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Abstract

Wounds present an ideal environment for the growth of bacteria as they are usually moist and  
warm. The impact of bacteria on wound healing and developing infection is debatable and only 
partially understood. Some clinicians believe that the number of bacteria is a crucial factor in 
determining whether the wound is likely to heal.  Others argue that  the presence of specific 
pathogens  and  their  interactions  are  the  main  cause  of  non-healing  wounds.  Also,  the 
methodology of wound culture has been prone to controversy for many years. Most diagnostic  
laboratories use conventional microbiological techniques to indicate if there are pathogens in a 
wound.  Some  specialists  still  argue  that  greater  than  105  organisms  per  gram of  tissue  is 
diagnostic for infection. Introduction of new molecular techniques have shown that only a small 
percentage  of  bacteria  are  identified  and  they  grown  in  biofilms,  which  makes  sampling 
difficult. In this project, the aspect of sample collection and transport was investigated as well as 
the conventional and molecular approaches for bacteria identification and quantification. Four 
different swab transport systems were tested for their ability to maintain viability of the most  
common wound bacteria during transport  and their  performance with molecular methods in 
order  to  establish  the  best  swab transport  devices  for  further  testing  on patients.  The most 
satisfactory results were achieved with Sigma dry swabs and this swab remained the best choice 
for further  in vivo studies involving both conventional and molecular techniques of bacteria 
identification and quantification. The semi-quantitative swab and biopsy culture was compared 
with  quantitative  culture  to  establish  the  best  method  for  bacteria  culture.  Our  findings  
demonstrated  a  statistically  strong  significant  correlation  between  semi-quantitative  and 
quantitative swab and biopsy methods and use of semi-quantitative count as a cost effective 
method  compared  to  quantitative  serial  dilutions.  However,  when  time  is  important  rapid 
methods should be employed thus Real-Time PCR (RT-PCR) assay was developed for the direct 
and rapid detection of MRSA and compared with conventional methods. The diagnostic values 
of the RT-PCR assay for the detection of  mecA and  femB genes were as follows: sensitivity 
83.3%, specificity 88.5%, PPV 62.5% and NPV 95.8%. Quantitative analysis revealed that the 
average difference between the MRSA counts obtained using the RT-PCR and conventional 
culture results was 0.61 log. These findings show the potential of the RT-PCR assay in rapid 
detection and quantification of MRSA. Development of a RT-PCR assay for MRSA detection 
was  the  first  step in  developing  a  multiplex RT-PCR assay for  chronic  wound samples.  In 
further studies, a DGGE-sequencing method was developed for the analysis of the diversity of 
microflora  in  chronic  wounds  and  healthy  feet  and  compared  with  conventional  methods.  
DGGE-sequencing  allowed  identification  of  a  number  of  strains  not  detected  by  culture 
techniques with 43% of the DGGE fragments representing organisms not  cultured from the  
wound from which they had been amplified. This highlights the fact that a significant proportion 
of the resident microflora was not able to be analysed by culture. Development of PCR-DGGE 
sequencing and investigation of the diversity of microflora in chronic wounds allowed us to 
select the panel of microorganisms for the further development of multiplex RT-PCR assay for 
the rapid detection of bacteria in chronic wounds.
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CHAPTER 1

Literature overview
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1.1 Background

One  function  of  intact  skin  is  to  protect  underlying  tissue  against  infection  by 

potential pathogens. Injured skin can provide a moist, warm and an environment rich in 

nutrients  for  bacterial  colonisation  and  proliferation.  The  types  and  abundance  of 

bacteria in any wound are influenced by factors such as wound type, depth, location and 

the level of tissue perfusion. Burn wounds and clean surgical wounds usually contain 

minimal numbers of bacteria, but the presence of devitalised tissue or foreign material 

can increase the likelihood of microbial proliferation (Bowler  et al., 2001). Although 

most traumatic wounds heal without difficulty, some will become infected and cause 

increased morbidity such as pain and loss of function of the affected limb. Infected 

wounds often fail to heal causing increased trauma to the wound area. In some cases, 

wound infection leads to mortality and in all cases, increased intensity of health-care 

intervention and treatment cost (White, 2002). The more wound healing is delayed the 

greater the impact on the patient. For patients, this requires learning to live with the 

pain, emotional problems and social isolation associated with delayed healing (Franks 

and Moffatt,  1998; Hopkins,  2004).   Costs associated with hard to heal wounds are 

higher as the frequency of therapy, staff time and product use increases (Tennvall and 

Hjelmgren, 2005; Tennvall et al., 2006).  

A common factor  associated  with  wound  infection  and  a  dysfunctional  healing 

process  is  the  presence  of  a  heavy  bioburden  in  the  wound.  There  is  currently 

widespread debate regarding the exact mechanism by which bacteria cause overt wound 

infection and also their significance in non-healing wounds that do not exhibit clinical 

signs of infection. One argument is that the numbers of bacteria is the critical factor in 

determining whether a wound is likely to heal (Heggers, 1998; Mangram et al., 1999). 

Alternatively, the presence of specific pathogens is argued to be of primary importance 

in  delayed  healing  (Pallua  et  al.,  1999;  Schraibman,  1990).  Some  studies  have 
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suggested  the  presence  of  bacteria  to  be of  minimal  importance  in  delayed healing 

(Trengove et al., 1996). A recent study suggests that bacteria produce specific types of 

communication  molecules  –  autoinducer-2  (AI-2)  and  acyl-homoserine-lactones 

(AHLs),  which  are  responsible  for  delayed  healing.  Manipulation  of  the  cell-cell 

signalling pathways, especially in antibiotic - resistant pathogenic microorganisms, has 

the potential to be an effective strategy for wound healing (Rickard et al., 2010). There 

is also a continued debate as to whether the method of wound sampling should be with a 

superficial swab or tissue biopsy to determine the presence of the potential pathogens in 

the wound and their role in subsequent treatment (Bowler et al., 2001).

1.2 Wound healing

Wound healing involves a variety of different processes (cellular, physiological, 

biochemical  and  molecular)  which  result  ultimately  in  connective  tissue  repair  and 

fibrous scar formation (Cockbill, 2002). This is a dynamic process coordinated by an 

array  of  cytokines  and  growth  factors.  It  involves  a  complex  interaction  between 

epidermal and dermal cells, the extracellular matrix (ECM), controlled angiogenesis, 

and plasma-derived-proteins. Wound healing is divided into three overlapping phases – 

inflammation, proliferation and remodelling (Harding  et al., 2002). The inflammatory 

phase begins immediately after injury and its purpose is to destroy, dilute or isolate the 

injurious  agents  and  the  injured  tissue.  It  is  characterised  by  pain,  heat,  redness, 

swelling  and  loss  of  function  at  the  site  of  the  wound  and  these  classic  signs  of 

inflammation are also characteristic and can be confused with an impending wound 

infection. These can be seen almost immediately after injury (Mustoe, 2005). The initial 

response to the disruption of blood vessels is bleeding and the homeostatic response to 

this is clot formation to stop haemorrhage. Collagen and basement membrane proteins 

exposed by the injury activate Hageman factor XII, which is responsible for activation 
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of the healing cascade (Barker,  1986). There are several effector systems within the 

healing cascade such as the plasminogen cascade, the complement cascade, the kinin 

cascade and the clotting cascade.  They release complement  C5A, fibrin degradation 

factors, platelet activity factors and chemical mediators- serotonin and histamine, which 

interlink to control infection and regenerate tissue (Leaper, 1986). 

Immediately after tissue injury, blood comes in contact with collagen triggering 

platelets to begin secreting inflammatory factors. Also, expression of glycoproteins on 

platelet cell membranes allows them to stick to one another and to aggregate forming a 

mass. Fibrin and fibronectin form a plug by binding together. This plug prevents further 

loss of blood, traps proteins and particles and also provides the main structural support 

for the wound until collagen is deposited and is used by the migratory cells as a matrix 

to crawl across (Midwood et al., 2004). Platelets adhere to it and secrete ECM proteins 

and cytokines including growth factors, which stimulate cells to speed up their rate of 

division.  Platelets  also  release  serotonin,  bradykinin,  prostaglandins,  prostacyclins, 

thromboxane and histamine. These factors increase cell proliferation and migration to 

the area and cause blood vessels to become dilated and porous. These factors cause 

vasoconstriction to prevent blood loss and also to collect inflammatory cells and factors 

in the area of injury. This process lasts about 20 minutes post-wounding. Histamine is 

the main factor causing vasodilation and allows the tissue to become oedematous as 

proteins from the bloodstream leak into extravascular space increasing its osmotic load 

and drawing water into the area. Increased porosity of blood vessels allows the entry of 

inflammatory  cells  from  the  bloodstream  into  the  wound  site.  Within  an  hour  of 

wounding, polymorphonuclear neutrophils (PMNs) arrive at the wound site, attaining 

large numbers  within 24 hours (Mustoe,  2004).  Neutrophils  have a large impact  on 

wounds (Davies, 2008). They phagocytise debris and kill microorganisms by releasing 

free radicals in the process called a respiratory burst  (Greenhalgh, 1998). They also 
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clean the wound by secreting proteases breaking down damaged tissue. Patients with 

neutrophil  immunodeficiency  such  as  chronic  granulomatous  disease  (CGD)  are 

susceptible to bacterial infections of the skin and mucosal membranes (Davies, 2008). 

The  polymorphonuclear  neutrophils  undergo  apoptosis  after  completing  their 

phagocytic  tasks.  They  are  followed  temporarily  by  macrophages  that  appear  in 

significant  numbers  within  2  or  3  days.  Domination  of  macrophages  in  the  wound 

indicates healing progress  and recovery,  whereas  a large percentage of PMNs is  an 

indication  of  existing  problems  (Diegelmann  and  Evans,  2004).  Macrophages 

phagocytose  bacteria  and  debride  damaged  tissue  by  releasing  proteases  such 

as metalloproteinases (MMPs), which degrade collagen, elastin, fibronectin, and other 

ECM components (Chizzolini et al., 2000). They are also the source of more than 30 

different growth factors and cytokines, which attract cells involved in the proliferation 

stage  of  wound  healing.  The  next  stage  of  healing  process  is  the  formation  of  a 

provisional matrix of fibrin and fibronectin and is called the proliferation phase. By day 

3, fibroblasts appear in the fibrin-fibronectin framework and initiate collagen synthesis 

and disposition, which is important because it increases the strength of the wound. The 

fibrin-fibronectin  clot  does  not  provide  much  resistance  to  traumatic  injury. 

Inflammatory cells, cells involved in angiogenessis and connective tissue construction 

attach,  grow  and  differentiate  on  the  collagen  matrix  laid  down  by  fibroblasts 

(Ruszczak, 2003). Fibroblasts proliferate in response to growth factors and become the 

dominant cell type during this phase. They secrete a range of growth factors - insulin-

like growth factor  one (IGF-1),  basic  fibroblast  growth factor  (bFGF),  transforming 

growth factor beta (TGF-β) and keratinocyte growth factor (KGF). Keratinocyte growth 

factor (KGF) and transforming growth factor beta induce angiogenesis, which induces 

ingrowth and proliferation of endothelial cells, forming new capillaries. The stem cells 

of  endothelial  cells,  originating  from  parts  of  uninjured  blood  vessels,  develop 
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pseudopodia and push through the ECM. They stimulate connective tissue formation 

and directly enhance epithelialisation while KGF stimulates keratinocyte proliferation 

into  the  wound  site  to  establish  new  blood  vessels.  This  neovascularity  is  visible 

through the epithelium and gives the wound a pink or purple-red appearance. Capillary 

ingrowth provides the fibroblasts with oxygen and nutrients to sustain cell proliferation 

and  support  the  production  of  the  permament  wound  matrix.  This  is  composed  of 

collagen  and  proteoglycans  or  ground  substance  and  replaces  the  provisional 

fibronectin-fibin matrix. Granulation tissue begins to appear during the inflammatory 

phase  and continues  growing until  the  wound is  covered.  It  consists  of  new blood 

vessels,  inflammatory  cells,  fibroblasts,  endothelial  cells,  myofibroblasts  and  the 

component of a new provisional matrix (ECM), which is different in composition from 

ECM  in  normal  tissue.  The  provisional  matrix  is  composed  predominantly  of 

covalently cross-linked fibrin and plasma fibronectin (FN). It is remodeled over time to 

recapitulate normal tissue and this remodeling involves cell mediated contraction and 

deposition of new rich in fibronectin matrix (Clark, 1996; Midwood   et al.,     2004). Over 

time the provisional matrix is replaced with extracellular matrix similar to ECM found 

in non-injured tissue (Lorenz and Longaker, 2003).

The remodelling phase begins when the collagen accumulation within the wound 

reaches a maximum. It usually happens within 2 to 3 weeks after wounding. Scars do 

not achieve the strength achieved by collagen in normal unbroken skin. They increase in 

strength over 6 months or longer, however they can only reach 70% of the strength of 

unwounded  skin  (Mustoe,  2005).  This  means  that  the  post-wounded  area  is  more 

sensitive and can more easily break down again. 

There are several types of T-cells that have an impact on wounds. These are most 

prominent  after  wound  closure,  when  microbial  invasion  is  no  longer  a  significant 

factor,  suggesting  that  they play a  role  in  the post-closure  tissue remodelling  phase 
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(Eming et al, 2007). The role of T helper 1- and T helper 2-cell subsets in wound repair 

is  not  well  documented,  though  it  is  likely  that  they  regulate  the  wound  micro-

environment at particular times and in particular ways by secreting their own distinctive 

cytokine profiles (Hart, 2002).

Another type of T-cell associated with the skin is γδ T-cells or dendric epidermal 

T cells (DETC). They are found in the epidermis in association with damaged, stressed 

or transformed keratinocytes. Studies in mouse wound models have shown that healing 

is delayed if DETC are deficient, and it is evident that they provide crucial signalling 

molecules controlling keratinocyte actions and macrophage infiltration (Jameson and 

Havran, 2007).

Reconstruction of the epithelial barrier (epithelialisation) begins within hours of 

the initial injury, when epithelial cells from the basal layer at the wound edge flatten and 

migrate across the wound (Mustoe, 2005). The epidermal cells in open wounds must 

migrate  across  a  surface  of  granulation  tissue.  If  there  is  a  crust  or  eschar,  then 

collagenases and other metalloproteinases must be released to allow the epidermal cells 

to burrow underneath and lift the eschar. The accurate level of moisture is important in 

dermal  ulcers  healing.  It  prevents  formation  of  crusts  and  eschars  and  speeds 

epithelialisation (Mustoe, 2005). As soon as the first layer of cells restores the epithelial 

barrier,  additional  layers  develop,  restoring  the  basilar-to-apical  order.  As  the  cells 

mature,  they restart  keratin  formation  what  regenerates  the stratum corneum  of  the 

epidermis. This completes the restorative process of epithelialisation and also provides 

stable  coverage.  The process  of  epidermis  reconstruction  induces  apoptosis  of  cells 

responsible  for  inflammation,  and mesenchymal  cells  in  the underlying dermis  with 

initiation of the maturation process. 

In a younger patient with prolonged inflammation, delayed epithelialisation often results 

in  hypertrophic  excessive  scarring.  In  regulating  the  scarring  process  the  epithelial 
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mesenchymal cell factors released by the epidermis are important. Homeostasis is not 

achieved  until  a  mature  stratum  corneum  fully  restores  the  normal  barrier  to 

evaporation.  The  epidermis  continues  to  release  growth  factors,  which  stimulate 

collagen production and scar formation (Mustoe, 2005).

After collagen deposition begins, the wound starts to contract and this process is 

an important event of the healing in open wounds. The surrounding skin is pulled over 

the wound to reduce its size when the open wound contracts. Wound contraction occurs 

much faster than epithelialisation and depends on size, location of the wound and on 

how loose the tissue in the wounded area is.  Contraction happens at a speed of up to 

0.75 mm per day (Romo and Pearson, 2006). The open wound is resurfaced by normal 

unbroken  skin  surrounding  the  wound.  This  is  also  an  advantage  in  addition  to 

increasing  the  speed  of  wound  closure.  Human  skin  adheres  tightly  to  subdermal 

structures  and  is  less  elastic  especially  in  lower  leg.  While  contraction  generally 

accounts for 90% of the reduction in wound size on the perineum, it only accounts for at 

most 30% to 40% of the healing of a lower leg ulcer. This is one of the most important 

reasons of delay in the healing of leg ulcers (O’Leary et al., 2002).

1.3 Wound types

1.3.1 Acute wounds

Acute wounds are caused by injury to intact skin and include bites, minor cuts, 

burns, surgical wounds, abrasions and also more traumatic wounds such as lacerations 

and gun-shot injures (Davis and Dunkley, 1992). Wounds are classified according to the 

number of layers affected. Injury limited only to the epithelial tissue is classified as a 

superficial  wound and will  heal rapidly by regeneration of epithelial  cells.  A partial 

thickness wound involves the deeper dermal layer and includes damage to the blood 
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vessels. A full thickness wound affects the subcutaneous fat layer and beyond and its 

healing will take longer as it requires the synthesis of new connective tissue (Cockbill, 

2002). Acute wounds heal within a reasonable time frame after injury. Clean surgical 

wounds usually require minimal intervention to enable quick healing. However in more 

traumatic wounds, the presence of dead tissue, viable bacteria and non-viable foreign 

material  is  likely  to  require  surgical  intervention  and  in  some  cases  antimicrobial 

treatment to progress natural healing (Leaper and Harding, 1998).  

1.3.2 Chronic wounds

Acute wounds can transform into chronic wounds if the wound healing process 

is disrupted and they do not heal over the expected period of time irrespective of the 

cause. Additionally, they may form as the result of systemic infection, immune, vascular 

or nerve insufficiency or metabolic disorders such as diabetes (Crovetti  et al., 2004). 

They are difficult to heal, may never heal or take years to do so. In general, a wound 

that  does  not  heal  within  3  months  is  termed a  chronic  wound (Mustoe,  2005).  In 

chronic wounds the balance between production and degradation of collagen is lost and 

this  is  frequently caused by endogenous mechanisms,  which disturb the integrity of 

dermal and epidermal tissue (Davis and Dunkley, 1992). There are several factors that 

may have an impact on wound healing. Such factors include age due to a decrease in 

inflammatory response and physiological processes such as blood circulation, reduction 

in  collagen  formation  and  basement  membrane  degradation  (Doughty  et  al.,  2007). 

Malnutrition can also prevent wound healing by decreasing collagen production and 

other proteins needed for wound repair.  Bacteria in high numbers at the wound bed 

produce  toxic  end  products  and  complete  with  cells  in  the  granulation  tissue  for 

available  nutrients  (Evans,  2005).  Stress  has  also  been  implicated  in  the  impaired 

healing process with decreased wound healing associated with pain and noise (Kane, 
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2007). Chronic wounds may affect only the epidermis and dermis or they may affect 

tissue to the fascia. The majority of chronic wounds can be classified into three broad 

categories: venous leg ulcers (VLUs), pressure ulcers and diabetic foot ulcers (DFUs). 

Approximately  20%  of  diabetic  patients  develop  DFUs  due  to  peripheral 

neuropathy,  muscle  atrophy,  foot  deformity  and  neuropathic  fractures  (Raja,  2007). 

These ulcers eventually became colonised or infected with different bacteria. Diabetic 

foot ulcers (DFUs) precede 85% of all diabetes-related lower-leg amputations (Reiber et  

al., 1995). The moment a person with diabetes suffers a breach in the skin of their foot,  

they  are  at  danger  of  amputation.  Currently,  there  are  approximately  100,000  limb 

amputations performed in the United States every year. It is estimated that more than a 

million people with diabetes require limb amputation each year globally, an indication 

that an amputation is performed worldwide every 30 seconds (Jeffcoate and Bakker, 

2005). 

Venous leg ulcers (VLU) are localised in the lower limb or an area of damaged 

skin below the knee. They are thought to be due to venous hypertension caused by the 

improper function of the valves that exist in the veins to prevent blood from flowing 

backward. The body needs the pressure gradient between arteries and veins in order for 

the  heart  to  pump blood forward  through the  arteries  and into  veins.  When venous 

hypertension exists, arteries no longer have significantly higher pressure than veins and 

blood is not pumped as effectively into or out the area and it  pools (Mustoe, 2005; 

Moreo, 2005). Venous hypertension may also stretch veins and allow blood proteins to 

leak into the extravascular space, isolating extracellular matrix molecules and growth 

factors,  preventing  them from healing  the  wound  (Brem  et  al.,  2004).  Leakage  of 

fibrinogen from veins as well as deficiencies in fibrinolysis may also cause fibrin to 

build up around the vessels, preventing oxygen and nutrients from reaching calls (Brem 

et al, 2004). There are also other factors that may contribute to venous leg ulcers such as 
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arterial  disease,  trauma,  obesity,  immobility,  vasculitis  and  diabetes  (Simon  et  al., 

2004). VLUs are associated with age and are less common among individuals who are 

less than 45 years old but the risk increases with age. Studies have shown that one in 

every 50 persons over the age of 80 years is affected by venous leg ulcers (Kane, 2007). 

Pressure ulcers usually occur in patients with paralysis (temporary or permanent) 

that inhibit movement of body parts that are commonly subjected to pressure such as the 

heels, shoulder blades,  and sacrum (Thomas  et al.,  2005; Wilhelmi and Neumeister, 

2008). Pressure ulcers are caused by ischaemia that occurs when pressure on the tissue 

is greater than the pressure in capillaries causing obstruction of blood flow into the area. 

Muscle tissue, which needs more oxygen and nutrients than skin shows the worst effects 

from prolonged pressure (Wilhelmi and Neumeister, 2008).  In the UK almost 4-10% of 

patients admitted to hospital develop one or more ulcers of which the elderly are the 

most at risk with a high incidence rate of up to 79% (Lyder, 2003). 

1.3.2.1 Pathophysiology of chronic wounds

The reasons why wounds do not heal are related to local factors associated with 

the wound itself and also with co-morbidities (e.g. diabetes). Based on evidence that 

chronic wounds are associated with high levels of pro-inflammatory cytokines (Warner 

and Grose, 2003) along with low levels of growth factors (Trengove et al., 1999; Lauer 

et al., 2000; Ludwig et al., 2002) and high levels of matrix metalloproteinases (MMPs) 

(Trengove et al., 1999) chronic wounds may be stuck in the inflammatory phase. There 

is also evidence to suggest that a subset of chronic wounds do not heal because they fail 

to complete epithelialisation especially in elderly patients. For example, keratinocytes 

have been shown to exhibit an age-related reduction in mitogenic response and in vivo 

studies have shown that the rate of re-epithelialisation is reduced in both aged rat and 

mouse models (Ashcroft et al., 2003) and in humans (Holt et al., 1992). Ashcroft et al., 
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(2002) have suggested that this may be related to low level of growth factors including 

epidermal growth factor (EGF). There are other major factors that can lead to chronic 

wounds  such  as  ischaemia,  reperfusion  injury,  and  bacterial  colonisation  (Mustoe, 

2004).

1.3.2.1.1 Ischaemia

          The interruption of blood supply results in ischaemia, which rapidly damages 

metabolically active tissues (Mallick et al., 2004). Ischaemia causes tissue inflammation 

and affected cells to release factors attracting neutrophils such as interleukins (Clark, 

2005),  chemokines,  leukotrienes,  and  complement  factors  which  lead  to  tissue 

inflammation. Ischaemia is an important factor in the formation of wounds and their 

persistance, especially when it occurs repetitively or when combined with a patient’s old 

age (Mustoe, 2004). 

Neutrophils,  while  fighting  pathogens,  release  damaging  enzymes  and 

inflammatory cytokines (Snyder, 2005) and also produce reactive oxygen species (ROS) 

to kill bacteria, for which they use an enzyme called myeloperoxidase (Mustoe, 2004). 

The enzymes  and ROS produced by neutrophils  and other  leukocytes  destroy cells, 

prevent cell proliferation and wound closure by damaging DNA, lipids, proteins (Alleva 

et al., 2005), the extracellular matrix, and cytokines that speed healing (Mustoe, 2004). 

Neutrophils remain in chronic wounds for longer than they do in acute wounds, and 

contribute to the fact that chronic wounds have higher levels of inflammatory cytokines 

and ROS (Schönfelder et al., 2005; Taylor et al., 2005). Since wound fluid from chronic 

wounds has an excess of proteases  and ROS, the fluid itself  can inhibit  healing by 

inhibiting  cell  growth  and  breaking  down  growth  factors  and  proteins  in  the 

extracellular matrix (Snyder, 2005).
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1.3.2.1.2 Bacterial colonisation

Bacterial colonisation is another major factor that influences wound healing. It is 

known that healing and bacterial load is a complex equation involving the type(s) and 

number of bacteria, and the patient's own immune system (Sibbald et al., 2003; Bowler, 

2003). In this context wounds may not necessarily show the clinical signs of infection 

but bacterial numbers (bioburden) may be sufficiently high to prevent normal wound 

healing. 

Patients  with  decreased  tissue  oxygenation  such  as  those  who  suffered 

hypothermia during surgery or diabetic patients have a higher risk for infection. Low 

levels of oxygen in the wound environment prevents white blood cells from producing 

reactive  oxygen  species  essential  for  killing  bacteria  (Mustoe,  2004).  The  host’s 

immune response to the presence of bacteria delays healing by prolonging inflammation 

and causing damage to the tissue. Infection can cause not only the wound to become 

chronic but can cause also gangrene, loss of the infected limb, and death of the patient 

(Dow, 2001).

Microbial colonisation and infection can further damage tissue by attracting a 

greater  number  of  neutrophils  to  enter  the  wound  site  (Snyder,  2005).  In  chronic 

wounds, bacteria resistant to antibiotics such as Methicillin Resistant  Staphylococcus  

aureus (MRSA) may have time to develop, colonise and infect the wound (Halcón and 

Milkus,  2004).   Bjarnsholt  et  al.,  (2008)  proposed  a  hypothesis  to  explain  the 

involvement  of  bacteria  in  wound  chronicity.  They  proposed  that  the  presence  of 

Pseudomonas aeruginosa in a biofilm and the lack of existing concurrent elimination by 

attended PMNs were the main causes of inefficient eradication by antibiotic treatment 

and  antimicrobial  activity  of  the  immune  system  respectively.   They  used 

fluorescence in situ hybridization (FISH) to analyze sections from chronic wounds and 

found distinct microcolonies—the basal structures of bacterial biofilms. Studies have 
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previously  reported  increased  tolerance  to  various  antimicrobial  measures  and 

treatments as an indicator of biofilm formation.  It has been shown that in vitro biofilms 

of P.  aeruginosa produce  a  shielding  mechanism  that  offers  protection  from  the 

phagocytic activity of PMNs (Jensen et al., 2006; Bjarnsholt et al., 2005).

1.3.2.1.3 Growth factors and proteolytic enzymes

The  levels of proteolytic enzymes such as matrix metalloproteinases (MMPs) 

and elastase (Edwards et al., 2004; Schönfelder et al., 2005; Snyder, 2005)  in chronic 

wounds are higher than in acute wounds, while the concentration of growth factors such 

as KGF and PDGF are lower (Crovetti  et al., 2004; Schönfelder  et al., 2005; Snyder, 

2005). Therefore,  an important factor in chronic wound formation may be inadequate 

growth factors levels (Crovetti et al., 2004). The formation and release of growth factors 

in chronic wounds may be prevented or the factors may be sequestered and unable to 

perform their  metabolic  roles.  Also  they may be  degraded in  excess  by cellular  or 

bacterial proteases (Crovetti et al., 2004).

Chronic wounds such as venous ulcers or diabetic foot ulcers may also be caused 

by a failure of fibroblasts to produce adequate ECM proteins due to a different gene 

expression  in  chronic  wounds  than  in  acute  wounds  (Foy  et  al.,  2004).  Epidermal 

growth factor has been shown to be degraded in chronic wound fluid compared to acute 

fluid, which suggests again a direct link between high protease activity and poor tissue 

regeneration (Trengove et al., 1999).

For  full  healing,  wounds  require  a  certain  level  of  elastase  and  proteases. 

However,  too  high  a  concentration  of  these  enzymes  is  damaging  (Edwards  et  al., 

2004).  Elastase is  released by leukocytes  in  the wound area  (Edwards  et  al.,  2004; 

Schönfelder  et  al.,  2005).  This  enzyme  increases  inflammation,  destroys  tissue, 

proteoglycans and collagen (Kanda and Watanabe, 2005), and damages growth factors, 
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fibronectin,  and factors that inhibit  proteases (Edwards  et al.,  2004). The activity of 

elastase is increased by albumin, which is the most abundant protein found in chronic 

wounds. However, chronic wounds with inadequate albumin are especially unlikely to 

heal, so regulating the wound's levels of that protein may in the future prove helpful in 

healing  chronic  wounds  (Edwards  et  al.,  2004).  High  levels  of  matrix 

metalloproteinases (MMPs) released by leukocytes, may also cause wounds to become 

chronic (Stanley et al., 2005). Matrix metalloproteinases destroy growth factors, ECM 

(Stanley  et  al.,  2005) and protease inhibitors.  They increase degradation and reduce 

construction  processes,  which  leads  to  balance  disturbance  (Lai  et  al.,  2004; 

Schönfelder  et al., 2005). There is strong evidence that activity of MMP decreases as 

the wound heals (Trengove et al., 1999). TiMP1 (Tissue inhibitor of metallopeptidase 1) 

is  a  glycoprotein that  is  expressed  in  tissue and involved in  the degradation of  the 

extracellular matrix. It is able to promote cell proliferation in a wide veriety of cells. 

Ladwig et al (2002), have shown that the ratio of MMP to TiMP1 may be an important 

factor, which allows a prediction of a wound’s ability to heal.  Many common wound 

bacterial  species  produce  a  wide  array  of  MMPs  that  additionally  have  a  negative 

impact on wound healing (Ladwig et al., 2002).

1.4 The Diabetic foot 

1.4.1 Diabetes and its epidemiology

Diabetes  mellitus is  a  group  of  metabolic  diseases  characterised  by 

hyperglycaemia  caused  either  by  an  impaired  response  of  body  cells  to  insulin  or 

because the body does not produce enough insulin. In 2000, according to the World 

Health Organization, at least 171 million people worldwide (2.8% of the population) 

suffered from diabetes. The number of diabetic patients is increasing rapidly, and it is 

estimated that by 2030, it will double (Wild et al., 2004). There are three main types of 
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diabetes: Type 1, Type 2 and gestational. Type 1 is caused by the loss of beta cells of the 

Islets of Langerhans which produce insulin in the pancreas. The body then does not 

produce  insulin,  which  leads  to  insulin  deficiency.  This  type  of  diabetes  is  further 

classified as idiopathic or immune-mediated. The majority of type 1 diabetes is of the 

immune-mediated nature, where beta cell loss is a T-cell mediated autoimmune attack 

(Rother,  2007).  Type  2  diabetes  is  characterized  by  insulin  resistance.  It  may  be 

combined  with  relatively  reduced  insulin  secretion.  The  specific  defects  are  still 

unknown,  however  the  defective  response  of  body tissues  to  insulin  is  believed  to 

involve  the  insulin  receptor.  Diabetes  mellitus due  to  a  known  defect  is  classified 

separately. Type 2 diabetes is the most common type (Tripathi and Srivastava, 2006). 

Gestational  Diabetes mellitus (GDM) is diagnosed when pregnant women have high 

blood glucose and have never had diabetes before. It occurs in about 2% - 5% of all 

pregnancies and usually improves or disappears  after  delivery.  In several  respects it 

resembles type 2 diabetes as it involves a combination of insufficient insulin secretion 

and responsiveness (Lawrence et al., 2008). 

1.4.2. Aetiology of diabetic foot ulceration

1.4.2.1 Neuropathy

Poorly controlled  and  mismanaged  diabetes  may cause  damage  to  the  body. 

Healthy diet or physical activity alone, or in combination with injections and/or tablets, 

is important in the prevention of diabetes complications. Persistent hyperglycemia can 

damage the small and large blood vessels and nerves and the most common diabetes 

complication is neuropathy. Up to 50% people with diabetes are affected by neuropathy 

(Adler et al., 1997). Diabetic neuropathies result from injury to small blood vessels that 

supply nerves in addition to macrovascular conditions that can culminate. Metabolic and 

neurovascular factors are the main reasons for causing neuropathy in diabetic patients. 
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Peripheral neuropathy is a type of neuropathy causing loss of pain or feeling in the legs 

and arms, feet and toes due to low blood perfusion and distal nerve damage (Wu et al., 

2007). As the neuropathy progresses, patients lose feeling and in many cases are not 

aware of blisters and sores appearing on numb areas of the feet and legs. Any unnoticed 

pressure or injury to  such areas may lead to bacteria colonisation and consequently 

infection. Diabetic neuropathy and ischaemia are the main risk factors associated with 

the  development  of  diabetic  foot  ulcers  (Wu  et  al.,  2007). More  than  80%  of 

amputations  occur  after  foot  ulceration or  injury resulting from diabetic  neuropathy 

(Boulton  et  al.,  2005).  Loss  of  neural supply  to  the  intrinsic  muscles  of  the  foot 

produces an imbalance of the long flexor and extensor tendons. Contraction of the more 

powerful flexors of the lower limb induces the classic high-arched foot and claw-toe 

deformity seen in as many as 50% of patients  with diabetes (Borssen  et  al.,  1990). 

Hyperextension of the toes with resultant overriding of the metatarsal-phalangeal joints 

forces  the  metatarsal  heads  downward,  thereby  increasing  their  prominence. 

Hyperextension of the toes displaces the metatarsal fat pads distally, further reducing 

the  natural  cushioning  of  the  metatarsal  heads.  These  mechanical  changes  increase 

plantar pressures inducing callus formation and underlying skin breakdown (Bowering, 

2001).

1.4.2.2 Peripheral Vascular Disease

Peripheral  vascular  disease is  the second major  factor  that  contributes to  the 

development  of  infection  in  the  diabetic  foot  (Larkin  et  al.,  1985;  LoGerfo  and 

Coffman, 1984). Chronic occlusive arterial disease and microangiopathy may play a 

role  in  this  process  (Lippmann,  1979).  However,  although  microvascular  disease  is 

often cited as a cause of poor outcome in cases of diabetic foot wounds, there is little 

evidence to support its existence (LoGerfo and Coffman, 1984) and its importance has 

17



been challenged. Macrovascular disease or atheroma occurs commonly in diabetics and 

is  a major  factor  in  the development of foot lesions.  Atherosclerosis  in the diabetic 

population tends to occur at an early age and with greater severity than in the non-

diabetic population (Warren et al., 1966). 

1.4.2.3 Immunological Aspects

Immunological  Impairment  Accompanying Hyperglycaemia (IIAH) is  another 

pathophysiological factor important in the aetiology of foot ulceration. For many years 

there has been a general clinical impression that diabetic patients are more susceptible 

to bacterial infections than non-diabetic individuals (Savin, 1974). It is well known that 

acute infections lead to difficulty in controlling blood-sugar levels (Colwell, 1970) and 

that infection is the most frequently documented cause of ketoacidosis (Nabarro, 1965). 

However, controversy persists over whether well controlled patients with diabetes have 

an increased incidence of infection. It has been suggested that infection in these patients 

is not due to increased susceptibility but, once the dermal barrier of the foot has been 

broken down and a portal for infection of the deep tissue has been opened, alterations in 

their  immune  system renders  the  individual  unable  to  fight  infection  (Brodsky and 

Schneidler, 1991). Various aspects of the immune system that are deficient in diabetic 

patients include neutrophil chemotaxis (Mowat and Baum, 1971), adherence to vascular 

endothelium, phagocytosis  (Bagdade  et  al.,  1974),  intracellular  killing (Nolan  et al., 

1978), serum opsonins (Rayfield et al., 1978) and cell-mediated immunity (MacCuish 

et al., 1974). 

1.4.2.4 Other factors 

Other contributory factors have been identified as possible causes of diabetic 

foot ulceration. These have included, duration of diabetes and glycaemic control (Moss 
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et al., 1992), abnormally high foot pressures (Veves  et al., 1992), humoral immunity 

and social factors (Young, 1987; Reiber et al., 1992). 

Diabetic  patients  have  normal  levels  of  immunoglobulins  (Johnson,  1970) 

however,  Ludwig  et  al.,  (1976)  reported  an  increased  number  of  diabetics  without 

antibodies to  Bordetella pertussis and diphtheria toxoid compared to controls. Also, a 

significantly lower number of juvenile-onset diabetics had agglutinins to  E. coli  and 

staphylococcal antigens.

Racial  and  ethnic  differences  in  ulceration  and  amputation  rates  in  diabetic 

individuals have been reported. Nelson et al., (1988) found that the rate of amputation 

in diabetic Pima Indians was higher than that reported in other diabetic populations and 

was significantly related to the duration of diabetes. Gujral (1994) reported that diabetic 

patients of an Asian origin had a lower incidence of amputation. The risk of amputation 

was  found to  be  2.3  times  greater  for  the  black  population  compared  to  the  white 

population (Most and Sinnock, 1983). 

The  Wisconsin  WESDR  (Wisconsin  Epidemiological  Study  of  Diabetic 

Neuropathy) study reported that high glycosylated haemoglobin levels were associated 

with increased risk of foot ulceration (Moss et al., 1992). Moreover, Janka et al., (1980) 

found  that  there  was  an  increased  rate  of  peripheral  vascular  disease  in  diabetic 

individuals with poor glycaemic control. 

Veves  et al., (1992) found that  abnormally high foot pressure was positively 

associated with diabetic ulcer occurrence. Boulton (1996) reported that several factors, 

including  orthopaedic  problems,  decreased  pain  and  proprioception,  limited  joint 

mobility  and  small  muscle  wasting  lead  to  increased  pressure  and  loads  under  the 

diabetic  foot.  Extensive  callus  formation  occurs  at  sites  of  increased  pressure  and 

intensifies the forces on the subcutaneous tissue and ultimately leads to foot ulceration. 
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Reiber  et  al.,  (1992)  reported  that  single  diabetics  had  an  increased  risk  of 

amputation  when  compared  to  married  patients.  Lack  of  social  support  was  also 

associated with lower extremity amputation. Patients who recognised the importance of 

diabetes self-care were less likely to have ulcers leading to amputation.

Thus it can be seen that critical factors which proceed ulceration and amputation 

may include not only pathophysiological conditions such as neuropathy, ischaemia and 

faulty  wound  healing  but  also  include  social,  healthcare  and  environmental  factors 

(Reiber et al., 1992). Each risk factor alone does not cause ulceration but when several 

factors act  together  it  culminates  in  foot ulceration (Pecoraro  et  al.,  1990).  In most 

diabetic patients with foot ulceration there is  a combination of circumstances which 

leads to the ultimate clinical lesion. 

1.5 Microbiology of healthy skin

Skin is an integral part of the immune system and forms the first line of defence 

against pathogens by reducing microbial adherence and invasion (Nizet  et al.,  2001; 

Schroder and Harder, 2006). The outer surface of adult skin is colonised by a small 

number  of  culturable  bacteria,  which  can be regulary detected  and they represent  a 

population refered to as the resident or normal microflora (Noble, 1980; Mackowiak, 

1982). Skin also provides a supportive environment for other microorganisms, which 

are called transient bacteria and are not permanent residents of skin (Price, 1938). The 

role of these microorganisms in infection is still unknown, although it is highly likely 

that they influence the infection life cycle (Percival et al., 2012). The composition and 

the density of skin microflora varies with anatomical site. The highest density has been 

reported in moist regions such as the axillae, groin and between toes (Percival  et al., 

2012). 
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        The Human Microbiome Project (HMP) was initiated in 2007 to analyse the  

microflora of human skin using molecular approches. The aim of the project was to 

better define molecular tools, indicate the limitations of standard culture techniques and 

redefine  the  microflora  of  various  body  sites  including  sebaceous,  moist  and  dry 

location.  The  study  found  using  standard  cultural  techniques,  that  the  majority  of 

microorganisms inhabiting the skin are viable, but nonculturable (VBNC).

