification

At line 47 the kernel which will execute on the device is defined. A kernel is declared

as given in Figure 3.19.

A kernel cannot return a value directly, hence the void in the kernel declaration, but it

can return a value if a variable is passed to it by reference, then a value or set of values

can be written into that variable, and a cudaMemcpy ican be executed to copy that value

or values into a variable declared on the host. In this example the kernel is passed by ref-

erence an integer array which resides on the device but was initially created and allocated

in the host code using cudaMalloc.

At line 50 the thread ID is calculated by all threads created in the thread grid by access-

ing the x component of the threadIdx variable that is calculated from the grid specification,

and is implicit.

At line 52 the kernel calls the device function SetDeviceArray. As there is no condi-

tional code, in other words no if or switch statement on the thread ID, in the kernel then

every thread executes this device function. It is possible to partition the threads so that

a subset of the thread grid executes this device function with the use of the thread ID, or

perhaps a computed variable. When this occurs the threads in the warp execute in serial,

which decreases performance.

At line 54 the value per thread ID from device array is copied into d host array. As

each thread executes the kernel and the thread ID is known, each thread will assign the

value in device array[id] to d host array[id].

At line 57 the kernel definition ends. This is the only point in the kernel at which it

is guaranteed that all threads in the thread grid for the kernel have written their index of

device array into d host array. Blocks of threads can be synchronised through the call

to synchthreads(), but this guarantees synchronicity between threads in a block only,

not all threads in all blocks. This is important if the algorithm being implemented has

synchronization points at which it is crucial that a variable array has been written to by

CHAPTER 3. GPU PROGRAMMING 46

all threads. In SPH this could be the array for particle pressure.

At line 59 the function to dynamically allocate memory on the device is defined. This

uses cudaMalloc.

At line 65 the function to deallocate dynamically allocated memory on the device is

defined. This uses cudaFree.

At line 71 the device function to initialize the array device array that was statically

allocated on the device is defined. All threads will execute this particular device function

because there is no logical condition on its execution and it is called directly from a kernel.

At line 75 the ID of every thread is found by the call to threadIdx.

At line 77 the values of device array are initialized by each thread to that thread’s ID.

This program is a very basic CUDA program that

• statically allocates memory on the GPU in the preprocessor

• dynamically allocates memory on the GPU in host code using cudaMalloc

• defines a kernel grid using dim3 variables, named dimGrid and dimBlock

• executes a kernel, defines a simple thread grid for that kernel, and passes a data

structure residing on the device to that kernel

• initializes a statically allocated array in the kernel with thread IDs

• copies that statically allocated array on the GPU into the dynamically allocated

array on the GPU passed to the kernel

• reads the data from the GPU back to the host via cudaMemcpy

• prints out the data from the host

These are CUDA essentials, in that memory allocation is required to hold data, and data

transfer between host and device is required to read results obtained from execution of a

kernel on the GPU, because it is generally not possible to write to standard output or file

in device code, i.e. directly from the GPU, except if the compute capability of the device

is 3.2. The CUDA SDK also provides a basic performance analysis suite called cudaprof

that can report the coalescing in an application.

CHAPTER 3. GPU PROGRAMMING 47

3.3 A Closer Look at Memory Hierarchy

As stated above the GPU has several types of memory. These are

1. global memory - large and slow

2. texture - cached global memory

3. shared memory - small and very fast

4. constant - small and fast, but not as fast as either registers or shared memory

5. registers - small and fast but very limited

How to use each type of memory will now be described.

3.3.1 Global Memory

Memory allocated using cudaMalloc is in global memory. This memory is large but slow,

and is usually where most data on the GPU initially resides. The challenge of a CUDA

program is to minimize data reads from and writes to global memory because data transfer

between the registers, where all the computation takes place, and global memory is of the

order of 400 to 600 clock cycles. One useful piece of functionality of global memory is

that coalescing of reads and writes can be performed in which neighbouring addresses

can be accessed simultaneously so that multiple reads from and writes to global memory

can be executed in one instruction. The details of how this is achieved in hardware are

not given in the CUDA programming guides.

Coalescing can be achieved for data types that are 32 bit, 64 bit, or 128 bit words, and

are aligned as linear memory. The most obvious declaration for which this would work is

to statically declare an integer array on the device. For the C870 processor integers are 32

bit words. CUDA has a number of data types that are 4, 8 and 16 bytes, i.e. 32 bit, 64 bit

and 128 bit words, the most common being int, int2 and int4, and float, float2 and float4.

To achieve coalescing of data the data must be

1. of a type that is a 32 bit, 64 bit or 128 bit word, and can also be a structure of those

sizes, e.g. a structure of two 32 bit integers

CHAPTER 3. GPU PROGRAMMING 48

texture<float, 1, cudaReadModeElementType> d_rhoTex;

Figure 3.20: The declaration of a linear 1D texture

2. aligned so that the hardware can execute the coalescing, e.g. declared as a linear

array

An array of structures that is not of a size that is 32, 64 or 128, such as the structure

defined in Figure 3.3, will not be coalesced, but the compiler will minimize the required

memory accesses.

The disadvantage of global memory is that it is not automatically cached, though this

is now the case with the Fermi processors. Most CPU-based computers have a memory

structure that uses at least one cache to use the principles of spatial and temporal locality.

Spatial locality implies that if an item of data is required from global memory then items

of data that are physically close to that item of data will also be required. Temporal

locality implies that if an item of data is required from global memory then that item of

data will very soon be required again. This principle can be implemented on the GPU by

declaring texture memory.

3.3.2 Texture Memory

Texture memory is cached global memory. NVIDIA do not go into too much detail into

how global memory is cached when a variable is declared as a texture, so how this is

implemented is unknown, though an investigation has been carried out by Wong et al.[56].

A cached memory is relatively good for random access of data in global memory, but

NVIDIA suggest that the use of coalescing and shared memory is preferable to textures if

the algorithm can be written to exploit the multiple reads and writes in one instruction that

coalescing and shared memory offer. Data transfer between registers and texture memory

is of the order of 40 clock cycles.

A simple linear texture of type float called d rhoTex can be declared as shown in

Figure 3.20. To use this texture it must be bound to a device variable. Binding allows

the device variable to be cached. This binding is performed before the kernel using the

CHAPTER 3. GPU PROGRAMMING 49

cudaBindTexture(0,
d_rhoTex,
d_rho,
num*sizeof(float4));

kernel<<<Numblocks,Numthreads>>>(parameter list);

cudaUnbindTexture(d_rhoTex);

Figure 3.21: The binding, use and unbinding of a texture

__shared__ float shX[DATASIZE];

Figure 3.22: The declaration of a shared memory variable

texture is executed. Once bound to a device variable the texture variable does not need to

be passed to the kernel in the kernel parameter list. Any reference to the device variable

must instead be through reference to the texture variable in the kernel code. The texture

must be unbound after kernel execution. The code in Figure 3.21 shows how to bind,

use in a kernel and then subsequently unbind a device variable d rho representing density

to a texture d rhoTex. NB There is no need to pass the texture variable, or the device

variable to which it is bound, to the kernel in the kernel parameter list. Any reference to

the device variable must be made through reference to the texture. For this to occur the

texture declarations, such as that in Figure 3.20, must be made in the same file or module

as the kernel code using the textures. For example, if a large CUDA project has been

written in modules such that the kernels are in their unique .cu module then the textures

are declared in that module.

3.3.3 Shared Memory

Reading from and writing to shared memory is very fast, due to its proximity to the

registers, and should be used as much as possible, but it is very small compared to global

and texture memories. To allocate a variable array called shMass, representing mass, of

type float and of size DATASIZE the declaration given in Figure 3.22. As with global

memory, if the data in shared memory is not aligned properly then a phenomenon called

a bank conflict can reduce the efficiency of using shared memory. The shared memory

is divided into 16 banks, and when data is written to the shared memory from global

CHAPTER 3. GPU PROGRAMMING 50

int MyMass = shMass[id];

Figure 3.23: Assigning a shared memory variable to a register

memory a misalignment of data can take place. If 16 items of data are transferred from

global memory into shared memory then those items will occupy 16 locations in different

banks. If two or more items of data from the same bank are required in an instruction then

the access to those items must be serialized, so that if the maximum number of items of

data on any one bank is N then the number of reads/writes required will be N. Hence if

all 16 items are on 16 different banks then only one instruction is required.

For example, take the single simple instruction in Figure 3.23 to read the variable

shMass declared in shared memory in Figure 3.22 into a register variable MyMass. This

instruction reads the idth item of shMass in shared memory and copies it to a register

called MyMass allocated by each of the idth threads. If 16 threads in a half-warp execute

this instruction and the 16 items of data are in 16 banks then those 16 threads will each

have their data in the register MyMass in one instruction only. But if just two items of

data are in the same bank then two instructions will be required, i.e. it would take double

the time than if the 16 items were in 16 banks.

So if shared memory is to be used it would make sense to load data into shared memory

in blocks of 16 threads and in a way such that the data is aligned in global memory. Any

larger than that and bank conflicts could arise, particularly when executing in blocks of

more than 16 threads. This is the significance of a half-warp. If 32 items of data were

written into shared memory from linear global memory via coalescing then items 0 to

15 would be in banks 0 to 15, but so also would be items 16 to 31. If an instruction is

subsequently made by a block of 32 threads to read those 32 items then threads 0 and 16

would require access to the same bank 0, but different items of data in that bank. The

access to the bank would be serialized and thread 0 would access the bank first followed

by thread 16.

This should suggest why the GPU is so efficient; multiple items of data from global

memory can be coalesced into shared memory in one read/write instruction, and from

CHAPTER 3. GPU PROGRAMMING 51

shared memory multiple items of data very quickly colaesced into registers if the data

is on different banks in the shared memory. The kind of mathematical computations in

which this kind of data transfer pattern is required are in matrix manipulations, in which

one element interacts with a lot of other elements in a well defined process. In these

particular cases blocks of data can be coalesced in to shared memory, then each thread

can very quickly process all that data. This is not the case in SPH, where a particle

interacts with only a very small and quickly changing subset of all the particles. It will

be shown in the next chapter, which shows how SPH can be implemented on GPUs, that

using coalescing and shared memory for small datasets can be efficient, but for large

datasets using texture memory is more efficient.

So an algorithm that when implemented on the GPU uses both coalescing and shared

memory will have one of the fastest possible memory allocations. Using data in shared

memory is the fastest way of processing recycled data, and coalescing the data reads from

global memory into shared memory and writes from shared memory to global memory is

a highly efficient method of data transfer between those two memories.

So to recap on data transfer between the registers and the different memories on the

device, the typical time it takes to access the memories from the registers is as follows;

• global memory - 400 clock cycles

• texture memory - 40 clock cycles

• shared memory - 4 clock cycles

3.3.4 Constant Memory

Constant memory is initialized at the start of an application and cannot be written to again

once initialization has taken place. This memory is useful for storing constant values that

will be used very frequently.

CHAPTER 3. GPU PROGRAMMING 52

3.3.5 Registers

Register use is important because if a kernel uses too many registers then it will not launch

and the application will fail, usually with the run time error message ”too many resources

requested”. Information about register use before execution can be obtained by compiling

with the –ptxas-options=”-v” option. The output from the compiler when using this flag

reports the following for each declared kernel;

• the estimated number of registers used

• the estimated amount of shared memory used

• the estimated amount of constant memory used

The most important of these is the register use, followed by shared memory. This includes

the registers required for any device functions called from that kernel. Suggestions on

how the programmer can reduce register use, or increase the number of available regsiters

permitted, are

• more and smaller kernels

• use constant and/or shared memory to hold variables that occupy registers

• reduce the number of register variables by recycling those that have been declared

• use –maxregcount=X in the compile command to allocate X registers per thread

Any combination of these can maximize the number of registers to a level such that the

kernel will execute.

3.4 Pinned Memory and Streams

It is possible to accelerate the process of transferring data between device and host and

executing a kernel by using pinned memory and streams. This adds another layer of par-

allelism to the algorithm but can improve efficiency significantly if the algorithm requires

both a significant amount of data transfer between host and device and can be manipulated

to facilitate streaming.

CHAPTER 3. GPU PROGRAMMING 53

cudaMemcpy(d_data,
h_data,
datasize,
cudaMemcpyHostToDevice);

incKernel<<<numblocks,numthreads>>>(d_data);

cudaMemcpy(h_data,
d_data,
datasize,
cudaMemcpyDeviceToHost);

Figure 3.24: A simple data transfer to and from the device

A stream enables the overlap of kernel execution and data transfer by partitioning the

thread grid into separate processes which manage a portion of the data being calculated

or manipulated. A simple example of this would be to write a block of data from host

to device, then for a kernel to increment that data, and then transfer the manipulated

data back from device to host. Code for this simple exercise is given in Figure 3.24.

Under normal circumstances in the code in Figure 3.24 the kernel incKernel could not be

executed until all the data has been transferred from the host to the device, and the transfer

of the incremented data from the device back to host cannot occur until all threads in the

thread grid have executed the incKernel. With streams it is possible to overlap writing

and kernel execution by creating processes that are not in complete synchronisation, so

that one stream can begin processing its data in the kernel while another stream is still

receiving data from the host. However, there is a caveat. This can only be done if the

actual purpose of the kernel permits this, i.e. a thread can execute the whole kernel without

reference to any other thread that may not yet have received its data from the host, so that

no thread synchronisation is required. In the simple example above in Figure 3.24 of a

kernel that only increments data there is no dependence between any threads so streaming

can be used.

A set of streams called stream can be declared and allocated with the procedure shown

in Figure 3.25 and can be destroyed with the code given in Figure 3.26. To partition the

kernel execution and data transfer the streams are executed in a loop as shown in Figure

3.27. The code in Figure 3.27 partitions data so that CUDA streams can be used. For

Figure 3.27 there are datasize items of data and both d data and h data are of this size.

CHAPTER 3. GPU PROGRAMMING 54

cudaStream_t *stream =
(cudaStream_t*) malloc(NSTREAMS*sizeof(cudaStream_t));

for(int i = 0 ; i < NSTREAMS; i++)
cudaStreamCreate(&(stream[i])) ;

Figure 3.25: Declaring and creating an array of streams

for(int i = 0; i < NSTREAMS; i++)
cudaStreamDestroy(stream[i]);

Figure 3.26: Destroying an array of streams

for(int i = 0; i < NSTREAMS; i++)
{

int streamstart=i*datasize/NSTREAMS;
cudaMemcpyAsync(&d_data[streamstart],

&h_data[streamstart],
datasize/NSTREAMS,
cudaMemcpyHostToDevice,
stream[i]);

incKernel<<<numblocks/NSTREAMS,
numthreads,0,
stream[i]>>>(&d_data[streamstart]);

cudaMemcpyAsync(&h_data[streamstart],
&d_data[streamstart],
datasize/NSTREAMS,
cudaMemcpyDeviceToHost,
stream[i]);

}

Figure 3.27: Using an array of streams for concurrent kernel execution and data transfer

CHAPTER 3. GPU PROGRAMMING 55

int N;
int* h_data;
cudaMallocHost((void**)&h_data,N*sizeof(int));

Figure 3.28: Declaring pinned memory

Each stream is responsible for processing a chunk of data of size datasize/NSTREAMS,

where NSTREAMS is the number of streams, beginning at index i x datasize/NSTREAMS

in both d data and h data, where i is the ID of the stream. NB when using CUDA streams

the data on the host, in this case the array h data, must be declared as pinned memory,

which is achieved by using the CUDA function cudaMallocHost as shown in Figure 3.28.

3.5 Limit on Kernel Parameter List

There is a limit on the size of the parameter list passed to a kernel. That limit is 256

bytes. This can cause trouble when an algorithm requires a lot of parameters, which was

required in implementing the Vila SPH algorithm on GPUs. One way of working around

this is to declare on the device a structure of device pointers pointing to memory on the

device, and pass that device structure to the kernel in the kernel’s parameter list instead of

the long list of device pointers themselves.

The code in Figure 3.29 shows how this can be done with a small structure. In the

code in Figure 3.29, once the structures have been allocated on both the host and device,

and the device arrays have been allocated with cudaMalloc, the trick is to

1. assign the device arrays to the host structure

2. copy the host structure to the device structure

With this process complete, the device arrays d rhoudx, d rhoudy and d rhoudz can be

passed to a kernel by passing the single device structure instead of the three device arrays

as shown in Figure 3.30. and the components of the structure can be referenced in the

kernel code as shown in Figure 3.31. This procedure adds another layer of reference and

CHAPTER 3. GPU PROGRAMMING 56

//declare the structure
typedef struct
{

float* drhoudx;
float* drhoudy;
float* drhoudz;

}params;

//declare the structure parameters
params* h_params;
params* d_params;

//allocate memory for the structures
h_params = new params;
cudaMalloc((void**)&d_params,

sizeof(CSPHparameters));

//declare and allocate device arrays
float* d_drhoudx;
cudaMalloc((void**)&d_drhoudx,

N*sizeof(float));
float* d_drhoudy;
cudaMalloc((void**)&d_drhoudy,

N*sizeof(float));
float* d_drhoudz;
cudaMalloc((void**)&d_drhoudz,

N*sizeof(float));

//assign device pointers to host structure
h_params->drhoudx = d_drhoudx;
h_params->drhoudy = d_drhoudy;
h_params->drhoudz = d_drhoudz;

//copy host structure to device structure
cudaMemcpy(d_params,

h_params,
sizeof(params),
cudaMemcpyHostToDevice);

Figure 3.29: Creating a structure on the device to pass a list of variables to a kernel

incKernel<<<BLOCKS,BLOCKSIZE>>>(d_params);

Figure 3.30: Passing a structure on the device to pass a list of variables to a kernel

int ThreadID = blockDim.x*blockIdx.x + threadIdx.x;
float mydrhodux = d_params->drhoudx[ThreadID];

Figure 3.31: Dereferencing variables passed in a structure in a kernel

CHAPTER 3. GPU PROGRAMMING 57

degrades performance a little, but is the only way to pass a large number of variables to a

kernel.

3.6 Warp Divergence

When the threads in a warp encounter a logical statement, such as an if statement, the

possible paths are evaluated and the threads in that warp are executed in batches such

that the threads taking branch 1 execute first, threads taking branch 2 execute second etc.

In other words the paths are executed in serial, but the threads taking those paths are

executed in parallel, with all other threads disabled. The threads in the warp converge

when all threads in that warp have all executed their respective branches, and the whole

warp executes in parallel again.

3.7 Padding

Padding is related to warp divergence. It is possible that the number of particles in a

simulation is not a multiple of a warp. One possible way around this is to execute a kernel

only if the particle ID is less than a constant, e.g. the total number of fluid particles.

But this adds warp divergence, because the if statement to determine the value of the

particle ID needs to be executed by all threads in the warp. Another way around this is to

add dummy particles which execute all the code in the kernel but do not have any effect,

thus avoiding the potential for warp divergence and the cost of all threads executing a if

statement on the particle ID.

To illustrate how padding can be easily implemented in SPH assume that a simulation

involves P particles, where P is not a multiple of the warp size and P = N xwarpsize+x,

where 1¡x¡warpsize. The variable arrays can be slightly increased in size to hold data for

P = (N + 1) x warpsize. To guarantee that these extra particles in the padding have

no effect on the simulation these extra padding particles can be given positions which are

significantly but not ridiculously outside the domain of interest. These particles will not

interact with any particles within the domain of interest but their acceleration etc. can be

CHAPTER 3. GPU PROGRAMMING 58

calculated as part of a warp without having to make any distinction between the padded

particles and the real particles of interest in the simulation. Similarly for their integration.

With this method a warp can execute in full without any warp divergence and without any

effect on the simulation.

3.8 Error Reporting

When a kernel executes it returns messages to inform the user of the success or otherwise

of the execution of the kernel. The following statement can be inserted after each kernel

call to report the outcome of kernel execution.

printf("\n\n%s\n", cudaGetErrorString(cudaGetLastError()));

This will return any error that occured during a kernel execution. One error message

that relates to a shortage of registers is ”unspecified launch failure”. One problem with

this function is that it is possible that an error being reported is due to a kernel that was

executed before the kernel that is being reported as causing the error.

Chapter 4

SPH on a GPU

The previous two chapters described Smoothed Particle Hydrodynamics and the NVIDIA

GPU architecture together with some but not all of the functionality of CUDA, presenting

only the CUDA functionality that has been used in the code to implement SPH on GPU

as presented in this thesis.

This chapter will describe how an SPH algorithm can be implemented on a GPU.

NVIDIA recommend that algorithms executed on their GPUs should use the coalescing

and shared memory approach to exploit the fast data transfer from the slow global memory

to the fast shared memory offered by coalescing, and the close proximity of the shared

memory to the registers for fast data recycling. This approach will be examined and

described. Another approach that has been proposed is to use the texture memory as

a cache. This method will also be implemented. The results from implementing both

methods for the same SPH algorithm for the same problem will be compared for execution

time. The theoretical computational effort to process particle interactions for the shared

memory method is O(N2), and is O(N) for the texture memory method, where N is the

number of particles. But the different speeds of the memories of the GPU could make the

shared memory method faster than the texture memory method.

The CUDA Software Development Kit comes with a profiler and occupancy calcu-

lator. The profiler shows some performance counters such as the number of coalesced

reads. The occupancy calculator suggests the optimal size of the thread block for a given

kernel in a CUDA program. This chapter will also show the effect that the thread block

size can have on GPU occupancy and thus performance.

59

CHAPTER 4. SPH ON A GPU 60

Previous work on comparing different implementations of the same SPH algorithm

was done by McCabe et al.[57] who made a brief study of SPH on GPUs by implementing

the SPH algorithm proposed by Monaghan[33], but with some amendments, on a NVIDIA

C870 by using the two different methods of implementation to be described in this chapter.

