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ABSTRACT
Hygienic food contact surfaces are inert, hard and easy to clean. Aggressive 

cleaning  and  disinfection  regimes,  and  general  usage  and  wear,  may damage  the 

integrity of the surface, and the resultant defects – pits or scratches – increase the 

roughness of the surface and potentially affect subsequent cleanability by retaining 

microorganisms and organic soil. 

It  is  generally  acknowledged  that  an  increase  in  surface  roughness,  often 

measured using the Ra parameter (the average departure of the surface profile from a 

centre line) increases the retention of microorganisms on a surface, although feature 

dimension may also have some influence. The retention of more amorphous organic 

(food) soil is less affected by the feature dimension, but is likely to be enhanced by 

any increase in Ra value.

The  aim  of  this  project  was  to  explore  the  relationship  between  surface 

topography and  microbial  cell  retention  on  surfaces  via  the  use  of  surfaces  with 

defined linear features, and with defined chemical properties. Stainless steel is the 

most commonly used  material for hygienic surfaces, but its surface chemistry can be 

complex. Thus, in order to explore the effect of topography in a controlled manner, 

test surfaces were coated with titanium, using plasma vapour deposition.

A novel  impression  technique  was  developed,  using  acetate  softened  with 

acetone pressed against in-use stainless steel surfaces, which when hardened  could be 

removed  and  examined  using  atomic  force  microscopy  and  scanning  electron 

microscopy.  The  diameter  and  profile  of  typical  linear  features  were  measured, 

enabling  model  surfaces  to  be  constructed  in  vitro.  Thirty  micrometre  diameter 

features were reproduced using nano-indentation, but microorganisms tended to be 

retained on the edges  of  the features,  rather  than within  them,  because there was 

accumulation of debris at the edges whose smaller feature size provided increased 
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surface area for microbial retention. Consequently,  attention was focused on linear 

features of microbial  dimensions approximating to  one and 0.5 micrometer width. 

These were conveniently obtained by titanium-coating CDs (feature size 1.02 µm, Ra 

0.042 µm) and DVDs (feature size 0.59 µm, Ra 0.024 µm) respectively.

Escherichia coli did not adhere well to the titanium-coated test surfaces. When 

stainless  steel  surfaces  were  coated  with  titanium,  the  same  phenomenon  was 

observed: thus it  was the surface chemistry rather than topography which reduced 

microbial  retention. In the presence of an organic (meat) soil, retention was again 

lower on the titanium surface. Thus E.coli was not used in subsequent work, although 

the potential for titanium coatings to reduce fouling by this species should be explored 

further.

Listeria  monocytogenes and  Staphylococcus  sciuri were  used  subsequently, 

representing different shaped microorganisms related to food-borne illness (S.scuiri 

being related to Staphylococcus aureus). Retention of bacteria on the test surfaces was 

assessed by incubating cells and surfaces for 1h, gently rinsing, and examining and 

enumerating retained cells via scanning electron microscopy. Retention was related to 

cell size and feature size: the spherical staphylococci were preferentially retained on 

the 1.0 micrometer featured surfaces, being effectively wedged within the features, 

whilst  L.monocytogenes was preferentially retained on the 0.5micrometer featured 

surfaces,  because  cell-surface  contact  was  maximised  by the  increased  density  of 

‘peaks’ on the surface, with the rod-shaped cells lying across and along the linear 

features. Epifluorescence microscopy was attempted, after staining attached cells with 

acriding orange, but the relationship between cells and surface features could not be 

visualised.  The  strength  of  attachment  rather  than  the  amount  of  attachment  was 

measured using atomic force microscopy, by application of an increasing lateral force 
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on attached cells, and assessment of the number of scans required to remove cells. 

Results were similar to those obtained in retention assays, with the S. sciuri retained 

in  highest  numbers  on  the  1  µm features  and  the  least  on  the  0.5  µm features, 

emphasising the importance of the relationship between cell  size and feature size. 

Again E.coli could not be used, since it did not adhere: when combined with organic 

material, the AFM probe could not be used.

A more realistic physical removal strategy was applied via repeated physical 

‘wipes’ with a mechanised device and water, subsequent to fouling of surfaces with 

soil,  or  cells,  or a  cell-soil  mixture.  Different  fluorescent  stains were applied that 

stained either soil or cells, enabling differential analysis of the area of a microscopic 

field covered by cells or soil. Whether there was a single fouling event, or sequential 

fouling-cleaning events, increasing wipes removed increasing amounts of cells and/or 

soil, and wipes applied along surface features were more effective at removal than 

wipes applied across the features.

Results have revealed that the relationship between cell size and linear feature 

width  and  orientation  is  key to  determining  whether  or  not  cells  are  retained  on 

surfaces:  the  Ra value  is  of  less  importance.  The  direct  relationship  that  is  often 

proposed to exist between Ra value and cell retention is only likely to be true within 

particular ranges: if the surface features are larger than microbial cells, the cells may 

not be retained; similarly with features smaller than the diameter of cells. If features 

are of microbial dimensions, then enhanced retention might be anticipated. Organic 

food soil is more heterogeneous, thus is retained in features irrespective of feature 

size,  although removal  is  improved from larger  features.  Thus  rather  than  merely 

measuring the Ra,  it  would appear  to  be important  to  assess  feature dimension in 

relation to the size of the microorganism of concern in a given environment. 
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The  range  of  methods  used  in  this  study  have  helped  interpretation  of  a 

complex interaction between cells, soil, surface and its topography and chemistry. The 

work  described  will  be  useful  for  exploring  these  phenomena  further,  and  in  the 

assessment  of  the  effectiveness  of  putative  novel  antimicrobial  surfaces  and/or 

cleaning regimens used in different environments. 
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CHAPTER 1

THE INFLUENCE OF SURFACE CHEMISTRY AND 

TOPOGRAPHY ON MICROBIAL RETENTION

1.1 INTRODUCTION

Hygienic surfaces are hard, inert, and easy to clean. Stainless steel remains the 

surface of choice in most instances in the food industry, since it is stable at a variety 

of  temperatures,  is  inert,  relatively  resistant  to  corrosion  and  may  be  treated 

electrolytically or mechanically to achieve functionally and aesthetically improved 

surfaces  (Verran  et  al.,  2000).  Wear  of  steel  tends  to  result  in  linear  features 

(scratches), with occasional pits. Glass/ceramics are similarly ‘‘hygienic’’ and ceramic 

tiles may be used on walls or floors. ‘‘Wear’’ of such ceramic surfaces tends to present 

as fractures. Plastics, epoxy resins, and rubbers are softer, more flexible, and much 

more  problematic  in  terms  of  hygienic  status  and  cleanability,  although  they are 

essential for some appliances such as gaskets and conveyors in some parts of the food 

processing  plant.  Loss  of  flexibility  through  excess  wear,  and  resultant  cracking 

increases  the  potential  for  penetration  of  contaminating  microorganisms  into  the 

material. 

Most ‘‘open’’ surfaces tend to be exposed to liquid only intermittently,  for 

example during cleaning, thus the attached cells do not form a true biofilm as would 

be  seen  on ‘closed’ surfaces  at  a  solid–liquid  interface  such  as  within  pipework, 

although  microcolonies  might  be  observed  if  conditions  are  suitable  for  any 

multiplication,  and  areas  of  poor  accessibility  and  surfaces  of  increased 

porosity/flexibility would facilitate the accumulation of microorganisms. In addition 

to  changes  in  topography  due  to  wear,  surface  hydrophobicity  will  affect  drying 

kinetics (Whitehead and Verran, 2007), with moisture droplets being more prominent 
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on hydrophobic surfaces, taking longer to dry, thus promoting cell deposition at the 

solid–liquid–air  interface.  Vertically  orientated  hydrophobic  surfaces  will  facilitate 

liquid run-off, leaving a relatively clean surface—a phenomenon employed in part by 

the ‘‘Lotus effect’’ (Furstner et al., 2005).  This study focuses on open food contact 

surfaces, which are primarily metal.

1.2. FACTORS AFFECTING RETENTION 

1.2.1 Surface topography

One factor that significantly affects  microbial  retention on a surface is  substratum 

topography.  It is generally agreed that an increase in both the type and degree of 

surface roughness enhances the retention  of microorganisms on a surface thereby 

providing a protected site from which subsequent colonisation may occur (Verran et 

al., 1991). Therefore substratum topography has significance in food hygiene, where 

fouling is enhanced and cleanability impeded.

Stainless steels often present a ‘‘finish’’, for example a brush finish (Fig 1.1), 

where parallel linear features of defined dimensions give a pleasing aesthetic to the 

naked eye, and reduce the visibility of fingerprints. It has been shown that the finish 

of stainless steels used in food processing does not affect their cleanability or hygienic 

status (Airey and Verran, 2007; Hilbert et al., 2003), although bacterial attachment 

(not retention) on electropolished surfaces has been shown to be less than that on 

rougher stainless steel finishes (Arnold et al., 2004). 
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Fig. 1.1 AFM images of 304 stainless steel with (a) 2B and (b) brushed finish
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However, wear of such surfaces inevitably results in the production of linear features, 

of differing dimensions and length, randomized across a surface (i.e., scratches), and 

‘‘pits’’ (Fig. 1.2). Simulation of worn surfaces to assess cleanability in vitro has 

demonstrated that hygienic status of stainless steel and ceramic was not affected in 

terms of microbial retention, but cleanability, in terms of removal of organic (food) 

soil was reduced (Boyd et al., 2001; Frank and Chmieliewski, 1997; Verran et al., 

2001; Verran and Whitehead, 2006). 

1.2.1.1 Surface roughness parameters

All manufactured surfaces depart to some extent from absolute perfection in 

terms of presenting a ‘smooth’ surface. Imperfections on any surface take the form of 

a series of peaks and valleys which may vary in both height and spacing. Surface 

roughness exists in two principle planes (Thomas, 1999); perpendicular to the surface, 

described as height deviation, and in the plane of the surface, described by spatial 

parameters and identified as texture.  Amplitude parameters are the most important 

parameters to characterise surface topography (Gadelmawla et al.,  2002). They are 

used to  measure the vertical  characteristics  of  the  surface  deviations.  There  are  a 

number of amplitude parameters for example Ra, Rz, Rp, Rq, for the purpose of this 

study the parameter chose to represent surface roughness was Ra.  The Ra, also known 

as the centre line average is the most universally used roughness parameter for quality 

control (Verran and Maryan, 1997). In microbiological publications the Ra is the most 

common descriptor of surface roughness (Verran and Boyd, 2001) perhaps because it 

is easy to define and measure.
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Fig.  1.2 AFM image of a replica of a worn stainless steel surface demonstrating linear 

features  of  differing  dimensions  and  length,  randomized  across  a  surface  (i.e., 

scratches), produced by wear on an in-use stainless steel surface.
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However, although the Ra value is not very sensitive to single large peaks or valleys, 

or changes in profile (Fig 1.3) it gives a good general description of height variations 

(Gadelmawla  et  al.,  2002),  on the  assumption  that  features  are  evenly distributed 

across a surface (i.e. it is a statistical value). However information on the dimensions 

of individual features in not provided (Westberg, 1998). The Ra measurement provides 

an  indication  of  surface  roughness,  usually  given  in  micrometres,  describing  the 

average departure of the surface profile from a constructed ‘‘centre line’’—in effect a 

two-dimensional measure of a three-dimensional parameter. An Ra value of less than 

0.8 µm is generally accepted as indicative of a hygienic surface. However, Ra values 

can  only  be  really  representative  if  there  is  a  regular  surface  topography,  as  for 

polished and brushed stainless steel, but not for worn surfaces whose aberrations tend 

to be of a random nature (Verran et al., 2000). Thus, in the food processing industry,  

wear  of  food  contact  surfaces  through  abrasion  and  impact  damage  will  affect 

topography, but may not necessarily alter the key parameters used to measure surface 

roughness (Boulange-Petermann, 1996; Boyd et al., 2001b; Holah and Thorpe, 1990; 

Packer et al., 2007; Verran et al., 2000, 2001; Verran and Boyd, 2001). It is therefore 

important  to  visualize  the  surface  as  well  as  deriving  an  Ra  value,  or  any other 

statistically derived parameter. Attempts to examine the effect of surface topography 

on microbial retention have revealed apparently conflicting data. Some have observed 

no relationship between surface roughness (in terms of Ra) and the ability of bacteria 

to attach (Boulange-Petermann et al., 1997; Flint et al., 2000; Langeveld et al., 1972; 

Tide et al., 1999; Vanhaecke et al., 1990; Verran and Boyd, 2001).
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Fig 1.3 Different surface topographies with the same Ra value.

Fig 1.4 Mathematical equation for the calculation of average roughness Ra
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Others have suggested that the greater the degree of surface roughness, the greater the 

retention of microorganisms (Bollen et al., 1997; Holah et al., 1990; Medilanski et al., 

2002;  Verran  and  Maryan,  1995).  However,  these  apparent  contradictions  arise 

primarily from the use of different perspectives of scale (Verran and Boyd, 2001). If 

the surface irregularities are much larger than the microorganisms, passive retention 

will be minimal (Verran et al., 1991) unless within these macroflaws, micro or even 

nanosize features existed (Verran and Boyd, 2001). If the features are of microbial 

dimension or  slightly smaller,  then retention  will  be  enhanced.  However,  surfaces 

with a regular nanotopography have been shown to reduce microbial attachment, due 

to the lack of sufficient area for contact between the cell and the substratum (Cousins 

et al., 2007; Li et al., 2004; Whitehead and Verran, 2006). On worn, hygienic food 

contact surfaces, all  of these topographical features are likely to be present.  Their 

separate impact on surface cleanability and cell retention has yet to be investigated, 

requiring  the  fabrication  of  surfaces  with  defined  topography.  Thus,  microbial 

retention assays have been carried out in our laboratories on a      range of engineered 

surfaces with controlled topographical features of dimensions comparable to those of 

microbial cells (e.g., pits (Whitehead et al., 2005) and grooves (Packer et al., 2007; 

Scheuerman et al., 1998)). Whitehead et al. (2005) demonstrated that with a range of 

differently sized unrelated microorganisms, the size of circular surface defects was 

important with respect to the size of the cell, and its subsequent retention. 

1.2.1.1.1 Macro roughness, Ra ~ 10µm

Surfaces with high Ra values of the macro scale tend to be found where the 

impact of hygiene and infection are less significant, for example in water distribution 

systems (Verran and Boyd, 2001).

1.2.1.1.2 Micro roughness Ra ~ 1µm
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Intraoral surfaces have roughness values that fall into this category (Verran 

and Boyd, 2001). In a study of plaque formation, a cut off point of surface roughness 

for facilitating adhesion and colonisation was estimated to be Ra = 0.2µm (Bollen et 

al.,  1997).  The  surface  finish  of  stainless  steel  contact  surfaces  used  in  the  food 

industry and other hygienic applications should not have an Ra of more than 0.8µm 

(ISO 4287 : 1997).

1.2.1.1.3 ‘Nanoroughness’, Ra <1µm

Small features may affect not only the topography, but also the hydrophobicity, 

and hence its  interaction  with microorganisms.  However,  unlike  micro  and macro 

surface features that may be present on a surface, features of such small size will have 

little effect on the Ra or other roughness values, and are beyond the scope of this 

study.

1.2.2 Surface chemistry

In food hygiene, the contact surface is required to be inert, so that transfer of 

any potential  chemical  contaminant  from substratum to  food does  not  occur.  The 

chemistry of stainless steel,  the material  of choice,  is  complex,  being modified in 

order to produce materials with properties relating to conditions of use: chromium for 

example enhances corrosion resistance. Other elements can be added, for example, 

nickel,  manganese,  molybdenum  (Maller,  1998).  Chromium  reacts  with  the 

atmosphere to form a protective oxide layer (passivation) and it is this oxide layer that 

gives stainless steel its enhanced corrosion resistance. Because of the speed of re-

passivation (sec or min) in normal ambient conditions it is difficult to determine the 

exact  chemical  makeup  of  the  surface  of  stainless  steel  and  a  review  of  the 

experiments and in situ techniques concludes that the passive film is never static and 

that it changes across a surface (Olsson and Landolt, 2003). The effect of variations in 
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the surface chemistry of stainless steel on microbial retention has not been explored to 

date: for example, differences between grain boundary and the bulk surface properties 

may affect cell–substratum interactions over and above those of simple topography. 