        There are many factors affecting microbiology of human skin such as age (Noble  

and Somerville, 1974), sex (Wilburg et al., 1984), skin site, level of hygiene and type of 

cleansers  used,  climate,  race,  occupation  and  whether  an  individual  is  hospitalized 

(Larson  et  al.,  2000).  The most  frequently identified  bacteria  from human skin  are 

coagulase  negative  staphylococci  (CNS).  Fifty  percent  of  CNS are  identified  as  S. 

epidermidis,  which  are  particulary  abundant  in  the  upper  regions  of  hair  follicles 

(Harmory and Parisis, 1987; Vuong and Otto, 2002). Other CNS isolated include  S. 

saprophyticus,  S. hominis,  S. warneri, S. haemolyticus and  S. capitis.  S. aureus is a 

commonly isolated bacteria and pathogen particularly prevalent in the anterior nares of 

humans (Nagase  et al., 2002). The most predominant species isolated from the head, 

legs  and  arms  are  Coryneforms,  micrococci  and  Bacillus spp  (Kloos,  1981).  Some 

studies  report  Gram negative  bacteria  such  as  Acinetobacter and  Pseudomonas spp 

isolated from human skin particulary during the warmer months of the year (Seifert et  

al., 1997;  Berlau  et  al., 1999).  The  most  common  microorganisms  identified  from 

human  skin  include  Staphylococcus,  Micrococcus,  Corynebacterium, 

Propionobacterium,  Malassezi, Brevibacterium, Acinetobacter and  Dermabacter  

(Percival et al., 2012). 

          Skin has many defensive mechanisms that protect the body from invasion by 

strict and opportunistic pathogens (Barak  et al.,  2005). Dead keratinised cells in the 

upper layer of epidermis inhibit microbial adherence. The low level of nutrients and 
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high levels of keratin in the  stratum corneum limits bacterial density. The continuous 

shedding  of  squamous  epithelial  cells  from  the  skin  serves  to  remove  attached 

microorganisms from the skin surface and within the skin layers. Skin’s lymphoid tissue 

is composed of Langerhans cells and dendritic cells. These cells are antigen presenting 

cells and they possess surface molecules that recognise specific markers associated with 

pathogens.  They  are  involved  in  mediating  both  the  humoral  and  cell  mediated 

responses of the immune system. Over 20 antimicrobial peptides (AMPs) have been 

reported on the surface of human skin (Schauber and Gallo, 2009) and these generally 

exhibit a broad spectrum antimicrobial activity. AMPs are produced by many types of 

skin cells including mast cells and keratinocytes (Braff  et al., 2005) and protect skin 

from  microbial  invasion.  Finally,  the  high  salt  concentration  on  skin  is  also 

antimicrobial and this occurs partly due to sweat evaporation. 

1.6 Microbiology of chronic and acute wounds

The human host and microorganisms normally exist in a balanced relationship 

(Cooper,  2005).  Infection  occurs  when microorganisms  overcome  the  host’s  natural 

immune system and subsequent invasion of bacteria in viable tissue provoke a series of 

local and systemic host responses (Thomas, 2008). Microorganisms are likely to enter 

the wound from three main sources: the environment (exogenous microorganisms in the 

air or those introduced by traumatic injury), the surrounding skin (involving normal skin 

flora  such  as  Staphylococcus  epidermidis,  micrococci,  propionibacteria),  and 

endogenous  sources  involving  mucous  membranes  (gastrointestinal,  oropharyngeal, 

genitourinary mucosae).  The  normal  microflora  of  the  gut,  the  oral  cavity,  and the 

vagina are both diverse and abundant and these sources supply the vast majority of 

bacteria that colonise wounds. According to many studies  that have investigated the 

role of microorganisms in wound healing, the most common pathogens in chronic and 
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acute  wounds  are  aerobic  and  facultative  bacteria  such  as  Staphylococcus  aureus,  

Pseudomonas  aeruginosa and  β-  haemolytic  streptococci  (Danielsen  et  al.,  1998; 

Halbert et al., 1992; Pal’tsyn et al., 1996; Sehgal and Arunkumar, 1992; Bowler et al., 

2001). The presence of anaerobic bacteria in wounds may be significant, but they are 

often  overlooked  as  many  standard  laboratories  do  not  routinely  screen  for  them 

(Thomas, 2005), although many are potentially highly virulent. 

Bacterial  species  in  chronic wounds usually exist  in  synergistic  relationships 

with other bacteria. They rarely exist in pure culture. In many chronic wounds, when 

using  conventional  cultural  techniques,  the  number  of  species  of  aerobic  bacteria 

recovered range from 1 to 8 with an average of 2.7 different bacterial species per wound 

(Hutchinson, 1994). 

Different wounds support different communities of microorganisms (Bowler  et  

al., 2001).  The presence of bacteria  in  a  wound may result  in  three clearly defined 

outcomes such as contamination, colonisation and infection. Contamination exists when 

the bacteria do not replicate in the wound and wound healing is not delayed.  There are 

no  suitable  nutritive  and  physical  conditions  for  bacteria  and  they  are  not  able  to 

successfully  evade  host  defences.  The wound is  colonised  when bacteria  grow and 

multiply, but do not cause damage to the host or initiate wound infection. When bacteria 

multiply they can release extracellular products such as toxins and enzymes into the 

local environment and the wound healing becomes disrupted, wound tissue is damaged 

and there are signs of local infection. 

Over 10 years ago the term “critical  colonisation” was introduced as a stage 

between  colonisation  and  infection.  Davis  (1996)  defined  critical  colonisation  as 

“multiplication  of  organisms  without  invasion  but  interfering  with  wound  healing”. 

White,  Cutting  and  Kingsley  (2006),  explained  it  as  the  inability  of  the  wound  to 

maintain  a  balance  between  altered  bioburden  and  an  effective  immune  system, 
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indicated by an unexplained delay in healing but not necessarily a deterioration in the 

wound  or  other  overt  signs  of  clinical  infection.  However  the  concept  of  critical 

colonisation was dismissed by some clinicians who expressed the view that the wound 

is  either  infected  or  not  without  prodromal  phase  of  infection  (White  and  Cutting, 

2006). Therefore it must be recognised that at present the term “critical colonisation” is 

theoretical. Additional research is required especially with regard to the diagnosis and 

appriopriate treatment of wounds (O’Brien, 2007). 

1.6.1 Microorganisms isolated from diabetic foot ulcers

Diabetic foot infections are usually polymicrobial in nature and are attributed to 

aerobic  bacteria  such as  Staphylococcus  aureus,  including MRSA strains,  coagulase 

negative staphylococci, Streptococcus sp.,  Enterobacteriaceae and anaerobic flora such 

as Bacteroides  sp., Clostridium  sp., Peptostreptococcus  sp.,  and fungi (Bowler  et al., 

2001; Dowd et al., 2008; Bansal et al., 2008).

Traditionally, studies of the wound microflora have concentrated on the role of 

the most common and easy to culture pathogens such as  Staphylococcus aureus and 

Pseudomonas  aeruginosa. These  organisms  are  easy  to  grow  and  identify  using 

traditional  microbiological  methods.  Therefore,  conventional  methods  are  likely  to 

overestimate  the  contribution  of  these  species  to  the  bioburden  of  chronic  wounds. 

Nowadays,  researchers  and  clinicians  are  beginning  to  realise  that  the  diversity  of 

microflora  in  chronic  wounds  may be  an  important  contributor  to  the  chronicity of 

wounds.

Wheat  et  al.,  (1986)  used  an  advanced  approach  to  culturing  bacteria,  and 

discovered  Staphylococcus,  Enterococcus,  and  Corynebacterium  sp. were  the  most 

common aerobic (or facultative) bacteria in foot ulcers. They also evaluated anaerobes 

in  foot  ulcers  and  identified  common  anaerobes  such  as  Peptostreptococcus and 
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Bacteroides species. In other studies (MacFarlane et al., 1986; Ceilley, 1977) identified 

the importance of Corynebacterium sp. in foot ulcers. Corynebacterium species belong 

to the normal skin and mucous membrane microflora and have been considered to be 

non-pathogenic. However, bacteria such as Staphylococcus epidermidis had previously 

been mistakenly viewed as non-pathogenic for the same reason (Cogen  et al., 2008). 

Although Corynebacterium may not be a common cause of acute infections, it appears 

to  be  a  common  (but  overlooked)  factor  in  chronic  diabetic  foot  ulcer  infections 

(Bessman  et al., 1992). In the study by Dowd  et al., 2008  Corynebacterium was the 

most  predominant genus identified using the molecular approach. The most common 

species  identified  were C.  striatum, C.  amycolatum, C.  tuberculostearicum,  and C. 

mucifaciens. Corynebacterium striatum was identified in 22 of the 30 Corynebacterium-

positive samples and this species has been associated with infections involving joints 

and  open  fracture  wounds (von  Graevenitz et  al.,  1998).  Another  study  has 

associated Corynebacterium with diabetic foot osteomyelitis (Hartemann-Heurtier and 

Senneville, 2008) .

The impact of anaerobes in chronic wounds has also been well documented in 

the  literature  and  anaerobic  species  are  beginning  to  be  recognized  as  a  major 

population in chronic wound biofilms (Dowd et al., 2008; Bowler and Davies, 1999). 

The importance of anaerobes such as  Peptostreptococcus, Prevotella,  Finegoldia and 

Peptoniphilus sp. has been previously reported (Trengove et al., 1996). Anaerobes may 

be the most prevalent physiological type for a given wound or an individual wound type 

even though wounds are usually exposed to air. Bowler et al., (1999) evaluated venous 

leg ulcers using cultural isolation techniques that included special considerations for the 

propagation of anaerobes. They reported that anaerobes represented 49% of the total 

microbial  composition in such wounds. Dowd  et al., (2008),  used a pyrosequencing 

approach to investigate the bacterial population of diabetic foot ulcers and reported that 

25

http://link.springer.com/search?facet-author=%22A.+von+Graevenitz%22


30% of the sequences detected were anaerobes.

1.6.2  Epidemiology  and  characteristics  of  Methicillin  resistant  Staphylococcus 

aureus (MRSA) 

Staphylococcus aureus was first identified in the late 19th century and has since 

been recognised as part of the natural flora of humans. It frequents the face, hands and 

perineum,  with  the  most  common  site  being  the  nares  (nostril)  (Williams,  1963). 

Between 30% and 60% of the healthy population carry Staphylococcus aureus, of which 

between 10% and 20% are  chronically  colonised  (ongoing,  persistent  population  of 

Staphylococcus aureus on or in the body but in the absence of infection) (Foster, 2004). 

MRSA is reported as the leading cause of wound infections in most parts of the 

world.  The  high  prevalence  of  MRSA  colonisation  in  diabetic  foot  ulcers  is  a 

consequence  of  antibiotic  overuse  and  the  selection  of  broad  rather  than  narrow 

spectrum agents.  In  2002,  MRSA prevalence  in  skin  and soft  tissue  infections  was 

reported in the USA as 44.4%, in Italy as 41.8%, France as 34.7%, in Spain as 32.4% 

and in Germany as 12.4% (Lipski, 2004). MRSA is now endemic in both community 

and hospital  environments  and there  has  been a  reported increase  in  hospital  stays, 

increased cost, and increased morbidity and mortality associated with these infections 

compared to other diabetic  foot ulcer  infections (Lipski,  2004; Reiber  et al.,  1998). 

There is  also evidence that  MRSA colonisation of chronic ulcers is  associated with 

delayed  healing  times  (Bowling  et  al.,  2007).  Strategies  to  eliminate  MRSA from 

colonised wounds are therefore essential and should include the use of simple, low-cost, 

effective treatments. MRSA mainly exists on the superficial part of the skin, is easy to 

detect and it is an excellent indicator organism that can be used to compare diagnostic 

methods and to demonstrate the ability of methods to assess the presence of microbial 

diversity. The number of deaths in England and Wales caused by MRSA decreased by 
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37% in  2009  to  781  from 1,230  in  2008.  Deaths  involving  Staphylococcus  aureus 

(including those which did not specify methicillin resistance) fell by 16% from 1,500 in 

2008 to 1,253 in 2009. In 19% of deaths in 2009, MRSA infection was recorded as the 

underlying cause of death in UK. This figure varied between 17% and 36% over the 

1993-2009 period (National Statistics. Deaths Involving MRSA: England and Wales, 

2007 to 2011. Statistical Bulletin, August 2012).

1.6.2.1 Genotype and phenotype

MRSA  is  a  Gram  positive  non-motile,  non-facultative  coccus. Optimum 

environmental conditions for growth are temperatures between 15oC and 45oC. High 

concentrations of sodium chloride do not alter growth, even when concentrations reach 

up  to  15% (Parfentjev  and  Catelli,  1964). It  is  coagulase  positive,  making  it 

distinguishable from the other Staphylococcaceae in laboratory testing and it is catalase 

positive which differentiates it from Streptococci species. MRSA produce a number of 

virulence  factors  which  elicit  suppurative  infections  and  toxinosis.  Surface  proteins 

allow  bacterial  attachment  to  the  extracellular  matrix  of  the  host,  specifically  the 

proteins  laminin  and  fibronectin,  found  in  epithelial  and  endothelial  tissue (Lowy, 

1998). Toxins produced by the bacteria damage host cell  membranes and allow cell 

invasion.  Alpha toxin is produced as a monomer that binds to the membrane of the 

susceptible cell. Sub-units then combine to form heptameric rings with a central pore, 

through  which  the  cellular  contents  leak.  In  humans,  platelets  and  monocytes  are 

particularly  sensitive  to  alpha  toxin,  thus  inducing  the  release  of  inflammatory 

mediators (Menzies and Kourteva, 2000). Theta toxin is a small peptide toxin produced 

by most strains of  Staphylococcus aureus (Dinges  et al., 2000). Leukocidin toxin is a 

haemolytic multi-component protein which forms a hetero-oligomeric, transmembrane 

pore, composed of sub-units, to create an octameric pore in the membrane (Miles et al., 
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2002). Panton  Valentine  leukocidin  is  an  exotoxin  and is  also  responsible  for  pore 

formation within host membranes (Lina and Piemont, 1999). The majority of strains of 

Staphylococcus aureus express a surface polysaccharide or microcapsule (type 5 or 8), 

which is thought to interfere with phagocytosis. Protein A is another surface protein 

which binds with IgG molecules (Foster, 1998). 

The  wide  range  of  toxins  associated  with  Staphylococcus  aureus have  been 

identified as causing a range of illnesses, including vomiting, sepsis and toxic shock 

syndrome (McCormick et al., 2001). Others include skin and soft tissue infections, such 

as  cellulitis  and  abscesses,  acute  bacterial  endocarditis,  bacteraemia,  infections 

associated with intravenous cannula sites, central venous access sites, osteomyelitis and 

post-operative wound infections.

It  is,  therefore,  of  little  surprise  that  Staphylococcus  aureus infections  were 

associated with a mortality rate of almost 80% during the pre-antibiotic era. By 1942 

this had reduced significantly with the introduction of penicillin (Smith and Bradshaw, 

2008). The cessation was short-lived,  however,  when strains emerged that expressed 

inhibitory penicillinase. Towards the end of the 1950s, methicillin was introduced as a 

synthetic  penicillin  alternative. In  1961 the  first  MRSA isolates  were  reported  in  a 

British study  (Jevons,  1961) and between 1961-1967 there  were  infrequent  hospital 

outbreaks in Western Europe and Australia (MRSA Research Centre. MRSA History 

Timeline 1959-2012. Univeristy of Chicago Medicine available at http://mrsa-research-

center.bsd.uchicago.edu/timeline.html).

By the 1980s epidemic strains of MRSA were being isolated from hospitals in 

the north east Thames and Essex regions, which were resistant to a range of antibiotics 

(Duckworth et al., 1988). Over the following ten years, strains of Epidemic Methicillin 
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Resistant  Staphylococcus aureus  (EMRSA) continued to emerge and were numbered 

EMRSA 1-14. Early in the 1990s, EMRSA-15 and later EMRSA-16 were isolated from 

UK hospitals (Johnson et al., 2001). These two identified strains have developed into the 

most successful and most resistant and continue to be isolated from hospitals around the 

world. EMRSA-17 appeared in 2002 (Aucken, 2002) and has an expanding resistance 

profile.  Phenotypical-resistance to beta lactam antibiotics in MRSA is derived in part 

from the production of beta-lactamase, which destroys the beta-lactam ring of this group 

of antibiotics and also its penicillin-binding protein (PBP2a). The PBP is responsible for 

the integration and regeneration of cell  wall  components.  Methicillin belongs to the 

beta-lactam group of antibiotics whose mode of action depends on their tendency and 

high affinity for combining with the PBP of the target bacteria. MRSA has PBP2a which 

has a low affinity for the beta-lactam antibiotics, thus maintaining cell wall synthesis, 

despite PBPs 1 through 4 being bound and inactivated by the drug  (Richmond, 2002). 

Genetic expression of resistance to beta lactam antibiotics is determined by the  mecA 

gene housed on the Staphylococcal cassette chromosome (SCC), which functions as a 

mobile genetic island that inserts and integrates with the  S. aureus  chromosome. The 

SCC can also detach from the chromosome and this freedom of movement allows for 

the horizontal transfer of SCCmec. The mecA gene itself is thought to be regulated by a 

number  of  other  genes,  constituting  a mec complex,  in  which  at  least  six  different 

classes have been identified (class I through to class VI) (Berglund et al., 2009). These 

differ slightly in terms of the mec gene itself and also in the number or type of genes 

assisting mec in  its  insertion  and  excision  from the  chromosome.  The  mec  gene is 

comprised of 2 regulatory components (mec and bla) and 5 auxiliary genes (Fem A-E). 

The  regulatory  component  MecR1 and  mec1  are  responsible  for  suppressing  mecA 

transcription,  and the  bla genes play important roles both in controlling β-lactamase 
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expression and suppressing  mecA gene expression (Inglis  et  al.,  1988;  Arede  et al., 

2012).

Typing of strains of MRSA through the SCCmec has revealed that nosocomial 

strains are mainly clonal in origin. For example, EMRSA-15 and EMRSA-16 are spread 

internationally  and  remain  responsible  for  a  high  number  of  UK  cases.  There  are 

currently 17 strains of EMRSA in the UK (Aucken, 2002). 

A study by Enright in 2002 examined 359 MRSA isolates that were distributed 

worldwide and identified five lineages or clonal complexes, i.e. the vast majority of 

these  isolates  shared  intimate genetic  characteristics  with each other (Enright  et  al., 

2002). Lim et al., (2002) examined 35 EMRSA from England and Australia and found 

distinct  characteristics  that  allowed  grouping  of  isolates  according  to  genetic 

similarities. For example, a group of recent isolates were identified as sharing the same 

mecA complex as strains from America and New Zealand isolated in the 1980s  (Lim et  

al., 2002). 

Community  MRSA (CA-MRSA)  is  now  well  recognised  and  was  initially 

thought to be identical to nosocomial MRSA apart from the environment in which it 

flourished. When cases began to emerge in populations lacking the usual risk factors for 

MRSA, further investigation followed. One strain in the US resulted in four paediatric 

deaths (Gillet  et al., 2002) and, during analysis, was found to be genetically distinct 

from nosocomial forms, due to a different mec complex (SCCmec IV) and the presence 

of  a  gene  for  Panton-Valentine  leukocidin  toxin.  This  particular  CA-MRSA  has 

demonstrated signs of global spread (Vandenesch  et al., 2003), but there is a need for 

further  testing  using  a  variety  of  mechanisms,  to  reach  agreement  as  to  whether 

community and hospital strains are totally separate entities. There is also a scarcity of 
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data  regarding  genetic  similarities  or  differences  between  methicillin  sensitive 

Staphylococcus  aureus (MSSA)  and  MRSA.  Essentially,  MRSA is  so  flexible  and 

adaptable that there is huge potential for any number of genetic combinations. 

1.6.2.2 MRSA prevalence

Between 1997 and 1999 the SENTRY Antimicrobial Surveillance Programme 

reported the prevalence of MRSA in isolates from all sites of infection  (Diekema et al., 

2001). In Hong Kong 73% of isolates were positive for MRSA, the US 34.2% and in 

Europe 26.3%. 

By  2001  a  report  from  the  European  Antimicrobial  Resistance  Surveillance 

System identified prevalence for MRSA in the UK as 45% and in both Italy and Greece 

as  40% (European  Antimicrobial  Resistance  Surveillance  System.  Annual  Report, 

2001).  In  a  study of elderly hospital  in-patients,  at  three weeks post  admission,  the 

prevalence of MRSA was 158/1000, which is 15.8% (Hori et al., 2002). Grundmann et  

al., (2002) sampled the prevalence of MRSA carriage in the normal elderly population 

living in their own homes. They found that those between the ages of 65 and 74 years 

had a prevalence of 2%, which increased to 6% as the age range increased to 75 years of 

age (Grundmann et al., 2002).

1.6.2.3 Transmission

MRSA can be maintained and transmitted in any number of ways, but the most 

common  is  through  human  to  human  contamination,  more  specifically  through 

healthcare  worker  to  patient.  A  colonised  staff  member  can  easily  assist  in 

dissemination, throughout the course of a shift, by either acting as a carrier between 

patients or between contaminated inanimate objects and patients (Aucken, 2002).
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MRSA has been isolated from computer keyboards,  door knobs and stainless 

steel surfaces (Noyce et al., 2006), in addition to the more obvious sites such as hands, 

uniforms and watches. Multiple modes of transmission have led to MRSA spreading 

around the globe. Within the UK a study analysing 129 isolates of EMRSA-16 from 52 

hospitals showed the dissemination of a strain originating in one hospital. Beginning in 

Kettering,  it  first  spread to neighbouring counties with 15 hospitals.  The strain then 

appeared in 21 hospitals in London and, over the course of three years, it was isolated 

from every region in the UK. Intercontinental spread has also been identified during 

analysis of a Canadian strain, which was later found to originate in India  (Roman et al., 

1997). 

1.6.2.4 Risk factors for MRSA

Initial studies of risk factors for MRSA infection examined patients in ICU and 

burns  units,  as  these  groups  were  associated  with  high  infection  rates (Pujol  et  al., 

1996). Patients with surgical wounds, enteral feeding tubes and intravenous or urinary 

catheterisation all increase risk (Coello et al., 1997).  Also, colonisation with MRSA is a 

risk factor for the development of infection. In a study following 209 colonised patients, 

29% developed infections over an 18 month period (Huang et al., 2003). Davies et al., 

(2004) studied infection rates following nasal colonisation and found that 19% went on 

to develop infection, compared with only 2% of the non-colonised group. Similarly, a 

study of colonised chronic ulcers showed a prevalence of 3.9% for developing MRSA 

bacteremia  (Roghmann et al., 2001). Within the elderly hospital population risk factors 

identified  are  increasing  age  and  length  of  stay,  while  their  counterparts  in  the 

community were found to be at risk due to previous hospital admission and diabetes 

(Hori et al., 2002; Grundmann et al., 2002). Previous antibiotic use is an acknowledged 

risk factor and a recent meta-analysis of a study population of 4,364 MRSA-positive 
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and 19,865 control patients showed that those with recent exposure to antibiotics had a 

two-fold increase in risk for MRSA acquisition, versus their non-treated counterparts. 

The  risk  is  even  higher  if  previous  treatment  included  quinolones  or  glycopeptides 

(Tacconelli  et  al.,  2008),  ciprofloxacin  and  cephalosporin  (Hill  et  al.,  1998)   or 

cephalosporins and fluoroquinolones (Graffunder and Venezia,  2002). 

1.6.3 Wound infection

Infection  occurs  when  host  defences  are  successfully  evaded  by  micro-

organisms and results in destructive changes in the host (Cooper, 2005).  Infection in 

acute or surgical wounds in healthy patients is usually obvious. In chronic wounds and 

debilitated patients, diagnosis may rely on recognition of subtle or non-specific general 

signs (such as loss of appetite, malaise, or deterioration of glycaemic control in diabetic 

patients).  The presence of infection delays  the healing process,  but also can lead to 

necrosis, which increases the size of the wound. Rapid recognition of the signs and 

symptoms of infection are crucial and reduces the risk of cross-infection (White, 2002). 

Different types of wounds have different environments. Intact skin, acute and 

chronic  wounds  provide  distinctly different  environments  for  microflora  (Mertz  and 

Ovington,  1993).  The  intact  skin  contains  natural  microflora,  which  metabolize 

substances secreted onto the skin and produce fatty acids preventing the colonization of 

skin by pathogens. Also, the sweat contains antimicrobial substances such as lysosyme. 

Acute wound flora is similar to that of intact skin with aerobic and some anaerobic 

species,  whereas  traumatic  tissue  provides  an  environment  suitable  for  microbe 

adherence, multiplication and point of entry to surrounding tissue, making it more prone 

to  infection  (Mertz  and  Ovington,  1993).  Necrotic  tissue  and  slough  provide  good 

medium for bacterial multiplication and according to many studies, almost all bacterial 

types  have  been  implicated  in  the  pathogenesis  of  wound  infection  at  some  time. 

Necrotic tissue and large amounts of exudate will encourage microbial proliferation, 
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while a dry wound environment hinders tissue repair. Infection involves cellulitis and 

with inappropriate treatment it can delay wound healing and may lead to septicaemia 

(Grey, 1998).  

1.6.4 Biofilms and their role

Biofilms are found widely in nature and they are biologically and physically 

diverse  dynamic  communities  usually  comprising  a  mixed  population  of  different 

microorganisms.  A secretion  of  extracellular  polymeric  substance  (EPS),  a  “glue”, 

protects individual bacteria from environmental stresses, provides shelter for the unique 

heterogenous  micro-niches  inside  the  biofilm  and  holds  the  community  together 

(Wolcott and Rhoad, 2008). The microcolony of the biofilm achieves a critical density 

of  bacteria  (a  quorum)  through  the  release  of  signalling  molecules  and  permits 

differentiation into a true biofilm society (Stoodley et al., 2002). 

Over the years, studies regarding bacterial structure and behaviour have used 

planktonic cells  that are cultivated in liquid or solid media.  However,  recent studies 

have  shown that  naturally  most  bacteria  are  attached  to  surfaces  as  a  sessile  form 

especially in biofilm (Costerton, 2005). Biofilm formation comprises three main stages: 

reversible  and  irreversible  attachment,  microcolony  formation  and  detachment  of 

biofilm.  Biofilm  formation  starts  from attachment  of  a  pioneer  bacterium onto  the 

surface. Initial attachment is mainly dependent on electrostatic attraction and physical 

forces, rather than the chemical attraction (Postollec et al., 2006). There are two types of 

attachment during biofilm formation, reversible and irreversible attachment. Reversible 

attachment happens when bacteria attach to the skin for a while and then desorb due to 

biological,  chemical  and  physical  factors.  Some  bacteria that  finally  form  biofilm 

become  irreversibly  attached  and  produce  a  matrix  composed  of  polymeric  sugars, 

proteins and/or DNA (Wolcott  et al., 2008). This matrix helps the bacterium to secure 
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itself to the surface and helps to protect the colonising microbiota from the environment 

and host immune defences. As the bacteria begin to grow and multiply they form an 

aggregate of cells called a microcolony. Bacteria within the microcolony continue to 

divide until a critical density of bacteria or quorum forms that allows the microcolony to 

develop further. Biofilm bacteria continue to produce extracellular polymeric substances 

(EPS), which traps scarce nutrients and protects bacteria from chemical substances such 

as antimicrobials and antibodies. The bacteria within biofilm multiply and the daughter 

cells extend outwards. The EPS also acts as an ion-exchange system because it consists 

of charged and neutral  polysaccharide groups, which trap iron and concentrate trace 

nutrients from surroundings. 

In a mature biofilm most of the content is water which is usually (75-95%). The 

remaining fraction (5-25%) are microorganisms (Geesey, 1994). Biofilm formation is 

controlled  by  quorum  sensing  molecules,  which  are  also  important  to  biofilm 

detachment  as  a  means of  regulating  the  biofilm population  (Stoodley  et  al.,  2001; 

Davies  et al., 1998). In response to the signalling molecules some biofilm colonisers 

transform to a planktonic form. These transformed planktonic cells have the ability to 

later transform back to the sessile form to restart another biofilm in a different location. 

An enzyme often produced by a biofilm organism which aids  dispersion is  alginate 

lyase. It breaks the matrix and the organism disperses to other locations to initiate new 

biofilm (Rice at al., 2005). The mature biofilm is a fully functional system made up of 

different bacterial species and genera. Within a biofilm there are circulatory systems 

such  as  water  channels  for  the  transportation  of  nutrients  for  metabolic  process  of 

biofilm organisms and exchange and the disposition of waste products (de Beer, 1995). 

A biofilm can form within hours  of  colonisation or  may take  several  weeks 

depending on the  particular  organism and  environmental  factors  (Mittelman,  1985). 

Biofilm structures are inherently resistant to antimicrobial challenge and are difficult to 
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eradicate from the infected host. Susceptibilities towards antimicrobials range from 10 

to 1000 times less than equivalent populations of free-floating planktonic cells (Potera, 

1999; Donlan, 2001;  Gilbert   et al.  , 2002; Parsek & Fuqua, 2004). This resistance is a 

result  of  adaptation  strategies  developed  over  a  million  years.  Wound  biofilms  are 

highly  resistant  to  antibiotics  and  host  defences  and  many  clinicians  struggle  to 

successfully  manage  chronic  wounds.  Once  established,  a  biofilm  can  maintain  its 

integrity and cause major problems in the wound healing process. However, laboratory 

studies have shown that following physical disruption, it takes biofilm about 24 hours to 

re-establish the biomass (Stoodley et al., 2002). There are some topical agents, such as 

silver, honey or iodine that provide evidence of their value in managing biofilm (Chaw 

et al., 2005, Okhiria et al., 2004; Cooper, 2007). In chronic wounds use of antibiotics as 

a  single  agent  struggles  to  suppress  biofilm,  but  when  used  in  conjunction  with 

debridement and other topical agents, antibiotics can be more successful (Wolcott and 

Rhoads, 2008).

1.7 Treatment of chronic wounds 

           The management of a chronic wound depends on the type of the wound. An 

appropriate treatment should be focused on problems at the root of chronic wounds, 

including ischaemia, bacterial load, and imbalance of proteases. Various methods exist 

to improve these problems such as wound debridement, use of antibiotics, irrigation, 

warming,  moist  wound healing,  vacuum-assisted closure,  oxygenation and removing 

mechanical stress (Velander et al., 2004).

An appropriate level of moisture is important for speeding the healing of chronic 

wounds (Thomas et al., 2005). Topical antimicrobials lower the number of bacteria in 

wounds  and  they  can  also  help  by  keeping  the  wound  environment  moist.  Topical 

antimicrobials are in the semisolid composition of cream or ointment which provide a 
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moist environment for a wound and reduces skin contraction (Brem et al., 2004; Patel et  

al., 2000). Some studies show that using tea tree oil have also anti- inflammatory effects 

(Halcón and Milkus, 2004). Disinfectants have been shown to be ineffective because 

they damage tissues and delay wound contraction (Patel  et al., 2000). However, some 

studies show that use of antiseptics such as polyhexanide, octenidine, chlorhexidine, 

triclosan and PVP-iodine can be beneficial to lower bacterial level in wounds and speed 

the rate of healing (Koburger  et al., 2010).  An excess of exudate and the presence of 

necrotic tissue provide the nutrients for bacterial growth and increase the likelihood of 

infection (Mustoe, 2004). Since bacteria can thrive on dead tissue, wounds are often 

surgically  debrided to remove the devitalised tissue (Brem et al., 2004). Debridement 

and drainage of wound fluid are an important part of the treatment for diabetic ulcers 

that may create the need for amputation if infection gets out of control. Mechanical 

removal of bacteria and devitalized tissue is also the concept behind wound irrigation, 

which is accomplished using pulsed lavage. Removing necrotic or devitalised tissue is 

also the aim of larvae therapy, the intentional introduction by a health care practitioner 

of live, disinfected maggots into non-healing wounds. Maggots stimulate wound healing 

by  dissolving  only  necrotic,  infected  tissue  and  disinfecting  the  wound  by  killing 

bacteria. Larvae therapy has been shown to accelerate debridement of necrotic wounds 

and reduce the bacterial load of the wound, leading to earlier healing, reduced wound 

odour and less pain. The combination and interactions of these actions make maggots an 

extremely potent tool in chronic wound care (Bowling et al., 2007).

To improve ischaemic tissue and remove fluid, negative pressure wound therapy 

(NPWT) is widely used. This therapy, also known as vacuum-assisted closure, reduces 

swelling  in  tissues,  which brings  more  blood and nutrients  to  the area,  as  does  the 

negative pressure itself (Moreo,  2005).  The treatment  also decompresses tissues and 
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alters the shape of cells, causes them to express different mRNAs and to proliferate and 

produce ECM molecules (Snyder, 2005). 

Blood vessels constrict in cold and dilate in warm tissue, altering blood flow to 

the area. To prevent infection and ischaemia, tissue should be kept warm (Thomas et al., 

2005). Some healthcare professionals use ‘radiant bandages’ to keep the area warm. 

During surgical procedures special care must be taken to prevent  hypothermia, which 

increases  rates  of  post-surgical  infection  (Mustoe,  2004).  Surgical  arterial 

revascularisation in diabetic patients is used to treat underlying ischaemia. Surgery can 

also help patients with venous ulcers to correct vein dysfunction. There are methods 

used to increase tissue oxygenation such as  Hyperbaric Oxygen Therapy (HBOT) in 

patients that are not candidates for surgery. HBOT can compensate for limitations of 

blood supply and correct  hypoxia (Alleva  et al.,  2005; Kranke  et al.,  2004). Higher 

oxygen levels in tissues increase the level of growth factors, kills bacteria and speeds 

angiogenesis.  However,  increased oxygen levels  also means increased production of 

Reactive Oxygen Species (ROS) (Alleva et al., 2005). Antioxidants, molecules that can 

lose an electron to free radicals without themselves becoming radicals, can lower levels 

of  oxidants  in  the  body and  have  been  used  with  some  success  in  wound  healing 

(Schönfelder et al., 2005).

Chronic  wounds  are  found  to  under  express  growth  factors  necessary  for 

healing. Therefore, wound healing may be improved by stimulating or replacing growth 

factors (GF) and also preventing overproduction of proteases that break them down 

(Edwards et al., 2004). There are several ways to increase the concentration of growth 

factors in wounds. Direct application of GF is commonly used, however it requires large 

amounts of the factors and many repetitions (Schönfelder et al., 2005). Spreading a gel 

containing the patient’s own blood platelets  is another way of increasing GF levels. 
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Platelets secrete growth factors such as  insulin-like growth factor 1–2 (IGF) vascular 

endothelial growth factor (VEGF), platelets derived growth factor (PDGF), epidermal 

growth factor (EGF) and  transforming growth factor-β (TGF-β) (Crovetti  et al., 2004). 

Other possible therapies involve culturing and implanting fibroblasts into the wounds or 

implanting  keratinocytes  to  speed  epithelialisation  (Brem  et  al.,  2004). Another 

alternative  for  treatment  are  artificial  skin  substitutes  containing  fibroblasts  and 

keratinocytes in the collagen matrix to replicate skin and release growth factors.  

Cellular dressings are also widely used. They have a great ability to keep the 

wound moist  and absorb the excess of exudate.   They provide a matrix for cellular 

proliferation and migration (Schönfelder et al., 2005).

Some  researchers  are  seeking  ways  to  improve  healing  by  using  protease 

inhibitors such as secretory leukocyte protease inhibitor (SLPI), which are lowered in 

chronic wounds.  SLPI inhibits  proteases and also inflammation and microorganisms 

like bacteria, viruses and fungi and may prove to be an effective treatment (Lai et al., 

2005).  Oestrogen  has  shown  to  improve  wound  healing  in  animals  with  removed 

ovaries and also in elderly patients, possibly by preventing neutrophils from releasing 

elastase and entering the wound (Kanda and Watanabe, 2005).

Nowadays there are a number of bioengineered skin products or skin equivalents 

available  for  the  treatment  of  burns  as  well  as  acute  and  chronic  wounds.  Several 

complex products have been developed and tested in human wounds since the initial use 

of keratinocyte sheets (Leigh  et al., 1991; Gallico, 1990). There are  skin equivalents 

containing  living  fibroblasts  or  keratinocytes,  or  both  (Sabolinski  et  al.,  1996; 

Hansbrough, 1992) or cellular materials or extracts of living cells currently available 

(Margolis and Lewis, 1995; Phillips, 1993). Clinical trials on these products showed that 

the effect was 15-20 percent better than conventional 'control' therapy, however there is 
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debate  over  what  constitutes  an  appropriate  control.  Off-loading  and  saline-soaked 

gauze have been accepted by the Food and Drug Administration as the control in US 

clinical trials. The wound dressings to be used and method of off-loading differ between 

the countries and is also a subject to controversy (Falanga, 2005). 

Living  cells,  known  as  a  “smart  material”,  are  capable  of  adapting  to  their 

environment, hence bioengineered skin may work by delivering these cells. Research 

has shown that some of these living constructs are able to release growth factors and 

cytokines  (Mansbridge  et  al.,  1998).  Gene therapy in  wound healing  is  a  new and 

emerging  technology,  which  introduces  certain  genes  into  wounds  by  a  variety  of 

biological  vectors  (viruses)  or  physical  means.  Ex  vivo approaches  based  on  cells 

manipulation before re-introduction into the wound have been developed. There are also 

in vivo techniques relaying on a simple injection or the use of a gene gun (Slama et al., 

2001; Badiavas and Falanaga 1999). Most of the gene therapy studies in relation to 

wounds are still in the experimental stage and have been done only in animal models, 

however there are promising indications that certain approaches may work in humans. 

Isner  et al., (1998) introduced a naked plasmid DNA encoding the gene for vascular 

endothelial  growth  (VEGF).  They  reported  improved  healing  and  angiogenesis  in 

selected patients with ulcers resulting from arterial insufficiency (Isner et al., 1998).

In the last two decades research has provided new approaches in the use of stem 

cells in the treatment of burns as well as acute and chronic wounds. Pluripotent stem 

cells  (PSCs),  are  able  to  differentiate  into  a  variety  of  cells  such  as  keratinocytes, 

fibroblasts and endothelial cells, which are essential in the wound healing process. Most 

of the pluripotent stem cells are derived from embryos thus it is the subject of much 

controversy.  Pluripotential  mesenchymal  stem  cells,  which  are  the  source  of  new 
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connective tissue, are present in bone marrow and have been proved to differentiate into 

various mesenchymal cell types (Quesenberry et al., 2002; Mulder et al., 2010). 

Direct  application  of  autologous  bone  marrow  and  its  cultured  cells  may 

accelerate the healing of non-healing chronic wounds (Badiavas and Falanga, 2003). 

These findings were reported in an uncontrolled clinical trial and need to be confirmed 

in  a  larger  controlled  study.  However,  there  is  the  potential  that  stem  cells  may 

reconstitute dermal, vascular and other components required for optimal healing, when 

pathophysiological abnormalities in chronic wounds are considered (Falanga, 2005). 

1.8 Laboratory and clinical diagnosis of wound infection

1.8.1 Clinical diagnosis of wound infection

To diagnose infection, laboratory results must be evaluated in conjunction with 

clinical assessment of the wound and patient. There are several traditional criteria of 

diagnosing local  infection such as redness,  swelling,  heat,  increased exudate,  odour, 

delayed healing, friable tissue, pain and wound breakdown. The infection can develop 

from local to systemic with additional signs such as raised white cell count and presence 

of serum C-reactive protein and  sepsis  with fever,  rigors,  chills,  hypotension,  multi-

organ failure, and death (White, 2001). 

