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Abstract: Domestic gardens are an important component of cities, contributing significantly to
urban green infrastructure (GI) and its associated ecosystem services. However, domestic gardens
are incredibly heterogeneous which presents challenges for quantifying their GI contribution and
associated benefits for sustainable urban development. This study applies an innovative methodology
that combines citizen science data with high resolution image analysis to create a garden dataset in
the case study city of Manchester, UK. An online Citizen Science Survey (CSS) collected estimates
of proportional coverage for 10 garden land surface types from 1031 city residents. High resolution
image analysis was conducted to validate the CSS estimates, and to classify 7 land surface cover
categories for all garden parcels in the city. Validation of the CSS land surface estimations revealed a
mean accuracy of 76.63% (s = 15.24%), demonstrating that citizens are able to provide valid estimates
of garden surface coverage proportions. An Object Based Image Analysis (OBIA) classification
achieved an estimated overall accuracy of 82%, with further processing required to classify shadow
objects. CSS land surface estimations were then extrapolated across the entire classification through
calculation of within image class proportions, to provide the proportional coverage of 10 garden land
surface types (buildings, hard impervious surfaces, hard pervious surfaces, bare soil, trees, shrubs,
mown grass, rough grass, cultivated land, water) within every garden parcel in the city. The final
dataset provides a better understanding of the composition of GI in domestic gardens and how this
varies across the city. An average garden in Manchester has 50.23% GI, including trees (16.54%),
mown grass (14.46%), shrubs (9.19%), cultivated land (7.62%), rough grass (1.97%) and water (0.45%).
At the city scale, Manchester has 49.0% GI, and around one fifth (20.94%) of this GI is contained
within domestic gardens. This is useful evidence to inform local urban development policies.

Keywords: urban gardens; land surface cover; citizen science; land cover classification; urban green
space; green infrastructure; object-based image classification

1. Introduction

Private domestic gardens can significantly contribute to a city’s green infrastructure (GI),
potentially occupying over a third of a city’s urban surface area [1]. While at the individual scale, the
influence of a private garden may appear negligible, collectively gardens provide valuable ecosystem
services, particularly within densely built up urban environments. The infrastructure and surface cover
associated with urban environments renders these areas particularly vulnerable to climate change
and extreme meteorological events. These small pockets of urban greenspace, however, perform an
important role in the regulation of climate and reduction of associated climate risks such as flooding
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and the urban heat island [2]. In spite of this, private domestic gardens have received comparatively
little attention within the GI literature [3], most likely due to the small parcel size associated with
individual gardens and the lack of regulation, which grants relative freedom for homeowners to adapt
and alter garden composition. The size and diversity of private domestic gardens create challenges
for quantifying their GI contribution. However, it is important that this aspect of GI is accurately
mapped as current approaches can lead to an overestimation of urban greenspace, in addition to
subsequent erroneous evaluation of ecosystem service provision and environmental deprivation.
This has implications for the future resilience of an urban environment and the health and well-being
of its citizens.

The small spatial scale and diversity of gardens implies that local knowledge is a valuable asset for
assessing garden composition. Moreover, the impact of a garden on ecosystem functions and services
will be greatest within the immediate neighbourhood. The connectivity between garden composition
and the surrounding neighbourhood provides rationale for taking a citizen science approach to
data collection related to gardens. Further potential benefits of working with local communities to
create a garden database include the exchange of knowledge between local people, scientists and
stakeholders, enhanced community cohesion and greater transparency for local decision-making [4].
Local surveys have been used previously to gather data on garden use and maintenance, together with
socio-economic factors [5,6], however, the role of crowd-sourcing for the accurate characterisation of
garden composition has not previously been attempted. There is clear value in working with local
residents to collate data on garden GI quantity and quality, and a well-designed citizen science tool has
the further advantage that it creates a channel for communication between scientists, decision-makers
and the local community. This is particularly important in the context of domestic gardens which are
largely unregulated in the UK. Furthermore, the general public is often unaware of the environmental
value of their own garden and how they could improve it. Thus, this approach also creates an
opportunity to educate individuals and influence behaviour in urban spaces that may previously have
fallen outside of the local governance remit, but which have clear environmental consequences for the
local neighbourhood [7–10].

The advent of high resolution Earth Observation imagery also provides a viable opportunity
to improve estimates of garden composition [1]. Object Based Image Analysis (OBIA) approaches
using Ikonos and Worldview-2 imagery have been applied successfully to the garden classification
problem, with quoted accuracies of greater than 85% [1,11]. These studies demonstrate the capability
for distinguishing between vegetated and non-vegetated areas at the finer spatial scale but lack
the detailed information related to GI type, structure and height, which is imperative for rigorous
environmental modelling. It is recognised that the functionality of different GI types (e.g., mown
grass, rough grass, shrubs, trees, water bodies) is variable and, furthermore, that the ecosystem
service capabilities of individual plant species can vary depending on the local environment and the
specific service under consideration [12]. Consequently, achieving a classification of gardens which
goes beyond a broad vegetated versus non-vegetated classification is necessary for the identification
and prioritisation of areas of GI need and it is essential that these fine-scale data are included in
multi-scale evaluations.

This article will outline the development of a novel approach to the land surface cover classification
within urban domestic gardens which employs a two-stage process. Initially, quantitative data relating
to garden composition are captured using an online citizen science survey tool. This dataset is
subsequently validated and extended through the classification of high-resolution optical imagery, to
produce a high-resolution garden dataset that quantifies the proportion of ten land surface cover types
across a post-industrial temperate city. This methodology has the further advantage that the citizen
science survey acts as a tool to inform and engage the public about the role of their garden from the
perspective of climate regulation and can be used to foster community engagement and resilience.
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2. Materials and Methods

