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Abstract	(246	words)	17	

Background:	 Regular	 intense	 endurance	 exercise	 can	 lead	 to	 amenorrhea	 with	 possible	18	

adverse	consequences	for	bone	health.		19	

Objective:	 We	 compared	 whole-body	 and	 regional	 bone	 strength	 and	 skeletal	 muscle	20	

characteristics	 between	 amenorrheic	 (AA:	 n=14)	 and	 eumenorrheic	 (EA:	 n=15)	 elite	 adult	21	

female	long	distance	runners	and	non-athletic	controls	(C:	n=15).		22	

Study	design	and	Participants:	Participants	completed	three-day	food	diaries,	dual	energy	x-23	

ray	 absorptiometry	 (DXA),	 magnetic	 resonance	 imaging	 (MRI),	 peripheral	 quantitative	24	

computed	tomography	(pQCT)	and	isometric	maximal	voluntary	knee	extension	contraction	25	

(MVC).	26	

Results:	 Both	athlete	 groups	had	a	higher	 caloric	 intake	 than	 controls,	with	no	 significant	27	

difference	between	athlete	groups.	DXA	revealed	lower	bone	mineral	density	(BMD)	at	the	28	

trunk,	rib,	pelvis	and	lumbar	spine	in	the	AA	than	EA	and	C.	pQCT	showed	greater	bone	size	29	

in	the	radius	and	tibia	in	EA	and	AA	than	C.	The	radius	and	tibia	of	AA	had	a	larger	endocortical	30	

circumference	than	C.	Tibia	bone	mass	and	moments	of	inertia	(Ix	and	Iy)	were	greater	in	AA	31	

and	 EA	 than	C,	whereas	 in	 the	 radius	 only	 the	 proximal	 Iy	was	 larger	 in	 EA	 than	C.	 Knee	32	

extensor	MVC	did	not	differ	significantly	between	groups.		33	

Conclusions:	 Amenorrheic	 adult	 female	elite	 long-distance	 runners	had	 lower	BMD	 in	 the	34	

trunk,	lumbar	spine,	ribs	and	pelvis	than	eumenorrheic	athletes	and	controls.	The	radius	and	35	

tibia	 bone	 size	 and	 strength	 indicators	 were	 similar	 in	 amenorrheic	 and	 eumenorrheic	36	

athletes,	suggesting	that	long	bones	of	the	limbs	differ	in	their	response	to	amenorrhea	from	37	

bones	in	the	trunk.	38	

Key	words:	eumennorheic,	amenorrheic,	athletes,	endocortical,	periosteal,	muscle.	 	39	
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Introduction	40	

In	 elite	 endurance	 runners	 an	 appropriate	 balance	 between	 training,	 competition	 and	41	

recovery	is	important	to	maximise	performance	and	prevent	overtraining	[1,	2].	When	this	42	

balance	is	lost,	injuries	[2],such	as	stress	fractures,	caused	by	repeated	stresses	on	the	bone	43	

without	appropriate	recovery	times	can	occur	[1,	2].	44	

	45	

The	mechanostat	 theory	 states	 that	bone	adapts	 to	 increased	mechanical	 loading	 (impact	46	

exercise)	 by	 increasing	 bone	 mass,	 size	 and	 strength	 [3-5]	 while	 reduced	 mechanical	47	

deformation	decreases	[3]	bone	mass,	size	and	strength.	In	line	with	the	mechanostat	theory,	48	

indicators	of	bone	strength	are	5-30%	higher	in	post-pubertal	athletes	than	non-athletes	[5-49	

9].	This	suggests	that	physical	activity	is	important	for	the	development	of	high	bone	mass	50	

and	strength,	leading	to	50-80%	reduction	in	fracture	risk	[5].	51	

	52	

Oestrogen	limits	bone	resorption	by	reducing	osteoclast	activity	[10].	This	may	explain	why	a	53	

low	concentration	of	oestrogen,	occurring	in	the	absence	of	menses	[11],	has	a	negative	effect	54	

on	bone	mineral	density	(BMD)	[12]	and	is	associated	with	a	greater	risk	of	bone	stress	injuries	55	

[13-15].	The	prevalence	of	‘athletic	amenorrhea’	or	menstrual	irregularities	amongst	active	56	

young	women	can	be	as	high	as	60%	[14].	The	associated	low	oestrogen	levels	can	diminish,	57	

or	negate,	benefits	of	regular	exercise	on	bone	[6,	16,	17].		58	

	59	

Amenorrhoea	is	one	of	three	features	of	the	‘female	athlete	triad’	that	was	originally	defined	60	

in	 1997	 as	 a	 simultaneous	 occurrence	 of	 amenorrhea,	 inadequate	 food	 intake	 and	 high	61	

training	 volume	 [18]	 that	 all	 have	 a	 negative	 impact	 on	 bone	 health.	 Most	 studies	 that	62	

considered	the	effects	of	amenorrhea	on	bone	used	dual-energy	x-ray	absorptiometry	(DXA)	63	
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(e.g.	 [16,	 17]).	 	 Using	 DXA,	 higher	 BMD	 and	 strength	 indicators	were	 found	 at	 the	 hip	 in	64	

eumenorrheic	 athletes	 than	 controls,	 while	 no	 such	 differences	 were	 seen	 between	65	

amenorrheic	 athletes	 and	 controls	 [16].	 	 Something	 similar	 has	 been	 seen	 with	 high-66	

resolution	peripheral	quantitative	computerised	tomography	(HR-pQCT)	[6,	7].	However,	HR-67	

pQCT	does	not	give	an	indication	of	whole	bone	strength	and	cannot	examine	long	bone	shaft	68	

sites	such	as	the	tibia,	which	is	particularly	prone	to	stress	fracture	injury	in	athletes	[19]	but	69	

has	received	little	attention	in	studies	of	amenorrheic	athletes.	Nevertheless,	these	studies	70	

suggest	 that	 there	 is	 a	deficit	 in	bone	health	 in	 amenorrheic	 adolescent	 athletes	 and	 it	 is	71	

possible	 that	symptoms	are	worse	 in	adult	elite	 level	athletes	due	to	a	 longer	duration	of	72	

amenorrhea	than	in	adolescent	athletes	[20].	73	

	74	

Reduced	muscle	mass,	maximal	force	and	quality	(defined	as	maximal	isometric	force	per	unit	75	

