
Please cite the Published Version

Higginbottom, Thomas, Field, C, Keane, R, Wright, A, Jones, L, Symeonakis, Ilias and Caporn,
Simon (2018) From Space to Eye Lens: Monitoring protected sites with Earth Observation: Com-
bining field data with CASI and Sentinel imagery. UNSPECIFIED. Manchester Metropolitan Uni-
versity.

Publisher: Manchester Metropolitan University

Downloaded from: https://e-space.mmu.ac.uk/622363/

Usage rights: In Copyright

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://e-space.mmu.ac.uk/622363/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


 
 
 
 

From Space to Eye Lens 
 

Monitoring protected sites with Earth 
Observation: Combining field data with 

CASI and Sentinel imagery 
 

 
 

Photo © Rob Keane: Katie Finkill-Coombs and Esther Pawley @ Ainsdale NNR July 2018 

 

Tom Higginbottom, Chris Field, Rob Keane, Amanda Wright, 

Laurence Jones, Elias Symeonakis, Simon Caporn  

2018 



1 

Executive Summary 

This report details work undertaken, led by Manchester Metropolitan University in 
collaboration with Natural England. The aim of this research was to investigate the 

potential of Earth observation (EO) data to contribute towards the monitoring of 
protected sites at the landscape scale, to understand resilience, and to map natural 

capital assets. This was achieved through the integration of field vegetation survey data 
with Sentinel-2 and CASI imagery to map ecosystem attributes, particularly ecological 

gradients and species and plant communities. Two contrasting areas in the north-west 
of England were used as case studies: Ainsdale National Nature Reserve (NNR) sand 

dunes and the Forest of Bowland blanket bog. Based on the outcomes of this research, a 
number of recommendations for future study and implementation have been outlined.  

The key outcomes of this research are: 

 Vegetation data from 331 survey quadrats across both pilot areas were used to 

train models, based on Sentinel-2 imagery from the European Space Agency’s 
Copernicus programme. 

 Compact Airborne Spectrographic Imager (CASI) Hyperspectral and Light 
Detection and Ranging (LiDAR) data were also available for Ainsdale NNR. 

 The models were able to reproduce broad patterns and trends in habitats 
observed on the ground at both Ainsdale NNR sand dunes and the Forest of 

Bowland blanket bog with reasonable accuracies for predictive mapping of 
vegetation communities.  

 Ainsdale habitat mapping was 44% accurate at NVC level and 53% accurate at 
Annex 1 habitat level, based on cross validation. Predictive accuracy was higher 

in the more stable habitats, such as dune slacks.  Predictive accuracy was lower 

in transition and less spatially common habitats, such as shifting and embryo 

dunes, the latter due to limited training data.  

 Bowland habitat mapping accuracy was higher, achieving 44% based on a seven-

habitat classification model, and 70% based on a binary bog-heath classification. 

Mapping was stronger in areas of good quality bog, whereas degraded bog was 
more easily associated with heath; some species are common in both habitats. 

 Field validation during a ground data collection exercise at Ainsdale suggested 
slightly lower accuracies of 29% for CASI and 32% for the Sentinel-2 models; 
quadrats in more difficult classes i.e. H2110 (Embryonic Shifting Dunes) occupy 

a smaller proportion of the habitat area and the original survey data but were 

equally present in the validation exercise. Further data was collected during 
ground data collection in these habitats to be incorporated into Phase 2 to 

understand if model accuracy can be improved. 

 There appears potential to use EO to address some targets used in Favourable 
Condition Tables (FCT) Assessments: habitat extent, bare ground, vegetation and 

tree cover should be possible using the current approaches. There is potential for 
cover of dominant species such as Calluna vulgaris, Sphagnum spp. or Salix repens 
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to be predicted given improved model training using additional quadrat data 

from areas dominant in those species.  

 Canopy/sward height was not possible to accurately measure in the sand dunes 
due to the ‘soft’ nature of the surface, however, where LiDAR data is available, it 
should be achievable in other habitats. 

 EO data also showed some potential to monitor long-term environmental change 
including wetness and fertility. Ellenberg Indicator Values (EIV) for wetness (F; 
Ainsdale 47%, Bowland 49%) and light (L; Ainsdale 49%, Bowland 55%) were 

the most consistently accurate. Ellenberg fertility (N) at Bowland (48% accurate) 
and pH (R) at Ainsdale (36% accurate) also showed promise, but Ellenberg 

acidity (R) was poor at Bowland (11% accurate), as was fertility at Ainsdale (14% 

accurate). However, EIVs from quadrat data may lag behind actual changes in 
conditions due to the time it takes for a community to respond. 

 Vegetation Indices (VIs) such as NDMI (Normalised Difference Moisture Index) 

and NDWI (Normalised Difference Wetness Index) also offer potential to observe 
changes in surface wetness, although further work is needed to link changes in 

species composition and restoration of bare ground with NDMI and NDWI. In 

general, the relationships between VIs and EIVs was poor and inconsistent, 

perhaps reflecting the date of image collection and lag in community responses. 

 There does appear potential to use both EIVs and NDMI/NDWI types of indicator 
to understand the impact of landscape and environmental change and site 

management interventions on condition, especially in conjunction with changes 

in broad habitat structure and extent. There may also be future potential to 
combine these indices to develop a stronger Wetness Index and also to link these 

observations with atmospheric and soil biogeochemical responses from data 
collected through LTMN monitoring. 

 The project demonstrates that data gathered as part of Natural England’s Long 
Term Monitoring Network, National Vegetation Classification (NVC) and 
protected sites monitoring can be combined, adapted and used to train EO-based 

models that offer potential to monitor long-term habitat responses to 
environmental change at the landscape scale. Extra ground data may need to be 

gathered to improve model accuracy for plant communities not fully represented 
in the existing surveys used.  The models could contribute to the reform of 

protected sites monitoring and also assist with Natural Capital Asset Mapping 

particularly through developing a Wetness Index for informing flood risk 
management soft engineering in the uplands to slow the flow in flash rainfall 

events.  

 Opportunities exist to refine field data collection to be better suited to the 
modelling process, including: the collection of training data could incorporate 

polygons of stands of single or dominant species; habitats that are less spatially 
represented should be included in larger quantities; where possible surveyors 

should note quadrat NVC/Annex 1 classification. 
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In terms of recommendations for future research, the following areas would 

merit more investigation: 

 

 What are the best methods for the pre-processing and handling of Sentinel-2 
imagery, and what procedures are necessary? 

 How can ecological survey data be processed into categories for classification 
more effectively and is NVC appropriate for such robust use? 

 How do changes in specific species or communities affect vegetation index values 
given the potential lag of community response to changing condition? 
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1 Delivery Outcomes 

The overall aim of ‘From Space to Eye Lens’ is to ’test and develop Earth observation 
spatial tools for mapping habitat condition and extent at the landscape scale and 

monitoring environmental change over time across Focus Areas and the Long Term 
Monitoring Network’. 

Specific long-term objectives are: 

1. Baseline habitat condition models for monitoring change across coastal dunes of 

Dee to Ribble Estuary Focus Area. 

2. Baseline habitat condition and wetness index models for upland blanket bog 

restoration across Bowland Focus Area. 

a) Informing Upland Management Long Term Plan options and monitoring 
success, over time. 

b) Development of a wetness index used to map natural capital assets for 
targeting re-wetting to improve ability to hold water acting as an ecosystem 
service. 

3. Spatial analytical tools for use by advisers to easily access, use model outputs and 
enable skilled GIS users to run models. 

a) Non-technical advisers have improved access to spatial evidence for working 
at the landscape scale. 

4. Time-series visualisation tools for mapping spatial habitat change over time to 

detect signals of change. 

5. Analysis of change in spatial extent of habitats and potentially plant communities 

to improve the ability to detect significant changes across LTMN network and 

Focus Areas. 

6. Ecosystem interactive models for spatial analysis of the drivers of change for 
informing the resilience of landscapes related to climatic or air quality changes 

long-term. 

a) Correlative analysis with climate, nitrogen deposition and species dispersal 
models. 

b) Improve the ability to investigate relationships and identify key drivers of 
change across differing geographical landscapes and their habitats. 

c) Inform management targeting across Focus Areas to allow species adaptation 
along predicted environmental changes. 

Specifically, this report will focus on the scientific methods underpinning objectives 1, 2, 

5, and 6. 
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Conservation Strategy (C21) and 25 Year Plan 

This project has been developed to help inform the government’s ambition for England 
to be a great place to live, with a healthy natural environment on land and at sea that 
benefits people and the economy.  

Conservation Strategy 21: Natural England’s conservation strategy for the 21st century 
[GOV.UK] sets out our thinking on what we need to do differently and how we need to 
work with others, to better deliver this shared ambition. It should frame everything we 
do. 

It brings together our own and others’ experiences of what works and the latest science 
and evidence, with innovative approaches, new partnerships and different ways of 
thinking about nature and the benefits it provides. 

Three guiding principles: 

• creating resilient landscapes and seas 

• putting people at the heart of the environment 

• growing natural capital 

It is underpinned by the outcomes approach – delivering better long term outcomes 
for the environment by understanding people’s interests and needs, and working 
towards a shared vision. 