2.1. Overview

Manchester, UK, with a total population of 541,263 people (2016 mid-year estimate) and an area
of 115.6 km2, offers an interesting case study for garden investigation and mapping as it has been
the focus of significant GI research previously [13–16] and the city is recognised as being especially
vulnerable to extreme weather events [17–20]. Manchester comprises 226,640 households of which
approximately 68% is private stock (owner occupied and private rented) and the remainder held
by Local Authority or Registered Social Landlords (Housing Associations) [21]. Manchester has
a disproportionate number of flats/maisonettes/apartments (26.6%) and terraced housing (36.0%)
relative to the national housing stock, and detached housing is particularly under-represented (4.3%
of Manchester’s housing stock) [22]. Gardens comprise over one fifth (20.4%) of the total land area
of Manchester, and garden coverage (as a proportion of total land cover) varies considerably across
the city, between 0.5% in the City Centre ward to 47% in suburban areas (Figure 1). Domestic gardens
in Manchester are therefore a spatially heterogeneous but significant factor in climate-landscape
interactions in the area. While assessments of public urban GI and detailed tree assessments have
been undertaken previously, little is known about the composition of GI in domestic gardens and how
this may vary across the city. A more reliable assessment of garden GI composition and its variability
across the city will allow for a more robust framework to inform planning and investment decisions
relating to GI solutions within and beyond domestic gardens, and to strengthen the functionality of
ecosystems in areas of GI need.
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2.2. Online Citizen Science Survey Tool: My Back Yard

A short survey designed to be completed by the owner or resident of a household was devised to
gather quantitative information about the garden layout and structure. Here, the term garden refers to
all of the privately accessible outdoor space associated with a respondent’s home address. Such private
areas can be geo-located as unique polygon parcels within mapped Ordnance Survey data (i.e., front,
back and side garden areas). The survey included specific questions about the proportional cover of
ten common garden land surface cover categories (buildings, hard impervious, hard pervious, bare
soil, trees, shrubs, mown grass, rough grass, cultivated and water) in order to quantify the amount of
green and blue (water) space within an individual domestic garden (Figure 2), and to understand the
proportion of other land surfaces, required for subsequent ecosystem service mapping. The Citizen
Science Survey (CSS) was hosted online within a tool, which comprised traditional form elements,
plus interactive mapping, fulfilling two purposes:

• To gather the proportional land surface cover and exact spatial location of the garden, i.e., the
respondent enters their postcode; the tool uses this to determine the boundary of the space-based
upon Ordnance Survey mapping; the respondent confirms this or corrects it using spatial editing
and selection tools on the map.

• To allow the respondent (and other users) to explore the data already collected, in a generalised
form, so that they can see their own contribution in the context of their neighbourhood, and learn
about the benefits of green and blue space.

Figure 2. The My Back Yard online survey tool—an example question about the proportional surface
cover for buildings.

Minor adjustments to the CSS, which was co-designed with project stakeholders, occurred after
further consultation and piloting of the online survey tool. The online survey tool, promoted as
My Back Yard, was open for a period of 6 months (July 2016–December 2016) for anyone with a UK
postcode to complete, however the results presented here are for Manchester, UK, the geographical
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focus of this study. Further survey questions, concerning species richness, socio-economic information,
garden value, and use, were also included, but presentation and analysis of these is outside the scope
of this article.

The My Back Yard online survey tool was promoted through a variety of channels including
social media (Facebook and Twitter), local press, face-to-face outreach events and via local stakeholders,
including the city council, housing and charitable community networks. Respondents were self-selecting
and there was potential for a disproportionate response from participants with large, relatively green
gardens. In order to achieve a representative sample of gardens from across the case study area,
participants in poorly represented wards and housing types were targeted via local community
networks. In addition, the online survey tool was promoted as “My Back Yard” to encourage participation
from those with very small yards and/or little green space in their gardens to complete the survey.

2.3. Extension of the Citizen Science Survey (CSS) Surface Estimations

Image analysis was required to first validate, and then extend, the CSS database, by categorising
broad surface cover types for all digitised garden parcels in Manchester. Validation is an important
exercise, providing both an estimation of the accuracy of the CSS surface estimations as a whole, and
additional information on possible issues with the CSS methodology [23]. Classifying broad surface
categories, representing groupings of CSS surfaces for all gardens in the study area, provides a feasible
method of extrapolation, whereby the spatial coverage of the general classification is enhanced with
detailed information from the CSS surface estimates.

2.3.1. Data

High Resolution True-colour Aerial Imagery (TAI) (spatial scale 0.125 m) was obtained from
Getmapping [24]. The TAI data for Manchester was available for June in 2009, 2010, or 2015 as 1 km2

image tiles, depending upon the specific area of the city, with the most recent (2015) data being
available for approximately two thirds of the city (Supplementary Materials, Figure S1). The TAI data
enabled the fine-scale identification of surfaces within the urban environment, enabling both manual
validation and automatic classification. Pre-processing of TAI was not required as suitable radiometric
and georectification calibration was conducted by the data provider.

Vector polygon data representing digital Ordnance Survey garden areas (OSG) were identified
from the digital Ordnance Survey Mastermap Topography layer, July 2016 update (OSMT).
Further pre-processing was conducted to ensure multiple OSG polygons, representing various areas
of a singular garden parcel (e.g., front and back gardens), were united to form singular parcels for
further analysis in both the validation and classification exercise. Coverage of OSG for each of the
image acquisition dates was 19.57%, 0.19% and 80.24% for the years 2009, 2010 and 2015 respectively.
The majority of garden polygons are therefore represented by up to date image data.

Digitised tree canopy data was available from a local environmental NGO: City of Trees [25],
for identifying tree canopy areas within garden polygons in the classification exercise (Section 2.3.3)
(Figure 3). In addition, building polygons attached to garden areas (Ordnance Survey Buildings: OSB)
were extracted from OSMT and classified as either garden buildings or main dwellings for further use
in the classification scheme (Section 2.3.3) (Figure 3).
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2.3.2. Validation of Citizen Science Survey Land Surface Estimations

The garden surface coverage estimations from the CSS were ascertained as fuzzy estimates for
each land surface type in one of six estimation categories (None, 1–10%, 11–33%, 34–66%, 67–90% or
91–100%). Respondents were allowed to choose any combination of estimation categories, and while
they were told to adjust these if 100% was not within the summed range estimation, respondents
could continue the survey regardless of whether the fuzzy estimations tallied to valid estimation.
Valid response estimation therefore satisfied the condition:

∑
l∈Mn

l ≤ 100 ≤ ∑
u∈Mx

u (1)

where Mn = {li , . . . , l10}, Mx = {ui , . . . , u10}, i is the index number for a CSS surface, li is the lower
bracket figure for a surface estimation range, ui is the upper bracket figure for a surface estimation
range. The category None therefore has l = 0 and u = 0. CSS responses that satisfied the above
condition were considered useable for further extrapolation.