muscle	cross-sectional	area)	could	be	additional	features	of	amenorrhea	that	impact	on	bone	76	

health	due	to	a	reduced	mechanical	stimulus	to	the	bone	[21].		It	remains	to	be	seen	whether	77	

adult	 amenorrheic	 elite	 athletes	have	 low	muscle	mass	 and/or	quality	of	 specific	muscles	78	

associated	with	 low	strength	 in	the	bones	these	muscles	act	upon,	and	whether	 low	bone	79	

strength	is	related	to	a	low	mass	and/or	quality	of	the	muscles	acting	upon	the	corresponding	80	

bone.	Such	relationships	can	be	examined	using	pQCT,	along	with	imaging	and	dynamometry	81	

of	muscle	groups	acting	upon	bone.	82	

	83	

The	 aim	 of	 the	 present	 study	 was	 to	 examine	 the	 interrelationship	 of	 muscle	 and	 bone	84	

characteristics	 in	female,	adult	elite-level	endurance	athletes	affected	by	amenorrhea.	The	85	

primary	hypothesis	was	 that	amenorrheic	athletes	have	 lower	 indicators	of	bone	strength	86	

than	eumenorrheic	athletes	and	controls	 in	body	 segments	with	 lower	direct	exposure	 to	87	
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weight-bearing	impacts,	whilst	these	indicators	will	be	preserved	in	weight-bearing	bones	of	88	

the	amenorrheic	athlete.	89	

	90	

	91	

Materials	and	Methods	92	

Participants	93	

Twenty-nine	 females,	 aged	 17-42	 years,	 were	 recruited	 after	 sending	 out	 a	 poster	 and	94	

participant	information	sheet	to	all	athletes	on	an	England	Athletics	email	database.	Of	those	95	

that	responded,	only	athletes	that	had	represented	their	home	country	within	the	past	two	96	

years	in	1.5-10-km	runs	were	eligible	to	participate	and	grouped	according	to	their	menstrual	97	

cycle	 history.	 All	 non-athletic	 controls	 were	 recruited	 from	 the	 local	 student	 population,	98	

performed	less	than	2	hours	of	physical	activity	per	week	and	did	not	take	part	 in	athletic	99	

competitions.	 Participants	were	 asked	 about	 the	 phase	 of	menstrual	 cycle	 at	 the	 date	 of	100	

testing,	use	of	oral	contraceptive	pills	(OCP),	any	current	medication,	smoking	habits,	age	of	101	

menarche	 and	 alcohol	 consumption.	 Based	 on	 self-reports,	 athletes	 were	 classified	 as	102	

amenorrheic	(AA)	if	they	had	experienced	an	absence	of	menses	for	≥	12	months	in	a	row	103	

within	the	past	12months.	None	of	the	athletes	had	oligomenorrhea	(4-9	cycles	per	year).	104	

Athletes	with	regular	menstrual	cycles	(>	12	in	the	past	year)	were	classed	as	eumenorrheic	105	

(EA).	Controls	(C)	had	regular	menstrual	cycles,	were	recreationally	active,	but	did	not	take	106	

part	in	competitive	sports.	As	the	study	involves	exposure	to	radiation	during	scanning	any	107	

volunteers	were	excluded	 if	 they	were	pregnant	or	 potentially	 pregnant.	 The	Manchester	108	

Metropolitan	 University	 Ethics	 Committee	 approved	 the	 study	 and	 all	 participants	 gave	109	

written	informed	consent.	Table	1	shows	the	participant	characteristics.		110	

	111	
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Experimental	Protocol	112	

Sporting	history	was	obtained	by	questionnaire.	Participants	completed	a	food	diary	on	three	113	

consecutive	days,	specifying	food	and	drink	consumption.	This	was	analysed	using	nutritional	114	

analysis	software	(Diet	Plan	6	software,	Forestfield	Ltd,	Horsham,	UK	and	Nutritics	software,	115	

Nutritics,	Dublin,	Ireland).	Six	food	diaries	were	excluded	(two	from	controls,	one	from	the	EA	116	

and	three	from	the	AA	group)	due	to	incomplete	details	for	accurate	analysis.	The	age-graded	117	

performance	(AGP)	for	the	main	event	was	calculated	using	the	World	Master	Association’s	118	

Age-grading	Calculator:	119	

http://www.howardgrubb.co.uk/athletics/wmalookup06.html.	120	

	121	

DXA	122	

Scans	 (GE	 Medical,	 Lunar	 Prodigy	 Advance,	 version	 encore	 10.50.086)	 were	 taken	 to	123	

determine	whole	body,	lumbar	spine	(L1-4)	and	hip	bone	mineral	density	(BMD),	and	body	124	

fat	and	lean	mass	percentage.	Geometric	properties	of	the	femoral	neck	were	estimated	using	125	

the	advanced	hip	analysis	(AHA)	software	(GE	Medical,	Lunar	Prodigy	Advance,	version	encore	126	

10.50.086).	 This	 calculated	 the	 cross-sectional	 area	 (CSA),	 the	 cross-sectional	 moment	 of	127	

inertia	(CSMI:	an	index	of	structural	rigidity),	the	width	of	the	neck	and	shaft	of	the	femur	and	128	

the	bone	strength	index,	a	ratio	of	estimated	compressive	yield	strength	of	the	femoral	neck	129	

to	 an	 expected	 compressive	 strength	 of	 a	 fall	 onto	 the	 greater	 trochanter	 [17].	 In	 our	130	

laboratory,	the	coefficient	of	variation	for	body,	hip	and	lumbar	spine	scans	(n=8)	is	0.67%,	131	

2.02%	and	0.9%,	respectively.			132	

	133	

pQCT	134	
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Scans	were	acquired	at	the	non-dominant	radius	and	dominant	tibia	with	XCT-2000	and	XCT-135	