 

Protected Sites Monitoring Reform 

This pilot is to also inform the Protected Sites Monitoring Reform Project that is aiming 
to develop a new monitoring approach for terrestrial and freshwater SSSI sites in 
Natural England. Three key reasons for reviewing our approach to Protected Sites 
Monitoring are: 

1. We need our Protected Sites Monitoring to provide the evidence needed 
to deliver the key principles of Natural England's Conservation Strategy 
(C21), and help us understand our sites in a wider landscape context. 

2. We want to build on the innovative new approaches that are already 
being trialled across the organisation, to improve our delivery of 
environmental outcomes. 

3. New technologies and greater involvement of our partners and the 
public provide exciting opportunities to improve the quality and variety 
of our Protected Sites evidence. 

  



8 

2 Pilot Areas 

Two contrasting areas of semi-natural habitat were used for the pilot phase of this study, 
1) Sefton Coast SSSI, encompassing Ainsdale SSSI Sand dunes, is a large SSSI extending 

over 20 km between Liverpool and Southport. It hosts a number of rare habitats 
including embryonic shifting dunes, mobile dunes, dunes with creeping willow (Salix 

arenaria), humid dune slacks, fixed dunes, dune grasslands and dune heath; 2) Bowland 
Fells is a large upland SSSI over 15,000 ha in size located in Lancashire, North West 

England. Bowland is also designated a Special Protection Area (SPA) due to the rare bird 
communities the site supports (Figure 1). The main habitats at Bowland are blanket bog 

and moorland both dominated by the shrub heather (Calluna vulgaris). 

Ainsdale National Nature Reserve (NNR) is part of Natural England’s Long Term 

Monitoring Network (LTMN) consisting of 37 sites across England which is designed to 
monitor, analyse and predict environmental change in the United Kingdom. 

 

 

Figure 1: Location of the pilot study sites in North West England 



9 

3 General Data and Methods 

3.1 Vegetation Training Data Method and Analysis 

Ainsdale Pilot 

For Ainsdale Sand dunes we used existing survey data from 3 sources: 1) The Long Term 

Monitoring Network (LTMN). This surveys fifty 2 x 2 m plots stratified to coastal dune 
and pine forest, divided into 25 cells in which vegetation height, species and bare 

ground/litter/rock presence are recorded along with percentage cover of each species 
at plot level. LTMN surveys are repeated every 4 years, for this project we used data from 

the 2016 survey; 2) The Centre of Ecology and Hydrology (CEH) surveyed 80 2 x 2 m 
quadrats at various dates up to 2015 with a focus on dune slacks and semi-fixed dunes. 

Percent cover of every species was recorded as was bare ground/litter; 3) Data from a 

National Vegetation Classification survey of Ainsdale (NNR) of Unit 17 carried out by 

Graeme Skelcher in 2015. Vegetation data from 2 x 2 m quadrats located across all 

habitats was recorded using the DOMIN scale, to enable comparison with other survey 
data, DOMIN values were converted to percent cover using the mid-point percentage of 

each scale point. The NNR survey also noted plot NVC according to constancy tables.  

 

Bowland Pilot 

For Bowland Upland Blanket Bog, an adapted Common Standards Monitoring 

Assessment (CSM) approach was used to survey the Focus Area in October 2016 and 
March 2017 recording all species, rather than just indicators. In this, the cover of every 

species within one hundred and seven 2 x 2 m quadrats was recorded using the DOMIN 
scale. The height of Calluna vulgaris (i.e. Heather), where present, was measured four 

times in each quadrat and the mean calculated. A CSM Assessment was also made against 

several criteria. For analysis, DOMIN values were converted to percent cover using the 

mid-point percentage of each scale point. 

 

The datasets used and their sources are summarised in Table 1. 

 

Following a species name check for consistency across data, the data were processed in 
the Modular Analysis of Vegetation Information System software (MAVIS) (CEH, 2009) 

to derive both cover weighted and mean Ellenberg Indicators Values (EIVs) for moisture, 

pH, fertility and light. National Vegetation Community (NVC) classifications were also 
obtained from MAVIS and used for mapping plant communities and habitat extant across 

the landscape.  
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Table 1. Vegetation datasets used in this report. See Appendix 1 for explanation of NVC 
codes. 

Site Survey Number of 
quadrats 

Habitats (NVC) Date 

Ainsdale 
sand dunes 

Long Term 
Monitoring 
Network 

50 2x2 m Survey of whole site 

(SD7,8,10,12,14,15,16  

H1, MG6, OV27, W4,10,11,24) 

2016 

Ainsdale 
sand dunes 

CEH Dunes 
Survey 

80 2x2 m 
quadrats 

Dune slack focus with acid dune 
grassland and semi-fixed dunes 

(SD7,8,9,12,14,15,16 

OV27, U1) 

Various up to 
2015 

Ainsdale 
sand dunes 

NNR Unit 17 
survey by 
Graeme 
Skelcher 

94 2x2 m 
quadrats 

Survey of whole site 

(SD6,7,8,10,15,16,17,18 

OV27, W10, W23) 

2015 

Bowland 
upland heath 
and blanket 
bog 

SSSI Survey 107 2 x 2 m  
quadrats 

(81 bog, 26 
heath) 

Heath (Dry, Wet), blanket bog 
(Active and degraded) 

2016, 2017 

 

Ainsdale NNR 

 

For Ainsdale, good agreement was observed between these MAVIS NVC classifications 
and those from Graeme Skelcher (NE) and CEH. A further 10% of all classifications were 

checked using NVC tables and good general agreement was found. It should be noted 
that for sand dunes, quadrats could not always be confidently placed in any single NVC 

and multiple options existed, this reflects the often transient nature of these habitats. In 
these instances, a field ecologist on the ground would be able to make a more robust 

decision based on topographical context, whereas a decision based on data alone may 
not always be accurate. NVC codes were also related to Annex 1 Habitats (see Appendix) 

and, given their more general nature, these classifications could be treated as more 

robust. 

Mean sand dune Annex 1 EIVs for light, wetness, acidity and fertility are shown in 
Figure 2, they illustrate the general environmental and ecological conditions of each 

Annex 1 community. H2110 Embryonic shifting dunes are new communities of pioneer 
plants characterised by high percentages of bare ground, open and dry habitats with no 

soil formation and a low fertility score. The moisture and nutrient requirements 
gradually increase as distance from the shore increases and soil become more 

established. H2170 Dunes with Salix repens and H2190 Humid dune slacks have a 

notably greater EIV for moisture that the other communities, reflecting their lower 

topographies relative to the water table. Other EIV values across communities appear to 

differ little with the possible exception that H2130 Fixed dunes with herbaceous 
vegetation and woodland communities both appear to have a lower acidity value (lower 
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pH); Fixed dunes often have a greater organic layer and the woodland at Ainsdale is 

dominated by pine trees which drop litter known for its acidic properties. 

The species at Ainsdale that show the greatest changes in percent cover across 

habitats and the strongest association with specific habitats are often those that are key 

components of Annex 1 and NVC communities (see explanation of codes in Appendix 1 

and Principle Components Analysis (PCA in Appendix 2). Such species include Salix 

repens (H2190), Calliergon cuspidatum (H2170 and H2190), Pseudoscleropdodium 

purum and Hydrocotyle vulgaris (H2170), Ammophila arenaria and Carex Arenaria 

(H2120 Shifting dunes along the shoreline). Bare ground is also strongly associated with 

heath and H2110 Embryonic dunes. Other species not visible in the PCA but important 

in the data structure (following cluster analysis, not shown) include Agrostis stolonifera, 

Anthoxanthum odoratum, Arrhenatherum elatius, Kindbergia praelonga (Eurhynchium 

praelongum), Festuca rubra, Holcus lanatus, Hypnum spp., Ononis repens and Rubus 

caesius. 

 

 

 
Figure 2: Mean habitat (Annex 1) EIV for light, wetness, acidity and fertility, for Ainsdale 

dunes 

Bowland 

Figure 3 illustrates mean habitat EIVs for light, wetness, acidity and fertility for the 

survey quadrats split by habitat. Subtle differences were observed between bog and 
heath with marginally greater EIV light and wetness in bogs, demonstrating a higher 

light requirement and moisture requirement of bog species, lower acidity score for bogs 
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i.e. a lower pH and higher acidity, and a higher fertility score in heaths suggesting the 

preference of more fertile, slightly less acidic conditions for heath species. However, 

these differences are marginal and both habitats are relatively acidic and of low nutrient 
status. 

 

 

 
Figure 3: Mean habitat EIV for light, wetness, acidity and fertility, for Bowland blanket 

bog and dry heath communities 

The species that show the greatest changes in percent cover across habitats and the 
strongest association with specific habitats are often those that are key components of 

both heath (moorland) and blanket bog communities. Vaccinium myrtillus, Dechamspia 
exusosa, Festuca ovina, Juncus squarrosus, Gallium saxatile and Lophocolia bidenta have 

strong heathland associations (See Principle Components Analysis in Appendix), whilst 
Erioporum vaginatum & E. angustifolium, Polytrichum commune and Sphagnum spp. Are 

strongly linked with moisture rich bogs. There is a significant overlap between both 

heath and bog communities at Bowland with many species including Calluna vulgaris 

appearing in both. This reflects the genuine overlap that exists between heath and bog 
vegetation and also that a degraded blanket bog and dry heath are often different only 
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in name and the greater peat content of the bog. As restoration work continues at 

Bowland and moisture levels increase, the communities should separate further. 

