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Abstract  

A numerical wave flume with fully nonlinear free surface boundary conditions is adopted to 

investigate the temporal characteristics of extreme waves in the presence of wind at various speeds.  

Incident wave trains are numerically generated by a piston-type wave maker, and the wind-excited 

pressure is introduced into dynamic boundary conditions using a pressure distribution over steep 

crests, as defined by Jeffreys’ sheltering mechanism. A boundary value problem is solved by a 

higher-order boundary element method (HOBEM) and a mixed Eulerian-Lagrangian time marching 

scheme. The proposed model is validated through comparison with published experimental data 

from a focused wave group. The influence of wind on extreme wave properties, including maximum 

extreme wave crest, focal position shift, and spectrum evolution, is also studied. To consider the 

effects of the wind-driven currents on a wave evolution, the simulations assume a uniform current 

over varying water depth. The results show that wind causes weak increases in the extreme wave 

crest, and makes the nonlinear energy transfer non-reversible in the focusing and defocusing 

processes. The numerical results also provide a comparison to demonstrate the shifts at focal points, 

considering the combined effects of the winds and the wind-driven currents. 

Key words: extreme waves, fully nonlinear numerical wave flume, higher-order boundary element, 

wave focusing, Jeffreys’ sheltering mechanism 
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1 Introduction 

Under actual ocean conditions, strong nonlinear extreme waves, which are identified by their 

exceptionally large height, steep shape, asymmetric wave form, and unpredictability, can pose a 

serious threat to ships and offshore structures. Currently, there is no consensus on a unique 

definition for extreme wave events. One definition that is often used is based on the height. A wave 

is considered to be extreme if its height satisfies the condition of being greater or equal to two 

point two times the size of  the significant wave height (Kharif et al., 2008). Several mechanisms 

have been suggested as the possible causes for the extreme waves. The first mechanism is 

high-order nonlinearity (higher than the third order), causing extreme waves to occur in the deep 

water. The nonlinear interactions can transfer energy among the Fourier modes and excite chaotic 

mode evolutions, which can generate a single extremely large wave with an outstanding crest 

height, such as a rogue wave (Mori et al., 2002). The second mechanism is modulation, or 

Benjamin–Feir instability (Benjamin and Feir, 1967), for the extreme waves formed by a 

narrow-band and deep-water wave train. This mechanism has been investigated extensively both 

analytically and numerically (Osborne et al., 2000; Onorato et al., 2001; Onorato et al., 2002). 

Additionally, dispersive spatial-temporal focusing has been verified to effectively induce the 

extreme waves through the superposition of different frequency wave components at a specific 

time and position (Kharif et al., 2001). The third possible mechanism for the extreme wave 

generation may lie in the energy focusing in a small spatial area during a short time, thus generating 

an abnormally large wave (Johannessen and Swan, 2001; Brandini and Grilli, 2001; Fuhrman and 

Madsen, 2006). Overall, these studies provided a good understanding of the mechanisms of 

extreme wave formation. 

On the basis of the above mechanisms, numerous experiments and numerical investigations have 

been conducted regarding the physical characteristics of the extreme waves. Longuet-Higgins (1952) 

was one of the earliest pioneers to investigate the statistics of the extreme waves, who then 

clarified the effects of finite bandwidth and nonlinearity (Longuet-Higgins, 1980). Baldock et al. 

(1996) created wave focusing events using many superimposed regular wave trains based on a 

linear wave theory, and examined the effects of nonlinear wave–wave interactions on structure in 

uni-directional wave groups. They subsequently introduced the concept of a group inversion in an 
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experimental context to investigate the free surface profile of focused wave groups. The directional 

focused wave group was studied experimentally by Johannessen and Swan (2001), who conclude 

that the directionality of the wave field has a profound effect on the nonlinearity of a large wave 

event, and that large directionally spread waves are much less nonlinear than the unidirectional 

waves.  

Grue et al. (2003) studied the kinematics of the focused waves in the deep water and found that 

Stokes drift and a corresponding return flow beneath a focused wave group were inherent in all 

extreme wave events. In terms of the numerical simulation, Ducrozet et al. (2008) developed an 

efficient fully nonlinear potential flow model based on a high-order spectral (HOS) method to 

simulate the propagation of 3-D directional wave fields. Two methods, meshless local 

Petrov-Galerkin method (MLPG_R) and quasi-arbitrary Lagrangian-Eulerian finite element method 

(QALE-FEM), were also developed and compared by Ma (2007). Hu and Zhang (2014) used a Morlet 

wavelet spectrum method to analyze numerical and field measurement data on the extreme wave 

process. On the basis of a comparison of energy characteristics, it was found that rogue wave 

generation depended not only on the continuous transfer of the wave train energy to a certain 

region where its maximum energy finally occurs, but also on the distinct shift of the converged 

energy to high-frequency components in a very short time. Nevertheless, none of these studies 

considered the direct effects of wind on extreme wave events. 

