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Abstract 15 

Temporal dynamism of plant resource capture, and its impacts on plant-plant interactions, can 16 

have important regulatory roles in multi-species communities. For example, by modifying 17 

resource acquisition timing, plants might reduce competition and promote their coexistence. 18 

But despite the potential wide ecological relevance of this topic, short-term (within-growing 19 

season) temporal dynamism has been overlooked. This is partially a consequence of historic 20 

reliance on measures made at single points in time. However, we propose that with current 21 

technological advances this is a golden opportunity to study within-growing season temporal 22 

dynamism of resource capture by plants in highly informative ways. Here, we set out an agenda 23 

for future developments in this research field, and explore how new technologies can deliver 24 

this agenda. 25 

 26 

What is temporal dynamism and why is it important? 27 

Understanding plant community composition and functioning are fundamental challenges in 28 

ecology. It is not yet fully understood why specific communities exist at certain points in space 29 

and time, why some communities are more diverse than others, and how diversity impacts 30 

ecosystem function. In plant communities, many theories have been proposed to explain plant 31 

coexistence including cyclical disturbance [1,2], different individual responses to species 32 

interactions [3], multiple limiting resources [4,5], intraspecific trait variation [6], and facilitative 33 

plant-plant interactions, particularly in extreme environments [7,8]. 34 

We argue that short-term (i.e. within-growing season) temporal dynamism (see 35 

Glossary) in resource acquisition might be central to addressing these fundamental challenges. 36 
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Temporal dynamism can be described as a form of heterochrony (see Glossary), controlled by 37 

intrinsic gene expression but also influenced by external environmental factors such as climatic 38 

conditions [9]. However, apart from in a few cases, within-growing season temporal dynamism 39 

in resource acquisition is rarely considered as a topic in its own right, in part because it has 40 

historically proven hard to measure. This contrasts, for example, to our knowledge of other 41 

temporally dynamic processes such as plant phenology, about which much more is known.  42 

Phenological studies have shown the importance of the timing of key events in the 43 

structure and functioning of plant communities [10]. Therefore, similar important 44 

consequences for temporal dynamism in resource capture might be reasonably expected. For 45 

example if different species temporally segregate (see Glossary) capture of common resources 46 

to avoid competition, increased complementarity can promote plant coexistence [11] with 47 

profound implications for fundamental processes such as biodiversity-ecosystem function 48 

relationships. Importantly we propose that, due to the wealth of new analytical approaches 49 

currently available, now is the time to address the historical oversight of within-growing season 50 

temporal dynamism.   51 

Before considering these new opportunities, we examine previous studies of temporal 52 

dynamism, with a focus on resource capture. We discuss the limitations of, and lessons learned 53 

from previous studies, and how they can form the basis of a future research agenda. We then 54 

focus on new experimental approaches, considering how these can address current knowledge 55 

gaps, and discussing the wider relevance of this subject area to ecology.   56 

 57 

Past studies of temporal dynamism in plant communities 58 
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Previous research provides clear examples of how temporal dynamism of ecological 59 

processes can regulate the structure and functioning of plant communities. Arguably one of the 60 

most well studied examples is plant-pollinator interaction dynamics. Pollinators vary the plant 61 

species visited inter-annually, which promotes coexistence in species rich communities [12,13]. 62 

Other examples involve temporally dynamic resource capture; in arid environments, temporal 63 

dynamism has been found in the growth response of plants to erratic inputs of water [14], 64 

depending on both the timing of the water input in the growing season and the time since the 65 

previous water input [15]. In alpine systems, nutrient turnover is temporally dynamic, with 66 

mineralisation occurring throughout winter [16], and spring microbial turnover then providing 67 

nutrients to plants [17].  68 

Such temporal dynamics are not only of academic interest – they can play a central role 69 

in regulating the impacts of key environmental change drivers. For example, one way non-70 

native species can become invasive is by occupying a vacant niche [18]. Occupying a temporal 71 

niche left vacant by the native plant community could allow the invasive species to capture 72 

nutrients at a time of reduced competition. It may appear that in some cases invasive species 73 

take over a niche from native species. However, it is unclear whether invasive species 74 

establishment depends on the exploitation of a temporal niche gap.  Although phenological 75 

differences between native and invasive species have been shown [16], the underlying role of 76 

within-growing season temporal dynamism in nutrient capture is yet to be demonstrated (likely 77 

for the reasons we discuss below). A similar example is the phenology of hemi-parasitic plants. 78 