3000	pQCT	scanners	(Stratec	Medizintechnik	GmbH,	Pforzheim,	Germany)	according	to	the	136	

manufacturer’s	protocols.	Images	obtained	with	the	two	scanners	were	cross-calibrated	using	137	

functions	 derived	 from	 scans	 of	 different	 density	 regions	 within	 the	 same	manufacturer-138	

provided	phantom	on	each	scanner.	The	dominant	arm	was	identified	as	the	writing	arm,	and	139	

in	 any	 cases	 of	 ambidexterity,	 the	 dominant	 arm	was	 defined	 as	 the	 favoured	 arm	when	140	

playing	racquet	sports.	The	non-dominant	leg	was	defined	as	the	leg	that	was	preferentially	141	

used	for	hopping.	Scans	were	taken	at	4	and	60%	of	the	radius	length,	and	4	and	66%	of	the	142	

tibia	 length,	 where	 0%	 indicates	 the	 most	 distal	 part	 of	 the	 bones.	 Radius	 length	 was	143	

measured	between	the	olecranon	process	and	the	radial	styloid	process.	Tibia	length	was	the	144	

distance	between	the	palpated	medial	knee	joint	cleft	and	medial	malleolus.	145	

	146	

Data	were	exported	using	the	Automated	Analysis	Tools	(Version	6.00).	A	peeling	threshold	147	

of	180	mg·cm-3	was	applied	to	the	epiphyseal	slice.	At	the	diaphyseal	sites,	a	threshold	of	650	148	

mg·cm-3	was	used	to	separate	cortical	bone.		149	

	150	

The	following	parameters	examined	in	the	4%	epiphyseal	slice:	total	bone	area	(Ar.tot,	mm2),	151	

total	 bone	 mineral	 content	 (vBMC.tot,	 mg·mm-1)	 and	 trabecular	 bone	 mineral	 density	152	

(vBMD.tb,	mg·cm-3).	 iaphyseal	 parameters	 examined	were:	 Ar.tot,	 vBMC.tot,	 cortical	 area	153	

(Ar.ct,	mm2),	cortical	density	(vBMD.ct,	mg·cm-3),	cortical	thickness	(Ct.Thder	mm),	periosteal	154	

(PsC,	mm)	and	endocortical	circumference	(EcC,	mm),	antero-posterior	(Ix)	and	mediolateral	155	

(Iy)	moments	of	inertia	representing	bone	bending	stiffness.	Cortical	bone	density	values	were	156	

corrected	 for	 the	 partial	 volume	 effect	 as	 described	 previously	 [22].	 The	 coefficient	 of	157	



8	|	P a g e 	
	

variation	of	the	pQCT	measurements	in	our	laboratory	has	been	reported	elsewhere	[23]	and	158	

was	<0.5%	for	vBMC.tot,	Ar.tot	and	Ar.ct.		159	

	160	

Magnetic	Resonance	Imaging	(MRI)	161	

A	0.25-T	G-scan	MRI	scanner	(Esaote,	Genova,	Italy)	was	used	to	measure	the	volume	of	the	162	

quadriceps	femoris	and	calf	muscles.	Serial	cross	sections	(each	6.3	mm	thick	with	a	50.4-mm	163	

inter-slice	gap)	were	acquired	from	the	lateral	femoral	condyle	to	the	greater	trochanter	for	164	

the	quadriceps	and	from	the	lateral	femoral	condyle	to	the	lateral	malleolus	for	the	calf	using	165	

a	 turbo	 3-D	 T1	 protocol	 [24].	 Cross-sectional	 area	 was	 determined	 using	 Osirix	 software	166	

(Osirix	medical	imaging	software,	Atlanta,	USA).	The	volumes	of	the	muscle	and	femur	bone	167	

were	estimated	as	the	integration	of	volume	from	each	slice	and	inter-slice	gap.		168	

	169	

Muscle	strength	measures	170	

Maximal	voluntary	isometric	knee	extensor	torque	of	the	quadriceps	muscle	was	measured	171	

with	a	custom-built	dynamometer	[25].	Participants	sat	with	hip	and	knee	angles	flexed	at	172	

around	 900	 and	 straps	 fastened	 around	 the	 hip.	 Participants	 performed	 three	 maximum	173	

voluntary	 knee	 extension	 contractions,	 and	 the	 highest	 torque	 presented.	 Force	was	 also	174	

expressed	as	force	per	quadriceps	volume.	175	

	176	

Statistical	Analysis	177	

Statistical	 analysis	was	performed	on	data	normalised	 to	object	 length	or	body	height,	 to	178	

remove	any	variability	caused	by	differences	in	these	factors,	with	SPSSv19	(IBM,	USA).	Data	179	

was	normally	distributed	as	assessed	using	the	Kolmogrov-Smirnov	test.		A	one-way	ANOVA	180	

was	 used	 to	 assess	 any	 significant	 differences	 between	 control,	 amenorrheic	 and	181	
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eumenorrheic	athletes.	To	test	whether	the	radius	and	the	tibia	showed	the	same	differences	182	

from	control	in	amenorrheic	and	eumenorrheic	athletes	we	performed	a	repeated-measures	183	

ANOVA	with	bone	as	within-factor	bone,	and	group	as	between-factor	on	the	data	of	the	bone	184	

parameters	normalised	to	the	corresponding	average	control	values	for	each	bone.	If	a	main	185	

group	 effect	 was	 found,	 a	 post-hoc	 test	 with	 Bonferroni	 correction	 was	 performed	 to	186	

determine	which	groups	differed	from	each	other.	There	were	no	group*bone	interactions.	187	

Differences	between	groups	were	considered	significant	at	p<0.05.	All	data	are	presented	as	188	

mean	±	standard	error	of	the	mean	(SEM).	All	p-values	shown	in	Tables	1-6	are	those	from	189	

post-hoc	tests	with	Bonferroni	correction.	190	

	191	

	192	

Results		193	

Participants	194	

There	were	no	significant	differences	between	groups	in	age	or	height	(Table	1).	Body	mass	195	

and	BMI	were	lower	in	the	athletes	than	the	C	(p<0.05).	Body	mass	of	EA	was	10%	higher	than	196	

that	of	AA	(p=0.029).	Lean	mass	of	EA,	but	not	that	of	AA,	was	higher	than	C	(p=0.015)	and	197	

both	athletic	groups	had	lower	absolute	and	percentage	fat	mass	than	C	(p<0.05).	The	age-198	

graded	performance	of	EA	and	AA	was	within	15%	of	world	record	times,	with	no	significant	199	

difference	between	the	athlete	groups.	Onset	of	menarche	was	later	in	AA	than	C	(p<0.05),	200	

with	no	significant	differences	between	athlete	groups	or	EA	and	C.	Including	the	age	of	onset	201	

of	menarche	as	a	covariate	did	not	change	any	statistical	results	and	so	was	not	included	in	202	

final	analysis	(data	not	shown). 203	

	204	

Food	Diaries	205	
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Total	 daily	 energy	 (kJ·day-1) intake	 was	 less	 in	 C	 than	 athlete	 groups	 (both	 p<0.05;	 C;	206	