A manual digitisation method using TAI was devised to assess the accuracy of individual
CSS responses (based on [8]). In order to provide an estimation of average Validation Accuracy
(VA), a sample of 252 responses were chosen for validation (95% confidence level). The sample
was stratified according to garden green infrastructure composition and garden size. For each
survey response, the appropriate OSG polygon was geolocated and superimposed onto the image.
Digitised polygons were then drawn around homogenous surface areas representing one of five
surface groups (Validation Surface Group, VSG) within OSG polygon extents. Multiple CSS surfaces
were assigned to a particular class where appropriate, as it proved difficult to distinguish between
them in the imagery itself (Table 1). Where image ground features were obscured due to shadow
coverage or vertical features (as a result of slightly off-nadir image acquisition), and could not be
subsequently interpolated through topological reasoning (e.g., continuation of a hard-surface driveway
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into a building) then proportional re-assignment of the obscured area was undertaken and weighted
towards under-represented validation classes. For each CSS surface class, hard proportion values were
weighted from fuzzy estimations, using the below equations:

MN = ∑
l∈Mn

l (2)

MX = ∑
u∈Mn

u (3)

SPi = Mni + [ (Mxi − Mni)·
(

100−MN
MX−MN

)
] (4)

where MN and MX are the sum of Mn and Mx values, and SP is the calculated hard CSS surface
proportion value. SP values were then amalgamated to provide hard values (v) for the relevant
validation surface group. Garden proportions calculated from the digitised garden validation polygons
were compared to these values to calculate the validation agreement (VA) metric. VA works on the
principle that ideal agreement between the hard value CSS validation and digitised validation surface
proportions should match exactly. In this instance over-estimation or under-estimation within a
validation category has a knock-on effect in other categories. Therefore, validation dis-agreement (VD)
was first calculated as the sum of all surface under-estimation (Figure 4).

Rc = {ri, . . . , r5} (5)

where ri = di − vi; i is the reference number for validation surface group, d is the digitised surface
proportion and e is the estimated validation surface proportion. Over-estimated surfaces are removed
to provide the final metric:

Dc = { r ∈ Rc | r > 0 } (6)

VD = ∑
r∈Dc

r (7)

VA = 100−VD (8)

Table 1. Validation Surface Group (VSG) assignment.

Validation Surface
Group (VSG) Associated CSS Surfaces ASSIGNMENT PROCESS

Buildings Buildings
Structures identified in image including main parcel
dwelling area (if required), outbuildings, extensions
and building areas obscuring garden areas

Grass Mown Grass and Rough Grass Grass areas in scene

Manmade Hard Impervious and Hard
Pervious

Objects/surfaces representing ground-covering
artificial surfaces such as decking, tarmac, concrete,
paving slabs (low texture)

Shrubs Shrubs, Cultivated, Bare Soil
and Water

Non grass or tree vegetated areas—includes flower
beds, areas of soil (potentially confused with
cultivated areas), water (small water bodies are
difficult to identify in the imagery)

Trees Trees Tall-standing tree canopy areas
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Figure 4. A worked example of the validation methodology.

2.3.3. Classification

Object Based Image Analysis (OBIA) approaches, which are suitable for the classification of
high spatial resolution imagery [26], were adopted in this study. OBIA, through image segmentation,
enables the creation of a large number of within object features, enhancing spectral information
inherent in the scene [27,28]. In addition, as distinct surface areas can form in managed patterns
across an urban area, OBIA topological processing enables object classification through defined spatial
relationships between object neighbours [29,30]. Such approaches proved useful in the development
of the classification ruleset to discriminate between spectrally similar classes. OBIA methods were
implemented using the commercial eCognition Developer (Trimble) software.

Initial ruleset experimentation enabled the development of a classification scheme, where class
objects were identified as potentially classifiable at acceptable levels of accuracy (approximately
above 85%) [31]. Classes were directly related to CSS surface groups, to enable post-classification
extrapolation (Table 2). Bare earth was related to the same CSS surface categories as the Shrubs
image class, as it was envisaged that CSS respondents may estimate areas of bare soil intermixed with
non-grassy vegetation (represented as the shrubs image class) in the CSS. In contrast, areas of open soil,
represented as the bare earth image class, may be interpreted as cultivated land or shrubs. Both bare
earth and shrubs were thus related to the same CSS surfaces, to enable sufficient extrapolation of bare
soil/cultivated/shrubs CSS estimates within image classes containing either surface type.

Table 2. Image classification scheme.

Class Category (Associated
Superclass in Brackets) Description Related CSS Surface Categories

Bare earth (non-vegetation) Natural exposed non-vegetative surfaces
(differentiated from artificial non-vegetative surfaces) Bare soil, cultivated, shrubs, water

Buildings (non-vegetation) Permanent buildings within garden areas, including
garages and sheds, excluding main dwellings Buildings

Grass (vegetation) Grassed surfaces Mown grass, rough grass

Manmade (non-vegetation) Permanent non-vegetative manmade surfaces e.g.,
asphalt drives, decking, gravel, garden furniture Hard impervious, hard pervious

Shrubs (vegetation)

Rough vegetation e.g., shrubs, flower beds, bushes
(includes ponds and other water features which are
typically covered with aquatic vegetation in the
imagery, and are thus spectrally similar to shrubs)

Bare soil, cultivated, shrubs, water
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Table 2. Cont.

Class Category (Associated
Superclass in Brackets) Description Related CSS Surface Categories

Trees (vegetation) Tree canopies identified within general confines of
tree vector data Trees

Shadow (shadow) Surfaces completely obscured by shadow n/a—class reassignment required
(Section 2.3.3)

A number of image layers were used to enhance the limited spectral resolution of TAI.
Object-based features were typically derived as the mean object value for a particular image layer, with
additional measures derived from combinations of image mean features (Table 3). Textural features
are used effectively for classification with very high resolution imagery in other studies [32,33], but
were found to be too computationally expensive to implement in this study, due to resolution of the
data. Thus, a high degree of object feature overlap between the image classes, negated the use of
typical machine learning classifiers, in favour of novel iterative topological region growing routines,
which take advantage of the wealth of spatial information in the TAI and ancillary data (tree canopy
data and OSB polygons) [34]. The development of a fixed ruleset also enabled processing of the TAI
on a tile-by-tile basis, thus reducing the extensive processing costs associated with the TAI. The key
processes within each module are outlined here. Further detail, including threshold parameters and
method diagrams, are provided in the Supplementary Materials for reference.

