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Abstract 

In this work, a novel detection assay for the new psychoactive substance (NPS) 2-methoxiphenidine (2-

MXP) and other diarylethylamines is introduced. The assay is based on the competitive displacement of 

dye molecules from molecularly imprinted polymers (MIPs) by the target molecule. The assay was fully 

characterized by studying the affinity of the MIP for six common dyes, expressed as the binding factor 

(BF). The results of this study indicate that the mathematical relationship between the BF of a dye and the 

imprinting factor (IF) for the target could be used for the prediction of the efficacy of the displacement 

assay. Dye-loaded MIP particles where incubated with the target, two adulterants and two legal 

pharmacological compounds. The target has a higher affinity for the MIP than the dye and displaces it out 

of the nanocavities of the receptor leading to a colour change in the filtrate that can be observed with the 

naked eye. Incubation of the MIP particles with the adulterants and legal medicines did not result in any 

observable change in absorbance.  The robust, fast and low-cost nature of the assay, combined with its 

tailorable selectivity and generic nature, illustrate its potential as a pre-screening tool for the identification 

of narcotic substances in unidentified powders. 
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1. Introduction 

Molecularly imprinted polymers (MIPs) have emerged as synthetic receptors in a wide range of applications 

over the past few decades [1,2]. MIP synthesis is based on cross-linking a polymer in the presence of a 

template, upon removal of the template nanocavities are created in the polymer network that serve as 

binding pockets for substrate rebinding [3, 4]. MIPs are able to withstand harsh physical and chemical 

conditions but display similar binding affinities for their target upon optimizing the synthesis process [5-

7]. Along with their generic, low-cost synthesis process, this makes MIPs interesting for incorporation into 

biomimetic sensing devices for the detection of a wide variety of compounds in biological samples [8-12]. 

MIPs have advanced much over years, evolving from bulk polymerized monoliths to more elegant 

nanoparticles that form the basis of many biosensing devices [13-16].  

The replacement of biological receptors by MIPs in alternatives to classical competitive assays in 

biomedicine was introduced by Vlatakis et al. with the advent of so-called molecular imprinting sorbent 

assays (MIAs) [17]. Traditionally, these assays combined bulk polymerized MIPs with radio- or fluorescent 

labeled analytes or enzyme-linked substrates in a competitive binding assay, studied by spectroscopic 

methods [18-22]. Incubation of pre-loaded MIPs with the target, resulted in displacement of the labeled-

substrates which could be assessed by fluorescent microscopy. The high selectivity and sensitivity of these 

assays makes them extremely suitable for the detection of trace amounts of analyte but many applications 

do not require these extreme degrees of sensitivity and selectivity. In this light, several displacement assays 

were developed that were based on the displacement of a dye that could be observed by absorption 

spectroscopy, omitting the need for an expensive and labour-intensive procedure such as fluorescent 

labelling [23-25]. 

In this study, a novel drug detection assay, coined substrate displacement colorimetry (SDC), is introduced. 

The assay is able to detect several narcotic compounds based on the colorimetric detection of displaced dye 

molecules. MIPs were synthesized for the new psychoactive substance (NPS), methoxphenidine (2-MXP). 

Low-cost drug assays for NPS are highly relevant as most current low-cost field colour test suffer from 



false positives when analysing samples containing adulterants or legal pharmacological compounds and the 

use of MIPs as synthetic receptors in this assay could overcome this problem to a large extent [26]. 

Moreover, the production and distribution of NPS have expanded tremendously in recent years to avoid 

legal legislation. Although these compounds are often considered to be legal highs, yet they are every inch 

as dangerous and addictive as their illicit counterparts [27-29]. Fast, reliable drug test would help authorities 

to enforce legislation and provide adequate treatment upon timely intervention.    