6217±659,	EA;	10567±880,	AA;	9723±748).		207	

	208	

Muscle	size	and	knee	extensor	strength	209	

Table	2	 shows	 that	 there	was	no	 significant	difference	 in	 forearm	and	 tibia	muscle	 cross-210	

sectional	 area,	 and	 calf	 and	quadriceps	muscle	 volume	between	any	groups.	Both	athlete	211	

groups	had	greater	maximal	 voluntary	 knee	extension	 torque	 than	C	 (p<0.045),	 (Table	2).	212	

Femur	volume	was	higher	in	the	athlete	groups	than	C	(p<0.05),	but	did	not	differ	significantly	213	

between	EA	and	AA	(Table	2).		214	

	215	

	216	

DXA	217	

Total	body,	arms	and	hip	BMD	did	not	differ	significantly	between	groups	(Table	3).	Trunk,	218	

rib,	lumbar	spine	and	pelvis	BMD	were	lower	in	AA	than	EA	and	C	(all	p<0.05).	Leg	BMD	was	219	

significantly	greater	in	EA	than	C	(p<0.05),	with	no	significant	difference	between	AA	and	C	220	

(Table	3).	221	

	222	

Hip	structure	of	the	femurs	was	similar	for	both	athlete	groups	(Table	4).	Cortical	width	of	the	223	

femur	shaft	was	greater	in	both	athletes	than	C	(p<0.05).	There	was	no	significant	difference	224	

between	 any	 groups	 in	 the	 cortical	 width,	 cross-sectional	 area	 of	 the	 femur	 neck,	 bone	225	

strength	index	or	cross-sectional	moment	of	inertia.	226	

	227	

pQCT	228	
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Table	5	shows	pQCT	radius	data.	At	the	epiphyseal	site	the	total	bone	area	of	the	radius	(Ar.tot)	229	

of	both	athlete	groups	was	greater	than	C	(p<0.05).	Total	bone	mineral	content	(vBMC.tot),	230	

trabecular	bone	mineral	density	(vBMD.tb)	and	bone	strength	index	of	the	radius	epiphysis	231	

showed	no	significant	differences	between	groups.	232	

	233	

At	the	diaphysis	site	of	the	radius,	total	area	was	larger	 in	EA	and	AA	than	C(p<0.004),	but	234	

there	were	no	significant	differences	between	groups	 in	cortical	bone	mineral	content	and	235	

density	(Table	5).	236	

	237	

The	periosteal	circumference	was	larger	in	the	athletes	than	the	C	(p≤0.01;	Figure	1A).		The	238	

moment	of	 inertia	was	 significantly	 greater	 in	EA	 than	C	 in	 the	y	plane,	but	 there	was	no	239	

significant	difference	between	any	groups	in	the	x	plane	(Table	5).	240	

	241	

Table	6	shows	pQCT	tibia	data.	Total	bone	mineral	content	for	the	epiphysis	of	the	tibia	was	242	

greater	in	EA	than	C	(p<0.05),	with	no	significant	difference	between	athlete	groups	or	AA	and	243	

C.	Trabecular	BMD	and	total	area	of	the	tibia	epiphysis	was	greater	in	both	athlete	groups	than	244	

C	(p<0.05),	with	no	significant	difference	in	bone	strength	index	between	groups.	245	

	246	

Total	area	and	total	bone	mineral	content	at	the	tibia	diaphysis	were	larger	in	the	AA	and	EA	247	

than	C	(p<0.05).	The	trabecular	BMD	of	the	diaphysis	was	greater	in	C	than	AA	(p=0.02)	and	248	

EA	(p<0.0005).	The	moment	of	inertia	in	the	y-	and	x-plane	at	the	tibia	diaphysis	was	greater	249	

in	the	athletes	than	the	C	(p<0.05;	Table	6).	250	

	251	
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For	 the	 diaphysis	 of	 both	 the	 radius	 and	 the	 tibia	 the	 cortical	 thickness	 did	 not	 differ	252	

significantly	 between	 groups	 (Figure	 1B),	 but	 the	 cortical	 area	 was	 larger	 in	 EA	 than	 C	253	

(p=0.005;	Figure	1C).	The	endocortical	circumference	(Figure	1D)	was	~20%	greater	in	AA	than	254	

C	(p=0.001),	with	no	significant	difference	between	C	and	EA,	or	EA	and	AA.	These	changes	255	

are	illustrated	in	figure	2.		256	

	257	

Discussion	258	

The	main	observations	of	 the	 study	are	 that	amenorrheic	adult	 female	elite	 long-distance	259	

runners	have	a	lower	bone	mineral	density	in	the	trunk,	lumbar	spine,	ribs	and	pelvis	than	260	

eumenorrheic	athletes	and	controls.	In	contrast,	tibia	cortical	bone	strength	indicators	were	261	

greater	in	both	athlete	groups	than	controls	but	no	such	difference	was	seen	in	the	radius.	262	

This	suggests	that	long	bones	differ	in	their	response	to	amenorrhea	from	bones	in	the	trunk.	263	

Similar	to	eumonerrheic	athletes,	the	amenorrheic	athletes	had	a	larger	and	stronger	tibia	264	

and	 femur	 than	 controls	 indicating	 that	 the	 bone	 response	 to	 regular	 loading	 is	 not	265	

attenuated	by	amenorrhea.	Yet,	it	is	unlikely	that	loading	can	normalise	bone	remodelling	in	266	

amenorrheic	athletes	entirely	as	both	the	unloaded	radius	and	the	loaded	tibia	exhibited	an	267	

increase	in	endocortical	circumference.	268	

	269	

Study	participants	270	

The	long-distance	runners	in	the	present	study	had	represented	their	country	at	international	271	

athletic	events.	The	average	age-graded	performance	for	both	athlete	groups	was	85%;	for	a	272	

