Manchester Metropolitan University's Research Repository

Arthropod traits and assemblages differ between core patches, transient stepping-stones and landscape corridors

Pedley, Scott M and Dolman, Paul M (2020) Arthropod traits and assemblages differ between core patches, transient stepping-stones and landscape corridors. Landscape Ecology. ISSN 0921-2973


Download (809kB) | Preview


Context Restoring landscape connectivity can mitigate fragmentation and improve population resilience, but functional equivalence of contrasting elements is poorly understood. Evaluating biodiversity outcomes requires examining assemblage-responses across contrasting taxa. Objectives We compared arthropod species and trait composition between contrasting open-habitat network elements: core patches, corridors (allowing individual dispersal and population percolation), and transient stepping-stones (potentially enhancing metapopulation dynamics). Methods Carabids and spiders were sampled from core patches of grass-heath habitat (n = 24 locations across eight sites), corridors (trackways, n = 15) and recently-replanted clear-fells (transient patches, n = 19) set in a forest matrix impermeable to openhabitat arthropods. Species and trait (habitat association, diet, body size, dispersal ability) composition were compared by ordination and fourth corner analyses. Results Each network element supported distinct arthropod assemblages with differing functional trait composition. Core patches were dominated by specialist dry-open habitat species while generalist and woodland species contributed to assemblages in connectivity elements. Nevertheless, transient patches (and to a lesser degree, corridors) supported dry-open species characteristic of the focal grass-heath sites. Trait associations differed markedly among the three elements. Dispersal mechanisms and their correlates differed between taxa, but dry-open species in transient patches were characterised by traits favouring dispersal (large running hunter spiders and large, winged, herbivorous carabids), in contrast to wingless carabids in corridors. Conclusions Core patches, dispersal corridors and transient stepping-stones are not functionally interchangeable within this system. Semi-natural core patches supported a filtered subset of the regional fauna. Evidence for enhanced connectivity through percolation (corridors) or meta-population dynamics (stepping stones) differed between the two taxa.

Impact and Reach


Activity Overview

Additional statistics for this dataset are available via IRStats2.


Actions (login required)

Edit Item Edit Item