The classical bulk imprinting approach was chosen due to its easy and scalable synthesis procedure. The 

synthesis protocol was optimized and binding of six commonly used dyes to the MIP was analysed to 

determine the binding factor (BF) for each dye. This BF was compared to the MIP imprinting factor (IF) to 

establish a straightforward prediction model for assessing dye-target combinations.  Next, MIPs were 

loaded with malachite green and washed thoroughly to ensure complete removal of any unbound or weakly 

bound dye molecules. When exposing these dye-loaded MIPs to a sample containing their target, the dye 

will be displaced due to the higher affinity the MIP has towards the target analyte, releasing the dye into 

the surrounding medium (Fig. 1). The assay does not display any cross-selectivity between 2-MXP, two 

common adulterants and two legal pharmacological compounds. At the same time, the assay is able to 

detect other diarylethylamines in addition to 2-MXP. In this way, the experiments summarized in this paper 

illustrate a proof-of-concept for a low cost drug test that allows the end-user to visually determine the 

presence of narcotics in an unidentified powder and selectively identify e.g. an NPS in a complex mixture, 

a task that proves hard for routinely used, low-cost drug tests. In addition, a simple absorbance measurement 

on a spectrophotometer suffices to quantify even tiny amounts of 2-MXP that do not yield a colour reaction 

that is visible with the bare eye. Finally, a first proof-of-application is provided for a low-cost drug kit by 

immobilizing the dye-loaded particles directly in a syringe filter. Powder mixtures were dissolved in water 

and pressed through the filter, making it possible to use the colour of the filtrate as an indicator for the 

presence of diarylethylamines.  

2. Materials and methods 



2.1.  Chemicals and reagents 

Prior to polymerization, stabilizers were removed from the functional and crosslinking monomers by 

passing the solutions over a column packed with alumina. All chemicals and solvents were obtained from 

Sigma Aldrich. All solutions were prepared with deionized water of resistivity of 18.2 MΩ cm or with 

phosphate buffered saline (PBS) solutions.  

2.2.  Synthesis of molecularly imprinted polymers 

The synthesis protocol was optimized by varying the ratios of monomers, target and cross-linker 

(Supplementary Information Table S1) which is part of a bigger, previously conducted study on 2-MXP 

bulk MIPS.30 The best results were obtained by dissolving a mixture of the functional monomer methacrylic 

acid (MAA 1.02 mmol), crosslinker molecule ethylene glycol dimethacrylate (EGDMA 1.7 mmol), and 

initiator azobisisobutyronitril (AIBN 0.30 mmol) in dimethyl sulfoxide (DMSO) together with the template 

molecule (0.17 mmol). The mixture was purged with N2 before the initiation of the polymerization. 

Polymerization was performed by heating the mixture up to 65˚C for 12 h, allowing for full completion of 

the reaction. MIPs and NIPs were milled seven times using a Fritsch Planetary Micro Mill Pulverisette 7 

premium line (700 rpm, 5 minutes, 10 mm balls). After milling, the particles were sieved at 1.0 mm 

amplitude using a Fritsch Analysette 3 for 4 hours or until sufficient amount of polymer was on the 

collection plate to achieve microparticles with sizes smaller than 100 µm. Finally, the template molecule 

was removed from the MIP powders by continuous Soxhlet extraction with a 1:10 mixture of acetic acid 

and methanol for 12 h, followed by further extraction with pure methanol for a further 12 h. Extraction was 

verified using FTIR (see Supplementary Information Fig. S1). The MIP powder was then dried at 60˚C 

overnight, yielding the extracted dried MIP powder. The NIP was prepared in the same manner, without 

the presence of the template molecule. MIP morphology was studied using scanning electron microscopy 

(see Supplementary Information Fig. S2).   

2.3.  Batch rebinding  



Optical batch rebinding experiments were evaluated with a Shimadzu UV-3600 spectrophotometer. A 1 

mM stock solution consisting of PBS and target substrate was used to prepare an array of solutions varying 

between 0 - 0.7 mM. To 5 ml of each solution 20 mg of MIP/NIP powder was added, and the resulting 

suspensions placed on an orbital shaker (125 rpm) for 1 h at room temperature. After filtration, the free 

concentration of substrate in the filtrate was determined by UV-vis spectroscopy and HPLC analysis, 

allowing binding isotherms to be constructed. As a measure of specificity and in order to compare the 

different MIP compositions, the imprint factor (IF) was determined at Cf = 0.05 mM. To determine whether 

the MIP could selectively extract the target molecule from mixtures, selectivity tests were performed with 

other substrates. This was done for all MIPs under study.  