3.2 Sentinel-2 Satellites 

Sentinel-2 is the land monitoring component of the European Space Agency’s (ESA) 

Copernicus programme. It carries a Multi Spectral Instrument (MSI) that captures data 

across 13 spectral bands. Of these bands, four have a 10 m pixel resolution, six a 20 m, 

with three 60 m bands primarily for atmospheric applications (Figure 4). There are 

currently two Sentinel-2 satellites in orbit; Sentinel-2A was launched in June 2015 and 

was joined by Sentinel-2B in March 2017. Each mission has a 10-day repeat overpass, 

for the majority of the Earth, resulting in a combined revisit rate of five days. 

 

Figure 4a: Sentinel Satellite 2 orbit (ESA medialab) 
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Figure 4b: Sentinel-2 wavebands and resolutions 

Geolocation issues 

Since launching, it has become apparent that the imagery acquired by Sentinel-2A has a 
suboptimal geolocation accuracy. Geolocation accuracy refers to the alignment of multi-

temporal images. Ideally, this error should be less than the resolution of a single pixel, 
as this allows multiple images to correctly overlap. Imagery acquired between June 2015 

and June 2016 has a miss-registration of 1.6 10 m pixels (0.9 pixels). However, the ESA 

updated the processing software in June 2016, reducing this error to roughly 0.4 pixels. 

Data acquired pre June 2016 have not been reprocessed, although this has been 
scheduled for early 2019. For this reason, only images acquired after July 2016 have 

been used in this report 

3.3 Compact Airborne Spectrographic Imager (CASI) 

The Sefton coast was imaged by a Compact Airborne Spectrographic Imager (CASI) in 
August 2015. This provides a 24- band hyperspectral image at 1 m resolution. 
Furthermore, the Sefton coast is has also been surveyed by the Environment Agency 
Light Detection and Ranging (LiDAR). This instrument measures the surface of the 
Earth using thousands of laser pulses over each metre, allowing highly accurate terrain 
and canopy models to be generated. 
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3.4 Statistical Analysis 

Regression and classifications 

The majority of the analyses in this report are attempting to generate predictions of a 

candidate variable, based on a machine learning model. These models are either focused 
on predicting a numeric value (regression) or a categorical factor (classification). In both 

cases, the underlying rationale is the same. Firstly, known values from field data are 
compared to co-located predictor values derived from the Earth observation imagery. A 

machine learning method then attempts to derive a statistical relationship, allowing the 
known values to be predicted based on the imagery. This model is then used to predict 

the candidate variable onto the other pixels in the image, resulting in continuous map of 
predicted values. 

When generating predictive models it is important to assess accuracy (i.e. model 
testing), otherwise the models are of little use. An accuracy assessment is undertaken by 

comparing the values predicted by a model against known values. It is important that 
these comparisons be undertaken on data not used in the training process, otherwise 

the accuracy will be overly optimistic. In situations where the total available data are 

limited it is not practical to divide the data into training and testing subsets, as there will 

be too little data to develop models. In this situation, Cross Validation (CV) is an 
appropriate method for model testing. 

Cross Validation is a technique to assess model accuracy in the absence of independent 
testing data. The data are split into n folds, with n-1 used to train the model and the 

unused fold reserved for testing. This is repeated until each fold has been used for testing 
(Figure 5). The final accuracy is calculated based on the average of the testing folds. To 

maximise the benefit, this procedure can be repeated a number of times, with different 
combinations of folds. 

 

 

Figure 5: Diagram representation of K-fold cross validation. The final accuracy is derived 
as an average of each individual accuracy measure. 
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There are a large number of metrics that can be used for accuracy assessment. In this 

report, we focus on four commonly used measures: 

1. Root Mean Square Error (RMSE) – (regressions) 

2. Mean Absolute Error (MAE) – (regressions) 

3. R 2 co-efficient of determination – (regressions) 

4. Overall Accuracy (AO) – (classifications) 

 

RMSE and MAE are different ways of expressing the average error associated with a 

prediction; they are expressed in units of the variable being predicted. RMSE is more 
influence by large errors than MAE, so will be higher with occasional instances of large 

errors. The R2 is the proportion of variance in the predicted values explained by the 

observed values. This is synonyms with a simple linear regression line between the two 

vectors. Overall accuracy is the percentage of correctly classified values, out of the total. 

4 Forest of Bowland 

4.1 Data 

Two Sentinel-2 images were downloaded, one for summer (17th July 2017) and one from 

winter (5th January 2017). Both images were atmospherically corrected using Dark 
Object Subtraction (DOS) in QGIS, and topographically corrected using cosine correction 

with an STRM elevation model in SagaGIS. Both images were cloud free, so no masking 

was required. 
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Figure 6: Location of the Forest of Bowland with Area of Outstanding Natural Beauty 

(AONB) and field sites shown 

4.2 Vegetation Indices (VIs) 

Three vegetation indices were generated from both the summer and winter images: 

1. Normalised Difference Vegetation Index (NDVI), a proxy of greenness or 

photosynthetic activity 

2. Normalised Difference Moisture Index (NDMI), a proxy for vegetation water 

content or the spongy mesophyll structure within the canopy 

3. Normalised Difference Water Index (NDWI), an indicator of surface water 
coverage. 
 

These indices were chosen as they are commonly used, have a long history in the 
scientific literature, and are relatively simple to explain. 

Maps of these indices for summer 2017 are shown in Figure 7. A bivariate choropleth 

for NDVI and NDMI is shown in Figure 8; this allows an easy comparison of the NDMI 
and NDVI layers, highlighting areas of agreement and contrast. 
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 (a) NDV I (b) NDMI (c) NDWI 

Figure 7: Candidate vegetation indices from summer 2017 

Can NDVI be used as an indicator of productivity? 

NDVI on its own is not a meaningful ecological indicator. Mathematically, NDVI is the 

normalised difference between the wavelengths of light that are absorbed for 
photosynthesis, and those reflected to avoid cellular overheating. This ratio is broadly 

comparable to the fraction of photosynthetically available radiation (f PAR), i.e. the total 
amount of radiation available for absorption by a plant. However, this is not directly 

related to the productivity of a plant or community. Gross Primary Production (GPP) is 
determined by how efficiently photosynthesis converts radiation into biomass, as 

measured according to Light Use Efficiency (i.e. how efficiently plants convert light to 
carbohydrates). This conversion is highly variable, Sphagnum and other bog plants 

typically have LUE’s much lower than grass species, and LUE will change under climatic 
and nutrient limitations. Net Primary Production (NPP), is calculated based on 

accumulated NPP, minus maintenance respiratory losses. In summary, NDVI is suitable, 

as a very broad-brush indicator of vegetation, but obtaining an ecological parameter, 
such as productivity, requires more complex analysis, e.g. radiative transfer models or 

field data for empirical modelling. 

Can NDMI or NDWI be used as an indicator of wetness? 

These indicators are suitable for a basic overview of wetness conditions. However, the 

relative contributions of bare soil and vegetation to the index value is unspecific. This 
may make assessing wetness more difficult, particularly on areas with bare peat 

coverage. Furthermore, the influence of species composition on wetness indicators 

requires further investigation; for example, a small coverage of very wet plants may have 
a disproportionate influence. One final consideration is that the role of mosses and 

under-canopy plants on VI values has not been studied. 
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Figure 8: Bivariate choropleth map of NDVI and NDMI   
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4.3 Ellenberg indicator values (EIV) 

Ellenberg indicators values (EIV) were generated from the field data using the Modular 
analysis of vegetation information system (MAVIS) software from the Centre for Ecology 

and Hydrology (CEH). Derived indicators included wetness, fertility, pH, and light. 

Relationships between Ellenberg indicators values (EIV) and satellite-derived Vegetation 

Indices (VI) 

As the selected VI are considered proxy measurements for moisture and productivity, it 
is reasonable to hypothesise that they may relate to the associated EIV (NDVI – Ellenberg 

fertility, NDMI/NDWI – Ellenberg wetness). To test this hypothesis, for each EI linear 

regression, models were developed against each seasonal VI. The accuracy of these 
models was assessed using fifteen repeats of 5-fold cross validation 

Scatter plots of the VI-EI relationships are shown in Figure 9, with linear regression 

lines included. These plots and the associated accuracy metrics (Table 2) show that the 
VI-EI relationships are weak with low R2 and often contrasting direction of lines of best 

fit. This may be surprising, given the both metrics purport to imply the same attributes. 

However, the method by which the values are obtained, and what they measure, partly 

explains the lack of a strong relationship. EIV are measures of the collective species from 

a plot and integrate site conditions over the longer-term, independent of the in situ 
conditions at any specific time. Conversely, VI’s are a proxy of the condition of the pixel 

at that precise snap-shot in time, regardless of the species composition. It is therefore 
possible that a community resulting in a high wetness Ellenberg score will, in a 

contemporary dry period, have a lower NDMI/NDWI than low wetness species 
experiencing wet conditions. Furthermore, EIV can often lag behind real on the ground 

changes and communities take time to respond to a change in conditions. In summary, 

individual VI are a poor indicator of EI, more complex analysis is required. 

 

Table 2: Accuracy metrics for predicting Ellenberg indicators using only a single 
Vegetation Index (VI). 