However, in food processing, the substratum employed is rarely that of mill finish 2B, 

which  is  produced  by cold  rolling,  annealing  as  has  a  pickled  finish,  with  grain 

boundaries. Brushed or polished surfaces are in common use,  providing a defined 

topography imposed on top of the grain boundaries. There have been studies assessing 

the effect of surface chemistry on microbial attachment, using surfaces of comparable 

topography  but  differing  chemistry.  For  example,  the  adhesion  of  Listeria  

monocytogenes,  Staphylococcus  aureus,  and  Escherichia  coli have  been  assessed 

using surfaces with varying chemical groups grafted onto the surfaces (hydrophilicity, 

hydrophobicity). The vast majority of individual cells retained (96.9%) was associated 

within  surface  features.   It  was  shown  that  the  bacterial  attachment  of  Listeria  

monocytogenes and Escherichia coli was affected by the chemistry of the underlying 

substrate  (Cunliffe  et  al.,  1999).  The  underlying  surface  chemistry  has  also  been 

shown to affect biofilm formation (Teughels et al., 2006). Wilks et al. (2005) found 

that the persistence and survival of  Escherichia coli O157 was greatly reduced on 

copper alloys in comparison to stainless steel: However, the toxicity of copper would 

preclude  its  use  on  food  contact  surfaces  (Airey  and  Verran,  2007).  When  a  2B 

finished stainless  steel  was coated  with a  titanium grid,  Pseudomonas aeruginosa 

(Verran et al., 2003) and Staphylococcus aureus (Verran and Whitehead, 2005) were 

found to preferentially bind to the raised titanium features. In contrast,  Escherichia 

coli would  not  attach  to  titanium  coated  surfaces  (personal  communication  (K. 

Whitehead).  This  different  behaviour  of  cells  on  surfaces  might  provide  an 
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opportunity for coating surfaces at critical control points on equipment with a material 

less conducive to retention, enabling targeted hygiene control strategies

1.2.3 Presence of organic matter

At the solid–liquid interface surfaces are rapidly ‘conditioned’ with organic 

material.  The  biological  surface  presented  to  microorganisms  by the  conditioning 

layer  provides  an  element  of  specificity via  receptors  for  the adhesion  of  pioneer 

organisms (Verran and Boyd, 2001).  On an open surface (solid–air  interface),  this 

might instead occur more nonspecifically via direct contact with food (Verran, 2002). 

Attached microorganisms may be  retained in  surface  features  mixed with  organic 

material such as fats, carbohydrates or proteins, or detergent residue (Verran, 2002). 

Thus, the term ‘‘conditioning film’’ may not be appropriate especially where a more 

significant transfer of organic matter occurs (Verran, 2002). Relatively large deposits 

of organic soil may fill larger defects prior to microbial surface contamination (Frank 

and Chmielewski, 1997; Kumar and Anand, 1998; Milledge and Jowitt, 1980; Verran 

and  Jones,  2000),  and mask  the  underlying  topography,  while  the  formation  of  a 

thinner conditioning film (Carpentier and Cerf, 1993) on any surface in an aqueous 

environment  may  mask  small  topographical  features.  There  is  also  evidence  that 

nanoscale  roughness  enhances  the  adhesion  of  the  conditioning  layer  to  the 

substratum  (Hanarp  et  al.,  1999).  Thus  the  presence  of  organic  (and  inorganic) 

material on a surface affects its cleanability, and also, potentially, its hygienic status 

since the ‘‘soil’’ can interfere with the activity of cleaning and disinfecting agents, by 

physically and ‘‘chemically’’ protecting microorganisms. This organic material may 

also  potentially  provide  nutrients  for  the  residual  microorganisms,  enabling 

multiplication and an increase in contamination of the surface. It has been shown that 

following  continued  cleaning  and  fouling  cycles,  stainless  steel  grain  boundaries 
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become  progressively  more  contaminated  with  organic  soil  (Verran  et  al.,  2001; 

Verran and Whitehead, 2006). This cumulative soiling will inherently affect surface 

conditions and thus microbial attachment and retention.

1.3. CHARACTERISATION OF SURFACES

1.3.1 Topography

There are several methods by which surface topography can be characterized, 

but the choice of method is dependent on the size of the samples and surface features. 

At  the  nanoscale  surface  topography  is  usually  characterized  using  atomic  force 

microscopy (AFM). The AFM has a sharp tip that can vary in shape but is around 10 

nm in size, and can be used in a contact or noncontact mode when scanning a surface. 

The force applied to the tip and the tip shape can also be varied depending on whether 

hard or biological samples need to be imaged. Although the surface can be visualized 

in  three-dimensions  with  excellent  resolution,  the  area  analysed  is  small,  thus 

irregularities  in  the surface can greatly skew the results  unless a large number of 

measurements  are  made  (Verran  and  Boyd,  2001).  Another  disadvantage  of  this 

instrument  is  that  many  samples  may  be  too  rough  to  image.  White  light 

interferometry may be used at the nanoscale level, but can scan larger surface areas. It 

utilizes  the  deflection  of  light  from  surface  irregularities  to  produce  a  three-

dimensional noncontact image of the surface. The advantage of using a white light 

interferometer over AFM is that it is easy to operate and is relatively quick; however 

it  is  not  always  easy to  image some polymers  and translucent  materials.  In  laser 

profilometers,  again  noncontact  instruments  use  highly  precise  stages  to  create 

profiles  and three-  dimensional  topographies.  The solid  stylus  (probe  radius  2–10 

mm) profilometer traces across the surface producing a two-dimensional trace from 

which roughness values are calculated. However if an entire surface is to be mapped, 
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many lines must be scanned. There are also limits in lateral resolution, set by the size 

of the probe tip, which can range from 10–25 mm diameter. For both the solid stylus 

profilometer and the AFM, probe dimensions affect observed results. If the probe is 

physically incapable of reaching the bottom of narrow troughs, features are recorded 

as being more shallow than they are. It is also difficult to accurately chart  highly 

curved, undercut, or convoluted surfaces with steep slopes. 

1.4 AIM OF STUDY

The aim of this study was to identify factors that will improve the hygienic 

status of open food contact surfaces. The objectives were to:

I. Determine the dimensions of typical linear features (abrasions and 

scratches) on in-use stainless steel.

II. Reproduce typical controlled linear features in the laboratory.

III. Assess the effect of surface topography and chemistry on the retention 

of microbial cells and organic soil using surfaces that may be used in 

the food industry.

IV. Identify properties of the surface that will minimise fouling and 

maximise cleanability.

CHAPTER 2

PRODUCTION AND CHARACTERISATION OF SURFACES 
WITH DEFINED CHEMISTRY AND LINEAR TOPOGRAPHIES

2.1 INTRODUCTION
In the food industry,  surfaces should be “in a sound condition and easy to 

clean” (European legislation,  1994).  In  the food plant  environment,  open working 
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surfaces are considered to be potential sources of microbial contamination, thus their 

hygienic status and cleanability is of paramount importance (Taylor and Holah, 1996). 

Viable microorganisms attached to the surface or retained within surface features may 

escape  the  cleaning  and  disinfection  procedures  and  pose  a  biotransfer  potential 

(Hilbert et al. 2003). 

As has  already been noted,  the  Ra is  a  2-dimensional  measurement  of  the 

average departure of the surface profile from a mean centre line (Anon, 1988) and is 

used  as  a  descriptor  of  surface  roughness.  The  white  light  profilometer  (WLP) 

measures the Sa value which is the same measurement as the Ra except it is taken 

across an area of the surface, rather than a line profile.

Neither Ra nor Sa differentiate between linear and circular features encountered 

by the profile probe (ie scratches and pits), but also the size of the probe scanning the 

surface will affect the measurement obtained, due to different probe resolutions. The 

advantage of using atomic force microscopy and white light profilometry is that they 

provide information on a scale more related to microorganisms than the more easily 

accessible solid stylus profilometer. Further, these methods allow visualisation of the 

surface under investigation.

Although  information  on  the  surface  topography may  be  specified  by  the 

manufacturer, the new surface is only pristine for its first use, and inevitably changes 

to  the topography will  take place over  time due to wear  (Timperley et  al.  1992), 

through  abrasion,  cleaning  and  impact  damage.  These  newly  introduced  surface 

topographical features (Verran and Boyd, 2001; Whitehead et al. 2006) may increase 

the retention of both organic soil and microorganisms and hamper cleanability (Boyd 

et al. 2001). It is therefore of value to be able to monitor such wear, and also to use a  

worn surface during  in vitro cleaning assays, which in turn requires simulation and 
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reproduction  of  in  situ surfaces.  Direct  in  situ examination  of  worn  surfaces  is 

difficult  for  several  reasons  encompassing  production  down  time,  potential 

contamination  risks,  and  access  to  surfaces.  Thus  it  is  advantageous  to  take 

impressions of the surface which can be analysed remotely. 

Stainless steel is the material of choice for use in the food industry. However, 

it is chemically heterogeneous, and thus it is difficult to specify the effect of surface 

chemistry on microbial retention. One approach is to maintain the surface topography, 

whilst  producing a homogeneous surface chemistry,  via deposition of a conformal 

coating  on  the  surface  using  the  physical  vapour  deposition  (PVD)  technique  of 

unbalanced magnetron sputtering.  Magnetron sputtering  is  an  atomistic  deposition 

process with concurrent bombardment of the growing film by energetic ions. This 

allows  fully  dense  coatings,  which  are  conformal  to  the  substrate  surface  to  be 

produced (Kelly and Arnell, 2000; Whitehead et al. 2004). 

Titanium  exhibits  well-known  properties  such  as  very  high  resistance  to 

corrosion, low specific weight, very low toxicity, and high biocompatibility (World 

Health  Organisation,  1982),  thus  could  safely  come  into  contact  with  foodstuffs 

(Feliciani et al. 1998). Furthermore, titanium has previously been reported to have 

antibacterial properties (Yoshinari et al. 2000: 2001; Shibata et al. 2004). Nanophase 

titania and crystalline titanium oxide surfaces have been shown to reduce the adhesion 

of Staphylococcus epidermidis (Colon et al. 2006) and Streptococcus spp. respectively 

(del Curto et al. 2005). 

The aim of this  part  of the study was to  develop a  rapid and simple non-

destructive  method  for  indirect  characterisation  of  surface  wear  in  situ,  and  to 

characterise  the  shape  and  dimensions  of  surface  features  in  the  range of  typical 

microbial dimensions. Using these data, a titanium (TiOx) coating was then applied to 
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surfaces with features of dimension comparable to those found on the worn surface. 

These  surfaces  were  then  used  to  investigate  their  effect  on  the  retention  of 

microorganisms and organic soil.
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2.2 MATERIALS AND METHODS
2.2.1. Indirect examination of surfaces

This technique enabled comparisons to be made between the roughness values 

obtained directly from a surface and indirectly via an impression of the surface thus 

validating the impression technique for subsequent sampling of surfaces in situ. A 10 

mm x 10 mm square of pre-cut 180 µm thick cellulose acetate (Agar Scientific Ltd, 

Essex, UK) film was transferred to a glass Petri dish and softened for 30 seconds in 2 

ml  of  acetone  (BDH,  UK).  Once  soft,  the  film was  removed  with  tweezers  and 

applied to the steel surface. A light fingertip pressure was applied. When the acetone 

had evaporated (15 min), the acetate film was peeled off using tweezers, yielding a 

negative replica of the template surface on the underside of the film. The film was 

inverted, placed onto a scanning electron microscope (SEM; Cambridge Stereoscan, 

Cambridge,  UK) stub,  and gold sputter  coated.  The coated replica of the original 

surface was removed from the stub after SEM analysis, for subsequent atomic force 

microscopy (AFM) and white light interferometry (WLI). The diameters, depth and 

profile of typical features were measured where possible.

2.2.2 Surfaces
2.2.2.1 Stainless steel surfaces

Type  304  fine  polished  stainless  steel  [FP]  (Outokumpu  Stainless  Ltd, 

Sheffield UK) was cut into 10 mm x 10 mm squares using a guillotine. The samples 

were examined in a pristine as-manufactured state, with the protective plastic coating 

removed  only  directly  before  analysis.  Representative  worn  stainless  steel  (type 

unknown) was sampled in situ, via an impression technique (described above), from a 

horizontal food preparation area in a canteen.

2.2.2.2 Polished silicon wafers
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Polished  silicon  wafers  obtained  from Montco  Silicon  Technologies  (Washington, 

US). Wafers were cut into approximately 1 cm2 pieces using a diamond tipped cutting 

tool (Agar, Stansted, Essex, England). Dust particles were removed with Nitrogen gas 

(Whitehead et al. 2005).

2.2.2.3 Production of surfaces with 30 micron features

The larger  features (30 μm wide)  identified from the impression technique 

(2.2.1) were created using a Teer Coatings Ltd. ST3001 scratch tester. This was used 

in combination with a 200 micron radius diamond and a 2N load, to produce linear 

features with widths of the order of 30 microns. The 30 micron surfaces were then 

coated with titanium in a magnetron sputtering rig. Ten surfaces were checked for 

topographical continuity using Atomic Force Microscopy.

2.2.2.4 Production of surfaces with microbial scale features

Smaller  features identified from the impression technique were represented 

most conveniently using unwritten compact discs (CD) and digital video discs (DVD) 

which provided a simple means for obtaining surfaces presenting regular 0.59 µm 

(DVD) and 1.02 µm (CD) width linear features. For the CD, the density of lines was 

approximately 5,000 per cm2; 10,000 per cm2 for the DVD. The protective coats were 

stripped from the discs after an overnight soak in 30 % sodium hydroxide (BDH, UK) 

followed by a rinse with sterile distilled water. The stripped CDs and DVDs were 

dried in a laminar  flow hood, and cut  into 1 cm2 pieces (Whitehead et  al.  2004). 

Surfaces presented specific topographical features; ‘smooth’ surfaces (i.e. Ra value < 5 

nm) and surfaces with unidirectional grooved features of regular size. All surfaces 

were  coated  with  titanium  using  physical  vapour  deposition  to  ensure  chemical 

homogeneity. 

2.2.3 Substrata coating
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2.2.3.1Physical Vapour Deposition (PVD)

The biological response of a material may be changed by modifying its surface 

topography and chemistry (Colligon et al., 1996). Physical vapour deposition (PVD) 

is the name given to coating processes where the transport of material to the substrate 

is  effected by a  physical  driving mechanism (Hultman and Colligon,  1999).  Such 

mechanisms include  evaporation, sputtering and ion plating. Ejection of atoms from a 

surface is called sputtering, which was first reported by Grove in 1852 who observed 

formation of deposit in a glass in which a discharge had been running. He identified 

this to be the same material as one of the electrodes. This ejection of atoms from an 

ion-bombarded surface is now known as sputtering. 

2.2.3.2 Magnetron Sputtering

In the basic sputtering process, a target (or cathode) plate is bombarded by 

energetic  ions  generated  in  a  glow  discharge  plasma  in  front  of  the  target.  The 

bombardment of ions causes the removal of target atoms known as “sputtering”, these 

atoms may then condense on a substrate as a thin film. Secondary electrons are also 

emitted from the target surface as a result of the ion bombardment. These electrons 

help to maintain the plasma. Magnetrons make use of the fact that a magnetic field 

parallel to the target can constrain a secondary electron motion to the vicinity of the 

target. The magnets are arranged in such a way that one pole is positioned at the 

central axis of the target with a second pole formed by a ring around the outer edge of 

the target. The increases the probability that an ionising electron-atom collision may 

occur. Higher sputtering rates are achieved by the increased ion bombardment of the 

target.