2.4.  Preparation of dye-loaded MIP 

To 20 ml of aqueous dye molecule (1 mM), 500 mg of previously prepared MIP powder was added, and 

proceeded to be left on an orbital shaker (250 rpm) for 2 h. The resulting suspension was then filtered and 

the remaining filtered solid washed with distilled water until the filtrate ran colourless. The coloured MIP 

powder was then placed in an oven overnight at 90˚C to yield a dry powder. 2-MXP MIPs were loaded with 

crystal violet, malachite green, methyl orange, basic blue, phenol red, or pararosailine respectively to study 

the SDC principle and to examine the effect of combining different dyes with different MIPs.  

2.5.  Kinetic analysis of Substrate Displacement Colorimetry (SDC)  

The SDC assay was initiated by adding 20 mg of dye-loaded MIP powder to 5 mL of aqueous 2-MXP (1 

mM). After varying fixed time intervals (1, 2, 3, 4, 5, 10, 15 and 20 minutes) of incubation on an orbital 

shaker, the solutions were filtered and the colour of the filtrate observed. If there was a significant amount 

of binding between the 2-MXP and the dye-loaded MIP, the dye would be displaced and released into 

solution, resulting in a colour change after filtration. Filtrates were examined both visually and optically 

using a Shimadzu UV-3600 spectrophotometer, to build a relationship between the dye displacement and 

the incubation time. 



2.6. Substrate displacement Colorimetry (SDC) selectivity analysis  

The SDC assay was initiated by adding 20 mg of dye-loaded MIP powder to 5 mL of aqueous analyte (1 

mM). After one minute of incubation on a shaker, the solutions were filtered and the colour of the filtrate 

observed. This was repeated for all MIPs under study and used to analyse samples containing caffeine, 

paracetamol, aspirin, and sucrose. If there was a significant amount of binding between the substrate and 

the dye-loaded MIP, the dye would be displaced and released into solution, resulting in a colour change 

after filtration. Filtrates were examined both visually and optically using a Shimadzu UV-3600 

spectrophotometer. As NPS have ever evolving minor structural changes, the dye-loaded MIP was also 

exposed to other diarylethylamines, assessing if the assay would be able to cope with continuously changing 

compositions of NPS.  

2.7.  SDC Quantitative analysis of loaded 2-MXP MIP 

To examine the potential for quantifying drugs aqueous solutions containing varying concentrations (0.01 

– 1 mM) of 2-MXP and caffeine were incubated with 20 mg of malachite green-loaded 2-MXP MIPs and 

shook on an orbital shaker (125 rpm) for 5 minutes. The solutions were then filtered and the absorbance of 

the malachite green displaced into solution was determined by UV-vis spectroscopy. All measurements 

were performed in triplet and a mean absorbance and standard error was calculated for each concentration. 

The data were fit using Origin Pro 8.   

2.8. Proof-of-application: low-cost drug detection kit 

To examine the potential of the assay to rapidly detect the presence of 2-MXP in unidentified powders by 

means of a fast, low-cost direct test, PTFE syringe filters (0.45 μm pore size) were loaded with dye-

containing MIP particles. To this extent, 20 mg of malachite-green loaded MIP powder was suspended in 

5 mL of distilled water after which the MIP solution was pushed through the filter to immobilize the MIp 

particles directly in the filter membrane. The filter proceeded to left to stand vertically for 30 minutes 

allowing any remaining distilled water to gravimetrically pass through, leaving the dried SDC MIP inside 



the filter. The filter proceeded to left to stand vertically for 30 minutes allowing any remaining distilled 

water to gravimetrically pass through, leaving the dried SDC MIP inside the filter. To assess qualitative 

functioning of the system, 5 mL solutions of target and analogues (4 mg/mL of caffeine, 2-MXP, sucrose, 

aspiring and paracetamol) were passed through the filters at a rate of 5 mL min-1. The filtrates were collected 

and analyzed using visual inspection and UV-VIS spectrometry. To investigate the sensor’s performance 

in impure street samples, varying concentrations of 2-MXP were mixed with caffeine and analyzed using 

the same method. The resulting absorbance readings were compared to a calibration curve obtained with a 

pure sample of 2-MXP.  