4.1 The SPH Algorithm

This thesis looks at implementing the SPH algorithm proposed by Ferrari et al.[42][58]

so the reader will benefit greatly if the implementation of this algorithm on a GPU is

explained in some detail. The governing equations are

dρi
dt

= −
N∑
j=1

mj

(
(vj − vi) · ∇iWij − nij · ∇iWij

(cij
ρj

(ρj − ρi)
))

(4.1)

dvi
dt

= −
N∑
j=1

F I
ij −

N∑
j=1

F V
ij + Si (4.2)

where

F I
ij = mj

(pi
ρ2
i

+
pj
ρ2
j

)
∇iWij (4.3)

F V
ij = Θij

(7

3

µ

ρi

mj

ρj
+

5

3

µ

ρi

mj

ρj
nij · (vj − vi)

)
(vj − vi) (4.4)

Θij = −
nij

|xj − xj|
· ∇iWij (4.5)

nij =
xj − xi
|xj − xi|

(4.6)

cij = max(ci, cj) (4.7)

ci =

√
γ
B

ρ0

(ρi
ρ0

)(γ−1)

(4.8)

Pi = B
((ρi

ρ0

)γ
− 1
)

(4.9)

µ = 0.0013 (4.10)

In their paper, Ferrari et al.[42] state that their results are from an inviscid fluid to

CHAPTER 4. SPH ON A GPU 61

show that their scheme is stable without the need for a viscous term.

The time step is calculated by Equations (2.88) - (2.89).

In their work Ferrari et al. use the third order Runge Kutta TVD integration scheme

Equations (2.84) - (2.87), but for simplicity in the work presented in this chapter the

predictor-corrector integration scheme Equations (2.77) - (2.79) is used to move the par-

ticles. The boundary treatment does not use that proposed by Ferrari et al.. Instead

the on-boundary particle treatment as proposed by Dalrymple & Knio[38] is used. The

smoothing function is the Wendland quintic given by Equation (4.11).

Wij =

7

4πh2
(1 + 2qij)(1− 0.5qij)

4 if 0 < qij ≤ 2,

0 otherwise
(4.11)

where qij = (|xi − xj|)/hij .

To the best of this authors knowledge this particular combination of these components

for a SPH algorithm has not been reported, not even on a CPU.

The problem being simulated is that investigated by Koshizuka & Oka[11] for which

experimental data is available to verify the accuracy of the algorithm and the code.

To show the difference in program structure and performance in using the shared

memory and coalescing approach, as recommended by NVIDIA, and the texture mem-

ory approach, there now follows a detailed description of the implementation of both

approaches.

4.2 Shared Memory and Coalesced Implementation

As described in the previous chapter on GPUs and CUDA programming, NVIDIA advise

that using coalescing and shared memory should be used as much as possible. Coalescing

of data from global memory can be achieved in certain circumstances, and these were

described in the previous chapter. Once in shared memory that data can be reused very

efficiently from the fast shared memory. This data re-use is essential for efficient imple-

mentations of matrix operations, but may not be so good for SPH in which one particle

interacts with only a small subset of all the particles in the simulation.

CHAPTER 4. SPH ON A GPU 62

Name Datatype Description
d x float2 the position
d v float2 the velocity
d dvdt float2 the acceleration
d x0 float2 the saved position at start of

timestep
d v0 float2 the saved velocity at start of

timestep
d mass float the mass
d rho float the density
d rho0 float the saved density at start of

timestep
d p float the pressure
d hsml float the variable smoothing length
d drhodt float the rate of change of density
d celerity float the celerity
d type integer the particle type

Table 4.1: The device variables required for shared memory implementation

This method is based on the work on N body simulation by Nyland et al.[59] which

examines the calculation of gravitational forces in an N body system. The idea in this

implementation is to process NxN interactions as efficiently as possible, which can be

represented as a NxN matrix as shown in the top image in Figure 4.1[59]. This matrix

can be partitioned into blocks of threads, as would occur on the GPU. The bottom image

in Figure 4.1 shows the process for one simple block of four threads, called block A. This

block A of threads, with each thread representing a particle, has to process the data from all

particles to find interactions. The bottom image indicates that the plan is to load blocks of

particles, which in this simple case would be four particles at a time, into shared memory

and then process the data of those particles. So the data for particles in block A is first to

be loaded into shared memory by coalescing, and then processed by particles in block A.

Then the data for particles in block B is loaded into shared memory by coalescing, and

processed by particles in block A. Then block C. Then block D etc. Once all blocks have

been processed by block A the particles in block B process the data of all particles in the

same way by loading, or coalescing, data from blocks A, B, C, D etc. into shared memory.

Then block C processes all the blocks. Then block D etc.

The main function for this implementation has the structure as shown in Figure 4.2.

CHAPTER 4. SPH ON A GPU 63

Figure 4.1: N Body simulation

CHAPTER 4. SPH ON A GPU 64

allocate host variables
allocate device variables
read initial data from file into host variables
transfer host data to the device
for maxiterations
{

save x, v and rho
SPH calculations
integrate prediction
calculate maxH
calculate dtpred
SPH calculations
integrate correction
calculate maxH
calculate dtcorr
calculate dt for next time step

}

free device variables

Figure 4.2: Pseudo code for implementation of main

4.2.1 Calculation of Rates of Change

The function, or kernel, to calculate the acceleration and rate of change of density is called

from the main function via an intermediate function called CalcForces. This intermediate

function as shown in Figure 4.3 is quite straightforward in that it calculates the thread grid

dimensions for the kernel that will execute on the device. The variables that are passed to

this function which are described in Table 4.1 are passed on to the kernel for the device to

refer to.

NB in this code there is a variable d cell which is passed on to the kernel. This variable

is the mesh of background cells which particles can be assigned to, but is not used in this

example.

The kernel requires the following to occur

1. transfer data from global memory to shared memory

2. each thread processes the data in shared memory

In the code provided in Appendix B this kernel is called calculateforceskernel. The ini-

tialisation of this kernel is shown in Figure 4.4. The shared memory arrays to hold the par-

ticle position, velocity, smoothing length, mass, density, pressure and type are declared.

These will be filled with data a block at a time, hence the size of the arrays is declared

as NUMTHREADS, the thread block size. The thread ID threadid within the block of

threads is required because each thread within the block will coalesce one item of data

CHAPTER 4. SPH ON A GPU 65

int numThreads, numBlocks;

computeGridSize(numBodies, NUMTHREADS, numBlocks, numThreads);

calculateforceskernel<<<numBlocks,numThreads>>>
(d_x,
d_v,
d_mass,
d_hsml,
d_rho,
d_p,
d_type,
d_drhodt,
d_dvdt,
d_cell,
numBodies);

cudaThreadSynchronize();

Figure 4.3: The Intermediate CalcForces function

from the global memory into shared memory, and the global thread ID gtid is required for

reading the correct items of data into the thread’s own private variables myX, myHsml etc.

The variables mydvdtx, mydvdty and mydrhodt will accumulate the acceleration in the x

direction, the acceleration in the y direction and rate of change of density respectively as

particle interactions are found.

Once initialised the thread can begin its main loop to load, or coalesce, particle data

from global memory into shared memory a block of particles at a time. This main loop

is shown in Figure 4.5 with supporting snippets for coalescing global data into shared

memory in Figure 4.6 and processing particle interactions in Figure 4.7.

The first call to the CUDA function syncthreads() is made to synchronise the threads

in the block so that no thread in the block can progress until all threads in the block have

read their designated items of data from global in to shared memory.

As stated above the idea is to coalesce data from the global memory into the shared

memory. For the outer loop the variable idx increases with a stride of size

tile x NUMTHREADS each iteration of the loop, where tile represents the block ID and

NUMTHREADS is the thread block size. In the first iteration threads coalesce data from

global memory into shared memory for particles 0 to NUMTHREADS-1, with thread 0

of the block loading particle 0, thread 1 loading particle 1, etc. In the next loop threads

coalesce data from global memory into shared memory for particles NUMTHREADS to

2NUMTHREADS-1, with thread 0 of the block loading particle NUMTHREADS, thread

CHAPTER 4. SPH ON A GPU 66

//calculate thread id
int threadid = threadIdx.x;
int blockid = blockIdx.x;
int gtid = blockid* blockDim.x + threadid;

//declare shared memory variables
__shared__ float2 shX[NUMTHREADS];
__shared__ float2 shV[NUMTHREADS];
__shared__ float shHsml[NUMTHREADS];
__shared__ float shMass[NUMTHREADS];
__shared__ float shRho[NUMTHREADS];
__shared__ float shP[NUMTHREADS];
__shared__ int shType[NUMTHREADS];

//load local register variables
float2 myX = d_x[gtid];
float2 myV = d_v[gtid];
float myHsml = d_hsml[gtid];
float myRho = d_rho[gtid];
float myP = d_p[gtid];
int myType = d_type[gtid];

//set accumulators to zero
float mydvdtx = 0.0f;
float mydvdty = -GRAVITY;
float mydrhodt = 0.0f;

Figure 4.4: The Initialisation of calculateforceskernel kernel

float2 D,V;
float r, mhsml;
float xdwdx,ydwdx;
float K,Kxdwdx,Kydwdx;
float A,C;
float Ci,Cj,Cij;
float2 n;

int i,j,tile,diff,jparticleid;
__syncthreads();

for (i=0, tile=0; i<BLOCKSIZE; i+=NUMTHREADS, tile++)
{

//load global data into shared memory

__syncthreads();

for (j = 0; j < NUMTHREADS ; j++)
{

jparticleid = tile * NUMTHREADS + j;
diff = gtid - jparticleid;
switch(diff)
{
case 0 : break;

default : D.x = myX.x-shX[j].x;
D.y = myX.y-shX[j].y;
mhsml = (myHsml + shHsml[j])/2.0;
r = sqrt(D.x*D.x + D.y*D.y);

if(r<SCALE*mhsml)
{
//process interaction

}
break;

}
}
__syncthreads();

}

Figure 4.5: The calculateforceskernel kernel main loop

CHAPTER 4. SPH ON A GPU 67

//load global data into shared memory
int idx = tile * NUMTHREADS + threadid;
shX[threadid] = d_x[idx];
shV[threadid] = d_v[idx];
shHsml[threadid] = d_hsml[idx];
shMass[threadid] = d_mass[idx];
shRho[threadid] = d_rho[idx];
shP[threadid] = d_p[idx];
shType[threadid] = d_type[idx];
shCell[threadid] = d_cell[idx];

Figure 4.6: Coalescing global data into shared memory

kerneldw(&xdwdx,&ydwdx,r,mhsml,D);
D = shX[j] - myX;
V = shV[j] - myV;
n = D/r;

//calculate maximum celerity
Ci = sqrt(GAMMA*B*pow((myRho/RHO0),GAMMA-1)/RHO0);
Cj = sqrt(GAMMA*B*pow((shRho[j]/RHO0),GAMMA-1)/RHO0);
Cij = max(Ci,Cj);

//
// DENSITY
//
mydrhodt+= -shMass[j]*(V.x*xdwdx + V.y*ydwdx);
mydrhodt+= shMass[j]*(n.x*xdwdx + n.y*ydwdx)*Cij*

(shRho[j] - myRho)/shRho[j];

//
// MOMENTUM
//
//
// FI
//
K = myP/(myRho*myRho) + shP[j]/(shRho[j]*shRho[j]);
K*= shMass[j];

Kxdwdx = K*xdwdx;
Kydwdx = K*ydwdx;
mydvdtx+= -Kxdwdx;
mydvdty+= -Kydwdx;

//
// FV
//
A = MU*shMass[j]/(3.0f*myRho*shRho[j]);
C = (n.x*V.x + n.y*V.y)*(n.x*xdwdx + n.y*ydwdx)/r;

mydvdtx+= A*(7.0*V.x + 5.0*C*n.x);
mydvdty+= A*(7.0*V.y + 5.0*C*n.y);

Figure 4.7: Process the interaction between two distinct particles

d_dvdt[gtid].x = mydvdtx;
d_dvdt[gtid].y = mydvdty;
d_drhodt[gtid] = mydrhodt;

Figure 4.8: The Coalesced Write of Acceleration and Rate of Change of Density to Global
Memory

CHAPTER 4. SPH ON A GPU 68

1 loading particle NUMTHREADS+1, etc. This is the purpose of the statements in Figure

4.6, which coalesces the positions, velocities etc into shared memory.

The inner loop checks for interactions between the particles by each thread reading

the contents of the shared memory in sequence. Before checking for an interaction each

thread must check that the ID of the particle being checked is not the same as the particle

it is representing, hence the statement diff = gtid - jparticleid;. The variable jparticleid is

the ID of the particle being checked and is incremented in the inner loop by the statement

jparticleid = tile * NUMTHREADS + j;.

If the particles are found to be distinct then the distance between them is calculated. If

that distance is less than twice the mean of the particle smoothing lengths then there is an

interaction which is processed as shown in Figure 4.7. The function kerneldw calculates

the kernel gradient. The maximum celerity Cij of the two interacting particles is first

calculated, which is needed for the calculation of density. The rate of change of density

and the accelerations in the x and y directions are then found and accumulated. First the

rate of change of density is calculated according to the Ferrari algorithm. This is done

for all particles, fluid and boundary, because the density of boundary particles changes

for boundary particles proposed by Dalrymple & Knio[38]. The Ferrari algorithm splits

the acceleration into two components, FI and FV, as indicated in the governing equations

above.

The second call to syncthreads() in the main loop synchronises the threads in the

block so that no thread can begin loading the next block of data into shared memory

before the other threads in the block have processed the current particle data in the shared

memory, and thus corrupt the computation.

The main loop is then advanced one step, the value of tile is incremented, the data

from the next block of particles is coalesced into shared memory, overwriting the data

from the previous iteration of the main loop, and the threads then process the data in

shared memory in the same way, accumulating change in density and acceleration from

any interactions.

Once all the particles, fluid and boundary, have been processed by the threads in the

current block the total x and y acceleration and rate of change of density can be coalesced

CHAPTER 4. SPH ON A GPU 69

int i;
float speed,celerity;

i = blockDim.x * blockIdx.x + threadIdx.x;

d_rho[i]+= (d_drhodt[i])*dt/2.0f;
d_p[i] = B*(pow((d_rho[i]/RHO0),7) - 1);

if(d_type[i]==WATER)
{

//integrate acceleration and velocity
//////////////
d_x[i].x+= d_v[i].x*dt/2.0f;
d_x[i].y+= d_v[i].y*dt/2.0f;

d_v[i].x+= d_dvdt[i].x*dt/2.0f;
d_v[i].y+= d_dvdt[i].y*dt/2.0f;

d_hsml[i] = sqrt(d_mass[i]/d_rho[i]);
celerity = sqrt(GAMMA*B*pow((d_rho[i]/RHO0),GAMMA-1)/RHO0);
speed = sqrt(d_v[i].x*d_v[i].x + d_v[i].y*d_v[i].y);
d_celerity[i] = d_hsml[i]/max(celerity,speed);

}

Figure 4.9: The predictor phase integration

to global memory, as shown in Figure 4.8.

4.2.2 Integration

The Predictor-Corrector integration scheme is straightforward to implement and described

in Chapter 2. The integration at the end of the prediction phase is shown in Figure 4.9.

When using the boundary treatment of Dalrymple & Knio the density and thus pressure

are calculated for all particles, fluid and boundary. The momentum is calculated for fluid

particles only, hence the requirement to check if the particle is water. The second integra-

tion, performed at the end of the correction phase, is given in Figure 4.10.

4.3 Texture Memory Implementation

The texture approach to implementing SPH involves assigning the particles to cells in a

background grid, as described in the chapter on SPH, but the data required for the SPH

calculations is sorted so that each particle has two IDs; the first being its original ID and

the second its sorted ID. In this implementation, during the SPH calculations the data for

each particle is referred to by its sorted ID, but the accumulated acceleration and rate of

change of density and the integrated values of position, velocity and density are written

CHAPTER 4. SPH ON A GPU 70

int i;
float speed,celerity;

i = blockDim.x * blockIdx.x + threadIdx.x;

d_rho[i] = d_rho0[i] + d_drhodt[i]*dt/2.0f;
d_rho[i] = 2*d_rho[i] - d_rho0[i];
d_p[i] = B*(pow((d_rho[i]/RHO0),7) - 1);

if(d_type[i]==WATER)
{

//integrate acceleration and velocity
//////////////
d_x[i].x = d_x0[i].x + d_v0[i].x*dt/2.0f;
d_x[i].y = d_x0[i].y + d_v0[i].y*dt/2.0f;

d_v[i].x = d_v0[i].x + d_dvdt[i].x*dt/2.0f;
d_v[i].y = d_v0[i].y + d_dvdt[i].y*dt/2.0f;

//
// FINAL INTEGRATION
//
d_x[i] = 2*d_x[i] - d_x0[i];
d_v[i] = 2*d_v[i] - d_v0[i];

celerity = sqrt(GAMMA*B*pow((d_rho[i]/RHO0),GAMMA-1)/RHO0);
speed = sqrt(d_v[i].x*d_v[i].x + d_v[i].y*d_v[i].y);
d_hsml[i] = sqrt(d_mass[i]/d_rho[i]);
d_celerity[i] = d_hsml[i]/max(celerity,speed);

}

Figure 4.10: The corrector phase integration

calculate particle hash (cell ID)
sort particles based on cell ID
reorder data and record cell starts
calculate acceleration and rate of change

Figure 4.11: The pseudo code for SPH calculations

to the particle’s original ID. Therefore besides the device variables given in Table 4.1

as used in the shared memory approach this method requires the extra variables given in

Table 4.2.

The main function for this implementation has the same structure as that for the shared

memory approach, as shown in Figure 4.2, but the SPH calculations are more complex

and have the structure as shown in Figure 4.11. The procedure to implement the SPH

calculations as given in Figure 4.11 is as follows;

1. find the ID of the cell each particle is in

2. sort the particle positions by increasing cell ID

3. record the index of the first particle in each cell

CHAPTER 4. SPH ON A GPU 71

Name Datatype Description
d sorted x float2 the sorted position
d sorted v float2 the sorted velocity
d sorted hsml float the sorted smoothing length
d sorted mass float the sorted mass
d sorted rho float the sorted density
d sorted p float the sorted pressure
d sorted type integer the sorted particle type
d cellStart uint stores the index of first parti-

cle in each cell
d particleHash[0] uint2 stores the particles sorted by

cell ID
d particleHash[1] uint2 intermediate array required

for sorting

Table 4.2: The extra device variables required for texture implementation

4. reorder the required data arrays by using the sorted particle IDs

5. calculate acceleration and density change by binding the sorted data to textures

6. integrating using the original arrays

This sequence will now be described in much greater detail and will refer to the extra

variables given in Table 4.2.

4.3.1 Cell ID

This uses an array of datatype uint2 called d particleHash. The first, or x, component

of d particleHash is the cell ID and the second, or y, component is the original particle

ID. Four constants are also defined; GRIDSIZEX and GRIDSIZEY define how many cells

there are in the x and y directions in the background grid respectively, and MINX and

MINY are the minimum values of x and y in the grid.

The cell to which each particle belongs is found for each particle in parallel through

a call to the intermediate function calcHash called from main which is given in Figure

4.12. This intermediate function first calculates the thread grid for the kernel through the

call to the function computeGridSize, which simply sets the thread grid size to a multiple

of the thread block size, and then calls the kernel calcHashD.

NB All particles execute this kernel.

CHAPTER 4. SPH ON A GPU 72

void
calcHash(float2* pos,
uint2* particleHash,
int numBodies,
FILE* outfile,
float cellsize)
{

int numThreads, numBlocks;

computeGridSize(numBodies, NUMTHREADS, numBlocks, numThreads);

calcHashD<<< numBlocks, numThreads >>>(pos,
particleHash,
cellsize);

cudaThreadSynchronize();
}

Figure 4.12: The calcHash function

__global__ void calcHashD(float2* pos,uint2* particleHash,float cellsize)
{

int index = __mul24(blockIdx.x, blockDim.x) + threadIdx.x;

float2 p = pos[index];

// get address in grid
int2 gridPos = calcGridPos(p,cellsize);
uint gridHash = calcGridHash(gridPos);

particleHash[index].x = gridHash;
particleHash[index].y = index;

}

Figure 4.13: The calcHashD kernel

The kernel calcHashD is given in Figure 4.13. The cell ID is found with the follow-

ing device functions. First the cell coordinates in the background grid are found with the

device function calcGridPos, which simply calculates how many cells up and to the right

the cell containing the particle is, as shown in Figure 4.14. The cell coordinates are then

passed to a second device function calcGridHash which multiplies the y component of the

cell coordinate by the number of cells in the x direction and then adds the x component of

__device__ int2 calcGridPos(float2 p,float cellsize)
{

int2 gridPos;

gridPos.x = floor((p.x - XMIN) / cellsize);
gridPos.y = floor((p.y - YMIN) / cellsize);

return gridPos;
}

Figure 4.14: The calcGridPos device function

CHAPTER 4. SPH ON A GPU 73

__device__ uint calcGridHash(int2 gridPos)
{

gridPos.x = max(0, min(gridPos.x, GRIDSIZEX-1));
gridPos.y = max(0, min(gridPos.y, GRIDSIZEY-1));

return __mul24(gridPos.y, GRIDSIZEX) + gridPos.x;
}

Figure 4.15: The calcGridHash device function

the cell coordinate, as shown in Figure 4.15. For example, in Figure 4.16 GRIDSIZEX=3,

GRIDSIZEY=2, CELLSIZEX=1, CELLSIZEY=1, MINX=0 and MINY=0. For particle 1

the grid coordinates of the cell containing particle 1 are (1,1), and the function calcGrid-

Hash would calculate the ID of this cell as 4.