Season VI Ellenberg R2 RMSE Season VI Ellenberg R2 RMSE 

Summer NDMI pH 0.12 0.23 Winter NDMI pH 0.10 0.23 

 NDMI Light 0.12 0.44  NDMI Light 0.10 0.44 

 NDMI Wetness 0.09 0.67  NDMI Wetness 0.09 0.67 

 NDMI Fertility 0.12 0.42  NDMI Fertility 0.11 0.42 

Summer NDVI pH 0.05 0.23 Winter NDVI pH 0.06 0.23 

 NDVI Light 0.14 0.44  NDVI Light 0.24 0.40 

 NDVI Wetness 0.13 0.66  NDVI Wetness 0.22 0.61 

 NDVI Fertility 0.11 0.43  NDVI Fertility 0.24 0.38 

Summer NDWI pH 0.08 0.24 Winter NDWI pH 0.03 0.23 

 NDWI Light 0.07 0.46  NDWI Light 0.13 0.43 

 NDWI Wetness 0.05 0.68  NDWI Wetness 0.16 0.63 

 NDWI Fertility 0.07 0.43  NDWI Fertility 0.12 0.41 
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Figure 9: Scatter plots of seasonal vegetation indices against Ellenberg indicators 
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Using machine learning to model Ellenberg indicators 

Given the weak relationship between any individual VI and the EI, a selection of machine 
learning methods were used to test in the EI could be predicted from all of the Sentinel-

2 bands. The models chosen were: cubist, boosted regression trees (GBM), and random 
forests (RF). Models were assessed using 15 repeats of 5-fold cross validation. 

A comparison of model accuracy from three different machine learning methods is 

shown in Figure 10. Models were trained using all Sentinel-2 bands and VI from both the 

summer and winter images. The techniques had similar performance, however, the 
cubist models showed the best overall accuracy with the lowest error and highest R2, 

although there was some variability in success. Cubist models were particularly effective 
at avoiding the very low values returned by the other methods. The one exception to this 

was pH, which featured low accuracy from all methods. Accordingly for the next analysis 
steps, only cubist models were used. 

 

 
 Fertility Light pH Wetness 

Ellenberg 

Figure 10: Comparison of three machine learning methods for predicting Ellenberg 

indicators. Values are from 15 repeats of 5-fold cross validations. RF - 
Random Forest, GBM - Boosted Regression Tree. 
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 Fertility Light pH Wetness 

Ellenberg 

Figure 11: Comparison of using single or multi-seasonal data on Ellenberg prediction 
accuracies. Values are from 15 repeats of 5-fold cross validations. 

To test the influence of season on model accuracy, models were trained using i) winter, 
ii) summer, and iii) both (bi-seasonal) data. The cross validation accuracies are shown 

in Figure 11, and overall statistics given in Table 3. In general, the use of multi-seasonal 
data was most effective, achieving the highest accuracies for three out of four indicators 

(light, wetness, and fertility). Light was the only variable for which another season, 
winter, performed better. After multi-seasonal data, summer imagery was 2nd best for 

light and wetness, with winter being second for fertility. 

Heat scatters of predicted and observed EIV, based on the multi-seasonal cubist 

models, are shown in Figure 12. The most accurately modelled EIV was light, this is not 
surprising as optical remote sensing is based on light reflectance. The least accurate 

model was for pH, this is also understandable, as pH is unlikely to result in major spectral 
variation, in addition to the low range of values present; the habitat is acidic throughout. 

Whereas the models are moderately accurate, with R2 of 0.11-0.55, this needs to be 

considered with the high variation to be expected of ecological data. Factors such as: 

quadrat placement, surveyor experience, and time of year, are all associated with errors 

in exceedance of the modelled uncertainty. Furthermore, the Sentinel imagery is also 
affected by factors such as geolocation errors, atmospheric compositions, and 
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directional artefacts (i.e. bidirectional reflectance distribution functions). It must also be 

cautioned that the 2 m quadrats may not be representative of the 10-20 m Sentinel 

resolution. Mapped predictions based on these models are shown in Figure 13.  
 

Table 2: Model accuracy metrics for the EI predictions, using cubist models 

Season Ellenberg R2 RMSE MAE 

Both 
seasons 

 pH 0.11 0.23 0.18 

Light 0.55 0.31 0.24 

Fertility 0.48 0.32 0.26 

 Wetness 0.49 0.49 0.40 

Winter  pH 0.19 0.22 0.17 

 Light 0.38 0.36 0.29 

 Fertility 0.43 0.34 0.27 

 Wetness 0.35 0.56 0.45 

Summer  pH 0.13  0.23 0.18 

 Light 0.42  0.36 0.28 

 Fertility 0.35  0.37 0.27 

 Wetness 0.41  0.54 0.43 

     

 

 

Figure 12: Heat scatter of predicted v observed values 
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 (a) L ight (b) Fertility (c) Wetness 

Figure 13: Mapping of modelled Ellenberg values 

In summary, machine learning methods have been shown to be moderately effective 

at predicting some Ellenberg indicators. Cubist models were the preferred modelling 
technique, and multi-seasonal imagery generally out-performed single season data. 

Whereas light, wetness, and fertility were reasonably accurately modelled, pH was 
associated with a high degree of uncertainly potentially due to the low range of values at 

the site. There appears potential to use EO derived Ellenberg indicators to monitor long-

term changes in wetness and bog condition based on vegetation, however, community 
responses tend to lag behind environmental changes on the ground. 

4.4 Habitat and NVC Mapping 

The species count quadrats were analysed in the MAVIS software to generate NVC codes. 

For each plot, MAVIS returns the top 10 matching communities and an accompanying 

score of percentage agreement. This data is problematic for generating land cover 
classifications for a number of reasons. Firstly, as shown in Figure 17, the only codes for 

which there are sufficient values to train a classifier are M19a and H12a, resulting in a 
binary mire-heath model. Secondly, if all MAVIS NVC codes are considered (Figure 18) 

the situation is not much improved. Whereas a considerable variety of NVC codes are 
now represented, M19a and H12a are still by far the most prevalent, similar 

communities (H12, M19, M19b) are also heavily represented (all in the top 7). 
Furthermore, these common classes represent a disproportionate number of the top 

ranked codes.  

When classifiers are presented with data dominated by one class or a number of 

proportionally over represented classes, they tend to perform poorly. This occurs as the 
classier "feature-space" cannot find a niche for the smaller classes. One potential solution 

to this can be the use of weights, which assign a greater emphasis to certain data points 
allowing them to develop an aperture. However, in this situation a weighting variable 

(derived from the MAVIS score) would simply exaggerate the common classes due to 
their higher ranking. 
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Considering these issues, a number of classification schemes were developed to 

investigate the potential of using MAVIS-NVC data in land cover habitat classification: 

1. A binary H12-M19 model 

2. A model containing all codes with over 20 occurrences, simplified into seven 
classes 

3. The model used in two modified by additional synthetic samples 

 

To generate the binary classification, all top-ranked (MAVIS plot ranking 1) H12 and 
M19, and their subclasses, were used (n = 80). These were input into a Gradient Boosted 

Tree classier, and validated by fifteen repeats of 10-fold CV. Figure 15.a shows the 
mapped classes, whilst Figure 15.b shows the probability of class occurrence. The overall 

accuracy of this model was 70%; future ground truthing will test the usefulness of this 

approach. 

Comparing the vegetation indices of the H12 and M19 plots is illustrative of the 
classification issues. As shown in Figures 14a and b, the M19 class does occupy a clear 

niche in the data. However, this is contained within the more broad heath category. This 
makes separating the two classes more challenging than if they were distinct. When 

additional subclasses are considered, these broad categories are smaller apertures, 
further hampered by the smaller sample size of rarer classes. 

For the seven-class model, all records with an NVC code that occurred over 20 times 
were selected. This results in the duplications of predictor variables (i.e. the Sentinel2 

values), as plots may contribute multiple NVC codes. This duplication will likely result in 
a low accuracy; however, it is hoped that the models will be able to develop appropriate 

predictions by reducing the variance. The data were then classified using a Gradient 
Boosted classification tree, and CV used for accuracy assessment. This produced an 

overall accuracy of 25%, the results of this classification are shown in Figure 16. As a 
further step, the data were modified using the Synthetic Minority Over-sampling 

Technique (SMOTE), this is a method to generate synthetic samples of underrepresented 

classes, by placing additional points along vectors between real points. Using SMOTE 
altered data increased the model accuracy to 44%. However, the mapped output was 

identical to the original model. 
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Figure 14: a) Comparison of the frequency distributions of H12 and M19 classes for the 
vegetation indices, and b) the relative distribution of H12 and M19 for the vegetation 

indices, with 95% ellipses. 

 

Generating a reliable accuracy score for the mapped predictions is difficult, as except for 

the binary models there is no "true" value against which to compare. However, the 
models return generally similar predictions, with disagreements in the more minor 

classes, indicating good performance. The binary model is effective and archives a good 
accuracy, this approach is good at highlighting transitional areas mapped by the class 
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probabilities. Further work on manipulating the class probabilities into proportional 

cover estimates may be possible. The effect of using the SMOTE is interesting, as the 

accuracy increases but predictions remained constant. This indicates the model is 
performing adequately, as additional points are well classified by the existing 

definitions.  
 

