e-space
Manchester Metropolitan University's Research Repository

Alpha shapes: Determining 3D shape complexity across morphologically diverse structures

Gardiner, James and Behnsen, Julia and Brassey, Charlotte (2018) Alpha shapes: Determining 3D shape complexity across morphologically diverse structures. BMC Evolutionary Biology, 18. ISSN 1471-2148

[img]
Preview

Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

Background. Following recent advances in bioimaging, high-resolution 3D models of biological structures are now generated rapidly and at low-cost. To utilise this data to address evolutionary and ecological questions, an array of tools has been developed to conduct 3D shape analysis and quantify topographic complexity. Here we focus particularly on shape techniques applied to irregular-shaped objects lacking clear homologous landmarks, and propose the new ‘alpha-shapes’ method for quantifying 3D shape complexity. Methods. We apply alpha-shapes to quantify shape complexity in the mammalian baculum as an example of a morphologically disparate structure. Micro- computed-tomography (μCT) scans of bacula were conducted. Bacula were binarised and converted into point clouds. Following application of a scaling factor to account for absolute differences in size, a suite of alpha-shapes was fitted to each specimen. An alpha shape is a formed from a subcomplex of the Delaunay triangulation of a given set of points, and ranges in refinement from a very coarse mesh (approximating convex hulls) to a very fine fit. ‘Optimal’ alpha was defined as the degree of refinement necessary in order for alpha-shape volume to equal CT voxel volume, and was taken as a metric of overall shape ‘complexity’. Results Our results show that alpha-shapes can be used to quantify interspecific variation in shape ‘complexity’ within biological structures of disparate geometry. The ‘stepped’ nature of alpha curves is informative with regards to the contribution of specific morphological features to overall shape ‘complexity’. Alpha-shapes agrees with other measures of topographic complexity (dissection index, Dirichlet normal energy) in identifying ursid bacula as having low shape complexity. However, alpha-shapes estimates mustelid bacula as possessing the highest topographic complexity, contrasting with other shape metrics. 3D fractal dimension is found to be an inappropriate metric of complexity when applied to bacula. Conclusions. The alpha-shapes methodology can be used to calculate ‘optimal’ alpha refinement as a proxy for shape ‘complexity’ without identifying landmarks. The implementation of alpha-shapes is straightforward, and is automated to process large datasets quickly. Beyond genital shape, we consider the alpha-shapes technique to hold considerable promise for new applications across evolutionary, ecological and palaeoecological disciplines.

Impact and Reach

Statistics

Downloads
Activity Overview
23Downloads
66Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item