This cell ID, or grid hash, is then stored in the array d particleHash with

d particleHash[index].x=gridHash and d particleHash[index].y=index, as shown in the

unsorted particleHash array Figure 4.16, in which the top row in the cell ID and the

bottom row is the particle ID. Note that this array is ordered by ascending particle ID.

4.3.2 Sorting

The sorting of the data is performed by a radix sort as proposed by LeGrand[60], but

any sorting procedure can be used. However, the radix sort has already been written in

CUDA, and the code for this sort procedure comes with the CUDA Software Develop-

ment Kit, or it can be downloaded from the NVIDIA website, and can be easily added

to a CUDA project. Figure 4.16 shows 5 particles contained in a simple 3x2 grid. The

array d particleHash would look like that shown in Figure 4.16, in which for each col-

umn the top row, component x, is the cell ID and the bottom row, component y, is the

particle ID. After sorting the d particleHash array by ascending cell ID it would look like

that shown in Figure 4.16. Note that the unsorted d particleHash array is ascending in

particle ID, while the sorted d particleHash array is ascending in cell ID. Another array

d cellStart records the lowest index in the sorted d particleHash array at which the par-

ticles contained in each cell begin. In this example, looking at the array d cellStart the

entry for cell 0 is ff, which means there are no particles in that cell, as is the entry for

cell 2. Particles in cell 1 begin at index 0 of the sorted d particleHash array (there are

two particles in that cell), the value, the particles in cell 3 begin at index 2 of the sorted

CHAPTER 4. SPH ON A GPU 74

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$~ ~ ~

~ ~
0 1 2

3 4 5

0

1
2

3
4

A simple background grid containing particles

3 4 5 1 1

0 1 2 3 4

The unsorted particleHash array

1 1 3 4 5

3 4 0 1 2

The sorted particleHash array

ff 0 ff 2 3 4

The cell start array

Figure 4.16: The sorting and reordering of particles in a grid

d particleHash array (there is only one particle in that cell), the particles in cell 4 begin

at index 3 of the sorted d particleHash array (there is only one particle in that cell) and

finally the particles in cell 5 begin at index 4 of the sorted d particleHash array (there

is only one particle in that cell). The number of elements in the d particleHash array is

NTOTAL, for all particles, while the number of elements in d cellStart is GRIDSIZEX x

GRIDSIZEY=numGridCells.

4.3.3 Reordering

Once the particles have been reordered by cell ID then all their data can be reordered in

the same order. For example, in Figure 4.16 the particle with original ID of 2 had all

its data at the index 2 of all the variable arrays, such as position, density, etc. But after

CHAPTER 4. SPH ON A GPU 75

cudaBindTexture(0, d_xTex, d_x, numparticles*sizeof(float2));

Figure 4.17: Binding a texture

texture<float2, 1, cudaReadModeElementType> d_xTex;

Figure 4.18: Declaring a texture

sorting, that particle with original ID of 2 is now at index 4 in the sorted arrays, i.e. its new

sorted ID is 4. So all the data could be reordered so that the position, velocity, smoothing

length, mass, etc for particle with original ID of 2 is now at index 4 of a family of

d sorted arrays. This explains the use of the d sorted family of variables declared in Table

4.2.

The reordering is done by a call from main to the intermediate function reorder-

DataAndFindCellStart, passing the device variables to be sorted, together with the vari-

ables to hold the sorted versions of these variables. Along with these the d cellStart array

is also passed, because it holds the indices of the sorted d particleHash at which the cells

start. The number of cells in the grid numGridCells and the total number of particles to

be sorted ntotal are also passed, because these are required to bind the original arrays to

textures.

As stated in the previous chapter on GPUs and CUDA, to bind a texture for position

d x, for example, a statement similar to that given in Figure 4.17 is made. The textures

should be defined in the module/file in which they are to be referenced, i.e. the file or files

containing the kernel code. Textures are declared with a statement similar to that given in

Figure 4.18, which declares a linear one dimensional texture of datatype float2.

The variable arrays, for original and sorted values, with the sorted d particleHash

and d cellStart arrays are then passed to the kernel reorderDataAndFindCellStartD, the

D indicating it is being executed on the device.

All particles have their data reordered in parallel by this kernel.

Once the kernel has been executed the textures are unbound with a simple statement

similar to that given in Figure 4.19.

CHAPTER 4. SPH ON A GPU 76

cudaUnbindTexture(d_xTex);

Figure 4.19: Unbinding a texture

4.3.4 Calculation of Acceleration and Density Change

With the data sorted by cell ID, and a record of where the particles in each cell are in those

sorted arrays (stored in the array d cellStart), it is a relatively straightforward procedure to

now iterate through the sorted arrays and find the particles and their data for all particles

in any cell. SPH requires that only particles within a small specified distance should make

up the support domain for a particular particle. This can be quickly achieved by searching

for particles in cells that are immediate neighbours of the cell in which a specific particle

is contained.

To calculate the acceleration and density change the function intermediate function

CalcForces is called from main, passing the sorted, not the original, arrays along with the

d particleHash and d cellStart arrays. These are then bound to textures and a call to the

kernel CalculateForces is made. This is given in Appendix C. Note that not all variables

bound to textures are passed in the kernel parameter list. The sorted arrays for position,

velocity, smoothing length, mass, pressure, density and type are not in the parameter list

for the kernel CalculateForces. This is because the textures, not the variables bound to

the textures, can be referenced directly in the kernel code.

The CalculateForces kernel uses two indices to refer to variable arrays. The first index

mySortedIndex is the thread ID. This index is used to access the sorted data to create a

family of variables beginning with my, such as myX for position, from the textures. It

is possible to reference the original data, but this is cumbersome and unnecessary in this

context, but is essential for multiple GPU use. Note that because this data is read from

a variable that has been bound to a texture then the values are now stored in texture, i.e.

have been cached, so if required by any other particle can be read from cache.

The second index myTrueIndex is found from the y component of the d particleHash

array at index mySortedIndex, and is used to write the accumulated acceleration and den-

sity change to the correct index of the original arrays in the global memory at the end of

the kernel.

CHAPTER 4. SPH ON A GPU 77

// examine only neighbouring cells
for(int y=LOWCELL; y<HICELL; y++)
{

gridPos2y = myGridPos.y + y;
for(int x=LOWCELL; x<HICELL; x++)
{

gridPos2x = myGridPos.x + x;
{
gridPos2.x = gridPos2x;
gridPos2.y = gridPos2y;

AccumulateForces(...);
}

}
}

Figure 4.20: The nested loop to investigate neighbouring cells

To search for particle interactions in neighbouring cells only, the grid coordinates grid-

Pos of the cell which contains the particle with ID=mySortedIndex is found. Then a nested

loop is entered in which the values -1,0,1 are added to both the x and y components of the

int2 variable myGridPos. In 2D this gives 9 cells to check for interactions. The purpose

of the nested loop is to find all interactions involving the particle with ID=mySortedIndex,

finding the contribution to the acceleration and density change from all interactions in

each cell and accumulating the contributions on a cell by cell basis. This nested loop

takes the form shown in Figure 4.20. In the nested loop in Figure 4.20 the device function

AccumulateForces is called. Note again that neither the sorted variables nor the textures

to which they are currently bound, are passed in the parameter list for AccumulateForces.

The textures are referenced directly in the code of AccumulateForces.

The purpose of the device function AccumulateForces is to find the interactions be-

tween one particular particle being managed by the thread and all particles in a particular

cell and accumulate the acceleration and density change from any interactions found.

Each thread, or particle, executes the kernel CalculateForces in parallel, so each thread

is calling AccumulateForces in parallel. A single thread, or particle, has its data passed

down in the my family of values. The grid coordinates of the cell being examined in Ac-

cumulateForces are passed down in the variable gridPos2. The ID, or Hash, for this cell

is found with the call to calcGridHash. With the cell ID, or cellgridHash, for the current

cell under investigation for interactions, the particles in that cell can be found from find-

ing the entry at d cellStart[cellgridHash], which is the lowest index of d particleHash

where the particles are listed in sequence, i.e. the first particle in the cell can be found

CHAPTER 4. SPH ON A GPU 78

// get start of bucket for this cell
uint bucketStart = FETCH(d_cellStart, cellgridHash);

if (bucketStart == 0xffffffff) // cell is empty
return density;

// iterate over particles in this cell
for(uint i=0; i<MAXPARTICLESPERCELL; i++)
{

uint index2 = bucketStart + i;
uint2 cellData = FETCH(d_particleHash, index2)

// no longer in same bucket
if (cellData.x != cellgridHash) break;

// particle i is not particle j
if (index2 != mySortedIndex)
{

// if interaction
// calculate acceleration
// and density change

}
}

Figure 4.21: The loop to step through particles

at d cellStart[cellgridHash], which is the new index of each particle, because they have

been sorted by ascending cell ID. Recall that in Figure 4.16, the particles were sorted by

ascending cell ID, and the array d cellStart held the index in the sorted d particleHash at

which the particles in a particular cell started.

So to iterate over all the particles in the current cell being investigated for interactions,

the loop shown in Figure 4.21 is executed.

In the code snippet in Figure 4.21, the index bucketStart in the sorted arrays and the

d particleHash for the cell with ID=cellgridHash is found, and if this value =0xffffffff the

cell is empty, and the function is left returning zero contributions from that cell. So with

a cell containing at least one particle all the particles in that cell, up to a maximum num-

ber of particles MAXPARTICLESPERCELL, are checked sequentially for interations. To

check that the particle being examined in the loop is contained in the cell being examined,

the variables index2, which is the sorted ID, and cellData, are used to examine the con-

tents of d particleHash[index2], because this contains the cell ID to which the particle

with sorted index index2 belongs. If the x component of that entry, the cell ID, is not the

same as cellgridHash then something is wrong or the loop has run through all the particles

in the cell and has moved on to the next cell, in which case the function is left. The third

and final check is that the two particles are not the same particle, which is possible. This

CHAPTER 4. SPH ON A GPU 79

if (index2 != mySortedIndex)
{

// calculate acceleration and
// density change...

}

Figure 4.22: The statement to check that two particles are not the same

//find distance between two particles
xj = FETCH(d_sorted_x,index2);
hsmlj = FETCH(d_sorted_hsml,index2);
D = myX - xj;
r = sqrt(D.x*D.x + D.y*D.y);
mhsml = 0.5f*(myHsml + hsmlj);

//if interaction is occuring
if(r<2.0f*mhsml)
{

// calculate acceleration and
// density change...

}

Figure 4.23: Checking for interaction

is made with the statement in Figure 4.22, which checks that the sorted IDs are not the

same. If the particle being examined is not the same particle being managed by the thread

executing the code then a check is made to find if an interaction is occuring by the snippet

of source code shown in Figure 4.23, which simply finds the distance between the particle

centres. In the snippet in Figure 4.23, the positions and smoothing lengths of the particles

in the cell are brought from texture memory via a call to the function FETCH, which takes

the texture as the first parameter and the index of the particle as the second parameter. NB

the texture was not passed to the function in the parameter list. This FETCH function

is defined in a file definitions.cuh and is short hand for the CUDA function tex1Dfetch.

If there is an interaction then variable values are first brought from texture to register

variables, as shown in the snippet in Figure 4.24, to make the SPH computations more

efficient. NB this data is brought from memory by the FETCH function, which brings the

data first from global memory, and subsequent requests for that data from other threads

xj = FETCH(d_sorted_x,index2);
vj = FETCH(d_sorted_v,index2);
rhoj = FETCH(d_sorted_rho,index2);
pj = FETCH(d_sorted_p,index2);
massj = FETCH(d_sorted_mass,index2);
hsmlj = FETCH(d_sorted_hsml,index2);

Figure 4.24: Fetch texture values into registers for use in SPH calculations

CHAPTER 4. SPH ON A GPU 80

kerneldw(&xdwdx,&ydwdx,r,mhsml,D);

D = xj - myX;
V = vj - myV;
n = D/r;

Ci = sqrt(GAMMA*B*pow((myRho/RHO0),GAMMA-1)/RHO0);
Cj = sqrt(GAMMA*B*pow((rhoj/RHO0),GAMMA-1)/RHO0);
Cij = max(Ci,Cj);

//
// DENSITY
//
//Ferrari Riemann

(*mydrhodt)+= -massj*(V.x*xdwdx + V.y*ydwdx);
(*mydrhodt)+= massj*(n.x*xdwdx + n.y*ydwdx)*

Cij*(rhoj - myRho)/rhoj;

//
// MOMENTUM
//
//
// FI
//
K = myP/(myRho*myRho) + pj/(rhoj*rhoj);
K*= massj;

Kxdwdx = K*xdwdx;
Kydwdx = K*ydwdx;
*(mydvdtx)+= -Kxdwdx;
*(mydvdty)+= -Kydwdx;

//
// FV
//
A = MU*massj/(3.0f*myRho*rhoj);
C = (n.x*V.x + n.y*V.y)*

(n.x*xdwdx + n.y*ydwdx)/r;

(mydvdtx)+= A(7.0*V.x + 5.0*C*n.x);
(mydvdty)+= A(7.0*V.y + 5.0*C*n.y);

Figure 4.25: Calculate the acceleration and density change for the texture implementation

CHAPTER 4. SPH ON A GPU 81

// Save the result in global memory
volatile uint2 sortedData = particleHash[mySortedIndex];
uint myTrueIndex = sortedData.y;

mydvdt.x = mydvdtx;
mydvdt.y = mydvdty;

d_drhodt[myTrueIndex] = mydrhodt;
d_dvdt[myTrueIndex] = mydvdt;
d_dvdt[myTrueIndex].y+= -GRAVITY;

Figure 4.26: The coalesced write of accumulation of acceleration and density change to
global memory

are read from the cache. Then the SPH computations are made using these register vari-

ables. First the change of density is calculated, followed by the FI and FV components of

the acceleration are calculated, just as with the shared memory approach described above,

and is shown in Figure 4.25.

This is performed for all particles in the cell. The loop is terminated if it is found that

a particle’s gridHash, found in d particleHash[index2].x, does not equal cellgridHash.

When all neighbouring cells have been checked for particle interactions, the accumu-

lated acceleration mydvdt and accumulated density change mydrhodt are then written to

the d drhodt and d dvdt arrays respectively at index myTrueIndex. Note that the index

used here is myTrueIndex not mySortedIndex, because myTrueIndex is the particle’s true

original index before sorting and reordering and the data is being written to the original

arrays and not the sorted arrays. This value of myTrueIndex is in

d particleHash[mySortedIndex].y, which is shown in Figure 4.16. The code which per-

forms this operation is in Figure 4.26.

With the accumulated acceleration and density change in the original arrays, the same

integrations as for the shared memory approach can take place and are given in Figures

4.9 and 4.10 .

4.4 Performance of the two implementations

Both the texture and shared memory implementations described above were run for a

collapse of a water column 0.146 m x 0.292 m in a tank of 0.6 m x 0.6 m as described in

the experiment performed by Koshizuka & Oka[11] with three different resolutions. The

CHAPTER 4. SPH ON A GPU 82

X0 = 1.01f*DXL;
Y0 = DYL;
fac = 0.5f;
x = X0;
do
{

y = Y0;
do
{

//initialise particle
y+=DYL;

}while(y<HEIGHT);
x+= 0.5f*DXL;
fac = -fac;
Y0 = Y0 + fac*DYL;

}while(x<(LENGTH));

Figure 4.27: The set up of fluid particles

parameters, the particle spacings, DXL and DYL were 8 mm, 4 mm and 2 mm, giving a

total of 468, 2628 and 10440 fluid particles respectively. The execution times taken to

simulate 1 second of real time, including saving outputs for printing every 0.1 seconds,

with the number of iterations required to reach 1 second real time are given in minutes in

Table 4.3. The thread block size was 64. The particles were initially set up on a lattice as

shown by the code snippet in Figure 4.27. The reason why X0 is multiplied by 1.012 is

because for the smallest particle smoothing length when X0=DXL the simulation did not

work for the full 1 second, but did for the other two particle resolutions. This slight shift

produced simulations for the full 1 second for each of the three particle smoothing lengths,

except for the smallest for the shared memory approach. The codes producing these

results were executed on the NVIDIA S1070 cluster at UK STFC Daresbury Laboratory

using just one GPU per simulation.

A snapshot of the simulation at 0.9 seconds with 2628 fluid particles from the texture

memory approach is given in Figure 4.28, and a snapshot of the simulation at 0.9 sec-

onds with 2628 fluid particles from the shared memory approach is given in Figure 4.29.

Though the profiles look similar, they are slightly different and the particle densities are

different.

The results in Table 4.3 show that the texture memory method is faster than the shared

memory approach, and that this difference increases with problem size. But they also

show that a different number of iterations was required, implying different time steps.

So what could be happening? In an effort to resolve this problem the computation to

CHAPTER 4. SPH ON A GPU 83

Figure 4.28: The collapse at t=0.9 s from the texture memory method with 2628 fluid
particles

Figure 4.29: The collapse at t=0.9 s from the shared memory method with 2628 fluid
particles

CHAPTER 4. SPH ON A GPU 84

Method
Problem Spec Texture Shared

DXL (mm) Particles Time Iterations Time Iterations
8 648 0.39 14816 0.69 14813
4 2628 0.89 29695 2.73 29663
2 10440 3.18 59911 29.96 59830

Table 4.3: The execution times in minutes for Koshizuka & Oka simulation for 1 second
of real time for three different particle resolutions

rhocont = -massj*(V.x*xdwdx + V.y*ydwdx)
+ massj*(n.x*xdwdx + n.y*ydwdx)*Cij*(rhoj - myRho)/rhoj;

Figure 4.30: The computation of rate of change of density for each particle interaction

find the rate of change of density, as shown in Figure 4.30, was examined while the

program ran in emulation mode on the host, i.e. CPU. Emulation mode emulates the

GPU and allows the printf statement to print output to file from the kernel which is not

allowed for a kernel executing on the NVIDIA C1060. It was found that even though

the data in the registers was the same the outcome could be slightly different for the two

methods, as shown in Table 4.4. The contribution to the rate of change of density from

this particular interaction is different. Is this occuring on the GPU too? The difference

between the number of iterations is a small percentage of the total number of iterations,

and the visual results imply that the cause of the difference in the number of iterations

is not algorithmic. For example, it could be possible that the synchronisation points in

the shared memory method are in the wrong place, but this sort of error would produce

a much greater difference. And besides, the shared memory code was adapted from the

N body simulation code published by Nyland[59], while the texture method was adapted

from the CUDA SDK Particles method.

4.5 Verification

The accuracy of the results from these implementation can be verified by comparing them

with the results obtained by Koshizuka & Oka.

The collapse of the water column over 1 second is shown every 0.2 seconds from

Figure 4.31 through to Figure 4.36. The thread blocksize was 64. For comparison pho-

CHAPTER 4. SPH ON A GPU 85

Component Texture Shared
V.x -0.00000536 -0.00000536
V.y -0.00003271 -0.00003271
n.x 0.70710677 0.70710677
n.y -0.70710677 -0.70710677

xdwdx 6760297.50000000 6760297.50000000
ydwdx -6760297.50000000 -6760297.50000000

Ci 17.60555649 17.60555649
Cj 17.60929871 17.60929871
Cij 17.60929871 17.60929871

massj 0.01108247 0.01108247
myRho 1008.67572021 1008.67572021

rhoj 1008.74707031 1008.74707031
rhocont 129.91999817 129.91952515

Table 4.4: The components of a contribution to the rate of change of density

tographs taken by Koshizuka & Oka of the collapse are given in Figure 4.37[61]. For

the simulation giving these results, the initial particle spacings DXL=DYL=8 mm, and

X0=DXL, Y0=DYL for the fluid particle set up as given in Figure 4.27 giving a total

of 648 particles, the same number that Koshizuka & Oka reported using. The texture

memory method was used to produce the results.

The same particle resolutions as given in Table 4.3 were also used to measure the

column front and height as it collapsed. The column front is shown in Figure 4.38 and

compared with the experimental data obtained by Martin & Moyce[6]. The readings

from the simulation were taken every 0.01 seconds until 0.3 seconds of real time had

elapsed. There is no obvious convergence towards the experimental data with increasing

number of particles. There also appears to be a slightly increased acceleration of the front

at the beginning of the simulation which then follows approximately the same speed as

experimental data.