1.8.2 Laboratory diagnosis of wound infection

1.8.2.1 Conventional microbiology

The methodology used for  wound culture has  been prone to  controversy for 

many years and there are many questions regarding almost every aspect of it. The first 

question applies to the timing of microbiological asssessment of the chronic wound, as 

in much of medical practice, the timing of clinical action is sometimes more important 

than the action itself. Clinical diagnosis of infection is crucial as 100% of wounds are 
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contaminated at  the time of  wounding and soon after  100% of the wounds became 

colonised (Bowler et al., 2001). When the wound infection is confirmed there are other 

questions such as what type of technique to use to sample the wound. Qualitative and 

quantitative microbiology of wounds can be investigated by sampling wound tissue or 

wound  fluid.  Collecting  a  deep  tissue  biopsy  has  been  recognised  by  most  of  the 

practitioners as the most  useful method for years (Bowler  et  al.,  2001).  Superficial, 

devitalised tissue removed by curettage,  which  is  often used  in  the management  of 

diabetic foot ulcers, may also be used for evaluation of microbial content (Pallua et al., 

1999).  Pallua  et  al.,  (1999)  described  the  technique  involving  dermabrasion,  which 

enables the acquisition of deeper tissue without being as invasive as the biopsy method. 

When the wound produces fluid, sampling by needle aspiration can be applied and this 

technique may also be used to sample deeper pockets of fluid beneath superficial debris. 

A variety of other techniques, including the dry and pre-soaked velvet pad, filter paper 

discs and cylinder scrubbing have also been used to sample a superficial wound fluid. 

However, the most common method of sampling is wound swabbing. This technique 

has been practiced for more than 100 years and involves sampling superficial wound 

fluid and tissue debris  and enables a quantitative and qualitative analysis  of wound 

microflora (Clinical Laboratory Standard Institution, M40- A standard, 2004). There are 

many aspects, which need to be considered when using the superficial swab technique 

including what  type of swab should be used and if  the swab should be dry or pre-

moistened, whether superficial swabbing reflects deeper tissue cultures or whether the 

swab recovers fastidious microorganisms? Fatty acids contained in cotton swabs can 

inhibit  bacterial  growth.  For this  reason alginate,  rayon or polyurethane swabs have 

been recommended (Clinical Laboratory Standard Institution, M40- A standard, 2004). 

The most important aspect of obtaining the swab culture is wound bed preparation and 

this is also a subject of much discussion. There are some questions regarding how the 
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swab should be rolled across the wound surface and if  quantitative microbiology is 

accurate. Most clinicians recommend that samples from an ulcer should be cultured by 

simultaneously rotating and zig zagging a swab across the wound to cover as much 

surface  as  possible.  Others  prefer  sampling  the  part  of  the  wound  with  the  most 

dramatic  signs  of  infection  -Levine’s  technique  (Levine  et  al.,  1976;  Cooper  and 

Lawrence, 1996). 

Quantitative  microbiology  has  been  proposed  as  a  potential  technique  to 

diagnose wound infection, because local and even systemic signs of infection can be 

subtle or misleading. Quantitative biopsy has been recognised as a gold standard in the 

diagnosis of wound infection (Robson, 1997). There is a strong association between the 

ability of wound to heal and the number of organisms recovered (Bowler et al., 2001; 

Xu et al., 2007), but these findings must be considered with balanced perspective. At 

least 20% of heavily colonised wounds with bacterial numbers greater than 105 cfu / g of 

tissue will still heal (Sibbald et al., 2003). Also, most infections in chronic wounds are 

polymicrobial  and  there  are  significant  and  dynamic  interactions  between  multiple 

bacterial populations within the wound. Growing evidence suggests that the quantitative 

swab  culture  may adequately  approximate  qualitative  findings  obtained  from tissue 

biopsy  (Bill  et  al.,  2001;  Bozkurt  et  al.,  2011;  Pellizzer  et  al.,  2011).  Processing 

quantitative swabs and biopsies is a complex process requiring several steps and many 

routine  laboratories  do  not  have  the  capabilities  to  perform  the  time  consuming 

procedures. The swab culture is a non-invasive method but it gives no information on 

bacterial contamination of the deeper layers of the wound (Buchanan et al., 1986; Pallua 

et al., 1999). The biopsy method, on the other hand, reveals the bacterial situation of the 

whole thickness of the wound, but has the disadvantage of being invasive.  In contrast,  

processing semi-quantitative swab cultures is routine in most laboratories (Uppal et al., 

2007).

43



1.8.2.2 Swab transport systems

Different swab systems are used to transport a variety of specimen types to the 

diagnostic laboratory and these systems often differ depending upon the category of 

organism being investigated e.g.  bacteria,  viruses or fungi  and the method which is 

going to be used (conventional or molecular identification).   The ideal swab system 

must absorb organisms from the infection site, maintain viability during transport and 

allow release  of  organisms  from the  swab to  the  appropriate  media  during  cultural 

techniques.  Liquid and gel-based swab systems have been used for many years,  but 

have limitations as the specimen is diluted by immersion within the liquid or gel. Three 

quantifiable  parameters  influence  the  performance  of  specimen  transport:  time, 

temperature and quality of transport swab. Additionally, during wound surface swabbing 

it  is  likely  that  nutrients  (bodily  fluids  and  skin  cells)  as  well  as  bacteria  will  be 

transferred to swab causing overgrowth during transport. 

Before  the  production  of  the  United  States  National  Committee  for  Clinical 

Laboratory Standards (NCCLS) M40-A standard in 2004, there had been no recognised 

standard  for  the  performance  of  swab  transport  systems.  The  standard  provides  a 

method of  quality control  testing,  together  with acceptance criteria  for viability and 

overgrowth of  bacteria.  In  the  absence  of  a  standard procedure for  determining the 

effectiveness of swab transport systems, previous papers on this subject have only been 

able to provide comparative data. The new standard resolves this by defining whether a 

product  is  acceptable  in  terms  of  bacterial  survival  (Clinical  Laboratory  Standard 

Institution, M40-A standard, 2004).  
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1.8.2.3 Molecular techniques for bacterial identification

The  structure  of  DNA  was  described  in  the  late  1960s,  however  it  was  not 

routinely used in research until restriction enzyme and recombinant DNA techniques 

were discovered in the 1970s. Over the past 20 years, molecular techniques have been 

developed  extensively.  Nucleic  acid  amplification  technology  has  revolutionised 

microbial detection and identification. Molecular detection methods, especially PCR-

based methods,  have become important methods for detection of microorganisms in 

clinical diagnosis laboratory settings (Millar et al., 2002). 

Identification of microorganisms using conventional culture methods may take 

several days to allow the sufficient  growth of an organism required for an accurate 

detection.  Often  in  diagnostic  microbiology,  a  delay in  obtaining the correct  results 

leads to patients being managed empirically and occasionally inappropriately.  In order 

to  improve  the  diagnosis  of  wound  infection  and  treatment  in  patients,  molecular 

approaches should be considered. Molecular approaches should also be considered in 

cases when conventional culture fails to identify the causal organism prior to antibiotic 

therapy; where the organism is fastidious in nature; in the cases of endocarditis or where 

the organism is slow growing or specialised cell culture techniques are required (Millar 

et al., 2007). 

Recently antibiotic resistance in bacterial pathogens has become an important 

issue and the control of infections is subsequently extremely difficult.  Consequently, 

there has been great interest in being able to detect antibiotic resistant microorganisms 

using molecular  methods,  particularly when the microorganism is  fastidious or non-

culturable.  There  is  a  widespread  concern  with  the  occurrence  of  MRSA and  also 

glycopeptide resistant enterococci (GRE), particulary on surgical wards. There are some 

studies employing molecular methods to detect MRSA through a simple PCR assay, 

targeting the  mecA gene locus (Kobayashi  et  al.,  1994;  Towner  et  al.,  1998).  Other 
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studies  use  multiplex  PCR for  MRSA identification.  However,  there  are  not  many 

studies  applying  quantitative  molecular  methods  which  provide  an  estimation  of 

bacterial numbers.

Most molecular assays rely on three basic components, including nucleic acid 

extraction, amplification/analysis and identification of an amplified product. There are 

several factors which help determine which type of assay to employ.  If speed is an 

important factor of the assay, employment of real-time assays should be adopted. Where 

numerous targets are important, multiplex PCR formats should be employed.

1.8.2.3.1 Use of Real-Time PCR assay in diagnostic microbiology

      The introduction of RT- PCR assays  in clinical laboratories revolutionized the 

diagnosis  of  many  microbial  infections.  RT-PCR  is  based  on  Polymerase  Chain 

Reaction chemistry with the incorporation of  fluorescent  probes,  that  allows for  the 

detection and quantification of the amplified product in the same reaction. Detection of 

the PCR product is completed in a short period of time (1-2h). This method has a high 

specificity and sensitivity alternative to culture or immunoassay-based testing methods 

(Espy et al., 2006). 

Recent  studies  have  demonstrated  the  advantage  of  RT-PCR  assays  in 

identification  of  many important  pathogens that  traditionally  have  been detected  by 

direct immunoassay techniques (antigen testing methods group A Streptococcus from 

throat swabs, Verotoxin, Escherichia coli 0157:H7 from faeces or  Clostridium difficile 

toxin from faeces). 

Some studies have used RT-PCR for the identification of microorganisms for 

which the routine culture method was focused on the detection of a single pathogen 

from a sample (group A Streptococcus from throat swabs, group B Streptococcus from 

vaginal/anal swabs) (Uhl et al., 2003). 
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The RT-PCR assay has been also developed for the identification of fastidious 

and slow growing microorganisms such as Anaplasma phagocytophila, Legionella spp, 

Mycoplasma  pneumoniae,  Bordetella  pertussis,  Chlamydophila  pneumoniae or  for 

which culture methods did not exist for example Tropheryma whipplei. 

There are also some studies applying RT-PCR for testing the microorganisms 

responsible  for  community-acquired  pneumonia  such  as  Chlamydophila  pneumonia, 

Mycoplasma pneumoniae and Legionella spp and Streptococcus pneumoniae (Murdoch, 

2003; Ramirez  et al., 1996). These organisms are very slow growing and difficult to 

recover  using  conventional  culture  methods  due  to  their  special  requirements.  In  a 

recent  study  quantitative  RT-PCR  demonstrated  that  the  numbers  of  Streptococcus 

pneumoniae organisms  detected  by  real-time  PCR  in  nasopharyngeal  secretions 

correlated  with  the  numbers  detected  by  semi-quantitative  cultures  (Grisold  et  al., 

2002). However, in order to support these findings other prospective clinical studies are 

required. It could be debatable that patients colonized but not infected with group A 

Streptococcus can be identified. However, a study by Uhl et al., (2003) showed that all 

patients with group A Streptococcus detected by real-time PCR had clinical criteria for 

streptococcal  pharyngitis.  Following  these  findings  quantitative  RT-PCR  was 

implemented  and  correlated  with  traditional  quantitative  culture  methods  for  the 

purpose  of  diagnosing  or  predicting  the  possibility  of  developing  MRSA wound 

infections (Chapter 4).  

MRSA  infections  have  worse  outcomes  and  higher  associated  costs  than 

infections caused by Methicillin Sensitive Staphylococcus aureus (Cockerill, 2003). The 

development  of  rapid  and  accurate  MRSA  identification  methods  has  important 

implications for the treatment and management of colonised and infected patients. There 

are many molecular approaches developed to date which decrease the time it takes to 

identify  MRSA.  However,  most  of  the  assays  are  based  on  the  detection  of   the 
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Staphylococcus aureus specific  mecA gene, which is also present in some Coagulase 

Negative  Staphylococcus  species.  Therefore  these  methods  can  not  be  applied  to 

nonsterile  nasal  samples  or  chronic  wound  specimens,  without  previous  isolation, 

capture or enrichment of MRSA. These samples often contain both coagulase- negative 

staphylococci and Staphylococcus aureus, either of which carry mecA gene. 

Hulesky  et  al., (2004)  described  a  RT-PCR  multiplex  assay  useful  for  the 

detection  of  MRSA  directly  from  nasal  specimens  containing  a  mixture  of 

staphylococci. Five primers specific to the various SCCmec right extremity sequences, 

including  three  new sequences,  were  used  in  combination  with  a  primer  and  three 

molecular beacon probes specific to the Staphylococcus aureus chromosomal orfX gene 

located to the right of the SCCmec integration site. Out of 1657 MRSA isolates tested, 

98.7% strains  were detected with the PCR assay,  whereas 26 of 569 (4.6%) MSSA 

strains were misidentified as MRSA. None of the 62 nonstaphylooccal species or the 

212  methicillin  resistant  or  methicillin  susceptible  coagulase  negative  staphylococci 

were detected by the assay. 

          Kolman et al., (2010) evaluated several published RT-PCR assays for MRSA 

detection, before introducing direct swab molecular detection to the MRSA surveillance 

program. The previously mentioned Huletsky's  et al., (2004) assay was evaluated and 

compared with Cuny's assay based on one forward primer of which at least five of its 3' 

nucleotides are within the S. aureus orfX gene (present in MSSA) and an S. aureus orfX 

specific reverse primer.  In contrast to the high accuracy observed by Huletsky's when 

applied on pure cultures,  Kolman  et al.,  (2010) observed a high percentage of false 

positives  (specificity = 86% and positive  predictive  value  = 77.8%) when applying 

Cuny's assay with MSSA strains.  This is probably due to the design of Cuny's forward 

primer, which overlaps five of its 3' nucleotides with  S. aureus orfX gene (present in 
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MSSA). The high false positive rate for MSSA's (>25%) reduces the likelihood of its 

use.

1.8.2.3.2 PCR- Denaturing Gradient Gel Electrophoresis (DGGE) sequencing in 

diagnostic microbiology

DGGE is a technique used to generate a pattern of genetic diversity in complex 

microbial ecosystems such as soil, sediments, rivers, deep seas, the gastrointestinal tract 

(GI)  and  many different  biofilms  (Muzyer  et  al.,  1993;  Muyzer  et  al.,  1998).  This 

molecular  approach  generates  a  genetic  profile  or  “fingerprint”  of  the  microbial 

community within a sample. Samples containing multiple organisms are amplified using 

PCR. The amplification product usually contains sequences that are well conserved and 

passed  between  microorganisms  (for  example  16S  rDNA).  These  fragments  are 

separated on a gel during the DGGE procedure (Creighton, 1999). Negatively charged 

DNA  is  attracted  to  the  positive  electrode  and  forced  to  migrate  through  the 

polyacrylamide  gel  pores.  DNA  melts  once  it  reaches  the  concentration  of  the 

denaturing  reagents  at  which  the  double  strand  unwinds.   To prevent  the  complete 

melting of DNA, GC-clamp (stretch of GC-rich sequences) is commonly added to one-

end of the DNA sequences (Muyzer et al., 1993). 

Different sequences of DNA (from different bacteria) will denature at different 

concentrations  resulting  in  a  pattern  of  bands.  Each  band  theoretically  represents  a 

different  bacterial  population  present  in  community.  Individual  DNA sequences  or 

“bands”  from  this  profile  can  be  excised  and  sequenced  to  identify  the  dominant 

members of the microbial population (Muzyer et al., 1998; Sheffield et al., 1989). 

There are many applications of DGGE, especially in environmental and clinical 

microbiology. For example, DGGE allowed the identification of over 65  Mycoplasma 

species  of  human and  veterinary origins  in  less  than  24h (McAuliffe  et  al.,  2005). 
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Mycoplasma cause various diseases associated with pneumonia, arthritis, conjunctivitis 

and infertility. They are fastidious and slow growing organisms and they also require 

serological tests to be identified (McAuliffe  et al., 2005). PCR- DGGE proved to be 

successful in the detection of numerous gene mutations (van der Hout et al., 2006). This 

method  is  also  useful  in  studying  complex  microbial  communities  such  as  in  the 

gastrointestinal  tract  of  food producing animals  (Al-Soud  et  al.,  2003; Gong  et  al., 

2002).  DGGE also proved to be a potential method for screening large numbers of 

patients for the rapid and reliable identification of changes in both breast cancer genes 

BRCA 1 and BRCA 2 (van der Hout et al., 2006). 

The importance of pathogenic biofilms in chronic wounds is only now beginning 

to  be  realised  and  researched.  James  et  al.,  (2008)  investigated  chronic  wound 

specimens obtained from 77 patients  and acute wound specimens obtained from 16 

patients.  60%  of  chronic  wounds  evaluated  by  microscopy  were  characterized  as 

containing  biofilm,  whereas  only  one  of  the  16  acute  wound  specimens  was 

characterized  as  containing  biofilms  (6%).  Molecular  analyses  of  chronic  wound 

samples  were  performed  using  DGGE methods  and  revealed  diverse  polymicrobial 

communities  and the  presence  of  bacteria,  including  strictly  anaerobic  bacteria,  not 

revealed by traditional techniques (James et al., 2008).

Davies  et al., (2004) used a combination of conventional cultural analysis and 

16S rDNA PCR- DGGE to compare the bacterial community of 8 healing and 10 non-

healing chronic venous leg ulcers.  The majority of healing and non-healing wounds 

contained  the  aerobes  Staphylococcus and  Pseudomonas spp.  (89%  and  80%, 

respectively), when identified using conventional cultural analysis. DGGE- sequencing 

allowed the detection of strains that were not identified by cultural means. More than 

40% of the sequences represented organisms not cultured from the wound from which 

they were amplified. DGGE profiles also showed that all of the wounds possessed one 
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apparently common band, identified by sequencing as Pseudomonas sp. The intensity of 

this  PCR signal  suggested that  the bacterial  load of  non-healing wounds was much 

higher  for  pseudomonads  compared  to  healing  wounds  and  that  it  may  have  been 

significantly underestimated by cultural analysis (Davies et al., 2004). 

Price  et  al.,  (2009)  used  16S  rRNA gene-based  pyrosequencing  methods  to 

identify bacteria in chronic wounds. They additionally assessed the impact of diabetes 

and  antibiotics  on  chronic  wound  microbiota.  The  diversity  of  microflora  was 

significantly  higher  when  determined  by  16S  rRNA  gene-based  pyrosequencing 

analysis  as compared to  the culture-based analyses.  The limitations of culture-based 

methods to characterize diverse bacterial communities from environmental and clinical 

samples have been reported previously. However, many organisms missed by culture-

based  methods  in  the  Price  study  were  theoretically  culturable  using  conventional 

methods.  Some  of  the  organisms  that  were  missed  by culture-based  methods  were 

proportionally rare and may have been masked by more dominant  organisms in the 

culture media. 

Dowd  et  al.,  (2008)  investigated  pathogenic  biofilms  in  diabetic  foot  ulcers, 

pressure ulcers and venous leg ulcers by using 3 separate 16S-based rDNA molecular 

amplifications  followed  by  pyrosequencing,  shotgun  or  Sanger  sequencing,  and 

denaturing gradient  gel  electrophoresis.  The most  common pathogens present  in  the 

biofilms  of  all  chronic  wounds  were  Staphylococcus,  Pseudomonas,  Peptoniphilus, 

Enterobacter, Stenotrophomonas, Finegoldia, and Serratia spp. There was a significant 

difference in bacterial populations between different types of wounds noted. In pressure 

ulcers,  62% of the populations were identified as obligate  anaerobes.  Some wounds 

were identified with bacteria not recognised as pathogenic such as Rhodopseudomonas 

and Abiotrophia para-adiacens spp. In addition, the results of molecular analyses were 

compared with conventional  culture approaches,  where in  only one wound type the 
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primary bacterial population was correctly identified. These results indicate the need for 

improvement of diagnostic methods.

The  DGGE  method  can  give  valuable  additional  information  about  chronic 

wound  microflora  that  is  not  apparent  from  cultural  analysis  alone.  A  better 

understanding  of  wound  ecology  will  help  clinicians  to  better  manage  the  wound. 

Furthermore,  the  comparison  of  normal  skin  and  wound  microflora  has  not  been 

investigated sufficiently so far and it may give important information with regards to the 

impact of certain bacteria on wound healing, their pathogenicity and role in biofilms. 

1.9 Aim and Objectives of the study

       The aim of the study was to compare the diagnostic validity of conventional culture 

methods  with  molecular  approaches  for  bacteria  identification  and quantification  in 

chronic  wounds  in  terms  of  sample  collection,  transportation  and processing  in  the 

laboratory.

Objectives:

-  To establish which is the most appropriate swab transport device for futher in vivo 

studies on patients with chronic wounds and healthy volunteers

- To compare semi-quantitative swab and biopsy cultures with quantitative methods in 

order to test the diagnostic validity of semi-quantitative swab culture

- To test the hypothesis that wound infection exists when the bacterial load is 105  cfu/ 

gram of tissue or greater 

- To develop a quantitative RT-PCR assay for the direct detection of MRSA from wound 

swabs and to compare this method with quantitative conventional tests. 

52



- To develop and apply the use of DGGE sequencing to the analysis of the diversity of 

microflora in chronic wounds and on healthy skin. The results of the study will help to 

select  the  panel  of  the  most  common  and  clinically  important  bacteria  for  future 

development of multiplex RT-PCR for chronic wounds.
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CHAPTER 2

Investigation of swab transport systems 
for bacterial recovery and performance 

with DNA extraction and PCR
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2.1 Introduction

 In clinical diagnostics, successful sampling and transport of microorganisms to 

the laboratory is crucial for an accurate diagnosis and treatment of the patient. Swabs 

are commonly used in sampling and the swab material and transport medium play a 

major, but often overlooked role in sampling. Within the hospital setting, the use of 

transport devices for various routine microbiology cultures began as researchers noticed 

the difference in bacterial variability from specimens plated at the bedside compared to 

those  transported  to  the  laboratory  (Stuart,  1946).  Nowadays,  a  number  of  factors 

contribute  to  the  increasing  importance  of  the  use  of  transport  devices  to  maintain 

specimens  for  microbiological  testing.  These  factors  include  the  increased  use  of 

outpatient treatment that has accompanied shortened hospital stay, and the centralisation 

of laboratory services (Human and Jones, 2004). The ideal swab system must absorb 

organisms from the infection site, maintain viability during transport without allowing 

growth and allow the release of  organisms from the swab to the appropriate  media 

during cultural techniques. These are the most important aspects to be considered when 

choosing the appropriate collection device. Poorly collected or transported specimens 

may fail to isolate causative microorganisms and may recover contaminants or normal 

microflora. 

Agar gel and liquid transport systems have been used for many years. The first 

bacteriological transport medium was introduced in 1946 by Stuart, who proposed the 

first simple semi-solid, non nutrient medium containing agar, calcium chloride, sodium 

glycerophosphate,  thioglycollate  and  methylene  blue  for  transporting  clinical  swab 

samples (Stuart, 1946). Further developments occurred in 1964, when a modification of 

the Stuart medium – the Cary-Blair medium was proposed. The Cary-Blair medium has 
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an improved buffering system due to the replacement of sodium glycerophosphate by 

inorganic  phosphates.  The  improved  formulation  prevents  overgrowth  of 

Enterobacteriaceae and  is  recommended  for  the  transportation  of  rectal  and  faecal 

specimens (Cary and Blair, 1964). In 1967 the Amies swab was introduced as another 

modification  of  Stuart’s  medium.  In  the  Amies  medium  the  glycerophosphate  was 

replaced for an inorganic phosphate buffer to improve bacteria recovery and prevent 

overgrowth (Amies, 1967). Commercially manufactured swab transport kits appeared 

on  the  market  in  the  mid-1970s.  The  Cary-Blair  medium  is  almost  exclusively 

associated with collection and transport of enteric bacteria, however Stuart and Amies 

media have been widely used for the transportation of a broad range of clinical samples 

including  wound  specimens  (History  of  Transport  Systems.  Copan,  available  at 

http://copanitalia.com/index-56.htm). 

Transport media protect swabs from ambient air and provide a moist, balanced 

pH environment for microorganisms during transport and storage, however they do have 

limitations including specimen dilution by immersion within the liquid or gel.  Also, 

some gel and liquid media transport swabs are not suitable for molecular testing as their  

components have been found to interfere with diagnostic detection tests using molecular 

methods (Poddar et al., 1998). Medium free transport systems do not dilute the sample 

and they do not provide potential  nutrients for organism growth.  They also do not 

interfere with the Gram staining (Stuczen and Edwards-Jones, 2010; unpublished data). 

The swab tip and the transport medium must be made of materials that are sufficiently 

non-toxic  or  non-inhibitory  to  maintain  microorganism  viability  throughout  the 

collection and transport process. Cotton-tipped swabs have been shown to be inhibitory 

to some microorganisms, hence, cotton-tipped swabs should not routinely be used for 

specimen collection for culture (Mandler and Sfondrini, 1977). Compressed cellulose 

sponge material in the liquid transport systems may contain sulphur compounds and can 
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inhibit  certain microorganisms. The glue used by some swab manufacturers may be 

inhibitory to certain bacteria and may also be extracted during specimen preparation 

(such  as  enzymatic  digestion  or  chemical  extraction  process)  and  interfere  with 

molecular detection methods (Lauer and Masters, 1988). Wire/metal shafts may also 

contribute to interference problems if the shaft comes in contact with extracting reagents 

in molecular testing (Wadowski et al., 1994). The most commonly used swab transport 

device  in  wound  care  in  UK  is  the  Amies  gel  swab,  however  this  swab  is  not 

recommended  for  molecular  methods  as  it  contains  agar.  Gibb  and  Wong  (1998) 

observed  inhibition  of  PCR in  swabs  submitted  in  routine  bacteriological  transport 

media  containing  agar.  No inhibitory effect  was  observed with  a  transport  medium 

which did not contain agar. In recent years there has been a significant increase in the 

use of molecular techniques in bacterial identification hence even more is required of 

the transport medium.  It is not likely to be practical to collect two swabs per patient, 

i.e.,  one  for  culture  and  one  synthetic  for  PCR,  as  suggested  by Wadowsky  et  al., 

(1994). For this reason the swab should be suitable for both conventional and molecular 

testing. 

There had been no recognised standard for the performance of Swab Transport 

Systems (STSs)  before the production  of  the United States  National  Committee  for 

Clinical Laboratory Standard (NCCLS) M40-A standard in 2003.  In the absence of a 

standard procedure for determining the effectiveness of STSs, previous papers on this 

subject have only been able to provide comparative data. The new standard resolves this 

by defining whether a product is acceptable in terms of bacterial survival. The M40-A 

standard provides  a  standardised  quantitative  method  (swab elution)  and  qualitative 

method  (roll-plate)  to  be  utilised  by laboratories  and  manufacturers  to  measure  the 

performance characteristics of swab transport systems. It provides a method of quality 

control  testing,  together  with  acceptance  criteria  not  only  for  viability  but  also  for 
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overgrowth  of  bacteria.  There  are  10  control  aerobic,  anaerobic  and  facultative 

anaerobic  bacterial  strains  such as  Haemophilus  influenzae ATCC 10211,  Neisseria  

gonorrhoeae ATCC 43069,  Pseudomonas aeruginosa ATCC BAA-427,  Streptococcus  

pneumoniae ATCC 6305,  Streptococcus pyogenes ATCC 19615,  Bacteroides  fragilis 

ATCC 25285, Fusobacterium nucleatum ATCC 25586, Peptostreptococcus anaerobius 

ATCC 27337,  Prevotella melaninogenica ATCC 25845, and  Propionibacterium acnes 

ATCC 6919 used. These strains are the minimum that must be included to evaluate new 

swab transport devices before they are approved for patients. Pseudomonas aeruginosa 

is included in the M40-A standard as an indicator for overgrowth and is normally only 

tested at 4˚C.  Streptococcus pyogenes is an important human pathogen and this is the 

reason why it is included in the M40-A standard. It is a cause of many important human 

diseases  ranging  from  mild  superficial  skin  infections  to  life-threatening  systemic 

diseases. Additional strains may be employed when required for intended use.   

         The CLSI M40-A method was used recently to evaluate several swab collection 

and transport devices for the maintenance of bacterial viability (Graver and Wade, 2004; 

Human and Jones, 2004; Morosini  et al., 2006; Van Horn and Rankin, 2007). In the 

recent study four different swab transport systems were evaluated – a new dry Sigma 

Swab (Medical Wire & Equipment Ltd.), a gel Amies HealthLink Transporter (Copan 

Diagnostics), a liquid Amies Sigma Transwab (Medical Wire &Equipment Ltd) and the 

E-Swab (Copan Diagnostics). The Sigma Swab is a medium free transport system with 

a  polyurethane foam bud. The  HealthLink Transport  swab contains plain gel  Amies 

medium  and  a  rayon  bud.  The Sigma  Transwab is  a  new  swab  transport  system 

containing liquid Amies transport medium and a soft polyurethane foam bud, which is 

highly absorbent and has an open cell structure which allows a complete flow through 

of medium and reagents with a maximum release of microorganisms into the liquid 

medium.  The  Copan  Diagnostics  E-Swab  is  a  Nylon  Flocked  Swab  with  modified 
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Amies  liquid  transport  medium.  Each  tested  swab  is  commercially  available  and 

recommended for wound sampling and has a different structure of the bud and different 

media formulation.

2.2 Aim of the study

The aim of the study was to establish the most appropriate swab transport device 

(suitable  for  both conventional  and molecular  testing)  for further  in  vivo studies  on 

patients  with  chronic  wounds  and healthy volunteers.  Four  different  swab transport 

systems were evaluated – a new dry Sigma Swab (Medical Wire & Equipment Ltd.), a 

gel  Amies  HealthLink  Transporter  (Copan  Diagnostics),  a  liquid  Amies  Sigma 

Transwab  (Medical  Wire  &Equipment  Ltd)  and  the  E-Swab  (Copan  Diagnostics). 

Medical  Wire’s  dry Sigma-Swab,  Copan’s  HealthLink  Transporter  (HLT)  swab  and 

Medical Wire Sigma Transwab were evaluated for their ability to maintain viability of 

Escherichia coli, Staphylococcus aureus and Bacteroides fragilis. The E-Swab has been 

previously tested with S. aureus, E. coli and B. fragilis and has met acceptance criteria 

for all  isolates therefore was not included in conventional testing (Nys  et al.,  2010; 

Saegeman et al., 2010). The Sigma dry swab, E-Swab and Sigma Transwab were also 

tested for their performance with molecular methods and the impact of the transport 

medium components on DNA extraction and PCR. The HealthLink Transporter was not 

included in molecular testing because gel swabs are not recommended for molecular 

methods due to interference with PCR (Gibb and Wong, 1998). 

All swabs were previously tested with all bacteria required by the standard M40-

A method  (Quality  Control  Standard  for  testing  Swab  Transport  Systems)  and  met 

acceptance criteria for most of the aerobic and anaerobic microorganisms (Van Horn et  

al., 2008; Van Horn and Rankin, 2008; Rishmawi, 2007).   
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2.3 Materials and Methods 

2.3.1  Materials  for  the  evaluation  of  swabs  according  to  the  standard  M40-A 

protocol

2.3.1.1 Swab Transport Systems used in the study

- Sigma dry Swab MW941 (Medical Wire & Equipment Ltd, Corsham, UK) 

- Sigma Transwab MW176S (Medical Wire & Equipment Ltd, Corsham, UK)

- HealthLink Transporter Swab 4140 (Copan Diagnostics Ltd, Brescia, Italy)

2.3.1.2 Media used in the study 

- Nutrient Agar BO0336 (Oxoid, Hampshire,UK)

- Brain Heart Infusion Agar CM1136 (Oxoid, Hampshire, UK)

        The media were prepared according to the manufacturer’s instructions, sterilised at 

121ºC for 15 min and dispensed in 25 ml volumes into sterile Petri dishes.

2.3.1.3 Bacterial strains used in the study 

Table 2.1 Bacterial strains, media and incubation conditions used in the recovery studies.

Species Strain Plate media Incubation 
atmosphere

Testing 
Time

Staphylococcus aureus NCTC 
6571

Nutrient agar Aerobic 48h

Escherichia coli ATCC 8739 Nutrient agar Aerobic 48h

Bacteroides fragilis ATCC 
25285

Brain-heart 
infusion agar

Anaerobic 48h
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2.3.2  Methods  for  the  evaluation  of  swabs  according  to  the  standard  M40-A 

protocol

The efficacy of swab transport systems was assessed according to M40-A CLSI 

standard (Clinical Laboratory Standards Institution).

An isolate  of  each  strain  was freshly grown on solid  media  (Table  2.1)  and 

suspension was prepared in sterile saline to a concentration of approximately 1.5 x 108 

cfu/ml (equivalent to 0.5 McFarland standard) and diluted 1:10. Serial 10-fold dilutions 

were  prepared  from the  suspension  and  plated  using  a  spiral  plater  (Don  Whitley 

Scientific,  BS5687) onto appropriate  agar  (Table  2.1).  The plates  were incubated  at 

37°C for 24 h, and colony forming units counted to confirm inoculum concentration. 

All swabs were inoculated with bacteria by dipping the swab for 10 seconds in the well 

containing 50 μl of inoculum suspension and allowing the fluid to absorb. The swabs 

were inserted back into the transport device and incubated at room temperature (20°C) 

and at 4°C for 0 h, 24 h and 48 h (as required for M40-A) to determine the survival or  

overgrowth of bacteria on swab devices at two different ranges of temperature. After the 

appropriate incubation period serial dilutions were prepared from the liquid transport 

medium of each swab. The Sigma dry swab was placed into 1 ml of sterile  saline, 

vortexed  and  serial  dilutions  prepared.  Serial  dilutions  were  inoculated  onto  the 

appropriate agar using a spiral plater (Don Whitley Scientific). 

All  plates  were  incubated  at  37°C  for  48  h  in  the  appropriate  conditions.  After 

incubation,  a quantitative count was performed using Acolyte  counter (Don Whitley 

Scientific). All experiments were carried out in triplicate (Figure 2.1).
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Figure 2.1 Method of processing the swab for evaluation of bacterial viability.

2.3.3  Materials  for the  evaluation  of  the  performance  of  the  swabs  with  DNA 

extraction and PCR

2.3.3.1 Swab Transport Systems used in the study

- Sigma dry Swab MW941 (Medical Wire & Equipment Ltd, Corsham, UK) 

- Sigma Transwab MW176S (Medical Wire & Equipment Ltd, Corsham, UK)

- E-Swab 480C (Copan Diagnostics Ltd, Brescia, Italy)
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2.3.3.2 Bacterial strains used in the study

- Staphylococcus aureus NCTC 6571

- Escherichia coli ATCC 8739

2.3.3.3 DNA extraction 

Swabs were placed into a vial containing 180µl of molecular grade water, vortexed and 

DNA extracted from the suspension using a DNeasy Blood and Tissue Kit  (Qiagen, 

Crawley, UK) according to the manufacturer’s instructions.

2.3.3.4 Polymerase Chain Reaction Reagents 

Stock concentrations:

- 10xNH4 buffer (Bioline, London, UK) 

- MgCl2  - 50 mM (Bioline, London, UK)   

- dNTPs –  100 mM (Bioline, London, UK) 

- 16s rDNA primers in final concentration 1μM each (Integrated DNA Technologies, 

Leuven, Belgium):    

 518R-     5' -CGT ATT ACC GCG GCT GCT GG-3'

101F –GC clamp -   5' - CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG CCC 

CCG    (Liu et al., 1997)    

- Molecular grade H2O  

 - BioTaq polymerase 5 U/μl (Bioline, London, UK) 
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2.3.3.5 Horizontal Gel Electrophoresis 

Reagents:

-  Agarose (Bioline, London, UK)

- 1xTAE buffer prepared from the concentration of 50x TAE buffer. Volume adjusted to 

1l with additional distilled H2O. 50x TAE was prepared by adding 242g of Tris base, 

57.1 ml of Glacial Acetic Acid and 18.6 g of EDTA to 900 ml of distilled water and 

adjusting volume to 1 litre with additional distilled H2O. 

- Ethidium bromide (1mg/ml)

- Crystal 5xDNA Loading Buffer Blue (Bioline, London, UK)

- Hyperladder IV – separation range 100 – 1013 base pairs (Bioline, London, UK)

To prepare  the mini-gels, 0.5g agarose was added to 50ml 1xTAE buffer. He 

agarose and TAE buffer were mixed and heated in the microwave for 30 seconds. When 

the agarose cooled down slightly, 1 µl of ethidium bromide (1mg/ml stock) was added 

and swirled gently.  Agarose was poured into a previously prepared gel  plate  with a 

comb and cooled for 30-45min.  1xTAE was poured to about 4mm above the gel and the 

comb was removed carefully. 5µl of DNA was added to 2µl of DNA loading buffer and 

loaded onto a 1% agarose gel. The size of the PCR products was determined by loading 

2µl  of  loading buffer  to  5 µl  of  HyperLadder  IV (Bioline,  London, UK). After  the 

sample run, bands were visualised under  UV light using a GelDoc UV Imaging System 

(Bio-Rad, Hertfordshire,UK).
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2.4 Methods for the performance of the swabs with DNA extraction and PCR

All swabs were inoculated in duplicate with the same concentration of bacterial 

strain (Section 2.3.4.2) and DNA was extracted using the Qiagen Kit according to the 

manufacturer’s instructions. The experiment was repeated three times to improve the 

accuracy of the results. After DNA extraction, samples were run on an agarose gel for 

45 minutes at 95 volts to look for visible bands. By running DNA through an EtBr-

treated gel and visualising it with UV light, any band containing more than ~ 20 ng 

DNA becomes distinctly visible. Hyperladder IV was used to size DNA fragments. To 

ensure that the samples which did not produce bands still contain DNA (less than 20 ng) 

they were used as templates for PCR (using 16S rDNA primers). PCR reactions were 

carried out in PTC – 200 Thermocycler (GRI) in a 25 µl reaction volume each mixture 

containing a final concentration of 1xNH4 reaction buffer, 1.5 mM MgCl2, 0.2 mM total 

dNTPs, 0.25U Taq, 1 μM of each primer and 0.5 μl of template DNA. PCR conditions 

for universal 16S primers are described in Table 2.2.

Table 2.2 PCR conditions for universal 16S rDNA primers (Linton et al., 2007).

Temperature Time of hold Number of cycles

92°C 2 min 1

94°C 30 sec 5

40°C 1 min

94°C 30 sec 30

50°C 1 min

72°C 3 min

65



2.5 Results

2.5.1 Evaluation of the dry Sigma Swab, Amies HealthLink Transporter and the 

Sigma Transwab for the recovery of  Staphylococcus aureus,  Escherichia coli and 

Bacteroides fragilis

          The number of viable cells of  S. aureus recovered from the dry Sigma swab 

remained stable for up to 48 h for specimens incubated at 4ºC (Figure 2.1). For Amies  

HealthLink specimens  (stored  at  4°C) the  number  of  viable  organisms of  S.  aureus 

decreased by 0.2 log after 48 h of incubation. The number of viable cells of S. aureus 

recovered from the Sigma Transwab increased  by 0.2 log after  48 h incubation for 

swabs held at 4ºC (Figure 2.2). 
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Figure  2.2 The  recovery  of  Staphylococcus  aureus from  the  Sigma  dry  Swab,  Amies 

HealthLink Transporter and Sigma Transwab demonstrating the viability of S. aureus over 48 h 

of incubation at 4˚C (the number of viable cells remained stable for Sigma dry swab; ↓0.2 log 

for HealthLink Transporter; ↑0.2 log for Sigma Transwab).

      For the dry Sigma swab specimens held at room temperature, there was a 0.3 log 

increase in numbers of S. aureus. There was a 0.6 log increase in numbers of S. aureus 

for Amies HealthLink Transporter specimens held at room temperature. The number of 

viable cells of S. aureus remained stable for 48 h for Sigma Transwab (Figure 2.3). 