The lifecycle of many hemi-parasites is shortened relative to its hosts, influencing nitrogen 79 

cycling with earlier leaf fall than the host community [19,20]. Early leaf fall provides an input of 80 
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nitrogen to the host community when it is becoming limited [21]. Here the rate of water and 81 

nitrogen uptake by R. minor parasitizing Hordeum vulgare (barley) has received attention [22] 82 

but the temporal dynamics of this interaction have yet to be explored.   83 

These examples, just a selection from the many that could be listed, demonstrate the 84 

likely importance of temporal dynamism of resource capture by plants. Far fewer studies have 85 

sought to measure this process directly. An important example is the work by Trinder et al., 86 

which used a series of destructive harvests to examine the temporal dynamics of nitrogen 87 

capture and biomass accumulation of Dactylis glomerata  (Cock’s foot) and Plantago lanceolata 88 

(Ribwort plantain). Trinder et al.  found that in response to interspecific competition, both 89 

species shifted the timing of the maximum rate of biomass accumulation and nitrogen capture 90 

by up to 17 days [23]. The species diverged the timing of these resource capture processes, in 91 

ways that possibly reduce direct competition. However, it is notable that this type of study, 92 

looking explicitly at the temporal dynamism of resource capture, is to the best of our 93 

knowledge, extremely rare. 94 

 95 

Why does it matter that temporal dynamism has been overlooked? 96 

Many of the fundamental processes and properties of terrestrial communities are governed by 97 

the outcome of plant-plant interactions [24]. However, despite a huge amount of work on 98 

plant-plant interactions, especially competition, there are still unanswered questions about the 99 

role of plant-plant interactions in governing plant community composition.  100 
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For example, our current understanding of the niches available within plant 101 

communities, which strongly regulates plant-plant interactions, cannot explain the level of 102 

observed coexistence [25]. A better understanding of short-term temporal dynamism in 103 

resource capture, and its consequences for plant-plant interactions, might help explain this 104 

apparent paradox. Temporally dynamic resource capture processes, and the temporal niche 105 

segregation which this could enable, could alter critical plant-plant interactions so as to have a 106 

stabilising effect on communities. This would allow a higher diversity than would otherwise be 107 

the case to be supported [26], at potentially both a species [27] and genotypic level [28], with 108 

the community using a greater proportion of the available resources [29]. In this example, 109 

temporal dynamism in resource capture can be considered as an unmeasured trait (Box 1).  110 

 111 

Why has temporal dynamism in resource capture been overlooked?  112 

Given the general importance of the temporal dynamism of ecological processes, and 113 

the likelihood that in many cases this is related also to temporally dynamic resource capture 114 

within a growing season, why have so few studies explicitly addressed this latter topic?    115 

 Plant ecology has traditionally relied on one final biomass measurement to assess the 116 

consequences of plant-plant interactions. Biomass is a relatively cheap and easy measure of 117 

plant response, making large-scale greenhouse and field studies possible [26]. However, there 118 

are some drawbacks to using single time point measurements of biomass to assess plant-plant 119 

interactions, and especially the short-term temporal dynamism of these processes. First, due to 120 

the influence of other external environmental factors, the accumulation of biomass is rarely 121 

influenced by competition alone [23]. This makes it an unreliable direct measure of the 122 
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outcome of competition. The use of only single harvesting to assess the outcome of plant-plant 123 

interactions is clearly inappropriate for measuring short-term temporal dynamism in resource 124 

capture. In addition, the precise timing of biomass harvest and measurement within a growing 125 

season can influence the perceived outcome of the plant-plant interaction, as plants grow and 126 

develop at different times throughout the year [26]. The same criticisms can also be made of 127 

other common annual, single time-point measurements, for example flower production and 128 

seed set. To understand the role of temporal dynamism of resource capture in regulating 129 

community dynamics, repeated measures of resource capture are required. However, in order 130 

to take this step we need first to realise and accept the limitations of single time point studies, 131 

and move to more detailed studies of the competitive process itself.  132 

Traditional approaches, for example plant biomass and tissue nutrient content analysis, 133 

can be used to explore issues of temporal dynamism in plant-plant interactions. However, they 134 

need to be coupled to multiple harvesting points through time, as used by Trinder et al. to 135 

examine the temporal dynamics of resource capture in Plantago lanceolata and Dactylis 136 

glomerata [23]. Although the multiple harvest approach is a valuable tool, it is destructive and 137 