4.6 The Effect of Thread Block Size on Execution Time

The CUDA SDK comes with an occupancy calculator which acts as a guide to suggest

the optimum thread block size for a kernel. The information the calculator needs is ob-

tained by using the flag –ptxas-options=”-v” when compiling. When this flag is used the

following information is provided by the compiler

CHAPTER 4. SPH ON A GPU 86

Figure 4.31: The simulation of column collapse at t=0s

Figure 4.32: The simulation of column collapse at t=0.2s

CHAPTER 4. SPH ON A GPU 87

Figure 4.33: The simulation of column collapse at t=0.4s

Figure 4.34: The simulation of column collapse at t=0.6s

CHAPTER 4. SPH ON A GPU 88

Figure 4.35: The simulation of column collapse at t=0.8s

Figure 4.36: The simulation of column collapse at t=1.0s

CHAPTER 4. SPH ON A GPU 89

Figure 4.37: Photographs taken by Koshizuka & Oka of the collapse

CHAPTER 4. SPH ON A GPU 90

Figure 4.38: The location of the water column front in the simulation of column collapse

CHAPTER 4. SPH ON A GPU 91

ptxas info : Compiling entry function
’_Z15CalculateForcesP5uint2PjPfP6float2ff’
ptxas info : Used 37 registers, 56+52 bytes smem, 40 bytes cmem[1]

ptxas info : Compiling entry function
’_Z28reorderDataAndFindCellStartDP5uint2P6float2S2_PfS3_S3_S3_PiS2_S2_S3_S3_S3_S3_S4_Pj’
ptxas info : Used 9 registers, 1172+144 bytes smem, 8 bytes cmem[1]

ptxas info : Compiling entry function ’_Z9calcHashDP6float2P5uint2f’
ptxas info : Used 6 registers, 36+32 bytes smem, 16 bytes cmem[1]

ptxas info : Compiling entry function
’_Z16integratekernel2PfS_S_P6float2S1_S1_S1_S1_S_fS_S_S_Pi’
ptxas info : Used 10 registers, 128+120 bytes smem, 20 bytes cmem[1]

ptxas info : Compiling entry function
’_Z16integratekernel1PfS_P6float2S1_S1_S_fS_S_S_Pi’
ptxas info : Used 9 registers, 104+96 bytes smem, 20 bytes cmem[1]

ptxas info : Compiling entry function
’_Z10savekernelPfS_P6float2S1_S1_S1_f’
ptxas info : Used 5 registers, 68+64 bytes smem

Figure 4.39: The resources required for each kernel

• the number of registers required per thread

• the size of shared memory required per thread

• the size of constant memory required per thread

To show the effect of block size on this problem the flag to report register use etc.

by the compiler will be used to build the project, and the results from the CUDA occu-

pancy calculator shown. Then different block sizes will be used and their execution times

reported to show how block size can affect performance.

4.6.1 Occupancy

When the flag –ptxas-options=”-v” is used to compile the source code the compiler re-

ports how many registers and how much shared and constant memory is required for each

kernel. For this source code these are shown in Figure 4.39. From the output produced by

the compiler shown in Figure 4.39, the kernel CalculateForces, the largest of the kernels,

requires 37 registers, 108 bytes of shared memory and 40 bytes of constant memory. The

results of using the CUDA occupancy calculator with these values is shown in Figure

4.40.

The occupancy calculator is designed to give a clue to the optimal number of registers

and thread block size for each kernel. For example, it may be possible to reduce the

CHAPTER 4. SPH ON A GPU 92

Figure 4.40: The occupancy for the CalculateForces kernel with variable block size

CHAPTER 4. SPH ON A GPU 93

NUMTHREADS Execution Time (ms) ntotal numblocks
32 52451.42 3840 120
64 52408.82 3840 60
128 52522.25 3840 30
256 54561.86 3840 15

Table 4.5: The execution times for variable block size with 2628 fluid particles

number of registers in a kernel by splitting the kernel into more than one kernel, but this

can add overhead in kernel set up. For the CalculateForces kernel the occupancy is 38%.

This is calculated as

occupancy = 100 x ActiveWarps/MaxActiveWarps (4.12)

where ActiveWarps is calculated as 12 by the occupancy calculator using the threads per

block (defined by the user), and the registers per thread and the shared memory per block

produced from the ptxas at compile time. For the T10 the maximum number of active

warps MaxActiveWarps is 32. To illustrate the effect of thread block size on performance

the code described for the texture memory implementation for 4001 fluid particles was

used with thread block sizes of 32, 64, 128 and 256 threads per block. The timing results

from this are given in Table 4.5. In this simulation there are 2628 fluid particles. The

total number of particles, including padding particles, is given in the column ntotal, takes

the total number of particles in the simulation, fluid, boundary and padding, to an integer

multiple of the thread block size given in the column NUMTHREADS.

4.7 Conclusions

The particular SPH algorithm implemented in this chapter successfully simulates the ex-

periment of Koshizuka & Oka with a good degree of accuracy, even with just 648 fluid

particles.

The extra effort of implementing the texture memory approach is justified by the per-

formance results, with the texture memory approach being much faster than the shared

memory approach, and that gain in performance increases as the number of particle in-

creases.

CHAPTER 4. SPH ON A GPU 94

The slight difference in the results from the two implementations, using shared mem-

ory and texture memory, as shown in Figure 4.28 and Figure 4.29 could be due to the

compiler producing different sequences of instructions, or the order of execution of blocks

of threads decided by the block scheduler is different, or both. Both of these could lead

to the sequence of instructions and their associated data being processed in a different

order from each other, and machine precision propagating any rounding or truncation er-

rors during the computation of the expressions would more than likely produce sightly

different outcomes, as observed.

The thread block size can have a significant effect on performance, and help on calcu-

lating the optimum size can be found from the CUDA occupancy calculator which sug-

gests the optimal block size for a particular kernel when the user inputs data, such as the

number of registers, which are produced by the compiler when the –ptxas-options=”-v”

flag is used in the compile command.

Chapter 5

Riemann Solvers in SPH

One of the main disadvantages of WCSPH can be the distinct fluctuations in the pressure

field. The general flow may be satisfactorily described by the solution but the pressure

field could be significantly smoothed and improved. One idea that has been suggested

to smooth the pressure field is the use of density filters which reset the density after a

fixed number of time steps, but this is computationally expensive. The reputation of

Riemann solvers in Finite Volume applications led to the SPH community investigating

the potential of using Riemann solvers in SPH.

There is still some debate about the use of Riemann solvers in SPH. Research into

Riemann solvers in SPH has shown that solutions can be significantly improved and very

accurate, but most if not all of this research has been based on using SPH for gases without

the use of boundaries.

Ferrari et al.[42] looked at using one formulation of a SPH algorithm using one Rie-

mann solver in a simple test looking at a drop of water and concluded that Riemann

solvers are too diffusive, even when using an exact Riemann solver. Antuono et al.[62]

came to the same conclusion. However this conclusion is based on only one SPH algo-

rithm using just one Riemann solver in one simple test case involving water. There are a

number of formulations of SPH using Riemann solvers, and a number of Riemann solvers,

approximate and exact, combinations of which have yet to be investigated, in violent and

non-violent simulations, and involving the use of boundaries.

On the other side of the debate Rogers et al.[63] praise the SPH formulation of

Vila[64] with the HLLC ARS[65] concluding that water waves can be more accurately

95

CHAPTER 5. RIEMANN SOLVERS IN SPH 96

simulated over a distance due to the accuracy provided by the HLLC ARS. Roubtsova &

Kahawita[66] applied the ARS proposed by Parshikov et al.[30] to a sloshing problem, a

dam break problem and a simulation of The Vaiont Disaster and concluded that the tech-

nique is easy to implement and gives satisfactory results. However Omidvar et al.[67]

report on the sensitivity of MUSCL-based β-limiters for wave generation in a numerical

wave tank.

The success of Riemann solvers in Finite Volume applications should not be quickly

dismissed. The use of a Riemann solver eliminates the need for a viscous term in the SPH

equations, and Riemann solvers require little or no tuning. A disadvantage of Riemann

solvers is their complexity and potential for requiring massive computation, but with the

GPU now offering the potential for low cost high performance computing a thorough

investigation of Riemann solvers, both approximate and exact, in SPH for hydrodynamic

applications involving boundaries is now available.

This chapter looks at the use and success or otherwise of ARS in SPH.

5.1 SPH Algorithms using Approximate Riemann Solvers

There have been several attempts at implementing SPH with an approximate Riemann

solver (ARS).

Monaghan [68] does not explicitly use a Riemann solver but assumes that the artificial

viscosity term Πab introduced in Chapter 2 on SPH can be approximated with a signal

velocity vsig(a, b) between two interacting particles, such that the artificial viscosity

Πab = −
Kvsig(a, b)vab · j

ρab
(5.1)

where

vsig(a, b) = (c2
a + β(vab · j)

2)
1/2

+ (c2
b + β(vab · j)

2)
1/2 − vab · j (5.2)

in which ck is the speed of sound for particle k, vab = va − vb where vk is the velocity of

particle k, and β is a parameter that needs tuning for each simulation.

CHAPTER 5. RIEMANN SOLVERS IN SPH 97

There are a number of sets of governing equations in Smoothed Particle Hydrody-

namics. One particular set of SPH equations was used and extended by Parshikov et

al.[69][30][70] by solving a Riemann problem at the contact point between two particles

to give the following approximate Riemann solution

U∗Rij =
UR
j ρjCj + UR

i ρiCi − Pj + Pi

ρjCj + ρiCi
(5.3)

P ∗ij =
PjρiCi + PiρjCj − ρjCjρiCi

(
UR
j − UR

i

)
ρjCj + ρiCi

(5.4)

These approximate solutions are then substituted into the governing SPH equations.

Vila[64] derives a set of SPH equations that describe the Euler equations with an

intrinsic viscosity, and are accepted by particular sections of the SPH community as being

accurate. In their study of a Caisson breakwater Rogers et al.[63], who make up part of the

SPHysics group, express their preference for this algorithm in their examination of using

the Vila formulation of SPH for that study. The implementation of this algorithm on a

single GPU using the HLLC solver is discussed and compared with the SPH algorithm

proposed by Ferrari et al. and another but simpler SPH formulation later in this chapter.

The derivation of the Vila SPH equations is too long and complex for this thesis, but

because this algorithm is examined later in this chapter to show how Riemann solvers can

reduce dissipation, the SPH formulation of Vila is

dxi
dt

= v(xi, t) (5.5)

dωi
dt

= ωi∇ · vi (5.6)

dωiρi
dt

= −ωi
∑
j∈Ω

2ωjρ
∗(v∗ij − v0(xij, t)) · ∇iWij (5.7)

dωiρivi
dt

= ωifi − ωi
∑
j∈Ω

2ωj[P
∗ + ρ∗v∗ij ⊗ (v∗ij − v0(xij, t))]∇iWij (5.8)

where the superscript ∗ denotes the solution from the Riemann problem between the inter-

acting particles, and the superscript 0 denotes the mean of the velocities of the interacting

particles.

CHAPTER 5. RIEMANN SOLVERS IN SPH 98

Similar to Vila, Inutsuka[71] derives his own version of the SPH equations which

employ the solution to the Riemann problem between each pair of interacting particles,

suggesting that the Riemann solution should be found from using either the Riemann

solver of either Colella & Woodward[72], or that of van Leer[73].

Cha & Whitworth[74] take a similar but slightly different approach to Parshikov in

inserting a Riemann solution into the SPH equations, and call their algorithm Godunov-

type Particle Hydrodynamics (GPH). They examine four different sets of GPH equations

and use the iterative Riemann solver of van Leer[73] on shock tube and blast wave tests

and achieve very good agreement with the analytic solutions.

Molteni & Bilello[75] use the work of Parshikov to compute terms in the Euler equa-

tions in a complex and computationally expensive method.

All show very good agreement with exact solutions to well known shock tube prob-

lems involving gases without boundaries.

But this thesis looks at problems involving water and boundaries. So how does the

use of a Riemann solver in SPH behave when simulating water and boundaries?

5.2 Dissipation in SPH with Riemann Solver

As mentioned above the Ferrari group[42] with support from Antuono[62] argue that

Riemann solvers are too dissipative, while Rogers et al.[63] supported by Roubtsova &

Kahawita[66] are in favour of Riemann solvers in SPH for simulating water. This section

will examine the performance of a Riemann-based SPH algorithm.

The Vila[64] algorithm using the HLLC ARS has been coded in Fortran for a single

CPU and released as open source software by the SPHysics group[20], which this author

has translated into CUDA for this work and amended by implementing the Lennard-Jones

type boundary conditions of Monaghan[33] and those proposed by Dalrymple & Knio

[38]. The Vila SPH algorithm with HLLC ARS was then used to simulate the Martin

& Moyce experiment[6] with the three boundary conditions of Monaghan & Kos[34],

Monaghan Lennard-Jones[33] and Dalrymple & Knio[38]. This is to test

• how does the Vila SPH algorithm with the HLLC ARS behave in this experiment?

CHAPTER 5. RIEMANN SOLVERS IN SPH 99

• do the boundary conditions used have any significant influence?

The experiment run by Koshizuka & Oka[11] is quite a violent test but with an initial gen-

tle collapse so it should test the algorithm under both violent and non-violent conditions

simultaneously and possibly help to resolve the question surrounding the use of Riemann

solvers in SPH for hydrodynamics with boundaries. For each test a fluid particle with

constant smoothing length 6 mm was used. A constant distance DXL and DYL of 4.6875

mm was used to set up the initial particle configuration, with fluid particles arranged on a

lattice a distance d0 apart, where

d0 =
√

(DXL2 +DY L2) (5.9)

For the HLLC Riemann solver the β limiter is used with β = 0.5.

Boundary particles are spaced a distance bd0 = bpf x DXL apart.

For each variant of the algorithm below the parameters X0 and Y0 are given. These

two parameters specify the initial position (X0,Y0) of the fluid particles. The fluid particles

are set up as shown in the code snippet in Figure 4.27. Also given are the CFL number

and bpf. For the Lennard Jones boundary treatment the parameter R0 is also given. This

is the radius of the boundary particle inside which it begins to exert a repulsive force on a

fluid particle.

For each simulation the front and height of the column were recorded every 0.01

seconds for the first three tenths of a second of the collapse. The front locations are shown

in Figure 5.1, and the heights of the columns are shown in Figure 5.2. Experimental data

from Martin & Moyce[6] are also shown for comparison.

5.2.1 Monaghan & Kos Boundary Treatment

The initial conditions for this simulation were that

• bpf =0.5

• X0=3.5DXL, Y0=3.4DYL

• CFL=0.025

CHAPTER 5. RIEMANN SOLVERS IN SPH 100

Figure 5.1: The front of the column for the Vila SPH algorithm with different boundary
treatments

CHAPTER 5. RIEMANN SOLVERS IN SPH 101

Figure 5.2: The height of the column for the Vila SPH algorithm with different boundary
treatments

CHAPTER 5. RIEMANN SOLVERS IN SPH 102

Snapshots of the collapse at 0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s and 1 s in Figures 5.3, 5.4, 5.5, 5.6,

5.7 and 5.8 indicate that there is no fragmentation or spray, unlike that provided by the

Ferrari algorithm examined in the previous chapter and shown in the photographs taken

by Koshizuka & Oka[11].

Figure 5.3: Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos boundary

treatment at 0 s

Figure 5.4: Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos boundary

treatment at 0.2 s

CHAPTER 5. RIEMANN SOLVERS IN SPH 103

Figure 5.5: Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos boundary

treatment at 0.4 s

Figure 5.6: Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos boundary

treatment at 0.6 s

CHAPTER 5. RIEMANN SOLVERS IN SPH 104

Figure 5.7: Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos boundary

treatment at 0.8 s

Figure 5.8: Snapshot of collapse of Vila SPH algorithm with Monaghan & Kos boundary

treatment at 1 s

5.2.2 Monaghan Lennard-Jones Boundary Treatment

The initial conditions for this simulation were that

• bpf =0.65

• R0=1.5 DXL

CHAPTER 5. RIEMANN SOLVERS IN SPH 105

• X0=1.1R0, Y0=R0

• CFL=0.025

Snapshots of the collapse at 0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s and 1 s in Figures 5.9, 5.10,

5.11, 5.12, 5.13 and 5.14 indicate that, as with the boundary treatment of Monaghan

& Kos, there is no fragmentation of the fluid and no spray which is provided by the

Ferrari algorithm examined in the previous chapter and shown in the photographs taken

by Koshizuka & Oka[11].

Figure 5.9: Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0 s

CHAPTER 5. RIEMANN SOLVERS IN SPH 106

Figure 5.10: Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.2 s

Figure 5.11: Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.4 s

CHAPTER 5. RIEMANN SOLVERS IN SPH 107

Figure 5.12: Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.6 s

Figure 5.13: Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 0.8 s

CHAPTER 5. RIEMANN SOLVERS IN SPH 108

Figure 5.14: Snapshot of collapse of Vila SPH algorithm with Lennard Jones boundary

treatment at 1 s

5.2.3 Dalrymple & Knio Boundary Treatment

The initial conditions for this simulation were that

• bpf =0.65

• R0=1.5 DXL

• X0=1.1R0, Y0=R0

• CFL=0.025

Snapshots of the collapse at t=0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s and 1 s in Figures 5.15, 5.16,

5.17, 5.18, 5.19 and 5.20 indicate that not only is there no fragmentation or spray with this

boundary treatment, but the initial collapse also appears more viscous, which is supported

by the results of the front and height of the column as it collapses.

CHAPTER 5. RIEMANN SOLVERS IN SPH 109

Figure 5.15: Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio bound-

ary treatment at 0 s

Figure 5.16: Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio bound-

ary treatment at 0.2 s

CHAPTER 5. RIEMANN SOLVERS IN SPH 110

Figure 5.17: Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio bound-

ary treatment at 0.4 s

Figure 5.18: Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio bound-

ary treatment at 0.6 s

CHAPTER 5. RIEMANN SOLVERS IN SPH 111

Figure 5.19: Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio bound-

ary treatment at 0.8 s

Figure 5.20: Snapshot of collapse of Vila SPH algorithm with Dalrymple & Knio bound-

ary treatment at 1 s

5.3 A Solitary Wave

A solitary wave can be set up as the solution to the Boussinesq equations[43] which should

travel with constant speed and height. The wave has amplitude A, and elevation η above

CHAPTER 5. RIEMANN SOLVERS IN SPH 112

a constant depth D, where

η = A sech2

[√
3A

4D3
(x− ct)

]
(5.10)

and the wave celerity c is given by

c =
√
g(D + A) (5.11)

The particles initially have zero vertical velocity, and their horizontal velocity u is given

by

u = η
√
g/D (5.12)

A solitary wave with a constant depth D=0.21 m and amplitude A=0.088 m was set

up in a tank of length 10 m with the crest at x=0 m, the tank running from x=-2 m to x=8

m. The particles were initially placed on a regular grid and were 0.01 m apart. Two SPH

algorithms were used to simulate this solitary wave as it travelled down the tank. The first

was the Vila SPH algorithm with the Monaghan & Kos boundary treatment and β=0.5 for

the limiter. The second was the Ferrari SPH algorithm including the boundary treatment

that the Ferrari group proposed. For both algorithms the CFL number was 0.1.

The result of simulating this solitary wave using the Vila SPH algorithm at 0 s, 1 s and

4 s are shown in Figure 5.21, Figure 5.22 and Figure 5.23 respectively.

CHAPTER 5. RIEMANN SOLVERS IN SPH 113

Figure 5.21: The solitary wave at 0 s with the Vila SPH algorithm

Figure 5.22: The solitary wave at 1 s with the Vila SPH algorithm

CHAPTER 5. RIEMANN SOLVERS IN SPH 114

Figure 5.23: The solitary wave at 4 s with the Vila SPH algorithm

The result of simulating this solitary wave with the Ferrari SPH algorithm at 0 s, 1 s

and 4 s are shown in Figure 5.24, Figure 5.25 and Figure 5.26 respectively.

Figure 5.24: The solitary wave at 0 s with the Ferrari SPH algorithm

CHAPTER 5. RIEMANN SOLVERS IN SPH 115

Figure 5.25: The solitary wave at 1 s with the Ferrari SPH algorithm

Figure 5.26: The solitary wave at 4 s with the Ferrari SPH algorithm

In both figures the blue line indicates where the solitary wave should be.

Table 5.1 shows the number of fluid particles involved, the execution times to simulate

4 seconds of real time, including times to write output every 1 second of real time, the

difference between where the wave crest should be and where the particle with the largest

height is, and the loss of height from an initial maximum height of 0.295 m.

CHAPTER 5. RIEMANN SOLVERS IN SPH 116

Algorithm Fluid Particles Time (mins) Crest Height Loss (m)

Vila 21648 8.00 0.09 0.04

Ferrari 21648 18.43 -0.38 0.01

Table 5.1: The execution times for the Vila and Ferrari algorithms to simulate 4 s of a

solitary wave

The results in Table 5.1 indicate that the Ferrari algorithm preserves the wave height

more than the Vila algorithm does, but that the highest particle is some distance behind

where it should be theoretically, and this is obvious as shown in Figure 5.26. On the

other hand the Vila algorithm although losing more height than with the Ferrari algorithm

appears to have accelerated the wave because the highest particle is in front of where the

crest should theoretically be, in this case 9 cm ahead, while the Ferrari algorithm gives

a crest 38 cm behind where the crest should be. But because the wave from the Vila

algorithm has lost more height the wave is flatter, so the fact that the highest particle in

this case is in front of the wave could be an anomaly due to the particle nature of SPH.

Figure 5.23 shows that the wave is where it should be but has lost more height than with

the Ferrari algorithm.

5.4 Conclusions

For the Koshizuka & Oka experiment the Vila SPH algorithm with HLLC ARS does

appear to be too dissipative despite the satisfactory results for the front and height of the

column with Monaghan & Kos and Monaghan Lennard-Jones boundary treatments during

the initial collapse phase. These results do tend to confirm the statements of Ferrari et al.

and Antuono et al. that Riemann solvers in SPH can provide more accuracy but can also

be too dissipative in violent simulations. This may be resolved with the use of a different

equation of state and a different approximate Riemann solver to the HLLC used here, or

an exact Riemann solver.

The boundary conditions are also of great importance. The boundary treatment of

Dalrymple & Knio appears to add viscosity when used with the Vila SPH algorithm. The

CHAPTER 5. RIEMANN SOLVERS IN SPH 117

idea of the Dalrymple & Knio boundary treatment is to consider the boundary particles

as water particles that obey the SPH equations being used, so that the pressure exerted

by the boundary particles is dynamic. But the use of the other two boundary treatments,

the Monaghan & Kos and Monaghan Lennard-Jones treatments, shows that in violent

conditions the algorithm has too much intrinsic viscosity. With the Dalrymple & Knio

boundary treatment, in which the boundary particles are treated as water particles, this in-

trinsic viscosity is also present at the boundary, which may be contributing to the apparent

excessive viscosity of the water during the initial collapse phase of the simulation.