Table 3. Descriptions of spectrally-derived features.

Feature Layer Description

Red Normalised prior to creation of additional features. Normalisation for each layer calculated
by dividing layer pixel values by the maximum permitted value (in this case 255)Green

Blue

MeanRGB Simple mean of pixel RGB layer values. Provides approximation of panchromatic data for
segmentation, as well as some measure of the general illumination of pixels

SdRGB

Standard Deviation of pixel RGB values. Typical artificial surfaces in the imagery
represented by neutral Grey, White and Black. In comparison to more vibrant colours (e.g.,
representing vegetative surfaces), neutral tones contain a degree of saturation, and have
relatively similar values in each of the RGB layers. SdRGB was thus conceived as a useful
feature for separating between these two general colour groups

RedCHROMATIC Chromatic values for each RGB layer. Created by dividing relevant normalised band value
(e.g., R for RedCHROMATIC) by the sum of all normalised RGB values. Reduces variance
in pixel values due to illumination variance in the image, required for calculation of
additional vegetation indices [35]

GreenCHROMATIC

BlueCHROMATIC

GRVI
Index for discriminating vegetative surfaces from non-vegetative background [36].
Green Red Vegetation Index = (GreenCHROMATIC −
RedCHROMATIC)/(GreenCHROMATIC + RedCHROMATIC)

ExcessGREEN Alternative vegetation index to GRVI, and provides measure of pixel green colour strength.
ExcessGREEN = (2 × GreenCHROMATIC) − RedCHROMATIC − BlueCHROMATIC [35]

ExcessRED Additional vegetation index that measures excess Red in pixel.
ExcessRED = (1.4 × RedCHROMATIC) − GreenCHROMATIC [35]

ExGREENminusExRED Alternative vegetation index [32]. ExGREENminusExRED = ExcessGREEN − ExcessRED

PCA1 3 × Principal Components (PCA) features created to reveal hidden variance in
relationships between RGB layers. First two layers (PCA1 and PCA2) found to contain
useful information and retained for further analysisPCA2

PCA_DIFF
Investigation indicated some potential differences between Smooth vegetation (typically
grass) and rough surface vegetation (trees and shrubs) surfaces in layer values for both
PCA1 and PCA2. PCA_DIFF = |PCA1 − PCA2|

Object—Based Feature Description
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Table 3. Cont.

Feature Layer Description

RVindex

PCA_DIFF pixel values tend to vary more significantly within rough surface vegetation
objects than smooth vegetation objects, resulting in significant layer texture.
Typical texture features within eCognition are computationally expensive to implement,
therefore standard deviation of within object pixel values provides a rough approximation
of texture for any given layer. Standard deviation of object PCA_DIFF values are further
normalised with object ExcessGREEN values, as rough surface vegetation objects have
higher values in this feature than smooth vegetation objects. RVindexObject =
Mean.ExGreenObject·Standard.Deviation(PCAdiff)Object

REDminusBLUE
Simple arithmetic feature to provide estimation of object browness. REDminusBLUEObject
= Mean.RedObject −Mean.BlueObject

Brightness Default software feature calculated from image layers (see [37] p.233)

Separation into Super-Classes

Multi-resolution segmentation of the MeanRGB layer (input parameters: Scale Factor = 1;
Shape = 0.1; Compactness = 0.1) created the initial image segments. The parameters used result in
over-segmentation, and were designed to ensure a minimum of interclass object overlap within small
surface patches found in garden areas. This in turn provided spectrally pure seed objects to initiate the
topological processing algorithms described below. The resulting objects were classified according
to membership of either the Vegetation, Manmade or Shadow superclass groups. Discrepancies in
quality between the 2009/10 and 2015 image tiles required the adoption of different superclass
separation rules to classify tiles for the different image acquisition dates (Supplementary Materials,
Figure S2). The final stage of this routine was to clean the vegetation class of potential shadow pixel
contamination. Extremely dark pixels artificially skew the RVindex, by increasing pixel variance in the
PCA_DIFF feature, thus increasing confusion between Grass and Rough Surface Vegetation (Shrubs
and Trees) objects.

Identification of Tree Canopy Objects

Due to spectral correlation with other vegetative classes, the identification of tree canopies
required the use of the digitised tree canopy data to provide the absolute spatial extents of where
tree canopies could exist in the TAI in relation to other vegetative areas. However, discrepancies
between the digitised tree canopy data and canopy extents in the imagery existed due to the removal
of tree canopies between acquisition dates of the tree audit data and TAI. Thus, an iterative tree
canopy identification and region growing process, adapted from the method described by [38], was
required to classify image canopy extents within the generalised tree audit polygon areas. The nested
loop uses topological object processing, by first identifying initial tree seed objects with a high level
of certainty. Tree regions are then grown through neighbouring object reassignment according to
general intra-canopy inter-object spatial correlation in both the Brightness and Rvindex features
(Supplementary Materials, Figures S3 and S4).

Classification of Grass and Shrubs

Due to feature similarity between sample classes representing Grass and Shrubs, a similar
iterative seed placement and region growing routine was implemented to assign objects to either class.
Seed placement for both Grass and Shrub seeds began with thresholds designed to identify such objects
with a high degree of certainty. Intra-class spatial correlation in the RVindex and Brightness features
guided the optimisation of topological processing algorithms, which then enabled region growing
from seeds into neighbouring vegetation objects of the same class. The seeding and region growing
routine was designed to gradually reduce uncertainty in classification and ensure all vegetation objects
were assigned to either class (Supplementary Materials, Figures S5 and S6).
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Classification Optimisation

The vegetation classification routines result in generally agreeable classification outputs.
However, patterns of misclassification were evident, requiring further processing to re-assign objects
to the correct classes (Supplementary Materials, Figure S7). Once homogenous object areas are
optimised through this process, Bare Earth objects are then classified, and then assessed against a
number of testing thresholds to ensure correct assignment. This is required, as Bare Earth is spectrally
similar to other surfaces (e.g., roof tiles) within the manmade class. Further optimisation routines are
then implemented to optimise borders between classes, and remove small insignificant object areas
(≤150 pixels) to relevant surrounding object classes, or surrounding larger class objects with greater
than majority border relation (Supplementary Materials, Figure S8) [39].