3. Results and discussion 

3.1.  Batch rebinding analysis  

The specificity and binding capacity of MIPs optimized for the detection of 2-MXP were analysed by means 

of UV-vis spectroscopy. The results obtained in batch rebinding experiments with both functionalized MIPs 

and their non-imprinted reference (non-imprinted polymers or NIPs) were used to construct binding 

isotherms by plotting the amount of target bound per gram of polymer (Sb) in function of the free 

concentration (Cf) of target remaining in solution. In order to determine the imprinting factor (IF), the data, 

shown in Fig. 2, were fit using an allometric (2-parameter) fit that reflects the heterogeneous nature of the 

binding sites within the MIP particles. The IF was calculated as the relative amount of binding by the MIP 

in comparison to the NIP at 0.05 mM using the allometric fit, demonstrating various IF values and binding 

capacities (Table 1). Of the MIP/NIPs tested, MIP-24 demonstrated the highest IF of 1.83 and a binding 

capacity of 159 μmol g-1.  

 

 

3.2. Batch rebinding analysis: optimizing dye-MIP coupling 



Rational design of the SDC assay was simulated by a similar batch rebinding experiment as the one 

described in the previous chapter. 2-MXP MIPs were incubated with six common, readily available dyes 

with structures that favour the formation of hydrogen bonds (see Supplementary Information Fig. S3). The 

resulting binding isotherms show that the MIP has the highest affinity for malachite green. The highest 

degree of specific binding , which was expressed as the binding factor (BF), was also observed for malachite 

green. BF was calculated in an analogous way to the imprinting factor (IF) for the target but distinguishes 

from this classical term as the dyes were not imprinted. The resulting BFs and the extinction coefficients 

for each of the dyes were summarized in Table 2. Malachite green was chosen as a dye due to its superior 

binding factor and resulting positive effect on the selectivity of the assay. In addition, the use of malachite 

green as a loading dye for 2-MXP MIPs was evaluated due to its high extinction coefficient, which should 

increase the assay’s sensitivity.  

To demonstrate that malachite green was indeed the best available dye to be used in this assay, MIP particles 

were loaded with  crystal violet, methyl orange, basic blue, phenol red, pararosaniline and malachite green 

and exposed to 2-MXP. The colours of the resulting filtrates were observed with the naked eye and the 

absorption was measured using the spectrophotometer (Table 3). Malachite green has the highest degree of 

displacement, having a visually observable coloured filtrate (Supplementary Information Fig. S4). The 

other dyes did not produce a noticeable difference in colour of filtrate, although a small amount of crystal 

violet could be detected with the spectrophotometer. These findings are in line with their low BFs, 

indicating that they will mostly occupy non-specific binding areas of the polymer and are easily removed 

during the washing step. The displacement is presumed to occur at the nanocavities where the 2-MXP has 

a higher affinity than the dye, displacing it out of the cavities into the surrounding solution. As the coloured 

MIP particles will be removed by means of a syringe filter the filtrate will only be coloured when the dye 

was displaced.  

 

3.3. Batch rebinding analysis: optimizing dye displacement 



The observed binding factor of the dye is only one parameter that must be considered when performing 

substrate displacement. If the MIP has a greater affinity for the dye than for the target, no displacement will 

occur, and therefore IF also plays a role in the efficacy of the displacement process. To demonstrate this 

concept, previously synthesized MIPs for 2-MXP were incubated with malachite green in a similar manner 

to the previous rebinding experiments. The binding isotherms generated from this allowed for the 

calculation of the binding factors of the malachite green towards each MIP (Table 4). The difference 

between the IF and BF is designated ΔBF and gives an indication to the differences in specific binding of 

the MIP towards malachite green and 2-MXP. As ΔBF becomes more positive, the likelihood of dye 

displacement increases. This is due to the target molecule having a higher affinity towards the MIP than the 

currently bound dye molecule, as the imprinting effect favours the target molecule. From the experimental 

data a curve was constructed, depicting this mathematical relationship between BF and IF (Fig. 3). The 

dashed line in the graph represents the point where BF and IF are equal. Any MIPs that have data points 

below this line will not exhibit displacement properties as the binding of the dye is greater than that of 2-