 
 (a) Classification (b) Class probabilities 

Figure 15: Binary model outputs and probability scores for a heathland-mire 
classification 



29 

 

Figure 16: Classification of seven NVC codes 

 

 

Figure 17: Histogram of the top MAVIS NVC code 
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Figure 18: Histogram of MAVIS NVC codes using all MAVIS outputs – a 
‘Fingerprint’ of the frequency of different NVC classes obtained from MAVIS 

from site data. 
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4.5 Combining NVC maps with wetness indicators for habitat assessment 

Having generated maps of the vegetation communities and a number of wetness 
variables, it is now possible to combine these layers into a wetness index. The aims of 

this index is to highlight areas of habitats that can be inferred as being in good condition, 

or where intervention measures may be beneficial. As the study area can be broadly 
divided into heath and mire categories, the binary habitat map was selected. For each of 

the classes in this layer the NDMI and wetness Ellenberg indicator maps were segmented 
and the value mapped to independent colours (Figure 19). 

 

 (a) NDMI (b) Ellenberg wetness 

Figure 19: Combined wetness index using a) the NDMI, and b) the modelled Ellenberg 

wetness layer 
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5 Ainsdale Sand Dunes 

1. Two Sentinel-2 images were downloaded, one for summer (17th July 2017) and 
one from winter (1st December 2017). Both images were atmospherically 
corrected using Dark Object Subtraction (DOS) in QGIS, no topographic correction 
was applied. Both images were cloud free for the study area so no masking was 
required. Vegetation indices 

As with the Forest of Bowland, three vegetation indices were generated from both the 
summer and winter images (Figure 20): 

2. Normalised Difference Vegetation Index (NDVI), a proxy of greenness or 
photosynthetic activity 

3. Normalised Difference Moisture Index (NDMI), a proxy for vegetation water 
content or the spongy mesophyll structure within the canopy 

4. Normalised Difference Water Index (NDWI), an indicator of surface water 
coverage 

These indices were chosen as they are commonly used, have a long history in the 
scientific literature, and are relatively simple to explain. 

5.1 Ellenberg Indicators 

Relationship between Ellenberg indicators and vegetation indices 

Linear regression models between the EI and VI are shown in Figure 21 and Table 4. The 

relationships show generally good directions with clear trends visible for a number of 
features. However, there is a large scatter for all models, and the associated uncertainty 

is high. Of the candidate indicators light and wetness were modelled with a reasonable 

degree of accuracy by the VI, with errors below 1 and the R2 being around 0.28-0.31. 
However, the spread of prediction makes using this relationship for mapping predicted 

values imprudent. 

Using machine learning to model Ellenberg indicators 

A series of machine learning models were used to test the ability of Sentinel-2 imagery 

to model the Ellenberg indicators. A comparison of three common techniques, using both 
images is shown in Figure 22.  
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 (a) NDV I (b) NDMI (c) NDWI 

Figure 20: Candidate vegetation indices from summer 2017 at Ainsdale 

These models all returned similar accuracies, based on cross validation, with only minor 
differences between them. Overall, the Random Forest was least accurate for three 

indicators (wetness, pH, fertility). Between the boosted regression and Cubist models, 
there was negligible differences; therefore, for further analysis we opted to use the 

Cubist approach as this was comparable for the Forest of Bowland. 

A comparison of the seasonal models showed minor differences (Table 5 and Figure 
23). The overall distribution of errors was similar between the different seasonal 

combinations, with a difference in RMSE of 0.05. However, based on the final R2, multi-

seasonal imagery preformed best for light, fertility and wetness (Table 5). The pH 
indicator was best predicted by the winter image; however, this was still a very low 

accuracy relative to the other indicators. The accuracies obtained by light, fertility and 
wetness are reasonable, with errors less than 0.5 scores. This accuracy is within the 

range of other error sources (surveyor experience, time of year etc.) when surveying is 
done manually. Maps of these indicators are shown in Figure 25. 

Sand dunes are a highly heterogeneous environment. It is therefore reasonable to 

assume that the use of 20 m imagery may compromise the models. To test this, we 

compared models using only the 10 m Sentinel-2 bands (red, green, blue, near-infrared) 
against models using all bands. There were only minor differences between the model 

accuracies (Figure 24). However, the 10 m only models did show less variability relative 
to the all bands. This can be seen in the outlier points in the RMSE scores, which have a 

greater range in all bands than the 10 m. 
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Figure 21: Linear relationships between Ellenberg indicators and vegetation indices 

at Ainsdale 
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 Fertility Light pH Wetness 

Ellenberg 

Figure 22: Comparison of Machine learning models for predicting Ellenberg indicators 

at Ainsdale 

 

 
 Fertility Light pH Wetness 

Ellenberg 

Figure 23: Comparison of seasonal models for predicting Ellenberg indicators at 
Ainsdale 
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Ellenberg 

Figure 24: Comparison of models trained with 10 m and all Sentinel-2 bands 

 

 

 (a) Light (b) Fertility (c) Wetness 

Figure 25: Mapping of modelled Ellenberg values for Ainsdale dunes. Areas with an NDVI 

less than 0.35 are masked to remove bare sand and impervious surfaces. 
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Table 4: Accuracy metrics for predicting Ellenberg indicators using only a single 

vegetation index. 

 

 

Table 5: Model accuracy metrics for the EI predictions, using cubist models. 

Season Ellenberg R2 RMSE MAE 

Both pH 0.36 0.40 0.29 

 Light 0.49 0.42 0.32 

 Fertility 0.14 0.75 0.58 

 Wetness 0.47 0.83 0.68 

Winter pH 0.37 0.40 0.29 

 Light 0.48 0.42 0.32 

 Fertility 0.14 0.74 0.58 

 Wetness 0.47 0.82 0.67 

Summer pH 0.36 0.40 0.29 

 Light 0.48 0.42 0.32 

 Fertility 0.13 0.74 0.58 

 Wetness 0.47 0.83 0.67 

 

  

Season VI Ellenberg R2 RMSE Season VI Ellenberg R2 RMSE 

Summer NDMI pH 0.03 0.48 Winter NDMI pH 0.03 0.48 

 NDMI Light 0.28 0.49  NDMI Light 0.28 0.49 

 NDMI Wetness 0.18 1.02  NDMI Wetness 0.18 1.02 

 NDMI Fertility 0.09 0.75  NDMI Fertility 0.09 0.75 

 NDVI pH 0.04 0.48  NDVI pH 0.04 0.48 

 NDVI Light 0.11 0.54  NDVI Light 0.12 0.55 

 NDVI Wetness 0.30 0.94  NDVI Wetness 0.31 0.94 

 NDVI Fertility 0.13 0.74  NDVI Fertility 0.13 0.74 

 NDWI pH 0.10 0.47  NDWI pH 0.09 0.47 

 NDWI Light 0.04 0.57  NDWI Light 0.04 0.57 

 NDWI Wetness 0.28 0.96  NDWI Wetness 0.27 0.95 

 NDWI Fertility 0.12 0.74  NDWI Fertility 0.12 0.74 
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5.2 NVC mapping 

The survey datasets were classified into NVC codes using the MAVIS software. The 
outputs codes were simplified into the base classes (e.g. SD12a to SD12) and classes 

known not to be present (e.g. heath) were removed. As a further step, the NVC codes 
were aggregated into Annex 1 classes. Predictive Gradient Boosted classification models 

were developed and validated using 10 repeats of 10-fold cross validation. 

Maps of the resulting classifications are shown in Figure 26. For the NVC model, the 

accuracy was 44%. This accuracy then increases to 53% after aggregation to Annex 1 
level. In both classifications the accuracies were closely related to sample size (Table 6), 

with rarer classes being poorly predicted - if not missed completely. This highlights a key 
issue with the use of random quadrat sampling to generate classification models. If 

sufficient samples are not obtained from habitats of less spatial area, they are unlikely 
to be reliably mapped. A comparison with maps produced from an ecological survey 

(Appendix 4) revealed a good broad agreement in habitat mapping. The areas of humid 
dune slacks were well defined as were dunes with Salix repens, however, fixed dunes 

were often classified as shifting dunes along the shoreline and embryonic shifting dunes 

were over predicted. Further data collection in under-represented habitats should 
improve the model further. 

Given the small sample size relative to the number of classes (n = 195, p = 10/6) and 

the highly heterogeneous nature of sand dunes, accuracy in the 40-50% range should be 
considered realistic. A stratified sampling strategy would likely increase the 

performance of the smaller classes. However, the high heterogeneity of sand dunes may 
make non-categorical models a plausible option. 