The simulation of the solitary wave with the Vila algorithm and the Ferrari algorithm

indicate that these algorithms are not that good at solitary wave generation, even with a

Riemann solver, and may need considerably more particles.

Chapter 6

Boundary Treatment

The treatment of boundaries in SPH continues to be a problem, despite the number of

approaches to model the boundary that have been suggested. Some boundary treatments

were briefly discussed in Chapter 2, the introduction to SPH. This chapter will examine

these boundary treatments in more detail, and then propose a new boundary treatment that

when implemented on the GPU significantly accelerates computation.

6.1 Known Boundary Treatments

As briefly discussed in Chapter 2, there is a wealth of boundary treatments available in

SPH, some of which will now be covered in some detail to help explain the new boundary

treatment proposed in this chapter.

1. On-Boundary Particles

2. Ghost Particles

3. Mixed, or Hybrid, Boundary Particles

6.1.1 On-Boundary Particles

On-boundary particles exist on the boundary and reside in computer memory for the du-

ration of the simulation.

The classic example is that proposed by Monaghan[33] which models the boundary

with a set of particles on the surface of the boundary only which exert a repulsive force

118

CHAPTER 6. BOUNDARY TREATMENT 119

Figure 6.1: The On-Boundary Treatment of Monaghan

dependent on the distance between a fluid particle and a boundary particle. This is shown

in Figure 6.1 in which on-boundary particles exert a repulsive force f on fluid particle Fa

if the distance between particle centres r is less than a user-specified distance R, in which

case the repulsive force f on fluid particle Fa takes the form

f = D
[(R

r

)P1

−
(R
r

)P2] r
r2

(6.1)

Another example of this type of boundary particle is that proposed by Dalrymple &

Knio[38] and is shown in Figure 6.2. These boundary particles differ from those proposed

by Monaghan in two ways.

• a second layer of particles reinforces the particles on the boundary surface and these

are placed in a staggered grid structure

• these particles are treated as fluid particles, interacting with fluid particles in their

influence domain, with a density and pressure which evolve as fluid particles, i.e.

the SPH continuity equation is applied to them and integrated as if they were fluid

particles, but the momentum equation is not, so the only velocity these boundary

CHAPTER 6. BOUNDARY TREATMENT 120

Figure 6.2: The On-Boundary Treatment of Dalrymple & Knio

particles have is that of the boundary they are representing, e.g. a piston

This idea was extended by Violeau & Issa[44] who use four layers of such particles which

are aligned in a regular lattice structure.

6.1.2 Ghost Particles

Ghost particles do not either exist on the boundary or reside in computer memory for the

full duration of a simulation, but are created whenever they are required. Their properties

usually depend on the fluid particles and the method of generation being used. There are

several proposals as to what properties the ghost particles have, and when they should be

created.

6.1.3 Mixed or Hybrid Boundary Particles

A suggestion has been made by Liu & Liu to mix the two above models, with one set

of on-boundary particles on the surface of the boundary only, with ghost particles to

reinforce the on-boundary particles, and they report much less penetration of the boundary

by fluid particles.

CHAPTER 6. BOUNDARY TREATMENT 121

Figure 6.3: The Hybrid Boundary Treatment of Lo & Shao

Lo & Shao[43] implemented a hybrid boundary method. They placed fixed particles

on the wall which were spaced according to the initial fluid particle spacing, and the

Poisson equation is solved on these particles. But to prevent particle penetration they also

create a ghost particle if there is an interaction between two fluid particles if both are

close to the boundary. This hybrid treatment is shown in Figure 6.3, in which for two

fluid particles Fa and Fb

1. the position of the ghost particle Gb is a direct reflection of the fluid particle Fb

across the boundary

2. the velocity of Gb is the opposite of the fluid particle Fb, i.e. vGb = −vFb

3. the pressure of Gb equals the pressure Fb

6.2 The SPH Algorithm

The new boundary treatment is a proposal to improve the SPH algorithm as proposed

by Ferrari et al.[42] when it is implemented on GPUs. The Ferrari group themselves

proposed a new ghost particle method to model the boundary. This algorithm has also

CHAPTER 6. BOUNDARY TREATMENT 122

Figure 6.4: The initial set up of the water collapse

been implemented on a CPU cluster by Cherfils et al.[76] but with a boundary treatment

based on the Immersed Boundary Method of Su et al.[77] which is significantly different

to the boundary treatment proposed by the Ferrari group.

The Ferrari SPH algorithm used for the work in this chapter is the same as that of

Ferrari et al., with the governing equations given by Equations (4.1) - (4.10), which are

integrated using the RK3 TVD integration scheme Equations (2.84) - (2.87) and the time

step calculated by Equations (2.88) - (2.89). The particle is modeled by the Wendland

Quintic smoothing function (4.11).

The problem simulated is that reported by Zhou et al.[78] and shown in Figure 6.4. A

block of water of dimensions 1.2 m x 0.6 m x 0.6 m is allowed to collapse in a tank with

dimensions 3.2 m x 1.2 m x 0.6 m.

The fluid particles were set up as follows. Particle spacings DXL, DYL and DZL

along the Cartesian axes were all 0.012 m and the particles were initially aligned in a

lattice structure so that particles were initially a distance

dr =
1

2

√
(DXL2 +DY L2 +DZL2) (6.2)

with the particles closest to the boundary a distance 0.006 m from the boundary. This

gave a total number of approximately 477k fluid particles. The initial smoothing length

CHAPTER 6. BOUNDARY TREATMENT 123

was 0.02 m.

Unfortunately the positioning of the boundary particles is not described in either Fer-

rari paper so an element of intuition has been applied to build a boundary strong enough

to prevent penetration by the fluid particles. During the experimentation in creating a

suitable boundary it was found that some boundaries required more boundary particles

than others, in particular the floor required much more particles than most of the side

walls. It was also found that a large number of boundary particles was required when

compared to the number of fluid particles. This becomes a problem for the performance

of the simulation on a GPU if the data for those many boundary particles is stored in

the slow GPU global memory, and although the Ferrari algorithm does indeed use ghost

particles those ghost particles are generated not just from the fluid particle but also from

data for on-boundary particles which is usually stored in memory. To accelerate the com-

putation/simulation the data for the on-boundary particles should preferably reside in the

on-chip memory, in registers. There are at least two methods to implement this.

The first method is to generate the boundary particle positions as they would be if they

were being stored in global memory from the known position of the fluid particle. For

example, if the boundary particles were simply generated on the boundary with particle

spacing dx from the origin and the fluid particle had position (x,y) then the boundary

particle positions, at least, could be generated in the registers. However, if at least one

property of the boundary particles evolves with time, such as pressure, then this will

have to be stored in the global memory and recalled from there. The ideal situation is

if the properties of the boundary particles depend only on the fluid particles at the time

of computation. This method computes a boundary that would behave exactly as if the

particles were recalled from global or texture memory but would be computed faster.

The second method is to generate a unique private grid of boundary particles for each

fluid particle. In this case a fluid particle close to the boundary creates its own unique

private grid of boundary particles so that the grid for one fluid particle is different to that

of all the other particles.

This second method will now be implemented to measure its effect not only on the

performance but also on the physical flow of the fluid which is being simulated.

CHAPTER 6. BOUNDARY TREATMENT 124

Figure 6.5: Boundary particles on a regular grid structure

6.3 A New Boundary Treatment

As stated above the description of the locations of the boundary particles is not specified

in either Ferrari paper, but some success was found with the following arrangement of

boundary particles.

The simulation is of a static column of water in a tank collapsing under gravity. The

water is initially in the left of the tank and will collapse to flow towards and be reflected

off the right hand wall. The near and far walls contain the water in the tank from spilling

out of the side of the tank. For the left, near and far walls the boundary particles are

placed on horizontal lines on a regular grid, as shown in Figure 6.5, a distance DY = sf

x DY L apart in the y direction and DX = sf x DXL or DZ = sf x DZL apart in

the x or z direction, where sf is the space factor and is equal to 0.25. In addition, on the

near and far walls for x> 2.4 extra boundary particles were placed on the boundary so the

boundary particles formed a lattice structure, as shown in Figure 6.6.

All the particles on the right wall were placed in a lattice structure with DY = 0.5 x

sf x DY L and DZ = 0.5 x sf x DZL

The particles for the floor were also all in a lattice but sf = 0.125, i.e. half that for

the other boundaries. This is due to the pressure applied to the floor from the mass of the

water.

There is evidence that this is possibly not the same arrangement as used by the Ferrari

CHAPTER 6. BOUNDARY TREATMENT 125

Figure 6.6: Boundary particles on a lattice structure

group because in the second paper that has been published based on this algorithm the

CFL number used is quoted as 0.9, while the author with this particular arrangement of

boundary particles found that a CFL number > 0.2 gave penetration of the boundary.

Ferrari et al. do not comment on particle penetration of the boundary in either paper.

The proposed new boundary treatment is shown in Figure 6.7. Instead of using static

boundary particles, a private and unique grid of boundary particles is created for each

fluid particle i whose perpendicular distance from the boundary is less than the smoothing

length of that particle. The centre of this grid depends on the fluid particle itself. The size

of this private grid is 2hi x 2hi, where hi is the variable smoothing length of fluid particle

i close to the boundary, and the grid consists of 81 particles with a regular structure. As

with the Ferrari boundary treatment the fluid particle does not interact with the boundary

particles in this grid but does interact with ghost particles that are created by local point

symmetry.

The result of running the amended Ferrari algorithm as described above on one

NVIDIA S1070, i.e. 4 GPUs, at times 0 s, 0.6 s, 1.2 s, 1.5 s and 2.0s, with the new

boundary treatment just discussed are shown in Figure 6.8, Figure 6.9, Figure 6.10, Figure

6.11 and Figure 6.12 respectively. Execution times are provided in Table 6.3 and show

an approximate 5x speed up, despite the large number of boundary particles in the fluid

particle’s private grid with the new boundary treatment. Figure 6.12 shows the water at

CHAPTER 6. BOUNDARY TREATMENT 126

Figure 6.7: (a) shows the private boundary cell created for fluid particle i at position
(X,Y,Z), and (b) shows how the ghost particles are created by local point symmetry for
each fictitious boundary particle in the cell created in (a).

2.0 s with the proposed new boundary treatment. Note there is no particle penetration of

the boundaries. Discussion of how this algorithm can be implemented on multiple GPUs

is left for Chapter 7.

Zhou et al.[78] recorded the height of the water at four locations, but the Ferrari group

compare the heights from their simulation at just two locations, which are shown as probe

A at x=2.228 m and probe B at x=2.725 m in Figure 6.4. These are shown in Figure 6.13

and Figure 6.14. The heights of the water at these locations show quite good agreement,

but there appears to be an over prediction of the height after the water has been reflected.

This may be due to the particle nature of SPH and the method of deciding where the main

body of water is. In grid based methods it is relatively straightforward to place a node of

the grid at a specific location, for example where a probe in an experiment was located,

and calculate properties, such as water height, at that node. In particle based methods this

is not that straightforward, particularly when the water fragments and creates spray, as

occurs with the Ferrari SPH method. The questions then become

1. does a specific particle belong to the main body of water or is it spray?

2. and if a particle is spray then should it be included in the estimation of water height?

To highlight this problem, Figure 6.15 shows a portion of the water around where the

CHAPTER 6. BOUNDARY TREATMENT 127

Figure 6.8: Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 0 s with new
boundary treatment

Figure 6.9: Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 0.6 s with new
boundary treatment

CHAPTER 6. BOUNDARY TREATMENT 128

Figure 6.10: Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 1.2 s with
new boundary treatment

Figure 6.11: Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 1.5 s with
new boundary treatment

CHAPTER 6. BOUNDARY TREATMENT 129

Figure 6.12: Snapshot of a 3D dambreak using the Ferrari SPH algorithm at 2.0 s with
new boundary treatment

Real Time (s) Original BC (mins) New BC (mins)
0 0.00 0.00
0.1 42.83 8.01
0.2 87.53 16.48
0.3 136.09 26.19
0.4 189.57 36.99
0.5 248.26 48.79
0.6 315.04 61.57
0.7 398.08 76.43
0.8 476.33 90.55
0.9 557.02 104.86
1 640.10 119.54
1.1 725.98 134.58
1.2 813.51 150.05
1.3 903.29 165.95
1.4 994.08 182.19
1.5 1091.56 199.60
1.6 - 218.27
1.7 - 237.83
1.8 - 256.92
1.9 - 275.97
2 - 295.84

Table 6.1: The simulation times to reach the given real times

CHAPTER 6. BOUNDARY TREATMENT 130

Figure 6.13: The height of water at probe A

CHAPTER 6. BOUNDARY TREATMENT 131

Figure 6.14: The height of water at probe B

CHAPTER 6. BOUNDARY TREATMENT 132

Figure 6.15: The height of water at probe B

probe A should be at x=2.228 m. So which particles make up the main body of water,

and which are spray? The method used in this chapter to determine which was which

was to assume that all particles belonged to the main body of water, except those which

were obviously spray and were over 20 cm away from what appears to be the main body

of water. Using this assumption probably leads to particles that are probably spray being

considered as belonging to the main body of water, which leads to the over prediction of

the height of the water at the probe after the water has been reflected. Before the water

is reflected the height of the water predicted by the simulation using the new boundary

treatment is in good agreement with experimental results so the new boundary treatment

can be considered as valid.

The result of using this new boundary treatment is that

1. execution time is significantly decreased, with an approximate 5x speed up,

2. there is no penetration of the boundaries with the new boundary treatment,

3. results from simulations give good agreement with experimental results.

CHAPTER 6. BOUNDARY TREATMENT 133

6.4 A Solitary Wave

A solitary wave with the same profile and dimensions as given in Chapter 5 was set up to

examine how the new boundary treatment as proposed in this chapter would perform. The

results of the simulation at 0 s, 1 s and 4 s of real time are given in Figure 6.16, Figure

6.17 and Figure 6.18 respectively. The solid blue line indicates where the wave should

be. The new boundary treatment appears to preserve the solitary wave more than with the

original Ferrari boundary treatment, but the wave has still lost horizontal speed.

Figure 6.16: The solitary wave at 0 s with the Ferrari SPH algorithm and new boundary

treatment

CHAPTER 6. BOUNDARY TREATMENT 134

Figure 6.17: The solitary wave at 1 s with the Ferrari SPH algorithm and new boundary

treatment

Figure 6.18: The solitary wave at 4 s with the Ferrari SPH algorithm and new boundary

treatment

Table 6.2 reflects Table 5.1 given in Chapter 5 and contains the same data but with

extra provided by the solitary wave simulation described in this section. The new bound-

ary treatment improves the performance of the Ferrari algorithm in execution time, wave

height and crest location. However the location of the crest is still disappointing when

compared to that obtained from the Vila algorithm.

CHAPTER 6. BOUNDARY TREATMENT 135

Algorithm Fluid Particles Time (mins) Crest Height Loss (m)

Vila 21648 8.00 0.09 0.038

Ferrari 21648 18.43 -0.38 0.015

New BC 21648 8.25 -0.25 0.011

Table 6.2: The execution times for the Vila and Ferrari algorithms to simulate 4 s of a

solitary wave

6.5 Conclusion

This chapter has shown that the way the boundary is handled in the computer code itself

may need to be amended for execution of a SPH simulation on a GPU so that boundary

treatments that use significant numbers of static boundary particles, such as in the Ferrari

algorithm above, or as used by Violeau & Issa[44], can achieve better performance and

utilise the speed of the GPU. The speed up from the boundary treatment proposed in this

chapter comes from two sources; the generation of boundary data in the registers, and a

larger CFL number that does not give particle penetration of the boundaries.

The new boundary treatment proposed in this chapter helps to preserve a solitary wave

simulated with the Ferrari SPH algorithm better than when the Ferrari boundary treatment

is used, but the wave crest is still significantly behind its theoretical position.

Chapter 7

SPH on Multiple GPUs

The NVIDIA S1070 consists of four NVIDIA C1060 processors which can be

programmed to run concurrently on the same problem with Message Passing Interface,

also known as MPI. The physical structure of the S1070 makes it a distributed memory

network, for which MPI is more suited. It is possible to use Open Multi-Processing, or

OpenMP, but this is more suitable for multi-processor shared memory computers.

To this author’s knowledge only one study of SPH on multiple GPUs for water flow

has been made. In that study Valdez-Balderas et al.[79] partition the physical space into

volume domains and assign a particular domain to a particular GPU which then manages

all the particles in that domain, i.e. finds all interactions for those particles and integrates

rates of change of density, velocity etc. At the end of each time step each GPU calculates

which of the particles it is currently managing need to be transferred to another GPU due

to the new positions of the particles, and which particles it is currently managing lie at its

domain edge and could thus interact with particles in neighbouring domains. The GPUs

managing the neighbouring domains are then informed of these particles. This algorithm

was implemented on a cluster comprising the latest NVIDIA GPU S2050 which features

the Fermi architecture, and inter GPU communication was facilitated with MPI.

This chapter will describe how the SPH algorithm as proposed by Ferrari and as mod-

ified in the previous chapter with a new boundary treatment can be implemented on a

cluster of NVIDIA S1070s using a different strategy to that proposed by Valdez-Balderas

et al.[79].

136

CHAPTER 7. SPH ON MULTIPLE GPUS 137

7.1 Message Passing Interface

The Message Passing Interface (MPI) permits the communication of data across a dis-

tributed network, which is essentially what a NVIDIA S1070 is, and thus a cluster of

NVIDIA S1070s are, with each device having its own private device global memory of

size 4 GB. A MPI program creates a set of N processes of rank 0,..,N-1. Each process

usually contains the same variables of the same size, but is usually responsible for man-

aging only a portion of those variables. For example, process p will be responsible for

indices pW to (p+1)W-1 of an array when each process is responsible for W items. NB

each process has an instance of that array of size nW, where n is the number of processes,

and not just one smaller array of size W. This is expensive in memory but communica-

tion between the processes allows the processes to act independently and process their

portions of data until a synchronisation point is reached in the program at which the pro-

cesses can easily refer portions of each others arrays, as will be shown with the MPI

function MPI Allgather. Figure 7.1 shows a MPI program running 4 processes on a sin-

gle NVIDIA S1070. The system consists of a server with host memory and four devices

each with their own private device global memory of size 4 GB, i.e. four blocks of dis-

tributed memory. Each process contains the same variables of the same size on both the

host memory and the device memory. One of these processes is usually allocated as a

master or root process to facilitate communication.

As a simple example assume that in a four process program on a NVIDIA S1070, with

one process per device, each of the four processes is responsible for calculating the posi-

tions of a subset of particles, and then communicates these to all other processes so that

each process holds the positions of all particles and not just those of the subset for which

it is responsible. This is a communication that is required in the SPH implementation on

multiple GPUs described in this chapter, in which at the end of one time step each device

integrates the velocity to find the positions for a subset of particles, and communicates

these to all other processes for the next time step to find interactions between the particles

for which it is responsible and all particles.

For this we shall use the variables d X of size W and d Xall of size 4W on the device,

and h Xall on the host, so each process is responsible for W particles. Each process

CHAPTER 7. SPH ON MULTIPLE GPUS 138

Figure 7.1: MPI Processes on a single node

CHAPTER 7. SPH ON MULTIPLE GPUS 139

calculates the contents of d X on the device by integrating particle velocity, and then

transfers those values to the host array h Xall via the CUDA function cudaMemcpy with

the direction device to host. On the host side each process holds a copy of the array h Xall

of size 4W, so when transferring their data from the device to their process image on the

host each process would write W items to the index h Xall[rank x W] in their process on

the host. Once each process has copied their data from the device to the host MPI can

be used to communicate these values with the function MPI Gather, which gathers all

portions of h Xall onto a root process, usually rank 0, followed by a call to the function

MPI Bcast from that root process to all processes, so that each process has a full copy of

the array h Xall containing the positions of all particles. Each process can then transfer

the whole array h Xall from host memory to d Xall on its device by a call to the CUDA

function cudaMemcpy with direction host to device. These MPI functions MPI Gather

and MPI Bcast, with other MPI functionality used in this multiple GPU implementation,

will be discussed later.

The model used for the implementation of the SPH algorithm on multiple GPUs con-

sists of

• partitioning the fluid particles into the same number of blocks as there are devices,

so that each device then manages the same subset of the fluid particles throughout

the simulation

• each device also holds a copy of all particles, both fluid and boundary, if boundary

particles are being used

• each device calculates the acceleration and rate of change of density for the set of

fluid particles they are managing, by finding interactions with all particles, fluid and

boundary, which have been sorted as described in Chapter 4

• each device integrates the acceleration and rate of change of density of the set of

fluid particles they are managing to give position, velocity, density, pressure and

smoothing length

• each device then communicates these integrated values to all other devices.

CHAPTER 7. SPH ON MULTIPLE GPUS 140

This last step requires MPI, and its use to communicate these values was just described.

The MPI functionality used to implement this communication is MPI Gather,

MPI Allgather, MPI Bcast and MPI Group, which will now be discussed. In the follow-

ing description of the algorithm assume that each process is responsible for managing

WIDTH particles.