2.2.3.3 Unbalanced magnetron sputtering
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In an unbalanced magnetron the outer ring of magnets is strengthened relative 

to the central pole. In a conventional dc magnetron electrons are constrained to follow 

spiral orbits about the lines of magnetic flux which form closed paths onto the target. 

By changing the strength of the N and S magnets so that one is stronger than another 

not all the field lines are closed between the central and outer poles in the magnetron, 

but some are directed towards the substrata, and some secondary electrons are able to 

follow those field lines. Therefore the plasma is not confined to the target region but 

is also allowed to flow out towards the substrate. 

2.2.3.4 Deposition of titanium onto substrates

In  order  for  the  effects  of  topography  alone  on  microbial  retention  to  be 

ascertained, a uniform surface chemistry was required. To achieve this, substrata with 

varying underlying topographies were coated with titanium via magnetron sputtering. 

The titanium coatings were deposited onto the substrate surfaces by biased magnetron 

sputtering in a modified Edwards E306A coating system rig. Sputtering took place 

from a single 150 mm diameter x 10 mm thick,  99.5% pure titanium target (base 

pressure 10-4 Pa; argon gas at a working pressure of 0.15 Pa; magnetron power of 0.5 

kW; time 15 minutes). Prior to the deposition of the titanium coatings, the substrates 

were sputter cleaned at 1000V DC for 10 minutes. During deposition, the substrates 

were  biased  at  -50V  to  ensure  the  formation  of  a  dense,  conformal  film.  This 

conformality  was  confirmed  by  fracturing  coatings  and  examining  cross-sections 

using SEM, which revealed thickness, structure and substrate coverage. The film was 

stable in aqueous medium. Due to the reaction of titanium in air the surfaces used in 

the subsequent microbiological experiments are TiOx.

2.2.4. Atomic force microscopy (AFM)
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Atomic force microscopy (Quesant Instruments, CA, USA) was used to image 

and characterise the topography of the new surfaces, and the impressions of new and 

worn surfaces. The AFM was operated in contact mode using silicon nitride tips with 

a spring constant of 0.12 N/m. Two and three dimensional maps were imaged from 

the  surfaces  and  Ra  values  were  produced  by taking  the  average  of  the  absolute 

deviation of the roughness irregularities from the mean line over one sampling length. 

Five samples were taken from three different areas therefore n = 15 for each surface.

2.2.5. White light interferometry (WLI)

Using WLI the topography of the new surfaces was measured directly and also 

indirectly from the surface replicas. Analysis of the surface roughness qualitatively 

(images) and quantitatively (Sa values) were taken using a MicroXAM (phase shift) 

surface mapping microscope with an ADE phase shift XYZ 4400 ml system and an 

AD phase shift  controller  (Omniscan,  Wrexham, UK).  The image analysis  system 

used was Mapview AE 2.17 (Omniscan, Wrexham, UK). Analysis was carried out 

using EX mode. Three samples of every surface were examined and five separate 

areas on each sample scanned to gain average values.

2.2.6. Scanning electron microscopy (SEM) and energy dispersive X ray spectroscopy 

(EDX) 

Titanium coated  surfaces  were  checked  for  conformity  of  film  deposition 

using SEM and EDX characterisation.  Images  of  substrata  were  obtained using  a 

JEOL JSM 5600LV scanning electron microscope (Jeol Ltd, Herts, UK). Replicates 

were carried out in triplicate. Chemical analysis of substrata was carried out to a 1 μm 
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depth using a Link Pentafet  detector (Oxford Instruments,  Buckinghamshire,  UK), 

with Inca software (Oxford Instruments, Buckinghamshire, UK). 

Substrata plus retained cells were immersed in 4% (w/v) gluteraldehyde for 

24 h at  4  ºC.  After  fixing,  substrata  were washed gently with distilled  water  and 

passed down an ethanol (BDH, Basingstoke, Hampshire, England) gradient at 30%, 

50%, 70%, 90% and 100% each for 10 min. The samples were mounted onto stubs for 

gold sputter coating prior to examination. Images of substrata and cells were obtained 

as above. Ten fields per sample were counted.

2.2.7 Contact angle measurements 

Contact angle measurements were determined at room temperature using the 

sessile drop technique and 5 µL volumes of solution on a Kruss goniometer and data 

analysis  system.  Five  microlitres  of  HPLC grade  water  (BDH,  Poole,  UK)  were 

deposited onto a horizontal sample using a syringe. Advancing contact angles of the 

droplet were calculated automatically using the analytical software.

2.2.8. Maintenance and preparation of microorganisms 

Escherichia  coli CCL  410  (a  non-pathogenic  0157:H7  strain)  and 

Staphylococcus sciuri CCL 101 were kindly provided by Brigitte Carpentier (AFSSA, 

France). S. sciuri was used as a representative of the Staphylococcus genus associated 

with the food industry. Stock cultures of microorganisms were stored at −80 °C and 

stored and maintained according to Cabellero et al., (2009). 

In preparation for assays,  stock cultures were inoculated onto nutrient agar 

(NA) (Oxoid, UK) and incubated at 37 ◦C for 24 h. Cultures were sub-cultured onto 
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fresh agar before use and were maintained at 4 ◦C. Fresh stocks were prepared from 

the frozen stock cultures every three months. A single colony of E. coli was inoculated 

from an agar plate into 100 ml of nutrient broth (Oxoid, UK) and incubated for 18 h 

with shaking at 37 ˚C. Cells were harvested by centrifugation (3600 × g for 12 min)  

and washed three times in 10 ml sterile distilled water. The resultant cell suspension 

was  adjusted  to  an  optical  density  (OD)  1.0  at  540  nm  corresponding  to 

concentrations of  E. coli 5.73 ± 0.82 × 108 and  S. sciuri 0.64 ± 0.66 × 109 colony 

forming units ml−1 (CFU ml-1). 

Stock cultures of  L. monocytogenes were inoculated on tryptone soya agar 

(Oxoid) and incubated at  30ºC overnight.  S. sciuri was prepared in the same way 

except nutrient agar and nutrient broth (NB) (Oxoid) was used, and cells were grown 

at 37ºC. Cultures were stored at 4ºC and used within 1 month. Ten millilitres of TSB 

was  inoculated  with  a  single  colony of  L.  monocytogenes and  incubated  at  30ºC 

overnight or ten millilitres of NB was inoculated with a single colony of S. sciuri and 

incubated at 37ºC overnight. One hundred microlitres of L. monocytogenes was used 

to inoculate 100 ml TSB which was incubated at 30C for 18 h or 100µl of S.  sciuri 

was used to inoculate 100 ml of NB which was incubated at 37C for 18 h. Following 

incubation, cells were harvested at 716 g for 10 min and were washed three times, by 

resuspension in sterile distilled water, vortexing for 1 min and then centrifugation  at 

716 g for 10 min. Cells were resuspended to an OD (optical density) of 1.0 at 540 nm 

in sterile distilled water.  Colony-forming units  ml-1 (cfu ml)-1 were determined by 

serial dilution and were 1.07 ± 0.58 x 108 colony-forming units (cfu) ml-1 for Listeria  

monocytogenes and  1.64 ± 0.96 x 108 cfu ml-1for Staphylococcus. sciuri.

2.2.9. Meat exudates
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The method was kindly provided by Brigitte  Carpentier  (AFSSA, France). 

One kilogram of fresh rolled beef brisket (COOP, UK) was cut into 10 mm x 10 mm 

pieces. The meat pieces were put into a stainless steel tray and covered in aluminium 

foil. The meat was covered by another tray and weighed down with 8.4 kg of stainless 

steel sheets and frozen at -20ºC for 24 h. The meat was defrosted at room temperature 

and the meat exudates  were poured off and the meat  squeezed to  recover surplus 

exudates. The meat exudates were stored in 20 ml aliquots at -20ºC until needed.

2.2.10. Retention assays and differential staining (Whitehead et al., 2009)

Three replicate test substrata were coated with 10 µl of meat exudate and dried 

for one hour in a class 2 flow hood. These conditioned surfaces were then placed 

horizontally in a glass Petri dish, to which 25 ml of standardised cell suspension were 

added, and incubated for 1 h at 37ºC without agitation. Test substrata were removed, 

rinsed once, for 5 s, gently with 5 cm3 distilled H2O, with a distilled water bottle with 

a 3 mm nozzle at a 45◦ angle. Samples were air dried in a microbiological class 2 

containment  hood  for  one  hour.  Retained  cells  and  meat  exudate  were  stained 

according to the method of Whitehead et al. (2009) with 10 µl of 4′,6-diamidino-2-

phenylindole (DAPI) (Sigma, UK) which had been dissolved in sterile distilled water 

at  a  stock  concentration  of  0.3  g/ml  and  a   working  concentration  of  0.1  g/ml 

(Excitation 340, Emission 488). This 10 µl was applied to the samples and spread 

across the surface using a sterile plastic spreader. Ten microlitres of                           9-

(2-carboxyphenyl)-6-diethylamino-xanthen-3-ylidene]-diethyl-azanium  chloride 

(Rhodamine B) (Invitrogen,  Scotland)  were dissolved in  acidic  ethanol  at  a  stock 

concentration of 0.1 g/ml, and a working concentration of 0.1 mg/ml (Emission 554, 

Excitation 627) was applied to the sample as above to stain the meat exudate. Stains 

were not washed off between applications. Substrata plus adherent microorganisms 
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and meat exudate were visualised using epifluorescence microscopy (Nikon Eclipse 

E600,  Nikon,  Surrey,  England).  The microscope was  mounted  with  an  F-View II 

black and white digital camera (Soft Imaging System Ltd., Helperby, UK, supplied by 

Olympus,  Hertfordshire,  UK). This system used a  Cell  F Image Analysis  package 

(Olympus,  Hertfordshire,  UK).  To obtain  surface  coverage  data  for  cells  and soil 

separately, an area of each surface was selected at random and an image captured, first 

using one UV light wavelength stain filter, and then a second image was captured 

using a second filter. The threshold of the images was set and the percentage area of a 

microscopic field covered by stained material  (cells  or organic soil)  was recorded 

individually for forty fields.

2.2.11. Statistical analysis

Statistical tests were carried out using a two - tailed distribution t-test with two 

sample  homoscedastic  variance.  The  results  are  reported  as  mean  ±  standard 

deviation.  The  differences  observed  between  the  substrates  were  considered 

significant at p < 0.05.
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2.3 RESULTS AND DISCUSSION
To  determine  the  integrity  of  the  cellulose  acetate  replication  method, 

impressions were taken of a range of ‘in-situ’ worn surfaces and new pristine surfaces 

(Table 1). The use of cellulose acetate softened with acetone for taking impressions of 

hygienic surfaces proved successful in reproducing surface topography and enabling 

wear damage to be measured and visualised at a microbiologically relevant scale. The 

new fine polished stainless steel surface was replicated using the cellulose acetate 

technique  and it  was  demonstrated  that  using  WLI  (Fig.  2.1)  and  AFM, that  the 

impression  material  clearly  reproduced  the  topographic  features.   White  light 

interferometry  and  AFM  measurements  of  a  surface  with  known  dimensions 

demonstrated that the cellulose acetate method gave reproducible inverse replicates of 

the  surface  topography.  The  fine  polished  stainless  steel  presented  linear  surface 

grooves,  consistent  with  the  polishing  method.  The  WLI  image  revealed 

unidirectional surface features in the range of 1 µm - 10 µm width and 2 µm depth, 

with lengths > 60 microns. The widths of many surface features were of bacterial cell 

dimensions  (≥  1  µm),  although  larger  surface  features  (macrotopographies)  were 

observed (20 µm width), within which further features of microbial dimensions (1 µm 

–  10  µm)  were  also  observed.  AFM images  (not  presented)  of  the  fine  polished 

surface linear features supported the WLP findings. Feature widths were in the range 

of bacterial cell dimensions (≥ 1 µm), but larger surface features were also observed 

(20 µm width) with depths up to 0.25 µm. 

Using  the  SEM,  the  cellulose  acetate  replica  of  the  original  surface  was 

imaged (Fig.  2.2a).  This  image was then converted into  a  negative  replica of  the 

image (Fig. 2.2b), to give a true representation of the surface. Large surface scratches 

with widths of approximately 1 µm - 10 µm could be determined across the length or 

width of the worn surface. Some scratches of > 200 microns in length were observed.
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Table  1  Widths  and  depth  of  features  following  cellulose  impressions  of  in  situ 

surfaces.
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Fig. 2.1 White light image of (a) new fine polished steel (Sa = 0.2 µm) (b) replica of 

the same sample of new fine polished steel (Sa = 0.2 µm). Scan size 80 µm x 60 µm.

Fig. 2.2 Scanning electron micrograph of a cellulose acetate replica of a worn surface 

(a)  the  replica  –  a  negative  of  the  surface  (b)  a  negative  of  the  replica,  thus  a 

representation of the original surface.

SEM images of the worn surface demonstrated that a true representation of the 

original surface had been made. However, the SEM cannot provide feature depths or 

roughness values of the worn surface, for example Ra and Sa values. 
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AFM  images  of  the  cellulose  acetate  replicas  of  the  worn  stainless  steel 

surface revealed surface features of <0.5 µm - 20 µm width with depths up to 2.5 µm. 

Using AFM and WLP, roughness measurements (Ra and Sa) were derived for the fine 

polished and worn surfaces (Fig. 2.3). There was no significant difference for the Sa 

values  for  the  fine  polished,  or  worn  surfaces  (p  >0.05).  However,  significant 

differences were observed for the Ra values between the two surfaces (p < 0.001). 

AFM and WLP measurements allowed the surface topographies to be visualised and 

the Ra and Sa values to be determined. Both measurements were used, because they 

can image different sized areas and provide complementary data. However, a larger 

area was imaged using the WLI (600 µm x 800 µm) perhaps explaining why there 

was  no  difference  observed  in  Sa  values  between  the  surfaces.  Using  the  AFM 

imaging of a smaller area (80 µm x 80 µm), Ra values between the fine polished and 

worn surfaces were significantly different (p  < 0.001). The polished surfaces were 

selected for subsequent work because their surface features were representative of the 

smaller surface features found on the worn surfaces (Chapter 3), and the nature of the 

features  were  relatively  regularly  distributed  across  the  surface  facilitating 

reproducibility.

Dairy  grade  304  2B  stainless  steel  surfaces  were  also  used  to  determine 

whether modifying the surface chemistry would affect microbial retention. Titanium 

coatings  were  deposited  onto  these  surfaces  by  magnetron  sputtering  in  order  to 

produce fully dense coatings,  which were conformal  to the substrate surface (Fig. 

2.4). 
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Fig. 2.3 Roughness values of surfaces using a) WLI (Sa) and b) AFM (Ra). FP = fine 

polished; worn = worn stainless steel surface. Each surface was scanned fifteen times 

n(15) and an average calculated.

Fig.  2.4  Electron  microscope  image  of  titanium  coated  304  2B  stainless  steel 

demonstrating the dense surface and conformity of the coating. The grain boundaries 

are still clearly visible.
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There was no significant difference in surface topographies or Ra values observed in 

the  fine  polished  surfaces  before  and  after  sputtering  with  titanium.  Surface 

wettabilities of the stainless steel and titanium coated (TiOx)  stainless steel were in 

the  range of  86  ±  3°  (data  not  shown),  with  no  significant  difference  (p > 0.05) 

between samples. All the surfaces had Sa or Ra values below 0.8 µm, implying that 

they would be easy to clean (Flint et al. 1997; Verran et al. 2001; Whitehead et al. 

2005).  It  has previously been shown on fine polished stainless steel surfaces,  that 

microorganisms were retained in the smaller surface grooves and grain boundaries 

(Fang et al., 2002), which was speculated to be due to a lowered cell-surface binding 

energy at those sites (Whitehead and Verran, 2007). Linear surface features, such as 

scratches and abrasions observed may therefore enhance bacterial and soil retention. 