 

Table 6: Accuracy of Sentinel-2 classifications for Annex 1 and NVC Habitat classifications. H2110: 

Embryonic shifting dunes; H2120: Shifting dunes along the shoreline; H2130: Fixed dunes with 

herbaceous vegetation; H2170: Dunes with Salix repens; H2190: Humid dune Slacks. See Appendix 1 for 

further explanation of Annex 1 and NVC codes. 
 Producer’s User’s 

H2110 0.00 0.00 

H2120 0.55 0.48 

H2130 0.30 0.49 

H2170 0.60 0.51 

H2190 0.56 0.66 

Woodland 0.74 0.64 

Overall Accuracy (Annex 1) 0.53  

SD10 0.00 0.00 

SD11 0.00 0.00 

SD12 0.31 0.42 

SD14 0.12 0.17 

SD15 0.63 0.57 

SD16 0.42 0.35 

SD6 0.00 0.00 

SD7 0.59 0.45 

SD8 0.02 0.14 

Woodland 0.77 0.67 
 Overall Accuracy (NVC)                 0.44 
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 (a) NVC (b) Annex 1 

Figure 26: Mapping of the modelled classes for Ainsdale dunes, a) NVC classes, b) 

Annex 1 classes. H2110: Embryonic shifting dunes; H2120: Shifting dunes along the 

shoreline; H2130: Fixed dunes with herbaceous vegetation; H2170: Dunes with Salix 

repens; H2190: Humid dune Slacks. Areas with an NDVI less than 0.35 are masked to 

remove bare sand and impervious surfaces. Only sand dune habitats have been 

mapped, so areas beyond the dune system should be discounted. See Appendix 1 for 

further explanation of Annex 1 and NVC codes and Appendix 4 for comparison with 

maps from ecological survey. 
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5.3 CASI and LiDAR Fusion 

The Sefton Coast was imaged by a CASI hyperspectral scanner in August 2015. This 
instrument collects 1 m resolution imagery across 24 spectral channels. Furthermore, 

Environment Agency LiDAR data is available, this was processed to generate a Canopy 

Height Model (CHM) and Digital Surface Model (DSM). These data were then combined 
with the CASI image and used as predictors of the NVC/Annex 1 data and Ellenberg 

indicators 

The accuracies of the high-resolution models are comparable to those using the 
Sentinel data. Similarly, classes with a low sample size were poorly classified. The 

Sentinel-2 and CASI classifications show similar overall patters. The key difference is in 
areas to the north, where the Sentinel-2 models predict more woodland. This area is 

dominated with low shrubs and trees and is therefore closer to woodland than dune 

system. The better performance of Sentinel data in this area is probably due to the multi-

seasonal data allowing easier discrimination of the woodland, which may be subtle in 

the summer months. 

 

 (a) NVC (b) Annex 1 
Figure 27: Mapping of the modelled classes for Ainsdale dunes, a) NVC classes, b) Annex 1 classes using 

CASI hyper-spectral and LiDAR. Areas with an NDVI less than 0.35 are masked to remove bare sand and 

impervious surfaces. Only sand dune habitats have been mapped, so areas beyond the dune system 

should be discounted. H2110: Embryonic shifting dunes; H2120: Shifting dunes along the shoreline; 

H2130: Fixed dunes with herbaceous vegetation; H2170: Dunes with Salix repens; H2190: Humid dune 

Slacks. See Appendix 1 for further explanation of Annex 1 and NVC codes.  
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5.4 Field Validation 

Independent field data collection was undertaken in June and July 2018 at Ainsdale Sand 
dunes. Validation quadrats were randomly chosen across the survey area with further 

quadrats located in habitat classes that were under-represented in the initial survey data 

and more difficult to model. These further quadrats are to be used in Phase 2 of the 
Project for further model development to improve accuracy, however, they were also 

incorporated into this validation exercise, therefore, the independent accuracy 
measures are likely to be somewhat punitive. 

The overall accuracies based on the independent validation were 29% for CASI and 

32% for the Sentinel-2 models, these scores are roughly 20% lower than the cross-
validated scores but this is to be expected due to incorporation of quadrats in more 

difficult classes i.e. classes such as H2110 (Embryonic Shifting Dunes) occupy a small 

proportion of the habitat area and the original survey data.  

For the Sentinel-2 predictions, there was a high degree of confusion between H2110 
and H2120 (embryo dunes and shifting dunes along the shoreline, see Confusion Matrix 

in Table 7). This is understandable as the species composition of the classes is similar, 
with the main differentiation being the bare ground coverage, therefore the spectral 

signatures of the vegetation will be similar; embryo dunes were poorly presented in the 
training data. In general, shifting dunes were over predicted at the expense of other 

classes, as this class had the most training data (histogram in appendix) an over 

representation is somewhat expected. Dunes with Salix Repens (H2170) were well 
mapped, with a moderate degree of confusion with humid dune slacks (H2190), again 

these communities have a common, dominant species, in the form of Salix repens.  

For the CASI predictions, dunes with Salix Repens (H2170) were over predicted at the 
expense of other communities (see Confusion Matrix in Table 8). There was also 

confusion between H2130 and H2120 (Shifting dunes and Fixed Dunes). Again, this issue 

is most likely due to similar species composition, with the differences between 

communities being determined by coverage and structure.  

Sentinel-2 generally performed better than the CASI imagery in overall accuracy, with 

the exception of H2190 – humid dune slacks where CASI performed best. 

Further data collection from these ‘difficult’ classes took pace during the validation 

exercise and can be incorporated into future iterations of the model to strengthen 
accuracy. 
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Table 7: Confusion matrix of field data (columns) compared to the Sentinel-2 Annex 1 

predictions (rows) 

  
Reference 

H2110 
 
H2120 

 
H2130 

 
H2170 

 
H2190 

Prediction  H2110 0 0 0 0 0 

  H2120 15 14 23 3 1 

  H2130 0 0 3 0 0 

  H2170 0 0 4 6 6 

  H2190 0 0 0 1 1 

 

Table 8: Confusion matrix of field data (columns) compared to the CASI Annex 1 pre- 

dictions (rows) 

  Reference 
H2110 H2120 H2130 H2170 H2190 

Prediction  H2110 0 7 0 0 0 

 H2120 0 7 20 3 1 

 H2130 0 0 6 1 0 

 H2170 15 0 4 6 4 

 H2190 0 0 0 0 3 

 

Table 9: Balanced accuracy of Annex 1 classes for the two models based on independent 

field validation data 

 H2110 H2120 H2130 H2170 H2190 
Sentinel-2 0.50 0.67 0.56 0.72 0.55 

CASI 0.44 0.56 0.59 0.63 0.69 
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6 Ecological and Environmental Summary 

The overarching aim to this work was to assess the potential for Earth-observation to 
monitor the habitats and conditions of protected sites at the landscape scale. This could 

inform the protected sites monitoring reform project and how resilient landscapes are 
able to keep meeting the needs of people and nature in a changing world.  

More specifically to: 

 

1. Assess Earth-observation and Remote Sensing capability for accurately mapping 
habitat and potentially plant community condition and monitor change at the 

landscape scale. 
2. Detect significant change in habitat & plant community spatial extent and their 

productivity over the long term across LTMN sites 
3. Baseline habitat and plant community maps at the landscape scale used for 

modelling ecological connectivity and ecosystem functionality 

4. Informing better understanding of the resilience of landscapes for species  
to adapt to Climate Change and identify the Natural Capital assets they provide, 

working towards the Conservation Strategy (C21). 

 

To investigate this, a number of modelling scenarios were developed focussing on the 

prediction and mapping of Ellenberg indicator values and NVC/Annex 1 habitats. From 
the generated models, we draw a number of observations concerning their successes, 

weaknesses, limitations, and potential. 

 

6.1 Habitat Mapping and Condition Assessment: Informing Protected 

Sites Monitoring Reform 

The majority of models resulted in variable accuracies for all ecological criteria, using 

Sentinel-2 or CASI hyperspectral imagery, varying across habitat type. For habitat 

mapping, at Bowland a binary classification between the dominant habitats of heath and 
bog achieved a high accuracy of 70%, with a seven-class habitat model reducing this to 

44%; at Ainsdale, NVC’s achieved 44% accuracy, with aggregating to Annex 1 classes 
increasing this to 53%. 

The accuracy of the models generated show potential- in some cases - for broad-scale 

assessment of habitat and condition. However, further model development is needed to 
more confidently assess change over time. Change monitoring over time would benefit 

from two developments. Firstly, for NVC mapping, overall accuracies of 70% should be 

achieved; which would allow a bi-temporal change accuracy of 50% (two maps at 70% 
results in a change map with accuracy of 0.7 * 0.7 = 0.49). Secondly, for Ellenberg 

mapping, the consistency of models across different time periods should be analysed to 
test the potential robustness of mapped trends. 
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Table 9. Summary of application testing of remote sensing on example FCT Attributes 
Attribute Measure/ Site-specific targets Comment 

Habitat extent Estimated extent (ha) e.g. No net loss of extent, Possible with accuracy of underlying 

model. Could be studied at site, annex 1 

or NVC level. 

Ainsdale (based on cross-validation) 

Annex 1 Habitat mapping 53% Accuracy 

NVC Mapping  44% Accuracy 

Bowland (based on cross-validation) 

Binary heath/bog model 70% accuracy 

Seven habitat classification 44% accuracy 

Bare ground/litter Record the cover of bare ground in period May- 

October using aerial photographs and structured 

walk (or transects). Sources and dates of new 

maps/surveys/photographs e.g. Bare ground or 

sand present, but no more than 10% total area. 

Possible with accuracy of underlying 

model, see above. 

Vegetation structure: 

sward height 

Record sward height in period mid-May to late-

July during structured walk (or transects) e.g. 30-

70% of sward to comprise species-rich short turf, 

2-10 cm tall. 

Soft surface of sand dunes limited 

accuracy. Possible in heaths/bogs and 

other habitats if suitable LiDAR data 

available. 

Vegetation structure: 

flowering/fruiting 

Record a visual assessment of cover with 

modified DAFOR scale using structured walk e.g. 

Flowering and fruiting of dune grassland to at 

least frequent level. 

Not tested. If suitable training data 

covering species in flower were available 

alongside timely imagery then this could 

be tested. 

Vegetation: 

Functional Groups 

Incl. forb/grass ratio but also 

bryophytes/shrub/sedge. 