MXP. Confirmation of this theory was conducted by preloading each of the MIPs with malachite green, 

and then incubating the loaded MIPs with 2-MXP (1 mM). MIP-24, the MIP with the highest ΔBF, shows 

clear displacement of the dye that can be visually observed (Supplementary Information Fig. S5) while MIP 

25 displaces less dye making visual observation more difficult. These results were confirmed with UV-vis 

spectroscopy (Table 4). 

3.4. SDC: Incubation time dependency  

To get an insight into the kinetic behaviour of the dye displacement process, the effect of varying the 

incubation time on dye displacement was released. The malachite green-loaded MIPs were incubated with 

2-MXP (1 mM) for different amounts of time, varying from 1 minute to 20 minutes. The UV absorbance 

of the dye displaced was measured for each time period, to determine the optimal operating time (Fig 4). A 

clear coloured filtrate is already observed within a minute after incubation and a time-dependent, linear 

increase in colour intensity could be observed during the first 10 minutes. The UV-vis data indicate that the 



curve levels after 10 minutes eventually plateauing at 20 minutes, indicating that no additional dye is being 

released from the MIP. These results indicate that detecting trace amounts of narcotics in unknown powders 

in a quantitative manner will probably require longer time intervals but, depending on the concentration of 

drugs in the sample, a fast test can also be performed.  

3.5. Selectivity of the SDC 

The selectivity of the MIP towards other pharmaceutical compounds (paracetamol and aspirin) and common 

adulterants (caffeine and sucrose) was assessed to come to a primary evaluation of the MIP’s potential to 

discriminate an NPS from other morphologically similar white powders. The batch rebinding analysis, 

(shown in Supplementary Information Fig. S6) indicates that the MIP is very selective towards its target. 

The binding capacity of the MIP for all these compounds (structures summarized in Supplementary 

Information Fig. S7) is lower in comparison to the template and IFs do not significantly deviate from 1.The 

assay shows a similar trend; incubating MIPs, pre-loaded with malachite green, with any of the analogue 

powders, did not result in any visible colour change in the filtrate (See Supplementary Fig. S8).  Further 

analysis of the filtrates by means of UV-absorbance readings (λ=616 nm, Malachite green’s most intense 

absorbance peak, Table 5) confirmed that the dye was not present in the filtrate. The presence of 2-MXP, 

is the only compound tested that elicited a response from the dye loaded MIP, showing the selectivity of 

the MIP against other possible chemical architectures.  

However, 2-MXP falls in the class of compounds known as diarylethylamines that are known to induce 

psychoactive effects when consumed. Drug producers tend to slightly modify the structure of these 

compounds to avoid legislation. Therefore, known psychoactive diarylethylamines are shown to be 

structural analogues or region-isomers of 2-MXP (structures summarized in Supplementary Information 

Fig. S9), giving them a high affinity towards the MIP. This apparent limited selectivity of the MIP system 

could be of great analytical use because it allows for the detection of other diarylethylamines without the 

need for synthesizing a MIP for each new NPS of this class that reaches the market. MIP particles, pre-

loaded with malachite green, were incubated with other aqueous solutions of diarylethylamines, leading to 



displacement of the dye and visibly coloured filtrates (Supplementary Information Fig. S10), UV-

absorbance readings were taken to confirm displacement (Table 5). This illustrates that the assay can be 

tailored towards a broader array of analytes sharing a similar structure. 