The extreme waves generally do not exist in isolation, and are commonly observed as being 

accompanied by wind (Mori and Yasuda, 2002). In the process of a wave propagation, the wind 

energy is transferred to the wave group, which has a strong influence on the wave propagation and 

the nonlinear characteristics. Therefore, it is critical to study the influence of wind on the 

propagation of extreme waves and their nonlinear characteristics. Liu et al. (2004) conducted an 

exploratory observational study of the generation and propagation of the extreme, rogue waves in 

the southern Indian Ocean, based on wave measurements. Touboul (2007) performed the 

numerical simulations of the extreme wave evolution in wind using a high-order spectral method 

based on Jeffreys’ sheltering mechanism and modulation instability.  

In addition, some numerical simulations have been established by solving the Navier-Stokes 

equations, as in Sullivan et al. (2000), Sullivan et al. (2004), Sullivan and McWilliams (2002), Fulgosi 

et al. (2003) and Nakayama and Sakio (2002). Kharif et al. (2008) and Touboul et al. (2006) 
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introduced an additional air pressure at the free surface boundary conditions by considering 

Jeffreys’ sheltering mechanism. Yan and Ma (2011) presented an improved model for evaluating the 

effects of the air pressure on 2-D extreme waves by analyzing the pressure distribution over the 

extreme waves using the QALE-FEM and StarCD approaches. The effects of wind on 

two-dimensional dispersive focusing wave groups were also studied by Tian and Choi (2013). The 

direct comparisons of measurements and simulations were made by including wind-driven currents 

in the simulations. Zou and Chen (2016) investigated the effects of wind on the evolution of the 2-D 

dispersive focusing wave groups using a two-phase flow model.  

Comprehensive numerical study of the evolution of nonlinear extreme waves under wind forcing 

is by no means complete, however, and new understandings of this phenomenon are still required 

for the purpose of aiding engineering designs in harsher environments. In the present study, the 

effects of some important parameters, such as wind speed, input wave amplitude, and spectrum 

bandwidth on the formation of extreme waves and their corresponding temporal–spatial–spectral 

evolution are further evaluated. In addition to this, the combined effect of wind and wind-driven 

currents are compared to address focal point shifts. In this paper, a detailed description of the 

numerical model is presented in Section 2. A higher-order boundary element method (HOBEM) 

based on the potential-flow theory was adopted in this study. Compared with the methods 

described above that rely on solving the Navier-Stokes equations the present numerical model has 

clear advantages with respect to computation efficiency. Additionally, regarding the simulation of 

free surface waves, the present method has fewer numerical dissipations than those based on the 

Navier-Stokes equations for long time simulation. The proposed numerical model is further 

validated by comparison with published experimental data in Section 3, and the numerical results 

are discussed in Section 4. Finally, conclusions are provided in Section 5. 

 

2 Numerical model 

The interactions between the extreme waves and wind with velocity u in a two-dimensional (2-D) 

fluid domain are described in Fig. 1. The free surface, wave maker, seabed and tank end are 

denoted by Γf, Γi, Γd, and Γr, respectively. A Cartesian coordinate system, Oxz, was used so that the 

origin is located over the still water level at the left end of the domain, and the z-axis is positive in 
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the upward direction. It was assumed that the fluid is incompressible, inviscid, and the flow motion 

irrotational so that a velocity potential exists in the fluid domain. Considering that there are 

currents induced by wind and assuming the currents are uniformly distributed along the water 

depth, the total velocity potential in the fluid domain can then be expressed as Φ = u0x + (x, z, t), 

where u0 is the steady uniform current velocity and (x, z, t) is the perturbation potential. In this 

study, the magnitude of the uniform current was empirically defined as 0.9% of the free-stream 

wind speed u, i.e., u0=0.9%u, the same value used by Tian and Choi (2013) and Zou and Chen (2016). 

Both the total velocity potential and perturbation potential satisfy the Laplace equation in the 

computational domain Ω. 