Limited accuracy as too much within 

group variation. Testing at Ainsdale 

produced the following accuracies, RMSE 

(Root Mean Square Error): 

 

Forbs (R2=0.18, RMSE=19.5%) 

Graminoid (R2=0.1, RMSE=25%) 

Vegetation: typical 

species 

Record the frequency of typical indicator species 

(below) in period May- July with modified DAFOR 

scale using structured walk (or transects). 

The underlying data does not currently 

allow modelling of individual species but 

where they are dominant at a canopy 

level (e.g. Salix repens, Calluna vulgaris) 

then further training data (e.g. polygons 

of single species stands) could make this 

possible. Testing at Ainsdale on two key 

species produced the following 

accuracies: 

 

Salix repens (R2=0.18, RMSE=21.5%) 

Carex arenaria (R2=0.02, RMSE=13.8%) 

Vegetation 

composition: negative 

indicator species 

Record the frequency of negative indicator 
species in period May- October. 
% cover measured is cover of the entire feature 

e.g. the cover of negative indicator species no 

more than 5%. 

Vegetation: 

forb/grass ratio 

The sward should contain >30% cover of forbs 

and <70% cover of grasses. 

Vegetation 

composition: cover of 

Salix repens 

Cover of Salix repens not more than 33% across 

90% of slacks. 

Vegetation 

composition: 

scrub/trees 

% cover measured is cover of the entire feature 

e.g. Scrub/trees no more than occasional, or less 

than 5% cover over the whole SSSI 

Tree cover can be measured, scrub layer 

not tested but assumed not possible. 

Other negative 

indicators 

Record visual assessment during site visit e.g. 

Tree invasion from adjacent plantations absent 

or rare 

Tree invasion should be possible. 

 

There appears to be potential to use EO to address some targets used in Favourable 
Condition Tables (FCT) Assessments (Table 9) and contribute to the reform of protected 
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sites monitoring: habitat extent, bare ground, vegetation and tree cover should be 

possible using the current approaches. Prediction of cover of dominant species such as 

Calluna vulgaris, Sphagnum spp. or Salix repens is likely to be possible with improved 
model training if additional quadrat data were available covering areas dominant in 

those species. Canopy/sward height was not possible to accurately measure in the sand 
dunes due to the ‘soft’ nature of the surface, however, where LiDAR data is available, it 

should be achievable in other habitats.  

The two case studies present contrasting issues for NVC mapping. At Bowland, there 

is a dominance of two broad-scale habitats, H12 and M19, which makes the mapping of 
rarer sub-communities difficult, as these classes cannot develop a feature-space niche. 

Conversely, at Ainsdale, a large number of habitats occur, resulting in small and often 
diverse training samples. This is unavoidable here due to the type of training data used. 

If this were not the case, it is likely that a sampling strategy stratified for the desired 
communities would improve results as would collection of data covering dominant 

species.  

The use of MAVIS-generated NVC codes alone is not an ideal source of training data 

for predictive models. Expert surveyors are able to make informed judgements about 

habitat classification using the context (e.g. nearby species, topographic setting) of a plot, 

and further insight can be gained by identifying the presence of invasive or atypical 
species that are not relevant for the classifications at a location. This issue is typified by 

the presence of Open habitats at Ainsdale. Further inspection noted that these areas 
were likely miss-classified due to the presence of Rosebay willow herb, leading MAVIS 

to default towards Open habitat instead of the underlying sand dune community. It is 
therefore recommended that future surveys note the likely NVC when surveying and this 

be compared to MAVIS generated codes from the data. 

 

6.2 Monitoring Environmental Change 

A key focus of the Long Term Monitoring Network is to understand broad ecosystem 
responses to environmental change, such as air pollution and climate change, and at a 

site level, it is also important to monitor the site condition and the success on 
management intervention on condition, for example, rewetting of a bog.  

For the Ellenberg indicator values, models resulted in R2s of between 0.11 and 0.55, 
the lower scores occurred for EIVs which showed a more limited range such as pH (EIV 

R) at Bowland and fertility (EIV N) at Ainsdale. Whereas each site had different successes 
for different indicators, there were some commonalities. As highlighted, results were 

poor when there was a low range of values present, conversely, accuracies were 
improved in cases where there is an ecological explanation for variation in the index; for 

both sites, light (EIV L) was accurately mapped which is indicative of community light 

demand being connected to surface reflectance. Similarly, both sites had reasonable 

accuracies for wetness (EIV F), this is explained by the design of the shortwave infrared 
bands on Sentinel-2 which are spectrally configured for moisture content quantification.  
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Air Quality 

Responses in Ellenberg fertility or N (for Nutrients) have been linked to nitrogen 
deposition in gradient survey work, and as such, it is important to understand if a site 

shows increases in fertility over time. These changes in fertility across habitats at the 
landscape scale could be studied alongside nitrogen deposition gridded model data to 

understand the extent to which air quality may be impacting habitat condition. 

 

Wetness Index 

Similarly, Ellenberg moisture or F could be used to understand community responses to 
a change in site management, for example restoration of Sphagnum mosses and gully 

blocking. NDMI (Normalised Difference Moisture Index) and NDWI (Normalised 
Difference Wetness Index) also offer potential to observe changes in surface wetness, for 

example gully blocking, although further work is needed to link changes in species 
composition and restoration of bare ground with NDMI and NDWI. Surface wetness in 

bogs is a key indicator of habitat condition and carbon (C) storage (a wet bog is a better 
C store than a drained bog) and could also be used to help with understanding flood risk. 

Developing a Wetness Index by combining NDMI, NDWI and EIV Wetness together to 
get a stronger wetness index could reduce time lag issues and link species composition 

to NDMI and NDWI to inform bog condition and targeting of agri-environment schemes 
in the development of Upland Management Long-term Plans, across England. This 

approach could be useful in understanding community responses to climate change. 

 

Natural Capital Asset Mapping 

The development of a Wetness Index for incorporating into protected sites condition 

monitoring also offers the potential to assist with Natural Capital Asset Mapping for 
informing flood risk management schemes. Spatially accurately wetness mapping could 

help target management using agri-environment scheme options to re-wet and restore 

blanket bogs, improving condition and potentially the ability to hold more water. This 
could slow the flow in high rainfall, flash flooding events and inform Upland Long-term 

Management Plans. Combined with Environment Agency (EA) river catchment fluvial 
modelling there could be potential to inform softer rural flooding engineering solutions.      

 

Therefore, there does appear potential to use both types of indicator to understand 
landscape and environmental change and condition, especially in conjunction with 

changes in broad habitat structure and extent and the potential to assist with Natural 
Capital Asset Mapping. There may also be future potential to link these observations 

with on-the-ground biogeochemical soil responses from data collected through LTMN 
monitoring. 
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7 Summary and Recommendations for future work 

The modelling in this report has demonstrated the potential for EO data to monitor 
both habitat and environmental change. There is opportunity for additional ground 

truthing and data collection to improve the models further to achieve usable accuracies; 
at Bowland, a bi-habitat classification into bog and heath showed real promise with a 

cross-validated accuracy of 70%. How survey data can most appropriately be used as 
classification inputs requires more research. It is important to balance pre-processing 

data cleaning, such as identifying atypical habitats, with best practise model building 
ethics; such as not intentionally removing complex and difficult to classify data to obtain 

higher accuracy. A series of rules for each site, based on local ecological knowledge, 
would be beneficial to allow unbiased pre-processing of input data. 

In the coming years, the utility of Sentinel-2 imagery is likely to increase. At the time 
of this analysis, the Sentinel-2 archive was somewhat limited, due to cloud cover and 

operation time. With the successful launch of Sentinel-2B the number of available images 
is dramatically increased. Furthermore, the quality of data will improve as pre-

processing routines develop. Improvements in geolocation accuracy have already been 
achieved; and developments in atmospheric correction, especially at high-resolution, are 

ongoing. It will therefore be possible to use a greater number of images or phonological 
metrics, which may improve accuracy. These approaches have proved highly beneficial 

in mapping subtle land covers in a range of environments and would merit investigation. 
Based on the research detailed in this report, we propose that the following areas may 

merit some further investigations, if the use of Earth observation/Sentinel-2 data is to 

be optimised. 

If the use of satellite-based vegetation indices (VI) to infer condition (e.g. wetness 

or productivity) is desirable, the following questions would merit further study: 

1. How does species composition affect VI values, and at what scale should ground 
data collection or quadrat data be collected to accurately train models for VI 
values? 

2. How sensitive are VI trends to "on-the-ground" changes in conditions such as 
 post flood or following gully blocking? Related to this, do VI indices represent 
 physical changes in the vegetation (e.g. amount of water held in mosses), or do 
 they better reflect changes in species composition as a result of environmental 
 differences? 

3. Can combining NDMI, NDWI and EIV Wetness Indices together provide a stronger 
Wetness Index? 

4.  Are VI-condition assessments consistent between sites? 

5. How do VI’s such as NDVI respond over time to changes in habitat and 
environmental conditions? 
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If land cover maps of the NVC classes are desirable, the following topics may be 

worthy of investigation: 

1. Can model accuracy be improved after ground truthing data targeted to habitats 
with less confidence relating to sample size is incorporated into the models? 

2. What is the best way to generate class labels from quadrat data? 

3. How should dense temporal image collections be processed? 

4. Do classifications or end-member approaches perform better? 

5. Can vegetation class probabilities be used to estimate habitat cover? 

 
Finally, the following issues regarding image processing would be of generic 

benefit to uptake of Sentinel-2 imagery, some of these may be addressed by 
European or UK Space Agency projects. 