Building Classification

Classified polygons were clipped to OSMT garden extents, with any area outside garden
areas assigned as a non-garden area. Resulting class polygons were exported as vector shapefiles.
Garden buildings identified previously were integrated with this data set to classify building areas.
Associated polygons superseded the areas of all overlapping class polygons regardless of class.
This step was undertaken, as it proved extremely difficult in the experimentation phase to distinguish
building roofs from other manmade surfaces within spectral features [40].

Accuracy Assessment

As the classification ruleset had been altered to accommodate differences in image quality between
image dates, confusion matrices were generated for the 2009/2010 and 2015 image data respectively.
The minimum number of samples (n) required for overall accuracy assessment was determined
through use of the Multinomial Law equation [41]:

n = B/4b2 (9)

where n is the overall number of samples; B is determined from the required confidence level (e.g.,
95%) and is the chi-square critical value for 1 d.f and χ2

(1−α/k) (where k is the number of classes, α is
1 minus the required confidence level e.g., 95% = 1 − 0.95); b is the desired level of precision (e.g.,
5% = 0.05). Minimum number of samples were calculated for (k = 7) classes in total, confidence level
of 95% and required precision of 3%. In this instance B = 7.23 and b = 0.03, therefore:

n = 7.23/(4 × 0.032) = 2008.33 = 2009 (10)

Proportional class coverage varied between classes. Therefore, the total minimum sample number
was stratified according to these proportions. To ensure a minimum acceptable number of classes, an
additional 50 samples were added per class. As object sizes varied, class samples were stratified within
class populations according to object size quantiles. Assessment objects were superimposed onto the
image data, with class labels describing the majority class within the object area attached after manual
visual validation.

Extrapolation within Shadow Class

A simple topological processing method (after [42]), reassigned shadow object area proportions
according to relative border relationships to neighbouring object classes. As shadow is likely to cover
neighbouring objects to some degree, this process provides a reasonable method to reduce redundant
information in the classification. Excluded from this process was the building class, as this was not
classified from the imagery directly. Remaining shadow objects, with no neighbouring class objects,
were re-assigned surface proportions according to surface proportions obtained from gardens with
minimal (<5%) shadow coverage.
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3. Results

3.1. Citizen Science Survey Responses

In total 1031 responses were received for the Manchester Local Authority area. The distribution of
these responses varied across the 32 wards with 11.4% of participants residing in the most represented
ward (Chorlton) and less than 1% of participants from the least represented ward (Longsight)
(Figure 5a). The proportional split between responses from different housing types was closely aligned
with the proportions of terraced and detached housing in Manchester (36% and 5%, respectively)
but semi-detached housing was over-represented (43%) at the expense of flats, maisonettes, and
apartments (16%). Two thirds of responses were from households where the home was owned outright
or with a mortgage/loan. The remainder of responses were from households in rental properties from
private landlords, registered landlords/ housing associations or the council. A representative sample
of household and garden types was obtained, with 24% of survey responses from households with less
than 20% garden green space, compared to 20% survey responses from households with greater than
80% garden green space, thus it was not only households with large green gardens that completed the
survey (Figure 5b).
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Figure 5. Citizen Science Survey responses (a) by ward; (b) by proportion of garden green and
blue space.

Overall results of the garden composition derived from valid CSS response estimates (see
Section 2.3.2) reveal that, on average, across Manchester, 51.88% (s = 30.62%) of a garden is comprised
of green infrastructure (Table 4). There is, understandably, significant variation around these values
in the CSS responses. At the extremes, a small number of responses indicated the garden was either
wholly impervious (2.43%) or wholly pervious (3.45%). Of the ten surface cover categories, hard
impervious and mown grass were the dominant features of gardens, occupying an average of 26.64%
and 20.79% of a garden’s area, respectively. In contrast, rough grass and water were the least present
features, accounting for 2.95% and less than 1% (0.61%) of an individual garden area.
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Table 4. Proportional surface coverage (%) of an average Manchester garden from the CSS responses
with valid estimation range (n = 758). All categories reported minimum values of zero.

CSS Surface Mean SD Max.

Buildings 5.85 10.74 81.21
Bare soil 8.74 14.15 100

Cultivated 11.82 14.31 77.14
Hard impervious 26.64 28.15 100

Hard pervious 6.89 15.59 100
Mown grass 20.79 22.78 94.09
Rough grass 2.95 10.66 100

Shrubs 10.94 11.46 74.35
Trees 4.77 7.34 50.91
Water 0.61 2.07 26.59

Green Infrastructure * 51.88 30.62 100

* Green Infrastructure = Cultivated + Mown Grass + Rough Grass + Shrubs + Trees + Water.

Average garden size from the survey responses indicated increases from 84.81 m2 (s = 103.23 m2)
to 205.68 m2 (s = 208.89 m2) to 427.82 m2 (s = 789.69 m2) for terraced, semi-detached and detached
housing, respectively. These estimations are higher than those found in Sheffield, UK [43], reflecting
the shift in focus from the rear garden to the total garden area. The greatest discrepancy between the
values quoted here and those in Sheffield, UK [43] is for detached housing, where housing frontages
tend to be larger.

3.2. Validation of Garden Composition Derived from the Citizen Science Survey

Out of the total 1031 survey responses, 758 (73.5% of the total) were identified as having valid
surface estimation ranges (see Section 2.3.2), with a further 728 correctly identified with relevant
OSG polygon area. Mean VA was calculated as 76.63% (95% confidence interval: 78.53%/74.73%),
s = 15.24%, with Median VA of 79.65%. This is encouraging given that 85% accuracy is general
considered as the benchmark for classification exercises [31]. In addition, it is likely that limitations
associated with the validation process impacted upon the VA. This was primarily due to potential
temporal differences of up to 7 years between the survey date (2016) and TAI (2009–2015), and therefore,
any changes to garden composition within this timeframe may have resulted in under-reporting of VA.
In addition, shadow and angular obscuration issues within the imagery may have introduced error in
the VA estimation due to the subjective digitisation and categorisation of TAI.