 

Fig.1. Sketch of the numerical wave flume 

Given the boundary conditions, the velocity potential  can be determined by solving the 

following boundary integral equation based on Green’s second identity (Brebbia and Walker, 1980; 

Anderson, 1984): 
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where Γ represents the entire computational boundary; p and q are the source point (x0, z0) and 

field point (x, z), respectively;  α is the solid angle; and G is the Green function considering an 

image of the Rankine source about the sea floor, and can be written as G(p, q) = lnr + lnr1, where 

2 2

0 0( ) ( )r x x z z     and 2 2

1 0 0( ) ( )r x x z z    . 

On the instantaneous free surface Гf, the fully nonlinear kinematic and dynamic boundary 

conditions are satisfied. The so-called mixed Eulerian-Lagrangian method is used to describe a 

time-varying free surface. Towards the end of the computational domain, an artificial damping 
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beach is applied to the free surface so that the wave energy is gradually dissipated in the direction 

of wave propagation. The profile and magnitude of artificial damping must minimize possible wave 

reflection at the leading edge of the damping zone while maximizing wave energy dissipation in the 

damping zone. In the present study, both - and -type damping terms are introduced in the free 

surface boundary conditions, which can be expressed in the Lagrangian expression as follows: 
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 (2) 

where g is the acceleration due to the gravity; p is the pressure;  is the instantaneous free surface 

elevation; D/Dt is the material derivative; and x0 is the starting position of the damping layer. The 

damping coefficient function µ(x) is defined as 

2

0
min

b

( )x
x x

L
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 
 

 for x0≤x≤x0+L (3) 

where ωmin denotes the minimum angular frequency of the wave components; and Lb is the length 

of the damping layer and set as 1.5max (where max denotes the maximum wave length of all wave 

components) in the present study. 

In order to consider the pressure of wind, following work by Kharif et al. (2008) and Touboul et al. 

(2006), the pressure on the interface z = η(x, t) is related to the local wave slope. In the present 

study, a threshold for the local wave slope ηx is introduced, above which an energy transfer from 

wind to wave occurs. The critical value of the slope xc is set at 0.35 (Touboul et al., 2006) and the 

pressure can be calculated by the following expression: 

 
 

   

max

2

a max

0 if

u ( ) if

x xc

x xc

p x

p x s c x
x

 


  

  

 

  


 (4) 

where the constant s is the sheltering coefficient with a value of 0.5 based on experimental data, u 

is the wind speed, xmax is the maximum local wave slope, c is the wave phase velocity, and ρa is the 

atmospheric density. At the outflow boundary Гr, the rigid and impermeable boundary condition is 

satisfied as: 
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 0
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
 on Гd and Гr . (5) 

At the inflow boundary Гi, fluid motion is generated by a piston wave maker, and for the focused 

wave the displacement S and velocity up of the wave maker can be specified as (Ning et al., 2015): 
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where N is the number of wave components, ai, ki, and ωi are the respective linear wave amplitude, 

wave number, and angular frequency of the ith component satisfying the linear Doppler-shifted 

dispersion relationship (ωi - kiu0)2 = gkitanhkih. xp and tp denote the focal position and focal time as 

predicted by linear wave theory. Tr = 4sinh2(kih)/[2kih + sinh(2kih)] is the transfer function for the 

piston wave maker and h is the static water depth. 

As the above boundary value problem is solved in the time domain, the initial water surface 

conditions were applied in this study: 

    , , 0 , 0 0x z x    (7) 

In addition, the wave maker properties on the inflow boundary Гi were imposed gradually using a 

ramping function, which satisfies calm water conditions and smoothly approaches unity as the 

simulation proceeds. The ramping function is given by: 
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 (8) 

where Tm is specified as the length of time for which the input wave is ramped, here chosen as 

twice the maximum wave period (i.e., 2Tmax) among all the wave components in the focused wave 

group. 

In this study, the boundary surface was discretized by three-node isoparametric elements, by 

which Eq. 错误!未找到引用源。 in the discretized form can be expressed as follows: 
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where ξ represents the local intrinsic coordinates, M is the number of discretized elements on the 

surface, and J(ξ) is the Jacobian matrix relating the physical coordinates to the local intrinsic 



Manuscript accepted by Acta Oceanologica Sinica (2018) 

8 
 

coordinates within an element. Eventually, the discretized integral equation is transformed into a 

system of linear algebraic equations. 