26-year-old	female	this	equates	to	35	mins	for	10	km	and	2	hours	40	mins	for	a	marathon.	273	

This	 confirmed	 that	 the	 recruited	 athletes	 were	 indeed	 elite	 athletes.	 The	 athletes	 were	274	
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classified	 as	 amenorrheic	 if	 they	 self-reported	 an	 absence	 of	 menses	 for	 at	 least	 12	275	

consecutive	months	 in	a	 row.	 In	addition,	none	of	 the	athletes	were	oligomenorrheic,	 the	276	

average	duration	of	amenorrhea	in	the	AA	was	5.5	years	and	the	EA	athletes	were	on	average	277	

12	years	eumenorrheic,	indicating	that	the	EA	and	AA	athletes	represented	distinct	groups.	278	

The	self-reported	method	to	characterise	amenorrhea	 is	preferred	to	measurement	of	sex	279	

hormones,	which	are	subject	to	fluctuations	during	the	menstrual	cycle	and	diurnal	variations	280	

[26].	281	

		282	

Energy	balance	283	

Persistent	energy	deficiency,	occurring	in	up	to	62%	of	elite	female	athletes,	is	considered	an	284	

important	cause	of	irregular	or	absent	menstruation	[18],	both	of	which	can	lead	to	reduced	285	

bone	 health	 [20].	 The	 common	 co-occurrence	 of	 amenorrhea	 and	 energy	 deficiency	 in	286	

athletes	has	made	it	difficult	to	disentangle	the	effects	of	amenorrhea	and	energy	deficiency	287	

in	previous	studies	[27].	In	our	study,	the	AA	and	EA	reported	similar	total	energy	intake	that	288	

exceeded	that	of	the	non-athletes	by	more	than	30%,	suggesting	that	energy	deficit	is	unlikely	289	

to	be	the	cause	of	bone	differences	between	athletes	and	controls,	or	AA	and	EA,	within	our	290	

sample.	291	

	292	

Muscle	mass	and	function	293	

According	 to	 the	 mechanostat	 theory	 [4],	 mechanical	 strain	 on	 bone,	 caused	 by	 muscle	294	

contraction,	 stimulates	 bone	 formation	 and	 increases	 bone	 strength	 [3,	 4].	 Effects	 of	295	

amenorrhea	may	thus	be	secondary	to	muscle	weakness	or	a	loss	of	muscle	mass.	We	do	not	296	
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think	 low	muscle	mass	or	weakness	was	a	major	consideration	in	our	study	because	there	297	

were	 no	 significant	 differences	 in	 muscle	 mass	 and	 maximal	 strength	 between	 the	298	

eumenorrheic	and	amenorrheic	athletes,	although	we	did	not	determine	the	muscle	forces	299	

during	running	and	therefore	cannot	entirely	rule	out	any	differences	between	groups	in	the	300	

mechanical	strain	on	bones	during	training.	301	

	302	

Non-weight-bearing	bones		303	

The	torso,	lumbar	spine,	rib	and	hips	of	amenorrheic	athletes	had	a	lower	BMD	than	those	of	304	

the	eumenorrheic	athletes	and	controls.	Bone	area	was	also	 lower	at	these	sites,	and	as	a	305	

result	amenorrheic	athletes	had	large	deficits	in	bone	mineral	content	compared	to	the	other	306	

two	groups	(data	not	shown).	As	these	bones	are	not	loaded	during	running,	due	to	impact	307	

damping	and	limited	direct	contribution	of	the	surrounding	muscles	to	locomotion,	it	could	308	

be	argued	that	the	detrimental	impact	of	amenorrhea	on	these	bones	is	not	compensated	by	309	

the	osteogenic	effect	of	increased	loading.	Previous	studies	reported	lower	trabecular	bone	310	

mineral	density	at	the	epiphysis	of	the	radius	in	amenorrheic	than	eumenorrheic	athletes	and	311	

controls	 [6].	 However	 in	 the	 current	 study	 it	 was	 observed	 that	 in	 contrast	 to	 the	 trunk	312	

skeleton,	in	the	radius	the	bone	mineral	density	was	similar,	and	not	less,	in	amenorrheic	than	313	

eumenorrheic	 athletes	 and	 controls.	 Such	a	difference	between	bones	 in	 the	 response	 to	314	

amenorrhea	has	been	observed	previously;	where	bone	mineral	 density	was	 lower	 in	 the	315	

lumbar	vertebrae,	but	not	in	the	radius	and	the	femur	[28].	It	has	been	suggested	that	the	316	

loss	of	bone	mineral	density	in	the	lumbar	vertebrae	is	due	to	loss	of	body	mass	rather	than	317	

amenorrhea	 per	 se	 [29].	 This	 indeed	 corresponds	 with	 the	 lower	 body	 mass	 of	 the	318	

amenorrheic	 athletes,	 but	 is	 at	 odds	 with	 the	 similar	 bone	 mineral	 density	 in	 the	 trunk	319	
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skeleton	of	eumenorrheic	athletes	and	controls	despite	the	lower	body	mass	of	the	athletes.	320	

Also,	in	the	radius,	a	lower	body	mass	does	not	explain	the	absence	of	a	lower	bone	mineral	321	

density	in	the	the	amenorrheic	athletes.	We	speculate	that	the	best	explanation	for	the	lower	322	

bone	mineral	density	 in	the	trunk	skeleton,	but	maintained	radius	bone	mineral	density	 in	323	

amenorrheic	athletes,	 is	that	long	bones	and	the	bones	in	the	trunk	respond	differently	to	324	

amenorrhea.	 Indeed,	 there	 are	 some	 indications	 in	 rat	 models	 that	 the	 responses	 to	325	

oestrogen	on	bone	are	site-specific	[30],	but	this	requires	further	investigation.	326	

	327	

Weight-bearing	bones	328	

In	the	femur,	bone	CSA	and	the	cortical	width	of	the	shaft	were	larger	in	both	athlete	groups	329	

than	controls.	This	is	consistent	with	previous	observations	[31]	suggesting	that	the	effects	of	330	

loading	are	not	attenuated	in	those	with	amenorrhea.	Others	have	reported	lower	bone	size	331	

and	strength	in	amenorrheic	compared	to	eumenorrheic	athletes	[32].	Part	of	the	discrepancy	332	

may	be	related	to	the	younger	age	of	the	athletes	in	previous	studies.	For	 instance,	 in	one	333	

study	the	average	age	was	20	[33]	and	in	another	only	17	years	[31],	compared	to	the	26	years	334	

in	our	study,	the	age	at	which	females	have	reached	their	maximum	bone	strength	[34].	335	