As limited guidance was given to survey respondents on how to estimate their garden surface
composition, two sets of correlation analysis were undertaken to assess if VA was associated with any
particular land surface types from the digitised validation exercise or CSS estimation. The first set was
conducted on all validation records. The second set controlled for missing values in each variable i.e.,
where a certain validation surface group was not included in CSS surface estimation (Table 5).
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Table 5. Association between VA and land surface types estimated from digitisation and CSS
(ns = p ≥ 0.05; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001).

Land Surface Type Correlated to VA
Set 1 Set 2

Cor (p-Value) Cor (p-Value)

Proportion of digitised land surface area as VSG

DIG.Buildings 0.13 ns 0.07 ns
DIG.Grass 0.13 ns −0.1 ns

DIG.Manmade 0.22 *** 0.22 ***
DIG.Shrubs 0.17 ** 0.13 *
DIG.Trees −0.48 **** −0.48 ****

Proportion of CSS estimated land surface area as VSG

VSG.Buildings 0.08 ns 0 ns
VSG.Grass −0.26 *** −0.34 ****

VSG.Manmade 0.28 **** 0.29 ****
VSG.Shrubs 0.07 ns 0.01 ns
VSG.Trees 0.07 ns −0.06 ns

Total digitised garden area −0.21 *** N.A - - -

Analysis reveals generally weak correlation values for statistically significant analyses.
VSG variables assessed whether CSS respondents may have had difficulty in estimating certain
surface types. DIG.Trees exhibited a moderate negative association with VA for both sets of analysis.
It is possible that respondents considered tree coverage only for within garden trees (i.e., with tree
stand in actual garden limits), thus ignoring external overlapping tree coverage. This result also
suggests some ambiguity in respondent interpretation of tree surface coverage estimation, according
to whether surface coverage is represented by canopy or tree stand extents. However, as the variables
are proportional and thus dependent on each other, it is difficult to isolate the exact impact on
misclassification of VSG estimation from one category from to another. It was theorised that possible
difficulties in respondent CSS may have arisen with increasing garden areal extents (total digitised
garden area), however, cor = −0.21, and therefore, this is not supported in the above analysis.

Image Classification

The overall accuracy differed slightly between the assessments for both image dates.
The classifications are close to the general classification acceptability, with low confidence estimates falling
just below the 85% accuracy threshold; 83.22% and 81.92% for 2009/2010 and 2015 assessments respectively
(Tables 6 and 7). Kappa values for both assessments indicate a strong likelihood that assessment agreement
is not due to chance [41]. Figure 6 provides a sample of the image classification output.

Table 6. Confusion Matrix for 2009/2010 image classification.

Land Surface Type Bare Earth Buildings Grass Manmade Shadow Shrubs Trees User’s Accuracy

Bare Earth 28 0 9 6 0 10 3 50.0
Buildings 0 65 2 1 1 3 4 85.5

Grass 2 1 304 4 0 17 4 91.6
Manmade 12 110 4 503 0 10 4 78.2
Shadow 0 5 0 3 576 4 4 97.3
Shrubs 1 0 57 5 2 291 16 78.2
Trees 0 0 4 0 1 16 267 92.7

Producer’s
Accuracy 65.1 35.9 80.0 96.4 99.3 82.9 88.4 2359

Overall Accuracy: 86.22% (High 89.22%/Low 83.22%)

Kappa: 0.831
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Table 7. Confusion Matrix for 2015 image classification.

Land Surface Type Bare Earth Buildings Grass Manmade Shadow Shrubs Trees User’s Accuracy

Bare Earth 50 0 2 15 0 0 1 73.5
Buildings 0 67 1 4 0 1 3 88.2

Grass 7 0 270 1 4 43 15 79.4
Manmade 16 67 4 623 13 8 5 84.6
Shadow 0 0 0 4 491 2 3 98.2
Shrubs 3 1 24 7 38 245 18 72.9
Trees 1 0 7 1 14 23 258 84.9

Producer’s
Accuracy 64.9 49.6 87.7 95.1 87.7 76.1 85.1 2360

Overall Accuracy: 84.92% (High 87.92%/Low 81.92%)

Kappa: 0.813
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Figure 6. Example results of the image classification (A) original image; (B) classification output.

Interclass accuracy varies significantly between classes. User’s accuracy (UA) determines the
level of map accuracy for the end user, by estimating the accuracy that a given class area in the map
represents the relevant class within the image data [41]. Accuracy estimation should return relative
estimation parity between classes in order to provide a useful approximation of overall estimation [44].
However, class accuracy estimations deviated from this ideal for a number of reasons outlined below.

Bare Earth performed poorly in the 2009/2010 image assessment with 50% UA, with confusion of
17.86%, 16.07%, 10.71% and 5.36% with the Shrubs, Grass, Manmade and Trees classes respectively.
In the 2015 image assessment, Bare Earth performed better with 73.5% UA, and with 22.06%, 2.94%
and 1.47% confusion with the Manmade, Grass and Trees classes respectively. Bare Earth is spectrally
similar to other manmade class areas (i.e., clay roof, brown decking areas), and this resulted in
inaccurate feature thresholds for this class, particularly for the 2009/2010 data.

UA between image dates was less variable for other land cover classes. UA for Shrubs was
78.2% (2009/2010) and 72.9% (2015), with intra-vegetation superclass confusion apparent for both
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image data sets. 15.32% (2009/2010) and 7.14% (2015) of classified Shrubs objects were identified as
Grass in assessment, with a further 4.3% (2009/2010) and 5.36% (2015) identified as Trees. Grass with
UA of 91.6% (2009/2010) and 79.4% (2015) exhibited similar patterns of vegetation classification
confusion. The use of ancillary data aided the region growing process for the Trees class, by limiting
the domain of region growing within definitive confines. With UA values of 92.7% (2009/2010)
and 84.9% (2015), Trees performed better than the other vegetative classes. The vegetation indices
derived from the literature proved useful in discriminating between the vegetation classes [35,36] in
the appropriate routines.

The Manmade class achieved UA of 78.2% (2009/2010) and 84.6% (2015). The major source of
class confusion, for both sets of image data, was with the Buildings class, which accounted for 17.11%
(2009/2010) and 9.1% (2015) of manmade misclassification. The TAI imagery is collected from slightly
off-nadir angles, with vertical facades/rooftops causing some obscuration of associated ground features
in the imagery. OSG data, representing garden parcel extents on the ground level, was found to overlap
image features, resulting in unwanted inclusion of building features within garden parcels. This is
indicated by low producer’s accuracy for the Building class of 35.9% (2009/2010) and 49.6% (2015).