After solving the boundary value problem and obtaining fluid velocities and the normal vector on 

the free surface, the free surface boundary conditions in Eq. (2) were advanced in time as described 

by Ning and Teng (2007). For this purpose, a fourth-order Runge-Kutta (RK4) scheme was adopted. 

The fluid domain was remeshed at each time step to prevent free-surface nodes from piling up at 

certain positions. Based on the horizontal coordinates of new nodes obtained through mesh 

generation, the vertical position and potential could be interpolated using the quadratic shape 

equation. To find which old line element the new node belongs to, the following criterion was used: 
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where L0 is the length of the old line element, Li is the length of a sub-element consisting of one 

node in the old element and the new node being considered, and M1 is the number of 

sub-elements surrounding the node: here M1 = 2. 

 

3 Validation tests 

In order to validate the present model, numerical results were compared with the experimental 

data in Kharif et al (2008) for the case of a 2D extreme wave under wind action. The wind speed was 

set as U = 0. The tank was 40m in length and 2.6m in height, with a water depth of 1m. The extreme 

wave was generated by a wavemaker with motion defined by a sine function. The frequency of the 

sine function varied linearly from the maximum frequency (fmax = 1.85Hz) to the minimum 

frequency (fmin = 0.8Hz) over a duration of T = 23.5s. The motion of the wavemaker was governed 

by:  
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where a is the expected wave amplitude, which is given as 0.007, and F is the transfer function for 

the wavemaker (Ma, 2007), written as:  
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Fig. 2 displays the wave elevation at x = 1m in the physical experiment and numerical simulation. 

There was generally good agreement and the discrepancy during the initial period was due to the 

use of different ramping functions. Fig. 3 shows the surface elevation at several positions, measured 

experimentally and computed numerically. The phases and amplitudes of the numerical and 

experimental wave trains were in good agreement, demonstrating the efficiency of the present 

numerical method in correctly reproducing the nonlinear evolution of wave groups during the 

focusing-defocusing cycle. 
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Fig. 2. Surface elevation as a function of time at x = 1m 
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Fig. 3. Surface elevation as a function of time at x = 21, 18, and 11m: experimental (solid line) 

and numerical simulation (dashed line). 

 

4 The numerical results and discussion 

Numerical simulations were next carried out for the focused wave group interaction with wind 

and wind-driven currents. The effects of the wind velocity, the wave spectra bandwidth, and the 

input wave group amplitude were studied. 

 

4.1 Evolution of wave groups under wind forcing 

The parameters for this case included static water depth h = 0.4m, wave period 0.8s ≤ T ≤ 1.2s 

(defined as the narrow-band case), 0.6s ≤ T ≤ 1.4s (defined as the wide-band case), and total input 

group amplitude At = 0.05m and At = 0.06m. In addition, the wave amplitude was kept constant 

among the total of 29 wave components, and the desired focusing event occurred at xp = 6.5λmin and 

tp = 16.5Tmin (λmin and Tmin denote the shortest wavelength and smallest wave period among all 

wave components, respectively). For the purpose of easier comparison, in the following figures both 

the focal position and focal time were shifted to 0 on the axes by subtracting the corresponding 

coordinates with xp and tp.  
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Figure 4 shows the maximum focusing wave amplitude under different wind speed conditions 

with both the wide- and narrow-bandwidth spectra. The wave amplitude was non-dimensionalized 

by At, which increased as the wind speed increased due to the fact that more energy is transferred 

to the wave group. In addition, the wave speed seemed to have a greater influence on larger waves: 

the increase in the wave amplitude for larger waves was more significant with the increase in the 

wind speed. Frequency bandwidth was also an important factor that affected the extreme wave 

characteristics. In the case of the narrow-bandwidth spectrum, the wave amplitude grew at the 

same wind speed, exhibiting stronger nonlinearity.  
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Fig. 4. Plots of focal crest elevation against wind speed at different wave amplitudes and 

spectra. a. 0.6s≤T≤1.4s and b. 0.8s≤T≤1.2s.  

 

Figure 5 shows the surface elevation when the focusing event occurred at wind speeds of 0, 2, 4, 

6, and 8m/s at At = 0.06m. The maximum focusing amplitude clearly increased with the increase in 

the wind speed. This figure also shows the effect of wind by shifting the focal position downstream, 

most obviously for the narrow-band case. For example, in Fig. 5a the focal position shifted 0.55m 

downstream at u = 8m/s, while at the same speed the shift in focal position increased to 1.34m for 

the narrow-band case, as seen in Fig. 5b.  

