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Abstract 24 

Background: Regular sprint interval training (SIT) improves whole-body aerobic capacity and 25 

muscle oxidative potential, but very little is known about knee extensor anabolic or fatigue 26 

resistance adaptations, or whether effects are similar for males and females. The purpose of 27 

this study was to compare sex-related differences in knee extensor size, torque-velocity 28 

relationship and fatigability adaptations to 12 weeks SIT. 29 

Methods: Sixteen males and fifteen females (mean (SEM) age: 41 (±2.5) yrs) completed 30 

measurements of total body composition assessed by DXA, quadriceps muscle cross-sectional 31 

area (CSAQ) assessed by MRI, the knee extensor torque-velocity relationship (covering 0 – 32 

240°·sec-1) and fatigue resistance, which was measured as the decline in torque from the first 33 

to the last of 60 repeated concentric knee extensions performed at 180°·sec-1. SIT consisted 34 

of 4 x 20 second sprints on a cycle ergometer set at an initial power output of 175% of power 35 

at VO2max, three times per week for 12 weeks. 36 

Results: CSAQ increased by 5% (p=0.023) and fatigue resistance improved 4.8% (p=0.048), 37 

with no sex differences in these adaptations (sex comparisons: p=0.140 and p=0.282, 38 

respectively). Knee extensor isometric and concentric torque was unaffected by SIT in both 39 

males and females (p>0.05 for all velocities). 40 

Conclusions: 12 weeks SIT, totalling 4 minutes very intense cycling per week, significantly 41 

increased fatigue resistance and CSAQ similarly in males and females, but did not significantly 42 

increase torque in males or females. These results suggest that SIT is a time-effective training 43 

modality for males and females to increase leg muscle size and fatigue resistance. 44 



 

 

INTRODUCTION 45 

In recent years, there has been a resurgence of research interest in high intensity interval 46 

training and sprint interval training (SIT). Studies usually set out to understand the cellular 47 

regulation of training adaptations and to investigate the implementation of training practices 48 

to improve health status of various populations (6). However, the majority of research in 49 

these areas included only young, male participants, with females and middle-aged people 50 

being under-represented.  51 

It should not be taken as a certainty that the findings from studies including only males will 52 

apply equally to females. Males have higher maximal skeletal muscle strength and power 53 

compared with females (30) and higher maximal power output during sprinting (16, 19). 54 

However, the superior performance does not lie entirely with males, since males fatigue more 55 

quickly than females during controlled isometric contractions of single muscle groups (25, 35) 56 

and during sprinting, while females recover faster during short rest periods between repeated 57 

sprinting bouts (16, 19). 58 

Male advantage when producing maximal muscle force and power is in part due to the higher 59 

relative muscle mass (8), larger muscles (28) and larger fibre cross-sectional areas in males 60 

than females (18). Any sex-related comparisons for muscle force and power should therefore 61 

normalise values to muscle size (‘normalised’ force and power), sometimes termed as 62 

“muscle quality” in the literature (22, 30). However, it is not only muscle mass that exhibits a 63 

sex-related difference, but also the contractile and metabolic characteristics. For instance, 64 

males have been reported to have higher concentrations of glycolytic enzymes and faster 65 

rates of contraction and relaxation than females (35). Males may use relatively more 66 

carbohydrates during sub-maximal aerobic exercise than females (45), shift to anaerobic 67 



 

 

metabolism at lower relative intensity during incremental exercise (39) and during maximal 68 

sprinting higher glycolytic contributions were reported in males compared with females (17). 69 

Skeletal muscle characteristics such as these that affect energetics may also confer sex 70 

differences in fatigability and may influence adaptations to SIT. 71 

Few studies directly examine sex-related differences in adaptations to SIT. We recently 72 

reported sex differences for the changes to maximal rate of oxygen uptake (VO2max) and 73 

body fat after 12 weeks SIT (5). Focussing on peak power output, Esbjörnsson-Liljedahl et al. 74 