Indeed,  WLP images  revealed  features  of  microbial  cell  dimension  within  larger 

features, and these smaller features can enhance cell retention (Packer et al., 2010) 

Retention  assays  were  carried  out  in  order  to  determine  the  amount  of 

Escherichia  coli  retained  on  the  stainless  steel  and  titanium  coated  (TiOx)  fine 

polished stainless surfaces (Fig. 2.5). Cells were retained on the stainless steel coated 

surface  (Fig.  2.5a),  but  not  on the titanium coated (TiOx) surface  (Fig.  2.5b).  To 

further investigate this phenomenon, cells and meat soil were added to the surface and 

differentially stained (Fig. 2.6). Both the cells (Fig. 2.7a) and the meat soil (Fig. 2.7b) 

were retained in lower amounts (in terms of surface area coverage) on the titanium 

coated (TiOx) surfaces. 

57



Fig.  2.5.  SEM images  of  Escherichia  coli  retained  on  a)  uncoated  stainless  steel 

surface and b) titanium coated (TiOx) brushed stainless steel surface demonstrating 

that cell numbers were clearly lower on the titanium coated (TiOx) surface.

Fig. 2.6. Differentially stained epifluorescence microscopy image  E.coli (blue) and 

meat extract (red) on the fine polished steel demonstrating the pattern of distribution 

of meat soil and cells retained across the surface. 
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a)

b)

Fig. 2.7. Percentage coverage of a) cells and b) meat soil retained on uncoated and 

titanium  coated  (TiOx)  stainless  steel  surfaces  determined  using  epifluorescence 

microscopy.
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The use of the PVD technique of magnetron sputtering allowed the surface 

features  of  the  stainless  steel  to  be  maintained  whilst  producing  a  homogeneous 

titanium (TiOx)  coating.  Previous  work  using  this  method  has  demonstrated  that 

conformal and fully dense coatings are produced (Kelly and Arnell, 2000; Whitehead 

et  al.  2004).  These  chemically  uniform  surfaces  allowed  the  effect  of  surface 

chemistry on microbial retention to be assessed. The work demonstrated that, in spite 

of  the  presence  of  topographic  features,  coating  with  a  regular  titanium  (TiOx) 

chemistry reduced Escherichia coli and meat extract retention. In agreement with our 

work, Jeyachandran et al. (2007) demonstrated that surface chemistry of a titanium 

oxide film retained fewer bacteria than other materials, and suggested that surface 

chemistry was a more important factor than surface roughness. Work by Ma et al. 

(2008) has demonstrated that the heterogeneous chemistry of a surface may provide 

‘sticky’ points for bacterial retention and thus surfaces should have a highly uniform 

surface chemistry, again asserting that the effect of surface chemistry on microbial 

retention needs to be further investigated. In addition, the durability of the coatings 

clearly needs to be explored.

Although coverage of surfaces by cells and soil was low, with coverage of soil 

considerably higher than that of cells, there was nevertheless a significant reduction 

observed in both instances on the titanium (TiOx) surface. One would hope that in a 

processing plant, surfaces would be effectively cleaned and disinfected, thus residual 

material would be minimal. It is this residual fouling that could be reduced by the 

utilisation of a less retentive surface – hence our simulation of this scenario, with a 

very  gentle  washing  procedure.  However,  the  method  described  is  amenable  to 

variations in substratum, and inoculum size and nature (different cell and soil types).
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The cellulose replication technique allows for examination of the same area by 

different techniques. It is also possible to monitor wear of specific sites on a surface 

over  time  using  this  method.  These  impressions  allow  surface  analysis  of  both 

localised and larger areas using a range of techniques which allow identification of 

surface features that are important in microbial retention. The titanium (TiOx) coating 

on the stainless steel discouraged the retention and enhanced the removal of both 

Escherichia coli cells and the meat conditioning film. This work indicates that coating 

stainless steels with titanium (TiOx) may increase the hygienic properties of a food 

contact surface under specified conditions.
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CHAPTER 3 

RETENTION OF STAPHYLOCOCCUS SCIURI AND LISTERIA 

MONOCYTOGENES ON SURFACES WITH DEFINED LINEAR 

FEATURES

3.1 INTRODUCTION

Substratum  surface  physical  and  chemical  properties  are  known  to 

influence the extent and form of microbial adhesion and colonization. Biofouling 

and biofilm formation are major concerns in industries which require hygienic 

surfaces, such as the food industry.  The tendency for a surface to facilitate the 

retention  of  microorganisms  is  undesirable  because  the  presence  of  the 

microorganisms  poses  a  biotransfer  potential  –  that  is,  the  ability  to  be 

transferred from the inert substratum to another,  such as food, or personnel, 

where multiplication and infection might result (Verran 2002). Surfaces which 

are to be used in hygienic applications must be easy to clean, thus minimizing 

contamination of the product through corrosion or by the build up of harmful 

bacteria (Connolly et al., 1970). It can therefore be seen that hygienic quality is 

linked to cleanability (Mettler and Carpentier 1999), which in turn is linked to 

the characteristics of the surface.  The adhesion of bacteria to a surface depends 

on  a  number  of  chemical,  physical  and  microbiological  factors.  It  has  been 

hypothesised that bacteria preferentially stick to surfaces for three reasons: (i) a 

higher surface area available for attachment; (ii) protection from shear forces; 

and (iii) chemical changes that cause preferential physicochemical interactions. 

Increased surface roughness will additionally provide features such as pits and 
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scratches which will increase the area for attachment (Scheuerman et al., 1998), 

and protect from shear forces (Lehtola et al., 2007; Nejadnik et al., 2008). 

Focusing  on  topography,  in  more  detail,  it  can  be  postulated  that  surface 

features whose dimensions greatly exceed those of the microorganisms will have little 

effect on retention because cells will be washed out fairly easily – unless within the 

large  features  there  are  micro  and nano-topographies  that  will  provide attachment 

points  for the microbial  cells  (Tebbs et  al.,  1994; Flint  et  al.,  2000; Edwards and 

Rutenberg 2001; Medilanski et al., 2002; Whitehead et al., 2005). 

In contrast, some studies have shown that there appears to be a minimum 

roughness  value  below  which  microbial  cells  are  not  retained  (Verran  et  al., 

2003). Standard worn surfaces reproducing those observed in situ were produced 

in vitro, were found to have Ra values ranging from 23 to 900 nm (Verran et al., 

2001) and were shown not to significantly affect retention of microorganisms. 

Stainless steels are widely used in hygienic applications, so it is useful to know 

that  routine  wear  does  not  affect  cleanability  in  terms  of  removal  of 

microorganisms, in the absence of food soil. However topographical features are 

found  on  worn  and  new  steel  surfaces.  These  typically  linear  features  are 

produced on  in-situ surfaces by scratching but also on manufactured brushed 

steels to provide an aesthetic appearance. In contrast to the work by Verran et 

al.,  (200l),  it  has  also been shown that  surfaces  with many defects  of  uneven 

dimension and distribution have poor cleanability (Jullien et al., 2003), and are 

more likely to remain more soiled than those with a more ‘designed’ topography, 

because of an increased number of retention sites for soiling components and 

microorganisms (Taylor et al., 1998). Thus, it is essential to be able to clearly 

define  the  nature  of  the  topography  of  a  surface  in  order  to  attain  optimal 
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cleanabilty  as   hygienic  quality  and cleanability  are  closely  linked to  surface 

topography  (Mettler  and  Carpentier  1999).Without  precise  surface 

characterisation, such predictions are likely to be incorrect and over simplistic.

Thus, it is apparent that there is a relationship between the hygienic status of 

surfaces and their roughness within a specific Ra range. It is also apparent that, whilst 

Ra remains  useful  as  a  general  guideline  of  surface  texture,  it  does  not  provide 

sufficient information to describe the hygienic nature of a surface. It would therefore 

be of value to create defined features, which are of microbial dimension in order to 

investigate  their  effect  on  the  retention  of  microorganisms  and  to  understand  the 

fundamental  mechanisms  influencing  bacterial  retention.  Characterization  of  the 

effect of surface topography on microbial retention may enable the definition of a cut 

off value for a given substratum-microbial combination, below which retention will 

not occur (Medilaniski et al., 2002) 

The aim of this work, was to determine the effect of linear features of defined 

width on the retention of different sized bacteria associated with the food industry. 

Surfaces  were  produced  with  the  same  surface  chemistry  but  different  surface 

topographies, with linear features on the surfaces of widths 30, 0.5 and 1 micron. 

Smooth titanium coated (TiOx)  silicon wafers were also included as smooth controls. 

The objective of this work was to carry out retention assays on surfaces of defined 

topography  to  determine  how  cells  of  different  sizes  and  shapes  interacted  with 

different sized features. 
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3.2 METHODS

3.2.1 Substrata

Substrata with 30µm, 1µm and 0.5µm features were selected and produced as 

described in Chapter 2.

3.2.2 Microbiology

3.2.2.1 Microorganisms

Listeria monocytogenes ScottA and Staphylococcus sciuri CCL 101 (kind gift 

from  Dr  Brigitte  Carpentier  (Agence  française  de  sécurité  sanitaire  des  aliments 

(AFSSA),  Maisons-Alfort,  France))  were  used  in  the  study.  Escherichia  coli  was 

omitted due to its lack of adhesion onto surfaces described in Chapter 2.

3.2.2.2 Preparations for retention assays

Stock cultures of  L. monocytogenes were inoculated on tryptone soya agar 

(TSA) (Oxoid,  Hampshire,  UK),  and incubated  at  30  oC overnight.  S.  sciuri  was 

prepared in the same way except nutrient agar (NA) and nutrient broth (NB) (Oxoid, 

Hampshire, UK) were used and cells were grown at 37 oC. In preparation for retention 

assays plate cultures were stored at 4 oC and used within one month. Ten milliliters of 

TSB were inoculated with a single colony of L. monocytogenes from a fresh culture 

and incubated at 30 oC overnight or ten milliliters of NB were inoculated with a single 

colony of S. sciuri and incubated at 37 oC for 24 hours. One hundred microlitres of L.  

monocytogenes was used to inoculate 100 ml TSB which was incubated at 30 oC for 

18 h or 100 µl of S. sciuri was used to inoculate 100 ml of NB which was incubated at 

37 oC for 18 h.

Following incubation, cells were harvested at 716 x  g for 10 min and were 

washed three times, by re-suspension in sterile distilled water, vortexing for 1 min, 

and then centrifugation at 716 x g for 10 min. Cells were re-suspended to an optical 
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density (OD) of 1.0 at 540 nm in sterile distilled water. Colony forming units ml -1 (cfu 

ml-1) were determined by serial dilution and were 1.07 ± 0.58 x 108 colony forming 

units (cfu) ml-1 for L. monocytogenes and 1.64 ± 0.96 x 108 cfu ml-1 for S. sciuri.

3.2.3 Retention Assays

The titanium coated (TiOx)  test substrata were placed in sterile Petri dishes to 

which 25 ml of standardised cell suspension was added. The surfaces were then left to 

incubate  horizontally  at  37  oC  (S.  sciuri)  or  30  oC  (L.  monocytogenes)  without 

agitation for one hour. After the incubation period the surfaces were removed with 

sterile tweezers and each washed gently along the grooves, once with 5 cm3 distilled 

H2O, from a plastic bottle held at a 45o angle, with a 3 mm nozzle (Whitehead et al.,  

2007). Substrata were then placed in a laminar flow hood, to allow any retained cells 

to air dry. Repeat experiments were performed with each sample tested in triplicate. 

3.2.4 Epifluorescence Microscopy

Epifluorescence microscopy was used  to  observe the  pattern  and extent  of 

retention of the cells on the surfaces. From the images produced the patterning of the 

cells on each surface could be seen reflecting the underlying topographic features. In 

order to locate and count the cells to be examined with respect to the interaction with 

surface features a method with higher magnification was required, the surface features 

themselves could not be seen using epifluorescence microscopy. Scanning electron 

microscopy allows for high resolution images to be achieved showing of the cells on 

the surface in relation to the features, allowing for percentage coverage of the surfaces 

by cells to be calculated.

3.2.5 Preparation of microbial samples for Scanning Electron Microscope (SEM)

The substrates with attached cells were immersed in 4 % v/v gluteraldehyde 

(Agar, Essex, UK) for 24 h at 4  oC. Samples were thoroughly rinsed with 100 cm3 
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distilled H2O as previously described. Samples were then dried in a class 2 flow hood 

for one hour, prior to being stored at room temperature in a phosphorous pentoxide 

(Sigma Aldrich, Dorset, UK) dessicator for at least 48 h. The samples were fixed to 

stubs for gold sputter coating, which was carried out using a Polaron E5100 (Milton 

Keynes, UK) SEM sputter coater. Samples were sputter coated at a vacuum of 0.0921 

mbar,  for 3  min,  at  2500 V, in  argon gas  at  a power of 18 – 20 mA. Images of 

substrata were obtained using a JEOL JSM 5600LV scanning electron microscope 

(Jeol Ltd, Herts, UK) (Whitehead et al.,2005).

3.2.6 Orientation of rod shaped cells on substrata

Images were taken (n=10) of the surfaces with defined linear features. The 

number  of  cells  on  each  of  the  surfaces  was  counted  so  a  total  cell  count  was 

achieved.  The  total  number  per  unit  area  of  rod  shaped  cell  orientated  along the 

grooves was also recorded. From these results the percentage of cells orientated in the 

direction of the grooves was also calculated. This was not necessary for the cocci. Ten 

images were taken for each surface. The number of attached cells was counted for 

each image, and the number of cells per cm2 calculated.

3.2.7 Statistics

The statistical test carried out was a two-sample Student’s  t-test. Data were 

considered significant at the 95 % confidence level (p < 0.05). Error bars indicate the 

standard deviation of the data.

3.3 RESULTS AND DISCUSSION

3.3.2 Surfaces of defined topography 
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 An understanding of how substratum surface properties affect the adhesion of 

bacteria assists in designing or modifying surfaces which discourage adhesion (Flint 

et al., 2000). The wear of food contact surfaces through abrasion, cleaning and impact 

damage increases the surface roughness (Verran and Boyd, 2001), thus can introduce 

topographical  features  which  may  increase  retention  of  both  organic  soil  and 

microorganisms (Boyd  et  al.,  2001).  This  work  investigated  the  effect  of  defined 

linear features that were representative of worn and new stainless steel surfaces, on 

the retention of microorganisms. The selection of the size and shape of the linear 

features on worn surfaces was based on previous work in our laboratories (Verran et 

al., 2009). Previous work has also demonstrated that typical wear of hygienic food 

contact surfaces does not necessarily affect their cleanability in terms of removal of 

microorganisms (Verran et al., 2001). However, in that work, surfaces were produced 

by abrasion and features were randomised across the surface to give topographies 

comparable with surfaces visulalised in situ. Thus surface feature sizes were irregular 

and ill defined. Other work in our laboratories has shown that surface features of new 

stainless  steel  were  in  the  range  of  microbial  dimensions  (Verran  et  al., 2000; 

Whitehead and Verran 2007). 

Surfaces with poor cleanability have many surface defects. These surfaces are 

more likely to remain more soiled because of an increased number of attachment sites 

for soiling components and microorganisms. Surface roughness provides niches in 

which  microorganisms  are  protected  from shear  forces  and  hygiene  and  cleaning 

measures, thus allowing the entrapped microbial cells time to attach irreversibly to a 

surface (Taylor  et al., 1998). A width of 30 microns was identified as being a typical 

‘large’  feature,  and  the  nanoindenter  successfully  produced  surfaces  with  these 

relatively  shallow,  wide  valleys  either  closely  aligned,  or  more  distant.  Retained 
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microbial cells were distributed evenly (Fig 3.1), but where the features were closely 

aligned, retention was significantly enhanced at the ‘peaks’, where there had been 

some ‘pile-up’ of substratum material (Fig 3.2). Thus smaller surface features at the 

peaks had a greater effect on microbial retention than the larger features the smooth 

wide valleys at the base of the grooves. 

