e-space
Manchester Metropolitan University's Research Repository

Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage

Ge, P and Hou, H and Banks, CE and Foster, CW and Li, S and Zhang, Y and He, J and Zhang, C and Ji, X (2018) Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Materials, 12. pp. 310-323. ISSN 2405-8297

[img]
Preview

Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB) | Preview

Abstract

© 2018 Most of the reported MoSe 2 electrode materials are suffered from tended stacking, large volume expansion and relatively low capacity. As shown the experiences of Li/Na-Se batteries, the encapsulating of the exfoliated MoSe 2 into carbon nanospheres are successfully constructed with the introduction of C-O-Mo bonds and larger layer distance (0.89 nm). Interestingly, the C-O-Mo bonds stayed on the surface of the Se-O insulation layer can improve the rate of ions transfer and also promote the reversible conversion of MoSe 2 . The first-principles calculations demonstrated that the frontier molecular orbitals of C-O-Mo interface structure are mainly localized on the MoSe 2 sheet fragment with an appropriate HOMO-LUMO gap ( < 4 eV), proving that its conductivity is being greatly enhanced with higher stability. Utilized as an anode for LIBs, it delivers Li-storage capacities of 1208 mAh g −1 after 150 cycles at 1.0 A g −1 and 519 mAh g −1 after 200 cycles at 4.0 A g −1 . Also note that the Na-storage capacities are found to be 543, 491 mAh g −1 after 120 cycles at 0.1, 1.0 A g −1 , respectively. Through the analysis of CV, the reduced particles might improve the capacitive behaviors, further leading to the higher rate performances. Ex-situ techniques showed that the emerging Se during the electrochemical process was constrained uniformly in the carbon matrix. More greatly, the controlling of by-product Se plays key roles in achieving high-rate capability and cycling stability, which would open up a potential avenue for these metal-selenide anodes designs of battery storage systems.

Impact and Reach

Statistics

Downloads
Activity Overview
11Downloads
72Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item