(18) showed that females increased their power output more than males after 4 weeks SIT, 75 

but another study looking at adaptation to just 6 SIT sessions reported similar gains in peak 76 

power for males and females (4).  77 

Increased power output could in theory be due to changes to neural activation, but the results 78 

from Esbjörnsson-Liljedahl et al. (18) allude to proportionally larger gains in vastus lateralis 79 

fibre cross sectional area (particularly Type IIx) in females than males as a mechanism. This 80 

would suggest that females have a greater hypertrophic adaptation to SIT than males, but 81 

there is little evidence to this effect because muscle-specific hypertrophy has been largely 82 

overlooked in studies of SIT. Hypertrophy follows a net increase in anabolic signalling over 83 

time, and in this regard Fuentes et al. (2012) found no sex-related differences in their anabolic 84 

responses to a single SIT session (20). Another study, however, reported approximately 150% 85 

higher rates of muscle protein synthesis 48 hours following 3 weeks of SIT in males than 86 

females (40). This is in conflict with the previous report of higher increases in Type IIx muscle 87 

fibre CSA in females than males (18), although it should be noted that type IIx fibres typically 88 

account for approximately 10% of vastus lateralis fibres (44). Irrespective of the conflicting 89 

reports, neither of these cross-sectional studies of acute training adaptation examined 90 

changes to muscle size after several weeks SIT. Measurements of total body lean mass by 91 



 

 

DEXA are contradictory in this area. Heydari et al. observed a 2% significant increase after 12 92 

weeks HIIT in young, overweight males (24), whereas Trapp et al. (utilising the same protocol 93 

but over 15 weeks) saw no change in total body lean mass in young females (21). These 94 

studies taken together suggest that the muscle hypertrophic response to SIT may be sex-95 

specific, but the contradictory results highlight the need for further evidence. 96 

Thus, the aim of the present study was to compare sex-related differences in muscle size, 97 

knee extensor torque-velocity relationship and fatigability (occurring after 60 maximal 98 

voluntary concentric knee extensions), and their adaptation to 12 weeks SIT. It was 99 

hypothesised that 12 weeks cycling SIT would promote knee extensor hypertrophy, increased 100 

torque and fatigue resistance. Based on the limited available data indicating larger gains in 101 

type IIx fibre CSA in females than males, females were hypothesised to have a greater 102 

hypertrophic adaptation compared with males. Assuming no change to the muscle quality, it 103 

was further hypothesised that females would increase maximal torque more than males in 104 

line with the greater hypertrophic adaptation.  105 

METHODS 106 

Experimental Approach to the Problem 107 

To determine the effect of SIT on knee extensor hypertrophy, torque production and fatigue 108 

resistance, 16 males and 15 females were recruited from the general population through 109 

advertisement in local and national newspaper articles, a local gym and campus 110 

advertisement. The participants reported to the laboratory and completed measurements of 111 

knee extensor cross sectional area (Magnetic Resonance Imaging, MRI), total body 112 

composition (Dual Energy X-ray Absorptiometry, DXA) and knee extensor torque and fatigue 113 



 

 

(Unilateral Knee Extension Dynamometry). The participants then completed 12 weeks of SIT 114 

in a local gym or in the laboratory before returning to repeat the measurements.  115 

Subjects 116 

The study conformed to the latest revisions of the Declaration of Helsinki (47) and was 117 

approved by the Ethics Committee at Manchester Metropolitan University. Volunteers 118 

provided written, informed consent prior to participation. Those with a history of 119 

cardiovascular, neuromuscular or metabolic disease were excluded as well as people whom 120 

had suffered a leg fracture within the past two years.  Participants who were involved in 121 

competitive sports or cycled for more than 15 minutes per day for three or more days per 122 

week were also excluded. The included participants were from the same group as previously 123 

reported in (5). Included participants ranged from 20 to 69 years. Although not reported in 124 

the present manuscript, the mean VO2max values (43 and 34 mL·kg·min-1 for males and 125 

females, respectively) previously reported for the study group (5) were at around the 60th 126 

percentile of population-based values (2, 10, 46). A total of 31 participants completed the 12-127 

week SIT intervention and the primary outcome measurements for this study were changes 128 

to: quadriceps cross-sectional area (CSAQ), knee extensor maximal isometric and concentric 129 

torque, and fatigue resistance. Participant characteristics are shown in Table 1. 130 