Surfaces with a controlled titanium (TiOx) surface chemistry and smooth, 0.59 

µm width linear features or 1.02 µm width linear features were produced, which were 

representative of smaller linear features apparent on in –use surfaces (Fig 3.3). These 

surfaces  had  significantly  different  (p  <  0.001)  Ra values  of  0.001  µm  (smooth 

titanium (TiOx) surface), 0.0024 µm (0.59 µm width featured surface) and 0.0042 µm 

(1.02 µm width featured surface). Throughout this work, the surfaces are referred to 

as 0.5, and one micron surfaces respectively. 

Smooth silicon wafers were also used for the retention assay as a comparison 

with  a  featureless  surface.  All  surfaces  were  titanium  coated  using  magnetron 

sputtering.  AFM images (20µm scans) (Fig. 3.3) of these Ti coated substrates show 

the surface features. As the feature width increased there was an increase in the R a of 

the surfaces. However all the substrata had Ra values far below the 0.8µm hygienic 

level (Fig. 3.4). 
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Fig 3.1 Thirty micron grooves with spacing showing  S. sciuri cells are distributed 

evenly

Fig. 3.2 Thirty micron grooves with minimal spacing showing  S. sciuri retained in 

grooves
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Fig. 3.3 AFM images of titanium coated (TiOx) surfaces a) silicon b) 1 micron wide 

groove c) 0.5 micron wide groove. 

Fig. 3.4 Ra values for surfaces of defined topography coated with titanium (TiOx).
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3.3.2 Cell retention on surfaces

AFM images (Fig. 3.5) of the bacteria were used show the rod and coccal 

shapes, with cell sizes being 2.5 µm x 1 µm for L. monocytogenes and 1 µm diameter 

for S. sciuri. 

Retention assays on the surfaces of defined topography and chemistry using S.  

scuri (Fig. 3.6a) showed that on the smooth Ti coated silicon surface cells clustered 

together in clumps across the substrate surface. On the substrata with defined linear 

features  (0.5,  1.0µm)  (Fig.  3.6  b,c)  microorganisms  were  clearly  lodged  into  the 

surface  features  in  smaller  clusters  and  are  more  evenly  distributed  across  the 

surfaces. 

Following  retention  assays  on  the  surfaces  of  defined  topography  and 

chemistry retention of the L. monocytogenes showed a similar pattern of distribution 

to that of the S. sciuri. Microorganisms on the smooth Ti coated silicon surface (Fig. 

3.7a) were again organised in clusters across the smooth surface. The microorganisms 

on the 0.5µm (Fig. 3.7b) and 1µm (Fig. 3.7c) grooved substrata were more evenly 

distributed  across  the  surface.  The  majority  (81%)  of  the  microorganisms  on  the 

0.5µm surface are aligned across the grooves.

The number of microorganisms retained on the surfaces for S. sciuri (Fig. 3.6) 

was  related  to  the  size  of  surface  features  present.  The  highest  retention  of 

microorganisms was present on the surface with the largest features (1.0µm) and the 

lowest retention occurred on the surface with the smallest features (0.5µm) (p<0.001). 

The surfaces were cleaned along and across the grooves, but the cleaning direction 

was found to produce no significant difference (p>0.05) in the removal from S. sciuri 

for the 0.5µm and 1.0µm surfaces.
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(a)

            (b)

Fig. 3.5 AFM image (20 x 20µm square) scan of bacteria on silicon a) S. sciuri         b) 

L. monocytogenes.

Fig.  3.6.  Images  illustrating  microorganisms on  surfaces  of  defined  topography 

a i) Epifluoresence  S. sciuri on Ti coated silicon a ii) SEM  S. sciuri on Ti coated 

silicon b i) Epifluoresence S. sciuri on 0.5 micron groove b ii) SEM S. sciuri on 0.5 
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micron groove c i) Epifluoresence S. sciuri on 1 micron groove c ii) SEM S. sciuri on 

1 micron groove.

Fig. 3.7 Images illustrating microorganisms on surfaces of defined topography   a i) 

Epifluoresence L. monocytogenes on Ti coated silicon a ii) SEM  L. monocytogenes 

on Ti coated  silicon b i) Epifluoresence L. monocytogenes on 0.5 micron groove b ii) 

SEM L. monocytogenes on 0.5 micron groove c i) Epifluoresence L. monocytogenes 

on 1 micron groove c ii) SEM L. monocytogenes on 1 micron groove.

a)

b) 

Fig.  3.8  Number  of  microorganisms  retained  on  titanium coated  (TiOx)  substrate 

surfaces following retention assays dependent on washing direction a) along b) across 

linear features.

The highest numbers of  L. monocytogenes retained were on the surface with 

the 0.5µm features and the least retention was present on the smooth silicon surface 

(p<0.005). The surfaces were cleaned along and across the grooves, but the cleaning 

direction was found to produce no significant difference (p>0.05) in the removal of L. 

monocytogenes for the 0.5µm and 1.0µm surfaces.

3.3.3 Orientation of rod shaped cells on substrata

Due to their rod shape  L. monocytogenes cells might lie along or across the 

grooves. Using SEM images the cells on each of the substrata with defined features 

were visualised and counted. The orientation of the cells with respect to the direction 
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of the linear feature was also noted. The majority of cells on the 0.5µm wide grooves 

(81% washing along grooves, 77% washing across grooves) are aligned across the 

grooves.  This  implies  that  the  cells  remaining  on  the  surface  have  the  greatest 

retention when they are orientated across the groove.

Previous  work (Medilanski  et  al.,  2002)  has  hypothesised  that  for  grooves 

smaller than the  L. monocytogenes cells, the cells  will orientate themselves across 

rather than along a scratch in order to maximise cell-surface contact.  However just 

over half (57% washing along grooves, 53% washing across) of the L. monocytogenes 

on the 1µm grooved surface are aligned with the surface grooves. These grooves are 

of the order of the width of the microorganism, increasing the surface area for contact. 

However the binding energy appears to be greater for L. monocytogenes on the 0.5µm 

surface as the overall retention is greater. There is no significant difference in the 

wash direction (p > 0.05) on the orientation of cells for either the 0.5 or 1.0 micron 

grooved surface.

In  conclusion using  surfaces  with  defined  linear  topographic  features  and 

chemistry, retention of a microorganism was shown to be affected by the width of 

features present relative to the shape and size of the bacterial cell features of the same 

dimension enhance retention. Thus the Ra value alone may not be enough to quantify 

the hygienic status of a surface, with surface feature size relative to cell size being an 

important  factor.  The  retention  assays  described  in  this  Chapter  provide  useful 

comparison regarding the amount of retention, but it is the strength of attachment 

which is of most concern. If high numbers of cells are easily removed, then that is of 

less importance than if low numbers of cells were strongly retained. The following 

Chapter explains this phenomenon.
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CHAPTER 4

STRENGTH OF ATTACHMENT OF STAPHYLOCOCCUS  SCIURI 

AND LISTERIA MONOCYTOGENES ON SURFACES WITH 

DEFINED LINEAR FEATURES 

4.1 INTRODUCTION

The previous Chapter showed that features of defined topography affected the 

amount of retention of cells dependant on the shape and size of the cells and their 

relationship with the feature size. The aim of this work was to assess the strength of 

attachment by determining the lateral force required to remove coccal and rod shaped 

bacteria from surfaces with varying defined topographical features. The objective of 

this  work  was  to  use  Atomic  Force  Microscopy (AFM) to  measure  the  force  of 

removal  to  displace  two  differently  shaped  bacteria,  Staphylococcus  sciuri and 

Listeria monocytogenes from three chemically and topographically defined surfaces; 

smooth silicon surface,  0.5 micron wide grooved surface,  1 micron wide grooved 

surface.

The  environment  in  food  preparation  plants  is  considered  as  a  significant 

source  of  microorganisms,  where  open  work  surfaces  in  particular  are  points 

frequently  involved  in  the  contamination  of  food  products  (Taylor  et  al.,  1996). 

Microbial cells in this environment can stay viable, adhere to the equipment surfaces 

and contaminate any substance which comes into contact with them (Bower et al., 

1996). In appropriate conditions these attached bacteria are then able to grow and 

colonise the surface as a biofilm (Kumar et al., 1998). Therefore the removal of these 

bacterial  cells  and  prevention  of  growth  is  important.  The  adhesion  of  a 

microorganism to a surface is influenced by various factors related to the structural 

and physiological characteristics of the cell and the physical and chemical properties 

78



of the  surface (Jullien et  al.,  2002).  For  example,  it  has  been shown that  surface 

topography may influence removal and retention of microorganisms from the surface 

(Flint et al., 2000). 

Measurement  of  the  amount  of  cell  attachment  to  surface has  traditionally 

been quantified by cell counting methods in situ using microscopy/image analysis or 

culture (An et al., 1997). Flow cells have been commonly used in studies to calculate 

the strength of attachment to a surface. Cell adherence has also been calculated by 

applying  a  shear  force  across  the  surface  and  monitoring  the  cell  detachment 

(Sjollema  et  al.,  2001).  Adhesion  forces  required  to  detach  cells  have  also  been 

calculated from surface tension effects caused by a passage of air bubbles across a 

surface (Gomez-Suares et al., 2001). These techniques are however limited because 

the measurement of the bacterial adhesion is based on an estimation of the critical 

force applied (Senechal et  al.,  2004).  The AFM can be used to measure the force 

required to displace bacterial cells because it can image down to the nanometer level 

with high force resolution. The AFM tip can be used to displace individual bacterial 

cells by increasing the usually low perpendicular tip- surface force whilst the AFM tip 

can move in a raster fashion and dislodge weakly adhered cells (Boyd et al., 2002).

The effect of substratum topography on the removal of microorganisms will 

depend on the type shape and size of the microorganism. This work aimed to quantify 

the lateral force required to displace rod and coccal cells attached to topographically 

defined surfaces. 

4.2 METHODS

4.2.1 Substrata
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Surfaces presented specific topographical features; ‘smooth’ surfaces (i.e. Ra 

value < 5 nm) and surfaces with unidirectional grooved features of regular size (0.5 

µm width  grooves  (DVD) and 1.0 µm width  grooves  (CD) were all  produced as 

described in Chapter 2. 

4.2.2 Substrata coating

Surfaces were coated with titanium as described in Chapter 2.

4.2.3 Substrata coating

In  order  for  the  effects  of  topography  on  microbial  retention  to  be 

unambiguously ascertained, uniform surface chemistry is required. To achieve this, 

the selected substrata were coated in titanium via magnetron sputtering to provide 

surfaces of uniform chemistry, but varying underlying topography. Titanium coatings 

(typically 1 µm thick) were deposited onto the substrate surfaces by biased magnetron 

sputtering in a modified Edwards E306A coating system rig. Sputtering took place 

from a single 150 mm diameter x 10 mm thick, 99.5% pure titanium target. Prior to 

the deposition of the titanium coatings, the substrates were sputter cleaned at -1000V 

DC for 10 minutes. During deposition, the substrates were biased at -50V to ensure 

the formation of a dense conformal film.

4.2.4 Contact angle measurements 

Contact angle measurements were determined at room temperature using the 

sessile drop technique (see Chapter 2).

4.2.5 Scanning electron microscopy (SEM) and Energy Dispersive X ray (EDX) 

Titanium  coated  surfaces  were  used  for  SEM  and  EDX  characterisation. 

Chemical analysis of substrata was carried out to a 1 μm depth using a Link Pentafet 
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detector  (Oxford Instruments,  Buckinghamshire,  UK),  with  Inca  software  (Oxford 

Instruments,  Buckinghamshire,  UK).  Analysis  used  a  windowless  system  with  a 

resolution of 133 eV. Images of substrata were obtained using a JEOL JSM 5600LV 

scanning electron microscope (Jeol Ltd, Herts, UK). Replicates were carried out in 

triplicate.

4.2.6 Maintenance and preparation of microorganisms 

Cells were prepared as described on Chapter 2. 

4.2.7 Strength of cell attachment

Using an AFM microscope, the force required to remove cells under liquid 

from a surface can be quantitatively measured by using a perpendicular force applied 

to the tip of an AFM cantilever as a tool. Ten microliters of bacteria were added to the 

test surfaces and dried onto the surfaces for one hour in a microbiological class 2 

laminar flow hood and for the remaining twenty three hours at room temperature in a 

sterile container. 

An  Explorer  AFM  was  used  for  the  cell  strength  of  attachment  force 

measurements (Veeco Instruments, Cambridge, UK). The cantilevers were pyramidal 

probes with a manufacturer’s spring constant of 0.05 Nm−1, and front and back angles 

of 35o (Veeco Instruments Ltd., Cambridge, UK). A schematic diagram showing the 

cantilever assembly is given in Fig 4.0. Before each experiment the spring constant of 

the cantilever was determined. AFM was operated in contact mode and measurements 

were carried out at a rate of 20.03 µm s-1 at a scan size of 20 µm ×20 µm. Substrata 

with dried cells were positioned on the AFM and a dry scan of the sample was taken 

to ensure the presence of cells in the area of analysis. 0.1 ml of HPLC grade water 

(BDH,  UK)  was  placed  on  the  sample  and  the  AFM  laser  was  re-aligned.  The 

cantilever was brought into contact with the surface and a measurement of the force 
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applied to  the cantilever  was obtained from force distance curves.  To convert  the 

cantilever deflection to a perpendicular force, the spring constant, the value of the 

gradient in the constant compliance region of the force curve and the zero of the force 

was defined (Bowen et al., 2000). 

The cantilever deflection (d) is then converted into a force (F) using Hooke’s 

law:

F = - kd    (1)

where k is the cantilever spring constant, and d is the cantilever deflection. The curve 

can  be  corrected  by plotting  F  as  a  function  of  (z  −  d),  where  z  is  the  vertical 

displacement of the piezoelectric scanner (Dufrene et al., 2001). Further calculations 

were carried using the methodology of Deupree and Schoenfisch (2008), to determine 

the lateral force of interaction of the cantilever tip with the cell. The applied force 

normal to the plane of interaction can be calculated from the equation;

Fapp = -kd sin(θ + ø) (2)

where the angles θ and ø are parameters of probe geometry and cantilever orientation 

respectively (Deupree and Schoenfisch, 2008). The lateral component of the applied 

force was determined using;

Flat = Fapp cos(θ) (3)

giving the value of  the shear  lateral  force that  may detach cells  from the surface 

(Deupree  and  Schoenfisch,  2008).  To  determine  the  force  required  for  bacterial 

removal, scans were repeated with increasing force applied to the cantilever tip. After 

each  scan  the  remaining  bacteria  were  counted  and  plotted  as  a  percentage  as  a 

function of the lateral force applied. 
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Fig  4.0  AFM  diagram  of  cantilever  with  angles  showing  torsional  and  lateral 

deflections.

4.2.8 Statistics

Statistical tests were carried out using a two - tailed distribution t-test with two sample 

homoscedastic variance. The results are reported as mean ± standard deviation.
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4.3 RESULTS AND DISCUSSION

AFM  has been used to measure cell to surface adhesion by attaching bacterial 

cells to the cantilever tip and measuring the force required to detach the cell from the 

surface (Lower et al., 2000). This technique measures the perpendicular force applied 

to the surface. In order to replicate the cleaning process the lateral force required to 

displace bacterial cells must be investigated. The lateral force has been shown to be 

affected by surface topography (Busscher  et  al.,  2001)  where the lateral  forces  to 

displace the bacteria are considerably lower than that of the perpendicular force. It has 

been also demonstrated using AFM that microbial adhesion to linear featured surfaces 

which were smoother or had a rougher Ra = 0.16 µm value gave rise to increased 

microbial retention (Medilanski et al., 2002). 