	336	

Although	the	tibia	is	a	common	stress	fracture	site	in	athletes,	tibial	diaphysis	strength	has	337	

been	ignored	in	previous	pQCT	research	involving	amenorrheic	and	eumenorrheic	athletes.	338	

In	a	monozygotic	twin	study	it	was	found	that	regular	physical	activity	resulted	in	an	increase	339	

in	BMD	in	the	epiphysis	of	the	tibia	only	[35].	This	is	similar	to	the	larger	BMD	in	the	epiphysis,	340	

but	not	diaphysis,	in	the	athletes	than	controls	in	our	study	and	supports	the	notion	that	bone	341	



16	|	P a g e 	
	

adaptations	 to	 exercise	may	 be	 site-specific	 [35].	 Nevertheless,	 we	 found	 that	 bone	 size,	342	

strength	and	cortical	bone	area	of	the	diaphysis	was	larger	in	athletes	than	controls,	with	no	343	

significant	differences	between	amenorrheic	and	eumenorrheic	athletes,	except	for	the	larger	344	

epiphyseal	 bone	 strength	 (indicated	 by	 total	 bone	 mass)	 over	 controls	 in	 eumenorrheic	345	

athletes	 only.	 This,	 similar	 to	 the	 observations	 in	 the	 femur,	 indicates	 that	 the	 effects	 of	346	

regular	loading	on	bone	[9,	36]	are	not	attenuated	by	amenorrhea.	347	

	348	

Bone	remodelling	349	

In	both	the	radius	and	the	tibia	the	endocortical	circumference	were	larger	in	amenorrheic	350	

athletes	 than	 non-athletes,	 suggesting	 endocortical	 expansion	 (resorption)	 that	 could	 be	351	

attributable	to	their	lack	of	oestrogen	[37].	At	the	same	time,	both	the	radius	and	tibia	had	352	

expanded.	These	findings	are	similar	to	that	previously	suggested	by	Mikkola	et	al	[38],	in	that	353	

the	effect	of	oestrogen	is	systemic	with	the	tibia	and	radius	being	affected	similarly.	This	effect	354	

also	has	some	similarity	to	the	decline	in	trabecular	BMD	[39]	and	increase	in	bone	size	[40]	355	

during	 pregnancy.	 This	 pregnancy-induced	 loss	 of	 BMD	 can	 be	 recovered	 during	 lactation	356	

when	the	child	is	weaned	[39,	40]	and	if	the	underlying	cause	is	similar,	the	expansion	of	the	357	

endocortical	 circumference	 in	 the	amenorrheic	 athletes	 could	most	 likely	be	 recovered	by	358	

normalisation	of	the	menstrual	cycle.	In	a	study	of	monozygotic	twins,	hormone	replacement	359	

therapy	(HRT)	was	associated	with	larger	cortical	bone	areas	and	smaller	endocortical	areas	360	

[38].	 It	 is	 not	 known,	 however,	 if	 this	 would	 be	 effective	 in	 amenorrheic	 athletes	 as	 the	361	

duration	of	HRT	 in	 the	 twins	 study	was	on	average	8	years.	Although	 regular	exercise	was	362	

associated	 with	 a	 smaller	 endocortical	 area	 in	 monozygotic	 twins	 [35]	 it	 is	 unlikely	 that	363	

normalisation	of	the	endocortical	circumference	in	amenorrheic	athletes	can	be	realised	by	364	
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increased	loading,	as	both	the	unloaded	radius	and	the	loaded	tibia	exhibit	this	increase	in	365	

endocortical	circumference.	366	

	367	

Limitations	368	

It	was	 not	 possible	 to	 include	 energy-deficient	 amenorrheic	 athletes	 in	 the	 current	 study,	369	

which	may	have	offered	further	insights.	However,	this	might	equally	be	seen	as	a	strength	of	370	

our	 study	 because	we	were	 able	 to	 rule	 out	 the	 contribution	 of	 energy	 deficiency	 to	 our	371	

observations.	 Circulating	 levels	 of	 oestrogen	 were	 not	 measured	 which	 may	 have	372	

complemented	the	assessment	of	amenorrhea.	However,	oestrogen	levels	vary	considerably	373	

during	 the	 menstrual	 cycle	 and	 diurnally,	 complicating	 distinction	 of	 eumonorrheic	 and	374	

amenorrheic	athletes.	Five	of	the	athletes	stated	they	were	taking	the	oral	contraceptive	pill	375	

(OCP)	for	contraceptive	reasons	only.	One	AA	who	took	OCP	still	suffered	from	amenorrhea	376	

and	her	 bone	parameters	were	 all	within	 the	 range	of	 the	 group.	 The	 EA	 athletes	 all	 had	377	

regular	cycles	prior	to	using	OCP	and	given	these	observations,	we	expect	that	OCP	had	no	378	

significant	impact	on	our	findings.	379	

	380	

Perspective	381	

The	lower	bone	strength	indicators	in	bones	of	the	trunk	but	not	the	radius	of	amenorrheic	382	

athletes	 is	 not	 entirely	 explained	 by	 reduced	 loading,	 but	 rather	 suggests	 that	 the	 bone	383	

response	to	amenorrhea	is	site-specific.	While	the	strength	of	weight	bearing	bones	in	the	EA	384	

and	AA	are	similar,	the	enlargement	of	the	endocortical	area,	similar	to	that	shown	by	Mikkola	385	
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et	al	[38],	cannot	be	reversed	by	loading.	We	speculate	that	this	can	only	be	normalised	by	a	386	

return	to	a	normal	menstrual	cycle.	387	
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483	

Figure	1:	A)	Periosteal	circumference	(mm)	for	the	radius	diaphysis	(RD)	and	tibia	diaphysis	484	

(TD)	adjusted	for	object	length;	B)	Cortical	Thickness	(mm)	for	the	radius	diaphysis	(RD)	and	485	

tibia	diaphysis	(TD)	adjusted	for	object	length;	C)	Cortical	Area	(mm2)	for	the	radius	diaphysis	486	