 131 
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Table 1. Participant characteristics and muscle size in males (n=16) and females (n=15) before and after 12 140 

weeks SIT. 141 
 

Males 
(Pre) 

Males (Post) Females 
(Pre) 

Females 
(Post) 

Time 
effect (p-

value) 
 

Sex effect 
(p-value) 

Sex x Time 
interaction 
(p-value) 

Age (yrs) 40.8  

(3.2) 

 40.9  

(3.9) 

    

SIT Sessions   32 (2)  34 (2)  0.602  

VO2max (L·min-1) 3.5  

(0.2) 

3.6 

(0.2) 

2.0  

(0.1) 

2.4  

(0.1) 

0.032 <0.001 0.595 

VO2max 

(mL·kg·min-1) 

43.7  

(2.1) 

45.8  

(1.7) 

34.3  

(2.3) 

40.8  

(2.4) 

0.001 0.013 0.815 

Total body mass 

(kg) 

80.0  

(2.2) 

79.2  

(2.1) 

62.5  

(2.6) 

62.1  

(2.5) 

0.039 <0.001 0.207 

Height (m) 1.75 

(0.02) 

 1.66     

(0.01) 

    

Body Mass Index 

(kg·m2) 

25.9  

(0.9) 

25.8  

(0.9) 

21.8  

(0.7) 

21.8  

(0.7) 

0.055 0.001 0.495 

Body Fat (%) 22.5  

(1.4) 

21.3  

(1.4) 

30.4  

(1.4) 

29.9  

(1.3) 

0.807 <0.001 0.133 

Total body lean 

mass (kg) 

60.4  

(1.6) 

61.1  

(1.6) 

39.1  

(0.9) 

39.2  

(1.0) 

0.147 <0.001 0.067 

Leg lean mass (kg) 21.6  

(0.7) 

21.0  

(0.7) 

13.6  

(0.3) 

13.0  

(0.4) 

0.992 <0.001 0.990 

Right thigh lean 

mass (kg) 

5.0  

(0.2) 

5.1  

(0.2) 

3.4  

(0.1) 

3.5  

(0.2) 

0.547 <0.001 0.880 

CSAQ (cm2) 86.2 

(3.3) 

89.7  

(3.1) 

56.7  

(1.9) 

60.0  

(1.6) 

0.023 <0.001 0.140 

Data are shown as mean (SEM). Knee Extensor CSA (cm2) is measured in 15 males and 10 females due to 142 

equipment maintenance. 143 



 

 

Procedures 144 

Total body and leg lean mass were assessed by dual-energy x-ray absorptiometry (DXA: Lunar 145 

Prodigy Advance; GE Medical; EnCore version 10.50.086) using the same procedures as 146 

previously reported by our group (5), and thigh lean mass was also recorded (33). The test-147 

retest variation in measurement for this equipment has been determined in our laboratory 148 

as 1% (unpublished).  149 

Magnetic resonance imaging (MRI) was used to measure peak quadriceps cross-sectional area 150 

(CSAQ) using a T1-weighted turbo 3D sequence (256x256 matrix, Repetition Time 40ms, Echo 151 

Time 16ms) on a 0.25-T scanner (G-scan, Esaote, Genoa, Italy) with the participant supine and 152 

hips and knees fully extended. The scanning coil was positioned over the thigh of the 153 

dominant leg and contiguous transverse-plane slices of 6 mm thickness were collected with 154 

no gap between slices. Images were analysed using OsiriX imaging software (OsiriX medical 155 

imaging, OsiriX, Atlanta, USA) by manually tracing the quadriceps muscles and avoiding any 156 

visible fat deposits in the muscle. Slices at 24mm apart were analysed and the slice with the 157 

highest quadriceps anatomical cross-sectional area was recorded. Analyses were carried out 158 

by the same investigator. Using the same equipment and measurement techniques, our 159 

laboratory previously reported a co-efficient of variation of 0.43, 0.35, 0.30 and 0.31% for 160 

repeated measurements of Vastus Lateralis, Rectus Femoris, Vastus Medialis and Vastus 161 