1. How should topographic correction be applied in the absence of a comparable 
resolution DEM? 

2. Is bi-directional correction necessary on a UK scale? 

3. Do bi-directional artefacts incur a bias between Sentinel-2a and 2b? 

4. Can Sentinel-2 be reliably downscaled? potentially using Environment Agency 
LIDAR data 

5. What is the geolocation accuracy of Sentinel-2 in the UK? 
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Appendix 1 – Sand dunes Annex 1 and NVC Habitat Names and 

key vegetation groups 

 

Annex 1 Habitat NVC code & community/sub-community name

Grassland MG5 Cynosurus cristatus-Centaurea nigra grassland

MG5a Cynosurus cristatus-Centaurea nigra grassland, Lathyrus pratensis sub-community

MG5b Cynosurus cristatus-Centaurea nigra grassland, Galium verum sub-community

MG5c Cynosurus cristatus-Centaurea nigra grassland, Danthonia decumbens sub-community

MG6 Lolium perenne-Cynosurus cristatus grassland

MG6a Lolium perenne-Cynosurus cristatus grassland, typical sub-community

MG6b Lolium perenne-Cynosurus cristatus grassland, Anthoxanthum odoratum sub-community

MG6c Lolium perenne-Cynosurus cristatus grassland, Trisetum flavescens sub-community

H2110 SD4 Elymus farctus ssp. boreali-atlanticus foredune community

Embryonic shifting dunes SD6 Ammophila arenaria mobile dune community

SD6a Ammophila arenaria mobile dune community, Elymus farctus sub-community

SD6b Ammophila arenaria mobile dune community, Elymus farctus-Leymus arenarius sub-community

SD6c Ammophila arenaria mobile dune community, Leymus arenarius sub-community

SD6d Ammophila arenaria mobile dune community, Ammophila arenaria sub-community

SD6e Ammophila arenaria mobile dune community, Festuca rubra sub-community

SD6f Ammophila arenaria mobile dune community, Poa pratensis sub-community

SD6g Ammophila arenaria mobile dune community, Carex arenaria sub-community

H2120 SD5 Leymus arenarius mobile dune community

Shifting dunes along the shoreline SD5a Leymus arenarius mobile dune community, species-poor sub-community

SD5b Leymus arenarius mobile dune community, Elymus farctus sub-community

SD5c Leymus arenarius mobile dune community, Festuca rubra sub-community

SD7 Ammophila arenaria-Festuca rubra semi-fixed dune community

SD7a Ammophila arenaria-Festuca rubra semi-fixed dune community, typical sub-community

SD7b Ammophila arenaria-Festuca rubra semi-fixed dune community, Hypnum cupressiforme sub-community

SD7c Ammophila arenaria-Festuca rubra semi-fixed dune community, Ononis repens sub-community

SD7d Ammophila arenaria-Festuca rubra semi-fixed dune community, Elymus pycnanthus sub-community

SD8 Festuca rubra-Galium verum fixed dune grassland

SD8a Festuca rubra-Galium verum fixed dune grassland, typical sub-community

SD8b Festuca rubra-Galium verum fixed dune grassland, Luzula campestris sub-community

SD8c Festuca rubra-Galium verum fixed dune grassland, Tortula ruralis ssp. ruraliformis sub-community

SD8d Festuca rubra-Galium verum fixed dune grassland, Bellis perennis-Ranunculus acris sub-community

SD8e Festuca rubra-Galium verum fixed dune grassland, Prunella vulgaris sub-community

SD9 Ammophila arenaria-Arrhenatherum elatius dune grassland

SD9a Ammophila arenaria-Arrhenatherum elatius dune grassland, typical sub-community

SD9b Ammophila arenaria-Arrhenatherum elatius dune grassland, Geranium sanguineum sub-community

H2130  SD11 Carex arenaria-Cornicularia aculeata dune community

Fixed dunes with herbacious vegetation SD11a Carex arenaria-Cornicularia aculeata dune community, Ammophila arenaria sub-community

SD11b Carex arenaria-Cornicularia aculeata dune community, Festuca ovina sub-community

SD12 Carex arenaria-Festuca ovina-Agrostis capillaris dune grassland

SD12a Carex arenaria-Festuca ovina-Agrostis capillaris dune grassland, Anthoxanthum odoratum sub-community

SD12b Carex arenaria-Festuca ovina-Agrostis capillaris dune grassland, Holcus lanatus sub-community

SD13 Sagina nodosa-Bryum pseudotriquetrum dune-slack community

SD13a Sagina nodosa-Bryum pseudotriquetrum dune-slack community, Poa annua-Moerckia hibernica sub-community

SD13b Sagina nodosa-Bryum pseudotriquetrum dune-slack community, Holcus lanatus-Festuca rubra sub-community

SD19 Phleum arenarium-Arenaria serpyllifolia dune annual community

H2170 SD14 Salix repens-Campylium stellatum dune-slack community

Dunes with Salix repens (Slacks) SD14a Salix repens-Campylium stellatum dune-slack community, Carex serotina-Drepanocladus sendtneri sub-community

SD14b Salix repens-Campylium stellatum dune-slack community, Rubus caesius-Galium palustre sub-community

SD14c Salix repens-Campylium stellatum dune-slack community, Bryum pseudotriquetrum-Aneura pinguis sub-community

SD14d Salix repens-Campylium stellatum dune-slack community, Festuca rubra sub-community

SD16 Salix repens-Holcus lanatus dune-slack community

SD16a Salix repens-Holcus lanatus dune-slack community, Ononis repens sub-community

SD16b Salix repens-Holcus lanatus dune-slack community, Rubus caesius sub-community

SD16c Salix repens-Holcus lanatus dune-slack community, Prunella vulgaris-Equisetum variegatum sub-community

SD16d Salix repens-Holcus lanatus dune-slack community, Agrostis stolonifera sub-community

SD17 Potentilla anserina-Carex nigra dune-slack community

SD17a Potentilla anserina-Carex nigra dune-slack community, Festuca rubra-Ranunculus repens sub-community

SD17b Potentilla anserina-Carex nigra dune-slack community, Carex flacca sub-community

SD17c Potentilla anserina-Carex nigra dune-slack community, Caltha palustris sub-community

SD17d Potentilla anserina-Carex nigra dune-slack community, Hydrocotyle vulgaris-Ranunculus flammula sub-community

SD18 Hippophae rhamnoides dune scrub

SD18a Hippophae rhamnoides dune scrub, Festuca rubra sub-community

SD18b Hippophae rhamnoides dune scrub, Urtica dioica-Arrhenatherum elatius sub-community

H2190  SD15 Salix repens-Calliergon cuspidatum dune-slack community

Humid dune slacks SD15a Salix repens-Calliergon cuspidatum dune-slack community, Carex nigra sub-community

SD15b Salix repens-Calliergon cuspidatum dune-slack community, Equisetum variegatum sub-community

SD15c Salix repens-Calliergon cuspidatum dune-slack community, Carex flacca-Pulicaria dysenterica sub-community

SD15d Salix repens-Calliergon cuspidatum dune-slack community, Holcus lanatus-Angelica sylvestris sub-community

Heath H1 Calluna vulgaris-Festuca ovina heath

H11 Calluna vulgaris-Carex arenaria heath

H11a Calluna vulgaris-Carex arenaria heath, Erica cinerea sub-community

H11b Calluna vulgaris-Carex arenaria heath, Empetrum nigrum ssp. nigrum sub-community

H11c Calluna vulgaris-Carex arenaria heath, species-poor sub-community

Open OV27 Epilobium angustifolium community

OV27a Epilobium angustifolium community, Holcus lanatus-Festuca ovina sub-community

OV27b Epilobium angustifolium community, Urtica dioica-Cirsium arvense sub-community

OV27c Epilobium angustifolium community, Rubus fruticosus agg.-Dryopteris dilatata sub-community

OV27d Epilobium angustifolium community, Acer pseudoplatanus-Sambucus nigra sub-community

OV27e Epilobium angustifolium community, Ammophila arenaria sub-community

SD10 Carex arenaria dune community

SD10a Carex arenaria dune community, Festuca rubra sub-community

SD10b Carex arenaria dune community, Festuca ovina sub-community
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Appendix 2 – Principle Components Analysis of vegetation communities 

 

Figure 28: Principle Components Analysis illustrating how species and habitats are ordinated to the main axes of environmental 

change at Bowland. 95% Ellipses shown illustrating the overlap between bog and heath communities; the habitats 

share key species and degraded bogs have strong similarities with heaths.  
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Figure 29: Principle Components Analysis illustrating how species and habitats are ordinated to the main axes of environmental 
change at Ainsdale Sand dunes. 95% Ellipses not shown for clarity. The close grouping of many species highlights the 

close relationships and transient nature of sand dune communities. 
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Appendix 3 – Frequency of habitat classes at Ainsdale 

 

 

Figure 30: Count of habitat occurrence using NVC and Annex 1 classifications for 

Ainsdale dunes 
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Appendix 4 – Ainsdale Comparison of CASI and Sentinel-2 

Predictions with Ecological Survey mapping 

 
Figure 31 Comparison of the predicted maps against ground survey plots. A-B Ecological 

survey, C-D Sentinel-2 predictions, E-F CASI predictions. 