3.6. SDC: quantitative analysis 

To verify whether it is possible to quantify the colorimetric response, malachite green-loaded and crystal 

violet-loaded MIP powders were incubated with increasing amounts of 2-MXP and caffeine (0.01 – 1 mM 

for both compounds) and analyzed using a UV-vis spectrometer to determine the amount of target present 

in the analyte. The data shown in Figure 5a shows that the MIP releases dye in a concentration-dependent 

manner when exposed to increasing amounts of 2-MXP. Exposing the dye-loaded MIP to caffeine does not 

result in any measurable displacement of the dye over the entire concentration range. In order to determine 

the limit-of-detection (LoD) the lower concentration range was plotted and analyzed separately in Figure 

5b. The data were fit using a linear regression line (R2 = 0.95653) and the 3σ method was used to establish 

a detection limit of 50 µM. This indicates that the technology can be used to detect micrograms of unknown 

powders dissolved in milliliter amounts of water.  

3.7. Low-cost drug identification kit 

Loading of the PTFE filters with dye-containing MIP particles leads to intense coloring of the syringe filter 

providing optical verification that immobilization was successful (see Supplementary Figure S11). Pushing 

a solution containing 2-MXP through the syringe filter will lead to rebinding of the target to the MIP and 

subsequent displacement of the dye into the filtrate. Reference experiments using solutions containing 

common adulterants or legal pharmacological compounds does not result in a color change of the filtrate 

(Supplementary Figure S11). The experiment was repeated with a dilution series of 2-MXP to create a 

calibration curve. Repeating the experiment with powders consisting of a mixture of 2-MXP and a common 

adulterant (caffeine) illustrates that the low-cost kit is able to faithfully detect the target in an unknown 

powders at concentrations down to 1 percent (Figure 6).  



4. Conclusion 

The results in this paper nicely illustrate the underlying principles of a substrate displacement strategy that 

relies upon MIPs for their selectivity. Structural similarities and similar spatial orientation of functionalities 

between the dye and target molecule (2-MXP) were exploited to create a selective detection assay. The 

assay also allows for the detection of trace amounts of drugs which can be attributed to the high extinction 

coefficient of malachite green. Although the assay has demonstrated to be able to selectively discriminate 

between NPS and compounds that can yield false negatives, it is not too selective to enable drug producers 

and users to evade the test by slightly modifying their synthesis process as the test is responsive to other 

diarylethylamines as well. The fast test is able to detect 2-MXP in mixed powders in concentrations as low 

as 0.015 mg mL-1. The current assay has great potential for low –cost, routine screening of unknown 

powders for the presence of narcotics, but the detection of drugs or metabolites in biological samples would 

require lower detection ranges [31, 32]. However, most of this can be attributed to the limited specificity 

of the MIP that can be improved in the future by using more advanced imprinting strategies such as the 

double molecular imprinting approach or by using e.g. solid phase extraction to create nano-sized MIPs 

that react faster and more accurate to the presence of their target [33, 34]. 
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Figures and Tables 

 

Fig. 1. Substrate displacement colorimetry principle. Extracted MIPs (2-MXP) are loaded with a structural 

similar dye (crystal violet). When the MIP is incubated with its original template, the dye is displaced from 

the binding pockets and released into the surrounding medium. 

   



 

Fig. 2. Batch rebinding analysis on a UV-vis spectrometer: both a MIP imprinted for 2-MXP and a NIP 

reference were exposed to increasing concentrations of 2-MXP in water. Error bars are representations of 

the standard error over three measurements. The binding isotherms show that the MIP is able to bind the 

target in a specific manner and an imprinting factor of 1.83 can be observed at 0.05 mM. 

Table 1. Imprint factors and binding capacities of the MIPs synthesized templated with 2-MXP 

MIP IF  Binding capacity (μmol g-1) 

MIP-21 1.02 141 

MIP-22 1.32 146 

MIP-23 1.01 156 

MIP-24 1.83 159 

MIP-25 1.07 149 

 

Table 2. Binding factors and extinction coefficients for methyl orange, crystal violet, phenol red, basic 

blue, pararosaniline and malachite green upon incubation with MIP-24 particles. 