Figure 6. shows the deviation in focal position as a function of the wind velocity. Where At = 

0.05m, the shift of the focal position did not appear to be sensitive to the wind speed and hardly 

changed as the wind speed increased, while where At = 0.06m, the wind caused a weak 

downstream shift at the focal point. The same phenomenon was also observed in studies by Kharif 

et al. (2008) and Touboul et al. (2006), which was due to currents being induced by the wind. The 
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Jeffreys’ sheltering mechanism describes air flow separation over waves. This mechanism is not 

remarkable for milder waves. However, for steep waves it is well known that the air flow separation 

results in a much higher energy transfer from wind to waves (Touboul et al., 2008). 
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Fig. 5. Spatial distribution of wave elevation at focal time with wind velocities of 0, 2, 4, 6, and 

8m/s. a. 0.6s≤T≤1.4s and b. 0.8s≤T≤1.2s. 
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Fig. 6. Plot of focal position deviation against wind speed at different wave amplitudes and 

spectra.  

a. 0.6s≤T≤1.4s and b. 0.8s≤T≤1.2s. 

 

Figure 7 shows the amplification factor Hmax/A, as a function of space for the wave group under 

four different wind forcing conditions (u = 0, 2, 4, and 6m/s). Here Hmax is the maximum height 

between the consecutive crest and trough in the transient group. In contrast with the case without 

wind, there was an asymmetric profile that appeared between the focusing and defocusing stages. 
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Particularly during the defocusing stage, it was observed that Hmax/A increased markedly with the 

increase in the wind speed for the narrow-band case. In Fig. 7a, when u=6m/s the maximum Hmax/A 

was around 1.93, but in Fig. 7d the maximum Hmax/A reached 2.62 at the same wind speed.  

 

-3 -2 -1 0 1 2 3 4 5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

a

 

 

H
m

a
x
/A

x-x
p
 (m)

 u=0m/s

 u=2m/s

 u=4m/s

 u=6m/s

A=0.05m

-3 -2 -1 0 1 2 3 4 5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

A=0.06m

b

 

 

H
m

a
x
/A

x-x
p
(m)

 u=0m/s

 u=2m/s

 u=4m/s

 u=6m/s

 

-3 -2 -1 0 1 2 3 4 5 6 7 8
1.6

1.8

2.0

2.2

2.4

2.6

2.8

c

A=0.05m

x-x
p
(m)

H
m

a
x
/A

 

 

 u=0m/s

 u=2m/s

 u=4m/s

 u=6m/s

-3 -2 -1 0 1 2 3 4 5 6 7 8
1.6

1.8

2.0

2.2

2.4

2.6

2.8
d

A=0.06m

 

 

H
m

a
x
/A

x-x
p
(m)

 u=0m/s

 u=2m/s

 u=4m/s

 u=6m/s

 

Fig. 7. Evolution of Hmax/A as a function of space for various wind speeds at different wave 

amplitudes and spectra.  

a. 0.6s≤T≤1.4s , b. 0.6s≤T≤1.4s, c. 0.8s≤T≤1.2s and d. 0.8s≤T≤1.2s. 

 

The spectral energy evolution for wave focusing and defocusing is shown for cases with and 

without wind action in Fig. 8. An input group amplitude of A = 0.06m was considered for both the 

narrow-band and wide-band cases. Five representative spatial points, including upstream points, 

the actual focal point xf, and downstream points are plotted. The solid line indicates the density 

spectrum at the first upstream reference point, and the dashed lines denote those at the other 

marked points in the figures. As the wave group approached the focal position, the transfer of 
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spectral energy from the primary frequency to higher frequencies could clearly be seen. The wave 

energy was then transferred from the high frequencies back to the fundamental one, and the 

corresponding spectra gradually returned to their original reference values during the wave 

defocusing process in the case without wind. This means that the nonlinear energy transfer was 

reversible in the focusing and defocusing processes and the effects of the wave to wave 

interactions were gradually diminished. In contrast, when the wind velocity u was 6m/s, the energy 

transferred to the high frequencies could not recover to its initial reference level as shown in Fig. 8. 

Energy transfer to the high frequencies was still visible at the focal point. 