(RD)	and	the	tibia	diaphysis	(TD)	adjusted	for	object	length;	D)	Endocortical	Circumference	487	

(mm)	for	the	radius	diaphysis	(RD)	and	the	tibia	diaphysis	(TD)	adjusted	for	object	length.	C:	488	

controls,	EA:	eumenorrheic	athletes,	AA:	amenorrheic	athletes.	a:	Significantly	different	from	489	

controls.	490	

	491	

	492	

	493	

	494	
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	495	

Figure	2:	A	Schematic	diagram	to	show	the	difference	between	groups	in	the	endocortical	496	

circumference	(EC)	and	Periosteal	Circumference	(PeriC).	AA	have	a	significantly	greater	497	

circumferences’	than	both	EA	and	controls	with	no	difference	between	EA	and	controls.	498	

*=significantly	different	to	controls;	§=significantly	different	to	EA.		499	

	500	

	501	

	502	

	503	

	504	

	505	

	506	
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	507	

Table	1.	Characteristics	of	controls	(C),	and	eumenorrheic	(EA)	and	amenorrheic	athletes	(AA). 	508	

	 C	

N=15	

EA	

N=15	

AA	

N=14	

P	VALUE	

C	VS.	AA	

P	

VALUE	

C	VS.	EA	

P	VALUE	

AA	VS.	EA	

Age	(Years)	 26.8±0.9	 27.6±2.1	 26.4±0.8	 0.863	 0.714	 0.594	

Height	(m)	 1.66±0.17	 1.66±0.02	 1.64±0.02	 0.590	 0.862	 0.479	

Mass	(kg)	 59.6±1.5	 54.5±1.3	 49.6±1.6	 <0.0005	 0.037	 0.029	

BMI	(kg·m-2)	 21.7±0.6	 19.8±0.4	 18.3±0.4	 <0.0005	 0.009	 0.045	

Lean	mass	(kg)	 39.0±1.6	 44.5±1.1	 42.0±1.2	 0.112	 0.015	 0.215	

Fat	mass	(kg)	 18.5±1.5	 8.1±0.7	 5.3±0.6	 <0.0005	 <0.0005	 0.054	

Body	fat	mass	(%)	 30.6±2.1	 14.9±1.2	 10.7±1.0	 <0.0005	 <0.0005	 0.065	

Lean	mass	(%)	 65.4±2.2	 82.4±1.2	 86.8±1.1	 <0.0005	 <0.0005	 0.059	

AGP	(%)	 N/A	 86.9±1.0	 86.6±1.2	 N/A	 N/A	 0.890	

Age	of	menarche		

(years)	

13.0±0.34	 14.1±0.35	 14.9±0.54	 0.01	 0.051	 0.275	

Data	are	presented	as	mean	±	SEM.	AGP:	Age-graded	performance.	509	

	510	

	511	

	512	

	513	

	514	

	515	

	516	

	517	

	518	
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Table	2.	Muscle	size	and	strength	and	femur	size	in	controls	(C),	eumenorrheic	athletes	(EA)	519	

and	amenorrheic	athletes	(AA)	as	determined	with	MRI.	520	

	521	

Data	are	presented	as	mean	±	SEM.	P-values	reflect	those	related	to	the	data	adjusted	for	522	

Femur	length	in	leg	measures	and	radius	length	for	forearm	measures.	523	

	 	524	

	 C	 EA	 AA	 P	VALUE	

	 n=15	 n=15	 n=14	 C	vs.	

AA	

C	vs.	

EA	

AA	vs.	

EA	

Forearm	Muscle	CSA	(mm2)	 2617±93	 2637±94	 2516±101	 0.555	 0.876	 0.458	

Lower	Leg	Muscle	CSA	

(mm
2
)	

6457±221	 7002±193	 7099±242	 0.225	 0.944	 0.198	

Calf	Volume	(cm³)	 1316±70	 1317±74	 1325±86	 0.670	 0.556	 0.884	

Quadriceps	Volume	(cm³)	 1239±89	 1469±92	 1461±80	 0.146	 0.157	 0.951	

Quadriceps	Strength	(Nm)	 171±6	 164±7	 163±10	 0.314	 0.304	 0.992	

Normalised	Force	(Nm.cm¯³)	 0.141±0.008	 0.115±0.007	 0.117±0.007	 0.045	 0.035	 0.921	
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Table	3.	Bone	mineral	density	as	obtained	with	DXA	data	for	controls	(C)	and	eummenhoreic	525	

(EA)	and	ammenorheic	athletes	(AA).	526	

	 C	 EA	 AA	 P	VALUE	(AD	FOR	BODY	HEIGHT)	

	 n=15	 n	=15	 n=14	 C	vs.	AA	 C	vs.	EA	 AA	vs.	EA	

Total	(g·cm-2)	 1.17±0.02	 1.19±0.01	 1.13±0.03	 0.318	 0.365	 0.064	

Arms	(g·cm-2)	 0.82±0.01	 0.83±0.01	 0.81±0.03	 0.715	 0.575	 0.364	

Average	Hip	(g·cm-2)	 1.06±0.04	 1.12±0.03	 1.02±0.04	 0.435	 0.302	 0.078	

Trunk	(g·cm-2)	 0.91±0.03	 0.91±0.02	 0.82±0.02	 0.002	 0.909	 0.003	

Ribs	(g·cm-2)	 0.68±0.02	 0.65±0.02	 0.62±0.01	 0.005	 0.100	 0.198	

Spine	L1-4	(g·cm-2)	 1.19±0.03	 1.16±0.03	 1.04±0.04	 0.004	 0.585	 0.015	

Pelvis	(g·cm-2)	 1.11±0.01	 1.14±0.02	 0.99±0.03	 0.004	 0.568	 0.001	

Legs	(g·cm-2)	 1.25±0.03	 1.33±0.02		 1.26±0.03	 0.555	 0.032	 0.122	

	527	

Data	are	presented	as	mean	± SEM.	528	

	 	529	
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Table	4.	Hip	and	femur	structural	characteristics	for	controls	(C)	and	eummenhoreic	(EA)	and	530	

ammenorheic	athletes	(AA).	531	

	 								C	 EA	 AA	 p	value	(ad	for	FL)	