4.3.1 Surface analysis

SEM analysis demonstrated that the sputtered coatings were conformal and 

uniform in  composition  across  the  sample  surfaces  (Fig.  4.1).  The  surfaces  were 

analysed using AFM and were shown to have Ra values of 0.003 µm ± 0.0001 µm for 

the smooth titanium surface (TiOx), 0.024 µm ± 0.001 µm for the 0.5 µm featured 

surface and 0.026 µm ±  0.001 µm for the 1 µm featured surface (Fig. 4.2). The depth 

of  the  features  on  both  grooved surfaces  was  0.8  µm ± 0.04  µm.  No significant 

variation (p < 0.001) in surface wettability was observed, with an average contact 

angle of 91˚ being determined for all three samples. This compares with the contact 

angle of  86° ± 7° for titanium oxide (Zhu et al., 2003).
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Fig. 4.1 SEM analysis demonstrating that the sputtered coatings were conformal and 

uniform in composition across the sample surfaces.

Fig.  4.2  AFM  analysis  of  the  surfaces  to  demonstrate  the  surface  topographies 

a) 1 micron surface b) 0.5 micron surface.
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4.3.2 AFM force measurements

The aim of this study was to compare the strength of adhesion of E. coli,  S.  

sciuri and L. monocytogenes cells to substrata of defined topography in-situ via AFM. 

Use of  the Explorer  AFM allowed work to  be carried out  to  determine the force 

required to remove S. sciuri or L. moncytogenes cells from 0.5µm, 1µm and smooth 

titanium surfaces (TiOx). Through the use of a liquid cell the force measurements 

were carried out under liquid, where the microorganisms were pushed off the surface 

if the applied force was great enough. The substrata with the dried cells was mounted 

on a metallic stub and positioned on the AFM magnetic sample area. The AFM was 

set up in contact mode and 0.1 ml of distilled water was applied to the surface of the 

substrate and the AFM laser realigned. 

4.3.2.1 Escherichia coli 

The  strength  of  attachment  of  Escherichia  coli could  not  be  investigated 

because the cells were not adhered to the surface in the presence of water, so no force 

results could be obtained. 

4.3.2.2 Staphylococcus sciuri

The AFM was used  to  determine  the  effect  of  increasing  tip  force  on the 

removal of S. sciuri from smooth Ti coated Silicon (Fig. 4.3) 0.5µm (Fig. 4.4) and 1 

µm  (Fig.  4.5),  titanium  coated  (TiOx)  surfaces.  Using  the  AFM  ,  bacteria  were 

visualised on all three of the substrate surfaces. Bacteria were clearly visible with a tip 

force of 1 nN. The effect of increased tip force on the removal of bacteria from the 

substrates is illustrated (Fig. 4.6, 4.7, 4.8).  
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Fig. 4.3. AFM image of the removal of S. sciuri from a titanium coated (TiOx) smooth 

silicon surface with increasing tip force (nN) (a) 1 (b) 5 (c) 13 (d) 18 (e) 26 (f) 28 

Fig. 4.4. AFM images after removal of  S. sciuri from a titanium coated (TiOx)  0.5 

micron wide grooved surface with increasing tip force (nN) (a) 3 (b) 6 (c) 8 (d) 12 (e) 

16 (f) 19
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Fig. 4.5. AFM images of the removal of  S. sciuri from a titanium coated (TiOx)  1 

micron wide grooved surface with increasing tip force (nN) (a) 3 (b) 5 (c) 8 (d) 12 (e) 

17 (f) 21

Fig. 4.6 The removal of S. sciuri from a smooth titanium coated (TiOx) silicon surface 

with increasing tip force. The experiment was repeated three times (n=3). 

(a) 

(b)

Fig. 4.7. The percentage removal of  S. sciuri from a 0.5 micron grooved Ti coated 

(TiOx) surface with increasing tip force, with cleaning a) along the grooves, b) across 

the grooves. The experiment was repeated three times (n=3).

       
(a) 
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(b)

Fig. 4.8. Removal of S. sciuri from a 1 micron grooved Ti coated (TiOx) surface with 

increasing tip force, with cleaning a) along the grooves, b) across the grooves. The 

experiment was repeated three times (n=3).
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As the tip force increased the cells began to be removed from the Ti coated silicon 

‘smooth’ surface and the Ti coated 0.5 µm wide grooved surface (Fig. 4.7). However 

the number of cells attached to the Ti coated 1 µm wide grooved surface remained 

constant (Fig. 4.8). Significantly more (p < 0.001) cells were removed from the Ti 

coated silicon and the 0.5 µm wide grooved surface than the 1 µm wide grooved 

surface at an applied force of 20nN. The 0.5 µm wide grooved surface displayed the 

lowest level of retention, where a force of 20nN was sufficient to remove 95% of the 

cells from the surface (Fig.  4.7). Removal of the cells  from the Ti coated smooth 

silicon surface was much lower with 35% of the cells removed at a force of 20nN 

(Fig. 4.6). However the majority of the cells remained attached to the 1 µm wide 

grooved surface with only 2% of the cells removed from the surface after an applied 

force of 20nN (Fig. 4.8).

4.3.2.2 Listeria monocytogenes

Cells  were  attached  to  the  same  three  titanium coated  (TiOx)  surfaces  of 

defined topography, silicon (Fig. 4.9), 0.5µm groove (Fig.  4.10) and 1 µm groove 

(Fig. 4.11). The effect of increased lateral force on the adhesion of L. monocytogenes 

to silicon, 0.5µm groove and 1 µm groove is as illustrated (Fig. 4.12, 4.13 a and b, 

Fig. 4.14a and b). 

       

Fig. 4.9. AFM image of the removal of  L. monocytogenes from a smooth titanium 

coated (TiOx) silicon surface with increasing tip force (nN) (a) 2.3 (b) 5.9 (c) 13.4 (d) 

15.45 (e) 24.5 (f) 29.8
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Fig. 4.10 AFM image of the removal of  L. monocytogenes from a 0.5µm grooved 

titanium coated (TiOx) surface with increasing tip force (nN) (a) 0.9 (b) 6.9 (c) 12.1 

(d) 15.2 (e) 19.3 (f) 27.4

Fig. 4.11. AFM image of the removal of L. monocytogenes from a 1 micron titanium 

coated silicon (TiOx) surface with increasing tip force (nN) (a) 2.3 (b) 6.2 (c) 9.5 (d) 

11.8 (e) 15.96 (f) 21.87

Fig.  4.12.  The removal of  L. monocytogenes from smooth titanium coated (TiOx) 

silicon surface with increasing tip force.  The experiment was repeated three times 

(n=3).

(a)
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(b)

Fig. 4.13 The removal of  L. monocytogenes  from a 0.5µm grooved titanium (TiOx) 

coated  surface,  with  cleaning  a)  along  the  grooves,  b)  across  the  grooves.  The 

experiment was repeated three times (n=3).

(a)

(b)

Fig. 4.14. Graph to illustrate the removal of L. monocytogenes from a 1 µm grooved 

titanium coated (TiOx) surface,  with cleaning a)  along the  grooves,  b)  across  the 

grooves. . The experiment was repeated three times (n=3).

The smooth silicon surface showed the lowest removal of microorganisms and 

the 0.5µm groove surface the highest removal. 7 % of cells were removed from the 

silicon  (smooth  surface)  and  18% of  cells  were  removed  from the  1  µm groove 

surface whereas 92% of the cells were removed from the 0.5µm surface. Thus there 

was a significantly greater (p< 0.0001) removal of cells from the 0.5µm surface than 

the 1µm surface or the silicon surface. The removal of cells from the 1µm surface was 

significantly  greater  (p<  0.0001)  than  the  Ti  coated  (TiOx)  silicon  surface.  The 

removal of rod shaped cells from smooth titanium coated silicon has been shown to be 

significantly greater than the removal of rod shaped cells from 0.5µm surfaces, with 

80% of cells removed from the 0.5µm titanium (TiOx) surface compared with 34% 

from the titanium coated (TiOx) silicon surfaces (Whitehead et al., 2006).

It is possible to explain the results with respect to the shape and size of the 

microorganism in relation to  the width of the defined surface linear  features.  The 

titanium coated (TiOx) silicon (Fig. 4.12) and 0.5µm (Fig. 4.13) grooved surfaces 
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force curves show that as force increases the number of cells removed increases.   The 

1µm force curves (Fig. 4.14) display steps where an increase in force does not result 

in a removal of any cells. This lack of cell removal may be explained by the location 

of the cells on the surface. Cells which are orientated across the linear features may be 

easier to remove, hence the initial increase in cell removal. However those lying along 

the  linear  features  may  require  a  greater  force  for  removal,  thus  resulting  in  a 

stationary phase until a higher more favourable removal force is attained.  It appears 

that there was a relationship between the area of the cell in contact with the surface 

and the ease of removal of the microorganism. The smooth titanium coated (TiOx) 

silicon surface provides a small area of contact at the base of the coccal shaped  S. 

sciuri (Fig. 4.15) providing a small area of cell – surface contact. However the rod 

shaped L. monocytogenes is much larger that the S. sciuri and is in contact with the 

surface along its length (Fig. 4.16), therefore providing a greater cell – surface contact 

than present for the S. sciuri. The 0.5µm surface grooves are much smaller than either 

the L. monocytogenes or the S. sciuri, therefore providing little cell – surface area for 

contact. Therefore the cell – surface contact is low on the 0.5µm surface grooves for 

both of the microorganisms, facilitating removal with increasing tip force.  The 1µm 

wide surface groove is the optimal sized feature for the  S. sciuri being of the same 

width, the thus providing a large area of cell – surface contact. The L. monocytogenes 

cells lie across the grooves on the 0.5 micron features (Chapter 3) decreasing the cell-

surface contact from that observed on the smooth silicon surface. It is this cell surface 

contact that affects the force required for the removal of the microorganisms. 
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                (a)                                   (b)                                 (c)

Fig. 4.15. The surface area of coccal shaped bacteria attached to a) smooth Ti coated 

(TiOx)  silicon,  b)  0.5µm titanium coated  (TiOx) surface,  c)  1µm titanium coated 

(TiOx) surface.

                     (a)                                               (b)                                            (c)

Fig. 4.16. The surface area of rod shaped bacteria attached to a) smooth Ti coated 

(TiOx)  silicon,  b)  0.5µm titanium coated  (TiOx) surface,  c)  1µm titanium coated 

(TiOx)  surface. 
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A cell with low surface area contact will be removed with a lower applied 

force. On the 1 micron feature there were fewer rods retained (Chapter 3). However, 

they were predominantly retained within/along the features, so were hard to remove. 

It has been hypothesised (Edwards et al., 2001) that the binding strength of a cell is 

reduced  by small  grooves,  but  increased  when  the  groove  radius  is  close  to  the 

bacterial size. This hypothesis has been illustrated with respect to the microorganisms 

size in this study.

Using the AFM under liquid, cells were removed from a surface by applying 

an increasing defined tip force. The removal of cells was dependant on the feature size 

in  relation  to  the  shape  and  size  of  the  microorganism.  There  was  a  significant 

difference (p < 0.001) in the removal of S. sciuri from all the surfaces. An increase in 

tip force was enough to remove cells from the 0.5µm grooved surface. However an 

increase in tip force was not significant enough to remove microorganisms from the 

1µm grooved surface. There was a significant difference (p < 0.001) in the removal of 

L. monocytogenes from all surfaces with increasing tip force. More L. monocytogenes 

were removed from the 0.5µm micron surface than the smooth titanium coated (TiOx) 

silicon surface. Surface features smaller than the microorganism required the least tip 

force for removal irrespective of the shape of the microorganism. Cleaning along or 

across the grooves of the surfaces did not alter the removal of microorganisms with 

increasing  tip  force.  Through  use  of  an  AFM  under  liquid  the  application  of  an 

increasing  lateral  force  led  to  the  removal  of  coccal  cells.  The  shape  of  the 

microorganism in relation to the shape and dimension of the surface feature affected 

the ease of cell removal from a surface, depending on the surface area in contact with 

the  cell.  The  presence  of  micron  and  sub-micron  grooved  features  on  a  surface 

strongly influences bacterial adhesion and potentially, surface cleanability.
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In contrast  to estimation of the amount of retention, the AFM was used to 

determine  the  strength  of  attachment.  The  results  for  S.  sciuri for  retention  and 

strength of attachment show the same patterns of remaining cells dependant on the 

underlying  topography  present,  with  the  1µm surface  being  the  most  difficult  to 

remove cells from and the 0.5 µm surface the easiest. The L. monocytogenes provides 

results which differ between the retention assays and AFM measurements. Cells on 

the smooth silicon surfaces proved harder to remove using the AFM, whereas the cells 

on 0.5 µm surfaces proved easier to remove with increasing tip force.

Cell  shape  and size  with respect  to  the  shape and size of  surface features 

determined the number of cells removed.  S. sciuri and  L. monocytogenes cells were 

more easily removed from the 0.5 µm surfaces. This effect is due to the shape of the 

microorganisms, as contact was lost with the surface across the groove diameter and 

confirms the model of Whitehead et al  on adhesion of  S. aureus and  P. aeruginosa 

(Whitehead  et al 2006). The  S. sciuri cells were wedged within the 1µm features. 

These results support the hypothesis that both bacterial size and shape with respect to 

size and shape of the surface have an effect on the strength of cell attachment to the 

surface. 

Therefore  this  work  suggests  that  it  is  the  strength  of  attachment  that  is 

important. If few cells are hard to remove, this is of more concern than lots of easily 

removed cells. It is therefore important to kill cells through post-cleaning disinfection 

and sanitation. It is also important to look at the effect of organic soil on cell adhesion 

(Chapter 5).
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CHAPTER 5

THE DETECTION AND REMOVAL OF E. coli AND/OR MEAT SOIL ON 

SURFACES WITH DEFINED LINEAR SURFACE TOPOGRAPHIES

5.1 INTRODUCTION

Food and food contact surfaces can become contaminated with pathogenic and 

non  pathogenic  microorganisms  through  contact  with  soil,  water,  fertilizers, 

equipment,  humans,  aerosols,  and animals  (Verran  et  al.,  2008).  The  presence  of 

bacteria on stainless steel surfaces is commonplace in the food industry and can be 

considered an important source of potential contamination for any food, leading to 

economic  and hygienic problems (Carpentier  and Cerf  1993;  Hilbert  et  al.,  2003; 

Zottola et al., 1994). Not only is there concern surrounding the retention and transfer 

of potential microbial pathogens, but also increasingly, the effect of retained organic 

material  on  surface  hygiene  and  cell  retention  properties  is  being  investigated 

(Whitehead et al., 2010).

In  an  industrial  plant  where  continual  cleaning  and  soiling  occurs,  the 

detection of residual  organic soil  and cells  is  necessary to  ensure that  build up is 

minimal  (Whitehead  et  al.,  2010).  Surfaces  in  industrial  systems  are  critical 

components in the initiation of biofouling because they serve as the interface between 

the biological and mechanical environments where cells  and organic material  may 

attach to and be retained in inert surfaces (Whitehead et al., 2009). An open surface 

presents  a  solid–air  interface,  where  surface  conditioning may be  “non specific’’, 

resulting from the passive transfer of food material from substrate to substratum, as 

the  food  passes  through  the  processing  plant,  or  is  handled  in  the  domestic 

environment  (Verran  et  al.,  2008).  The  development  of  adsorbed  layers,  termed 
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conditioning  films  on  a  surface  are  considered  to  be  the  first  stage  in  biofilm 

formation. On open food contact surfaces, once microbial attachment has occurred, a 

‘true’ biofilm, that is a microbially derived sessile community characterized by cells 

that are irreversibly attached to a substratum or interface or to each other, and that are 

embedded in a matrix of extracellular polymeric substances that they have produced 

(Donlan and Costerton, 2002), is unlikely to develop. However, the transfer of cells 

and soil to the surface, a process known as biofouling, may result in a gradual build 

up of material on the surface unless it is removed using a cleaning process. Attached 

microorganisms may be retained in surface features mixed with organic material such 

as fats, carbohydrates or proteins, or detergent residue. Thus, the term ‘‘conditioning 

film’’ may not be appropriate, especially where a more significant transfer of organic 

matter occurs (Verran, 2002), and surface coverage is uneven: ‘‘soiling’’ may be a 

more appropriate term. 