Figure 2.3 The recovery of Staphylococcus aureus from the Sigma dry swab, Amies HealthLink 

Transporter  and  Sigma  Transwab  demonstrating  the  viability  of  S.  aureus over  48  h  of 

incubation at room temperature (↑0.3 log for Sigma dry swab; ↑0.6 log for Amies; the number 

of viable cells remained stable for Sigma Transwab).
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         The number of viable cells of E. coli  recovered from the Sigma dry swab was 

stable for up to 24 h and increased only by 0.2 log after 48 h of incubation at 4ºC. There 

was an increase in numbers of E. coli by 0.5 log for HealthLink transporter. The number 

of viable cells of E. coli recovered from the Sigma Transwab decreased by 0.1 log after 

24h of incubation and then increased by 0.3 log after 48 h incubation for swabs held at 

4ºC (Figure 2.4).

Figure 2.4  The recovery of  Escherichia coli from the Sigma dry Swab, Amies  HealthLink 

Transporter and Sigma Transwab demonstrating viability of E. coli over 48 h of incubation at 

4˚C (↑0.2 log for Sigma dry swab; ↑0.5 log HealthLink Transporter; ↑0.2 log Sigma Transwab). 
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          For the Sigma dry swab samples held at room temperature, there was a 0.4 log 

increase in numbers of E. coli after 48 h of incubation. There was a 0.7 log increase in 

E. coli for Amies HealhLink Transporter specimens held at room temperature. For the 

Sigma Transwab the number of viable cells of E. coli remained stable for 48 h (Figure 

2.5).

Figure 2.5 The  recovery of  Escherichia  coli from the  Sigma dry swab,  Amies  HealthLink 

Transporter and Sigma Transwab demonstrating viability of E. coli over 48 h of incubation  at 

room temperature (↑0.4 log Sigma dry swab; ↑0.7 log HealthLink Transporter; the number of  

viable cells remained stable for Sigma Transwab).
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        The number of viable cells of Bacteroides fragilis remained stable for the Sigma 

dry swabs held at 4ºC for 48 h. For the HealthLink Transporter swabs held in the same 

conditions, the number of viable cells decreased by 0.4 log and for the Sigma Transwab 

there was 0.5 log increase in Bacteroides fragilis count (Figure 2.6). 

Figure 2.6 The recovery of Bacteroides fragilis from the Sigma dry swab, Amies HealthLink 

Transporter and Sigma Transwab demonstrating viability of B. fragilis over 48 h of incubation 

at 4˚C (the number of viable cells remained stable for Sigma dry swab; ↓0.4 log HealthLink 

Transporter; ↑0.5 log for Sigma Transwab). 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0h 24h 48h Incubation period 

Bacterial count cfu/ml

Sigma dry swab HealthLink Transporter Sigma Transwab

70



        The Sigma dry swab maintained the viability of Bacteroides fragilis for up to 48 h 

at room temperature with no loss of viable cells. With the two other swab systems there 

were 0.1 log reduction and 0.4 log increase in number of viable cells observed in the 

HealthLink swab and the Sigma Transwab respectively (Figure 2.7).

Figure 2.7 The recovery of Bacteroides fragilis from the Sigma dry swab, Amies HealthLink 

Transporter and Sigma Transwab demonstrating viability of B. fragilis over 48 h of incubation 

at room temperature (the number of viable cells remained stable for Sigma dry swab; ↓0.1 log 

for HealthLink Transporter; ↑0.4 log for Sigma Transwab).
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          To be considered acceptable, for specimens held at 4º C, there should be no more 

than a 1 log increase in cfu and no more than a 3 log decline in cfu between the zero-

time  cfu  and  cfu  after  the  specified  holding  period.  For  specimens  held  at  room 

temperature, there should be no more than a 3 log decline in cfu between zero-time cfu 

count and the cfu of the swabs that were stored. 

          All tested transport swabs met acceptance criteria at both storage temperatures for 

each  isolate  tested,  but the  Sigma  dry  swab  and  the  Sigma  Transwab  maintained 

bacterial viability better than the Amies HealthLink Transporter.

2.5.2 The performance of the Sigma dry swab, Sigma Transwab and Copan

E-swab with DNA extraction and PCR

All swabs were tested with Staphylococcus aureus and Escherichia coli for their 

performance with DNA extraction. They were inoculated in duplicate with the same 

concentration  of  microorganisms  (approximately  1.5  x  106 cfu/ml)  and  DNA was 

extracted  using  the  Qiagen  kit  (Section  2.3.3.3).  DNA  was  separated  using  gel 

electrophoresis in all swabs inoculated with E. coli (Figure 2.8 a, b) and only from the 

Sigma dry swab for swabs inoculated with  Staphylococcus aureus (Figure 2.9 a, b). 

However, for swabs inoculated with E. coli, the Sigma dry swab showed more distinct 

bands than the Sigma Transwab and the E-swab. Running DNA through an EtBr-treated 

agarose gel and visualizing it with UV light results in any band containing more than 

~20 ng DNA becoming distinctly visible. There were no bands detected from the Sigma 

Transwab and E-swab for swabs inoculated with S. aureus, which suggested that there 

was less than 20 ng DNA extracted from the samples. All samples with DNA extracted 

from  S. aureus were additionally used as template DNA for PCR (using 16S rDNA 

standard  primers)  and  the  DNA was  successfully  amplified  and  detected  from  all 

specimens (Figure 2.10).
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Figure  2.8  (a,  b  –  repeated 

experiment) DNA extraction  of  E.  

coli from the Sigma Transwab swab 

(1, 2), Sigma dry swab (3, 4) and E-

Swab (5, 6) demonstrating successful 

extraction for all swabs tested. From 

visual  observation  more  distinct 

bands were achieved with the Sigma 

dry swab.  
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Figure 2.9 a) DNA extraction of S.  

sureus from  the  Sigma  Transwab 

swab (1, 2), Sigma dry swab (3, 4) 

and E-Swab (5, 6); 

b) DNA extraction of S. sureus from 

the  Sigma  dry swab (1,  2),  Sigma 

Transwab swab (3,  4)  and E-Swab 

(5,  6)  demonstrating  successful 

DNA extraction achieved only from 

the Sigma dry swab. 



Figure 2.10  Agarose gel electrophoresis of the PCR products – the Sigma dry Swab (1, 2), 

Sigma Transwab (3, 4) and E-Swab (5, 6) demonstrating successful amplification of DNA from 

all Swab Transport Systems inoculated with S. aureus.  Hyperladder IV (Bioline) was used to 

assess the size of the amplicon (Sample 7).
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2.6 Discussion

Loss  of  microbial  viability  during  transport  may  have  a  negative  effect  on 

bacterial culture results, especially when present in low numbers. The perfect transport 

device  should  maintain  the  viability  of  bacteria,  prevent  overgrowth  and  release 

microorganisms to the media during cultural techniques. The Sigma dry swab, Amies 

HealthLink Transporter, Sigma Transwab and E-swab were previously evaluated with 

10 strains  required by the  M40-A standard and met  acceptance criteria  for  most  of 

isolates tested (Stuczen, 2011, unpublished data; Van Horn et al., 2008; Van Horn and 

Rankin,  2008;  Rishmawi,  2007).  The  aim  of  this  study  was  to  establish  the  most 

appropriate device (suitable for conventional and molecular methods) for further testing 

on healthy skin and patients with wounds. In order to validate the swabs for their ability 

to  recover  the  most  common  Gram positive  and  Gram negative  bacteria  found  in 

wounds additional strains of S. aureus and E. coli were employed. Bacteroides fragilis 

is included in the M40-A standard, however the swabs were validated again to confirm 

the recovery of anaerobes. The performance of the swabs with DNA extraction and PCR 

was also investigated to look at the possible interference of liquid media or the swab 

bud itself with molecular methods.

For the  M40-A standard  to be considered acceptable,  specimens held at  4ºC, 

there should be no more than a 1 log increase in cfu and no more than 3 log  decline in 

cfu between the zero-time cfu and after the specified holding period. For specimens held 

at room temperature, there should be no more than a 3 log decline in cfu between the 

zero-time cfu and the cfu of the swabs that were stored. Although no differences were 

detected between The Sigma Swab, Amies HealthLink Transporter and Sigma Transwab 

(increase or decline in cfu less than 1 log), the bacteria recovery rate was higher for the 

Sigma dry swab as compared to other two swabs.   The number of viable cells of  S. 

aureus recovered  from  the  Sigma  dry  swab  remained  stable  for  48  h  at  4˚C  and 

increased only by 0.2 log for E. coli after 48h. The number of viable cells of B. fragilis 
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recovered from Sigma dry swabs remained stable for 48h at both temperatures. From 

the literature searches  conducted there are  few peer-reviewed studies comparing the 

Sigma dry swab with other transport devices. The fact that the dry swab can absorb, 

maintain viability and release bacteria as well as swabs containing transport media is a 

big step forward. Liquid and gel based systems have limitations as the sample is diluted 

by immersion. The presence of bacteria in low numbers and additionally dilution within 

the  liquid  or  gel  can  have  a  negative  effect  on  microorganism  detection  and 

identification in the laboratory. Additionally, if the sample is polymicrobial the transport 

medium  may  cause  overgrowth  of  other  bacteria,  especially  Gram  negative 

microorganisms and thereby mask the presence of causative pathogens.  

 There was a 0.2 log decrease in S. aureus count after 48 h incubation at 4˚C and 

a  0.6  log  increase  at  room temperature  for  the  Amies  HealthLink  Transporter.  For 

samples inoculated with E. coli there was an increase in number by 0.5 log at 4°C and 

by 0.7 log at RT.  There was 0.4 log decrease and 0.1 log decrease in viable cells of B. 

fragilis observed for the HealthLink Transporter (HLT) specimens held at 4˚C and room 

temperature  respectively  after  48  h  incubation.  The  HealthLink  transporter  was 

previously evaluated for the recovery of S. aureus and B. fragilis. Van Horn and Rankin 

(2005) observed a 3 log overgrowth at  room temperature for  S. aureus. They tested 

HealthLink transporter with P. aeruginosa and also observed a 3 log overgrowth after 

48h of incubation at  RT.  The same authors in 2007 evaluated HLT with 10 strains 

recommended  by M40-A including  B.  fragilis and  found  that  HLT met  acceptance 

criteria for all isolates tested. In this study there was a higher recovery achieved with the 

HealthLink  Transporter  in  comparison to  a  study by Van Horn and Rankin  (2005), 

which  can  be  explained  by  the  fact  that  manufacturers  continually  improve  their 

products and the manufacturing process to achieve the best results possible for bacterial 
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recovery. They are regularly comparing their products’ performance in their own and 

third-party studies.

The number of viable cells of  S. aureus recovered from the Sigma Transwab 

increased by 0.2 log and E. coli by 0.3 log after 48 h of incubation for swabs held at 

4°C. For swabs held at RT the number of viable cells of S. aureus and E. coli remained 

stable for 48h. Rishmawi  et al (2007) observed a 2 log increase in number of viable 

cells of E. coli after 48h of incubation for Sigma Transwab. The number of viable cells 

of  S.  aureus remained stable  at  RT for  48  h  of  incubation  which  is  similar  to  my 

findings. 

For Sigma Transwab in the recent study there was a 0.5 log increase in the B. fragilis 

count after  48 h incubation at  4˚C and a 0.4 log increase for samples held at  room 

temperature. The full validation of Sigma Transwab was performed previously (Stuczen, 

2011; unpublished data) and Sigma Transwab met acceptance criteria for all aerobic and 

facultative bacteria recommended by the M40-A standard at both temperatures over 48 

h.  The three batches of  the Sigma Transwab were tested and recovered  Bacteroides 

fragilis,  Peptostreptococcus  anaerobius,  Propionibacterium  acnes,  and  Prevotella  

melaninogenica for 48 hours at both 4°C and room temperature, and  Fusobacterium 

nucleatum for 24 hours at both 4°C and room temperature. Neisseria gonorrhoeae was 

recovered from all 3 batches after both 24 h or 48 h at 4°C with only a 1 log reduction  

in recovery after 48 h. 

The  E-Swab has been previously tested according to the M40-A standard with 

10 isolates recommended and with other additional strains employed (Van Horn et al., 

2008; Saegeman et al., 2011; De Silva et al., 2010; Nys et al., 2010). Van Horn et al., 

(2008) found that the E-swab met acceptance criteria for all five aerobic strains (H. 

influenzae,  S.  pyogenes,  S.  pneumoniae,  P.  aeruginosa,  N.  gonorrhoeae),  however 

overgrowth was observed with  P. aeruginosa. They also observed a 2 log overgrowth 
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with  S. pyogenes at RT. At 4°C all aerobic strains were recovered at the acceptance 

level. For B. fragilis they observed a 1.4 log increase at 24 h and a 1.5 log decrease at 

48 h at room temperature. At 4°C there was a 0.7 log decrease observed. Nys  et al., 

(2010) evaluated the E-swab for the recovery of E. coli and observed that the number of 

viable cells remained stable over 48 h at  both temperatures tested. Saegeman  et al., 

(2011) tested the recovery of MRSA from the E-swab and compared it with a dry cotton 

swab and an Amies gel swab (Copan). They observed higher recovery of MRSA for the 

E-swab, which may lead to a higher detection rate. 

There has been a significant increase in  the use of immunological and molecular 

techniques in bacterial identification in recent years (Relman, 2002) thus even more is 

required of the transport medium. Swab transport systems used for sample collection 

and DNA extraction procedures need to be carefully considered and optimized for PCR 

due to the possible PCR inhibition caused by the presence of agar (Gibb and Wong, 

1998),  calcium alginate  and aluminium swab shafts  (Wadowsky  et  al.,  1994)  or  by 

mucolytic agents (Deneer and Knight, 1994). It is important that transport swabs do not 

interfere with diagnostic tests. In this study the Sigma dry swab, the Sigma Transwab 

and E-Swab were compared for their performance with molecular methods. All swabs 

were inoculated with the same concentration (overnight broth) of the control strain of S. 

aureus and  E.  coli. DNA was  extracted  from transport  swabs  after  30  minutes  of 

incubation at room temperature. DNA was detected using agar gel electrophoresis from 

all  swabs  inoculated  with  E.  coli. For  swabs  inoculated  with  S.  aureus, DNA was 

detected from the Sigma dry swab only. The amount of DNA extracted from the Sigma 

Transwab  and  E-swab  was  less  than  20  ng  as  the  bands  were  not  visible  on  the 

electrophoresed gel.

The  cell  wall  of  Gram  positive  bacteria  has  a  thicker  and  highly  cross  linked 

peptidoglycan layer than Gram negative bacteria and lacks the outer membrane. For that 
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reason, DNA extraction is more difficult and less efficient for Gram positive bacteria 

(Beveridge,  1999).  The  use  of  appropriate  DNA extraction  methods  is  critical  for 

successful PCR on clinical samples. As the DNA extraction in this study was successful 

with the dry Sigma swab, the problem was related to swabs containing liquid media. 

The samples inoculated with  S. aureus were additionally used as template DNA for 

PCR and the DNA was successfully amplified and detected from all specimens (Figure 

2.10).  This  means  that  even  though  all  swabs  were  inoculated  with  the  same 

concentration of S. aureus, the DNA extraction was less efficient from swabs containing 

liquid medium compared to the Sigma dry swab. 

          There are many studies confirming the interference of gel and liquid transport  

media  on  DNA extraction  and  other  molecular  techniques.  This  is  the  first  report 

comparing the performance of different swab transport systems including the Sigma dry 

swab with DNA extraction and PCR.   Cloud et al., (2002) compared several types of 

swabs to determine which single material could optimally be used for both culture and 

PCR. He  found  that  calcium-alginate  swabs  inhibited  the  PCR  reaction.  However, 

dacron or rayon swabs provided acceptable results.  The main component of calcium-

alginate swabs responsible for PCR inhibition is reported to be the alginate, which is a 

crude extract from seaweed. Reports of whether or not components of the aluminium 

shaft are inhibitory have been conflicting. Wadowsky et al., (1994) reported inhibition 

due to the aluminium shaft, whereas Rasmussen et al., (1992) and He et al., (1994) had 

success in PCR assays when using aluminium shafts. Gibb and Wong (1998) observed 

inhibition of PCR in throat swabs submitted in routine bacteriological transport media. 

Experimental studies showed that agar within the medium, that was co-extracted with 

DNA by  DNAzol  (Gibco  Laboratories,  USA,  2002),  was  the  inhibitory  agent.  No 

inhibitory effect was observed with a transport medium that did not contain agar. 
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The Sigma  dry swab was  chosen as  a  collection  and transport  swab for  the 

further  studies  on  patients  and  healthy  volunteers  where  two  samples  (one  for 

conventional and one for molecular testing) were required (Chapter 4 and Chapter 5). 

For the accuracy of the results it was important to use the same swab transport system 

and sampling method in order to compare two techniques (conventional and molecular) 

for bacterial identification and quantification. The advantage of using dry swabs is that 

the sample is not diluted within the liquid medium and even small amounts of bacteria 

can be recovered. The recovery studies confirmed that this swab is able to maintain the 

viability of bacteria at 48h, which allowed transport delays to have minimal impact on 

organism recovery.  Also,  this  swab  is  suitable  for  molecular  testing  as  it  does  not 

contain  medium,  which  may  interfere  with  DNA extraction  and  other  molecular 

methods.  For studies where only conventional microbiology was investigated (Chapter 

3) the Amies gel swab was used as it was the recommended swab in the hospitals and 

our findings confirmed that there was no significant difference in recovery of bacteria 

between an Amies swab and the other swab systems investigated. 

2.7 Conclusions

All tested swabs (dry Sigma Swab, swabs containing liquid Amies medium- E-

swab and Sigma Transwab, and gel Amies HealthLink Transporter) are suitable for the 

collection and transport of samples containing  S. aureus, E. coli and  B. fragilis to be 

processed using conventional  methods.  However,  when tested for  their  performance 

with molecular methods, only the dry Sigma swab provided sufficient DNA extraction 

for both microorganisms tested –  E. coli and  S. aureus. Even though all swabs were 

inoculated with the same concentration of S. aureus, the E-swab and Sigma Transwab 

did  not  produce visible  bands due  to  the very low concentration  of  DNA extracted 

(below  20ng).  This  is  an  important  finding,  especially  for  samples  with  low 
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concentrations of bacteria or samples for quantitative molecular analysis as it may lead 

to misdiagnosis and inaccurate results.  
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CHAPTER 3

Diagnostic validity of conventional 

microbiological culture methods for 

wound swabs and biopsies using MRSA 

as an indicator organism

83



3.1 Introduction

The most practical and widely used method for obtaining a specimen for wound 

culture is a superficial swab (Gardner et al., 2007). Swab cultures of wounds are non-

invasive  and  most  laboratories  are  capable  of  semi-quantitatively  processing  these 

specimens. The procedures used for processing a semi-quantitative swab are routine in 

most  laboratories  and the  materials  required are  culture media,  sterile  loops and an 

incubator.  Processing  quantitative  swabs  requires  several  steps  and  many  routine 

microbiological laboratories may not want to deal with a process that complex. Also it is 

debatable if the numbers of bacteria or the presence of a specific pathogen within the 

wound have a negative impact on wound healing (Ratliff, 2008). 

Previous  studies  have  suggested  that  superficial  swab  cultures  may  be 

comparable to tissue cultures in determining the bioburden of chronic wounds (Levine 

et al., 1976; Pellizzer et al., 2001; Bozkurt et al., 2011). However due to methodological 

issues and design of the studies, the ability to draw definitive conclusions from these 

studies  has  been  problematic.  The  technique  used  to  culture,  isolate  and  identify 

organisms varied greatly from study to study (Gardner et al., 2006). Some of the studies 

had a very small sample size (Levine et al., 1976; Herruzo-Cabrera et al., 1992; Bhabha 

et al., 2011), were performed on samples collected from acute wounds such as burns or 

surgical  wounds (Buchanan  et  al., 1986) or used wound models rather than clinical 

cases  (Sullivan  et  al.,  2008).  Also  it  is  difficult  to  compare  the  method  of  sample 

processing  and  bacterial  identification  (semi-quantitative  vs  quantitative  or  swab  vs 

biopsy) without having an indicator microorganism. Chronic wounds are polymicrobial 

in nature and their microbial patterns may vary between samples from the same patient 

and vary from patient to patient. Without an indicator microorganism and by taking only 

total  bacterial  count  into  consideration  when  comparing  the  semi-quantitative  and 
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quantitative methods we are not able to give information on the ability of the method to 

identify and quantify a specific pathogen. Most of studies failed to provide a definition 

of  “positive  culture”  or  define  a  positive  culture  as  the  growth  of  any  organism. 

Therefore, it is impossible to determine whether these study findings were consistent 

with current understanding of wound microbiology, especially as all chronic wounds are 

contaminated with microorganisms although they are not necessarily infected (Gardner 

et al., 2006).

The most  serious  methodological  problem in  many studies  was  that  specific 

techniques used to collect the swab specimens were not described (Sapico et al., 1986; 

Herruzo-Cabrera et al., 1992; Rudensky et al., 1992). Swabbing techniques vary greatly 

according to wound bed preparation (cleansing or no cleansing),  area of the wound 

sampled and duration of sampling (Gardner et al., 2006).

 For many years, the gold standard to determine wound bacterial bioburden has 

been quantitative tissue biopsy (Dow, 2003; Gardner et al., 2001; Kingsley et al., 2003; 

Robson, 1997). In today’s healthcare settings tissue biopsies are not commonly used due 

to  the potential  damage to healing tissue and the lack of facilities to process tissue 

biopsies.  Furthermore,  the  significant  pain  in  sensate  soft  tissue  and  the  increased 

expense with this modality are other contributing limitations of tissue biopsy collection 

(Bill  et al., 2001). The limitations of a tissue biopsy have been reported by Bowler et  

al., (2001). They suggest that many chronic wounds are not homogenous in the quantity 

and types of bacteria within wound tissue. Bill  et al., (2001) studied 38 patients with 

chronic wounds of various aetiologies to evaluate the correlation between quantitative 

wound biopsy and swab culture. They found 79% correlation between both methods and 

concluded that quantitative swab culture provides a valuable adjunct in the management 

of chronic wounds.
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Bozkurt  et  al., (2011)  compared  superficial  swab  cultures  with  deep  tissue 

biopsy  and  evaluated  the  reliability  of  superficial  swab  cultures  in  diabetic  foot 

infections.  The patients  were  divided into  two groups:  those with  osteomyelitis  (33 

patients) and with soft tissue infections (42 patients). The compatibility rate between 

two methods in patients with osteomyelitis was 58.7% whereas in patients with soft 

tissue infections it was 89.1%. They concluded that superficial swab cultures could be 

valuable to identify the pathogens in infected diabetic wounds without osteomyelitis. 

The accuracy of swab specimens diminishes when osteomyelitis develops and in this 

case tissue culture seems more reliable (Bozkurt  et al., 2011). Pellizzer  et al., (2011) 

compared  deep  tissue  biopsy  and  superficial  swab  culture  in  patients  with  limb-

threatening diabetic foot infections and concluded that swabbing and deep tissue biopsy 

cultures  appear  to  be  equally  reliable  for  the  initial  monitoring  of  antimicrobial 

treatment  in  severe  diabetic  foot  infections.  No  statistical  difference  was  observed 

between two procedures in terms of either species or frequency of isolation (Pellizzer et  

al., 2011). 

The use of quantitative tissue/swab culture has been suggested for determining 

infection in the chronic wounds. Some scientists agree on the basis of work of Robson 

and Heggers (1970) that greater than 105 organisms per gram of tissue is diagnostic of 

acute or chronic infection and delayed wound healing.  However,  diagnosing wound 

infection is a clinical skill. The progression from colonisation to infection can not be 

predicted only by the presence of a  specific  type  of microorganism or  by a  certain 

quantity of bacteria (Sibbald, 2003). This is because the host immune response plays a 

critical role in determining whether wound infection will arise. In a healthy host with 

strong immune response, the likelihood of infection will be reduced, as the host will be 

able  to  tolerate  exposure to  a higher  number and greater  variety of microorganisms 

(Patel,  2010).  Exposure  to  the  same quantity  and variety of  microorganisms  in  the 
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compromised host carries an increased risk of wound infection due to impaired immune 

response. Where wound infection is suspected, wound investigation such as swabbing 

can  help  to  confirm  whether  any  microorganisms  are  predominent  and  if  direct 

antibiotic treatment is required. In chronic wounds, which are polymicrobial in nature 

and colonised with several microorganisms, wound infection may occur as consequence 

of  synergy  between  the  organisms.   Synergy  increases  bacterial  virulence  through 

increased  metabolic  efficiency,  substrate  accessibility,  enhanced  resistance  to 

environmental  stress  and inhibitors  and an increased  ability to  cause  infection  even 

though  individually  the  organisms  are  of  low  virulence  (Patel,  2010;  Percival  and 

Bowler,  2004).  Mechanisms  that  create  pathogenic  synergy include  protection  from 

phagocytosis  and intracellular  killing,  release of  growth factors,  modification  of  the 

local  environment  and  the  protection  of  sensitive  species  by  the  inactivation  of 

inhibitors. This protection has been named “indirect pathogenicity” (Brook, 1989). In 

many animal models combinations of aerobic and anaerobic bacteria have been shown 

to produce levels of sepsis or disease that could not be induced by individual species 

(Brook,  1987).  Such  synergy  has  been  demonstrated  in  wound  microorganisms 

including:  Klebsiella pneumoniae and  Porphyromonas asaccharolytica (Bowler  et al., 

2001; Mayrand and McBride, 1980); Escherichia coli and Bacteriodes fragilis (Bowler 

et al., 2001; Rotstein and Kao, 1988) and Staphylococcus aureus (Bowler et al., 2001). 

Taking  and  processing  a  wound  tissue  biopsy is  expensive,  invasive,  labour 

intensive, is a painful method and disrupts the wound bed from healing. It also requires 

trained personel to perform the procedure (Fleck, 2006). It is not standard practice in the 

majority of healthcare facilities and wound swabbing remains the most frequently used 

method of collecting a wound sample. For this reason the diagnostic validity of semi-

quantitative and quantitative swabs from chronic wounds should be investigated and 

established. 
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3.2 Aims and objectives

The aim of this study was to examine and compare the diagnostic validity of 

semi-quantitative  swab  culture  methods  routinely  used  in  the  laboratories  with 

quantitative methods of sample processing to establish the best method of culturing. 

This  study  addressed  the  limitations  of  previous  studies  by  delineating  and  fully 

describing  the  swab  and  biopsy  technique,  applying  a  standard,  research-based 

definition  of  positive  culture,  describing  microbiological  procedures  to  enhance 

recovery and quantification of organisms consistent with this definition and using an 

indicator  microorganism  (MRSA)  to  compare  the  diagnostic  validity  of  the  semi-

quantitative method. As the patients did not have clinical signs of infection, MRSA was 

a  good organism to use to  assess microbial  load.  Additionally the hypothesis  that  a 

microbial load greater than 105 cfu/ g of tissue is diagnostic for infection was challenged 

by measuring bacterial load in patients with colonised diabetic foot ulcers.

3.3 Ethical approval

This study was a part of a large on-going trial in which the potential use of larval 

therapy was compared with two different methods of non-pharmacological treatment of 

diabetic foot ulcers (Silver dressings and Biogun). Ethical approval for the study was 

obtained  from  the  Department  of  Biological  Sciences  Research  Committee  at 

Manchester Metropolitan University. Ethical permission for the larger trial was obtained 

from NHS Research Ethics Committee (07/MRE08/48). 
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3.4 Participants and study criteria

The samples were collected from 41 adults with chronic foot ulceration of at 

least  3  weeks  duration  attending  the  Manchester  Diabetes  Centre,  Manchester  Foot 

Hospital, the in-patients clinic at the Manchester Royal Infirmary, the Diabetes Centre at 

Tameside General Hospital and Trafford General Hospital. Patients (above or equal to 

18 years of age) with diabetes (type 1 or 2 diabetes) were included in the study. The 

microbiological inclusion criteria were, that the patient was colonised with MRSA but 

did  not  have  clinical  signs  of  infection.  The presence  of  MRSA was  confirmed by 

obtaining two MRSA positive wound surface swab samples by the hospital pathology 

laboratory. Eligible patients were invited to enter the study, and informed consent was 

obtained from them. 

3.5 Patient demographics

Out of the 41 patients studied aged between 18-75 years old, 19 (46.3 %) were 

women  and  22  (53.7%)  were  men.  Patients  were  mainly  Type  2  diabetics  (n=  31, 

75.6%) with the remaining patients being Type 1 (n=10, 24.4%). 33 patients (80.5%) 

had diabetes for a duration longer than 10 years. 6 patients (14.6%) had diabetes for a 

period of 5 to 10 years and only 2 patients (4.9%)  had diabetes for less than 5 years  

(Table 3.1).

Table  3.1 Demographics  of  the  patients  included in  the  study (data  provided  by Dr  Frank 

Bowling).

Sex No of patients (%)
Male 22 (53.7%)
Female 19 ( 46.3 %)
Patients age 18-75 years 
Type of diabetes
Type 1 10 (24.4%)
Type 2 31 (80.5%)
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Duration of diabetes
<5 years 2 (4.9%)
5 to 10 years 6 (14.6%)
>10 years 33 (80.5.%)
History of recurrent ulcers 
Yes 40 (97.6%)
No   1 (2.4%)
Presence of peripheral neuropathy 34 (82.9%)
Presence of diabetic neuropathy 13 (31.7%)
Presence of PVD 17 (41.5%)
Neuropathic complications 23 (56.1%)
Neuro-ischaemic complications 18 (43.9%)
Ischaemic complications   2 (4.9%)
Presence of diabetic nephropathy 13 (31.7%)
Presence of diabetic retinopathy 19 (46.3%)
Recent hospital admission 13 (31.7%)
Recent antibiotics 38 (92.7%)
Palpable pedal pulses 28 (68.3%)
ABPI>0.9 12 (29.3%)
Diabetic medication 39 (95.1%)
Aware of complications 39 (95.1%)
Smokers 5 (8.8%)

3.6 Study design

41 patients with MRSA colonised diabetic foot ulcers were included in the study. 

It was a randomised  controlled trial and all patients were receiving one of the three 

different therapies – Larvae Therapy, Biogun or Silver Dressing. Patients underwent the 

course  of  several  treatments  depending  on  the  healing  progress  (minimum  3  and 

maximum 12 treatments). MRSA was used as an indicator to compare semi-quantitative 

and quantitative methods of bacteria isolation from wounds. After each treatment, two 

types  of samples were obtained for identification and quantification of MRSA from 

each foot ulcer: a superficial swab and a deep tissue biopsy. A deep tissue biopsy was 

only collected if there was no possible damage to healthy granulation tissue. Treatment 

was continued for minimum of two applications and until the wound was fully cleared 

of  MRSA or a  maximum of  12 applications.  The impact  of  the treatments  was not 

assessed in this part of the study and it was reported elsewhere (Bowling, 2009). This 
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study concentrated only on the diagnostic validity of semi-quantitative and quantitative 

culture methods. 

3.7 Method of sampling

The  ulcer  from  each  patient  was  initially  cleaned  with  sterile  saline  and  a 

superficial  swab  sample  was  then  obtained  using  the  zigzag  method.  The  zigzag 

technique involves rotating the swab between the fingers as the swab is manipulated in a 

10-point  zigzag fashion (side to side across the wound without  touching the wound 

edges or the peri-wound skin from one edge to the other). The size of the wound was 

measured to calculate the number of microorganisms per cm2. 

A deep tissue biopsy was taken using a sterile scalpel blade (biopsy cutter) and 

placed in a sterile specimen collection tube (BD Vacutainer 288341). 

Two hundred and fifty one superficial swabs and eighty-two tissue biopsies were 

collected from 41 patients before and during the course of treatments.

3.8 Materials  and  methods  of  processing  semi-quantitative  and  quantitative 

superficial swabs and tissue biopsies

3.8.1 Media, reagents and identification methods 

3.8.1.1 Blood Agar (Oxoid, Basingstoke, UK CM0331) 

Columbia Blood Agar was prepared according to the manufacturer’s instructions 

and sterilised at 121ºC for 15min. On cooling to 50ºC, 5% (v/v) sterile defibrinated 
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horse blood (TCS Bioscience Ltd.) was added, mixed and the medium dispensed in 25 

ml volumes in sterile Petri dishes.

3.8.1.2 MRSA Chromogenic  Agar  (E&O  Laboratories  Ltd,  Bonnybridge,  UK, 

PP3046)

Chromogenic  agar  (composition  in  g/l  Agar  15.0:  Peptone  and Yeast  extract 

40.0: Salts 25.0: Chromogenic mix 2.5: ph: 6.9 +/- 0.2) was purchased ready prepared.

3.8.1.3 ISO –Sensitest (Oxoid, Basingstoke, UK , CM0471)

Sensitivity  test  medium  (ISO-sensitest)  was  made  according  to  the 

manufacturer’s instructions and sterilised at 121°C for 15 minutes. Plates were poured 

to a depth of 4mm +/- 0.5 and set on a level surface to set.

3.8.1.4 Catalase Test

The  catalase  test  was  used  to  differentiate  staphylococci from  streptococci. 

Staphylococcus produces an enzyme catalase, which causes the conversion of hydrogen 

peroxide to water with the concomitant release of oxygen gas, seen as bubbles in the 

reaction tube (Gagnon et al., 1959).

A small amount of culture from the plate was transferred carefully into the tube 

containing 3% hydrogen peroxide solution. The immediate formation of oxygen bubbles 

in the tube indicated the activity of catalase. 

3.8.1.5 DNase Test

Staphylococcus aureus produces a DNase that can diffuse from a colony and 

hydrolyze DNA within a plate. Test colonies were inoculated into tryptone agar medium 

containing  DNA.  Control  strains  of  Staphylococcus  aureus and  Staphylococcus  

epidermidis were used as positive and negative controls. Plates were incubated at 37ºC 
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for  18-24h. After  incubation the plates  were flooded with 1M HCl (Sigma-Aldrich) 

which precipitated DNA and turns the medium cloudy. Organisms that degrade DNA 

produce a clear zone around an inoculum streak. 

3.8.1.6 Staph Latex Kit (Pro-Lab diagnostic)

The  Prolex Staph Kit provides  a rapid method to distinguish  Staphylococcus  

aureus which possess coagulase (clumping factor) and/or protein A from other species 

of Staphylococcus. 

The  Prolex  Staph  Kit  utilizes  polystyrene  latex  particles  which  have  been 

sensitized  with  fibrinogen  and  IgG.  When staphylococcal colonies  which  possess 

clumping factor are mixed with the latex reagent, the latex particles agglutinate strongly 

within 20 seconds.

3.8.2 Microbiological processing of the samples

3.8.2.1 Semi-quantitative isolation of bacteria

 The  samples  were  processed  for the  isolation  of  Staphylococcus species  by 

inoculating onto Blood Agar and MRSA Chromogenic agar and then streaked out using 

a  sterile  loop  to  obtain  single  colonies  (streak  plate  method)  and  examined  after 

incubation for 24h at  37°C under  aerobic conditions.  A semi-quantitative count  was 

recorded  according  to  growth  in  each  of  the  four  sequential  streaks  providing  an 

estimation of the relative predominance of all pathogens (e.g. 1+, 2+, 3+, 4+) (Standard 

Operating Procedure: Aseptic Technique, 2001). 

3.8.2.2 Preparing tissue biopsy for processing 

A sterile plastic bijoux containing 1 cm³ sterile saline was weighed and recorded. 

The  tissue  biopsy  was  then  aseptically  transferred  to  the  bijoux,  re-weighed  and 
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recorded. Then the biopsy and saline was transferred to a sterile grinder and ground 

until the tissue was evenly homogenised. The homogenised tissue was transferred back 

to a sterile universal container and mixed for five minutes. This procedure was carried 

out in the Class 1 Safety cabinet to minimise the risk from inhalation of aerosols. 

3.8.2.3 Quantitative isolation of bacteria 

      All wound swabs after inoculation onto the same media as described in paragraph 

3.8.2.1, were cut and aseptically transferred to a sterile plastic bijoux containing 1 cm³ 

saline and mixed for 5 min. The samples were then aseptically diluted to perform a 

quantitative count.  The dilution was made by adding 10µl of the original sample to 

9.99ml of sterile saline (dilution 1:1000) or 100µl of the original sample to 9.90ml of 

sterile saline (dilution 1:100). Using the spiral plater (Don Whitley Scientific, BS5687) 

a total aerobic and MRSA count was performed by plating 50µl of the diluted sample 

onto the MRSA Chromogenic agar (Figure 3.1). After 24 h incubation colonies were 

count using aCOLyte Colony Counter (Don Whitley Scientific). 
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Figure 3.1 Quantitative MRSA culture on CHROMagar demonstrating single pink colonies of 

MRSA

3.8.3 Identification of Staphylococcus aureus and MRSA

MRSA Chromogenic  media  were examined  at  24h for  the  presence  of  pink 

colonies (Figure 3.1) indicating a suspected MRSA isolate. Standard identification tests 

of catalase, tube coagulase, DNAase and latex agglutination were used to confirm the 

identification of  Staphylococcus aureus. An accurate count of MRSA was performed 

using an image analysis system, the Acolyte counter (Don Whitley Scientific) on the 

respective culture media.

3.8.4 Methods for Antimicrobial Susceptibility Testing of MRSA

Antibiotic susceptibility tests were carried out by the agar disc diffusion method 

to confirm the presence of MRSA. The following discs (purchased from Oxoid Ltd.) 

were  placed  onto  ISO  Sensitest  agar:  Methicillin  (5µg),  Penicillin  (1  unit), 
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Erythromycin  (5µg),  Tetracycline  (25µg),  Chloramphenicol  (25µg),  Fusidic  Acid 

(10µg) and Streptomycin (10µg). Staphylococcus aureus Oxford strain (NCTC 6571) 

was used as a quality control strain. Plates were incubated at 30˚C for 24h. The zones of 

inhibition around antibiotic disks were assessed according to BSAC standards (BSAC 

Disc Diffusion Method for Antimicrobial Susceptibility Testing, Version 2.1.3; 2003) 

(Table 3.2).

Table 3.2 Zone breakpoints for MRSA (BSAC Disc Diffusion Method for Antimicrobial 

Susceptibility Testing, Version 2.1.3; 2003).

Antibiotic Interpretation of zone in diameters (mm)

R ≤ I S≤

Methicillin

Penicillin

Erythromycin

Tetracycline

Chloramphenicol

Fusidic Acid

Streptomycin

14

24

19

19

14

29

23

-

-

-

-

-

-

-

15

25

20

20

15

30

24

3.9 Statistical Analysis

A  statistical  analysis  was  performed  using  SPSS  Statistics  (version  19.0).  The 

correlation between semi-quantitative and quantitative results of swabs and biopsies was 

performed  using  Spearman’s  correlation  test,  which  is  a non-parametric measure 

of statistical  dependence between  two variables.  A  p value  less  than  0.05  was 

considered significant.
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3.10 Results

3.10.1 Correlation between semi-quantitative and quantitative swab culture 

Two hundred and fifty one MRSA swabs were collected from 41 patients before 

and  during  the  course  of  treatments  to  investigate  the  correlation  between  semi-

quantitative  and  quantitative  swab  culture.  Swabs  were  processed  using  semi-

quantitative (Section 3.8.2.1) and quantitative methods (Section 3.8.2.3) and the results 

were correlated using Spearman’s correlation test. A test’s ability to identify a positive 

result is referred to as its sensitivity. One hundred and thirty three quantitative swabs 

contained 105  or more cfu/cm2  (52.9%) of MRSA. One hundred and four out of 133 

swabs containing 105 or more cfu/cm2 had growth in quadrant III or quadrants III and IV 

for a sensitivity of 78.2% (Table 3.3).  

Non-infected wounds are usually predicted by growth in quadrants less than III. 

One hundred and fourteen swabs contained 104  or less cfu/cm2  MRSA. Seventy four 

swabs out of these 114 swabs had growth in quadrants less than III with a sensitivity of 

64.9% (74/114). 