The Buildings class achieved UA of 85.5% (2009/2010) and 88.2% (2015). Misclassifications here
again result largely due to inconsistencies between TAI and OSG data. Garden Buildings may be
present but are subsequently hidden under covering tree canopies in the imagery, thus preventing
confirmation of whether building features are present. In addition, due to temporal differences between
the OSG and TAI, building objects may be represented in OSMT data that were not yet constructed by
the time of TAI image acquisition.

The effect of extrapolation within the shadow class upon the classified area proportions is shown in
Figure 7. In the Original Classification (OC), 23.27% of the total classified area is assigned as Shadow.
The extrapolation method used in this study does not ascribe class areas spatially within Shadow
proportions, therefore it proved difficult to verify the results of this study with the TAI. Methods similar
to the CSS validation could have been employed, however, this would bias assessments towards
extrapolated proportions (see Section 2.3.3). Class proportions calculated to total classified areas after
SL2 processing (TP), were compared to class proportions extrapolated from those calculated within the
non-Shadow area (SA) representing simple weighted-up proportions from OC. In both extrapolation
methods, building proportions remained absolute (see Section 2.3.3). Average class proportion difference
between TP and SA was 0.96%, indicating the limited effect of extrapolation on results obtained solely
from OC proportions. Shrubs and Trees TP proportions are higher than SA, as these object areas are
likely to cast shadow in the imagery and thus neighbour shadow proportionally than ground surfaces.

Figure 7. Comparison of total classification class proportions (%) between OC (blue), SA (orange) and
TP (grey) methods of class proportion coverage calculation.
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3.3. Extrapolation of CSS Surface Proportions to Classified Data

Extrapolation of CSS surface class proportions within SL2 classified garden areas, required an
estimated minimum of 383 samples per surface class (95% confidence level, assuming maximum
variance of surface estimations for each surface sample) to the total number of 156,573 OSG garden
parcels. However, due to the difficulty in accounting for issues associated with self-selection bias in
the CSS survey, extrapolation was-based upon the entire population of responses with valid surface
estimation ranges (n = 758).

Extrapolation multipliers were therefore calculated by first finding the image class areas of total
garden area obtained from the CSS responses, and then calculating CSS surface proportions to relevant
class area (Table 8). Variation between the total extrapolated surface coverage proportions of each
CSS surface for all OSG areas, in comparison to CSS estimates is shown in Table 9. Variation between
estimated CSS surfaces, and extrapolated surface proportions is evident for all classes. CSS estimates
are lower for the Hard Impervious, Hard Pervious and Trees class, while the reverse is true for all other
classes. Interestingly, the estimated OSG green infrastructure coverage is less than the overall CSS
estimates, with a 10% difference between the CSS proportions to CSS garden area, and CSS proportions
to total garden area.

Table 8. Extrapolation multipliers for CSS surfaces calculated as within image classification class proportion.

Image Classification Class

Grass Manmade Shrubs and Bare Earth

CSS Surfaces to Image
Classification class

Mown
Grass

Rough
Grass

Hard
Impervious

Hard
Pervious

Bare
Earth Cultivated Shrubs Water

Within class proportion 0.88 0.12 0.78 0.22 0.23 0.34 0.41 0.02

Table 9. Comparison between CSS surface proportion estimates, CSS surface proportions per total CSS
garden area and extrapolated CSS proportions within final classification.

Land Surface Cover
Type

Mean Reported CSS Proportions
for ALL Responses

CSS Surface Proportions per
Total CSS Garden Area

CSS Proportions to
Total OSG Garden Area

Bare Soil 8.74 7.63 5.15
Buildings 5.85 5.58 1.32
Cultivated 11.82 11.28 7.62

Hard Impervious 26.64 19.65 33.77
Hard Pervious 6.89 5.54 9.53
Mown Grass 20.79 24.97 14.46
Rough Grass 2.95 3.40 1.97

Shrubs 10.94 13.6 9.19
Trees 4.77 7.69 16.54
Water 0.61 0.66 0.45

Green infrastructure * 51.88 61.60 50.23

* Green infrastructure = Cultivated + Mown Grass + Rough Grass + Shrubs + Trees + Water.

3.4. Green Infrastructure (GI) in Manchester’s Gardens

Overall, Manchester has 23.63 km2 of gardens which make up 20.4% of Manchester’s land area,
yet just 11.87 km2 of this land area is GI. There is also substantial spatial variation evident in GI across
Manchester, with garden GI ranging between 0–27% across Manchester’s wards (Figure 8). While wards
with the greatest proportion of garden space (including Old Moat, Withington and Burnage) (Figure 1)
still have the highest garden GI as a percentage of ward area, they experience a significant drop in
garden GI, of almost half the amount (for example, Burnage domestic gardens cover 47.2% of the ward
area, but garden GI coverage is only 27% of the ward area). This demonstrates that gardens are not
performing as well as they could be in delivering GI. Furthermore, comparing this to public green
infrastructure data [45] indicates that Manchester has, in total, 49.0% GI (equating to 56.66 km2), and
20.94% of this GI is contained within domestic gardens. City residents, therefore, are responsible for the
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maintenance and safeguarding of around one fifth of the city’s GI. Furthermore, private gardens can
contribute from 1% up to 62% of the overall GI within a ward (Figure 9).
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Figure 8. Garden green infrastructure (GI) as a percentage of ward area (classified by quantiles).
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Figure 9. Garden green infrastructure (GI) as a percentage of ward GI area (classified by quantiles).
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4. Discussion

A representative sample of household and garden types was gained from the 1031 respondents
to the citizen science survey in Manchester. The number of responses to the survey, however, varied
greatly across wards, with wards in north and south Manchester having less than twenty responses,
highlighting the need for a robust methodology when using citizen science data to validate and extend
the database beyond areas with high response rates.