Dye Binding Factor (BF) Extinction coefficient  

(x103 M-1 cm-1) 

Malachite green (λ=616 nm) 1.19 148,000 

Crystal Violet (λ=590 nm) 1.05 87,000 

Methyl Orange (λ=464 nm) 0.39 20,500 

Basic Blue (λ=616 nm) 0.81 62,000 

Pararosaline (λ=616 nm) 0.99 80,000 

Phenol Red (λ=432 nm) 0.98 55,000 
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Table 3. Absorbance of the filtrates collected when MIP-24 loaded with either malachite green, phenol red, 

crystal violet, methyl orange, pararosaniline, or basic blue, was exposed to 2-MXP (1 mM) for 1 minute. 

Pre-loaded Dye Absorbance Colour of filtrate 

Malachite green (λ=616 nm) 0.0750 Blue 

Crystal Violet (λ=590 nm) 0.0182 Colourless 

Methyl Orange (λ=464 nm) 0.0000 Colourless 

Basic Blue (λ=616 nm) 0.0000 Colourless 

Pararosaline (λ=616 nm) 0.0000 Colourless 

Phenol Red (λ=432 nm) 0.0000 Colourless 

 

 

Table 4. Imprint factors and binding factors when MIPs have been exposed to the target 2-MXP, and the 

dye malachite green, ∆𝑩𝑭 indicates the difference in binding between the target molecule and the dye. 

Absorbance readings displayed relate to the absorbance of the malachite green after the dye loaded MIP 

has been incubated with 2-MXP (1 mM), and the colour of the filtrate observed. 

MIP IF (2-MXP) BF (Malachite 

green) 

∆𝑩𝑭 Absorbance 

(λ= 616 nm)  

Colour of 

filtrate 

MIP-21 1.02 1.42 -0.40 0.0000 Colourless 

MIP-22 1.32 2.33 -1.01 0.0000 Colourless 

MIP-23 1.01 1.22 -0.21 0.0000 Colourless 

MIP-24 1.83 1.19 0.64 0.0750 Blue 

MIP-25 1.07 1.04 0.03 0.0121 colourless 

 

 

 

 

 



 

Fig 3.  Imprint factor – Binding factor graph for varying compositions of MIPs that are imprinted for 2-

MXP. Imprint factor is in relation to 2-MXP, and binding factor is in relation to malachite green. 

 

 

Fig 4. Time dependent elution isotherm for when malachite green loaded MIP-24 is incubated with 2-MXP 

(1 mM) for varying time intervals. The UV absorbance of the malachite green was measured using a UV-

spectrometer, to determine the amount of dye displaced. 

Table 5. Compounds of different chemical classes (a) and compounds of the same class as 2-MXP (b) were 

incubated with the malachite green loaded MIP. The filtrates were then collected UV-absorbance measured 

(λ=616 nm) and colour of filtrate observed.  
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(a) Different substrate class  Absorbance  Colour  

Blank 0 Colourless 

Caffeine 0 Colourless 

2-MXP 0.0750 Blue 

Paracetamol 0 Colourless 

Sucrose 0 Colourless 

Aspirin 0 Colourless 

(b) Same substrate class             Absorbance            Colour  

2-MXP 0.0750 Blue 

3-MXP 0.0217 Blue 

4-MXP 0.0261 Blue 

Diphenidine 0.0193 Blue 

2-MEPE 0.0131 Blue 

3-MEPE 0.0103 Blue 

4-MEPE 0.0163 Blue 

Ephenidine 0.0998 Blue 

 

 

Fig. 5. Quantitative 2-MXP assay: to determine the limit-of-detection (LoD) for the SDC assay using 2-

MXP MIPs loaded with malachite green. The plot over a wide concentration range indicates that the 

response for 2-MXP can be quantified while exposing the MIP to an increasing concentration of caffeine 

does not result in any measurable displacement of the dye (a). Zooming in on the lower concentration range 

shows a linear increase (R2 = 0.95653) and an LoD of 50 µM was calculated using the 3σ method (b).  
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Fig. 6. Proof-of-application of a low-cost drug test kit. Dye-loaded MIP particles were immobilized into 

syringe filters. Solutions containing both the pure compound as well as a mixture consisting of the target 

and a common adulterant were passed through the filter and the absorption of the filtrate was measured. 

The results indicate that the tests is able to detect the target in a powder mixture.  
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