If growth of MRSA in quadrant III and quadrants III and IV using the semi-

quantitative technique is defined as 105  cfu/cm2  or greater then in this study there was 

15.9% (40/251) incidence of false positives where the quantitative count was actually 

less than 105  cfu/cm2. From the opposite perspective, twenty seven quantitative counts 

were  105  cfu/cm2 or  greater  and there  was  no  growth  of  MRSA in  quadrant  III  or 

quandrants III and IV of semi-quantitative technique. This means a false negative rate of 

13.1% (33/251). Spearman’s correlation analysis demonstrated a statistically significant 

strong correlation between the two techniques with ρ (rho) = 0.67 and p < 0.001.

Table 3.3 Comparison of semi-quantitative and quantitative MRSA swab cultures obtained from 

patients before and during the course of treatments. 
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Semi-Quantitative swabs

Quantitative Swabs (cfu / cm2)

102 103 104 105 106 107

Quadrant I 5 20 4 3 0 0

Quadrant I,II 2 11 32 30 0 0

Quadrant I,II,III 0 3 36 52 14 0

Quadrant I,II,III,IV 0 0 1 10 28 0

Total number of swabs  = 251 7 34 73 95 42 0

3.10.2 Correlation between semi-quantitative and quantitative tissue biopsy culture 

before and during treatment

Sixty-two positive for MRSA deep tissue biopsies were collected from thirteen 

patients before and during treatment. Thirty two biopsies contained 105 or more cfu / g 

of  tissue  (51.6%) and they were  correlated  with  24  tissue  biopsy cultures  that  had 

growth in quadrant III or quadrants III and IV with a sensitivity of 75% (24/32) (Table 

3.4).  Twenty  six  swabs  processed  semi-quantitatively  correlated  with  thirty  swabs 

processed using the quantitative technique with MRSA count less than 105 bacteria/g of 

tissue for a  sensitivity of 86.6% (26/30).  False positive results  accounted for 6.45% 

(4/62). An incidence of false negative results was 12.9% (8/62). Spearman’s correlation 

analysis  demonstrated  a  statistically  strong  significant  correlation  between  the  two 

techniques with a coefficient of ρ( rho) = 0.70 with p<0.001.

Table 3.4 Comparison of semi-quantitative and quantitative tissue biopsy MRSA counts obtained 

from patients before first treatment and during therapy.
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Semi-Quantitative 

Tissue biopsy

Quantitative tissue biopsy (cfu/g)

102 103 104 105 106 107

Quadrant I 3 3 9 1 1 0

Quadrant I,II 1 2 8 5 1 0

Quadrant I,II,III 0 2 2 9 5 2

Quadrant I,II,III,IV 0 0 0 1 6 1

Total number of swabs = 62 4 7 19 16 13 3

After  the  comparison  of  semi-quantitative  and  quantitative  methods  for  all 

swabs and biopsies, the samples were divided into two groups: samples collected and 

analysed before first treatment and samples collected and analysed during the course of 

treatments. The reason for discriminating the samples into two groups was mainly to 

look at the possible impact of treatments on the diagnostic validity of the method of 

sample  collection.  We  hypothesised  that  the  treatment  can  have  an  impact  on  the 

correlation  between  quantitative  swab  and  tissue  biopsy  results.  Biopsies  were  not 

collected if  the wound was too superficial  or small  to justify a full-thickness punch 

biopsy or if there was a possibility of damage to healthy tissue.

3.10.3 Correlation between semi-quantitative swab and quantitative tissue biopsy 

cultures obtained from patients before first treatment
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Due to the small numbers of samples received (only seven deep tissue biopsies), 

it was not possible to compute the correlation of semi-quantitative swab and quantitative 

MRSA biopsy cultures obtained from patients before the first treatment. This situation 

could be explained by the invasiveness of the biopsy method and the reluctance of the 

patient to undergo the procedure.  

3.10.4 Comparison  of  semi-quantitative  swab  and  quantitative  biopsy  cultures 

techniques obtained from patients during therapy

Fifty three biopsy/swab pairs were collected from 17 patients out of 41 included 

in the study before and during the course of treatments. The median bacterial count 

from biopsies was 1.55 x 106  cfu/gram of tissue (SD= 3.38 x 106) and from superficial 

swabs was 5.5 x 105 cfu/ml (SD= 9.8 x 105). 

Twenty-six tissue biopsies contained 105 or more cfu/g of tissue (49%) and they 

were correlated with 21 superficial swab cultures that had growth in quadrant III or 

quadrants III and IV with a sensitivity of 81% (21/26) (Table 3.5). Ten swabs processed 

semi-quantitatively  correlated  with  twenty-five  swabs  processed  using  quantitative 

technique with MRSA count less than 105  bacteria/g of tissue for a sensitivity of 38% 

(11/29). False positive results accounted for 32% (17/53). An incidence of false negative 

results was 9.43% (5/53). Spearman’s correlation analysis demonstrated a statistically 

weak correlation between the two techniques with a coefficient of ρ (rho) = 0.40 with 

p<0.005.

Table 3.5 Comparison of semi-quantitative swab culture and quantitative tissue biopsy MRSA 

counts obtained from patients during treatments.
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Semi-Quantitative 

Swab

Quantitative tissue biopsy (cfu/g)

  102 103 104 105 106 107

Quadrant I 1 0 2 0 0 0

Quadrant I,II 2 0 5 2 3 0

Quadrant I,I,III 1 6 9 6 2 0

Quadrant I,II,III,IV 0 0 1 4 8 1

Total number of swabs/biopsy pairs  = 53 4 6 17 12 13 1

3.10.5 Quantitative microbiology of diabetic foot ulcers 

One hundred and thirty seven swabs (54%) out of two hundred and fifty one 

collected from patients before and during the treatment had MRSA count of 105 cfu/cm2 

or greater (137/251). Thirty-seven biopsies (54%) out of sixty nine had MRSA count of 

105 cfu/g of tissue or greater (37/69). The median MRSA count from biopsies was 1.06 x 

106 cfu/g of tissue and from superficial swabs was 7.08 x 105 cfu/ cm2. In this study none 

of the patients was showing clinical signs of infection. These findings disproved the 

theory based on the findings of Robson et al., (1970) that bacterial count 105  cfu/g of 

tissue or greater is diagnostic for infection. 

3.11 Discussion

There are very few studies correlating results of superficial  swab culture and 

tissue biopsy culture obtained from chronic wounds and which looked at the diagnostic 

validity of the semi-quantitative superficial swab. In this study, superficial swabs and 

tissue  biopsies  were  collected  from  diabetic  foot  ulcers  colonised  with  MRSA, 

processed and compared using quantitative and semi-quantitative techniques. Wounds 

101



usually contain a variety of different bacterial species (contaminating and colonising the 

wound).  Comparing  semi-quantitative  and  quantitative  swab  and  biopsy  culture  by 

using total bacterial count does not give information on the correlation for the specific 

strains. This can be important especially if there is a possibility of overgrowth by other 

bacteria  present  such  as  E.  coli. In  this  study  MRSA was  used  as  an  indicator 

microorganism to validate microbiological culture methods. 

The findings of this study demonstrated statistically strong correlations between 

semi-quantitative and quantitative methods for both swabs and biopsies. However there 

was a weak correlation between semi-quantitative swab and quantitative tissue biopsy 

culture observed. All patients were colonised with MRSA and underwent the course of 

treatments (three to twelve treatments depending on healing progress). The superficial 

swabs and tissue biopsies were collected before the first treatment and then during the 

course of therapy. Correlation between semi-quantitative swab culture and quantitative 

biopsy for samples obtained from patients before the first treatment was not performed 

due to the small number of samples received. For samples collected during the course of 

treatments, a quantitative tissue biopsy correlated with a semi-quantitative swab for the 

sensitivity of 81% for the detection of bacterial count 105  or greater. There was only 

38% sensitivity achieved for samples with bacterial count 104  or less and this is why 

there was a weak correlation observed between semi-quantitative swab and quantitative 

biopsy culture. It is an important finding especially for patients on larvae therapy. The 

maggots secrete proteolytic enzymes that break down and liquefy dead tissue which 

they then ingest. They also have an ability to ingest and destroy bacteria (Huberman et  

al., 2007) which may have an impact on correlation between superficial sampling and 

deep tissue biopsy and thereby lead to misleading results. 

In previous studies, it was documented that quantitative superficial swab results 

were  highly correlated  with  semi-quantitative  results,  but  this  was  demonstrated  on 
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infected  burn  wounds  and  the  total  bacterial  count  was  taken  into  consideration 

(Herruzo-Cabera et al., 1992)..

The findings of this study demonstrated a statistically strong correlation between 

semi-quantitative swab and quantitative swab culture. Two hundred and fifty one swabs 

were  collected  from  patients  before  and  during  the  treatments.  Of  the  133  swabs 

containing 105 cfu/ ml or more bacteria, 104 swabs had bacterial growth in quadrant III 

resulting in a sensitivity of 78.2%. For biopsies collected before and during the course 

of treatments there was also a statistically strong correlation observed between semi-

quantitative and quantitative biopsy culture with a sensitivity of 75% for samples with 

MRSA counts 105 cfu/g of tissue and 86.6% for samples containing 104 or less cfu/ gram 

of tissue. 

       Ratliff and Rodeheaheaver (2002) correlated 124 swabs processed quantitatively 

with swabs processed semi-quantitatively to determine the clinical acceptability of the 

semi-quantitative technique in identifying chronic wounds containing greater than 105 

bacteria  /  cm2.  They  documented  that  the  two  techniques  were  correlated  with  a 

coefficient  of  r=0.84.  The  sensitivity  of  the  semi-quantitative  technique  to  detect 

wounds with 105 or greater bacteria was 79%, which is similar to our findings. 

Buchanan  et al., (1986) compared 78 semi-quantitative and quantitative burn 

wound biopsy cultures  and  found  a  96% correlation  between  both  techniques.  For 

prediction of wound sepsis, the semi-quantitative procedure had a positive predictive 

value of  100% and a  negative  predictive  value of  93.7%. They concluded that  the 

technique provides accurate information to the physician while saving both time and 

materials.
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Thomson  et  al.,  (1990)  compared  tissue  biopsy and  semi-quantitative  swabs 

collected from 24 burn patients. They concluded that the surface swab may be used as 

an indicator of numbers of organisms with reliability. 

Steer et al., (1996) compared qualitative results and quantitative bacterial counts 

of  141 surface  swabs and 141 wound biopsy samples  taken from 74 burn patients. 

Although there was significant  correlation between the  bacterial  counts  obtained by 

biopsy and swab, the counts obtained by one method were poorly predictive of the 

counts obtained by the other. In addition, parallel cultures taken on multiple occasions 

showed a significant correlation between bacterial counts obtained from two biopsies or 

two swabs taken simultaneously, but there was wide variation in bacterial densities from 

the same burn wound at the same time. These investigators concluded that the use of 

quantitative microbiology in burns is  limited by the unreliability of a single surface 

swab or biopsy sample to represent the whole burn wound.

Sjoberg  et  al.,  (2003)  reported that  quantitative tissue biopsies  gave  a  better 

prediction  of  sepsis  than  surface  swabs  but  concluded  that  the  amount  of  labour 

involved  in  collection  and  analysis  of  multiple  biopsy  samples  limited  the  clinical 

relevance of this approach. 

According to Robson et al., (1976) finding a bacterial count of 105  bacteria per 

gram of  tissue  is  considered  as  an  indicator  of  infection.  In  our  study none of  the 

patients had wounds that were clinically considered as infected but all were colonised 

with bacteria. The median MRSA count from tissue biopsies was 1.06 x 106 cfu/ gram of 

tissue and from superficial swab 7.08 x 105  cfu/ ml.  Despite MRSA colonisation all 

wounds were colonised by other bacteria. The median total bacterial count for biopsies 

was 8.32 x 107  cfu/ g of tissue and for superficial swab 3.22 x 106  cfu/ cm2.  These 

findings show that wound assessment should be based mainly on clinical observation of 
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the wound and patient. Identification and quantification of the pathogens is very useful 

especially to manage antibiotic therapy, but quantification of bacteria should not be used 

as an indicator of infection especially in chronic wounds. The Robson findings may be 

useful on sterile skin or in diagnosing acute wound infections (burns), which are usually 

caused by single pathogens, but it should not be used to diagnose infection in chronic 

wounds.

The semi-quantitative technique offers a reproducible and cost effective method 

compared to quantitative serial dilution culture. Although semi-quantitative swabs are 

slightly less sensitive than quantitative swabs in detecting greater than 105 bacteria in 

wounds, they are beneficial for clinicians who want to adjust their wound care based on 

bacterial bioburden. The additional advantage of our study was the fact that we used 

MRSA as an indicator organism to compare two methods. Most of the previous studies 

correlated  semi-quantitative  and  quantitative  culture  methods  taking  total  bacterial 

count into consideration instead of looking at the ability of the method to detect and 

quantify a specific pathogen. This may be an important factor,  especially in chronic 

wounds which  are  polymicrobial  in  nature.  The ability of  the  method to  detect  the 

causative pathogen is crucial for an accurate diagnosis and treatment of the patient as 

the  overgrowth with  other  microorganisms may mask the  presence  of  the  causative 

pathogen. 

Currently, there are very limited studies that evaluate the semi-quantitative swab 

as a method for determining bacterial  bioburden in chronic wounds.  This method is 

cheap and available to anyone in healthcare regardless of the practice setting.  More 

studies evaluating this technique in chronic wounds are needed. For example, additional 

research might compare different types of transport swab systems to see if the quality of 

swab has an impact on the correlation between superficial swab and tissue biopsy. Also, 

molecular methods able to look at the diversity of microflora within the sample such as 
105



DGGE-sequencing or multiplex RT-PCR should be employed and used to compare and 

validate superficial swab and biopsy methods. Tissue biopsy is an invasive method and 

could cause pain and/or bleeding, enlarge the wound, or introduce contaminants. A full 

thickness punch biopsy may not be justified in the presence of a small or superficial 

wound.  Therefore,  because  of  the  invasiveness  and  limited  number  of  qualified 

practitioners,  swab  culture  is  the  most  frequently  used  method  to  determine  the 

microbiology of chronic and acute wounds and it should be properly validated (Drinka 

et al., 2012).

3.12 Conclusions

In this study the reliability of semi-quantitative and quantitative swab and biopsy 

culture  was  assessed  and  compared.  There  was  a  strong  correlation  between  semi-

quantitative and quantitative swab culture and semi-quantitative and quantitative biopsy 

culture observed. There was also a weak correlation between semi-quantitative swab 

culture and quantitative tissue biopsy culture for samples collected during the course of 

treatments which suggests that therapy could have an impact on correlation between 

both methods. These results show that semi-quantitative methods can be successfully 

used in laboratory settings for the management of chronic wounds, however if the time 

is  important,  rapid  and  direct  techniques  such  as  quantitative  RT-PCR  should  be 

employed. RT-PCR for direct and rapid detection of MRSA was developed in the next 

part of the study and compared with conventional culture results.

 The  semi-quantitative  swab  method  is  an  efficacious  and  less  expensive 

technique  than  serial  dilution  culture.  Quantitative  tissue  biopsy is  an  invasive  and 

expensive method, which requires trained professionals to perform it. Additionally our 

results revealed that the mean bacterial count from swabs and biopsies was more than 

105  cfu  per  gram  of  tissue.  None  of  our  patients  showed  any  signs  of  infection. 
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According to the findings of Robson et al., (1976) the count of 105 cfu/ gram of tissue is 

an indicator of infection thus our results confirm that a diagnosis of infection should be 

based  on  clinical  signs  and  symptoms  rather  than  quantitative  microbiology of  the 

wound. 
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CHAPTER 4

Development of a RT-PCR assay for the 
comparison of MRSA detection and 

quantification with conventional 
microbiology of diabetic foot lesions
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4.1 Introduction

Clinical microbiology laboratories still routinely use phenotypic assays for the 

identification,  quantification  and  antibiotic  susceptibility  testing  of  microorganisms 

collected from chronic wound samples. It requires between 24 h to 72 h to identify most 

of the pathogens,  including MRSA, by conventional methods.  It  is documented that 

culture methods detect only about 1% of all bacteria present in chronic wounds (Wolcott 

and  Dowd,  2008).  Furthermore,  conventional  methods  are  not  able  to  isolate  all 

bacterial species present in a specific wound (Gentili et al., 2012). 

Recently, studies have shown the polymicrobial nature of infection in chronic 

lesions. Additionally, interactions among colonising bacteria are thought to play a major 

role in non-healing chronic wounds (Thomsen et al., 2010; Martin et al., 2010). 

In a study by Rhoads  et al., (2012) organisms isolated by conventional cultures were 

compared  with  those  detected  by  molecular  methods.  To  identify  a  specific  gene, 

molecular  methods  such  as  RT-PCR  and  the  use  of  specific  primers  to  identify 

organisms were combined with pyrosequencing. In the 168 wound samples evaluated, 

molecular techniques identified 338 unique genera whereas culture methods revealed 

only 17 different genera. Culture failed to grow the vast majority of bacteria present in 

the wound. The important conclusion from this study was that culture methods are not 

adequate in identifying bacteria in polymicrobial infections (Rhoads et al., 2012).

In  recent  years,  RT-PCR  has  been  introduced  into  clinical  microbiology 

laboratories especially for the diagnosis of infectious disease. As a adjunct to culture, 

PCR-  based  methods  have  been  evaluated  for  the  detection  of  bacteria  in  blood 

(Rothman  et  al., 2002;  Wellinghausen  et  al.,  2004),  joint  fluid  (Yang  et  al.,  2008), 

cerebrospinal fluid (Poppert et al., 2005), heart tissue (Breitkopf et al., 2005) and burn 

wounds (Pirnay et al., 2000). Several assays have been developed for the rapid detection 
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of  a  variety  of  commonly  isolated  bacteria  such  as  S.  aureus,  S.  pneumoniae,  S. 

pyogenes, Listeria monocytogenes, Neisseria meningitidis, Haemophilus influenzae and 

Shiga-Toxin  producing  E.  coli.  There  are  also  assays  available  for  slow  growing, 

fastidious or uncultivable microorganisms such as  Mycobacterium species,  Chlamydia 

trachomatis,  Neisseria  gonorrhoeae,  Rickettsia,  Coxiella,  Bartonella,  Mycoplasma 

pneumoniae,  Helicobacter  pylori and  Clostridium  difficile  (Maurin  et  al., 2012). 

Multiplex RT-PCR was developed for diagnosis of syndromes and specific conditions 

such as bacteraemia (Josefson et al., 2011; Wallet et al., 2010), meningitis (Wang et al., 

2012;  Abdeldaim  et  al.,  2010),  pneumonia (Johansson  et  al.,  2010,  Thurman  et  al., 

2011), enteritis (de Boer  et al., 2010) and sexually transmitted infections (Murunyi  et  

al., 2011; Lee et al., 2012).

RT-PCR can be also used to quantify the bacteria in clinical samples. Because 

these  tests  quantify DNA from both  viable  and non-viable  bacteria,  results  may be 

higher  than  those  obtained by quantitative  culture.  A high correlation  between both 

methods was reported for S. pneumoniae (Abdeldaim et al., 2008). 

Previous molecular analyses of chronic wound microflora were based on the 

initial amplification of bacteria with universal primers for 16S rRNA genes followed by 

specific  identification  approaches.  These  approaches  included  sequencing  of  PCR 

products (Hill et al., 2003), DGGE followed by cloning and sequencing (Davies et al., 

2004) and pyrosequencing (Dowd et al., 2008). However, these identification methods 

are costly, time consuming and not easy to implement in clinical practice. RT-PCR is 

faster than traditional PCR and does not require post amplification manipulation for 

bacterial  identification  (Wellinghausen  et  al., 2004;  Yang  et  al., 2008).  RT-PCR 

comprises both detection and quantification of a DNA target in the same step. There are 

two main methods for detection of amplified products (Barken et al., 2007; Espy et al., 
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2006).  The  first  using  a  fluorescent  dye  such  as  SYBR® Green,  which  binds  non-

specifically to double stranded DNA and the second uses fluorescent resonance energy 

transfer (FRET) probes, which binds specifically to the amplified DNA. Using these 

probes increases sensitivity and specificity when compared with conventional PCR. 

RT-PCR presents a number of advantages over conventional PCR including a 

lower risk of DNA cross contaminants, a faster turn-around time and the possibility to 

quantify target DNA in clinical specimens. RT-PCR has the same limitations as standard 

PCR,  including  false  negative  results  due  to  the  inhibition  of  DNA polymerase  or 

variations  in  the  target  nucleic  acid  sequence  among  strains  of  the  same  bacterial 

species.  False  positive  results  can  occur  because  of  clinical  sample  contamination 

(Martin et al., 2010; Kaltenboeck and Wang, 2005). 

RT-PCR assay may be a useful adjunct for the rapid and accurate identification 

of microorganisms in chronic wounds which can simultaneously target multiple species. 

There  are  very  few  commercially  available  multi-species  PCR-based  tests  such  as 

SeptiFast (Westh et al., 2009; Mussap et al., 2007), however they have not been applied 

to  chronic wounds.  Melendez  et  al.,  (2010)  reported the development  of  a  RT-PCR 

assay for rapid identification of bacteria directly from tissue samples. The assay targets 

fourteen common, clinically relevant, aerobic pathogens and demonstrates a high degree 

of  sensitivity and specificity using  a  panel  of  organisms commonly associated  with 

chronic wound infection. Thirty-nine tissue samples from twenty nine chronic wounds 

were  evaluated  and the  results  compared with  those  obtained by culture.  The  most 

common  organisms  identified  were  methicillin-resistant  Staphylococcus  aureus 

(MRSA)  followed  by  Streptococcus  agalactiae (Group  B  streptococcus)  and 

Pseudomonas aeruginosa.  The sensitivities of the PCR assays  were 100% and 90% 

when quantitative and qualitative culture results were used as the reference standard, 

111



respectively. The assays allowed the identification of bacterial DNA from ten additional 

organisms that were not revealed by quantitative or qualitative cultures. 

Bacterial  resistance  to  antibiotics  is  an  increasing  public  health  problem 

worldwide.  The detection of antimicrobial resistance (especially MRSA) is important 

for infection control measures and for the treatment of patients. Numerous molecular 

techniques  that  reduce  the  time  for  identification  of  MRSA have  been  developed 

recently.  However, most of these methods cannot be applied for the direct detection 

from  clinical  specimens,  without  previous  time  consuming  isolation,  capture  or 

enrichment of MRSA. Methicillin-resistant and -sensitive Staphylococcus aureus strains 

are of a major concern due to their ability to cause difficult skin and underlying tissue 

infections.  Bacteria  constantly  develop  mechanisms  of  resistence  to  antibiotics. 

Intermediate  vancomycin  or  glycopeptide  resistant  Staphylococcus  aureus (VISA or 

GISA) were first detected in Japan in 1997 (Hiramatasu et al., 1997) and subsequently 

in other countries (Tenover et al., 1998;   Kim et al., 2000).  In  June  2002,  the  first 

clinical   isolate   of   Staphylococcus  aureus  resistant  to  vancomycin  (VRSA)  was 

isolated in the USA (Srinivasan et al., 2002). Despite intensive attempts at eradication 

during  the  last  20  years,  MRSA continues  to  be  the  major  nosocomial  pathogen 

worldwide (National Nosocomial Infections Surveillance System, 2004).

Rapid screening and identification of MRSA has become a crucial procedure in 

medical diagnostics.  Most of the molecular tests  developed up to date are based on 

detection  of  the  mecA  gene  and  they  have  become  a  useful  tool  in  diagnostic 

microbiology (Bignardi  et al.,  1996). PCR detection assays for MRSA screening are 

based on a simultaneous detection of the  mecA  gene and  S. aureus –specific marker 

gene, e.g the nuc, Sa442 or the femB gene (Fang and Hedin, 2003; Grisold et al., 2002; 

Jonas  et al., 2002; Reischl  et al., 2000; Tan  et al., 2001). However, all these duplex-

PCR assays carry the risk of co-amplifying the S. aureus –specific marker gene together 
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with  the  mecA gene  from  MR-CNS  (Methicillin  Resistant  Coagulase  Negative 

Staphylococci) leading to false-positive results when both microorganisms are present 

in the sample. 

The  rapid  and  accurate  identification  of  bacteria  in  clinical  specimens  has 

important implications for the therapy and management of both colonised and infected 

patients. Based on the recent findings of the polymicrobial nature of chronic wound 

infection,  rapid  and  cost-effective  approaches  such as  multiplex  RT-PCR should  be 

developed for the detection of the most prevalent aerobic and anaerobic microorganisms 

in wounds. 

  

4.2 Aims and objectives

The aim of this study was to develop a quantitative RT-PCR assay for the direct 

and  rapid  detection  of  MRSA in  chronic  wounds.  If  sufficient  time  is  available,  a 

multiplex PCR for the most common pathogens will be developed based on the results 

of  a  PCR-DGGE sequencing  study in  which  the  diversity  of  microflora  of  chronic 

wounds will be assessed. This chapter is presented to show the potential for future work. 

The RT-PCR assay was initially optimised and validated using control strains before it 

was used on samples collected from patients.  

4.3 Materials and Methods

4.3.1 Materials

-  DNeasy Blood and Tissue Kit (Qiagen, Crawley, UK) – the method was described in 

Chapter 2, section 2.3.3.3

- SYBR Green Master Mix – Agilent (Berkshire, UK)

- Brilliant III QPCR Master Mix – Agilent ((Berkshire, UK)
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Primers  and  probes  were  supplied  by  Integrated  DNA Technologies  Ltd  (Leuven,

Belgium). Discriminate detection of the two targets in the duplex assay was possible by 

use of two different fluorophors: 6-carboxyfluorescein (FAM: emits a fluorescent signal 

at  525  nm)  for  the  detection  of  mecA,  and  6-carboxy-20,  40,  70,  4,  7- 

hexachlorofluorescein (HEX: emits a fluorescent signal at 560 nm) for the detection of 

femB.  The  mecA probe  was  labelled  with  a  5’ FAM fluorophor  and  a  3’ TAMRA 

quencher. The  femB probe was labelled with a 5’ HEX fluorophor and a 3’ TAMRA 

quencher (Table 4.1)

Table 4.1 Sequences of the primers and probes used in the development of the RT-PCR assay 

for MRSA detection and quantification (Saeed et al., 2010). 

Primer name Sequence (shown 5’ to 3’)

femBF1 GACATTTGATAGTCAACGTAAACGTAATATT

femBR1 GCTCTTCAGTTTCACGATATAAATCTAAGA

mecAf CATTGATCGCAACGTTCAATTT

mecAR TGGTCTTTCTGCATTCCTGGA

Probe name

femBVICP1 TCATCACGTTCAAGGAATCTGACTTTAACACCATAGT

mecAP TGGAAGTTAGATTGGGATCATAGCGTCAT

4.3.2 Methods

4.3.2.1 Ethical approval

Ethical approval for  development of multiplex RT-PCR was obtained from the 

NHS  Research  Ethics  Committee  (11/H1011/4).  This  study  was  performed  at  the 

Manchester Royal Infimary and Chorley and South Ribble Hospitals. R&D approval 

was given from both hospitals.
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4.3.2.2 Participants and study design

The samples were collected from adults (age 18 – 75 years old) with chronic 

wounds attending the Manchester  Diabetes  Centre,  Manchester  Foot  Hospital  or in-

patients  in  Manchester  Royal  Infirmary  and  Chorley  and  South  Ribble  Hospital 

(Appendix 2 – Trial Protocol). 

A total  of  32 patients  with chronic wounds were recruited to  the study. The 

patients were appropriately informed and consented to the trial (Appendix 3 – Patient 

Information Sheet; Appendix 4 – Consent form). In the first instance the wound was 

cleaned  with  sterile  saline.  Two  swabs  were  obtained  using  the  Sigma  dry  swab 

(Medical Wire & Equipment Co. Ltd., Corsham, England). The samples were collected 

using a rolling zigzag method. One swab was tested using conventional microbiological 

culture techniques and the second swab was used for the development of a RT-PCR 

assay and bacterial population analysis using PCR-DGGE and sequencing (Chapter 5).

4.3.2.3 RT-PCR assay 

      To ensure efficient and accurate quantification of the target template, the RT-PCR 

assay was optimised and validated. Serial dilutions of a MRSA phage type 16 (NCTC 

13143) control  strain  were  prepared,  inoculated  onto  the  media  (Section  3.8.7)  to 

confirm colony count and then the DNA was extracted from each dilution using the 

DNeasy Blood and Tissue Kit. The optimisation of RT-PCR was performed using two 

different methods to identify which method gave more sufficient DNA extraction. The 

first  approach involved the  extaraction  of  DNA separately from each serial  dilution 

prepared. In the second approach DNA was extracted from the first serial dilution and 

then serial dilutions were prepared from the extracted DNA sample. After extraction, the 

RT-PCR was carried out using the Stratagene Mx3000P System (Stratagene, USA). The 
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primers  were  initially  optimised  with  SYBR Green  I  (Agilent)  and  then  they were 

optimised together with probes using Brilliant III QPCR Master Mix (Agilent). 

      Two sets of primers were used to target two genes present in MRSA strains – mecA 

and  femB.  The  mecA gene encodes the extra PBP2a, which is unique to methicillin-

resistant staphylococci (Table 5.1). The femB gene codes for an enzyme important in 

cross-linking peptidoglycan in various different Staphylococcus spp. The specificity of 

the  femB and  mecA PCR primers used for DNA amplification of the species  S.aureus 

has been demonstrated previously in orthopaedic infections (Saeed  et al., 2010). Two 

sets of primers was used for the presence of mecA (this lies within the staphylococcal 

cassette chromosome  mec (SCCmec) mobile cassette,  encodes methicillin resistance) 

and  femB (factor  essential  for  methicillin  binding,  and is  targeted  at  a  S.  aureus – 

specific sequence gene. Clinical sensitivity and specificity was evaluated by comparing 

the optimised extraction/PCR method with conventional CLSI culture-based methods 

for the identification of S. aureus and methicillin resistance.

The slope of the standard curve was used to determine reaction efficiency. Since 

the  PCR  reaction  is  based  on  exponential  amplification,  if  the  efficiency  of  PCR 

amplification is  100%, the amount  of template  will  double with each cycle  and the 

standard curve plot of the log of starting template vs. PCR cycles which generate a 

linear fit with a slope between approximately -3.1 and -3.6 are typically acceptable for 

most applications requiring accurate quantification (90%-110% reaction efficiency). If 

the amplification reaction is not efficient at the point being used to extrapolate back to 

the amount of starting material, the calculated quantities may not be accurate. 

Rsq (regression coefficient) is the fit of all data to the standard curve plot and can be 

influenced by accuracy of the dilution series, and overall assay sensitivity. If all the data 

lie perfectly on the line, the Rsq value will be 1.00. As the data fall further from the line, 

the Rsq decreases. An Rsq value ≥0.985 is acceptable for most assays. The slope and 
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Rsq values of the standard curve help determine the sensitivity of a given assay. If the 

slope of the standard curve is lower than -3.322 the Rsq is below 0.985 and the data 

points indicate an upward trend in the standard curve plot at the lower starting template 

concentrations. This may indicate the reaction is reaching the threshold of sensitivity. 

4.4 Optimisation of RT-PCR assay

4.4.1 Optimisation of RT-PCR with SYBR Green I for mecA and femB genes from 

DNA extracted from each serial dilution.

SYBR Green I  dye  is  a  DNA binding  dye.  It  generates  a  signal  from both 

specific  and  non-specific  products.  When  free  in  solution,  SYBR Green  I  displays 

relatively low fluorescence, but when bound to double-stranded DNA its fluorescence 

increases by over 1000-fold (Introduction to Quantitative PCR, Stratagene, 2005). The 

fluorescence increases proportionately with DNA concentration and the more double-

stranded DNA is present, the more binding sites there are for the dye. This property of 

the dye provides the mechanism that allows it to be used to track the accumulation of 

PCR product. As the target is amplified, the increasing concentration of double stranded 

DNA in the solution can be directly measured by the increase in fluorescence (Methods 

Application Guide, Stratagene, 2005). Primers were used at a working concentration of 

300 nM each.  To determine the detection limit of the assay, serial dilutions of MRSA 

phage type 16 (NCTC 13143) were prepared and inoculated onto the plates using the 

quantitative  culture  method  (section  3.8.2.3).  Plates  were  incubated  in  aerobic 

conditions for 24 h and colonies counted after incubation. DNA was extracted from each 

dilution using the DNeasy Blood and Tissue Kit.  The PCRs were performed in a total 

volume  of  25µl  using  the  SYBR  Green  Master  Mix  (Agilent)  and  Stratagene 

Mx3000P®  QPCR  System (Staratagene).  The  reactions  comprised  300  nM  (each) 

forward and reverse primers and 5µl of template DNA. No-template control (NTC) with 
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water  instead  of  template  DNA was  incorporated  in  each  run  under  the  following 

conditions: 50°C for 2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 min and 

60°C for 1 min. The result of each PCR is indicated by a threshold cycle (Ct). 

4.4.1.1 Optimisation of the assay for targeting the mecA gene

The mean difference in Ct* values between sequential dilutions (n) for the mecA 

standard curve was 3.29. This means that the amount of product in each reaction was 

doubled.  This  is  well  within  the  acceptable  range  of  3.1  to  3.6  (Introduction  to 

Quantitative PCR, Stratagene, 2005). The amplification efficiency value (Rsq) of 98.9% 

again was within the acceptable parameters (Figures 4.1, 4.2, 4.3). If the slope of the 

standard  curve  was lower  than  -3.32 the Rsq was below 0.985 and the  data  points 

indicate  an  upward  trend  in  the  standard  curve  plot  at  the  lower  starting  template 

concentrations. The reaction efficiency for mecA gene assay optimisation was 101.3% (a 

range between 90%-110% is acceptable for most applications). 

A comparison  of  the  mecA  optimisation  assay  to  culture  methods  for  the 

detection of methicillin-resistant  S. aureus  is  shown (Table 4.2). The detection limit 

(sensitivity) of the PCR assay for mecA gene was ~40 cfu of MRSA per 5µl of sample, 

which equates to 8 x 103 cfu / ml.  

Ct* (threshold  cycle) is  the intersection between an amplification  curve and the threshold line.  It  is  a relative 

measure of the concentration of target in the PCR reaction.
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Figure 4.1 QPCR standard curve from mecA assay demonstrating a ten-fold dilution series of 

DNA extracted from each serial dilution of the MRSA phage type 16 control strain. 
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Figure 4.2 Amplification plots of mecA standards in a ten-fold dilution series (DNA extracted 

directly from each dilution)

Legend:

Amplification 
Line colour

Dilution of the sample

______ Amplification plot for 1:10 dilution

______ Amplification plot for 1:100 dilution

______ Amplification plot for 1:1000 dilution

______ Amplification plot for 1:104 dilution

______ Amplification plot for 1:105 dilution

______ Amplification plot for 1:106 dilution
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Figure 4.3  Dissociation curve of  mecA standards in a ten-fold dilution series (DNA extracted 

directly from each dilution).  The single  melt  peak indicates  a  single  PCR product  is  being 

amplified in these samples.  
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Table 4.2 The  mecA  optimisation assay (DNA extracted directly from each dilution) for the 

detection of methicillin-resistant S. aureus demonstrating bacterial count of each serial dilution 

and its corresponding Ct value. 

Ct Dilution cfu/5μl of sample
16.52 4 x 106 
20.35 4 x 105

24.00 4 x 104

27.46 4 x 103

30.80 4 x 102

32.55 4 x 101

 

4.4.1.2 Optimisation of the assay for targeting the femB gene

The mean difference in Ct values between sequential dilutions (n) for the femB 

standard curve was 3.32 and it was well within the acceptable range of 3.1 to 3.6. The 

amplification efficiency value (Rsq) was 99.9%. This means that sensitivity of assay 

was good (Rsq is the fit of all data to the standard curve plot and if the data lie perfectly  

on the line, the Rsq will be 1.00) (Figures 4.4, 4.5, 4.6). The reaction efficiency for the 

femB gene assay optimisation was 99.9% (a range of 90%-110% for reaction efficiency 

is acceptable for most applications).

The detection limit (sensitivity) of the PCR assay for the femB gene was ~40 cfu 

of MRSA per 5µl of sample- 8 x 103 cfu/ml (Table 4.3).  
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Figure 4.4 QPCR standard curve from the femB assay demonstrating a ten-fold dilution series 

of DNA extracted directly from each MRSA 16 control strain dilution.
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Figure 4.5 Amplification plots of  femB standards in a ten-fold dilution series (DNA extracted 

directly from each dilution).

Legend:

Amplification 
Line colour

Dilution of the sample

______ Amplification plot for 1:10 dilution

______ Amplification plot for 1:100 dilution

______ Amplification plot for 1:1000 dilution

______ Amplification plot for 1:104 dilution

______ Amplification plot for 1:105 dilution
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Figure 4.6  Dissociation curve of  femB  standards in a ten-fold dilution series (DNA extracted 

directly from each serial dilution). The single melt peak indicates a single PCR product is being  

amplified in these samples. 
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Table 4.3  The  femB  optimisation assay (DNA extracted directly from each dilution) for the 

detection of methicillin-resistant S. aureus demonstrating bacterial count of each serial dilution 

and its corresponding Ct value.

Ct Dilution cfu/5ul of sample
19.53 4 x 105 
23.09 4 x 104

26.21 4 x 103

29.85 4 x 102

32.76 4 x 101

4.4.2 RT-PCR  optimisation  for  targeting  mecA and  femB with  DNA dilutions 

prepared from DNA extracted from MRSA sample 

DNA was extracted from the sample of MRSA suspension in sterile saline with 

approximately 107  cfu/ml and then dilutions of the extracted DNA were prepared. RT-

PCR was performed using dilutions of DNA from the neat sample. 

4.4.2.1 Optimisation of the assay for targeting mecA gene 

The mean difference in  Ct  values  between sequential  dilutions  (n)  for  mecA 

standard  curve for  DNA dilutions  of  the neat  sample  was 3.26 and it  is  within the 

acceptable range of 3.1 to 3.6. The amplification efficiency value (Rsq) of 102.4% and 

this is within acceptable parameters. The amplification efficiency value (Rsq) was 0.995 

(see Figures 4.7, 4.8, 4.9). However,  the detection limit (sensitivity) of the PCR assay 

for serial dilutions prepared from DNA extracted from the neat sample was ~400 cfu of 

MRSA in comparison to 40 cfu in the samples where DNA was extracted straight from 

the bacteria dilutions (Table 4.4).
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Figure 4.7 QPCR standard curve from mecA assay demonstrating a ten-fold dilution series of 

DNA extracted from MRSA 16 control strain suspension.
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Figure 4.8 Amplification plots of mecA standards in a ten-fold dilution series (serial dilutions 

prepared from DNA extracted from the neat sample of MRSA 16 control strain).

Legend:

Amplification 
Line colour

Dilution of the sample

______ Amplification plot for 1:10 dilution

______ Amplification plot for 1:100 dilution

______ Amplification plot for 1:1000 dilution

______ Amplification plot for 1:104 dilution

______ Amplification plot for 1:105 dilution
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Figure 4.9 Dissociation curve of  mecA standards in a ten-fold dilution series(serial dilutions 

prepared from DNA extracted from the neat sample of MRSA 16 control strain.

.
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Table 4.4  The  mecA optimisation assay (serial dilutions prepared from DNA extraction from 

neat sample) for the detection of methicillin-resistant S. aureus demonstrating bacterial count of 

each serial dilution and its corresponding Ct value.