Validation of the garden land surface composition estimated by CSS respondents revealed an
average validation accuracy of 76.63% (s = 15.24%), close to the benchmark of 85% accuracy for
classification exercises [31]. This figure indicates that citizens are able to reasonably estimate the
proportional land surface coverage within their gardens. Differences between the garden composition
obtained from the survey responses and classified aerial imagery may have been caused by a number
of issues. Firstly, there was a temporal difference of up to 7 years between the survey date (2016) and
TAI (2009–2015). Changes to garden composition within this timeframe may have introduced errors in
the VA. This also highlights the benefit of obtaining information from citizens—it is more up-to-date
than other data sources, and may therefore be more accurate. Secondly, limited guidance was provided
to survey respondents about exactly how to estimate garden composition. Estimating tree coverage
may be particularly challenging to undertake without guidance, since it could be considered as the
tree canopy or the surface cover of a tree at ground level. Tree surfaces were considered as tree canopy
in the digitisation process, given that the ultimate aim was to investigate ecosystem service benefits,
and trees are more productive than other surface categories. Thirdly, errors may have been introduced
by the subjective digitisation and categorisation of the TAI [46].

Validation of CSS responses indicated that they yielded useable information for further extrapolation
purposes. While the validation methods adopted here are not without error, conducting controlled field
surveys to map exact garden surface coverages on this large scale would be a significant undertaking,
with researchers required to engage with multiple garden owners for access [1]. Imagery interpretation
thus provides a cost and time effective method for validating such information [23,47]. As the CSS was
designed to be simple and accessible for the general population, limited information was provided on how
to assess garden surfaces. Inclusion of additional material for respondents may have improved general
accuracy of responses. However, increasing the burden of the task may have discouraged potential
respondents. Therefore, the trade-off between accuracy and accessibility in designing the CSS, was
successful in obtaining a good sample of useable garden surface estimations.

The image classification produced reasonable results, with variation in garden surfaces across
Manchester mapped to a high level of detail. A significant proportion of the original classification
(23.27%), however, required extrapolation within obscured shadow areas. Overall accuracy of
final image surface estimation is therefore expected to be lower than overall accuracies reported,
as additional error is introduced through the shadow extrapolation method, which is based on
assumptions of a shadow areas’ relationship to its neighbouring class surfaces. Shadow compensation
techniques exist for high resolution imagery, but are computationally expensive to implement, and
may only provide marginal gains in information content for classification purposes [48,49]. The spatial
extrapolation method is quick to implement during post-classification processing, however the lack of
validation results in unquantified uncertainty in the final extrapolation results.

The classification methods used in this study were constrained by the computational limitations
associated with processing the available image data. The classification routines in this study were
designed and optimized based on experimentation. Machine learning classification techniques such as
Support Vector Machines, Random Forests enable quick and effective classification of high resolution
imagery [50–52], however, the limited spectral resolution of the aerial imagery resulted in considerable
feature overlap between image classes, thus inhibiting the use of such methods. The region growing
and cleaning routines compensated for this, by instead using spatial autocorrelation between image
objects, with neighbor to neighbor spatial and spectral similarity features accounting for fuzziness
between image classes [34,53]. A limitation of this study is that the classification routines were
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developed from personal interpretation by the image analyst, with such knowledge not easily
transferrable to other exercises. Formalization of the ontology of object types and relationships
used in classification schemes therefore may improve transferability of such knowledge within the
OBIA classification domain [54].

Extrapolation between CSS estimates and the classified imagery was conducted using a simple
method. In other urban studies, surveyed garden/parcel vegetation characteristics, obtained
from a limited sample, are used to infer findings to wider urban areas according to parcel
landcover-landownership [55], parcel land-value [56] and housing type [57] categories. As the level
of garden vegetative cover within gardens has been found to be statistically associated with such
variables, then stratifying the CSS valid surface estimation records into such categories may arguably
improve the extrapolation process. However, as the CSS estimates are likely to contain a certain degree
of error (due to user assessment and self-selection bias), and as the validation exercise highlighted
no significant variables to predict CSS error, based on general statistical assumptions the entire valid
CSS sample was used to include as much CSS information in the extrapolation process as possible.
The impact of sources of uncertainty in both datasets is, therefore, not explicitly accounted for in the
final extrapolated CSS surface garden outputs. The overall approach could be further improved to
incorporate sensitivity and uncertainty analysis, to indicate both sources of error in the methodology,
and provide useable estimates of error for end users of the data [58].

Overall, the large differences between the estimated CSS surface proportions and final
extrapolated OSG surface proportions for the whole study area indicate the limitations of simple
extrapolation from a limited sample of survey responses (Table 9), supporting the need for an
extrapolation approach as developed in this study. Heterogeneity in garden surface composition
is difficult to estimate from a biased survey sample. As evident from the results, CSS survey estimates
of green infrastructure cover differ by up to 10% (dependent on calculation method) compared to final
OSG extrapolated figures. A simple unweighted extrapolation from the survey data therefore may
overestimate city-wide garden green infrastructure coverage considerably. The benefits of combining
the two datasets is evident by this fact, as spatial heterogeneity of garden surfaces is measured from
the classified data.

5. Conclusions

A combined approach was applied to classify land surface cover of urban domestic gardens using
citizen science data and high resolution image analysis. This combined approach was advantageous
for two main reasons. Firstly, it enabled an assessment of the quality of citizen science data collected
in relation to estimations of land cover proportions of ten common domestic garden land surface
cover types, finding that citizens are able to quite accurately estimate this within their gardens (mean
Validation Accuracy = 76.63%, s = 15.24%). Secondly, this approach enabled extending an object-based
image classification to extrapolate the ten land surface cover types within gardens across the whole
study area. Furthermore, engagement of the public in the citizen science survey provides more
up-to-date data than aerial imagery and facilitates education for sustainable development, specifically
through informing the public about the value of urban gardens in the provision of urban green
infrastructure and its associated ecosystem services.

The final dataset reveals that domestic gardens contain 20.94% of Manchester’s GI, and there is
clear spatial variation across the study area. Such privately owned land is perceived by policymakers
and urban planners as challenging to influence. Detailed evidence on the current urban GI in
gardens is valuable for urban planning stakeholders in the local area in order to deliver targeted
GI interventions within and beyond gardens, for example, through identification of areas of GI need
within neighbourhoods. The detailed land surface classification information is useful for a broad range
of analyses. For example, distinguishing between pervious and non-pervious surfaces within the
manmade class enables better estimation of the flood attenuation function of local garden areas from a
simple vegetative/non-vegetative classification [2,8].
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