7.1.1 MPI Gather

This function assigns a process as a root to which all processes send their private block

of data in an array to the root so that the root holds a copy of all the data from each

process and in rank order. As stated before, each process contains an array on the host, for

example h Xall, but may only have copied its private data from its device into the block of

size WIDTH beginning at index rank x WIDTH, including the root process. MPI Gather

reads the block of data in h Xall of size WIDTH beginning at index rankj x WIDTH, where

rankj is the rank of the process it is reading, and copies that block of data into the root’s

copy of h Xall beginning at index rankj x WIDTH.

7.1.2 MPI Bcast

This function also assigns a process as a root and broadcasts a whole array to each process.

Thus a MPI Gather followed by a MPI Bcast, using the same root process, allows each

process to eventually have a full copy of an array which was initially partitioned across all

the processes. Taking the example above, before MPI Gather was executed each process

held a copy of its data in h Xall only, of size WIDTH beginning at index rank x WIDTH.

MPI Gather copies all blocks of size WIDTH to the correct index of the root’s copy, and

MPI Bcast then broadcasts the whole of h Xall from that root process to each process so

that each process has a copy of all the data in h Xall, not just its own. The combined use

of MPI Gather and MPI Bcast to communicate distributed data is shown in Figure 7.2.

During the gather phase each process sends its block of data of size WIDTH beginning

at index rank x WIDTH to the designated root process, which places the blocks of data

of size WIDTH at index rankj x WIDTH, where rankj is the rank of the sending process.

During the broadcast phase the root process sends the full array of size N x WIDTH,

CHAPTER 7. SPH ON MULTIPLE GPUS 141

Figure 7.2: The gather and broadcast functionality for four processes

CHAPTER 7. SPH ON MULTIPLE GPUS 142

where N is the number of processes, to each process. Note that this occurs on the host or

server side and not between devices or GPUs. To transfer data from the GPU to the host

before a call to MPI Gather, and to transfer data from the host to the GPU after a call to

MPI Bcast, a call to the CUDA function cudaMemcpy is required, setting the direction of

transfer to device to host and host to device respectively. On the Fermi GPUs it is now

possible to communicate directly between devices rather than transfer data via the host.

7.1.3 MPI Allgather

This function is an extension of MPI Gather and MPI Bcast in which there is no root

process but each process sends blocks of data of size WIDTH to and receives blocks of

data of size WIDTH from all other processes in one call, and puts them into the block

beginning at index rankj x WIDTH where rankj is the rank of the sending process. This

has the same effect as using the MPI Gather and MPI Bcast method described above.

This is shown in Figure 7.3. Initially each process contains data in a block of size WIDTH

beginning at index rank x WIDTH where rank is the rank of the process. After the call

to MPI Allgather each process sends its block of data to all process and all processes

receive that data and place it in a block of size WIDTH at index rankj x WIDTH, where

rankj is the rank of the sending process. As with MPI Gather and MPI Bcast above, this

communication occurs on the host or server, and calls to the CUDA function cudaMemcpy

with the correct direction of transfer are required to transfer data from the device to the

host before the call to MPI Allgather, and back from the host to the device after the call

to MPI Allgather.

7.1.4 MPI Group

As the name suggests MPI allows the user to define a subset of all processes as a group. In

the implementation on multiple GPUs for this chapter, the groups were called NodeGroup

and PrimaryGroup. Each group has a communicator which allows communication only

between those processes assigned to the group.

CHAPTER 7. SPH ON MULTIPLE GPUS 143

Figure 7.3: The allgather functionality for four processes

CHAPTER 7. SPH ON MULTIPLE GPUS 144

Global rank Internal rank Node
0 0 0
1 0 1
2 1 0
3 1 1
4 2 0
5 2 1
6 3 0
7 3 1

Table 7.1: The MPI global ranks for a 8 process MPI program with Round Robin alloca-
tion

7.2 Rank Allocation

Devices can be allocated rank in MPI in a number of ways. The two most common are

Round-Robin and Sequential. This is important because of the network topology of a

cluster of NVIDIA S1070s in which the communication between nodes, i.e. S1070, is

much slower than the internal communication between devices within a node.

The default method of rank allocation on the NVIDIA S1070 cluster at STFC Dares-

bury Laboratory, on which this method was implemented, is Round-Robin. In Round-

Robin each node is considered in sequence, and the importance and difference between

this and sequential allocation will soon become clear. There are four devices in a NVIDIA

S1070 each with an internal rank of 0, 1, 2 or 3. A program requiring just four devices can

be run on one S1070 and it does not matter which method of rank allocation is used. How-

ever, if more than four devices are required, for example eight, the Round-Robin method

would allocate the devices with a MPI global rank as shown in Table 7.1. Assume we

have two nodes each containing four devices. The MPI global rank allocation for a two

node program is made by alternating between nodes 0 and 1. Similarly for a four node

program, i.e. 16 devices, the MPI global ranks are allocated by assigning device 0 from

node 0, node 1, node 2 and node 3, then device 1 from node 0, node 1, node 2 and node

3, etc, until all devices have been allocated a MPI global rank. In sequential allocation

the devices within a node are all assigned a MPI global rank before any other device in

any other node is assigned a MPI global rank. This is shown in Table 7.2. This becomes

significant when the MPI Group functionality is used.

CHAPTER 7. SPH ON MULTIPLE GPUS 145

Global rank Internal rank Node
0 0 0
1 1 0
2 2 0
3 3 0
4 0 1
5 1 1
6 2 1
7 3 1

Table 7.2: The MPI global ranks for a 8 process MPI program with Sequential allocation

7.3 Implementation of a SPH Algorithm

on Multiple GPUs

The SPH algorithm that has been implemented on multiple GPUs is based on that pro-

posed by Ferrari et al.[42] and Ferrari[58] consisting of the governing equations given

by Equations (4.1) - (4.10), which are integrated using the RK3 TVD integration scheme

Equations (2.84) - (2.87) and the time step calculated by Equations (2.88) - (2.89). The

particle is modeled by the Wendland Quintic smoothing function (4.11). The boundary

treatment is that proposed in the previous chapter on boundary treatment.

To implement SPH on multiple devices the method of implementation of the radix

sort as described in Chapter 4 needs a subtle amendment to account for the distributed

nature of the implementation. In Chapter 4 all the data was held on just one GPU, all the

particles were sorted in one sort and all particles were considered by the specification of

the thread grid for the kernels. In this chapter, for multiple GPUs, each GPU, or device, is

managing a subset of all the fluid particles. All the particles still need to be sorted as one

set, but because only a subset of the particles is being managed by each device then after

the sorting and reordering when the kernels for calculating acceleration and rate of change

of density are executed the thread ID to extract the data for the my set of variables, e.g.

myMass, needs to refer to real particle ID and not the sorted ID as in Chapter 4. Hence

the real particle data is required, but just for the particles being managed by a device.

To guarantee that a process is responsible for the same subset of particles throughout

a simulation we can use another set of arrays that are based on the real particle IDs. This

involves slightly more communication than the previous suggestion.

CHAPTER 7. SPH ON MULTIPLE GPUS 146

Figure 7.4: Each process has a copy of all particle data but manages only a fraction of the
particles

Assume that the positions of all particles on all devices are held in an array called

d xF, and that this array is ordered by real particle ID. In addition assume that this data is

also partitioned across the N devices being used in the simulation and that this partitioned

data is held in the array d x, i.e. if there are a total of P particles in the simulation then

d xF is of size P and the size of d x is P/N . Thus each device is managing P/N particles.

As in chapter 4 we then sort d xF to give the positions ordered by cell ID.

In chapter 4 the kernel to find the acceleration and rate of change of density would be

given a thread grid definition large enough so that the acceleration and rate of change of

density of all particles would be calculated. However, this is not the case with multiple

GPUs in this method, in which a device is responsible for finding the acceleration and rate

of change of density for only a subset of the particles. There is a need to limit the number

of threads created for the thread grid for this kernel to just P/N threads, one thread per

particle. When all particles are on just one device, as in chapter 4, the thread ID was

calculated as

ThreadID = __mul24(blockIdx.x,blockDim.x) + threadIdx.x;

and the properties of the particle that the thread represented were then assigned from the

sorted arrays at the index ThreadID. But if we assign particle data to a thread from un-

sorted arrays, which allows the same particles to be managed by the same device through-

CHAPTER 7. SPH ON MULTIPLE GPUS 147

float4 myX = d_x[GPUindex];
float4 myV = d_v[GPUindex];
float myMass = d_mass[GPUindex];
float myHsml = d_hsml[GPUindex];
float myRho = d_rho[GPUindex];
float myP = d_p[GPUindex];

Figure 7.5: The use of variable GPUindex to assign the properties of the particle being
managed by the device

out the simulation, we need only use the ThreadID as calculated above, but this needs

to be shifted depending on the rank of the device. This is shown in Figure 7.4 in which

each of the four devices in this example has a copy of all data for P particles but also data

from a subset of size P/4 of the particles which it is managing, with process 0 always

managing particles 0 to P/4, process 1 always managing particles P/4 to P/2, etc. With

this arrangement the kernel to calculate acceleration and rate of change of density need

create P/4 threads only, with an ID called GPUindex just for use on the device only

GPUindex = __mul24(blockIdx.x,blockDim.x) + threadIdx.x;

but also the real particle ID which is the GPUindex shifted by the following statement

realindex = GPUindex + rank*GPUBLOCKSIZE;

where GPUBLOCKSIZE is the number of particles being managed per device, which in

this example is P/4.

The GPUindex is used to assign particle data to the thread from the unsorted data

arrays of size P/4, as shown in Figure 7.5. Recall that in Chapter 4 the correspond-

ing statements in Figure 7.5 referred to sorted arrays of size P , while here they refer to

unsorted arrays of size P/4.

The realindex, or real particle ID, can then be used to check if the particles in the

neighbouring cells are not the same particle that the thread is representing, with the state-

ment as shown in Figure 7.6. where the array particleHashF is the sorted array of datatype

uint2 containing all particles, with cell ID as the x component and the real particle ID as

the y component.

CHAPTER 7. SPH ON MULTIPLE GPUS 148

// get start of bucket for this cell
uint bucketStart = FETCH(cellStartF, gridHash);
if (bucketStart == 0xffffffff) return; // cell empty

// iterate over particles in this cell
for(uint i=0; i<MAXPARTICLESPERCELL; i++)
{

uint indexj = bucketStart + i;
uint2 cellData = FETCH(particleHashF, indexj);
if (cellData.x != gridHash) break; // no longer in same cell

// check not colliding with self
if(cellData.y != realindex)
{

...
}

}

Figure 7.6: The use of variable realindex

7.3.1 The Amended Ferrari SPH on Multiple GPUs

The amended Ferrari SPH algorithm as discussed in Chapter 6 was used to simulate the

exact same problem as described in that chapter, and executed on the cluster of NVIDIA

S1070s at UK STFC Daresbury Laboratory with the MPI group, Sequential Allocation

and CUDA stream functionalities discussed above. The codes were initially executed for

1000 iterations only. The results of the additions of these functionalities now follows.

To create a benchmark set of results the amended Ferrari SPH algorithm was executed

for 1000 iterations only using 1, 2, 4, 8, 16 and 32 GPUs on the Daresbury cluster. This

code had the following initial properties.

1. Used the new boundary treatment proposed in the previous chapter

2. Allocated global MPI rank by Round Robin

3. Did not use MPI group

4. Did not use CUDA streams

The initial fluid particle spacing was 0.012 m and they were organised as a regular lattice,

giving approximately 478000 fluid particles. NB because the new boundary treatment

proposed in the previous chapter was used there was no need to create boundary particles.

The results of these runs are given in Table 7.3 and are ordered by increasing number

of GPUs. The total execution times in this table are found from the addition of the three

CHAPTER 7. SPH ON MULTIPLE GPUS 149

GPUs COMP(ms) COMM(ms) T(ms) Total Time(ms) Total Time (mins)
1 1584332 70919 4952 1660203 27.67
2 807816 75736 2670 886222 14.77
4 390593 119050 2007 511650 8.52
8 189382 547107 1909 738398 12.31
16 100645 621239 5409 727293 12.12
32 59065 686493 4492 750050 12.5

Table 7.3: The benchmark times for 1000 iterations

components COMP, COMM and T which are the times for the SPH computations, com-

munications (MPI and cudaMemcpy) and calculation of the next time step respectively.

NB just one node was used for the timings from 1,2, and 4 GPUs.

The first fact to note is that the total execution time does not necessarily decrease as

the number of GPUs increases. There is a decrease with up to 4 GPUs, but when using

more than 4 GPUs the execution time generally increases with the number of GPUs used.

The component times indicate why this is so. The COMP times show an approximate

halving of SPH computation time when the number of GPUs doubles, but it is the com-

munication time COMM that dominates, with COMM approximately five times larger

when more than one node is used. The MPI communication was done with the MPI

function MPI Allgather only. On just one node, with four devices, this communication

mode is sufficient because all data transfer is via the relatively fast internal communica-

tion network of the node. But when using more than one node the MPI Allgather is being

executed by all processes so there is much more data transfer on the relatively slow com-

munication network external to the nodes. For example for an 8 process program on two

nodes one device in node 0 would need to communicate with all devices in node 1, both

sending and receiving, and this would be multiplied by eight, for each device. So we can

begin to see why when using more than one node the total execution time increases with

increasing numbers of GPUs.

7.3.2 The Application of MPI Groups and Sequential Allocation

The MPI group facility allows us to group processes so that only processes in a group can

communicate with each other. Recalling Table 7.1 when using Round Robin allocation for

CHAPTER 7. SPH ON MULTIPLE GPUS 150

a program using two nodes the processes with even MPI global rank are all on one node,

and the processes with odd MPI global rank are all on the other node. For an eight process

program the groups would then be defined asGroup0 = 0, 2, 4, 6 andGroup1 = 1, 3, 5, 7.

However, with Sequential Allocation, processes on node K can belong to group K and

their ranks would be sequential. The groups would then be Group0 = 0, 1, 2, 3 and

Group1 = 4, 5, 6, 7.

In the particular algorithm being implemented here all processes need to communi-

cate their data with all other processes, but they do not have to do this communication

directly with each other. To minimize the data transfer across the relatively slow exter-

nal communication network, i.e. between nodes, it is possible for all processes to have a

full copy of all required data via the following sequence of communications. A diagram

of this communication sequence for a two node eight device scheme is shown in Fig-

ure 7.7. The processes on each node are grouped into a MPI Group called NodeGroup,

with Group0 = 0, 1, 2, 3 and Group1 = 4, 5, 6, 7, and each node has one process allo-

cated as the primary process for that node and these primary processes are placed into a

MPI Group called PrimaryGroup. In Figure 7.7 the primary ranks are 0 and 4. The flow

of communication in Figure 7.7 is as follows.

1. All processes on one node send their data to an allocated process, called the primary,

on that node. This can be done with MPI Gather onto the primary processes but

using NodeGroup for communication and setting the primary for each group pro-

cess as the root, and is represented by arrows from processes 1, 2 and 3 to process

0, and arrows from processes 5, 6 and 7 to process 4.

2. The primary processes on each node then communicate across the relatively slow

external network using the PrimaryGroup for communication to exchange data so

that only the primary processes have full copies of all the data. This can be done

with textitMPI Allgather and is represented by the double headed arrow between

processes 0 and 4.

3. The primary processes then communicate all the data with the other processes on

their node so that all processes have a full copy of all the data. This can be done

with MPI Bcast with NodeGroup for communication with the primary process as

CHAPTER 7. SPH ON MULTIPLE GPUS 151

GPUs COMP(ms) COMM(ms) T(ms) Total Time(ms) Total Time (mins)
8 189485 207798 5591 402874 6.71
16 100853 236991 10578 348422 5.81
32 58114 248651 6526 313291 5.22

Table 7.4: The execution times for 1000 iterations with MPI groups and sequential allo-
cation

the root and communicating to the node group, and is represented by the branched

arrow from process 0 to processes 1, 2 and 3, and by the branched arrow from

process 4 to processes 5, 6 and 7.

NB the devices first need to communicate their data to their hosts by the CUDA function

cudaMemcpy before the call to MPI Gather, and cudaMemcpy must also be called after

the call to MPI Bcast to transfer the data from the host to the device to complete the

communication cycle so that each device has a copy of the full data. This is a lot of

communication.

For the work quoted in here the primary processes were 0 and 4, but it should not

matter which processes are designated as primary just as long as there is just one primary

process on each node.

The results of applying both MPI Groups and Sequential Allocation when using more

than one node are shown in Table 7.4. The results in Table 7.4 show that with the addition

of MPI groups and sequential allocation

1. the total execution times decrease with increasing number of GPUs.

2. time required for SPH computation approximately halves when the number of GPUs

doubles.

3. time required for communication is approximately constant and approximately one

third of the communication time as the benchmark results.

7.3.3 The Application of CUDA Streams

CUDA streams are designed to facilitate concurrent host/device communication and ker-

nel execution. Recall that a kernel is executed by blocks of threads, with the blocks

specified in a grid by parameters supplied to the kernel in the kernel’s parameter list. If

CHAPTER 7. SPH ON MULTIPLE GPUS 152

Figure 7.7: The communication flow for two NVIDIA S1070s with sequential allocation

CHAPTER 7. SPH ON MULTIPLE GPUS 153

Streams Total Time (mins) % change
16 7.36 9.68
4 6.58 -2.01
8 6.50 -3.20
2 6.28 -6.52

Table 7.5: The execution times for 1000 iterations with MPI groups and sequential allo-
cation for 8 GPUs and variable number of streams

blocks of threads can execute independently then it could be possible that the first few

blocks to execute could complete their computation of the kernel and then have to wait

for the remaining blocks of threads to complete their computation before any data transfer

via cudaMemcpy to the host can occur. CUDA streams allow blocks that have completed

their computation of a kernel to transfer data to the host while allowing other blocks of

threads to complete their computation of the kernel. In previous examples memory on the

device was allocated on the host with the standard C function malloc. When using CUDA

streams the memory on the host should be pinned and allocated with the CUDA function

cudaMallocHost.

The kernel taking the most time to execute in this amended Ferrari algorithm is that

which calculates the acceleration and rate of change of density of the fluid particles. In the

source code this is immediately followed by a kernel to integrate, which is simple in com-

parison, which in turn is followed by a group of statements to transfer several variables

from the device to the host via the CUDA function cudaMemcpy. CUDA streams could

accelerate this sequence of statements because the first few blocks of threads could exe-

cute the kernel to calculate acceleration and rate of change of density, then integrate those

rates of change and then transfer the integrated variables to the host while the remaining

blocks of threads execute the kernel to calculate the acceleration and rate of change of

density.

CUDA streams were implemented for 8 GPUS for 2, 4, 8 and 16 streams and the

results, including the percentage increase or decrease in execution time relative to that

for 8 GPUs without streams from Table 7.4, are shown in Table 7.5. Similar experiments

were performed for 16 and 32 devices and the results are shown in Table 7.6 and Table

7.7 respectively.

CHAPTER 7. SPH ON MULTIPLE GPUS 154

Streams Total Time (mins) % change
16 7.41 27.63
8 5.59 -3.71
2 5.46 -5.96
4 5.46 -5.97

Table 7.6: The execution times for 1000 iterations with MPI groups and sequential allo-
cation for 16 GPUs and variable number of streams

Streams Total Time (mins) % change
16 7.43 42.23
8 5.85 12.11
4 5.24 0.45
2 4.90 -6.10

Table 7.7: The execution times for 1000 iterations with MPI groups and sequential allo-
cation for 32 GPUs and variable number of streams

Block size Total Time (mins) % change
32 5.11 -2.06

128 5.02 -3.93
64 4.90 -6.10

Table 7.8: The execution times for 1000 iterations with MPI groups and sequential allo-
cation for 32 GPUs, 2 streams and a variable thread block size

CHAPTER 7. SPH ON MULTIPLE GPUS 155

Figure 7.8: 3D view of simulation at 0.6 s

7.4 Full Simulation of 3D Dambreak

From the above timings from 1000 iterations Table 7.8 indicates that the fastest configura-

tion of number of GPUs, the use of MPI groups as proposed above, sequential allocation,

thread block size and number of CUDA streams is to use 32 GPUs with 2 streams and a

thread block size of 64. This optimal configuration was run for a real time of 2 s on the

cluster of 8 NVIDIA S1070s at STFC Daresbury Laboratory. The execution time for this

simulation was approximately 1 hour 49 minutes. Images from the simulation at 0.6 s,

1.2 s, 1.5 s and 2 s, the particular times selected by Ferrari et al.[42], are shown in Figure

7.8, Figure 7.9, Figure 7.10 and Figure 7.11 respectively. The images from the Ferrari

simulation at the same times are shown in Figure 7.12

7.5 Conclusion

This chapter examined the implementation of the amended Ferrari SPH algorithm on

multiple GPUs to estimate the performance of the algorithm on a GPU cluster. The func-

tionality of MPI used in the implementation was also discussed, as was the streaming

functionality of CUDA. Experiments were first run over 1000 iterations to assess the op-

timal combination of number of GPUs, thread block size and CUDA streams, and it was

found that with the current MPI algorithm described in this chapter in which particles

CHAPTER 7. SPH ON MULTIPLE GPUS 156

Figure 7.9: 3D view of simulation at 1.2 s

Figure 7.10: 3D view of simulation at 1.5 s

CHAPTER 7. SPH ON MULTIPLE GPUS 157

Figure 7.11: 3D view of simulation at 2.0s

remain on a specified device throughout the simulation,

1. the computation time for the SPH algorithm approximately halved as the number

of GPUs doubled, which is to be expected

2. MPI Groups reduce the total communication time and this time is approximately

constant

3. CUDA streams can improve performance but they can also degrade it

With the optimal combination found to be 32 GPUs with 2 CUDA streams and a thread

block size of 64 a simulation of 8 seconds real time was run which took approximately 9

hours 1 minute, and taking approximately 1 hour and 49 minutes for 2 seconds real time.