 

4.2 Wind-driven currents 

The presence of wind forcing introduces a thin surface drift layer, which may have important 

effects on the evolution of the wave groups (Banner and Phillips, 1974). This layer has high vorticity 

and the velocity profile depends strongly on the water depth (Phillips and Banner, 1974); however, 

for simplicity, the layer can be modeled as a uniform surface current (Kharif et al., 2008) with a 

magnitude that is typically a few percent of the wind speed. Figure 9 compares the distribution of 

the focused crest elevation under wind action with and without wind-driven currents, with linear 

wind speed predictions of u=2 and 4m/s. It shows that, as the wave amplitude increases, the 

maximum wave elevation increases and deviates from the linear solution. Furthermore, the 

maximum crest elevation increased more rapidly for the case with wind only, but less significantly 

for the case with the wind-driven currents due to a decreasing wave nonlinearity.  
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Fig. 8. Energy spectrum at different points for cases with and without wind.  

a. 0.6s≤T≤1.4s, u=0m/s; b. 0.6s≤T≤1.4s, u=6m/s; c. 0.8s≤T≤1.2s, u=0m/s; and d. 0.8s≤T≤1.2s, 

u=6m/s. 
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Fig. 9. Comparison of focus wave amplitude under the action of various sources at u=2m/s and 

4m/s. a. u=2m/s and b. u=4m/s. 

 

Figure 10 and 11 show the temporal history of the wave elevation at the focusing position and 

the spatial distribution of the wave elevation at the focusing time for four different cases, i.e., pure 

wave (u=0m/s, u0=0m/s), wind action (u=6m/s, u0=0m/s), and the dual action of winds and induced 

currents (u=6m/s, u0=0.054m/s). It can be seen that the focusing time delays and the focusing 

position shifted downstream compared with those in the pure waves for two cases (wind only and 

wind-driven currents). In particular, the postponement of the focal time and the focal position was 

most significant for the wind-driven currents case, because both the influence of the wind and the 
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wind-driven currents were taken into account. On the other hand, due to the nonlinear effect, the 

delays in the focal position and the focal time were more obvious in the narrow-band spectrum. For 

example, in Fig. 10d the delay in focal time for the case of u=6m/s, u0=0.054m/s was 2.9s, while in 

Fig. 11d the delay in focal position for the same case was 4.14m. 
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Fig. 10. Comparison of time history at focal position. 

a. 0.6s≤T≤1.4s, b. 0.6s≤T≤1.4s, c. 0.8s≤T≤1.2s and d. 0.8s≤T≤1.2s. 

 

 

5 Conclusions 

The influence of wind on the characteristics of the extreme waves was investigated using a fully 

nonlinear wind and wave mixing 2-D numerical tank model. The wind-excited pressure was 

modelled using a modified Jeffreys’ sheltering mechanism model. Through a series of numerical 

investigations, effects of the wind pressure on the extreme wave were described and can be 

classified as follows. First, the maximum focusing amplitude of the extreme wave was increased 

due to the presence of a wind pressure. Second, the current induced by the wind weakly shifted the 
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focusing position of the extreme waves. The cases with narrow-band spectra and larger input wave 

amplitudes were more significantly influenced by wind. Thirdly, unlike the cases with no wind, the 

wave profiles for cases with wind were asymmetric between the focusing and defocusing stages. 

During the process of defocusing in particular, a clear increase in Hmax/A was observed as the wind 

speed increased, for the narrow-band case. Finally, the wind affected the spectral evolution of the 

focusing wave groups. For the case without wind, as the wave group approached the focusing 

position, there was a clear transfer of spectral energy from the primary frequency to higher 

frequencies. Then there was a reverse transfer of the wave energy and the corresponding spectra 

gradually recovered to their original reference values during the wave defocusing process. In 

contrast, considering when the wind velocity is 6m/s, the energy transferred to the higher 

frequencies was not able to return to the initial reference level. The direct comparison of the 

effects of wind, currents, and wind-driven currents reveals that the maximum crest elevation 

increases more clearly in the case of wind only, and least of all in the case with currents only. In 

addition, because the influence of both winds and currents was taken into account in the 

wind-driven currents case, the focusing time and the focusing position were most obviously delayed. 

It must be noted that the present study is based on the nonlinear potential-flow theory. For more 

detail on the interactions of wind and waves, viscous effects should be considered in the future 

investigations.  
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Fig. 11. Comparison of spatial distribution at different focal times  

a. 0.6s≤T≤1.4s, b. 0.6s≤T≤1.4s, c. 0.8s≤T≤1.2s and d. 0.8s≤T≤1.2s 
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