	 	

n=15	

	

n=15	

	

n=14	

	

C	vs.	AA	

	

C	vs.	EA	

	

AA	vs.	EA	

Cortical	width	shaft	(mm)	 3.73±0.33	 5.68±0.41	 4.89±0.43	 0.034	 0.001	 0.182	

Cortical	width	neck	(mm)	 6.16±0.59	 7.20±0.50	 6.89±0.40	 0.411	 0.198	 0.642	

CSA	femoral	neck	(mm2)	 146±7.9	 158±4.7	 146±5.7	 0.698	 0.255	 0.134	

Strength	Index	(BSI)	 1.69±0.10	 1.81±0.07	 1.89±0.11	 0.161	 0.398	 0.570	

CSMI	(mm4)	 9645±601	 9840±676	 8645±524	 0.056	 0.847	 0.086	

Femur	CSA	(cm²)	 10.5±1.1	 16.4±0.9		 15.9±2.0		 0.013	 0.005	 0.788	

Femur	Volume	(cm³)	 56.6±6.2	 88.4±5.1		 85.5±10.8		 0.012	 0.005	 0.769	

	532	

Data	are	presented	as	mean	±	SEM.	Cross-sectional	moment	of	inertia	(CSMI),	cross-sectional	533	

area	(CSA)	of	the	femur	neck.	P	values	displayed	for	data	adjusted	for	femur	length	(FL).	534	

	 	535	
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Table	5.	Peripheral	quantitative	computer	tomography	(pQCT)	data	for	the	Radius	epiphysis	536	

(RE,	 4%)	 and	 Radius	 diaphysis	 (RD,	 60%)	 in	 controls	 (C),	 and	 eumenorrheic	 (EA)	 and	537	

amenorrheic	athletes	(AA).	538	

	539	

	540	

	541	

RE:	Radius	epiphysis;	RD:	Radius	diaphysis;	vBMDct	(mg·mm-³):	Cortical	bone	mineral	density;	542	

vBMD�tb	 (mg�mm-³):	 Trabecular	 bone	mineral	 density;	 Ar�tot	 (mm²);	 Ar�ct	 (mm²):	 Cortical	543	

Area:	EcC	(mm):	Endochondral	circumference;	Iy	and	Ix,	(mm4):	moment	of	inertia	indicating	544	

bone’s	 Stiffness	 in	 bending	 perpendicular	 to	 line	 of	 flexion/extension,	 in	 line	 with	545	

flexion/extension	and	torsion	respectively.	Data	are	presented	as	mean	±	SEM.	546	

	547	

	548	

	549	

	 C	 EA	 AA	 P	VALUE	(AD	FOR	RADIUS	LENGTH)	

	 n=15	 n=15	 n=14	 C	vs.	AA	 C	vs.	EA	 AA	vs.	EA	

RE	Ar.tot	(mm2)	 319±14	 367±14	 365±15	 0.035	 0.023	 0.931	

RE	vBMC.tot	(mg.mm-¹)	 101±4	 109±4	 102±6	 0.861	 0.220	 0.304	

RE	vBMD.tb	(mg.mm-³)	 186±9	 197±11	 197±15	 0.604	 0.576	 0.984	

RD	Ar.tot	(mm2)	 102±4	 111±3	 112±4	 0.034	 0.045	 0.839	

RD	vBMC.tot	(mg.mm-1)	 93.0±4.0	 103.2±4.0	 98.9±4.3	 0.997	 0.336	 0.529	

RD	vBMDct	(mg.mm-3)	 1132±14	 1144±8	 1142±11	 0.819	 0.721	 0.907	

RD	Iy	(mm
4
)	 138±7	 158±7	 156±7	 0.067	 0.032	 0.801	

RD	Ix	(mm
4
)	 135±8	 149±8	 151±8	 0.165	 0.190	 0.896	
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Table	6.	Peripheral	quantitative	computer	tomography	(pQCT)	data	 for	the	Tibia	epiphysis	550	

(TE,	4%)	and	Tibia	diaphysis	(TD,	66%)	in	controls	(C),	and	eumenorrheic	(EA)	and	amenorrheic	551	

athletes	(AA).	552	

	553	

	 C	 EA	 AA	 P	VALUE	(AD	FOR	TIBIA	LENTGH)	

	 n=15	 n=15	 n=14	 C	vs.	AA	 C	vs.	EA	 AA	vs.	EA	

TE	vBMC.tot	(mg·mm-¹)	 296±11	 337±11	 324±12	 0.147	 0.012	 0.858	

TE	vBMD.tb	(mg·mm-³)	 232±12	 263±10	 265±10	 0.024	 0.028	 0.091	

TE	Ar.tot	(mm²)	 977±36	 1067±32	 1056±34	 0.032	 0.032	 0.437	

TD	Ar.tot	(mm2)	 436±17	 500±11	 522±22	 <0.0005	 0.004	 0.213	

TD	vBMC.tot	(mg·mm-¹)	 312±9	 390±8	 364±10	 0.006	 <0.0005	 0.153	

TD	vBMD.ct	(mg·mm-3)	 1127±7	 1122±7	 1112±8	 0.02	 <0.0005	 0.280	

TD	Ix	(mm
4
)	 1288±58	 1580±60	 1696±63	 <0.0005	 0.001	 0.237	

TD	Iy	(mm
4
)	 863±41	 1077±43	 1071±45	 0.004	 <0.0005	 0.599	

	554	

TE:	 Tibia	epiphysis;	 TD:	Tibia	diaphysis;	 vBMDct	 (mg·mm-³):	Cortical	bone	mineral	density;	555	

vBMD�tb	 (mg�mm-³):	 Trabecular	 bone	mineral	 density;	 Ar�tot	 (mm²);	 Ar�ct	 (mm²):	 Cortical	556	

Area:	EcC	(mm):	Endochondral	circumference;	Iy	and	Ix,	(mm4):	moment	of	inertia	indicating	557	

bone’s	 stiffness	 in	 bending	 perpendicular	 to	 line	 of	 flexion/extension,	 in	 line	 with	558	

flexion/extension	and	torsion	respectively.	Data	are	presented	as	mean	±	SEM.	559	

	 	560	
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