The Ferrari group quote a simulation time of approximately 5 hours for a real time of 8

seconds on a 128 quad core CPU cluster. However, no CFL number was provided in the

first Ferrari paper[42] and it is assumed that this was 0.9 because this is the CFL number

quoted in the second Ferrari paper[58] which uses the same algorithm. In the simula-

tions quoted in this chapter the CFL number was 0.3. The method of boundary treatment

was addressed in the first Ferrari paper[42] but the actual structure or arrangement of the

boundary particles was not, so as described in Chapter 6 a degree of trial and error was re-

quired to find an arrangement of boundary particles that worked. However a CFL number

of greater than 0.2 led to particle penetration of the boundary, which was also not dis-

CHAPTER 7. SPH ON MULTIPLE GPUS 158

Figure 7.12: Images from the Ferrari simulation at 0.6 s, 1.2 s, 1.5 s and 2 s

CHAPTER 7. SPH ON MULTIPLE GPUS 159

cussed in either Ferrari paper. To increase the efficiency of handling the boundary on the

GPU a new boundary treatment was proposed in Chapter 6 which permitted a CFL num-

ber of 0.3 without particle penetration of the boundary. It is possible to employ that same

methodology, of calculating the position of the boundary particles in the registers, but this

would still lead to the same CFL number of 0.2. If the Ferrari group could describe the

arrangement of the boundary particles in greater detail which allows a CFL number of

0.9 then the positions of the boundary particles could also be calculated in the registers

instead of being read from the much slower global and texture memories. This would then

permit a CFL number of 0.9 leading to an approximate 3x speed up of the simulation on

multiple GPUs discussed here, which would give a simulation time of approximately 3

hours for 8 seconds of real time, which would be significantly faster than the approximate

5 hours quoted by the Ferrari group. It should also be noted that the execution times for

1000 iterations on 16 GPUs are only a few seconds slower than those on 32 GPUs so it

is very possible that this same simulation could be run on just 4 NVIDIA S1070s rather

than 8 NVIDIA S1070s and it would still be faster than the 128 quad core CPU cluster.

Multiple GPUs have been used for SPH by Valdez-Balderas et al.[79] who partitioned

the particles by volume or space. In their algorithm at the end of each time step there is

then the requirement for

1. each particle to calculate on which device it should reside for the next time step

2. to transfer particle data between devices, if required

3. then calculate which particles are not in the volume controlled by a device but are

close enough to interact with the particles on another device and then also transfer

that data between devices

4. calculate if there is enough memory to hold all the data for the number of particles

required on a particular device controlling a volume in space, and take appropriate

measures if the data is excessive, i.e. load balancing

For problems in which particle speed is slow and/or problems with a high degree of sym-

metry, such as the 3D dambreak problem simulated for this chapter, this method of parti-

tion is suitable because there is little data to communicate between devices and the num-

CHAPTER 7. SPH ON MULTIPLE GPUS 160

ber of particles on each device remains approximately constant. However, in problems in

which particle speeds are relatively high and/or problems with a low degree of symmetry,

for example if the 3D dambreak collapsed into a large irregular object (most simulations

collapse into a symmetrical block) causing reflected waves in all directions, implying

much more communication of particle data between devices, this method of partitioning

may degrade in performance significantly, particularly if a degree of load balancing is re-

quired when it is found that a significant fraction of the particles have been assigned to one

device because of the positions of the particles. In this case even more communication

is required from that overloaded device to the other devices so that the space containing

the particles is more equally partitioned across the devices and algorithm execution can

proceed with a more even distribution of particles across the available devices. This prob-

lem will never arise in the method of particle partition proposed in this chapter because

particles always remain on the same device throughout the simulation. The problem then

becomes one of simply minimizing data communication time between devices. A simple

use of the MPI Group facility, as addressed in this chapter, showed that there is poten-

tial to accelerate this communication time by assigning only a small subset of the total

number of devices to handle communication over the whole cluster.

The most efficient use of multiple GPUs for a SPH simulation may require both meth-

ods of partition as proposed in this chapter and by Valdez-Balderas et al.[79]. It may be

that for relatively steadier flows the volume partition method of Valdez-Balderas et al.[79]

may be more efficient, but when a simulation becomes violent then the particle partition

method as proposed in this chapter may be more efficient. The problem would then de-

pend on how violent a simulation has become, and how to evaluate that violence so that

the program can switch from one partition method to the other and back again.

There is also potential to accelerate the data communication in the method proposed

in this chapter. In the simulations giving the results quoted in this chapter the CUDA data

type float4 was used for the particle position and velocity, but only the x, y, and z com-

ponent of that data type were referenced in the source code for the SPH calculation but

the whole data type was communicated, i.e. the w component was redundant but commu-

nicated. This is a waste of communication. So it may be slightly faster to communicate

CHAPTER 7. SPH ON MULTIPLE GPUS 161

and use in the SPH calculations two of density, pressure and smoothing length as the w

component of the position and velocity.

Another amendment to the algorithm that would probably lead to an acceleration

would be to process particle data as it is passed up the communication chain. Currently

all the devices wait for a full and complete copy of the particle data as each process passes

its particular portion of particle data up and down the communication chain. This waiting

time could be used to process particle interactions from particles on the node, i.e. in the

node group, and in the next MPI group level, and so on.

Chapter 8

Conclusions and Suggestions for

Further Work

8.1 Conclusions

This thesis has shown

1. the basics of Smoothed Particle Hydrodynamics including how the particle approx-

imations to the Euler equations are derived, and the components of a SPH algorithm

including boundary treatments and corrections,

2. the architecture of the NVIDIA T10 Tesla Graphics Processing Unit and how it can

be programmed for general purpose GPU computing,

3. how SPH can be implemented using two distinct methods on the NVIDIA T10 Tesla

GPU; one method using coalescing and the shared memory as advised by NVIDIA,

and the second method using a sorting procedure and the texture memory, with the

latter currently the most efficient for large scale simulations,

4. how Riemann solvers have so far been implemented in SPH, the two opposing views

of using Riemann solvers in SPH, the accuracy of one approximate Riemann solver

in a special SPH formulation designed for using Riemann solvers,

5. some of the many different boundary treatments in SPH with a proposal for a new

boundary treatment which implemented on the GPU can accelerate computation

162

CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 163

when used in conjunction with one particular SPH algorithm,

6. how SPH can be implemented on multiple GPUs relatively easily giving the poten-

tial to run simulations much faster than on large expensive CPU clusters.

The novel elements of this thesis are

1. the proposal of a new boundary treatment which implemented on the GPU

can accelerate computation when used in conjunction with one particular SPH

algorithm, though the method can be used with any SPH algorithm,

2. the proposal of a unique implementation of SPH on multiple GPUs giving the

potential to run simulations much faster than on large expensive CPU clusters,

and this method can be used to implement any SPH algorithm on multiple GPUs,

The use of Riemann solvers in SPH was examined in this thesis, and despite the

promising results from the use of Riemann solvers in SPH for gases without boundaries,

the results of simulating a solitary wave in water with boundaries with the Vila SPH algo-

rithm, which was proposed specifically for the use of a Riemann solver, with the HLLC

approximate Riemann solver are disappointing. However, the results presented in this

thesis were produced from just one SPH algorithm with the use of just one approximate

Riemann solver. The simulations of the experiment of Koshizuka & Oka[11] from the

Vila and Ferrari SPH algorithms indicate that the Vila algorithm produces little fragmen-

tation and spray, while the Ferrari algorithm could be considered to produce too much

spray. The photographs taken by Koshizuka & Oka of their experiment do show some

spray, as seen in Figure 4.37.

The Riemann solver used for this thesis was difficult to code and debug, but gave su-

perior results to those produced by the Ferrari SPH algorithm, even with the new bound-

ary treatment proposed in this thesis, in the simulation of a solitary wave. On the other

hand, the Ferrari SPH algorithm is relatively simple to code and uses a 3rd order integra-

tion scheme. The integration scheme used with the Vila SPH algorithm was a 2nd order

Predictor-Corrector, so perhaps an integration scheme of higher order would produce a

more accurate solitary wave. The conclusion on the use of Riemann solvers in SPH con-

sidering water with boundaries is that more research needs to be done into the use of exact

CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 164

and different approximate Riemann solvers other than the HLLC approximate Riemann

solver used in this thesis, and with different equations of state other than the Tait equa-

tion of state used here. This research will be computationally expensive, but the GPU as

shown in this thesis can provide the computing power for this research for relatively much

lower cost than a large cluster of CPUs.

8.2 Further Work

The work described in this thesis can be extended with

8.2.1 Use of Riemann Solvers in Different SPH Equations in Differ-

ent Situations

Ivings et al.[80] propose exact and approximate Riemann solvers specifically for com-

pressible liquids, and showed that the solution to the problem being simulated can be sig-

nificantly dependent on the Riemann solver being used. The Riemann solvers proposed

by Ivings et al. may be able to produce much more accurate solutions to hydrodynamic

simulations than has been achieved through using the HLLC ARS with the Vila SPH

algorithm.

8.2.2 Use of GPU Shared Memory

A hybrid algorithm of first sorting particle data and then coalescing only a small number

of blocks of particle data, as opposed to coalescing all blocks of particle data as described

in Chapter 4, into the shared memory to process particle interactions can be implemented

to evaluate its ease of implementation and performance as compared to the use of sorting

the particles by cell and processing the particle interactions on a particle basis. Figure

4.1 from Chapter 4 shows how all particles are coalesced into shared memory to find

interactions between all particles. Figure 8.1 shows how if the particles are first sorted by

cell ID then only a small subset of particles need be coalesced into shared memory, with

the blacked out blocks not coalesced into shared memory because the particles in those

blocks would not be in neighbouring cells. The success or otherwise of this hybrid method

CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 165

will depend on the processor being used; a processor with fast texture/cache access is

more likely to be more efficient with the sorting/texture approach. This method could

also be used in 3D.

8.2.3 Volume Domain Decomposition

The volume domain decomposition technique as proposed by Valdez-Balderas et al[79]

could be implemented for the Ferrari SPH algorithm to compare its performance against

the technique described in Chapter 7 on multiple GPUs. In scenarios with rapidly moving

particles the volume domain decomposition technique requires load balancing to evenly

distribute the particles across the available GPUs. Such load balancing is not required in

the technique described in the chapter on multiple GPUs because the particles are evenly

distributed across the available GPUs at the start of the simulation and remain on those

GPUs for the duration of the simulation.

8.2.4 Improving Communication on Multiple GPUs

The chapter on multiple GPUs proposed a method of communicating the data between

all GPUs by a first communication to a designated GPU on a node followed by com-

munication between those designated GPUs only, then a final communication from the

designated GPU to the other GPUs on the node. For two nodes this is optimal. For

greater than two nodes this may not be optimal. It may be more efficient to partition the

nodes further so that for example with 4 nodes there is a designated GPU for two nodes

so that only two GPUs communicate at the highest level instead of four as in the current

method. Similarly for 32 GPUs and greater. The aim would be to have just two GPUs

communicating with a MPI Allgather at the highest level with all data being transferred

up the chain to this highest level. This could improve communication efficiency and thus

accelerate the computation further.

The MPI functions used and described in Chapter 7 on SPH on multiple GPUs are

perhaps the most basic MPI functions available. More sophisticated MPI functions are

available and could produce better communication performance to reduce total execu-

tion time. Similarly the underlying network hardware and topology also influences the

CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 166

Figure 8.1: The hybrid method processing only a few blocks of sorted data

CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 167

performance of the algorithm so it is possible that faster communications will make the

technique more efficient.

8.2.5 Incompressible SPH on GPUs

As briefly mentioned in the chapter on SPH there is a variant of SPH called Incompress-

ible SPH (ISPH) which solves the Poisson equation for pressure instead of using an equa-

tion of state. ISPH permits larger time steps than WCSPH so offers the potential for faster

simulations. However, while WCSPH has been implemented on multiple GPUs it is un-

known how ISPH can be implemented on multiple GPUs, including solving a Poisson

equation using one of the linear algebra techniques that have been used for this, including

the Bi-CGSTAB method without pre-conditioning as used by Lee et al.[21].

8.2.6 Implementation on NVIDIA Fermi GPUs

All computation for this thesis was executed on a NVIDIA T10. At the time of writing

the T10 is three years old while the NVIDIA Fermi class of GPU has just been released.

The Fermi has several advantages over the T10 which are of relevance to this thesis.

1. The Fermi has a different and larger cache structure, which should accelerate SPH

computations when using the sorting and texture memory method.

2. The Fermi permits peer to peer memory access for multiple GPUs which should

reduce the amount of communication required between GPUs when using the mul-

tiple GPU algorithm proposed in this thesis. It may also be possible to increase the

number of particles that can be used for a simulation because the particle data can

be distributed across all GPUs blocks of which can be transferred to a particular

GPU when required rather than being restricted to each GPU requiring a copy of all

particle data at all times.

So it would be of great interest to implement the multiple GPU algorithm on a cluster of

NVIDIA Fermi GPUs to evaluate the performance and compare it to the results presented

in this thesis.

Appendix A

A Simple CUDA Program

1//this code should be saved in a file DeviceTest1.cu

2

3#define N 96

4

5#include <stdio.h>

6

7__device__ int device_array[N];

8int size;

9

10__global__ void device_kernel(int* d_host_array);

11__device__ void SetDeviceArray();

12

13void allocateArray(void **devPtr,size_t size);

14void freeArray(void *devPtr);

15

16main()

17{

18 int host_array[N];

19 int* d_host_array;

20 int i;

21 int size_d_host_array;

22

23 size_d_host_array = N*sizeof(int);

24

25 for(i=0 ; i<N ; i++) host_array[i] = 0;

26

27 for(i=0 ; i<N ; i++) printf("\n%i\t%i",i,host_array[i]);

28

29 allocateArray((void**)&d_host_array,size_d_host_array);

30

31 dim3 dimGrid(3,1);

32 dim3 dimBlock(32,1,1);

168

33

34

35 // Launch the device computation

36 device_kernel<<<dimGrid, dimBlock>>>(d_host_array);

37

38

39 cudaMemcpy(host_array,

d_host_array,

size_d_host_array,

cudaMemcpyDeviceToHost);

40

41 freeArray(d_host_array);

42

43 for(i=0 ; i<N ; i++) printf("\n%i\t%i",i,host_array[i]);

44}

45

46//////////////////////////////

47__global__ void device_kernel(int* d_host_array)

48{

49 int id;

50 id = blockDim.x * blockIdx.x + threadIdx.x;

51

52 SetDeviceArray();

53

54 d_host_array[id] = device_array[id];

55

56}

57

58///////////////////////////////

59void allocateArray(void **devPtr,size_t size)

60{

61 cudaMalloc(devPtr,size);

62}

63

64//////////////////////////////

65void freeArray(void *devPtr)

66{

67 cudaFree(devPtr);

68}

69

70////////////////////////////////

71__device__ void SetDeviceArray()

72{

73 int id;

74

75 id = blockDim.x * blockIdx.x + threadIdx.x;

76

77 device_array[id] = id;

78}

Appendix B

The Calculation of Forces for the

Shared Memory Implementation

The main function calls the following intermediate function CalcForces which simply
calculates the thread grid for the kernel calculateforceskernel. The thread grid is defined
by the parameters numBlocks and numThreads.

void CalcForces(float2* d_x,float2* d_v,float* d_mass,

float* d_hsml,float* d_rho,float* d_p,int* d_type,int numBodies,

float* d_drhodt,float2* d_dvdt,int2* d_cell)

{

int numThreads, numBlocks;

computeGridSize(numBodies, NUMTHREADS,

numBlocks, numThreads);

#ifdef CUDAGETLASTERROR

printf("\n\nBefore CalcForces %s\n", cudaGetErrorString(cudaGetLastError()));

#endif

calculateforceskernel<<<numBlocks,numThreads>>>

(d_x,d_v,d_mass,d_hsml,d_rho,d_p,d_type,d_drhodt,

d_dvdt,d_cell,numBodies);

cudaThreadSynchronize();

#ifdef CUDAGETLASTERROR

printf("\n\nAfter CalcForces %s\n", cudaGetErrorString(cudaGetLastError()));

#endif

CUT_CHECK_ERROR("Kernel execution failed");

}

171

This function then calls the kernel calculateforceskernel which is executed on the
device.

__global__ void calculateforceskernel(float2* d_x,float2* d_v,

float* d_mass,float* d_hsml,float* d_rho,float* d_p,int* d_type,

float* d_drhodt,float2* d_dvdt,int2* d_cell,int BLOCKSIZE)

{

int threadid = threadIdx.x;

int blockid = blockIdx.x;

int gtid = blockid* blockDim.x + threadid;

//declare shared memory variables

__shared__ float2 shX[NUMTHREADS];

__shared__ float2 shV[NUMTHREADS];

__shared__ float shHsml[NUMTHREADS];

__shared__ float shMass[NUMTHREADS];

__shared__ float shRho[NUMTHREADS];

__shared__ float shP[NUMTHREADS];

__shared__ int shType[NUMTHREADS];

//__shared__ int2 shCell[NUMTHREADS];

//local register variables

float2 myX = d_x[gtid];

float myHsml = d_hsml[gtid];

float2 myV = d_v[gtid];

float myRho = d_rho[gtid];

float myP = d_p[gtid];

float mydvdtx = 0.0f;

float mydvdty = -GRAVITY; //gravity

float mydrhodt = 0.0f;

//int2 myCell = d_cell[gtid];

int myType = d_type[gtid];

float2 D,V;

float r, mhsml;

float xdwdx,ydwdx;

float K,Kxdwdx,Kydwdx;

float A,C;

float Ci,Cj,Cij;

float2 n;

int i,j,tile,diff,jparticleid;

__syncthreads();

for (i = 0, tile = 0; i < BLOCKSIZE; i += NUMTHREADS, tile++)

{

//load global data into shared memory

int idx = tile * NUMTHREADS + threadid;

shX[threadid] = d_x[idx];

shV[threadid] = d_v[idx];

shHsml[threadid] = d_hsml[idx];

shMass[threadid] = d_mass[idx];

shRho[threadid] = d_rho[idx];

shP[threadid] = d_p[idx];

shType[threadid] = d_type[idx];

//shCell[threadid] = d_cell[idx];

__syncthreads();

for (j = 0; j < NUMTHREADS ; j++)

{

jparticleid = tile * NUMTHREADS + j;

diff = gtid - jparticleid;

switch(diff)

{

case 0 : break;

default : D.x = myX.x-shX[j].x;

D.y = myX.y-shX[j].y;

mhsml = (myHsml + shHsml[j])/2.0;

r = sqrt(D.x*D.x + D.y*D.y);

if(r<SCALE*mhsml)

{

kerneldw(&xdwdx,&ydwdx,r,mhsml,D);

D = shX[j] - myX;

V = shV[j] - myV;

n = D/r;

Ci = sqrt(GAMMA*B*pow((myRho/RHO0),GAMMA-1)/RHO0);

Cj = sqrt(GAMMA*B*pow((shRho[j]/RHO0),GAMMA-1)/RHO0);

Cij = max(Ci,Cj);

//

// DENSITY

//

mydrhodt+= -shMass[j]*(V.x*xdwdx + V.y*ydwdx);

mydrhodt+= shMass[j]*(n.x*xdwdx + n.y*ydwdx)*

Cij*(shRho[j] - myRho)/shRho[j];

//

// MOMENTUM

//

//

// FI

//

K = myP/(myRho*myRho) + shP[j]/(shRho[j]*shRho[j]);

K*= shMass[j];

Kxdwdx = K*xdwdx;

Kydwdx = K*ydwdx;

mydvdtx+= -Kxdwdx;

mydvdty+= -Kydwdx;

//

// FV

//

A = MU*shMass[j]/(3.0f*myRho*shRho[j]);

C = (n.x*V.x + n.y*V.y)*(n.x*xdwdx + n.y*ydwdx)/r;

mydvdtx+= A*(7.0*V.x + 5.0*C*n.x);

mydvdty+= A*(7.0*V.y + 5.0*C*n.y);

}

break;

}

}

__syncthreads();

}

//coalesce changes to global memory

d_dvdt[gtid].x = mydvdtx;

d_dvdt[gtid].y = mydvdty;

d_drhodt[gtid] = mydrhodt;

}

Appendix C

The Calculation of Forces for the

Texture Memory Implementation

The main function calls the following intermediate function CalcForces which calculates
the thread grid for the kernel calculateforceskernel but also binds textures to the sorted de-
vice variables. The thread grid is defined by the parameters numBlocks and numThreads.

void CalcForces(float2* d_sorted_x,float2* d_sorted_v,float* d_sorted_mass,

float* d_sorted_hsml,float* d_sorted_rho,float* d_sorted_p,int* d_sorted_type,

uint2* particleHash,uint* cellStart,int numBodies,int numCells,float thetime,

int actualnreal,float* d_drhodt,float2* d_dvdt,float cellsize,float maxH)

{

cudaBindTexture(0, d_sorted_xTex, d_sorted_x, numBodies*sizeof(float2));

cudaBindTexture(0, d_sorted_vTex, d_sorted_v, numBodies*sizeof(float2));

cudaBindTexture(0, d_sorted_massTex, d_sorted_mass, numBodies*sizeof(float));

cudaBindTexture(0, d_sorted_hsmlTex, d_sorted_hsml, numBodies*sizeof(float));

cudaBindTexture(0, d_sorted_rhoTex, d_sorted_rho, numBodies*sizeof(float));

cudaBindTexture(0, d_sorted_pTex, d_sorted_p, numBodies*sizeof(float));

cudaBindTexture(0, d_sorted_typeTex, d_sorted_type, numBodies*sizeof(int));

cudaBindTexture(0, particleHashTex, particleHash, numBodies*sizeof(uint2));

cudaBindTexture(0, cellStartTex, cellStart, numCells*sizeof(uint));

int numThreads, numBlocks;

computeGridSize(numBodies, NUMTHREADS, numBlocks, numThreads);

#ifdef CUDAGETLASTERROR

printf("\n\nBefore CalcForces %s\n", cudaGetErrorString(cudaGetLastError()));

#endif

CalculateForces<<<numBlocks,numThreads>>>

(particleHash,cellStart,d_drhodt,d_dvdt,cellsize,maxH);

#ifdef CUDAGETLASTERROR

175

printf("\n\nAfter CalcForces %s\n", cudaGetErrorString(cudaGetLastError()));

#endif

CUT_CHECK_ERROR("Kernel execution failed");

cudaUnbindTexture(d_sorted_xTex);

cudaUnbindTexture(d_sorted_vTex);

cudaUnbindTexture(d_sorted_massTex);

cudaUnbindTexture(d_sorted_hsmlTex);

cudaUnbindTexture(d_sorted_rhoTex);

cudaUnbindTexture(d_sorted_pTex);

cudaUnbindTexture(d_sorted_typeTex);

cudaUnbindTexture(particleHashTex);

cudaUnbindTexture(cellStartTex);

}

This function then calls the kernel CalculateForces. Note that not all the textures are
passed to the kernel. This kernel will loop over neighbouring cells only and accumulate
contributions to rate of change of density and acceleration from particles in each cell by
calling the device function AccumulateForces.