requires large-scale, labour intensive studies. The inclusion in a study of multiple harvests to 138 

track temporal dynamism of resource capture and plant-plant interactions through time 139 

increases the size and complexity of an experiment, and therefore reduces the complexity of 140 

the questions that can be asked [11,29]. Also, multiple harvesting means responses are 141 

averaged over many plants, potentially masking subtle dynamic individual-level responses in 142 

resource capture and growth. Non-destructive methods, would instead allow the responses of 143 

an individual plant to be studied over time.  144 
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Such drivers of the historical oversight support a case for the use of innovative new 145 

technologies, particularly non-destructive, direct measures of resource capture, so that 146 

temporal dynamism of resource capture can be given the attention it deserves. 147 

 148 

Setting and addressing a new research agenda 149 

From the above discussions, and consideration of well-known ecological concepts, a 150 

series of questions can be presented (See Outstanding Questions box) in a clear research 151 

agenda. If addressed, this agenda could advance the study of temporal dynamism of resource 152 

capture. Importantly, this research agenda is not just of relevance to plant ecophysiologists or 153 

community ecologists. By influencing, for example, the temporal availability of resources to 154 

other groups such as soil organisms, pollinators and herbivores, the study of temporal 155 

dynamism in plant resource capture will likely have wide-reaching consequences for ecological 156 

research.   157 

As discussed, whilst temporal dynamism in resource capture can itself be detected using 158 

destructive harvesting techniques [19], new technological approaches are required to look at 159 

the complex series of processes involved in the dynamics of plant nutrient capture and its role 160 

in community composition. Below, we provide examples of how these advances might enable 161 

some of the key questions of the research agenda to be addressed.  162 

 163 

What is the interaction of temporal dynamism of resource capture with plant physiology and 164 

morphology? 165 
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The plasticity of plant root traits may facilitate the temporal dynamics of resource capture; 166 

whilst at the same time, root physiology and morphology could be influenced by changes in the 167 

temporal dynamics of nutrient uptake. Therefore, the relationship between temporal 168 

dynamism of resource capture and root traits is a key topic, as roots are the organs of nutrient 169 

uptake.  170 

 Microrhizotrons - small cameras inserted into the soil to record root foraging and fine 171 

root developing [31,32] – allow the study of root foraging activity. However, they are limited in 172 

not giving a view of the whole root system. Whole root system growth dynamics can be studied 173 

with automated root phenotyping facilities, using high definition cameras to photograph root 174 

development of plants grown in Perspex boxes [33]. Changes in root morphology and foraging 175 

can then be related to the location of soil microbial activity (zymography – see below) and plant 176 

nutrient capture.  177 

For a 3D view of root growth dynamics, X-ray CT scanning can be used to visualise plant 178 

roots grown in soil. Root architectural development can then be related to resource capture. 179 

The development of specialist root tracking software and facilities [34] will allow much larger 180 

and more complex experiments to be carried out into dynamic competition for soil resources 181 

between the roots of multiple individuals. This approach has already been used to study root 182 

growth in response to competition between Populus tremuloides (Quaking aspen) and Picea 183 

mariana (Black spruce) seedlings. Both species increased rooting depth and altered root 184 

architecture in response to a competitor [35], but this study did not simultaneously assess soil 185 

resource capture. By combining successive scanning of root growth and successive destructive 186 
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harvesting to look at the temporal dynamics of nutrient uptake the relationship between root 187 

growth and nutrient uptake can begin to be addressed.   188 

 189 

Is temporal dynamism in nutrient capture moderated in response to neighbours simply by 190 

overlapping depletion zones or by more complex signalling pathways?  191 

Traditionally plant competitive responses to a neighbour have been thought to occur when the 192 

zones of nutrient depletion in the soil overlap [36]. As the complexities of plant-plant 193 

communication are revealed [37], it is becoming clear that plant-plant competitive interactions 194 

might not occur solely based on nutrient availability. RNA sequencing, which enables us to 195 

examine the genes upregulated in specific circumstances from tissue samples, is one way to 196 

look at dynamic plant responses to the presence of a neighbour.  197 

Studies in Arabidopsis thaliana have identified that common stress response pathways 198 

such as jasmonate production are activated in response to a competitor [38]. Detection of the 199 

upregulation of stress associated genes can indicate when a target plant detects the presence 200 

of a neighbour, whether the response is different depending on the identity of the neighbour, 201 

and the length of time between neighbour detection and any form of additional physiological 202 