Intermedius muscles, respectively (14). The scanning procedure was repeated after 12 weeks 162 

of SIT.  163 

The knee extensor torque-velocity relationship and fatigue resistance were assessed in 16 164 

males and 15 females using unilateral extensions on a Cybex Norm Dynamometer (Cybex, 165 

division of Lumex Inc, Ronkonkoma, New York, USA). Participants were seated upright (hip 166 



 

 

angle of 85⁰) with straps secured firmly around the upper body and the hips to limit 167 

extraneous body movements. The torque lever was strapped 2 cm above the ankle malleolus 168 

of the dominant leg (as determined by the participant) and the centre of knee rotation was 169 

aligned with the point of rotation of the dynamometer lever arm. A brief warm up included 170 

six isokinetic contractions at 180°·sec-1 using approximately 60-70% of maximal effort. The 171 

maximal voluntary isometric torque (MVC) was assessed three times with 60 seconds of rest 172 

between efforts at a knee angle of 90°. The highest torque value was recorded. Following a 3 173 

minute rest, isokinetic torque was assessed over two efforts separated by 60 seconds rest 174 

between efforts at any velocity at 60, 120, 180, 240°·sec-1 in a random order, blinded from 175 

the participant, with a 60 second rest between velocities. Each trial started with the leg flexed 176 

as far as possible and participants made two maximal efforts at each velocity through the full 177 

range of movement until the leg reached full extension. The peak torque occurring at any 178 

point during the concentric contraction was recorded. A rest of 30 seconds was given between 179 

maximal efforts and strong verbal encouragement was given throughout. The data obtained 180 

from MRI scanning was then combined with the data from the isokinetic torque production 181 

to measure ‘normalized torque’, that is, torque produced per cm2 of CSAQ, in order to give an 182 

indication of muscle quality before and after SIT: 183 

Normalized Torque= Isokinetic Torque (Nm) at a given velocity (°·sec-1) ÷ CSAQ (cm2) 184 

Isokinetic torque as a percentage of isometric torque produced was assessed by: 185 

%Isometric Torque= Isokinetic Torque (Nm) at a given velocity (°·sec-1) ÷ Isometric Torque 186 

measured at 90° (Nm) 187 

Knee extensor fatigue resistance was assessed after a 3 minute rest. The test started with the 188 

knee flexed as far as possible and participants performed 60 maximal-effort isokinetic 189 



 

 

contractions over 2 minutes (one every 2 seconds, as timed by a metronome), moving through 190 

the full range of knee extension at a velocity of 120°·sec-1 and returning to the fully flexed 191 

knee angle between contractions. The highest torque produced during the first 3 contractions 192 

was recorded as the highest contraction torque during the test and in all cases the lowest 193 

torque was produced during the final contraction and this was recorded as the lowest torque. 194 

The fatigue index was calculated using the formula: 195 

Fatigue Index= (Torque Produced in final contractions ÷ Torque Produced in First 196 

Contractions) × 100 197 

In this instance, a higher value indicates greater fatigue resistance, i.e. the percentage of 198 

muscle torque output maintained after 60 contractions relative to the first contraction.  199 

The isometric MVC ICC using these techniques is 0.854 with isokinetic variation ICC of 0.819 200 

at 60°·sec-1, 0.810 at 120°·sec-1, 0.850 at 180°·sec-1, 0.836 at 240°·sec-1. 201 

Sprint Interval Training 202 

Participants completed an incremental cycling test to establish the workload at the maximal 203 

rate of oxygen uptake (VO2max), as previously described (5) and this was used to determine 204 

the SIT workload. SIT was completed on cycle ergometers (Cateye, Japan). The training 205 

consisted of 2 minutes of warm-up at a self-selected moderate intensity. This was followed 206 

by four bouts of 20 seconds maximal effort sprints at a workload (in Watts) that was set at a 207 

power output corresponding to 175% of the workload attained in the VO2max test at the 208 

initial laboratory visit. This target workload was increased every two weeks by 5%, reaching 209 