Ct Dilution cfu/5ul of sample
18.12 4 x 106

21.25 4 x 105

24.81 4 x 104

28.16 4 x 103

30.89 4 x 102

130



4.4.2.2 Optimisation of the assay targeting femB  Gene (serial dilutions prepared 

from DNA extracted from neat sample)

The mean difference  in  Ct  values  between sequential  dilutions  (n)  for  femB 

standard curve for DNA dilutions of the neat sample was 2.88 and it was not within the 

acceptable range of 3.1 to 3.6. The amplification efficiency value (Rsq) was 98.2% and 

this was also below the acceptable parameters (Figures 4.10, 4.11, 4.12). The reaction 

efficiency for  femB gene assay optimisation was 118%. The data suggests that for the 

best assay performance and results the standard curve should be prepared by extracting 

DNA separately from each dilution instead of diluting the DNA from a neat sample 

(Table 4.5). 
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Figure 4.10 QPCR standard curve from the femB assay demonstrating a ten-fold dilution series 

of DNA extracted from MRSA 16 control strain.

132



Figure 4.11 Amplification plots of femB standards in a ten-fold dilution series (serial dilutions 

prepared from DNA extracted from the neat sample of MRSA 16 control strain).

Legend:

Amplification 
Line colour

Dilution of the sample

______ Amplification plot for 1:10 dilution

______ Amplification plot for 1:100 dilution

______ Amplification plot for 1:1000 dilution

______ Amplification plot for 1:104 dilution

______ Amplification plot for 1:105 dilution

______ Amplification plot for 1:106 dilution
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Figure 4.12 Amplification plots of femB standards in a ten-fold dilution series (serial dilutions 

prepared from DNA extracted from the neat sample of MRSA 16 control strain).

 .
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Table 4.5 The  femB  optimisation assay (serial dilutions prepared from DNA extraction from 

neat sample) for the detection of methicillin-resistant S. aureus demonstrating bacterial count of 

each serial dilution and its corresponding Ct value.

Ct Dilution cfu/ml of sample
18.27 4 x 108 
21.99 4 x 107

25.35 4 x 106

28.84 4 x 105

30.95 4 x 104

32.89 4 x 103
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4.4.3 RT-PCR optimisation with fluorescent probes

           After assay optimisation with SYBR Green I, testing the overall performance of 

the RT-PCR reaction in terms of efficiency, precision and sensitivity is recommended. 

Data generated from serial dilutions of a positive control template (standard curve) are 

excellent means of determining the overall performance of the QPCR assay. 

           As compared to non-specific dyes such as SYBR-Green I dye, a higher level of 

detection specificity is provided by using an internal probe with primers to detect the 

QPCR product of interest. In the absence of a specific target sequence in the reaction, 

the fluorescent probe is not hybridized, the quencher remains and does not fluoresce. 

When the probe hybridizes to the target sequence of interest,  the reporter dye is no 

longer a quencher, and fluorescence will be detected. The level of fluorescence detected 

is directly related to the amount of amplified target in each PCR cycle. A significant 

advantage  of  using  probe  chemistry  compared  to  using  DNA binding  dyes  is  that 

multiple probes can be labelled with different reporter dyes and combined to allow the 

detection of more than one target in a single reaction (multiplex QPCR). 

Probes used in the study (Saeed et al., 2010):

femBVICP TCATCACGTTCAAGGAATCTGACTTTAACACCATAGT

mecAP       TGGAAGTTAGATTGGGATCATAGCGTCAT

The mecA probe was labelled with a 5’ FAM fluorophor and a 3’ TAMRA quencher. The 

femB probe was labelled with a 5’ HEX fluorophor and a 3’ TAMRA quencher. Primers 

were used at working concentration of 300 nM and probes were used at the working 

concentration of 200 nM. 

Five-fold dilutions of the known amount  of  template  were used.  Brilliant  Multiplex 

QPCR Master Mix was used together with primers and probes in one reaction. 
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DNA was incorporated in each run under the following conditions: 95°C for 3 min, and 

40 cycles of 95°C for 20 sec and 60°C for 20 sec. The result of each PCR is indicated 

by a threshold cycle (Ct). 

The mean difference in Ct values between sequential dilutions for mecA standard 

curve was 3.05 and for femB was 2.95 (Figure 4.13). The amplification efficiency value 

(Rsq) for  mecA  was 99.7% (within the acceptable parameters)  and 97.8% for  femB 

(slightly below the acceptable parameters). The reaction efficiency for the  mecA gene 

assay optimisation was 112.6% and 118% for femB (Figure 4.14 and 4.15). These results 

were the best  after  many attempts to  improve the optimisation with probes for  this 

assay. 
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Figure 4.13  Amplification plots of the serial dilutions of the MRSA 16 control strain for the 

detection of mecA and femB in duplex assay.

Legend:

Amplification 
Line colour

Dilution of the sample

______ Amplification plot for 1:10 dilution

______ Amplification plot for 1:100 dilution

______ Amplification plot for 1:1000 dilution

______ Amplification plot for 1:104 dilution

______ Amplification plot for 1:105 dilution
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Figure  4.14  QPCR  standard  curve  from FAM  (mecA gene)  in  duplex  assay.  Rsq=  0.997, 

Efficiency= 112.6%.
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Figure  4.15  QPCR standard  curve  from HEX  (femB gene)  in  duplex  assay.  Rsq=  0.978, 

Efficiency= 118%.
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4.5 Results 

4.5.1  Comparison  of  RT-PCR  assay  with  conventional  methods  for  MRSA 

detection and quantification

Thirty two patients with chronic wounds were included in the study. Two swabs 

were collected from each patient (Sigma dry swabs, Medical Wire & Equipment): one 

for  isolation  and  quantification  of  Staphylococcus spp.  including  MRSA  using 

conventional  microbiological  methods  and  the  second  one  for  detection  and 

quantification of MRSA using RT-PCR assay.  The performance of both methods for 

isolation and quantification of MRSA was assessed and compared.

4.5.2 MRSA isolation and identification using conventional culture methods

Ninety six percent of wounds were colonised with bacteria. MRSA was isolated 

from  six  wounds  (18.75%)  out  of  thirty  two  using  conventional  culture  methods. 

Isolates were confirmed as MRSA using Gram stain, catalase, coagulase and DNAse 

activity (Section 3.8.1). Resistance to oxacillin was confirmed using the disc diffusion 

method. Three wounds (9.37%) were colonised with MSSA. Nineteen wounds (59%) 

were colonised with different strains of coagulase negative staphylococci (Table 4.6). 

Staphylococcus species  were  not  isolated  in  six  out  of  thirty  two  wounds.  The 

identification of CNS was performed using the API Staph test. 
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Table  4.6 The  results  of Staphylococcus species  identification  using  conventional  culture 

methods in samples collected from thirty two patients with chronic wounds (NG – No Growth). 

Patient
number

MRSA MSSA CNS

1 present NG NG
2 present NG NG
3 present NG NG
4 NG present S. epidermidis

5 NG present NG
6 present NG NG
7 NG NG NG
8 NG NG S. epidermidis
9 NG NG S. epidermidis
10 NG NG S. epidermidis
11 NG NG S. simulans
12 NG NG NG
13 NG NG S. simulans
14 NG NG S. haemolyticus
15 NG NG NG
16 NG NG S. warneri
17 NG NG S. xylosus. S. cohnii
18 NG NG S. haemolyticus
19 NG NG NG
20 NG NG S. haemolyticus
21 NG NG S. haemolyticus, S.capitis
22 NG present S. warneri, S. chromogenes
23 NG NG S. capitis, S. epidermidis
24 NG NG NG
25 NG NG S. haemolyticus
26 NG NG S. cohnii 
27 NG NG S. simulans
28 NG NG S. warneri
29 present NG NG
30 NG NG S. capitis
31 NG NG NG
32 present NG NG
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4.5.3 MRSA identification using RT-PCR assay. 

The previously optimised RT-PCR assay to identify the presence of two genes 

(mecA and femB genes) was tested for its performance on patient samples. 

Interpretation of RT-PCR results was as follows:

Positive femB and mecA – MRSA present

Positive femB and negative mecA – MSSA present

Negative femB and positive mecA – MRCNS present

Negative femB and mecA - staphylococcal DNA not detected.

Both genes  mecA and  femB  were detected in eight samples out of thirty two 

tested, which can confirm the presence of MRSA, but also the presence of MSSA and 

coagulase negative staphylococci in the same specimen (Figure 4.17). Out of these eight 

samples, five samples were confirmed with MRSA presence using conventional culture 

methods. The two remaining samples contained both MSSA and CNS which lead to 

false  positive  results.  One  sample  was  detected  with  mecA and  femB genes,  but 

conventional microbiology confirmed only the presence of CNS (Table 4.7).

 One sample out of thirty two was identified as a MSSA (only the femB gene was 

detected). The presence of mecA with the absence of femB (Figure 4.18) was detected in 

fifteen samples out of thirty two which suggests the presence of coagulase negative 

staphylococci.  Eight  samples  showed the  absence  of  both  mecA  and femB genes  in 

comparison to six samples free from staphylococci confirmed by conventional methods. 

Two  samples  (11,  32)  contained  very  low  number  of  microorganisms  below  the 

detection limit  ≤ 102 cfu/ml.
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Table 4.7 The results of MRSA detection using RT-PCR and culture methods. The presence of 

mecA and femB genes was confirmed in eight samples using RT-PCR, however, five samples out 

of  eight  were  confirmed  with  MRSA using  culture  methods.  False  positive  results  in  two 

samples were due to the presence of MSSA and Coagulase Negative Staphylococci (CNS) in the 

same specimen. 

Patient 
number

mecA and femB 
presence confirmed by 
RT-PCR assay

MRSA presence 
confirmed by culture

CNS presence
confirmed by 
culture

1 (mecA / femB) MRSA MRSA -
2 (mecA / femB) MRSA MRSA -
3 (mecA / femB) MRSA MRSA -
4 (mecA / femB) MSSA CNS
5 (femB) MSSA -
6 (mecA / femB) MRSA MRSA -
7 - - -
8 mecA - CNS
9 mecA - CNS
10 mecA - CNS
11 - - CNS
12 - - -
13 mecA - CNS
14 mecA - CNS
15 - - -
16 mecA - CNS
17 mecA - CNS
18 mecA - CNS
19 - - -
20 mecA - CNS
21 (mecA / femB) - CNS
22 (mecA / femB) MSSA CNS
23 mecA - CNS
24 - - -
25 mecA - CNS
26 mecA - CNS
27 mecA - CNS
28 mecA - CNS
29 (mecA / femB) MRSA MRSA -
30 mecA - CNS
31 - - -
32 - MRSA -
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The number of patients correctly identified with MRSA (true positives) using 

RT-PCR assay was five.  The number of patients correctly identified as negative for 

MRSA (true negatives) was 23. Three patients were incorrectly identified as MRSA 

carriers due to the presence of MSSA and CNS in the same sample.  In one patient 

MRSA was not detected using the RT-PCR assay (Table 4.8).  The diagnostic values of 

the RT-PCR assay for detection of  mecA and femB genes were as follows: sensitivity 

83.3%; specificity,  88.5%; positive predictive  value,  62.5%; and negative predictive 

value, 95.8%. The performance of the RT-PCR assay was compared with the results 

obtained using conventional culture methods. 

Table 4.8  The RT-PCR assay performance demonstrating the number of true positive and true 

negative results and false positive and negative results. 

True Positive 5
True Negative 23
False Positive 3
False Negative 1
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Figure 4.17 Amplification plots showing the expression of  mecA and  femB gene – MRSA or 

both MSSA and CNS present.
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Figure 4.18 Amplification plots showing the expression of mecA only – CNS present.
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4.5.4 MRSA quantification using RT-PCR assay

Six samples out of thirty two were identified with MRSA using conventional 

culture methods, however only five samples out of these six were positive for MRSA 

using  the  RT-PCR  assay. The  MRSA phage  type  16  control  strain was  used  for 

determination of MRSA count and as a positive control in RT-PCR set up. This was 

used to generate a standard curve of MRSA count / CT value. The number of cells in the 

patient samples was determined according to the standard curve.  Means and standard 

deviations (SDs) of Ct values were calculated using the statistical  software package 

Minitab16. It was observed that the average difference between MRSA count obtained 

using real-time PCR assay and conventional culture results was 0.61 log (Table 4.9). 

Unfortunately,  the  number  of  MRSA positive  samples  was  too  small  to  perform 

Pearson’s coefficient and Chi-square test to examine whether the results of 2 methods 

(culture and real-time PCR) were independent or not.

Table 4.9 Comparison of the number of cells detected by RT-PCR with number of cells detected 

by conventional microbiology methods from clinical sample 

R*  The difference between the number of cells detected by RT-PCR assay and the number of cells detected by 

conventional methods.

Patient Ct - value Number  of  cells 
detected  by  RT-
PCR
cfu/ml

Number  of  cells 
detected  by 
conventional 
methods
cfu/ml

R*

1 25.15 ± 0.92 1.81 x 106 1.06 x 105 1.70 log
2 24.36 ± 2.10 3.31 x 106 5.77 x 106 0.24 log
3 20.50 ± 1.94 3.65 x 107 7.44 x 106 0.38 log
4 26.66 ± 0.33 7.78 x 105 2.12 x 105 0.57 log
5 25.14 ± 1.16 1.79 x 106 3.50 x106 0.17 log
6 - No detection 1.30 x 102 -

4.6 Discussion 

Early  detection  of  MRSA helps  to  implement  preventive  infection  control 

strategies  and  reduce  costs  (Cox  et  al.,  1995).  Conventional  culture  of  screening 
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samples  requires  two  to  three  days  before  definitive  MRSA identification  can  be 

achieved. RT-PCR has the potential to provide faster results than conventional methods 

for the identification of MRSA. 

In  this  study a  RT-PCR for  rapid  and  direct  detection  and  quantification  of 

MRSA from wound swabs was developed and compared with conventional tests. It was 

a preliminary development stage of a multiplex RT-PCR assay for the rapid and direct 

detection of common microorganisms found in wounds. In Chapter 5, the diversity of 

microflora in chronic wounds was investigated using PCR-DGGE sequencing. Based on 

the results of PCR-DGGE sequencing, multiplex RT-PCR for chronic wounds could be 

developed and compared with culture methods as part of the future work. 

The  specificity  of  the  mecA and  femB primers  used  for  identification  of  S.  

aureus has been demonstrated previously (Jonas et al., 2002; Thong et al., 2011). The 

major problem of this method is the high probability of co-amplification of  femB and 

mecA from mixed cultures consisting of MR-CNS and MSSA as it would mimic a false-

positive  MRSA result.  Most  up-to-date  studies  have  been  performed  on  pure  cell 

cultures or using MRSA selective enrichment overnight broth, which leads to extending 

the time of detection, but improves specificity of the assay. In this study, six samples out 

of thirty two were shown to contain MRSA using conventional methods. In the RT-PCR 

assay eight samples were identified with both  mecA and  femB genes, but two out of 

these eight contained both MSSA and coagulase negative staphylococci confirmed by 

culture.  This  means  that  for  direct  detection  of  MRSA from  clinical  samples  the 

presence of both MSSA and CNS could give false positive results. One sample was 

identified  with  coagulase  negative  staphylococci  only,  which  means  that  the 

conventional method failed to identify MRSA or MSSA in the sample. It is especially 

important  in  samples  collected from chronic wounds as  they usually contain mixed 

microflora.  One  sample  identified  with  MRSA using  conventional  culture  was  not 
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detected  with  RT-PCR due to  low numbers  of  cells.  The limit  of  detection  for  this 

duplex assay was ≥103  cfu/ml and the swab contained 1.3 x 102  cfu/ml of MRSA. One 

sample  out  of  32  was  identified  with  MSSA  using  the  RT-PCR  assay,  whereas 

conventional methods confirmed MSSA presence in three of the samples. The presence 

of  CNS resistant  to  methicillin  was  confirmed  using  culture  methods  in  19  of  the 

chronic wounds. Fifteen of the wound swabs were identified with only the mecA gene 

which confirmed the presence of MR-CNS. Eight samples showed the absence of both 

mecA and femB genes in comparison to six samples free from staphylococci confirmed 

by conventional methods. Two samples contained low number of CNS species (≤ 102 

cfu/ml) and this is possibly the reason for the unsuccessful detection of CNS using RT-

PCR.

The diagnostic values of the RT-PCR assay for the detection of mecA and femB 

genes were as follows: sensitivity, 83.3% (5 of 6); specificity, 88.5% (23 of 26); positive 

predictive value, 62.5% (5 of 8); and negative predictive value, 95.8% (23 of 24). The 

performance  of  the  RT-PCR  assay  was  compared  with  the  results  obtained  using 

conventional culture methods. Higher specificity and sensitivity could be achieved by 

incubating samples overnight in a selective enrichment broth containing oxacillin. Jonas 

et al., (2002) tested 439 swabs for the detection of  mecA and  femB gene with prior 

enrichment in selective broth and achieved 100% sensitivity and 100% specificity for 

this assay. 

Saeed et al., (2010) examined 19 samples, which were negative on culture using 

conventional methods by using duplex RT-PCR assay for the presence of  mecA and 

femB.  The samples  were collected from patients  with  bone and joint  infections  or 

prosthetic joint infections. Ten samples (57.8%) gave positive results RT-PCR- four for 

MSSA, two for  MRSA and four  for MR-CNS. In seven patients  identification of  a 

causative organism was of great reassurance for the surgical team. These individuals 
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were on effective and adequate antibiotic therapy. In three patients the results of the RT-

PCR led to a complete change of antibiotics as two of them were identified with MSSA 

(change of therapy from vancomycin to flucloxacillin) and one with MRSA (change of 

therapy from flucloxacillin to vancomycin). In the remaining nine samples (42.2%) the 

RT-PCR results were negative and in concordance with conventional cultures. This may 

be attributed to true negatives, prolonged antibiotic therapy before sampling or infection 

caused by microorganism other than S. aureus. Specific duplex staphylococcal PCR has 

been  previously  reported  to  be  a  rapid  method  of  detection  of  S.aureus,  including 

MRSA, with a sensitivity and specificity of 100% from screening swabs (Jonas et al., 

2002). Saeed  et al., (2010) reported that duplex RT-PCR assay had similar sensitivity 

and specificity from direct colonies of Staphylococcus spp. They found that by using a 

specific duplex staphylococcal RT-PCR of  mecA and  femB genes, it  was possible to 

identify  Staphylococcus spp.  including  MRSA,  directly  from  orthopaedic  samples. 

Unfortunately, they did not report the detection limit for this assay. The findings of the 

present study show that the presence of MSSA and MR-CNS in the sample can lead to 

false positive results especially if the bacteria exist in high numbers. In the study by 

Saeed et al., (2010) samples were collected from patients with presumed bone, joint, or 

prosthetic joint infection. These infections are usually caused by a single pathogenic 

strain and this may be the reason for such a good sensitivity of the method. In the study 

presented  here  the  specimens  were  collected  from  chronic  wounds  which  are 

polymicrobial  in  nature  and  usually  contain  mixtures  of  different  staphylococcal 

species. 

Rajan  et al., (2007) compared culture methods with PCR for MRSA detection 

from 170 swabs collected from 63 patients between September and December 2005 

attending the intensive care unit of Beaumont Hospital, Dublin, Ireland. Three patients 

out  of  five  were  initially  identified  with  MRSA.  The  remaining  two  patients  were 
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positive for MRSA on testing of repeat specimens. The quickest time to detection using 

conventional  culture  was  with  CHROMagar  MRSA (48 h),  which  detected  80% of 

MRSA. Real-Time PCR was rapid (2.25 h) and facilitated the optimisation of antibiotic 

therapy in two of three positive PCR patients,  but PCR was less specific  and more 

expensive than CHROMagar MRSA. They concluded that  PCR facilitates  the  rapid 

detection of MRSA and has a potential to contribute to preventing spread, but should 

continue to be used in conjunction with culture. 

Stratidis et al., (2007) evaluated the real-time PCR for detection MRSA directly 

from positive blood culture bottles. One hundred and forty-two blood cultures of Gram-

positive  cocci in clusters were detected using the Gram staining method. Each blood 

sample was tested for the presence of MRSA by PCR analysis (SmartCycler) based on 

detection of the mecA and orfX genes. In parallel, they were subcultured onto standard 

media for identification and characterisation.  Of the 57 MRSA blood culture bottles 

tested  using  the  SmartCycler  system,  all  isolates  were  correctly  identified  when 

compared with both culture and susceptibility testing using conventional methods. The 

sensitivity and negative predictive value of the SmartCycler methodology both were 

100% with a negative likelihood ratio approaching zero. Seventy-nine (95%) of the 85 

MRSA-negative  blood  culture  samples  tested  negative  for  MRSA because  of  the 

absence of detectable mecA and orfX genes, yielding a specificity of 95% and a positive 

predictive value of 93%. The false-positive rate was < 5% with 4 of 83 MRSA-negative 

samples being identified as MRSA. They concluded that RT-PCR assay for the detection 

of  MRSA in blood samples was found to be both sensitive and specific.  The rapid 

detection time of 2 h makes this an important addition to patient care and infection 

control  practice  with  potential  reductions  in  health-care-related  costs.  Blood  stream 

infections are usually caused by one pathogen and the sensitivity and specificity of the 
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assay is much higher for MRSA detection from blood samples in comparison to mixed 

culture samples. 

Huletsky et al., (2004) developed a Real-Time PCR assay for the rapid detection 

of MRSA directly from clinical specimens containing a mixture of staphylococci. The 

staphylococcal  clinical  isolates  were  part  of  the  SENTRY program  collection  and 

several supplier’s collections and originated from many countries around the world. The 

set of primers specific to the various types of SCCmec right extremity and a primer 

specific  to  the  S.  aureus orfX sequence  were  used.  These  primers  were  used  in  a 

multiplex assay along with a molecular beacon probe specific to the orfX sequence. The 

assay allowed the detection of 2 to 10 genome copies of MRSA from 15 clinical isolates 

obtained from different areas in North America, Europe and Asia. With the PCR assay, 

two of 205 (1%) MRSA strains tested were not detected while 13 of 252 (5.2%) MSSA 

strains were misidentified as MRSA. The higher number of primers used by Huletsky et  

al.,  (2004)  increases  probability  to  hybridize  to  similar  structures  like  SCCmec-like 

elements devoid of  mecA present in MSSA (Luong et al., 2002).  Overall there was a 

96.7% correlation between the PCR results and the identification of MRSA. None of the 

10 methicillin-sensitive or 14 methicillin-resistant  CNS species  tested were detected 

using the real-time PCR assay. Using five different forward primers in combination with 

three different probes and one reverse primer they were able to show that the majority 

of a world-wide collections of MRSA isolates was detected by their PCR assay. 

Our quantitative analysis revealed  that the average difference between MRSA 

count obtained using real-time PCR assay and conventional culture results was 0.61 log. 

This can be due to the fact that the RT-PCR assay counts both viable and non-viable 

cells whereas conventional method quantify only viable microorganisms. Unfortunately, 

due to the small amount of patients identified with MRSA, we could not a perform 

statistical analysis. There are not many studies looking at a quantitative comparison of 
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RT-PCR results with results obtained using conventional methods. Most of the current 

studies concentrate on rapid detection of MRSA especially when the infection is present 

and time is important for treatment and survival of the patient. 

The optimisation of RT-PCR was performed using the MRSA phage type 16 

control strain with the DNA extracted directly from each serial dilution and with the 

dilutions  of  DNA prepared  from  the  original  sample.  The  higher  sensitivity  and 

specificity of the assay for both  mecA and  femB genes were achieved with the DNA 

extracted directly from each serial dilution of MRSA control strain rather than serial 

dilutions  of  the  DNA prepared  from  the  original  sample.  This  is  the  first  report 

comparing the specificity and sensitivity of the RT-PCR assay optimisation using two 

different methods. It is an important finding as most of the laboratories dilute DNA 

from the  original  sample  to  prepare  standard  curves  instead  of  preparing  the  serial 

dilutions of MRSA and extracting DNA directly from each dilution. 

Modern medicine challenges us to develop new and rapid techniques to improve 

the care of patients. RT-PCR can be very useful diagnostic tool in the identification of 

different  staphylococci species  especially  when  conventional  culture  fails  to  grow. 

These techniques could have the potential to support clinicians in quickly choosing the 

most appropriate antibiotics which should lead to reduction in morbidity and total cost 

of care. However, these techniques should be used in conjunction with culture methods.

4.7 Conclusion

RT-PCR assay for the detection of mecA and femB genes directly from samples 

collected from chronic wounds has a potential for the rapid identification of MRSA. 

However,  the samples  should be  incubated  in  enrichment  broth prior  to  analysis  or 

supported by culture analysis due to the  high probability of co-amplification of  femB 

and mecA from mixed cultures consisting of MR-CNS and MSSA as this would mimic a 
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false-positive  MRSA  result.  The  DNA  for  standard  curve  preparation  should  be 

extracted directly from each serial dilution of the control strain instead of extracting the 

DNA from the original sample and preparing serial dilutions of the DNA. 
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CHAPTER 5

A Molecular and Culture Based 
Assessment of the

Microbial Diversity of Chronic Wounds
and Healthy feet

5.1 Introduction
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There are many factors affecting the diversity of microbial flora of human skin 

such as age (Noble et al., 1974; Sultana et al., 2003; Percival et al., 2012), sex (Wilburg 

et al., 1984; Staudinger et al., 2011), skin site, climate, race, occlusion, level of hygiene 

and type of cleansers used, occupation and whether the patient is hospitalised (Larson et  

al., 2000). 

In order to understand the microbiology of chronic wounds it is important to 

have an understanding of the microflora of normal skin. Firstly,  a newborn’s skin is 

covered by a white waxy coating called  Vernix caseosa,  which is primarily  composed 

of sebum, cells  that have sloughed off the foetus's  skin and shed lanugo hair.  Vernix 

caseosa provides the skin with a neutral pH (Hoath et al., 2006). A short time after birth 

the vernix spreads resulting in a lowering of the skin’s pH with ranges from 3 to 5.9 

have been reported (Aly et al., 1978). Vernix has protective properties before and after 

birth  (Rissmann  et  al.,  2009)  such  as  multiple  AMPs  (adenosine  monophosphates) 

which together with barrier  properties and the ability to suppress bacterial  adhesion 

creates an effective defence mechanism against infection (Akinbi et al., 2004; Marchini 

et al., 2002; Yoshio et al., 2003). The most frequently isolated bacteria from neonates 

are CNS (Keyworth  et al., 1990; Keyworth  et al., 1992) and studies have found that 

development of skin’s microflora of babies born by surgical and natural births is the 

same as bacteria found on the skin within 6h postnatal (Keyworth  et al., 1992). In a 

study by Keyworth et al., (1992) CNS were found in 92% of cases, with a rapid increase 

in  bacterial  counts  over  the  first  7  days.  Of the  CNS 82% were identified  as  a  S. 

epidermidis  and  were isolated  from  all  sites.  Other  less  commonly  isolated 

microorganisms were Propionibacterium spp, α-haemolytic streptococci, aerobic spore 

bearing  bacilli,  aerobic  coryneforms,  C.  albicans,  Klebsiella  oxytoca,  Klebsiella  

pneumoniae and E. coli.
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Further  studies  showed  that  as  children  get older,  microorganisms  such  as 

Propionibacterium  and  yeasts  are  found  in  abundance  especially  during  and  after 

puberty (Ashbee et al., 2002; Juncosa et al., 2002). 

The numbers of microorganisms on adult skin have been estimated between 6 x 

102  and 2 x 106  cfu / cm2 depending upon the body site. Skin can be divided into three 

distinct  regions,  each  differing  in  their  microbiology  (Aly  et  al.,  1977;  Bojar  and 

Holland, 2002). The regions include moist areas (groin, toe web areas and the armpits); 

oily areas (forehead, nose) and dry areas (Leyden  et al.,  1987). Moist areas provide 

suitable conditions for bacteria to grow and multiply. They are heavily colonised by 

Coryneforms and bacteria belonging to the Micrococcaceae. On the perineum there is a 

high number of Gram positive and Gram negative rods of faecal origin found (Bieber 

and Kahlmeter, 2010). At oily areas of the skin relatively low levels of Micrococcacaeae 

and Coryneforms are found compared with high levels of  Propionibacterium  species 

(Evans and Crook, 1984). S. hominis, S. epidermidis, Malassezia spp are also found in 

these areas (Webster, 2007).  In dry areas there is a mixture of species and the most 

commonly  identified  microorganisms  are  Staphylococcus especially  CNS with  50% 

identified as  S. epidermidis,  Micrococcus  sp,  Corynebacterium sp,  Propionibacterium 

sp,  Brevibacterium sp,  Acinetobacter sp,  Dermabacter sp (Harmory and Parisi, 1987; 

Vuong and Otto, 2002).  S. epidermidis plays a role in maintaining the balance of skin 

microbiota, however it is also a source of antibiotic resistance genes and the cause of 

nosocomial  infections  (Otto,  2009).   Other  CNS  isolated  from  adult  skin  are  S. 

saprophiticus, S. hominis, S. warneri, S. haemolyticus and S. capitis.

High  numbers  of  bacteria  and  yeast  are  recovered  from  elderly  individuals 

mainly  because  of  decreased  sweat  production  and  the  development  of  dry  skin 

(Somerville, 1980).  S. aureus colonisation increases with age and is highest in those 
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over  70  years.  Many hospitals  report  high  MRSA colonisation  rates  among elderly 

patients (Hoefnagels-Schuermans et al., 1997; O’Sullivan and Keane, 2000).

Damage to the skin, such as cuts, surgical or traumatic wounds or leg ulcers 

enable access of microorganisms to normally sterile tissue and provide a much different 

environment for microbial growth than intact skin (Dryden, 2009; James et al., 2008). 

In acute wounds, the healing process,  including the immune response,  is  capable of 

controlling invasion by microbes and repairing the wound in a  relatively short  time 

frame (days to weeks). However, in some cases wounds become chronic and fail to heal 

within a reasonable time frame (months to years) and often remain in an inflammatory 

state (James et al., 2008).

The  bacteriology  of  acute  and  chronic  wounds  is  different,  with  the  latter 

tending to harbour more diverse microbial communities that include anaerobic species. 

The bacterial flora in wounds appears to change over time. In the early acute wound 

natural  skin  microflora  predominate  (Gram  positive  cocci  are  the  most  common). 

Facultative aerobic Gram negative rods and anaerobic bacteria enter the wound after 

about four weeks post injury (Kaftandzieva et al., 2012). Acute wounds are less diverse 

in microflora than chronic wounds and infections of acute wounds are mostly caused by 

single pathogens. Chronic wounds are polymicrobial in nature and recent studies using 

molecular techniques have emphasised the complex ecology of these wounds (Davies, 

2003; Davies et al., 2004). 

The most  predominant  aerobic species  isolated  from clinical  wound samples 

included  S.  aureus,  CNS,  P.  aeruginosa,  E.  coli,  Enterobacter  cloacae,  Klebsiella 

species,  Streptococcus species,  Enterococcus species and Proteus sp (Howell-Jones  et  

al., 2005; Bowler  et al., 2001).  S. aureus is the most commonly isolated species from 

wounds (Bowler, 1998) and is a recognised pathogen containing a variety of virulence 
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factors. It is isolated from both acute and chronic wounds (infected and non-infected). 

The  most  commonly  isolated  anaerobes  from  wound  samples  include 

Peptostreptococcus  sp,  Clostridium  sp,  Bacteroides  sp,  Propionobacterium  sp,  

Prevotella sp, Fusobacterium sp and Veillonella sp (Howell-Jones et al., 2005; Wall et  

al., 2002; Bowler et al., 2001). Peptostreptococcus in particular has been recognised as 

a barrier to healing in chronic wounds due to production of short chain fatty acids and 

hydrolytic enzymes as potential factors in delaying wound healing (Wall et al., 2002). In 

polymicrobial communities, the growth of specific bacterial species may be aided by 

synergistic effects from growing in the presence of other bacterial species. For example 

in a study of leg ulcers, S. aureus appeared to increase growth rates of Gram negative 

anaerobes (Bowler and Davies, 1999). 

The impact of bacteria  on the process of wound healing is  complex  and the 

subject of much debate in the literature. It is well documented and accepted that all 

open, chronic wounds are polymicrobial in nature and colonised with bacteria. Most 

physicians  believe  that  the  bacteria  do  not  interfere  with  the  healing  process  if  the 

wound does not show clinical signs of infection. However, some physicians are starting 

to believe that high levels of bacteria may disturb healing even in the absence of clinical 

signs of infection (Edwards and Harding, 2004).

In 2001, White and Cutting introduced the term “critical colonisation”, which 

applies to the wounds that do not display the standard clinical signs of infection, but 

contain high levels of bacteria that inhibit wound healing (White and Cutting, 2001). To 

properly diagnose infection in this situation, additional criteria are required (Cutting and 

Harding, 1996). Gardner et al., (2001) assessed the validity of those additional criteria, 

which include serous exudate, foul odour, discoloured or friable granulation tissue, and 

delayed healing or wound deterioration. They also performed quantitative biopsies and 
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used Robson's (Robson, 1997) definition of greater than 100,000 (> 105) organisms/g of 

tissue as being infected. Eleven of the 36 (31%) wounds in their study were infected; 

91% of  those  wounds  contained  necrotic  tissue.  For  these  11  infected  wounds  not 

displaying traditional signs of infection, 80% demonstrated delayed healing and friable 

granulation tissue.

There is a close correlation between the microorganisms present in wounds and 

those found in the normal flora of the gut or oral cavity (Brook, 1987/1989; Brook and 

Frazier, 1997). Minor, healing wounds may allow sufficient time for only a relatively 

small numbers of skin contaminants to colonise the wound. The continued exposure of 

devitalised tissue together with the delayed healing process is  likely to promote the 

colonisation with a wide variety of endogenous microorganisms (Bowler et al., 2001). 

Dental plaque, the gingival crevice, and the contents of the colon contain approximately 

1011 to 1012 microorganisms / g of tissue, of which, up to 90% of the oral microflora 

(Bartlett and Gorbach, 1976) and up to 99.9% of the colonic microflora (Hentges, 1989) 

are anaerobes.  Wounds with disturbed oxygen supply and reduced environment are 

susceptible  to  colonisation  by  a  range  variety  of  anaerobic  endogenous  bacteria 

(Bjarnsholt et al., 2011). 

For many years, medical microbiologists have relied on culture techniques to 

investigate the complexity of infections including chronic wound pathogenic biofilms 

(McGuckin et al., 2000).  Whilst culture methods are useful and are a well-established 

approach for the detection of many common pathogenic bacteria associated with wound 

infections, they may underestimate microbial diversity (Wilson et al., 1997; Oates et al., 

2012).  These  culture  methods  can  be  used to  identify  the  "culturable"  bacteria 

associated with such biofilms. However, laboratory culture techniques are only able to 

detect organisms which grow relatively quickly and easily on laboratory media. This 
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presents an important problem because many of the bacteria in wound biofilms do not 

grow on culture media (Davies et al., 2004). Thus, there is a lack of information about 

the diversity of populations that occur  in association with chronic wounds biofilms. 

Various culture-independent  methods have been investigated in  a  limited number of 

studies  as  potential  adjuncts  or  replacements  of  culture  for  the  microbial 

characterization of chronic wounds (Dowd et al., 2008, Gontcharova et al., 2010 , Hill 

et al., 2003). Culture-independent investigations of the bacterial diversity utilizing PCR-

denaturing gradient gel electrophoresis (DGGE) (Davies  et al., 2004), pyrosequencing 

(Dowd  et  al., 2008),  other  DNA fingerprinting  techniques  (Singh  et  al.,  2009)  and 

quantitative PCR (Melendez  et al, 2010) have generally identified a greater range of 

bacteria than traditional culture techniques, and taxa not previously detected in wounds 

have  been reported  (Oates  et  al., 2012). Whilst  it  is  well  documented  that  culture-

independent methods may provide more information on microbial diversity, the role that 

taxa thus identified play in infection remains poorly understood. This contrasts with 

isolation methods where the pathogenicity of prominent culturable organisms such as 

Staphylococcus aureus and Pseudomonas aeruginosa has been well established (Bourke 

et al., 1994; Davies et al., 2001; Gorbert et al., 2005; Lyczak et al., 2000).

In environmental microbiology, denaturing gradient gel electrophoresis (DGGE) 

has been used as a tool for profiling complex microbial populations for many years and 

the  technique  has  now  been  applied  to  the  study  of  a  limited  number  of  human 

microbial populations (Muyzer and Smalla,  1998; Possemiers  et al., 2004; Liu  et al., 

2010; Dowd  et al.,  2008).  PCR-DGGE is classified as part of the new discipline of 

molecular microbial ecology, which investigates the interactions among microorganisms 

and between microorganisms and their environment (Muyzer and Smalla, 1998). This 

involves long-term study, which includes various and numerous environmental sample 

analysis (Muyzer and Smalla, 1998). Conventional cloning, hybridisation and culture 
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methods  are  not  always  practical  for  such  investigations  as  these  methods  do  not 

provide any information on the dynamics of the microorganism populations in complex 

ecosystems and potential effects of environmental changes on such populations (Muyzer 

et al., 1993; Sheffield  et al., 1989). They also require an extended knowledge of the 

microorganisms  to  develop  adapted  probes  that  target  particular  individuals  among 

diverse populations (Muyzer and Smalla, 1998). PCR-DGGE has the advantage of not 

requiring previous knowledge of microbial populations. It is a fingerprinting approach 

that  can  generate  a  pattern  of  genetic  diversity  in  complex  microbial  ecosystems 

including biofilms of humans (Muyzer  et al., 1993). This method has the potential to 

visually profile and monitor changes occurring in various microbial communities that 

are  undergoing  different  treatments  or  modifications.  It  is  a  rapid  and  efficient 

separation technique of same length DNA sequences (amplified by PCR), which may 

vary as little as a single base pair  (Sheffield  et al.,  1989). PCR-DGGE is a flexible 

method that allows a unique combination of different approaches for a more accurate 

identification  of,  for  example,  functional  genes  present  in  particular  bacterial 

populations  or  specific  bacterial  species  by  using  hybridization  or  species-specific 

probes (Walter et al., 2000). It can be utilized in diverse subject areas such as clinical 

and environmental microbiology. 

There  are  very  limited  studies  which  have  utilized  DGGE  to  evaluate the 

diversity of microbial populations that occur within the pathogenic biofilms associated 

with chronic wounds (Dowd et al., 2008; Rhoads et al., 2012). A better understanding of 

the  wound's  microbiota  will  allow us  to  better  manage the wound.  Considering  the 

bacterial populations within pathogenic biofilms is very important for many reasons. 

These reasons typically relate to the fact that the higher bacterial population diversity 

within  a  pathogenic  biofilm  provides  the  bacterial  community  as  a  whole  with  an 
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increased ability to persist and thrive in a variety of antagonistic situations, even in spite 

of combined host and medicinal attack (Boles et al., 2004).

5.2 Aims and objectives

 The aim of this study was to apply DGGE and sequencing to the analysis of the 

chronic wound (diabetic wound) microflora and healthy skin and compare the data with 

conventional culture techniques. DGGE-sequencing was initially developed on samples 

collected from healthy participants before applying it to swabs obtained from chronic 

wounds. DGGE sequencing allowed an analysis of the bacterial population of individual 

wounds and healthy skin by using a single PCR. These samples were run alongside one 

another on the same gel for direct comparison. Based on the results of this study  and 

the literature this was to inform a future development of a multiplex PCR assays for 

chronic wounds. 

5.3 Materials and methods

5.3.1 Ethical approval

Ethical approval for the molecular detection of bacteria from healthy feet  was 

obtained  from  the  School  of  Biology,  Chemistry  and  Health  Sciences  Research 

Committee at Manchester Metropolitan University. 

Ethical permission for the molecular detection of microorganisms from chronic 

wounds was obtained from the NHS Research Ethics Committee (11/H1011/4).  The 

samples, collected from the same patients as described in Chapter 4 section 4.3.2.1, 

were used for development of the PCR-DGGE sequencing method. 
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5.3.2 Participants and study design

5.3.2.1 Healthy feet study

This was a pilot study to develop and optimise DGGE methods for a larger study 

on chronic wounds (Appendix 5 – Study Protocol). A total of 20 healthy volunteers (10 

female  and  10  male)  aged  18-75  years  were  included  in  the  study (Appendix  6  – 

Participant Information Sheet; Appendix 7 – Consent form). Four samples were taken 

from each volunteer – two swabs from the sole of each foot.  The soles of the foot  

(central part of the plantar) were initially cleaned using sterile saline and then an area of 

approximately 2 cm2 swabbed using zigzag method (description of zigzag method in 

Chapter 3, section 3.6). Samples were collected from participants using Sigma dry swab 

(Medical Wire & Equipment).

