e-space
Manchester Metropolitan University's Research Repository

Neural Text Simplification of Clinical Letters with a Domain Specific Phrase Table

Shardlow, Matthew and Nawaz, Raheel (2019) Neural Text Simplification of Clinical Letters with a Domain Specific Phrase Table. In: 57th Annual Meeting of the Association for Computational Linguistics, 29 July 2019 - 31 July 2019, Florence, Italy.

[img]
Preview

Download (160kB) | Preview

Abstract

Clinical letters are infamously impenetrable for the lay patient. This work uses neural text simplification methods to automatically improve the understandability of clinical let- ters for patients. We take existing neural text simplification software and augment it with a new phrase table that links complex medi- cal terminology to simpler vocabulary by min- ing SNOMED-CT. In an evaluation task us- ing crowdsourcing, we show that the results of our new system are ranked easier to under- stand (average rank 1.93) than using the origi- nal system (2.34) without our phrase table. We also show improvement against baselines in- cluding the original text (2.79) and using the phrase table without the neural text simplifica- tion software (2.94). Our methods can easily be transferred outside of the clinical domain by using domain-appropriate resources to pro- vide effective neural text simplification for any domain without the need for costly annotation.

Impact and Reach

Statistics

Downloads
Activity Overview
52Downloads
61Hits

Additional statistics for this dataset are available via IRStats2.

Actions (login required)

Edit Item Edit Item