200% of the workload attained in the VO2max test at the initial laboratory visit after 12 weeks 210 

(a standard incremental cycling test was used to determine the VO2max, as described 211 

previously (5). Each of these bouts was separated by 2 minutes of very low intensity cycling 212 



 

 

(a workload of 20% of that attained in the initial VO2max test). This training protocol was 213 

chosen due to its brevity, as well as previous studies yielding significant changes in 214 

physiological measurements in short time periods (11, 36). Thus, each training session lasted 215 

less than 10 minutes and only 80 seconds was completed at an intensity that would be 216 

expected to influence the primary outcome variables: knee extensor size, maximal torque and 217 

fatigue resistance.  218 

The first training session for each participant was supervised by the research team in the 219 

research laboratory and participants received clear instructions on the use of the cycle 220 

ergometers and the training regimen. Participants were then instructed to train three times 221 

per week for 12 weeks (36 sessions in total) using the ergonomic cycles (Cateye, Japan) that 222 

we provided in a local gym or at our laboratory. Participants completed on average 33 (±2) 223 

sessions over 12 weeks, with males and females completing similar numbers of sessions 224 

(Table 2). Exercise instructors at the local gym were fully informed of the research and training 225 

protocols, they were available to provide a safe training environment and to assist 226 

participants if needed during training sessions. The exercise instructors were not involved in 227 

the data collection process or in the interpretation of data. Participants maintained a training 228 

logbook to record workloads during training sessions and were otherwise asked to maintain 229 

their usual dietary and exercise habits throughout the intervention period. 230 

Statistical Analyses 231 

The primary outcome measurements were: peak quadriceps muscle cross sectional area 232 

(CSAQ); torque measured at the different velocities; and fatigue index after 60 maximal effort 233 

concentric contractions. A secondary outcome measurement was lean mass measured by 234 

DXA. The differences between pre- and post- 12 weeks SIT were calculated and sex-related 235 



 

 

differences in adaptation were compared. All data were tested for normality of distribution 236 

using the Kolmogorov-Smirnov test. Independent samples t-test was used to examine sex-237 

related differences in the number of training sessions completed (Sex effect, Table 1) and 238 

baseline sex-related differences in all recorded measurements. If no sex difference was found 239 

at baseline, a two-factor repeated measures ANOVA was used to assess sex differences in 240 

training adaptation and between isokinetic velocities. If a baseline sex difference was found, 241 

a two-factor repeated measures ANCOVA was used with baseline values as a co-variate. In 242 

examining sex-related differences over the training intervention, the sex x time interaction 243 

effect refers to sex-related differences as a result of the training intervention (pre- to post-244 

training intervention). Three-Factor repeated measures ANOVA was used to assess sex- and 245 

time related differences in the force-velocity profile. Relationships between measurement 246 

outcomes and participant age were examined using partial correlation coefficients controlling 247 

for sex. The data were analysed using SPSS (v.20 IBM) and statistical significance was accepted 248 

at p<0.05. Data are presented as mean ± standard error of mean (SEM). 249 

Results  250 

No significant correlations were found between participant age and the adaptations to SIT 251 

for any of the outcome variables (all p>0.200). 252 

Body composition and knee extensor muscle size 253 

Table 1 shows variables relating to body composition and skeletal muscle size in males and 254 

females. Total body lean mass was unchanged after training (p=0.147), with no sex difference 255 

in this adaptation (sex x time interaction: p=0.067). Analysis of leg lean mass and thigh lean 256 

mass from DXA scans showed no significant changes after training. However the more 257 

detailed analysis of CSAQ from MRI showed a significant increase of 3.25 cm2 after SIT 258 



 

 