response by the target plant (e.g. priming of soil microbes – see below).  203 

A key question is whether upregulation of gene expression occurs before the nutrient 204 

depletion zones of neighbouring plants overlap. Such an effect would indicate that responses to 205 

neighbouring plants are more complex than simply a response to the overlap of soil depletion 206 

zones as a consequence of developing root systems. The question of whether plants start 207 

responding to neighbours and the threat of potential competition long before they come into 208 
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close physical contact can then be addressed. This approach, therefore, provides a unique 209 

opportunity to understand temporal dynamism and competition at a molecular level, and to 210 

determine how temporal dynamism of resource capture is moderated in response to 211 

competition through a cascade of molecular responses in the target plant.  212 

 213 

How does the activity of the soil microbial community influence temporal dynamism in resource 214 

capture? 215 

Throughout the year, soil microbial communities mineralise and immobilise nutrients 216 

from soil organic matter (SOM), driving nutrient cycles that mobilise organic nutrient stocks 217 

into plant available forms during the growing season [39,40]. Plants can influence these 218 

processes through the rhizodeposition of labile carbon and amino acids to influence microbial 219 

process rates (rhizosphere priming effects, RPE [41,42]), with rhizodeposition varying with  220 

plant development, species and genotype [43–45]. 221 

 One method to examine the influence of plants on the dynamics of SOM mineralisation 222 

is to study the timing of rhizosphere priming effects for plants in competition vs. isolated plants. 223 

Stable isotope labelling (15N/13C) can allow plant impacts on soil nutrient cycles to be quantified 224 

[46]. This can be done non-destructively and dynamically through isotopic partitioning of soil 225 

CO2 efflux into plant and SOM-derived components [47], or tracing 15N fluxes (derived from 226 

labelled organic matter) in soil solution [48–50]. This approach allows the timing and magnitude 227 

of soil community priming to be measured over time, and compared relative to other 228 

temporally dynamic measurements including RNA expression (see above) and resource capture.  229 
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Further information about specific soil microbial activities can then be provided through 230 

soil zymography (see Glossary), allowing the location and intensity of enzyme activity in soil to 231 

be quantified over time [51]. This methodology has already been used to  identify ‘hot 232 

moments’ when microbial activity is higher than background levels [52]. Such ‘moments’ can be 233 

occasional or occur periodically with events like spring growth and autumn leaf fall [53]. Using 234 

these techniques, it can be assessed for example, whether periods of greater microbial activity 235 

precede plant nutrient capture or whether they are themselves dependent on priming activities 236 

by the plant.  237 

 238 

How are the temporal dynamics of soil microbial community composition influenced by plant 239 

temporal dynamics?  240 

A critical factor regulating the functional capacity of soil communities to mediate 241 

nutrient cycling is their composition. The soil community is known to be temporally dynamic 242 

seasonally and with plant developmental stage [24]. Shi et al. used a 16S ribosomal RNA 243 

approach to produce a network representation of microbial diversity over two growing seasons, 244 

comparing bulk and rhizosphere soil (Figure II) [54]. The decreasing cost, increasing throughput 245 

capacity and analysis speed of genomics creates an opportunity to study temporal dynamism in 246 

the soil community over the growing season [55]. When compositional studies are combined 247 

with studies of soil microbial activity (e.g. using metatranscriptomics), it can be assessed how 248 

changes in the dynamism of plant resource capture are associated with either short-term (i.e. 249 

more activity-based) or long-term (i.e. more community-composition based) changes in the soil 250 

community. 251 
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 252 

What is the future strategy to study temporal dynamism? 253 

 Temporal dynamism is an overlooked factor in ecology and could be a vital central mechanism 254 

by which plants coexist in complex communities. Although studying temporal dynamism of 255 

resource capture is not going to be straight forward, the potential benefit to the understanding 256 

of ecosystem functioning is likely to be considerable.  There is now an ideal opportunity to 257 

understand the within-growing season temporal dynamics of resource capture as part of 258 

broader ecological system dynamics.  259 

In order to understand the role of temporal dynamism of resource capture in plant 260 

coexistence it needs to be understood how plants coordinate temporally dynamic responses, 261 

the intermediary role of the soil microbial community, and the consequences at the individual 262 

plant and plant community level. Therefore, to study these distinct, but interconnected 263 

processes, an integrated approach is required [56]. From the examples we have discussed 264 

above it is clear that a vast amount of knowledge can be gained about temporal dynamism in 265 

resource capture from using these cutting edge technologies. Once the fundamental questions 266 

about temporal dynamism of resource capture have been addressed, the wider community 267 

level consequences can then be considered, building upon these fundamental studies.   268 