One swab from each foot was processed using conventional microbiological methods. 

Bacterial  DNA was  extracted  from the  second  swab  and  analysed  by  PCR-DGGE 

sequencing.

Qualitative  microbiology  was  performed  by  inoculating  the  samples  onto  a 

variety  of  selective  media  and  identifying  bacteria  after  incubation  using  standard 

microbiological methods described in Chapter 3 section 3.5.2.  

The  cultural  methods  were  compared with  molecular  methods  (DGGE,  sequencing) 

population studies to study bacterial diversity in normal, intact skin. 

5.3.2.2 Chronic wounds

Thirty two patients with diabetic foot ulcers were recruited to the study and the 

study was carried on as described in section 4.3.2.2. DNA was extracted from each 

wound sample using a Qiagen kit and PCR-DGGE sequencing was performed. PCR-

DGGE sequencing results were compared with conventional culture methods. 
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5.3.3 Materials, media, reagents and identification methods – conventional culture 

method

Identification of Staphylococcus aureus including MRSA was based on the same 

methods as in Chapter 3, section 3.7. In order to identify other bacteria species present 

in  healthy  skin  and  chronic  wounds,  additional  media,  reagents  and  methods  were 

employed. 

5.3.3.1 MacConkey Agar (Oxoid, Basingstoke, UK, CM0115)

The  medium  was  made  up  according  to  the  manufacturer’s  instructions, 

sterilised and dispensed in 25 ml volumes in sterile Petri dishes.

5.3.3.2 Fastidious Anaerobic Agar (LabM, Heywood, UK, BO90-A)

Ready prepared Fastidious Anaerobe Agar with 7% (v/v) Horse Blood and

75ml/l Neomycin was purchased.

5.3.3.3 Sabouraud Agar (Oxoid, Basingstoke, UK CM 0041)

The  medium  was  made  up  according  to  the  manufacturer’s   instructions, 

sterilised and dispensed in 25 ml volumes in sterile Petri dishes.

5.3.3.4 Prolex Streptococcal Grouping Latex Kit (Pro-Lab Diagnostic, Wirral, UK)

Streptococcus  species  were  grouped  according  to  Lancefield’s  system 

(Lancefield, 1933) using commercially prepared antisera A, B, C, D, F and G (Prolex 

Streptococcal  Grouping  Latex  Kit,  Pro-Lab  Diagnostic).  The  Prolex  Streptococcal 

Grouping Latex Kit is based on liberation of specific antigen from bacteria cell walls by 

modified nitrous acid extraction. 

 

5.3.4 Microbiological processing of the samples

The samples were processed using the semi-quantitative and quantitative culture 

methods described in Chapter 3, section 3.7.2.1 and 3.7.2.3. 

166



5.3.5  Identification of isolates

Most  isolates,  including  MRSA,  were  identified  to  the  species  level  using 

standard methods such as typical colonial morphology on culture media, catalase test, 

coagulase  test,  DNase  test,  oxidase  test  (Pro-Lab  Diagnostics),   and  the  Analytical 

Profile Index (API) system (bioMerieux UK Ltd.) - API 20E, API 20NE, APIStaph used 

as per the manufacturer’s instructions. An accurate count of the appropriate bacteria was 

performed  using  an  image  analysis  system,  the  Acolyte  counter  (Don  Whitley 

Scientific) on the respective culture media. 

5.3.5.1 Isolation of Gram-negative bacteria

MacConkey agar no. 3 was used to isolate Gram-negative bacteria.  This agar is 

a more selective modification of MacConkey medium which is suitable for the detection 

and enumeration of coliform and Pseudomonas spp. Due to the inclusion of a specially 

prepared fraction of bile salts in addition to crystal violet, the medium gives improved 

differentiation between coliforms and non-lactose fermenting organisms whilst Gram-

positive  cocci  are  completely  inhibited.  The  presence  of Pseudomonas  spp.  was 

confirmed using oxidase test.

5.3.5.2 Anaerobic bacteria

A zone of inhibition around the metronidazole disc indicated the presence of 

anaerobic bacteria. Clearing around the disc indicated obligate anaerobes. In addition, if 

there was an increased growth on this plate compared to the aerobic plates this was 

investigated for the presence of anaerobes. 
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 5.3.6  Materials, media,  reagents  and  identification  methods  –  PCR-DGGE 

sequencing 

5.3.6.1 DNA extraction

DNA extraction methods were used as described in Chapter 2, Section 2.3.3.3.

5.3.6.2 PCR Reagents

PCR reagents, methods and thermocycling conditions were the same as those decribed 

in Chapter 2, Sections 2.3.3.4 and 2.4, respetively.

5.3.6.3 Horizontal Gel Electrophoresis reagents

Horizontal Gel Electrophoresis reagents and methods were used as described in Chapter 

2, Section 2.3.3.5.

5.3.6.4 DGGE

The composition of acrylamide/bisacrylamide solutions were as follows:

 100% denaturant polyacrylamide solution

- 17.5 ml acryl/bisacrylamide ratio 19:1 (Sigma-Aldrich, Dorset, UK)

- 42g urea (Sigma-Aldrich, Dorset, UK)

- 40ml formamide (Sigma-Aldrich, Dorset, UK)

- 9.5ml sterile dH2O

- 1 ml 50x TAE buffer 

0% denaturant polyacrylamide solution

- 17.5ml acryl/bisacrylamide 

- 81.5ml sterile dH2O
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- 1ml 50x TAE buffer

Silver Gel staining:

- Fixing solution: 0.5 % (v/v) of Glacial Acetic Acid was added to 50ml of 10% (v/v) 

ethanol and sterile water added to adjust to 500ml.

- Silver staining solution: 0.1g of silver nitrate was added to previously prepared 200ml 

of fixing solution. 

- Developing solution:  3g of NaOH and 2ml of formaldehyde were added to 200ml of 

sterile water.
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5.3.6.5 Steps in the process to obtain individual 16S rDNA sequences from a mixed 

population (Figure 5.1)

Figure  5.1 Steps  in  the  process  to  obtain  individual  16s  rDNA sequences  from  mixed 

populations of bacteria (adapted from Dr P. Linton, personal communication).
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5.3.6.6 DNA extraction from samples

      Swabs collected from patients were placed into a vial containing 180µl of molecular 

grade  water,  vortexed  and  the  DNA was  extracted  from  the  suspension  using  the 

DNeasy Blood and Tissue Kit (Qiagen, Crawley, UK) according to the manufacturer’s 

instructions.

5.3.6.7 Horizontal Gel Electrophoresis 

Horizontal  Gel  Electrophoresis  was  performed  as  described  in  Chapter  2,  Section 

2.3.3.5.

5.3.6.8 PCR set up

      PCR reactions were carried out with reaction volumes of 25 µl and PCR conditions 

for universal 16S primers were as described in Chapter 2, Section 2.4, Table 2.2. 

5.3.6.9 Denaturing Gradient Gel Electrophoresis (DGGE) 

The  DGGE  was  performed  using  the  INGENYphorU  system  (Ingeny,  The 

Netherlands). The method was adapted from Dr. P. Linton (personal communication). 

5.3.6.9.1 Set-up of DGGE glass plate cassette

      The glass plates were washed with detergent; rinsed with ddH2O and left to dry. 

Both plates were cleaned with 95% (v/v) ethanol and gel bond was placed on the top of 

one  glass  with  the  large  notches.  The  U-shaper  spacer  was  covered  with  Vaseline 

especially on the edges and placed on the top of the glass plate with the large notches 

and then the other glass was placed on the top of it.  The glass plate sandwich was 

transferred in the cassette and the U-shaper spacer pulled up and secured by tightening 

the screws at the bottom and sides of the cassette. 
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5.3.6.9.2 Gel casting

A 200 µl pipette tip was attached to the end of the tube coming from the left-

hand chamber of the gradient former and placed in the top of the glass cassette. 

Two  separate  Universal  bottles each  containing  24  ml  of  the  high  and  low 

denaturation acrylamide/bisacrylamide solution (60% and 30%) made up from 0% and 

100% solutions were prepared and stored on ice.  60% (v/v) denaturation solution was 

prepared  by  adding  14.4  ml  of  100%  of  denaturation  solution  to  9.6ml  of  0% 

denaturation solution (section 5.3.6.4). 30% (v/v) denaturation solution was made by 

adding 7.2 ml of 100% denaturation solution to 16.8 ml of 0% denaturation solution 

(section 5.3.6.4). 

An aliquot of 20% APS (ammonium persulfate) was defrosted and 100 µl added 

into each universal and mixed. Then 10 µl TEMED (tetramethylethylenediamine) was 

added into each tube and inverted to mix and the gel was cast immediately. The high 

denaturing solution was poured into the left-hand chamber and the valve was opened 

into the other chamber briefly and closed again quickly to remove any air bubbles. The 

solution which migrated into the other chamber was transferred back into the left-hand 

chamber.  The  magnetic  stirrer  was  started  gently.  The  low denaturing  solution  was 

poured into the right-hand chamber and the peristaltic pump (flow-rate of 5ml/min) 

turned on and the valve quickly opened so that the chambers were connected.

The gel was polymerised for 1h and any liquid that formed on the top of the gel 

was poured off. In the study on diversity of microflora in chronic wounds the gel was 

left to polymerise overnight. A Bijou bottle with 6ml of 0% denaturant acryl/bisacryl 

(section 5.3.6.4) was prepared and stored on ice. 60 µl of 20% APS and 6 µl TEMED 

were  added  and  mixed  thoroughly.  The  solution  was  pipetted  onto  the  top  of  the 

resolving gel and the comb was pushed down into it without forming any bubbles, and 
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left to polymerise for 10-15 min. The warm buffer from the tank was flooded around the 

comb and the comb finally removed. The wells were rinsed with buffer and any excess 

of  gel  cleaned using clean tissue.  The screws were loosed and the U-shaper  spacer 

pushed down and secured  by tightening the  side screws until  they just  touched the 

cassette.

5.3.6.9.3 Sample loading

       The samples were loaded in the sample buffer (10 µl concentrated PCR product 

with 2µl)  and a  low voltage power supply connected (12V).  The water  and sample 

buffer  were loaded in any empty lanes.  The gel  was run for 5 min at  high voltage 

without buffer re-circulation. Then the buffer re-circulation was turned on and run for 

the full running time of 16h at 75V.

5.3.6.9.4 Preparation of running tank

      The buffer tank was prepared by filling with 0.5x TAE and heating to 60˚C. The gel 

cassette was added, making sure there were no bubbles under the gel, the buffer re-

circulation tube was then connected and the pump on the side of the tank was turned on. 

The positive and negative terminals were connected to the gel cassette and the external 

cables connected to the power pack. The gel was run for 5 min at 250 volts. 

5.3.6.9.5 Gel staining 

      The gel was removed from the plate and placed in a tray containing fixing solution 

(section 5.3.6.4). The gel was incubated with rocking for 30 minutes and then the fixing 

solution was decanted and stain solution (section 5.3.6.4) added to the gel  tray and 

incubated with rocking for 20 minutes. After incubation the gel was rinsed three times 

in  distilled  water  and the  developing solution  added (section  5.3.6.4).  The gel  was 

developed until the bands were clearly visible. The developing solution was poured off 
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and a fixing solution added for another 30 minutes with rocking. After staining the gel 

was preserved in a preserving solution (10% (v/v) glycerol, 25% (v/v) ethanol). The 

bands of interests were excised and added to 50µl of molecular grade water, mashed 

using a pipette tip and left overnight in the fridge. After incubation PCR was performed 

to amplify the DNA in the bands (Section 5.3.6.8). The amplified products were cleaned 

with  Sure  clean  (Bioline)  according  to  the  manufacturer’s  instructions  before 

sequencing. 

5.3.6.10 Sequencing

      PCR products were sequenced using the non GC-clamp (reverse) 518R primer at the 

DNA Sequencing Department at The University of Manchester (Manchester, UK) using 

a Perkin-Elmer ABI 377 sequencer. 

5.4 Results 

5.4.1 Conventional microbiology of healthy feet

Twenty healthy  participants  were  included  in  the  study.  Two  samples  were 

collected  from the  clean  sole  of  each  foot  (one  for  culture  and  one  for  molecular 

analysis). Samples collected for culture analysis were processed and bacteria isolated 

and  identified  using  conventional  microbiology methods.  Bacterial  isolates  cultured 

from swabs were identified to genus or species level when possible. The mean number 

of bacterial species recovered using culture methods was 2.4 (1-5 species per sample). 

One  participant  was  identified  with  five  bacterial  species,  two  participants  were 

identified with four bacterial isolates, five participants with three species, eight with two 

microorganisms and four participants with only one isolate.  There was a significant 

correlation between the number of organisms recovered from the right  and left  feet 
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(p<0.026).  The  most  predominant  microflora  found  on  healthy  skin  were  CNS 

(Coagulase Negative Staphylococci) – S. epidermidis  (12 participants), S. warneri (9 

participants), Micrococcus  sp (4 participants), S. cohnii  (4 participants), S. hominis  (3 

participants).  Three participants (2 female and 1 male) were colonised with  Candida 

cifferi, two females with  Candida pelliculosa  and one female with  Corynebacterium 

spp. S. aureus was found only in one female participant.  All participants were colonised 

only with Gram positive staphylococci species and Candida spp (Table 5.1).

Table 5.1 Bacterial species isolated from the healthy feet samples collected from female and 

male. 

Bacterial strain Gender
 Female Male

Staphylococcus aureus 1 0
Staphylococcus epidermidis 5 7
Staphylococcus cohni 2 2
Staphylococcus warneri 4 5
Staphylococcus caprae 0 1
Staphylococcus hominis 1 2
Staphylococcus capitis 1 1
Staphylococcus sciuri 1 0
Candida pelliculosa 2 0
Candida cifferrii 2 1
Candida fermata 0 1
Cryptococcus terreus 1 0
Micrococcus 2 2
Kocuria varians 0 1

Twenty five (62.5%) out of 40 samples (20 swabs from the right and 20 swabs 

from the  left  foot)  collected  from healthy participants  had  total  bacterial  count  105 

cfu/cm2, fourteen samples (35%) 106 cfu/cm2 and 2.5% of specimens contained 107 cfu/ 

cm2. 
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All samples collected from the healthy feet contained 105 or more cfu/cm2  of 

bacteria on the skin. The average total bacterial count was 1.88 x 106 cfu/cm2. None of 

the samples contained Gram negative rods (Appendix 1, Table 1 and 2).    

  

5.4.2 Comparison of the conventional methods with DGGE-sequencing for bacteria 

identification in samples collected from healthy participants

Two samples from each participant (left and right foot superficial swabs) were 

processed using PCR-DGGE  and sequencing for the diversity of microflora and the 

comparison with conventional methods. Only PCR positive samples were run on the 

gel. The study was also limited to the analysis of single participant samples, due to the 

lack of bands present in many samples, high costs  and labour – intensive nature of 

sequencing. However, the most discernible bands were sequenced and microorganisms 

identified. Nine samples out of twenty three were carefully analysed, visible bands cut, 

DNA amplified and sequencing performed. Figure 5.2 shows the 16S rDNA fragments 

from the samples collected from soles of the left and right feet of healthy participants. 

The  bands  were  labelled  and  sequenced.  The  discernible  bands  were  assumed  to 

represent  the  dominant  members  of  the  mixed bacterial  community present  in  each 

sample; i.e. those that are present in highest numbers (Linton et al., 2007).

      All 16 bands excised from 9 samples were sequenced. The closest relative of the 

clones  were  identified  by  performing  a  BLAST  search  of  the  sequences  at 

http://www.ncbi.nlm.nih.gov/blast.  The  percentage  identity  of  all  clones  to  known 

database sequences was > 95%, with only one sequence having a lower identity < 93%, 

namely,  band  4  (Prochlorococcus  marinus).  The  individual  profiles  proved  to  be 

complex. Although participants had some bands in common, only bands 2, 10 and 11 

were identified with the same bacterial isolate and results correlated to those obtained 
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by culture analysis. In three samples, the DGGE profiles had bands present that were 

not represented by the bands in the profiles obtained from the cultured isolates from 

these samples (Figure 5.2). 

For most sequences affiliated with  Staphylococcus the sequence similarities obtained 

from the EMBL database were the same for different species within the same genus, 

which prevented identification to the species level.

    Twelve  (75%) DGGE bands  were  identified  with  the  same species  as  bacteria 

identified using cultural methods (Table 5.2). One band (6.25%) was found to not show 

significant  similarity  to  any bacteria  from the  nucleotide  sequence  database.  Three 

(18.75%)  bands  were  identified  with  bacteria  that  were  not  detected  using  culture 

methods  (Propionobacterium  acne,  Prochlorococcus  marinus and  Corynebacterium 

tuberculostearicum).
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Figure 5.2 DGGE analysis of 16S rRNA gene fragments of the samples collected from healthy 

participants  (7-20  patients  numbers;  L-  left  foot,  R-right  foot);  1-11  –  band  number 

corresponding to particular bacterial strain (see Table 5.3). The bands were additionally marked 

for better visibility. #
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Table 5.2 Comparison of cultured bacterial isolates with DGGE analysis from swabs obtained 

from individual participants (L- left foot; R- right foot). 

*Percent similarity of partial 16S rDNA coding sequence to sequence of their closest bacterial relatives  

available in the EMBL nucleotide sequence database.

Patient Corresponding 
band 

Identification 
using  culture 
methods

Identification  using 
DGGE-sequencing 

%*

7L 1 Staphylococcus  
cohnii

Staphylococcus  
cohnii  spp.  
urealyticus

100%

7L

13R

2/ two bands Staphylococcus  
cohnii

Staphylococcus  
cohnii  spp.  
urealyticus

99%

10L 3 Only 

CNS identified

Propionobacterium 
acne

99%

11L 4 Prochlorococcus 
marinus

90%

5 Staphylococcus  
warneri

Staphylococcus  
warneri

100%

12L 6 Staphylococcus  
epidermidis  and 
S.hominis

No  significant 
similarity found

7 Corynebacterium 
tuberculostearicum

98%

14R 8 Staphylococcus  
epidermidis  and 
S.warneri

CNS 99%

15R 9 Staphylococcus  
hominis

CNS 99%

12R

14R

18L

10 / 3 bands Staphylococcus  
epidermidis

Staphylococcus  
epidermidis

99%

11 / 3 bands Staphylococcus  
epidermidis

Staphylococcus  
epidermidis

99%

5.4.3 Conventional microbiology of chronic wounds
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     Two samples (superficial swabs) were collected from each wound – one for culture 

analysis  and one for molecular testing (PCR-DGGE and sequencing).  Wound swabs 

were  cultured  and  microorganisms  identified  to  the  genus  or  species  level  when 

possible. The mean number of bacteria species recovered from chronic wounds using 

culture methods was 1.83 (1-4 isolates per sample).  Fifteen patients were identified 

with Coliforms, six patients were identified with MRSA, three patients with MSSA and 

five patients with Streptococcus spp (Group A, B and D). Anaerobes, Proteus mirabilis 

and  Pseudomonas spp  were  detected  in  single  patients.  Coagulase  negative 

staphylococci were the most predominant microflora. Five patients were identified with 

S. epidermidis and fifteen patients were identified with other CNS (S. haemolyticus, S. 

simulans,  S. capitis,  S. warneri,  S. cohnii, S. chromogenes,  S. xylosus) (Appendix 1, 

Table 3). 

5.4.4  Comparison  of  the  culture  methods  with  DGGE  sequencing  analysis  in 

chronic wounds

Denaturing  gradient  gel  electrophoresis  (DGGE)  was  performed  using 30  samples. 

However, only 21 samples out of 30 showed visible and good quality PCR bands and 

these patients’ data were analysed and included in this study.

      After completion of electrophoresis, gels were stained using silver staining and the 

visible bands were excised. Sequence identification was carried out only with bands 

showing a PCR product after a re-amplification process. The obtained sequences were 

compared with sequences of known bacteria listed in the EMBL nucleotide sequence 

database.  In  total  21 of 30 investigated patients  samples showed reproductible  PCR 

products after amplification. 40 samples (bands) were cut from 21 investigated samples.

The results of comparative sequence analyses obtained from EMBL database are shown 

(Table  5.3).  Sequence  homologies  to  sequences  of  known  bacteria  in  the  EMBL 
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database ranged between 92% and 100%, with only one sample producing a result of 

85%. In total, 3 samples out of 21 investigated had a single band and were identified 

with only one isolate (patient numbers 29, 19, 6), and this was confirmed by culture 

methods. All 18 samples showed multiple bands. 9 samples were identified with species 

that were not isolated using standard culture methods.

          A comparison of DGGE positions of sequenced bands was performed. Although 

some patients had the same bands in common, each patient produced a unique banding 

pattern.  The DGGE patterns of bands of all  samples was shown (Figure 5.3).  In 6 

samples (patient numbers 9, 11, 12, 16, 24 and 27) two to three different positions were 

found among the same species. It was also found that bands located on the same level 

within the gel belonged to different species, whereas bands identified with the same 

species were located on different levels within the gel. However bands identified with 

Staphylococcus spp were located on very similar position to each other with minimal 

deviation (Figure 5.3 – bands 1, 2, 3, 12, 13, 21, 22, 26, 28, 29, 36, 39, 40). Many bands 

in the same position within a gel were represented by different bacteria. S. epidermidis, 

Enterobacter hormaechei and  E. faecalis were found to produce bands in 2 different 

positions.  Morganella  morganii,  Proteus  mirabilis and  Duganella  zoogloeoides 

produced  bands  in  3  different  positions  within  the  gel,  whereas  Acinetobacter  

baumannii gave 5 different bands. 

The results  of  both  DGGE sequencing and culture  methods  correlated  in  12  (57%) 

patients out of 21 investigated for the bands sequenced. 

 Nine (43%) patients  were identified with bacteria  which were not  cultivated using 

standard microbiological methods (Duganella zoogloeoides,  Pseudomonas meridiana, 

Enterobacter hormaechei,  Enterococcus faecalis,  Acinetobacter baumannii). The most 

frequently detected genera were  Staphylococcus  and coliforms, which is analogous to 
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culture  results.  For  most  sequences  affiliated  with  Staphylococcus  the  sequence 

similarities  obtained  from the  EMBL database  were  the  same  for  different  species 

within the same genus,  which prevented identification to the species level.  For one 

sequence no identification to the genus level could be obtained because no significant 

similarity was found. 

        It was hoped that bands on the same level corresponded to the same species 

however the results showed that the bands located on the same level within the gel may 

represent different species and bands identified with the same species may be located on 

different levels within the gel.  Since not all bands were sequenced, a direct comparison 

between DGGE sequencing and traditional culture methods was not performed.
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Figure 5.3 DGGE analysis of 16S rRNA gene fragments from samples collected from patients 

with chronic wound ulceration. (1- 30 at the top of the gel – patient’s number; bands labelled 1 

to 40; (-) – negative control; (+) – positive control).  The bands were additionally marked for 

better visibility. 
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Table 5.3 Comparison of cultured bacterial isolates with DGGE analysis from swabs obtained from 

individual patients with chronic wounds. 

*Percent similarity of partial 16S rDNA coding sequence to sequence of their closest bacterial relatives  
available in the EMBL nucleotide sequence database.

Patient Band Identification 
using  culture 
methods

Identification 
using DGGE 

%*

6 1 S. aureus S. aureus 99%

9 2 S. epidermidis S. epidermidis 99%

3 CNS 98%

4 S. epidermidis 99%

10 5 coliforms

S. epidermidis

Escherichia 
fergusonii

99%

11 6 coliforms

anaerobes

S. simulans

Morganella  
morganii

93%

7 Morganella  
morganii

93%

8 Morganella  
morganii

98%

12 9 Proteus  
mirabilis

Proteus  
mirabilis

99%

10 Proteus  
mirabilis

99%

11 Proteus  
mirabilis

99%

13 12 S. simulans CNS 95%

13 CNS 96%

15 14 Pseudomonas 
spp

Pseudomonas 
aeruginosa

96%

15 Enterobacter  
hormaechei

99%
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Table 5.3 (Continuation) Comparison of cultured bacterial isolates with DGGE analysis from 

swabs obtained from individual patients with chronic wounds. 

*Percent similarity of partial 16S rDNA coding sequence to sequence of their closest bacterial relatives  
available in the EMBL nucleotide sequence database.

Patient Band Identification 
using  culture 
method

Identification 
using DGGE 

%*

16 16 coliforms

S. warneri

Duganella  
zoogloeoides

92%

17 Duganella  
zoogloeoides

93%

18 Duganella  
zoogloeoides

93%

19 Pseudomonas 
meridiana

95%

17 20 coliforms

S. xylosus

S. cohnii

Enterobacter  
hormaechei

85%

18 21 S. hominis S. epidermidis 99%

22 CNS 96%

23 Enterococcus 
faecalis

97%

19 24 coliforms Acinetobacter 
baumannii

97%

20 25 S.hominis Acinetobacter 
baumannii

95%

21 26 coliforms

Streptococcus 
spp

S. capitis

S. aureus 99%

27 Acinetobacter 
baumannii

93%

22 28 MSSA

S. warneri

S. epidermidis 97%
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Table 5.3 (Continuation) Comparison of cultured bacterial isolates with DGGE analysis from 

swabs obtained from individual patients with chronic wounds.

*Percent similarity of partial 16S rDNA coding sequence to sequence of their closest bacterial relatives  
available in the EMBL nucleotide sequence database.

23 29 S.epidermidis

S.capitis

CNS 96%

30 E,faecalis 96%

24 31 Coliforms

Streptococcus 
spp

Acinetobacter 
baumannii

97%

32 Acinetobacter 
baumannii

97%

33 Enterobacter  
hormachaei

98%

25 34 Coliforms

S.hominis

No results

26 35 Coliforms

S.cohnii

Enterobacter  
hormaechei

98%

27 36 Coliforms

S.cohnii

CNS 97%

37 97%

38 Enterobacter  
hormaechei

96%

28 39 Coliforms

S.hominis

S.aureus 96%

29 40 MRSA S.aureus 96%

5.5 Discussion
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In the present study, a 16S rDNA PCR-DGGE sequencing method was applied 

to the analysis of the diversity of microflora in wounds and healthy skin. This allowed 

analysis of the bacterial population of individual wounds by using a single PCR and 

also for samples to be run alongside one another on the same gel for direct comparison. 

In  this  way  it  was  possible  to  obtain  considerable  information  about  the  species 

composition of wounds and healthy skin. Bands of specific interest present in the total 

wound DNA were then excised and sequenced. Based on the results of the study the 

most common bacteria in chronic wounds would be selected for further development of 

multiplex RT-PCR.

The 16S rRNA gene has always been present in all microorganisms and is the 

main target of genetic sequencing in bacteria. Several unique characteristics make this 

gene the ideal candidate for mutations analysis (Tortoli, 2011). The 16S rRNA gene is 

characterized by an evolutionary rate high enough to produce interspecies variability 

but, at the same time, by a degree of conservation sufficient to minimise the intraspecies 

variability (Peix  et al., 2009).  The 16S rRNA gene sequence is about 1,550 bp long, 

contains  both  variable  and  conserved  regions  and  is  large  enough  to  provide 

distinguishing and statistically valid measurements. The comparison of the 16S rRNA 

gene sequences allows differentiation between organisms at the genus level across all 

major phyla of bacteria, in addition to classifying strains at multiple levels, including 

the species and subspecies level. The occasional exceptions to the usefulness of 16S 

rRNA gene sequencing usually relate to more than one well-known species having the 

same or very similar sequences.

The  PCR  products that  can  be  used  to  perform  DGGE  analysis  and  allow 

efficient resolution must be < 500bp (Myers et al., 1985). This short fragment limits the 

amount of sequence information that can be obtained. However, the first 500bp of 16S 

rDNA fragment is the hypervariable region and is the best region to make phylogenetic 
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compositions. The primers used in the present study yielded a product of 417 bp long. 

These  primers  gave  good discrimination  and  separation  of  the  predominant  species 

present in the community.  For retrieving clean sequences from individual bands co-

migration was a problem. It is clear from other studies with DGGE that 16S rRNA gene 

sequences affiliated to specific bacterial species can be found in more than one position 

in DGGE gels. This may be due to the presence of multiple operons or a high similarity 

between the base compositions. Paenibacillus polymyxa produces more than one DGGE 

band due to slight sequence heterogeneity between operons (Nübel et al., 1996) and as 

many  as  nine  different  positions  were  found  among  10  Corynebacterium  affiliated 

sequences (Schabereiter-Gurtner et al., 2001). 

In the present study, bands on the same position within a gel were represented by 

different species. In the healthy feet study, only a few bands (bands 2, 10, 11) were at 

the  same position  and were  identified  as  the  same microorganism.  However,  bands 

identified as  Staphylococcus spp were located in a very similar position to each other 

with minimal deviation. Additionally, S. epidermidis was found to produce bands in two 

different positions within a gel in both the healthy feet and chronic wounds study. In 

the  chronic  wound  study  Morganella  morganii,  Proteus  mirabilis,  Enterobacter  

hormaechei,  Duganella  zoologoeoides,  Enterobacter  faecalis and  Acinetobacter  

baumannii all produced between 2 to 5 bands in different positions within a gel, which 

may be  due  to  the  presence  of  multiple  operons  or  different  subspecies  within  the 

sample.

       Schabereiter-Gurtner et al., (2001) identified bacteria from conjunctival swabs by 

PCR-DGGE and  sequencing.  They found  that  Corynebacterium species  can  give  9 

different positions in DGGE. Bands at five different positions in DGGE were found 

among 9 Staphylococcus-affiliated sequences. Three different band positions in DGGE 

were found among 6  Streptococcus-affiliated sequences. All sequences affiliated with 
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Propionobacterium had the same position in DGGE.  In the recent study, S. epidermidis, 

Enterobacter hormaechei and  E. faecalis were found to produce bands in 2 different 

positions.  Morganella  morganii,  Proteus  mirabilis and  Duganella  zoogloeoides 

produced  bands  in  3  different  positions  within  the  gel,  whereas  Acinetobacter  

baumannii gave 5 different bands.

The mean number of bacterial species recovered from healthy feet and chronic 

wounds samples using culture methods was 2.4 and 1.83 respectively.  However,  the 

microflora  of  healthy  feet  seem  to  be  more  diverse  but  this  diversity  was  mainly 

between Staphylococcus species. In chronic wounds, the diversity was observed within 

different genera. None of the samples collected from healthy participants was shown to 

contain Gram negative bacteria. The most predominant microflora of healthy skin was 

Coagulase negative staphylococci,  Candida spp,  Corynebacterium spp.  Healthy skin 

contains mainly Gram positive cocci, whereas in chronic wounds the predominance of 

Gram positive bacteria in the early phase switches to Gram-negative species mostly 

coming from the gut (E. coli) 4-10 days after injury (Bowler et al., 2001). 

PCR is known to be more sensitive than culture for the detection of bacteria in 

clinical samples (Rantakokko-Jalava et al., 2000; Schabereiter-Gurtner et al., 2001). In 

the present study, DGGE allowed the identification of a number of strains not detected 

by  culture  technique  with  43%  of  the  DGGE  fragments  sequence  representing 

organisms not  cultured from the wounds from which they had been amplified.  This 

highlights the fact that a significant proportion of the resident microflora was not able to 

be analysed by culture methods alone. The reason for this maybe due to the fact that  

bacteria were isolated from samples containing large numbers of other bacteria and they 

may not have been detected during the initial culture screening due to competition with 

other more numerous species and overgrowth on the selective/nonselective media by 

related microflora. In the healthy foot study, three (18.75%) samples were identified 
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with  bacteria,  which  were  not  detected  using  culture  methods  (Propionobacterium 

acnes,  Prochlorococcus  marinus and  Corynebacterium  tuberculostearicum). 

Prochlorococcus  marinus is the  dominate  photosynthetic  organism in  the  ocean.  It 

accounts  for  up  to  60%  of  the  ocean’s  chlorophyll  in  many  regions  such  as  the 

subtropical Pacific and it is not associated with human microflora. Corynebacterium and 

Propionobacterium species are normal skin flora and they are largely commensals and 

part of the skin flora present on most healthy adult human skin. 43% of the chronic 

wound  microflora  not  detected  by  culture,  but  identified  by  DGGE  are  intestinal 

bacteria. The following were found to be associated with chronic wounds: Morganella  

morganii,  Escherichia  fergussonii,  Enterobacter  faecalis,  Proteus  mirabilis. 

Acinetobacter  baumannii is  also  associated  with  chronic  wounds,  however  it  is  a 

pathogenic bacterium resistant to most antibiotics.  As a result of its resistance to drug 

treatment, some estimates state the disease is killing tens of thousands of U.S. hospital 

patients  each  year  (Pollack,  2010).  The  illness  can  cause  severe pneumonia and 

infections of the urinary tract, bloodstream and other parts of the body.  Acinetobacter  

enters into the body through open wounds, catheters,  and breathing tubes.  It  usually 

infects  those with compromised immune systems,  such as  the  wounded,  the elderly, 

children, or those with immune diseases so the proper identification and treatment of 

infection is very important, especially for patients with diabetes. A. baumannii has also 

been  implicated  in  severe  life  threatening  infections  such  as  necrotizing  fasciitis 

(Charnot-Katsikas  et al.,  2009; Sullivan  et al.,  2010). Enterobacter hormaechei  was 

identified as a unique species in 1989 (O’Hara et al., 1989). It has been shown to be of 

clinical significance by causing nosocomial infections, including sepsis. It spreads via 

horizontal  transfer  and  is  often  associated  with  extended  spectrum  beta-lactamase 

production,  which  increases  the  challenges  associated  with  treatment  by  limiting 

therapeutic options. It can be isolated from blood, wounds and sputum. One patient was 
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identified with  Duganella zooloeoides, which is not associated with wounds and skin 

microflora.  It  is  an  environmental  microorganism  and  human  colonisation  with 

Duganella remains unclear. 

       The results of the present study together with previous studies have demonstrated 

the  greater  diversity  of  the  wound  microflora  assessed  by  molecular  methods  in 

comparison  to  cultural  techniques. Rhoads  et  al., (2012)  investigated  168  chronic 

wounds using both conventional culture methods and PCR-DGGE. Seventeen different 

bacterial  taxa  were  identified  with  culture,  and  338  different  bacterial  taxa  were 

identified with molecular testing. The majority of bacteria identified with culture were 

also identified with molecular testing, but the majority of bacteria identified with the 

molecular  testing  were  not  identified  with  culture  methods.  The  Rhoads  study 

demonstrates the increased sensitivity that molecular microbial identification can have 

over culture methodologies.

      Davies et al., (2004), investigated the microflora of healing and nonhealing chronic 

venous  leg  ulcers  using  16S  PCR-DGGE  and  found  that  more  that  40%  of  the 

sequences represented organisms not cultured from the wounds from which they were 

amplified. They also confirmed that the bacterial DNA from patient’s samples had some 

bands in common, however each patient sample produced a unique banding pattern. 

Similar results have been found in this study with 43% of microorganisms identified 

with PCR-DGGE sequencing methods but not identified using the culture approach. 

                Sequencing the 16S rRNA gene is  more beneficial  than traditional 

biochemical identification methods (Clarridge, 2004). The DGGE method is a valuable 

approach in screening complex ecosysytems on a large scale, however it is not free of 

biases. The performance of the method from sample collection to identification of the 

bacteria is time consuming and laborious. Additionally, there are many issues arising 
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from the number of steps necessary to perform the whole technique (sample collection, 

DNA extraction,  PCR amplification,  DGGE, bands excision,  PCR of the bands and 

sequencing). If anything goes wrong in any stage during the process it will have an 

impact on the results and require the process to be started again. DGGE and sequencing 

is a good research technique to investigate complex bacterial populations when the time 

to obtain diagnostic results for patients does not matter. In clinical microbiology there is 

always a pressure to quickly identifying causative microorganisms, especially in life-

treatening conditions. 

            There are also some limitations related to the sensitivity and specificity of the 

method. DGGE is able to detect only microbial populations making up at least 1% of 

the  total  community  (Muyzer  and  Smalla,  1998).  Also,  fragments  amplified  from 

different species might migrate to the same location or multiple bands are observed 

from a single species in the gel. The co-migration of different sequences to the same 

position shows that  the assumption that  one band equals one genome is  not always 

valid. The presence of bands at similar positions in DGGE gels does not confirm the 

presence of the same sequence or bacterial species in each sample. These issues limit 

the conclusions that can be drawn from this technique alone (Kisand and Wikner, 2003). 

Also,  PCR-DGGE  sequencing  methods  give  the  results  of  viable  and  non-viable 

microorganisms present within the sample, in contrast to conventional culture, which 

identifies only viable microorganisms. 

          There are various molecular biological methods used to reveal the species 

composition of bacterial populations without cultivation. Partial ribosomal amplification 

and pyrosequencing (PRAPS) is a recent and powerful method, which can be used to 

investigate microbial diversity in depth in any type of sample (Dowd et al., 2008). The 

bacterial tag encoded FLX amplicon pyrosequencing method (bTEFAP) (Dowd et al., 

2008)  improves  upon this  PRAPS approach,  increasing the cost  benefit  of diversity 
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pyrosequencing through the  use  of  sample-specific  sequence  tags  incorporated  onto 

secondary amplification primers. Individual sample amplicons can then be pooled prior 

to  sequencing  and  using  bioinformatics  approaches  they  can  be  identified  post-

sequencing  and  analysed  separately.  The  use  of  454FLX  pyrosequencing  is 

revolutionary  because  it  can  provide  a  sufficient  number  of  sequences  of  adequate 

length  to  enable  extrapolations  that  estimate  bacterial  diversity  based  on  the  total 

number  of  microorganisms  present  and  the  distribution  of  individuals  among  those 

species. The bTEFAP technique allows the characterisation of bacterial diversity with 

less  labour  compared  with  traditional  techniques  such  as  DGGE.  Pyrosequencing 

technology is an easy to use method and is relatively inexpensive, however it has also 

limitations such as the detection of long homopolymers (repeated nucleotides) which 

can result in sequencing errors (Dowd et al., 2008).  

          It is important to identify bacterial populations within pathogenic biofilms for 

many reasons. These reasons typically relate to the fact the higher bacterial population 

diversity within a pathogenic biofilm provides the bacterial community as a whole with 

an enhanced ability to persist and thrive in a variety of antagonistic situations, even in 

spite of combined host and medicinal attack (Boles et al., 2004). Moreover, to establish 

the role of microorganisms in wound healing, it is necessary to define the full diversity 

of  bacteria  within  a  wound.  Molecular  methods  such as  nucleic  acid  amplification, 

pyrosequencing, and development of 16S ribosomal clone libraries have revolutionized 

our ability to understand the microbiology of chronic wounds and may revolutionize our 

approach to the use of antimicrobial agents in the therapy of chronic wounds. These 

new approaches are based on a full investigation of the microflora within a wound and 

they identify the large number of organisms that are fastidious or noncultivable (Martin 

et al., 2010).

         In summary, the DGGE sequencing technique is a useful research method for 
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investigation of microorganism populations. In clinical settings it  can be valuable to 

investigate infections caused by bacteria with unusual growth requirements, for patients 

who  have  been  unsuccessfully  treated  with  antibiotics  or  who  suffer  from clinical 

bacterial infections that cannot be cultured. The time necessary to perform the technique 

and also some limitations mentioned above make this technique difficult to place within 

rapid identification methods and within clinical laboratory settings.