(p=0.023), with both males and females increasing CSAQ similarly after training (sex x time 259 

interaction: p=0.140). 260 

Knee extensor maximal torque and fatigue resistance 261 

Males had higher isometric torque than females at baseline (Table 2), but both sexes generally 262 

showed similar percentage decline in torque as contraction velocity increased, with torque at 263 

all velocities (°·sec-1) relative to isometric MVC being similar for males and females (sex x 264 

velocity interaction; p=0.374) (Figure 1a). When normalising torque to CSAQ, males had higher 265 

values than females at 180°·sec-1 (Figure 1b), with sex-related difference in the decrease in 266 

torque per cross-sectional area of muscle approaching significance (sex x velocity interaction; 267 

p=0.051). There were no significant sex-related differences in the torque-velocity profile after 268 

SIT (sex x time x velocity interaction; p=0.425). 269 

270 

Figure 1a: Isokinetic knee extensor torque relative to isometric MVC plotted as a function of contraction 271 

velocity at baseline (Pre-SIT). Data are mean ± SEM and plotted separately for males (n=16, circles) and 272 

females (n=15, triangles). *indicates statistically significant sex-related difference (p<0.05) 273 



 

 

 274 

Figure 1b: Isokinetic knee extensor torque normalised to knee extensor cross sectional area plotted as a 275 

function of contraction velocity at baseline (Pre-SIT). Data are mean ± SEM and plotted separately for males 276 

(n=16, circles) and females (n=15, triangles). *indicates statistically significant sex-related difference 277 

(p<0.05) 278 

 279 

The fatigue index (proportion of torque that remained after 60 maximal effort concentric 280 

contractions) showed no sex-related differences at baseline (Table 2). Fatigue index improved 281 

overall by 4.8% after training (p=0.048), with no sex differences in this adaptation (sex x time 282 

interaction; p=0.127) (Table 2). 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 



 

 

Table 2. Knee extensor torque in males and females before and after 12 weeks SIT 291 

 
Males 

(Pre) 

Males 

(Post) 

Females 

(Pre) 

Females 

(Post) 

Time 

effect  

 

Sex effect Sex x Time 

interaction 

Isometric MVC 

(Nm) 

314.32 

(21.86) 

322.98 

(23.10) 

193.33 

(9.43) 

204.20 

(9.65) 

0.079 <0.001 0.385 

Isometric MVC 

(Nm·cm2) 

3.65 

(0.21) 

3.57 

(0.24) 

3.23 

(0.09) 

3.23 

(0.11) 

0.712 0.248 0.705 

60°·sec-1 260.25 

(13.78) 

265.89 

(16.45) 

161.23 

(9.64) 

175.66 

(6.45) 

0.080 <0.001 0.548 

120°·sec-1 227.01 

(12.27) 

231.29 

(13.42) 

128.98 

(6.34) 

145.22 

(4.03) 

0.066 <0.001 0.806 

180°·sec-1 199.55 

(8.70) 

201.50 

(11.03) 

120.11 

(5.05) 

120.54 

(3.04) 

0.495 <0.001 0.522 

240°·sec-1 173.93 

(8.22) 

172.73 

(9.91) 

107.57 

(3.93) 

107.19 

(3.25) 

0.552 <0.001 0.659 

Fatigue Index 

(%) 

52.40 

(2.52) 

56.42 

(3.27) 

55.92 

(3.56) 

64.80 

(2.26) 

0.048 0.282 0.127 

Data are shown as mean (SEM). Males (n=16), Females (n=15) 292 

Discussion 293 

This SIT programme included only 4 minutes per week of very high intensity exercise and led 294 

to significant increases to fatigue resistance and CSAQ, but no change to knee extensor 295 

concentric torque. The training effects were similar for males and females. These findings 296 

advance previous studies of physiological adaptation to SIT which typically focussed on 297 

aerobic and metabolic adaptation in young adult males and females separately.  298 

Muscle size 299 

There are two contradictory reports in the literature concerning the possible sex differences 300 

in hypertrophic responses to sprint interval or high intensity interval training. Esbjornsson-301 

Liljedhal et al., reported that females increased Type IIx fibre CSA more than males after 4 302 