 The ultimate goal of this research should be to integrate temporal dynamism as a factor 269 

in existing models, to define new niche space and aid the explanation of coexistence in complex 270 

communities. Only then can the question of whether temporal dynamism in resource capture 271 

leads to coexistence of neighbouring plants can begin to be addressed. This approach can then 272 
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be applied to other temporally dynamic processes, answering other fundamental questions 273 

about ecosystem functioning.   274 
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Schofield et al. 409 

Box 1. Theory of temporal dynamism of nutrient capture 410 

Plants do not uniformly take up nutrients throughout the growing season. Instead, nutrient 411 

capture is regulated based on the nutrient requirements and growth stage of the plant [57]. 412 

When plants are grown in isolation, nutrients are taken up at the optimum time (Figure I, 413 

panels A and B show two individuals grown in isolation). However, when plants are grown 414 

together the timing of nutrient capture might change, perhaps to minimise competition (panel 415 

C shows the two individuals grown together). This can then promote coexistence of competing 416 

individuals [11], and might be an important factor in communities such as tropical rainforests 417 

and grasslands, with multiple species timing key processes differently to minimise competition 418 

(panel D shows a hypothetical multispecies community with each line representing a different 419 

species). 420 

  421 
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Glossary 423 

Heterochrony: a change in the timing and rate of a developmental process within an organism 424 

compared to an ancestral species, including the onset and duration of flowering, leaf 425 

production and internodal length [9]. 426 

Temporal segregation: a shift in the timing of a process in response to a neighbouring 427 

individual. Commonly observed in animal feeding, it limits niche overlap and promotes 428 

coexistence. Some niche overlap is still to be expected, but direct resource competition is 429 

reduced.  430 

Resource capture: the acquisition of resources, including nutrient, water and light, by a plant. 431 

This is commonly expressed as a rate, i.e. units of resource capture over a period of time. 432 

Soil zymography: non-destructive method to measure chitinase, cellulase or nitrogen 433 

mineralisation hotspots at a fine spatial resolution in the soil. Useful for studying changes in the 434 

location and intensity of enzymatic activity over time. 435 

Temporal dynamism: variation through time in the rate or effect of a particular process. For 436 

example, this could be variation in the per unit biomass capture by a plant of soil nutrients or 437 

water, or the extent to which neighbouring plants are competing with each other (which might 438 

itself result from temporal dynamism in resource capture by individuals). Such temporal 439 

dynamism can be driven by external factors (changes through time in climate or resource 440 

availability) or intrinsic factors (e.g. plant developmental stage).  441 
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Within-season temporal dynamism: variation through time, but within a given growing season, 442 

in the rate or effect of a particular process. Such variation is distinct from inter-annual variation, 443 

which might be caused by factors such as variation in climate between growing seasons.  444 
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Figure I. Theoretical role of temporal dynamism in plant coexistence 446 

In isolation (panels A and B) plants take up nutrients in a specific profile over the growing 447 

season. But when grown together (panel C) the two plants offset the period of maximum 448 

nutrient capture to limit competition. In a multispecies community (panel D) this might could 449 

lead to species occupying distinct temporal niches, leading to coexistence.  450 

 451 

Figure II. Temporal dynamics of plant associated soil community 452 

Figure showing the potential role of soil community characterisation and network analysis to 453 

study the temporal dynamics of soil community associated with resource capture. The 454 

difference in the rhizosphere and bulk soil community of Avena fatua was compared over two 455 

growing seasons. Samples were taken every three weeks for two seasons. Shi et al. looked at 456 

the difference in the diversity and level of interconnection between bulk and rhizosphere soil. 457 

Nodes represent operational taxonomic units (OTUs) and lines the linkages between them. The 458 

rhizosphere soil becomes more interconnected but less diverse over time as the plant exerted a 459 

selection pressure on the soil community [54].  460 

 461 

Figure III. The potential role of soil zymography in studying temporal dynamism in soil 462 

community activity 463 

The potential role soil zymography analysis can play in studying the temporal dynamics of soil 464 

functions. The cellulase activity surrounding roots of Lupinus polyphyllus (Large-leaved Lupin) 465 
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was analysed 18 days after sowing (a), and 10 days (b), 20 days (c) and 30 days (d) after cutting 466 

shoots [51].  467 