E.  coli O157:H7  can  be  transmitted  to  humans  through  indirect  or  direct 

contamination of foods (Bouvet et al., 2001). Undercooked ground beef and raw milk 

have been implicated in foodborne infection (Armstrong et al., 1996). Many strains of 

Shiga toxigenic E. coli are human pathogens causing illness ranging in severity from 

mild diarrhoea to severe renal complications that can result in death (Rivas et al.,  

2007).  Cross-contamination  during  processing  and  subsequent  handling  and 

preparation of foods leads to the entry of these pathogens into the food chain (Hood 

and  Zottola,  1997;  Kumar  and  Arand,  1998).  With  increasing  concerns  over 

biotransfer potential and with the low minimum infectious doses for pathogens such 

as  E.  coli O157:H7,  the  detection  of  low  levels  of  contamination  is  becoming 

increasingly important (Davidson et al., 1999). 
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The presence of conditioning films or food soil on a surface is known to affect 

the hygienic status of a surface (Jullien et al., 2008; Whitehead et al., 2008), yet the 

effect of conditioning films on cell attachment and retention is still unclear (Al-

Makhlafi et al., 1994; Hood and Zolotta, 1997; Gram et al., 2007). Organic material 

on surfaces may provide a potential nutrient source which may lead to pathogen 

growth, transfer of microbial cells and subsequent food contamination and increased 

challenge for cleaning. The type of soil retained on the surface and the surface 

properties are important in influencing cell retention and surface hygiene. It has been 

shown that carbohydrate based organic fouling of a pastry site was almost completely 

eliminated by cleaning operations, whereas surfaces in meat and milk sites did not 

retain their initial surface properties indicating that food soil material remained on the 

surface. (Mettler and Carpentier 1998). Fat components are likely to interact with the 

hydrophobic regions of stainless steel (Snijders et al. 1985), and stainless steels fouled 

with proteins or fatty acids are more difficult to disinfect (Snijders et al. 1985). Thus, 

when surfaces interact strongly with organic material, the effectiveness of the 

subsequent cleaner or reagent used to clean or disinfect the surface may be reduced.

Regular cleaning of the equipment is required to prevent the build up of 

adsorbed organic material and microorganisms (Verran et al., 2010). In order to 

determine the most effective cleaning and sanitizing protocols it is important to assess 

the behaviour of these two components (soils and cells) on surfaces separately and in 

combination. There are many methods described for assessing the fouling of surfaces 

by microorganisms or by organic material, but a relatively simple method for 

assessment of the components in combination is not readily available (Verran et al., 

2002). The accurate monitoring of surface cleanliness in terms of bacterial 

contamination is usually carried out using methods such as plate counts or replica 
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plating. However these methods take at least eighteen hours to obtain results and do 

not determine the presence or amount of residual organic material on a surface, which 

may interfere with cleaning and disinfection. One of the easiest methods given 

appropriate equipment is staining and visualization using epifluorescence microscopy. 

Using the differential staining technique previously described (Chapter 2), it was 

possible to visualize the distribution of cells and organic material on a surface before 

and after cleaning, and to measure surface coverage by using two stains via image 

analysis. Work described in Chapter 2 demonstrated reduced retention of E. coli and 

organic soil via the use of a titanium coating.

The aim of this Chapter was to extend this work using a fine polished stainless 

steel surface, a titanium coated (TiOx) fine polished stainless steel surface, and the 

two titanium coated (TiOx) surfaces of defined topographic defined linear feature or 

dimensions  of  1  µm,  0.5  µm  diameter.  Surfaces  were  either  fouled  with  single 

components (cells or soil) or mixed components (cells plus soil) and were subjected to 

wipe cleans.  The effect  of a one-off soiling event  as  well  as sequential  fouling – 

cleaning cycles were investigated. Results will further elucidate the effect of surface 

topography and chemistry on surface fouling and cleanabilty.
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5.2 METHODS AND MATERIALS
5.2.1 Microorganisms (method from Whitehead et al., 2010 IJFM) 

Escherichia coli CCL410 was a kind gift from Brigitte Carpentier (AFSSA, 

France). This strain was selected since it is a non pathogenic  E. coli O157:H7 wild 

type strain that does not carry stx1 and stx2 genes. This strain was recovered from 

heifers  fecal  samples  by  the  laboratory  of  Dr  C.  Vernozy-Rozand  (Unité  de 

Microbiologie alimentaire et prévisionnelle, Ecole vétérinaire de Lyon, France). This 

strain was selected since this work was carried out as part of the EU PathogenCombat 

project which involved a number of members in the work package who, to ensure 

continuity needed to work with the same strain. Stock cultures were stored at -80 °C 

in freezer  mix according to  Caballero et  al.  (2009).  In  preparation for attachment 

assays E. coli was inoculated onto tryptone soya agar (TSA) (Oxoid, Hampshire, UK), 

and incubated at  37 °C overnight.  Cultures were stored at  4 °C. Ten millilitres of 

tryptone  soya  broth  (TSB)  was  inoculated  with  a  single  colony  of  E.  coli and 

incubated at 37 °C overnight. One hundred microlitres of this culture was used to 

inoculate 100 ml TSB, which was incubated at 37 °C for 18 h with shaking (200 rpm). 

Following incubation, cells were harvested at 716×g for 10 min and washed once, by 

re-suspension in sterile distilled water, vortexing for 30s, and then centrifugation at 

716×g for 10 min. Cells were resuspended to an optical density (OD) of 1.0 at 540 nm 

in sterile distilled water corresponding to 0.68 ± 0.22×108 colony forming units/ml 

(cfu/ml). 

5.2.2 Meat exudates (method taken from Whitehead et al., 2011 Biofouling)

The method was kindly provided originally by Brigitte Carpentier (Agence´ 

Francaise de Securite´ Sanitaire des Aliments (AFSSA), France).  One kilogram of 

fresh rolled beef brisket (CO OP, UK) was cut into 10 mm×10 mm pieces. The meat 
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pieces were put into a stainless steel tray and covered in an aluminium foil. The meat 

was covered by another tray and weighed down with 8.4kg of stainless steel sheets 

and frozen at −20 °C for 24 h. The meat was defrosted at room temperature, the meat 

exudates were poured off and the meat squeezed to recover surplus exudates. 

5.2.3 Wipe cleaning

Cleaning assays were carried out on a) titanium coated (TiOx)  0.5 µm linear 

featured  surfaces  b)  titanium coated  (TiOx)  1  µm linear  featured  surfaces  c)  fine 

polished stainless steel and d) titanium coated (TiOx) fine polished stainless steel. 

Surfaces (10 mm x 10 mm) were inoculated with the cells, meat soil or cell/meat soil 

mixture and dried in a microbiological class 2 cabinet.

A crockmeter was adapted for the wipe clean method to ensure that each wipe 

across the stainless steel surface was standardised to ensure repeatable results (Verran 

et  al, 2001a; Airey and Verran, 2007). Inoculated coupons were placed on the  steel 

specimen holder stage of a crockmeter (A.A.T.C.C Crockmeter, Model CM1, Atlas 

Electric  Devices  Co.,  Chicago,  USA).  A  blue  wipe  cloth  (WYPALL®  x80, 

Hydroknit®, cleaning clothes - folded blue, Kimberley-Clark, Surrey,  UK) was cut 

into 45 mm x 45 mm pieces. One piece of 45 mm x 45 mm cut cloth was attached to 

the  16 mm diameter test finger. 1 ml of sterile distilled water was pipetted onto the 

cloth. The  hand crank was turned the correct number of times to simulate a wipe 

cycle. Substrata were either continually cleaned or re-inoculated after each wipe cycle 

with either the cells, meat soil or the cell-meat soil mixture and air dried for one hour 

before being re-cleaned to complete the next wipe cycle (Smith et al., 2011 personal 

communication). 

5.2.4 Preparation of stains
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Rhodamine  B  ([9-(2-carboxyphenyl)-6-diethylamino-xanthen-3-ylidene]-

diethyl-azanium chloride) was made to a stock solution of 0.1 g ml-1 in acidic ethanol 

and was used at a working concentration of 0.1 mg ml-1. DAPI (4’,6-diamidino-2-

phenylindole) was made to a stock solution of 0.3 g ml -1 in sterile distilled water and 

used at a working concentration of 0.1 g ml-1.

5.2.5 Differential staining of meat soil and E. coli 

For soiling the surfaces with cells and soil, 10 μl of cells and 10 μl of soil were 

mixed  together  in  an  Eppendorf  tube,  vortexed  for  5  s  and  the  preparation  was 

pipetted onto a stainless steel coupon. The preparation was spread across the surface 

with a sterile plastic spreader and dried in a class 2 flow hood at room temperature. 

Ten  microlitres  of  4′,6-diamidino-2-phenylindole  (DAPI)  dissolved  in  water  (0.1 

g/ml) was added to the samples and spread across the surface using a sterile plastic 

spreader, then 10 μl of rhodamine B dissolved in acidic EtOH (0.1 mg/ml) was added 

to the sample and applied in the same manner (Whitehead  et al., 2009). DAPI was 

used since it is a non intercalated DNA specific stain, whilst Rhodamine B is a widely 

used  biological  stain  that  will  highlight  proteins  and  carbohydrates.  Following 

staining all samples were thoroughly, but gently, rinsed with at least 10 cm3 distilled 

H2O, (using a bottle held at a 45° angle, with a 3 mm nozzle), and were dried at room 

temperature in a microbiological class 2 flow hood in the dark. 

5.2.6 Epifluorescence microscopy 
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Substrata  were visualised using epifluorescence microscopy (Nikon Eclipse 

E600, Surrey, UK). The microscope was mounted with an F-View II black and white 

digital  camera  (Soft  Imaging  System  Ltd,  Helperby,  UK,  supplied  by  Olympus, 

Hertfordshire, UK). This system used a Cell F Image Analysis package (Olympus, 

Hertfordshire,  UK).  The  percentage  coverage  area  of  the  stained  material  was 

measured  to  determine  the  surface  coverage  of  the  organic  material  (n  =  40).  To 

obtain data for cells and soil separately, an area of the surfaces was selected and an 

image captured first using one UV light wavelength stain filter, and then a second 

image was captured using a second filter. The threshold of the images was set and the 

percentage coverage of the material stained was recorded individually. 

5.2.6 Statistics

Statistical tests were carried out as mentioned previously (2.2.1.1).
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5.3 RESULTS AND DISCUSSION

Following inoculation of either 0.5 µm or 1 µm titanium coated (TiOx) linear 

surfaces,  or  fine  polished  stainless  steel  of  titanium coated  (TiOx)  fine  polished 

stainless steel with either meat, E. coli or meat and E. coli, surfaces were wiped clean 

following one, or a number (≥10) of fouling events.  

5.3.1 One initial fouling event

5.3.1.1 0.5µm linear featured surface

On the 0.5 µm linear surfaces the presence of a meat soil (Fig. 5.1a), E. coli  

(Fig. 5.1b) or meat soil and E. coli (Fig. 5.1c) was detected using differential staining 

before a wipe clean. The meat soil did not follow the contours of the linear surface 

features (Fig. 5.1a), and was heterogeneously spread across the surface. However, the 

cells appeared to follow the linear features of the surface in the absence (Fig. 5.1b) or 

presence (Fig. 5.1c) of the meat soil. 

Following one initial fouling event and 0, 1, 5 and 10 repeated crockmeter 

wipes in a direction along and across the linear surface features, at higher number 

clean cycles, the meat and E. coli cells were difficult to detect, therefore data for only 

cleans at 0, 1 and 5 are shown. On the 0.5µm linear surface coverage of this surface 

by the meat soil decreased with increased wipes (Fig. 5.2). There was no significant 

difference found between the soil coverage after one wipe clean when those done 

across  or  along  the  direction  of  features  were  compared.  However,  a  significant 

difference was observed after five wipe cleans.  More meat soil was removed when 

the wipe was carried out along the surface features. 
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a)

b)

c)

Fig. 5.1 a) Meat soil stained with rhodamine (red)  b) E. coli cells (DAPI stained blue) 

c) meat and cells retained together on 0.5 µm linear surfaces at 0 wipe demonstrating 

the presence of meat soil and cells. The cells that were retained followed the direction 

of the surface features
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Fig. 5.2. Percentage coverage of meat soil remaining on 0.5µm linear surface features 

following 0, 1 and 5 repeated crockmeter wipes in a direction along and across the 

linear surface features, following one initial fouling event. 
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A few cells remained after a wipe clean in either direction (1.44 – 0.12%) (Fig. 5.3), 

and  there  was  no  significant  difference  between the  percentage  coverage  of  cells 

retained after one wipe, but with 5 wipes: more cells were removed from the surface 

when the wipe clean was carried out ‘along’ the surface features.

When cells and meat soil were combined and added to the surface, again more 

cells and soil were removed from the surfaces following the wipe clean along the 

surface features (Fig. 5.4). Insufficient data were obtained to enable comparison. 

5.3.1.2 1µm linear featured surface

On the 1 µm linear surfaces meat soil (Fig. 5.5a), E. coli  (Fig. 5.5b) or meat 

soil and E. coli (Fig. 5.5c) were detected before a wipe clean similar to the 0.5 µm 

linear  surfaces  in  that  the  cells  followed  the  linear  features  of  the  surface  in  the 

absence (Fig. 5.5b) or presence (Fig. 5.5c) of the meat soil. The meat (Fig. 5.5a), was 

heterogeneously spread across the surface. 

When a meat soil was added and wiped from the 1µm linear featured surface it 

was removed with increasing numbers of wipes (Fig. 5.6). There was no significant 

difference between the effect of direction on wipe one, but, there was a significant 

difference between the along and across feature wipe results following the five and 

ten wipes, with more material retained when wiped along the features after 5 wipes.

When  E.  coli  cells  were  added  and  wiped  from  the  1µm  linear  featured 

surface, the results demonstrated that there was a very low percentage coverage of 

cells (0.8 %) remaining, but the coverage of cells retained on the 1µm linear featured 

surface decreased with increased cleans (Fig. 5.7). There was no significant difference 

between the percentage coverage of cells retained on the 1µm linear featured surface 

after along and across feature cleaning.
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Fig.  5.3.  Percentage  coverage  of  E.  coli  cells  remaining  on 0.5µm linear  surface 

features following 0,  1 and 5 repeated crockmeter wipes in  a direction along and 

across the linear surface features following one initial fouling. 
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a)

b)

Fig. 5.4. Percentage coverage a) meat soil and b)  E. coli cells remaining on 0.5µm 

linear  surface  features  following  a  mixed  application  to  the  surface  and  0  and  1 

repeated crockmeter wipes in a direction along and across the linear surface features 

following one initial fouling event. 
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a)

b)

c)

Fig. 5.5 a) Meat soil stained with rhodamine (red) b) E. coli cells (DAPI stained blue) 

and c) the two combined on 1µm linear surface 
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Fig. 5.6. Percentage coverage of meat soil remaining on 1µm linear surface features 

following 0, 1, 5 and 10 repeated crockmeter wipes in a direction along and across the 

linear surface features following one initial fouling event. 

Fig. 5.7. Percentage coverage of E. coli cells remaining on the titanium (TiOx)  1µm 

linear  surface  features  following  0,  1,  5  and  10  repeated  crockmeter  wipes  in  a 

direction along and across the linear surface features following one initial  fouling 

event. 

Following the fouling of the surfaces with a mixed meat soil and E. coli, the 

amount of meat soil present decreased with increased wipes (Fig. 5.8). There was a 

significant difference between the amount of meat retained and the direction of wipe: 

surfaces cleaned in the direction (along) the surface features retained less meat soil. 