 

 

weeks of SIT (18), while another study reported lower skeletal muscle anabolic response to 303 

training in females compared with males (40), but this latter work was based only on acute 304 

responses and did not follow up after a period of training. In the present study, we found that 305 

males and females showed similar increases in CSAQ, which are agonist muscles during cycling 306 

(7). This could be expected since sprint interval exercise activates Type I and IIx fibres similarly 307 

in males and females (17, 41), suggesting motor unit recruitment and therefore the training 308 

stimulus received by the IIx fibres, is similar for males and females.  309 

A review of the literature indicated that the extent of hypertrophy may depend on the length 310 

of the training programme: training 6-weeks or less did not cause significant changes to fibre 311 

cross-sectional areas (38). However, longer term training of 7-weeks or more generally 312 

increased fibre cross-sectional areas, although it should be noted that studies in this area 313 

included only small sample sizes (n = 8 to 13) and none of them compared sex-related 314 

differences in adaptation (38). For example, a six-week SIT protocol caused a non-significant 315 

increase of fibre CSA by 6-12% in 11 untrained males (mean age= 23±5 years) (1). However, 8 316 

months SIT increased fibre CSA by 8-16% in 13 athletes (8 males and 5 females, mean age= 317 

17±1 years), although sex comparisons were not possible due to small sample sizes and the 318 

females in the study were trained in sprinting prior to the intervention whilst the males were 319 

not (12).  320 

Total body lean mass measured by DXA was unchanged by SIT, with no sex difference in this 321 

adaptation (Table 1). The leg lean mass and thigh lean mass measured using DXA, also showed 322 

no significant changes after training. It is not clear why the DXA detected no significant 323 

changes with training, while the MRI clearly showed significant hypertrophy of the quadriceps 324 

muscles. The problem is not due to lack of consistency of repeated scans, since Kiebzak et al. 325 



 

 

(29) observed a 1% variance in lean mass with repeated DXA scans on the same participants 326 

over consecutive days and in previous pilot work we determined the test-retest variation to 327 

be 1% from our scanner over 4 weeks (unpublished). Disparity between MRI and DXA for 328 

measuring muscle size has been reported previously, with DXA also failing to reveal the full 329 

extent of muscle loss with ageing (32, 33). So it is possible that the DXA is not suitable for 330 

detecting these relatively small changes to muscle tissue.  331 

Muscle maximal torque 332 

The higher values in males compared with females across the concentric torque-velocity 333 

relationship are mainly due to the larger muscle mass of males, but there was a clear trend 334 

for the torque per muscle cross-sectional area to be higher in males than in females and this 335 

was significant at 180°·sec-1. Torque decreased with increasing knee extension velocity (Figure 336 

1b). These findings fit with previous estimations of torque per muscle cross sectional area, 337 

sometimes described as “muscle quality” in the literature. Lindle et al. (30) observed in 346 338 

males and 308 females aged 20-90 that males have a 9% higher concentric peak torque per 339 

muscle cross sectional area than females. Similarly, Goodpaster et al. (22) observed 340 

approximately 17% higher muscle quality in older males compared with older females (mean 341 

age= 73±3 years) during isokinetic contractions, suggesting that this sex difference is 342 

maintained throughout the lifespan. Previous studies examining sex differences after SIT in 343 

muscle strength characteristics have been significantly shorter, not lasting more than 4 weeks 344 

(4, 18).  345 

The increase in quadriceps muscle size in the present study did not lead to gains in knee 346 

extension maximal torque in either males or females. A previous study that measured torque 347 

before and after SIT (repeated Wingate tests over 3 weeks) also found no significant changes 348 



 

 

to knee extensor MVC in 11 males or 9 females (3). It is possible that the mode of exercise 349 

training (cycling) might not have trained the neural control needed for isolated knee 350 

extensions, as was suggested when the converse was observed when knee extension training 351 

did not increase cycling power output (15). 352 

Fatigue resistance 353 

The majority of studies into sex differences in muscle fatigue during controlled exercise of 354 

individual muscle groups utilised isometric contractions (25, 26) and the results from such 355 

studies generally indicate that females have superior fatigue resistance compared with males 356 