5.6 Conclusions

       In this study, the bacterial diversity of wounds and healthy feet was assessed using 

conventional culture and PCR-DGGE sequencing technique. It allowed a comparison of 

isolation methods to a culture independent DNA profiling technique. In some cases, 

bacteria  indicated on DGGE gels  was not  detectable  by culture.  The assessment  of 

bacterial diversity is important, especially in chronic wounds containing biofilms. Based 

on  the  results  of  this  study and  recent  studies  found  in  the  literature  the  panel  of 

clinically  relevant  microorganisms  would  be  selected  for  future  development  of  a 

multiplex  RT-PCR  assay:  S.  aureus,  E.  coli,  S.  epidermidis,  Proteus  mirabilis, 

Pseudomonas aeruginosa, Acinetobacter baumannii, Streptococcus sp and Enterobacter  

hormaechei.

        Both DGGE and culture techniques have distinct characteristics: culture methods 

are  easy  to  implement,  are  cost-effective  and  can  identify  dominant  culturable 

pathogens. However they are limited by the culturability of target bacteria. PCR-DGGE 

sequencing can be used to  analyse complex bacterial  communities  and can  identify 

unculturable organisms which may only represent a little as 1% of the total bacterial 

population. DGGE is a time-consuming technique and is expensive due to the fact that 

bands at  the same position within a gel may represent different species and to fully 

assess the microflora present within the sample all distinct bands should be analysed 
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and  sequenced,  thus  rapid  and a  less  expensive  method  to  analyse  the  diversity  of 

microflora such as multiplex RT-PCR should be developed and employed.
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CHAPTER 6

General discussion and future work

6.1 General Discussion 

        Diagnostic results to a great extent depend on the quality of the sample received in 

the laboratory and the methods used to identify microorganisms. Poorly collected and 

transported  samples  fail  to  isolate  causative  microorganisms  and  may  recover 

contaminants  and  normal  flora.  In  this  study,  the  aspect  of  sample  collection  and 

transport  was investigated as well  as the conventional and molecular approaches for 

bacterial identification and quantification. The objective of the first part of the study 

was to investigate the most appropriate swab transport system in terms of the ability of 

the swab to maintain viability of the most common wound bacteria during transport. 

Additionally, swabs were tested for their performance with molecular methods in order 

to choose the most appropriate swab for further in vivo studies on patients and healthy 
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volunteers.  Four  different  swab  systems  with  different  media  formulations  were 

evaluated (dry Sigma Swab, Amies Healthlink Transporter, Amies Sigma Transwab and 

eSwab). The recovery studies revealed that all swabs met acceptance criteria and were 

able to maintain the viability of  S. aureus, E. coli and  Bacteroides fragilis over 48h. 

However,  molecular  analysis  of  the  swabs  confirmed  that  the  Sigma  dry  swab 

performed  best  with  DNA extraction  and  PCR reaction,  providing  sufficient  DNA 

extraction for both  S. aureus and  E. coli. This is an important finding, especially for 

samples with low concentrations of microorganisms as insufficient extraction of DNA 

may  lead  to  lack  of  an  identification  of  the  causative  microorganism.  Also,  it  is 

important when the quantitative diagnostic results are required or for research studies 

involving  quantitative  molecular  techniques.  Based  on the  results  of  this  study,  the 

Sigma dry swab remained the best choice for further  in vivo studies involving both 

conventional and molecular techniques for identification and quantification of bacteria. 

In the next part of the study, the diagnostic validity of the semi-quantitative and 

quantitative swab and biopsy cultures was investigated to establish the best method of 

culturing  using  MRSA as  an  indicator  organism and known pathogen.  This  was an 

additional  advantage  of  the  study as  most  of  the  previous  studies  in  the  literature 

correlated  semi-quantitative  and quantitative  methods  using  total  bacterial  counts  to 

look at the ability of the method to detect and quantify bacteria. The quantitative MRSA 

count analysis disproved the hypothesis that wound infection exists when bacterial load 

excees 105 cfu/cm2. None of the patients developed infection despite the fact that 54% of 

chronic  wounds  had  a  MRSA count  of  105  or  more  cfu/  cm2,  which  suggests  that 

bacterial  load  is  not  an  important  factor  in  diagnosing  chronic  wound  infection.  A 

diagnosis of chronic wound infection should be based on the assessment of the clinical 

signs of infection.
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My findings demonstrate a statistically strong correlation between semi-quantitative and 

quantitative swab and semi-quantitative and quantitative biopsy culture. There was a 

weak  correlation  observed  between  semi-quantitative  swab  and  quantitative  biopsy 

culture.  Semi-quantitative  methods  can  be  successfully  used  and  employed  in  the 

laboratory settings  for  the  management  of  chronic  wounds.  However,  when time is 

important, rapid methods should be used. Thus a RT- PCR assay for the direct and rapid 

detection of MRSA from wound swabs was developed and compared with conventional 

methods in the next part of the study. The sensitivity of the developed assay was 83.3% 

and  the  specificity  was  88.5%.  Our  quantitative  analysis  revealed  that  the  average 

difference between the MRSA count obtained using RT-PCR and conventional culture 

results  was  0.61  log.  These  findings  show the  potential  of  RT-PCR assay  in  rapid 

detection and quantification of MRSA, however the assay should be further optimised 

to achieve higher sensitivity and specificity. The RT-PCR assay for MRSA in this study 

is  the  first  step  in  developing  multiplex  RT-PCR  for  the  most  common  wound 

pathogens. In order to achieve it in the future, the diversity of microflora in chronic 

wounds  was  investigated  using  PCR-DGGE  sequencing  and  compared  with 

conventional culture results. DGGE allowed the identification of a number of strains not 

detected by culture techniques with 43% of the DGGE fragment sequences representing 

organisms not  cultured from the wounds from which they had been amplified. This 

highlights the fact that a significant number of bacteria were not detected by culture 

methods alone. The most common bacteria found in chronic wounds identified using 

PCR-DGGE sequencing  were  S.  aureus,  E.  coli,  S.  epidermidis,  Proteus  mirabilis, 

Pseudomonas  aeruginosa,  Acinetobacter sp,  Streptococcus sp  and  Enterobacter sp. 

Based  on  these  results,  multiplex  RT-PCR  will  be  developed  for  chronic  wound 

pathogens  future  work  (Section  6.2).  Previous  studies  have  compared  conventional 

culture to molecular methods (Dowd  et al., 2008; Martin  et al., 2010; Rhoads  et al., 
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2012) and agreed that molecular tests are more sensitive than culture testing and hold 

promise for improving patient care. This present study adds to this body of work. 

In conclusion,  it  is  important to  further  our  understanding of  chronic wound 

healing from a biofilm concept approach as we begin to appreciate that many disease 

aetiologies are now more complex than once thought in medicine, that is the ‘Koch’s 

postulates’  approach.  A  better  understanding  of  the  impact  of  certain  bacterial 

communities in chronic wounds and delayed wound healing is  necessary.  Currently, 

wound management is based on principles of reducing bacterial load and preventing 

infection  (Fonder  et  al.,  2008)  however,  the  complexity of  the  wound environment 

makes it likely that antimicrobial therapy could result in unintended consequences. To 

date  there  is  little  data  on  the  microbiological  response  to  antimicrobial  wound 

therapies. The application of proper and rapid diagnostic methods to analyse wound 

microbial communities with respect to clinical outcomes and therapeutic interventions 

(particularly  antibiotic  treatments)  will  provide  critical  insights  into  the  roles  of 

microorganisms in wound healing and the impacts of wound therapies.

6.2 Future work

The  first  step  in  obtaining  diagnostic  results  is  a  proper  collection  and 

transportation  of  the  sample  to  the  laboratory.  There  is  now a wide  range of  swab 

transport  systems  available,  thus  it  is  important  to  choose  an  appropriate  transport 

device, which is able to maintain the viability of bacteria during transport and does not 

interfere  with  the  diagnostic  method.  Future  studies  will  concentrate  on  further 

assessment of the swabs performance with DNA extraction methods and PCR. More 

swabs  with  different  media  formulations  will  be  tested  with  a  range  of  aerobic, 

facultative  and  anaerobic  bacteria  commonly  found  in  chronic  wounds  for  their 
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performance  with  DNA  extraction  and  PCR.  The  possible  interference  from  the 

transport media and their detection sensitivity will be investigated.

Future  studies  will  also  investigate  the  impact  of  the  treatments  on  the 

correlation between semi-quantitative and quantitative swab and biopsy culture using 

not only conventional methods but also molecular approaches such as multiplex RT-

PCR. This will allow us to look at the diversity of the microfora in wounds and the 

impact of treatment on the correlation between the surface microflora and deep tissue 

structures  of  the wound.   In  relation  to  the novel  wound healing theory suggesting 

microbial imbalance and synergistic relationships between bacteria to be the main cause 

of non-healing wounds,  future studies  should concentrate  on deeper investigation of 

molecular  microbiological  approaches  for  bacterial  population  analysis.  Rapid 

techniques such as multiplex real-time PCR identification methods for MRSA and other 

most  common  wound  bacteria  selected  based  on  the  results  of  this  study  will  be 

developed and established.

 There  are  no  statistically  significant  studies  able  to  conclusively  and 

consistently  show  a  relationship  between  clinical  outcome  and  the  microbial 

composition of a chronic wound.  Thus, the importance of certain bacterial strains in 

wounds should be investigated to the greater extent. The literature in this area is very 

limited  and  this  work  will  contribute  to  a  wider  understanding  of  the  microbial 

colonisation  of  wounds,  the  impact  of  microorganisms  on  wound  healing.  The 

development of rapid diagnostic methods to investigate the diversity of microflora in 

wounds will contribute to the effectiveness of the treatment and will reduce the time to 

obtain  correct  diagnosis,  therefore  it  will  contribute  to  better  wound  management. 

Appropriate management of the wound is important to reduce the likelihood of wound 

infection which may lead to bone infection (osteomyelitis) and bacteraemia. 
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Appendices



Appendix 1

Table 1 Staphylococcus species identified in samples collected from the sole of the right and left foot from healthy participants and processed using 

conventional culture methods (Chapter 5). ng: no growth; TBC: Total Bacterial Count; Bacterial count – cfu/cm2.

Patient  number Gender Right/Left foot TBC S. aureus S.epidermidis S. cohnii S. warneri S. caprae S. hominis S. capitis S. sciuri Micrococcus

1 F right 3.30 x 106 ng 1.40 x 104 ng ng ng ng ng ng ng

left 2.56 x 106 ng 8.00 x 103 ng ng ng ng ng ng ng

2 F right 3.76 x 106 ng ng 1.60 x 104 ng ng ng ng ng 6.80 x 104

left 7.30 x 105 ng ng 2.00 x 104 ng ng ng ng ng ng

3 F right 2.04 x 107 6.00 x 104 ng ng 4.20 x 105 ng ng ng ng ng

left 2.64 x 107 6.00 x 104 ng ng 2.38 x 105 ng ng ng ng ng

4 M right 6.50 x 106 ng 8.80 x 105 6.20 x 105 2.34 x 106 ng ng ng ng ng

left 1.34 x 106 ng 3.40 x 105 2.40 x 105 4.60 x 105 ng ng ng ng ng

5 M right 3.42 x 106 ng 5.00 x 105 ng 1.40 x 105 ng ng ng ng ng

left 1.38 x 106 ng 2.80 x 105 ng 5.60 x 105 ng ng ng ng ng

6 M right 2.52 x 106 ng 1.60 x 104 ng ng 3.80 x 103 ng ng ng ng

left 8.40 x 105 ng 1.00 x 104 ng ng 1.00 x 104 ng ng ng ng



Table 1 (Continuation) Staphylococcus species identified in samples collected from the sole of the right and left foot from healthy participants and processed 

using conventional culture methods (Chapter  5). TBC: Total Bacterial Count; Bacterial count – cfu/cm2.

Patient  number Gender Right/Left foot TBC S. aureus S. epidermidis S. cohnii S. warneri S. caprae S. hominis S. capitis S. scuri Micrococcus

7 F right 4.72 x 105 ng ng 1.10 x 104 ng ng ng ng ng 3.80 x 104

left 3.47 x 105 ng ng 4.20 x 104 ng ng ng ng ng 1.40 x 104

8 F right 1.42 x 106 ng 1.20 x 106 ng 8.80 x 104 ng ng ng ng ng

left 6.80 x 105 ng ng ng ng ng ng ng ng 6.00 x 103

9 F right 3.30 x 105 ng ng ng 4.00 x 103 ng 2.00 x 104 ng ng ng

left 2.00 x 105 ng ng ng 8.00 x 103 ng ng ng ng ng

10 F right 1.07 x 106 ng 9.90 x 105 ng 7.20 x 105 ng ng ng ng ng

left 3.80 x 105 ng 1.96 x 105 ng 1.84 x 105 ng ng ng ng ng

11 M right 1.16 x 105 ng 1.12 x 105 ng 4.00 x 103 ng ng ng ng ng

left 1.82 x 105 ng 1.56 x 105 ng 2.60 x 104 ng ng ng ng ng

12 M right 6.30 x 105 ng 1.40 x 104 ng ng ng 4.00 x 103 ng ng ng

left 3.06 x 105 ng 4.40 x 104 ng ng ng 6.00 x 105 ng ng ng

13 M right 2.00 x 105 ng 2.20 x 104 2.80 x 104 ng ng ng ng ng 1.20 x 104

left 1.36 x 105 ng 8.20 x 104 2.20 x 104 ng ng ng ng ng ng



Table 1 (Continuation) Staphylococcus species identified in samples collected from the sole of the right and left foot from healthy participants and processed 

using conventional culture methods (Chapter  5). TBC: Total Bacterial Count; Bacterial count – cfu/cm2.

Patient  number Gender Right/Left foot TBC S. aureus S. epidermidis S. cohnii S. warneri S. caprae S. hominis S. capitis S. scuri Micrococcus

14 F right 7.46 x 105 ng 1.10 x 105 ng ng ng ng ng ng ng

left 5.48 x 105 ng 1.42 x 105 ng ng ng ng ng ng ng

15 F right 4.20 x 105 ng ng ng ng ng 3.30 x 105 ng ng ng

left 3.14 x 105 ng ng ng ng ng 3.00 x 105 ng ng ng

16 F right 1.66 x 105 ng ng ng 3.40 x 104 ng ng 5.20 x 104 ng ng

left 2.62 x 105 ng ng ng 5.80 x 104 ng ng 6.40 x 104 ng ng

17 F right 9.80 x 105 ng ng ng ng ng ng 9.80 x 105 ng ng

left 1.06 x 106 ng ng ng ng ng ng 1.06 x 106 ng ng

18 M right 2.42 x 105 ng 1.30 x 105 ng ng ng ng ng 1.14 x 105 ng

left 2.90 x 105 ng 2.24 x 105 ng ng ng ng ng 1.80 x 104 ng

19 M right 5.03 x 106 ng 5.03 x 106 ng ng ng ng ng ng ng

left 2.75 x 106 ng 2.75 x 106 ng ng ng ng ng ng ng

20 M right 1.28 x 105 ng ng ng ng ng ng ng ng ng

left 3.42 x 105 ng ng ng ng ng ng ng ng ng



Table 2 Bacterial strains identified in the samples collected from the sole of the right and left foot from healthy participants and processed   using conventional  

culture methods (Chapter 5). Bacterial count – cfu/cm2.

Patient number Right/Left foot Gender C. pelliculosa Cryptococcus terreus Candida cifferrii Candida farmata Kocuria varians

1 right F 8.00 x 104 3.80 x 105 ng ng ng

left 2.20 x 105 3.40 x 104 ng ng ng

2 right F ng ng 6.00 x 103 ng ng

left ng ng 8.00 x 103 ng ng

4 right M ng ng ng 6.40 x 104 ng

left ng ng ng ng ng

7 right F ng ng 4.00 x 104 ng ng

left ng ng 1.00 x 104 ng ng

8 right M ng ng 5.00 x 105 ng ng

left ng ng 5.00 x 104 ng ng

9 right F 8.60 x 104 ng ng ng ng

left 6.40 x 104 ng ng ng ng

20 right M ng ng ng ng 1.28 x 105

left ng ng ng ng 3.42 x 105



Table 3 Bacterial strains identified in samples collected from chronic wounds and processed using conventional culture methods (Chapter 5).

Patient 
number

Bacterial count cfu/cm2

TBC Coliforms MRSA MSSA S. epidermidis CNS Streptococcus sp Anaerobes Pseudomonas sp Proteus mirabilis

1 7.72 x 106 1.14 x 106 1.06 x 105 ng ng ng ng ng ng ng

2 5.77 x 106 ng 5.77 x 106 ng ng ng ng ng ng ng

3 1.28 x 107 5.26 x 106 7.44 x 106 ng ng ng ng ng ng ng

4 4.79 x 106 ng ng 4.40 x 104 3.02 x 105 ng 8.61 x 106 Strep. Gr D ng ng ng

5 7.40 x 104 ng ng 4.00 x 103 ng ng 2.00 x 104  Strep. Gr A ng ng ng

6 2.12 x 105 ng 2.12 x 105 ng ng ng ng ng ng ng

7 ng ng ng ng ng ng ng ng ng ng

8 1.80 x 103 ng ng ng 1.80 x 103 ng ng ng ng ng

9 4.29 x 106 ng ng ng 4.29 x 106 ng ng ng ng ng

10 1.98 x 106 5.40 x 105 ng ng 6.00 x 104 ng ng ng ng ng



Table 3 (Continuation) Bacterial strains identified in samples collected from chronic wounds and processed using conventional culture methods (Chapter 5).

Patient 
number

Bacterial count cfu/cm2

TBC Coliforms MRSA MSSA S. epidermidis CNS Streptococcus sp Anaerobes Pseudomonas sp Proteus mirabilis

11 8.00 x 104 2.50 x 103 ng ng ng 1.20 x 102 ng 1.80 x 103 ng ng

12 5.80 x 107 5.40 x 105 ng ng ng ng ng ng ng 5.80 x 107

13 2.40 x 105 ng ng ng ng 2.40 x 105 ng ng ng ng

14 2.80 x 104 ng ng ng ng 2.80 x 104 8.61 x 106  Strep. Gr D ng ng ng

15 3.52 x 107 ng ng ng ng ng 2.00 x 104 Strep. Gr A ng 3.53 x 107 ng

16 2.64 x 106 2.60 x 104 ng ng ng 1.20 x 102 ng ng ng ng

17 7.20 x 106 2.00 x 103 ng ng ng 2.60 x 105 ng ng ng ng

18 4.40 x 104 ng ng ng ng 4.40 x 104 ng ng ng ng

19 2.00 x 103 1.30 x 106 ng ng ng ng ng ng ng ng

20 2.80 x 104 ng ng ng ng 2.80 x 104 ng ng ng ng

21 2.38 x 105 6.00 x 103 ng ng ng 1.60 x 104 2.48 x 105 ng ng ng



Table 3 (Continuation) Bacterial strains identified in samples collected from chronic wounds and processed using conventional culture methods (Chapter 5).

Patient 
number

Bacterial count cfu/cm2

TBC Coliforms MRSA MSSA S. epidermidis CNS Streptococcus sp Anaerobes Pseudomonas sp Proteus mirabilis

22 5.80 x 104 ng ng 6.00 x 103 ng 3.80 x 104 ng ng ng ng

23 6.35 x 105 ng ng ng 2.40 x 105 3.80 x 105 ng ng ng ng

24 5.48 x 105 1.72 x 105 ng ng ng ng 3.77 x 105 ng ng ng

25 9.40 x 104 3.40 x 104 ng ng ng 5.20 x 104 ng ng ng ng

26 9.00 x 105 6.00 x 104 ng ng ng 1.50 x 105 ng ng ng ng

27 1.18 x 105 1.60 x 104 ng ng ng 1.20 x 104 5.60 x 104  Strep. Gr B ng ng ng

28 4.00 x 103 1.90 x 102 ng ng ng 9.80 x 103 ng ng ng ng

29 3.89 x 106 ng 3.50 x 106 ng ng ng ng ng ng ng

30 9.20 x 103 2.90 x 102 ng ng ng 8.90 x 103 ng ng ng ng

31 ng ng ng ng ng ng ng ng ng ng

32 1.30 x 102 ng 1.30 x 102 ng ng ng 2.48 x 105 ng ng ng
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Bacteriology of wounds

1. Background:

     Chronic wounds are a repository of complex polymicrobial populations, including 
both aerobic and anaerobic species.  There is  evidence,  that  the microfloras of these 
wounds play a role in the healing process, althrough there is still considerable debate as 
to the importance of individual species or microbial density in relation to healing and 
subsequently to chronic wound management.  Recent evidence suggest that Methicillin-
resistant  Staphylococcus  aureus (MRSA) is  an  increasing  problem amongst  patients 
with  chronic  wounds.  This  bacteria  can  cause  serious  wound  infection.  Clinical 
microbiology laboratories still depend on phenotypic assays for both identification and 
antibiotic resistance testing of organisms. Currently it requires 24h to 48h to definitively 
identify  an  MRSA  culture  by  conventional  methods.  The  rapid  and  accurate 
identification of MRSA in clinical specimens has important implications for the therapy 
and  management  of  both  colonised  and  infected  patients.  Numerous  molecular 
approches that reduce the time for identification of MRSA has been described, however 
the molecular tests developed to date for the detection of MRSA cannot be applied for 
the  direct  detection  from  clinical  specimens,  without  previous  time  consuming 
isolation, capture or enrichment of MRSA. 
     In environmental microbiology, denaturing gradient gel electrophoresis (DGGE) has 
been used as a tool for profiling complex microbial populations without the biases of 
cultural analysis for many years and the technique has now been applied to the study of 
a limited number of human microbial populations. The advantage of this approach is 
that it creates a genetic fingerprint or profile of total community diversity by separating 
mixed 16S rRNA PCR amplification products on the basis of their sequence melting 
behavior. In this study we will apply the use of DGGE and sequencing to the analysis of  
the chronic wound microflora. This will allow us to quickly and efficiently analyze the 
whole bacterial  population of  individual  wounds by using a single PCR and to run 
samples alongside one another on the same gel for direct comparison. In this way, it will 
be  possible  to  concurrently  obtain  considerable  information  about  the  species 
composition of multiple wounds (40 in all).

2. Study objectives:

The aim of this study is to develop quantitative RT-PCR assay for direct detection of 
MRSA  from  wound  swabs  and  comparison  of  this  method  with  quantitative 
conventional tests. Additionally, the diversity of microflora in chronic wounds will be 
assessed  by  developing  the  Denaturating  Gradient  Gel  Electrophoresis  (DGGE) 
sequencing method. Bacterial population analysis of wounds has been recently reported 
(James et al., 2008) but the bacterial diversity of wounds has not. The literature in this 
area is  very limited,  thus  our  work will  contribute to  a  wider  understanding of  the 
microbial colonisation of wounds using both conventional and molecular techniques.

Trial Design:

3.1 Design
This will be a prospective, sequential trial in male and female patients.



3.2 Endpoints
The primary trial endpoint will be the successful collection of suitable microbiological 
samples by the clinician.

- Patient population

4.1 Number
 A total of 40 adults aged 18-75 will be included in the study.

4.2 Patient Inclusion criteria
Patients aged over 18 years who have provided written informed consent.
Patients with variety of non-infected chronic wounds will be included in the study.

4.3 Patient Exclusion criteria
- Patients under the age of 18 years
- Patients unable to comply with study procedures
- Immunosuppressed patients
- In the opinion of the Investigator, a patient who is not likely to complete the trial for 
whatever reason

4.4 Withdrawal
Patients may withdraw their consent to participating in the trial  at  any time for any 
reason, without stating that reason or compromising the medical care they will receive.

The investigator may withdraw patients from the trial if they are not compliant with the 
trial protocol or to protect patients' safety and well-being.

5. Plan of Investigation

A total  of 40  patients  with  chronic  wounds  will  be  recruited  to  the  study  from 
Manchester  Diabetes  Centre,  the  Manchester  Foot  Hospital  or  in-patients  at  the 
Manchester Royal Infimary.
The patients will be appropriately informed and consented for the trial. 
In  the  first  instance  the  wound  will  be  cleaned  with  sterile  saline.  The  number  of 
superficial  swabs will  be taken by Sigma dry swab (Medical Wire &Equipment Co. 
Ltd., Corsham, England) using rolling the zigzag method.

− One swab will be tested using conventional microbiological culture technique.
− Second swab will be used for quantitative RT-PCR.
− Third swab will be used for bacteria population analysis DGGE, sequencing.

All  samples  will  not  have patients identifiers  attached,  only anonymous randomised 
numbers will be attached to the sample. A batch of samples will then be prepared for 
transport to the laboratory for testing.
The  samples  will  be  forwarded  to  the  testing  laboratory  Manchester  Metropolitan 
University  Department  of  Microbiology  for  conventional  culturing,  RT-PCR  and 
DGGE, sequencing testing. This will involve the detailed identification of the bacterial 
species present but will not involve the analysis of any patient derived human DNA. 



6. AE, SAE and ADR Reporting

− Adverse events (Aes)
An adverse event (AE) is any untoward medical occurance in a volunteer or clinical 
subject  to  whom a  pharmaceutical  product  has  been  administered,  which  does  not 
necessarily have a casual relationship with this treatment. As no materials  are being 
applied or administered to the patient no Aes are anticipated.

− Severity of Adverse Events
As  no  materials  are  being  applied  or  administered  to the  patient  no  SAEs  are 
anticipated.

7. Statistical Design

7.1 Sample size
40 patients will be recruited into the study.

7.2 Data handling
Trial data will be double data entered onto the password protected database. Data will 
be validated using electronic and manual checks.

8. Additional Information

8.1 Protocol Amendments
No changes  to  the  protocol  will  be  initiated  without  prior  written  approval  of  the 
relevant independent ethics committee of an appropriate amendment.The only exception 
being when the change is necessary to eliminate immediate hazards to the patients or 
when the change involves only logistical or administartive aspects of the trial.

9.Ethical and Legal Issues

9.1 Ethical Guidelines
This trial will be conducted according to the Declaration of Helsinki (1996), with local 
laws and regulations relevant to the use of new therapeutic agents in the country of 
conduct, and in strict compliance with this protocol.

9.2 Informed Consent
The written, informed consent of patients to parcitipate in the trials must be obtained 
before  any  trial  specific  procedures  are  undertaken.  The  information  supplied  to 
potential trial patients and the consent form will be in accordance with the requirements 
in  ICH  GCP  and  will  have  been  approved  by  Independant  Ethics  Committee/ 
Institutional Review Board.

9.3 Patient Confidentiality
Patient's confidentiality will be respected at all times. Patients will not be referred to by 
name in any trial documentation outside of the Invesigator site. Patients will  not be 
referred to by name in any trial report.
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 Bacteriology of chronic wounds - Patient Information Sheet

Participant Information Sheet

Title of Study: “Bacteriology of chronic wounds”

You are being invited to take part  in  a research study.  Before you 
decide it is important for you to understand why the research is being 
done  and  what  it  will  involve.  Please  take  the  time  to  read  the 
following information carefully and discuss it with others. Please ask 
us  if  anything  is  not  clear  or  if  you  would  like  to  have  more 
information and take time to decide whether or not you wish to take 
part. Thank you for reading this information sheet.

What is the purpose of this study?
The aim of the study is to develop ways of identifying Methicillin resistant 
Staphylococcus aureus (MRSA) in samples collected from open wounds (taken by 
wiping the  wound with a foam swab) and to compare this test with other more 
conventional tests that are often used to detect MRSA. Additionally, the presence of 
different bacteria (Bugs) in chronic wounds will be assessed by developing novel 
bacterial identification methods.

Why have I been chosen?
You have been invited to take part in this study, because we require 
volunteers aged between 18-75 years with variety of chronic (long standing) wounds 
colonized with multiple bacteria.  

Who is organising the study?
The study is being organised by Manchester Metropolitan University.

What will the study involve?
You will be involved in the research for one hour once you have given 
consent.  During  this   visit   the  clinician  will  collect  two  samples 
(wound swabs) from your wound by wiping a  very  soft foam swab 
across the wound. 
All methods will be demonstrated to you by the research team and 
clinician. This will take approximately 10 minutes. 

Do I have to take part?
It is up to you to decide whether or not to take part. If you decide to 
take part you will be asked to sign a consent form acknowledging that 
you understand what is involved in taking part. If you take part you 
are still free to withdraw without giving a reason. 



What are the possible RISKS/HARMS of taking part?
There are no risks or harms to you in taking part in this study. We 
collect the samples using very gentle and soft foam swab transport 
systems, which are routinely used in hospitals.

What are the possible benefits of taking part?
We cannot promise that the study will help you, but the information 
we get from this study may help to improve the detection of MRSA in 
the future.
   

Who will know about my taking part?
All information collected during this study will be kept confidential and 
will have your name removed so you cannot be identified. No hospital 
records will be accessed for this study.

Thank you for your time and interest in this study. If you require any 
further information please contact:

Monika Stuczen
School of Biology, Chemistry

& Health Science
Department of Microbiology

Manchester Metropolitan University
John Dalton Building

Chester Street,
Manchester, M1 5GD

Telephone: +44(0)161 247 1153
Email: m.stuczen@mmu.ac.uk

Professor Val Edwards-Jones
Research Enterprise and Development

Ormond Building
Lower Ormond Street
Manchester, M15 6BX

Telephone: +44(0)161  247 1025
Email:v.e.jones@mmu.ac.uk
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Bacteriology of chronic wounds - Consent form

Version 3                                                                                       14 February 2011

Centre Number: 

CONSENT FORM

Title of Project: Bacteriology of chronic wounds

Name of researcher: Monika Stuczen
Please initial box

1. I confirm that I have read and understand the 
information sheet dated 14 February 2011   (version 
3) for the above study. 

2. I have had the opportunity to consider the 
information, ask questions and have had these 
answered satisfactorily.  

3. I understand that my participation is voluntary 
and that I am free to withdraw at any time without 
giving any reason, without my medical care or legal 
rights being affected.

4. I understand that relevant sections of my medical 
notes and data collected during the study may be 
looked at by individuals from Manchester 
Metropolitan University, from regulatory authorities 
or from the NHS Trust, where it is relevant to my 
taking part in this research.  I give permission for 
these individuals to have access to my records.

5. I agree to take part in the above study.

______________________  ____________ 
____________________
Name of participant Date Signature

___________________ ____________ 
____________________
Name of person Date Signature
taking consent

When completed, 1 for patient; 1 for researcher site file;  1 (original) to be kept in medical 
notes
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Bacteriology of wounds

1. Background:
  The skin  is  colonised  by a  variety of  bacteria  which  form its  natural  microflora. 
Disruption  to  the  normal  barrier  function  of  the  skin  may result  in  invasion  of  the 
dermis by opportunistic bacteria. To date, these organisms, which may contribute to the 



chronicity  of  skin  wounds,  have  been  analysed  solely  by  culture  methods.  It  is 
increasingly realized that standard culture methods of analysis do not accurately reflect 
the full diversity of complex microflora. In this study we will apply the use of DGGE 
and sequencing to the analysis of the skin microflora. This will allow us to quickly and 
efficiently  analyze  the  whole  bacterial  population  of  individual  samples  by using  a 
single  PCR and  to  run  samples  alongside  one  another  on  the  same  gel  for  direct 
comparison.  In  this  way,  it  will  be  possible  to  concurrently  obtain  considerable 
information  about  the  species  composition  of  multiple  samples. In  environmental 
microbiology, denaturing gradient gel electrophoresis (DGGE) has been used as a tool 
for profiling complex microbial populations without the biases of cultural analysis for 
many years and the technique has now been applied to the study of a limited number of 
human microbial populations. The advantage of this approach is that it creates a genetic 
fingerprint or profile of total community diversity by separating mixed 16S rRNA PCR 
amplification products on the basis of their sequence melting behavior. 
This study is a pilot study to develop and optimise methods for larger clinical trial on 
variety of chronic wounds.

2. Study objectives:

The  aim of  this  study is  to  develop  the  Denaturating  Gradient  Gel  Electrophoresis 
(DGGE) sequencing method (using samples collected from healthy volunteers) for a 
larger clinical trial involving NHS patients. 

3. Trial Design:

3.1 Design
This will be a prospective, squential trial in male and female volunteers.

3.2 Endpoints
The primary trial endpoint will be the successful collection of suitable microbiological 
samples by the PhD student.

4. Patient population

4.1 Number
 A total of 20 adults aged 18-75 will be included in the study.

4.2 Patient Inclusion criteria
Volunteers aged over 18 years who have provided written informed consent.
 No clinical signs of infection distal to the medial and lateral mallali.

4.3 Patient Exclusion criteria
- the presence of  foot ulceration
- fungal or bacterial conditions including tinea pedis (athlete's foot)
- antibiotic treatment
- immunosuppressed
4.4 Withdrawal



Volunteers may withdraw their consent to participating in the trial at any time for any 
reason, without stating that reason or compromising the medical care they will receive.

The investigator may withdraw volunteers from the trial if they are not compliant with 
the trial protocol or to protect volunteers' safety and well-being.

5. Plan of Investigation

A total of 20 healthy volunteers aged 18-75 years will be included in the study. The 
volunteers will be appropriately informed and consented for the trial. Four samples will 
be taken from each volunteer – two swabs from the sole of each foot.  The sole of the 
foot  will  be  initially  cleaned  using  sterile  saline  and  then  swabbed  using  zig-zag 
method.
One swab from each foot will be processed using conventional microbiological 
methods. Bacterial DNA will be extracted from second swab and run through DGGE-
sequencing method.
Qualitative microbiology will be performed by inoculating the samples onto a variety of 
selective media and identifying bacteria after incubation using standard microbiological 
methods.
  
The cultural method will be compared with molecular methods (DGGE, sequencing) 
population studies to study bacterial diversity in normal, intact skin.
All samles will not have volunteers identifiers attached, only anonymous randomised 
numbers will be attached to the sample. A batch of samples will then be prepared for 
transport to the laboratory for testing. 

6. AE, SAE and ADR Reporting

6.1 Adverse events (Aes)
An adverse event (AE) is any untoward medical occurance in a volunteer or clinical 
subject  to  whom  a  pharmaceutical  product  has  bee  administered,  which  does  not 
necessarily have a casual relationship with this treatment. As no materials  are being 
applied or administered to the volunteers no Aes are anticipated.

6.2 Severity of Adverse Events
As  no  materials  are  being  applied  or  administered  to  the  volunteers  no  SAEs  are 
anticipated.

7. Statystical Design

7.1 Sample size
20 volunteers will be recruited into the study.

7.2 Data handling
Trial data will be double data entered onto the password protected database. Data will 
be validated using electronic and manual checks.

8. Additional Information



8.1 Protocol Amendments
No changes  to  the  protocol  will  be  initiated  without  prior  written  approval  of  the 
relevant  independent  ethics  committee  of  an  appropriate  amendment.  The  only 
exception being when the change is necessary to eliminate immediate hazards to the 
volunteers or when the change involves only logistical or administartive aspects of the 
trial.

9.Ethical and Legal Issues

9.1 Ethical Guidelines
This trial will be conducted according to the Declaration of Helsinki (1996), with local 
laws and regulations relevant to the use of  new therapeutic agents in the country of 
conduct, and in strict compliance with this protocol.

9.2 Informed Consent
The written, informed consent of volunters to parcitipate in the trials must be obtained 
before  any  trial  specific  procedures  are  undertaken.  The  information  supplied  to 
potential  trial  volunteer  and  the  consent  form  will  be  in  accordance  with  the 
requirements  in  ICH  GCP  and  will  have  been  approved  by  Independant  Ethics 
Committee/ Institutional Review Board.

9.3 Patient Confidentiality
Volunteer's confidentiality will be respected at all times. Volunteers will not be referred 
to by name in any trial documentation outside of the Invesigator site. Volunteers will not 
be referred to by name in any trial report.
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Participant Information Sheet

Title of Study: “The diversity of microflora in healthy feet”

You are being invited to take part  in  a research study.  Before you 
decide it is important for you to understand why the research is being 
done  and  what  it  will  involve.  Please  take  the  time  to  read  the 
following information carefully and discuss it with others. Please ask 
us  if  anything  is  not  clear  or  if  you  would  like  to  have  more 
information and take time to decide whether or not you wish to take 
part. Thank you for reading this information sheet.

What is the purpose of this study?
The  aim  of  this  study  is  to  investigate  the  diversity  of  normal 
microflora in healthy feet using conventional microbiological methods 
and molecular techniques (Denaturating Gradient Gel Electrophoresis, 
sequencing).  Both techniques will be compared together to look for 
their accuracy in identifying bacteria.

Why have I been chosen?
You have been invited to take part in this study, because we require 
healthy  volunteers  aged  18-75  years  without  any  foot  problems. 
Exclusion  criteria  for  the  study  include:  active  foot  ulceration, 
bacterial  or  fungal  conditions  including  athlete's  foot, 
immunosuppression  medication,  recent  or  current  antibiotic 
treatment. If any of these apply, we ask that you do not take part in 
this study. You do not have to give a reason. You may withdraw from 
the study at any time without reason. 

Who is organising the study?
The study is being organised by Manchester Metropolitan University.

What will the study involve?
You will be involved in the research for one hour once you have given 
consent.  During this   visit  you will  be asked to provide 2 samples 
(superficial swabs) from the sole of each  foot.
All methods will be demonstrated to you by the research team. This 
will take approximately 10 minutes. 

Do I have to take part?
It is up to you to decide whether or not to take part. If you decide to 
take part you will be asked to sign a consent form. If you take part 
you are still free to withdraw without giving a reason. 

What are the possible risks of taking part?



There are no risks to you in taking part in this study. We collect the 
samples  using very  gentle  and soft  foam swab transport  systems, 
which are routinely used in hospitals. 
What are the possible benefits of taking part?
The skin is colonized by a variety of bacteria which form its natural 
microflora. Disruption to the normal barrier function of the skin may 
result  in  invasion of  the dermis  by opportunistic  bacteria.  To date, 
these  organisms,  which  may  contribute  to  the  chronicity  of  skin 
wounds, have been analysed solely by culture methods. In our study 
we are going to compare conventional culture methods routinely used 
in clinical laboratories with more complex molecular techniques.  It is 
increasingly realized that standard culture methods of analysis do not 
accurately reflect the full diversity of complex foot microflora.

What do I have to do?
Should you decide to take part,  you will  be asked to remove your 
shoes and socks. The sole of the foot will be cleaned by sterile saline. 
Two samples will be taken from each foot by swabbing the sole of the 
foot. 
After sampling the foot will be wiped using dry paper tissue. 

   Who will know about my taking part?
All information collected during this study will be kept confidential and 
will have your name removed so you cannot be identified. No hospital 
records will be accessed for this study.

Thank you for your time and interest in this study. If you require any 
further information please contact:

Monika Stuczen
School of Biology, Chemistry

& Health Science
Department of Microbiology

Manchester Metropolitan University
John Dalton Building

Chester Street,
Manchester, M1 5GD

Telephone: +44(0)161 247 1153
Email: m.stuczen@mmu.ac.uk

                                      Professor Val Edwards-Jones
Research Enterprise and Development

Ormond Building
Lower Ormond Street
Manchester, M15 6BX

Telephone: +44(0)161  247 1025

mailto:L.Coulthwaite@mmu.ac.uk
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Title of Study: “The diversity of microflora in 
healthy feet.”

                         Please 
initial box

- I confirm that I have read and understand the 
information sheet dated  7 September 2010 [version 1] for 
the above study. 

- I have had the opportunity to consider the 
information, ask questions and have had these answered 
satisfactorily.  

- I understand that my participation is voluntary and 
that I am free to withdraw at any time without giving any 
reason, without my medical care or legal rights being 
affected.

- I have received sufficient information about this 
study

- I agree to take part in the above study.

_______________________  ____________        ____________________
Name of participant Date Signature

_______________________ ____________         ____________________
Name of witness Date Signature

When completed, 1 copy for participant; 1 (original) for researcher site file
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