There was a low initial percentage coverage of cells (5.38%) at 0 wipe on the 1 µm 

linear featured surfaces (Fig. 5.8b), which was reduced further by cleaning (<0.36%). 

After wipe one, more cells had been removed in the across direction, whereas at wipe 

five more cells had been remove in the along direction. The number of cells retained 

after ten wipes was the same in both directions, but coverage was extremely low in all 

cases. When the coverage by cells in the presence and absence of soil was compared, 

at these low coverage values (Fig 5.9), it appeared that soil enhanced cell retention.

5.3.1.3 Meat soil and E. coli on fine polished stainless steel surfaces

Due to the difficulty encountered in retaining  E. coli  on the titanium (TiOx) 

surfaces (Chapter 2 and 4) (Verran et al., 2010) the percentage coverage of the mixed 

cell – soil inoculum were compared following one fouling event and repeated cleans 

(compared to Chapter 2 one clean) on fine polished titanium coated (TiOx) stainless 

112



steel  and  fine  polished  stainless  steel,  in  order  to  compare  the  effect  of  surface 

chemistry and repeated cleaning on retention.

On stainless steel coverage of the surface by meat soil  and cells decreased 

with increased cleans (Fig. 5.10) (Fig. 5.11a and b) decreased with increased cleans. 

At wipe 0, the surface coverage for the meat soil was 81.74% and 19.49% surface 

coverage for the cells. However, by ten wipes the percentage coverage of meat soil 

had decreased to 1.39% (along) and 3.60% (across) and 0.18% (along) and 0.32% 

(across) for the cells. More cells and soil were removed when wiping along the linear 

features.

 
a)

b)
Fig. 5.8. Percentage coverage of a) meat soil and b) E. coli cells remaining on 1µm 

linear surface features following a mixed application of meat soil and cells following 

0, 1, 5 and 10 repeated crockmeter wipes in a direction along and across the linear 

surface features following one initial fouling event. 

Fig. 5.9. Comparison of cells remaining on a 1µm linear surface features following 0, 

1,  5 and 10 repeated crockmeter  wipes  in  a  direction along and across  the linear 

surface features in the presence and absence of meat soil following one initial fouling 

event. 
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         a)

  
      b)      c)

  
     d)      e)

  
     f)      g)

Fig.  5.10.  Coverage of  meat  soil  (red)  and  E. coli cells  (blue)  remaining on fine 

polished stainless steel surface following a) 0 wipe, b) one wipe clean along, c) one 
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wipe clean across, d) five wipe cleans along, e) five wipe cleans across, f) ten wipe 

cleans along and g) ten wipe cleans across. 

a)

b)

Fig. 5.11. Percentage coverage of a) meat soil and b) E. coli cells remaining on fine 

polished stainless steel surface features following 0, 1, 5 and 10 repeated crockmeter 

wipes in a direction along and across the linear surface features following one initial 

fouling event. 

115



5.3.1.4  Meat soil and E. coli on titanium coated, fine polished stainless steel surfaces

Similarly, using cell – soil inoculum on titanium coated (TiOx) fine polished 

stainless steel, a surface with unidirectional grooves. Meat soil was heterogeneously 

spread across the surface, with coverage reducing with increasing wipes (Fig. 5.12) 

(Fig. 5.13). There was no trend in removal of the meat soil or cells when the surface 

were wiped along or across surface features. The presence of soil increased the very 

low retention of Escherichia coli on the titanium (TiOx) surface that was observed in 

Chapter 2, but again removal was more effective from the titanium coated (TiOx) 

surface (Fig. 5.14).

5.3.2 Repeated fouling events

5.3.2.1 0.5µm linear featured surface

Following  fouling  of  the  0.5  µm  linear  featured  surfaces,  it  was  again 

demonstrated both qualitatively (Fig. 5.15) and quantitatively (Fig. 5.16) that with 

increased wipe cleans, even with re-fouling, that an increased amount of meat soil and 

cells were removed from the surfaces with increased cleans. After one wipe clean 

more meat soil or cells were retained on the surfaces that had been cleaned in the 

direction across the surface features,  than was removed following one wipe clean 

along  the  surface  features.  Although,  after  10  cleans  this  was  not  the  case.  The 

additional inoculum applied after each wipe did not increase overall coverage: indeed 

coverage was considerably lower in this case, indicating the obvious value of physical 

cleaning on cumulative fouling.
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a)

       b)     c)

       d)     e)

       f)     g)
Fig. 5.12. Coverage of meat soil (red) and E. coli cells (blue) remaining on titanium 

coated (TiOx) fine polished stainless steel surface following a) 0 wipe, b) one wipe 
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clean along, c) one wipe clean across, d) five wipe cleans along, e) five wipe cleans 

across, f) ten wipe cleans along and g) ten wipe cleans across. 

a)

b)

Fig.  5.13  Percentage  coverage  of  a)  meat  soil  and  b)  E.  coli cells  remaining  on 

titanium coated (TiOx) fine polished stainless steel surface features following 0, 1, 5 

and 10 repeated crockmeter wipes in a direction along and across the linear surface 

features following one initial fouling event. 
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a)

b)

Fig. 5.14. Comparison of the results for the percentage coverage of a) meat soil and b) 

E. coli cells remaining on titanium coated (TiOx) fine polished stainless steel and fine 

polished stainless steel surfaces features following 0, 1, 5 and 10 repeated crockmeter 

wipes in a direction along and across the linear surface features following one initial 

fouling event. 

          a)

 
     b)     c)
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     d)     e)

Fig. 5.15 Coverage of  meat soil (red) and E. coli cells (blue)  remaining on titanium 

coated (TiOx) 0.5 µm linear featured surfaces following repeated crockmeter wipes in 

a direction along and across the linear surface features with repeated fouling events 

following each wipe clean. a) 0 wipe cleans b) 1 and c) 10 cleans in along direction, 

d) 1 and e) 10 cleans in across direction. The distribution of meat soil and cells on the 

surfaces.

a) 

b)

Fig.  5.16.  Percentage  coverage  of  a)  meat  soil  and b)  E.  coli cells  remaining on 

titanium coated (TiOx) 0.5 µm linear featured surface following 0, 1 and 10 repeated 

crockmeter  wipes  in  a  direction  along and across  the  linear  surface  features  with 

repeated fouling events following each wipe clean. 

5.3.2.2 One micron linear featured surface
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Unlike some of the previous epifluorescence images, it was difficult to state 

whether the amount of meat soil and cells retained on the surfaces increased with 

increased  cleans  (Fig.  5.17).  However,  it  could  be  evidenced  that  following  10 

cleaning cycles that cells were still  evident on the surfaces (Fig. 5.17c/e). Thus in 

contrast to the previous work, an increase in cleans across the linear surface feature 

direction, resulted in an increased amount of meat soil (Fig. 5.18a) and cells (Fig. 

5.18b), with the exception of the percentage coverage of the meat soil when the wipe 

clean  was  carried  out  along  the  linear  surface  features.  There  was  a  significant 

difference  between  the  amount  of  cells  and  meat  soil  retained  on  the  surfaces 

following  10  wipe  cleans,  when  the  direction  of  cleaning  (along  vs  across)  was 

compared. There was also a significant difference for the amount of retained meat soil 

on  the  surfaces  following  one  wipe  clean  when  the  direction  of  cleaning  was 

compared. After one wipe clean more meat soil or cells were retained on the surfaces 

cleaned along the linear surface features, whereas after ten cleans, more meat soil or 

cells  were  retained  on  surfaces  cleaned  across  the  direction  of  the  linear  surface 

features. 

5.3.2.3 Comparison of fine polished stainless steel and titanium coated fine polished  

stainless steel surfaces following ten wipe cleans

Less meat soil (Fig. 5.19) (Fig. 5.20a) and cells (Fig. 5.20b) was retained on 

the  titanium coated  (TiOx)  fine  polished  stainless  steel  surfaces  when cleaned  in 

either the direction of, or across the linear surface features (p < 0.05).
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           a)

 
     b)     c)

 
    d)     e)

 Fig. 5.17. Coverage of meat soil (red) and  E. coli cells (blue) remaining titanium 

coated (TiOx) 1 µm linear featured surfaces following repeated crockmeter wipes in a 

direction along and across the linear surface features with repeated fouling events 

following each wipe clean. a) 0 wipe cleans b) 1 and c) 10 cleans in along direction, 

d) 1 and e) 10 cleans in across direction.

a)

b)
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Fig.  5.18.  Percentage  coverage  of  a)  meat  soil  and b)  E.  coli cells  remaining on 

titanium coated (TiOx) 1 µm linear featured surface  following 0, 1 and 10 repeated 

crockmeter  wipes  in  a  direction  along and across  the  linear  surface  features  with 

repeated fouling events following each wipe clean.

a)                                                      b)

     c)     d)

Fig. 5.19. Coverage of meat soil (red) and E. coli cells (blue) remaining on the a) fine 

polished stainless steel cleaned in a direction along the linear surface features b) fine 

polished stainless steel cleaned across the linear surface feature direction c) titanium 

coated  (TiOx) fine  polished stainless  steel  cleaned in  a  direction  along the  linear 

surface features and d) titanium coated (TiOx) fine polished stainless steel cleaned in 

a  direction  across  the  linear  surface  features  surfaces  following  10  repeated 

crockmeter wipes with repeated fouling events following each wipe clean. 
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a)
b) 

Fig. 5.20 Percentage coverage of a) meat soil and b)  E. coli cells remaining on the 

fine polished stainless steel (FPSS) and titanium coated (TiOx), fine polished stainless 

steel (TiFPSS) following ten wipe cleans in a direction along or across the linear 

surface features with repeated fouling events following each wipe clean. 

This series of experiments provided a simulated ‘clean’ more closely resembling the 

environment in situ, rather than a gentle rinse (Chapter 2) or an AFM probe (Chapter 

4) applying a removal force. Only water was used, rather than any chemical agent, to 

assess the effect of a physical force. 

In all cases, coverage of surfaces by organic soil was high, at around 70%, 

with  cell  coverage  being  well  below  20%.  Cleaning  always  reduced  coverage 

irrespective of surface or fouling/cleaning methods used. In the vast majority of cases 

(two exceptions) more soil  and cells,  separately or in combination,  were removed 

when the wipe force was applied along the linear features. With repeated fouling-

cleaning cycles, it appeared to be easier to remove soil and hence cells, soil enhanced 

cell retention – from larger features presumably due to improved accessibility to the 

wipe process and a greater amount of soil not attached to the surface of the features, 

thus reducing adhesion for the same topography ( ie fine polished stainless steel) a 

titanium coating (TiOx) improved cleanability in terms of soil and cell removal fro 

single and repeated fouling. 
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CHAPTER 6

SUMMARY AND CONCLUSIONS FROM THIS WORK

For hygienic, open, food contact surfaces, the retention and survival of viable 

microorganisms pre- and post cleaning and disinfection is of key concern since the 

presence  of  viable,  if  not  necessarily  multiplying,  cells  on  open surfaces  poses  a 

biotransfer potential. The presence of organic (and inorganic) material on a surface 

affects  its  cleanability,  and also,  potentially,  its  hygienic  status  since  the  soil  can 

interfere  with  the  activity  of  cleaning  and  disinfecting  agents,  by  physically  and 

chemically protecting microorganisms. 

Work in our laboratories has demonstrated that repeated fouling and cleaning 

cycles result in accumulation of organic soil on surfaces, but not of microorganisms, 

especially in surface features on simulated ‘worn’ surfaces, where linear features were 

randomised across the surface. (Verran et al., 2001; Verran et al., 2006). Using defined 

linear features with parallel orientation cells and meat soil were best removed with a 

wipe along, rather than across surface features. This occurred regardless of whether 

the cells and meat soil had been applied separately or together.

It  has been suggested that relatively large deposits  of organic soil  may fill 

larger  defects  prior  to  microbial  surface  contamination  (Frank  and  Chmielewski, 

1997; Kumar and Anand, 1998; Milledge and Jowitt, 1980; Verran and Jones, 2000), 

and mask the underlying topography, while the formation of a thinner conditioning 

film (Carpentier and Cerf, 1993) on any surface in an aqueous environment may mask 

small topographical features (Boyd et al., 2000). There is also evidence that nanoscale 

roughness enhances the adhesion of the conditioning layer to the substratum (Hanarp 

et al., 1999). This cumulative soiling will inherently affect surface conditions and thus 
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microbial attachment and retention.  It  was evident from this work that although a 

build  up of  meat  soil  was not  demonstrated with increased  cleans,  once  fouled  a 

surface always retains some organic material, and this retention was more evident on 

surfaces with larger defects. Work by the authors has shown that in a commercial 

bakery,  residual  material  on  surfaces  generally  consists  of  organic  material  with 

negligible microbial presence (Whitehead et al., 2009). The organic material tended to 

be  embedded  in  the  surface  features  of  the  work  surface,  and  retained  at  low 

concentrations (Moore and Griffith, 2002). Thus, since surfaces once used are never 

again  pristine,  the  retention  and  detection  of  organic  material  on  surfaces  is  of 

importance. The soil will ultimately affect subsequent cell attachment and retention to 

the  surfaces,  and  its  presence  should,  therefore  be  taken  into  consideration  when 

designing suitable cleaning regimes. 

6.1 Concluding comments

Substrata used in  in vitro cleaning and disinfection assays should provide a 

realistic and reproducible challenge. This work used surfaces that reproduced those in 

the food industry,  and via  controlled surfaces with defined features that  had been 

designed following analysis of the surface finishes and topographies used in the food 

industry (Chapter 1). Findings reveal that the size and shape of the surface features 

affects  the  cleanability  of  the  surface,  and also  suggests  that  the  directionality of 

cleaning affects efficacy. It has previously been shown on fine polished stainless steel 

surfaces, that microorganisms were retained in the smaller surface grooves and grain 

boundaries (Fang et al.,  2002), which was speculated to be due to a lowered cell-

surface  binding energy (Whitehead  and Verran,  2007). However  organic  soil  was 

omitted from that work, and its presence has been shown to affect microbial retention, 
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presumably by providing some more amorphous ‘glue’ to strengthen the attachment 

(Chapters 2 and 5). In the absence of organic soil,  retention of the microbial cells 

could be directly related to the surface feature size (Chapter 2 and 3).Organic soil 

additionally affected retention and removal of E. coli. Work from the retention assays 

(Chapter  3)  also  showed  that  on  smaller  features,  retention  was  attributed  to  the 

maximum area of contact between cells and substratum being attained, with cocci 

being  embedded in 1 µm-width grooves,  and rods  aligned along (and across)  the 

densely packed parallel 0.5 µm grooves. Results from the cleaning assays support 

these findings that the surface topography affects cell attachment and retention, but 

the larger surface features were more easily cleaned than the smaller ones. 

This work using PVD magnetron sputtering of titanium onto a fine polished 

stainless steel surface to produce chemically uniform surfaces allowed the effect of 

surface chemistry on microbial retention to be assessed. Conformal and fully dense 

coatings are produced (Kelly and Arnell, 2000; Whitehead et al., 2004). Here despite 

the presence of topographic features known to affect retention and cleanabilty, coating 

with a regular titanium chemistry reduced E. coli and meat soil retention (Chapter 2 

and 5) (Verran et al., 2010).

Microbial and organic fouling of surfaces in the food processing industry is of 

key  importance  in  terms  of  hygiene  and  cleanability. By  defining  precisely  the 

interactions occurring between microorganisms and organic soil on well characterized 

surfaces, modifications may be made to ensure minimal adhesion and/or maximum 

cleanability (minimal retention). This multidisciplinary and multifactorial approach to 

the topic, addressing interactions occurring between the substratum, topography and 

chemistry,  the  microbial  cell  and  food  material,  cleaning  protocol  has  enhanced 

understanding of factors contributing to surface cleanability, and will thus facilitate 
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the  development  of  strategies  to  minimize  the  retention  of  microorganisms  and 

organic material retained on food contact surfaces.
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