__global__ void CalculateForces(uint2* particleHash, uint* cellStart,

float* d_drhodt,float2* d_dvdt,float cellsize,float maxH)

{

int mySortedIndex = __mul24(blockIdx.x,blockDim.x) + threadIdx.x;

float2 myX = FETCH(d_sorted_x, mySortedIndex);

float2 myV = FETCH(d_sorted_v, mySortedIndex);

float myMass = FETCH(d_sorted_mass, mySortedIndex);

float myHsml = FETCH(d_sorted_hsml, mySortedIndex);

float myRho = FETCH(d_sorted_rho, mySortedIndex);

float myP = FETCH(d_sorted_p, mySortedIndex);

int myType = FETCH(d_sorted_type, mySortedIndex);

int2 gridPos2;

int gridPos2x,gridPos2y;

float2 mydvdt;

float mydvdtx,mydvdty,mydrhodt;

// get address in grid

int2 myGridPos = calcGridPos(myX,cellsize);

mydvdtx = 0.0f;

mydvdty = 0.0f;

mydrhodt = 0.0f;

volatile uint2 sortedData = particleHash[mySortedIndex];

uint myTrueIndex = sortedData.y;

// examine only neighbouring cells

for(int y=LOWCELL; y<HICELL; y++)

{

gridPos2y = myGridPos.y + y;

for(int x=LOWCELL; x<HICELL; x++)

{

gridPos2x = myGridPos.x + x;

{

gridPos2.x = gridPos2x;

gridPos2.y = gridPos2y;

AccumulateForces(gridPos2,mySortedIndex,myX,myV,

myHsml,myMass,myRho,myP,myType,

particleHash,cellStart,

&mydvdtx,&mydvdty,&mydrhodt);

}

}

}

mydvdt.x = mydvdtx;

mydvdt.y = mydvdty;

d_drhodt[myTrueIndex] = mydrhodt;

d_dvdt[myTrueIndex] = mydvdt;

d_dvdt[myTrueIndex].y+= -GRAVITY;

}

This device function AccumulateForces looks for interactions between one particular
particle, represented by the thread calling the function, and any particles in the cell with
the grid position gridPos2, a parameter passed to the function by the calling kernel Cal-
culateForces. Note that the textures that were bound in the function CalcForces above are
referenced in the function below but are not passed down through parameter lists.

__device__ void AccumulateForces(int2 gridPos2,int myIndex,float2 myX,

float2 myV,float myHsml,float myMass,float myRho,float myP,int myType,

uint2* particleHash, uint* cellStart,float* mydvdtx,float* mydvdty,float* mydrhodt)

{

float2 D,V;

uint cellgridHash = calcGridHash(gridPos2);

float r, mhsml;

float xdwdx,ydwdx;

float K,Kxdwdx,Kydwdx;

float A,C;

float Ci,Cj,Cij,rhoj,massj,pj,hsmlj;

float2 xj,vj,n;

int myTrueIndex = FETCH(particleHash, myIndex).y;

// get start of bucket for this cell

uint bucketStart = FETCH(cellStart, cellgridHash);

if (bucketStart == 0xffffffff) return;

// iterate over particles in this cell

for(uint i=0; i<MAXPARTICLESPERCELL; i++)

{

uint index2 = bucketStart + i;

uint2 cellData = FETCH(particleHash, index2);

if (cellData.x != cellgridHash) break;

// check not colliding with self

if (index2 != myIndex)

{

xj = FETCH(d_sorted_x,index2);

hsmlj = FETCH(d_sorted_hsml,index2);

D = myX - xj;

r = sqrt(D.x*D.x + D.y*D.y);

mhsml = (myHsml + hsmlj)/2.0;

if(r<SCALE*mhsml)

{

xj = FETCH(d_sorted_x,index2);

vj = FETCH(d_sorted_v,index2);

rhoj = FETCH(d_sorted_rho,index2);

pj = FETCH(d_sorted_p,index2);

massj = FETCH(d_sorted_mass,index2);

hsmlj = FETCH(d_sorted_hsml,index2);

kerneldw(&xdwdx,&ydwdx,r,mhsml,D);

D = xj - myX;

V = vj - myV;

n = D/r;

Ci = sqrt(GAMMA*B*pow((myRho/RHO0),GAMMA-1)/RHO0);

Cj = sqrt(GAMMA*B*pow((rhoj/RHO0),GAMMA-1)/RHO0);

Cij = max(Ci,Cj);

//

// DENSITY

//

//Ferrari Riemann

(*mydrhodt)+= -massj*(V.x*xdwdx + V.y*ydwdx);

(*mydrhodt)+= massj*(n.x*xdwdx + n.y*ydwdx)*

Cij*(rhoj - myRho)/rhoj;

//

// MOMENTUM

//

//

// FI

//

K = myP/(myRho*myRho) + pj/(rhoj*rhoj);

K*= massj;

Kxdwdx = K*xdwdx;

Kydwdx = K*ydwdx;

*(mydvdtx)+= -Kxdwdx;

*(mydvdty)+= -Kydwdx;

//

// FV

//

A = MU*massj/(3.0f*myRho*rhoj);

C = (n.x*V.x + n.y*V.y)*(n.x*xdwdx + n.y*ydwdx)/r;

(mydvdtx)+= A(7.0*V.x + 5.0*C*n.x);

(mydvdty)+= A(7.0*V.y + 5.0*C*n.y);

}

}

}

}

Also note that the textures are referenced through the function FETCH which is defined
with

#define FETCH(t, i) tex1Dfetch(t##Tex, i)

The textures are declared in the same module as the kernel.

texture<float2, 1, cudaReadModeElementType> d_xTex;

texture<float2, 1, cudaReadModeElementType> d_vTex;

texture<float, 1, cudaReadModeElementType> d_massTex;

texture<float, 1, cudaReadModeElementType> d_hsmlTex;

texture<float, 1, cudaReadModeElementType> d_pTex;

texture<float, 1, cudaReadModeElementType> d_cTex;

texture<float, 1, cudaReadModeElementType> d_rhoTex;

texture<int, 1, cudaReadModeElementType> d_typeTex;

texture<float2, 1, cudaReadModeElementType> d_sorted_xTex;

texture<float2, 1, cudaReadModeElementType> d_sorted_vTex;

texture<float, 1, cudaReadModeElementType> d_sorted_massTex;

texture<float, 1, cudaReadModeElementType> d_sorted_hsmlTex;

texture<float, 1, cudaReadModeElementType> d_sorted_pTex;

texture<float, 1, cudaReadModeElementType> d_sorted_cTex;

texture<float, 1, cudaReadModeElementType> d_sorted_rhoTex;

texture<int, 1, cudaReadModeElementType> d_sorted_typeTex;

texture<uint2, 1, cudaReadModeElementType> particleHashTex;

texture<uint, 1, cudaReadModeElementType> cellStartTex;

Bibliography

[1] Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incom-

pressible flow of fluid with a free surface. The Physics of Fluids, 8(12):2182 2189,

1965.

[2] Mingham CG, Causon DM. High-resolution finite-volume method for shallow water

flows. Journal of Hydraulic Engineering, 124(6):605–614, 1998.

[3] Qian L, Causon DM, Ingram DM, Mingham CG. Cartesian Cut Cell two-fluid solver

for hydraulic flow problems. Journal of Hydraulic Engineering, 129:688 – 696,

2003.

[4] Qian L,Causon DM, Mingham CG, Ingram DM. A free-surface capturing method

for two fluid flows with moving bodies. Proceedings of The Royal Society A,

462:21–42, 2006.

[5] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free

boundaries. Journal of Computational Physics, 39(1):201 – 225, 1981.

[6] Martin JC, Moyce WJ. Part IV. An experimental study of the collapse of liquid

columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society

London, 244:312 – 324, 1952.

[7] Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B. A Volume-of-

Fluid based simulation method for wave impact problems. Journal of Computational

Physics, 206:363 – 393, 2005.

181

[8] Greaves D. Numerical simulation of breaking waves using the volume of fluid

method. In 23rd International Workshop on Water Waves and Floating Bodies, pages

65–68, 2008.

[9] Wang JP, Borthwick AGL, Eatock Taylor R. Finite-volume type VOF method on

dynamically adaptive quadtree grids. International Journal for Numerical Methods

in Fluids, 45(5):485 – 508, 2003.

[10] Greaves D, Borthwick AGL. On the use of adaptive hierarchical meshes for numer-

ical simulation of separated flows. International Journal for Numerical Methods in

Fluids, 26(3):303 – 322, 1998.

[11] Koshizuka S, Oka Y. Moving-Particle Semi-implicit method for fragmentation of

incompressible fluid. Nuclear Science and Engineering, 123:421 – 434, 1996.

[12] Archibald S. Modelling of Extreme Ocean Waves Using High Performance Com-

puting. PhD thesis, Imperial College London, 2011.

[13] Gratton S. Graphics Card Computing for Cosmology: Cholesky Factorization. In

Proceedings of the 2010 10th IEEE International Conference on Computer and In-

formation Technology, 2010.

[14] Brandvik T, Pullan G. Acceleration of a two-dimensional Euler solver using com-

modity graphics hardware. Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, 221(12):1745 – 1748, 2007.

[15] Brandvik T, Pullan G. Acceleration of a 3D Euler solver using commodity graphics

hardware. In 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.

[16] Westphal E. Multiparticle collision dynamics on GPU. In Book of Abstracts

SimGPU2011, 2011.

[17] Griebel M, Zaspel P. Solving the two-phase incompressible Navier-Stokes Equa-

tions on massively parallel multi-GPU clusters. In Proceedings of Parallel CFD

2011, 2011.

[18] Berentzen I. Astrophysical mesh- and particle-based simulations. In Book of Ab-

stracts SimGPU2011, 2011.

[19] Spurzem R, Berczik P, Berentzen I, Nitadori K, Hamada T, Marcus G, Kugel A,

Mnner R, Fiestas J, Banerjee R, Klessen R. Astrophysical particle simulations with

large custom GPU clusters on three continents . Computer Science - Research and

Development, 26:145 – 151, 2011.

[20] Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC, Narayanaswamy M.

User Guide for the SPHysics Code v2.0, 2010.

[21] Lee ES, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P. Comparisons of

weakly compressible and truly incompressible algorithms for the SPH mesh free

particle method. Journal of Computational Physics, 227:8417 – 8436, 2008.

[22] Lee ES, Violeau D, Issa R, Ploix S. Application of weakly compressible and truly

incompressible SPH to 3-D water. Journal of Hydraulic Research, 48 Extra Issue:50

– 60, 2010.

[23] Liu GR, Liu MB. Smoothed Particle Hydrodynamics. World Scientific, 2005.

[24] Monaghan JJ. Smoothed Particle Hydrodynamics. Reports on Progress in Physics,

68:1703 – 1759, 2005.

[25] Gingold RA, Monaghan JJ. Kernel estimates as a basis for general particle methods

in hydrodynamics. Journal of Computational Physics, 46:429 – 453, 1982.

[26] Monaghan JJ, Gingold RA. Shock simulation by the particle method SPH. Journal

of Computational Physics, 52:374 – 389, 1983.

[27] Monaghan JJ. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and

Astrophysics, 30:543 – 574, 1992.

[28] Cleary PW. Modelling confined multi-material heat and mass flows using SPH.

Applied Mathematical Modelling, 22:981 – 993, 1998.

[29] Gingold RA, Monaghan JJ. Smoothed Particle Hydrodynamics : Theory and appli-

cation to Non-spherical stars. Monthly Notices of the Royal Astronomical Society,

181:375 – 389, 1977.

[30] Parshikov AN, Stanislav AM, Loukashenko II, Milekhin IA. Improvements in SPH

method by means of interparticle contact algorithm and analysis of perforation tests

at moderate projectile velocities. International Journal of Impact Engineering,

24(8):779 – 796, 2000.

[31] Robinson M. Turbulence and Viscous Mixing using Smoothed Particle Hydrody-

namics. PhD thesis, Monash University, 2009.

[32] Sigalotti LDG, Lopez H, Donoso A, Sira E, Klapp J. A shock-capturing SPH scheme

based on adaptive kernel estimation. Journal Computational Physics, 212:124 – 149,

2006.

[33] Monaghan JJ. Simulating free surface flows with SPH. Journal of Computational

Physics, 110(2):399 – 406, 1994.

[34] Monaghan JJ, Kos A. Solitary waves on a Cretan beach. Journal of Waterway, Port,

Coastal and Ocean Engineering, 125:145 – 154, 1999.

[35] Monaghan JJ, Kos A, Issa N. Fluid motion generated by impact. Journal of Water-

way Port, Coastal and Ocean Engineering, 129(6):250 – 259, 2003.

[36] Monaghan JJ, Kajtar JB. SPH particle boundary forces for arbitrary boundaries.

Computer Physics Communications, 180:1811 – 1820, 2009.

[37] Morris JP, Fox PJ, Zhu Y. Modeling low Reynolds number incompressible flows

using SPH. Journal of Computational Physics, 136:214 – 226, 1997.

[38] Dalrymple RA, Knio O. SPH modelling of water waves. In Proc. Coastal Dynamics,

2000.

[39] Crespo AJC, Gomez-Gesteira M, Dalrymple RA. Boundary conditions generated

by dynamic particles in SPH. Computers, Materials & Continua, 5(3):173 – 184,

2007.

[40] Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed

particle hydrodynamics. Journal of Computational Physics, 191:448 – 475, 2003.

[41] Cummins SJ, Rudman M. An SPH projection method. Journal of Computational

Physics, 152:584 – 607, 1999.

[42] Ferrari A, Dumbser M, Toro EF, Armanini A. A new 3D parallel SPH scheme for

free surface flows. Computers & Fluids, 38:1203 – 1217, 2009.

[43] Lo EYM, Shao S. Simulation of near-shore solitary wave mechanics by an imcom-

pressible SPH method. Applied Ocean Research, 24:275 – 286, 2002.

[44] Violeau D, Issa R. Numerical modelling of complex turbulent free-surface flows

with the SPH method : an overview. International Journal for Numerical Methods

in Fluids, 53:277 – 304, 2007.

[45] Harada T, Koshizuka S, Kawaguchi Y. Improvement of the boundary conditions in

Smoothed Particle Hydrodynamics. Computer Graphics & Geometry, 9(3):2 – 15,

2007.

[46] Shepard D. A two dimensional function for irregularly spaced data. In ACM Na-

tional Conference, 1968.

[47] Dilts GA. Moving-LeastSquares-Particle Hydrodynamics I. Consistency and stabil-

ity. International Journal for Numerical Methods in Engineering, 44:1115 – 1155,

1999.

[48] Bonet J, Lok TSL. Variational and momentum preservation aspects of Smoothed

Particle Hydrodynamic formulations. Computer Methods in Applied Mechanics and

Engineering, 180:97 – 115, 1999.

[49] Swegle JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability

analysis. Journal of Computational Physics, 116:123 – 134, 1995.

[50] Monaghan JJ. SPH without a tensile instability. Journal of Computational Physics,

159:290 – 311, 2000.

[51] Monaghan JJ. On the problem of penetration in particle methods. Journal of Com-

putational Physics, 82:1 – 15, 1989.

[52] Hughes J, Graham D. Comparison of incompressible and weakly-compressible SPH

models for free-surface water flows. Journal of Hydraulic Research, 48 Extra Is-

sue:105 117, 2010.

[53] Batchelor GK. Introduction to fluid dynamics. Cambridge University Press, 1974.

[54] Oger G, Doring M, Alessandrini B, Ferrant P. Two-dimensional SPH simulations of

wedge water entries. Journal of Computational Physics, 213:803 – 822, 2006.

[55] NVIDIA. NVIDIA CUDA Programming Guide 2.3.1. 2009.

[56] Wong H. Demystifying GPU microarchitecture through microbenchmarking. In

IEEE International Symposium on Performance Analysis of Systems Software IS-

PASS 2010, 2010.

[57] McCabe C, Causon DM, Mingham CG. GPU accelerated calculations of free surface

flows. In Proceedings of 4th SPHERIC Workshop, 2009.

[58] Ferrari A. SPH simulation of free surface flow over a sharp-crested weir. Advances

in Water Resources, 33:270 – 276, 2010.

[59] Nyland L, Harris M, Prins J. GPU Gems 3, chapter Fast N body simulation with

CUDA. Addison-Wesley, 2007.

[60] Le Grand S. GPU Gems 3, chapter Broad-phase collision detection with CUDA.

Addison-Wesley, 2007.

[61] Ubbink O. Numerical prediction of two fluid systems with sharp interfaces. PhD

thesis, Imperial College London, 1997.

[62] Antuono M, Colagrossi A, Marronea S, Molteni D. Free-surface flows solved by

means of SPH schemes with numerical diffusive terms. Computer Physics Commu-

nications, 181:532 – 549, 2010.

[63] Rogers BD, Dalrymple RA, Stansby PK. Simulation of caisson breakwater move-

ment using 2D SPH. Journal of Hydraulic Research, 48 Extra Issue:135 – 141,

2010.

[64] Vila JP. On particle weighted methods and Smooth Particle Hydrodynamics. Math-

ematical Models and Methods in Applied Science, 9(2):161 – 209, 1999.

[65] Toro EF, Spruce M, Speares W. Restoration of the contact surface in the HLL

Riemann solver. Shock Waves, 4:25 – 34, 1994.

[66] Roubtsova V, Kahawita R. The SPH technique applied to free surface flows. Com-

puters & Fluids, 35:1359 – 1371, 2006.

[67] Omidvar P, Stansby PK, Rogers BD. Wave body interaction in 2D using smoothed

particle hydrodynamics (SPH) with variable particle mass. International Journal for

Numerical Methods in Fluids, 2011.

[68] Monaghan JJ. SPH and Riemann Solvers. Journal of Computational Physics,

136:298–307, 1997.

[69] Parshikov AN. Application of a solution of the Riemann problem in the SPH

method. Computational Mathematics and Mathematical Physics, 39(7):1173 –

1182, 1999.

[70] Parshikov AN, Medin SA. Smoothed Particle Hydrodynamics using interparticle

contact algorithms. Journal of Computational Physics, 180(1):358 – 382, 2002.

[71] Inutsuka S. Reformulation of Smoothed Particle Hydrodynamics with Riemann

Solver. Journal of Computational Physics, 179:238 – 267, 2002.

[72] Colella P, Woodward PR. The Piecewise Parabolic Method (PPM) for Gas-

Dynamical Simulations. Journal of Computational Physics, 54:174 – 201, 1984.

[73] van Leer B. Towards the ultimate conservative difference scheme. Journal of Com-

putational Physics, 135:229 – 248, 1997.

[74] Cha SH, Whitworth AP. Implementations and tests of Godunov-type particle hy-

drodynamics. Mon. Not. R. Astron. Soc., 340:73 – 90, 2003.

[75] Molteni D, Bilello C. Riemann solver in SPH. Memorie della Societa Astronomica

Italiana Supplement, 1:36 – 44, 2003.

[76] Cherfils JM, Blonce L, Pinon G, Rivoalen E. Towards the simulation of wave-body

interactions with SPH. In Proceedings of 4th SPHERIC Workshop, 2009.

[77] Su SW, Lai MC, Lin CA. An immersed boundary technique for simulating complex

flows with rigid boundary. Computers & Fluids, 36:313 – 324, 2007.

[78] Zhou ZQ, De Kat JO, Buchner B. A nonlinear 3D approach to simulate green water

dynamics on deck. In Seventh international conference on numerical ship hydrody-

namics, 1999.

[79] Valdez-Balderas D, Dominguez JM, Crespo AJC, Rogers BD. Developing massively

parallel SPH simulations on multi-GPU clusters. In 6th International SPHERIC

Workshop, 2011.

[80] Ivings MJ, Causon DM, Toro EF. On Riemann Solvers for compressible liquids.

Intl Journal for Numerical Methods in Fluids, 28:395 – 418, 1992.