(35, 42). Some studies involving concentric contractions also suggest superior fatigue 357 

resistance of females compared with males (25, 37, 48). However, fatigability, measured in 358 

the present study as the decline in torque after 60 maximal-effort unilateral moderate-359 

velocity concentric knee extensions, was similar in males and females at baseline, with torque 360 

during the final contractions dropping to 55% of the first 3 contractions. A possible 361 

explanation for why our findings differ from other previous studies is that other studies 362 

tended to include young adults or older adults, whereas we included a range of young and 363 

middle aged adults. Differences between studies in the velocity of contraction might also 364 

influence the fatigability and it is interesting to note that a study utilising maximal velocity 365 

contractions at a load equal to 20% of the participant’s MVC also reported similar fatigue in 366 

males and females during knee extension (42).  367 

There are reports that fatigue characteristics of individual muscle groups are unaffected by 368 

sprint training in males (23), but no previous studies compared chronic training adaptation of 369 

males and females. Fatigue resistance improved after 12-weeks SIT in the present study. 370 

When examining isokinetic contractions, previous work suggests a sex dimorphism in muscle 371 



 

 

fatigue, with males fatiguing significantly faster than females when velocity is controlled. 372 

However, when examining as a product of exercise intensity (i.e., a percentage of maximal 373 

power or 1-repetition maximum, not a controlled velocity), a sex difference is no longer 374 

observed (34). When matched for initial sprinting mechanical work, males and females see 375 

similar decline in muscle power after repeated sprint exercise (9, 43), similar to isokinetic 376 

contractions which are matched to initial power output, suggesting that the mechanism for 377 

increased fatigue resistance in females seen when measuring power output in repeated sprint 378 

exercise is an initial higher power output in males (25). In the present study, where training 379 

was normalised to cycling power at VO2Max, it was observed that males and females 380 

increased their resistance to fatigue similarly after SIT when measured as a product of 381 

contraction velocity (sex x time interaction: p=0.127). Taken together, this could suggest that 382 

differing prescription of exercise training (i.e., normalised to initial power output versus 383 

velocity or body mass etc.) may have sex-related differences in muscle fatigue. The 384 

physiological mechanisms underlying the training-induced improvement to fatigue cannot be 385 

identified from the present study, but are likely to be associated with increases in 386 

mitochondrial concentrations (and therefore improvements in skeletal muscle metabolism) 387 

(31) and capillary density (13) that have been found after SIT and collectively improve muscle 388 

oxidative energy recovery during the brief rest intervals between contractions.  389 

Limitations 390 

The design of the training programme, being performed in a local gym or the research 391 

laboratory, gave exercise volunteers more control and although this is the case in real-life 392 

situations, it may confer less commitment or obligation to training compared with typical fully 393 

supervised laboratory-based programmes and we were not able to directly record the power 394 



 

 

output completed by the study volunteers during training. It was not possible to control for 395 

physical activities outside of the training programme and dietary intake was not monitored 396 

throughout the training programme. Instead, participants were asked to maintain their usual 397 

patterns of food and drink consumption. Finally, there was no control for menstrual cycle 398 

variations, which potentially limits the interpretation of some aspects of the data relating to 399 

sex-related differences in adaptation. In this regard however, all female participants should 400 

equally have completed 3 full menstrual cycles before returning to the laboratory for post-401 

training measurements. Furthermore, evidence points toward there being no change in the 402 

muscle parameters measured in this study (27).   403 

Practical Applications 404 

The novel aspects of this research were that we examined maximal knee extensor torque, size 405 

and fatigue resistance in males and females ranging from young through to middle-aged 406 

adults before and after a period of cycling SIT. Although knee extension torque across a wide 407 

range of velocities did not change with training, fatigue resistance and CSAQ were improved 408 

in males and females. Practitioners can use these findings as evidence that SIT is a time-409 

effective option to increase muscle size and resistance to fatigue. 410 

  411 
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