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a b s t r a c t

An efficient catalytic system for the C–H olefination of arenes with different allylic substrates is reported.
The catalytic system is based on Pd(OAc)2 and a readily accessible bidentate S,O-ligand. The methodology
shows high activity with a wide range of arenes, including bulky and, electron-rich and -poor arenes. The
applicability of this catalyst is demonstrated in the late-stage functionalization of the complex molecule
O-methylestrone.
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

In recent years, metal-catalyzed C–H functionalization reactions
have become an attractive strategy to introduce complexity to
organic molecules since no pre-functionalization of the starting
materials is required.1 Many elegant and efficient methodologies
have been described for the direct functionalization of C–H bonds,
but the vast majority of these examples require the presence of a
directing group to enhance the reactivity and selectivity of the pro-
cess.2 Reports of the direct C–H functionalization of simple arenes,
without a directing group, are still scarce.3 An attractive alternative
to the use of directing groups is the use of suitable ligands capable
of promoting these transformations.4 We recently reported a new
type of bidentate S,O-ligand, namely 2-i-propyl-2-(phenylthio)
acetic acid (L1), that enables the non-directed Pd-catalyzed C–H
olefination5 of arenes with activated olefins.6 The methodology is
scalable and applicable to the late-stage functionalization of com-
plex molecules. Although our standard reaction conditions (Pd
(OAc)2/L1; PhCO3

tBu; AcOH) provided poor yields and did not
accelerate the reaction with non-activated alkenes, the use of
AgOAc in DCE was observed to have a beneficial effect in promot-
ing the olefination of benzene with allylbenzene when L1 was pre-
sent in the reaction mixture (Scheme 1).7

Inspired by this preliminary result, we decided to explore the
scope of the new catalytic system in the C–H olefination of arenes

with allylic substrates, including allyl acetate and N-allylphthalim-
ide. Herein, we report the S,O-ligand promoted palladium(II)-cat-
alyzed C–H olefination of arenes with allylic substrates. The new
methodology is suitable for a wide range of arenes and allylic sub-
strates and its applicability is demonstrated in the late-stage func-
tionalization of a complex molecule.

We started our investigation optimizing the reaction conditions
by testing several solvents, oxidants and palladium sources (see ESI
for further details). However, no improvement was observed in
comparison with the original conditions (10 mol% Pd(OAc)2, 10
mol% L1, 1.5 equiv. AgOAc, DCE, 80 �C). With the optimized condi-
tions in hand, we then explored the scope of the reaction with
respect to the arene and allyl partners (Table 1). The reaction of
naphthalene with allylbenzene provided the desired allylated
products 2 in high yield (89%) (Entry 1). Similarly, the reaction
with o-xylene and anisole furnished the allylated products 3 and
4 in good isolated yields, 62% and 68%, respectively (Entries 2
and 3). We also studied the generality of this reaction using other
allylic substrates such as allyl acetate and N-allylphthalimide.
These allyl substrates have been scarcely used in coupling reac-
tions due to the low selectivities regarding the Pd insertion (inter-
nal vs terminal) and the b elimination (b-H vs b-OAc or b-NPhth
and styrenyl vs allylic).8 Using our method, the reaction of allyl
acetate with benzene, naphthalene or arenes with alkyl sub-
stituents, such as o-xylene, m-xylene and mesitylene, provided
the desired allylated products in good isolated yields (53–75%,
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Entries 4–8). Other arenes with different electronic properties,
such as anisole, 4-chloroanisole, 4-methoxyanisole and 1,3,5-tri-
flurobenzene were also evaluated in the reaction with allyl acetate.
In all cases, the allylated products were obtained in good isolated
yields (40–88%, Entries 9–12). In addition, we tested the reaction
of N-allylphthalimide with mesitylene and 1,3,5-trimethoxyben-
zene. In both cases, the allylated products were isolated in good
yields (73% and 61%, respectively, Entries 13–14). Importantly, in
all cases, the reaction was accelerated in the presence of L1 and
low yields were obtained without the ligand after 20–24 h (Table 1,
Entries 1–14). It is worth highlighting the effect of the ligand L1 in

Scheme 1. S,O-Ligand promoted C–H olefination of benzene.

Table 1
Scope of the L1-promoted palladium-catalyzed C � H olefination with allyl substrates.

Entry Product Yield (%)a with L1 Yield (%)a or b without L1 a/b or o/m/p (%)c a/a’ or b/b’ or c/c’ (%)c E/Z (%)c

1 2a/a’ 89 50a 64/36d 42/58d e

2 3a/a’ 62 37a 38/62d 50/50d e

3 4a/a’ 68 37a 62/4/34d 65/35d f

4 5b/b’ 65 36b – 92/8 90/10

5 6b/b’ 75 55b 60/40 g 95/5 f

6 7b/b’ 74 38b 36/64 91/9 f

7 8b/b’ 53 36b 13/65/22 (o/o’/m) 85/15 f

8 9b/b’ 67 12b – 71/29 86/14

9 10b/b’ 78 38b 68/0/32 g 93/7 f
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the reactivity with the bulky mesitylene. The reaction of mesity-
lene with allyl acetate or N-allylphthalimide in the absence of L1
proceeded with conversions lower than 20%. In contrast, the ally-
lated products 9 and 14 were obtained in 67% and 73% isolated
yield, respectively, in the presence of L1 (Entries 8 and 13). In gen-
eral, the new catalytic system promoted the allylation of a wide
variety of arenes including bulky, electron-rich and electron-poor
arenes, providing a broader substrate scope than the majority of
the reported examples.7–9 With respect to other arenes, we found
that the reaction of different dichlorobenzene derivatives provided
the corresponding allylated products in low yields, with and with-
out L1. Regarding the site-selectivity of the process, the allylation
reaction takes place, preferentially, at the most electron-rich posi-
tion in the arene (see a/b or o/m/p values in Table 1). Similar beha-
viour was observed in our previous work using activated olefins.6

Concerning the selectivity of b-hydride elimination in the reac-
tion with allylbenzene, a c.a. 1:1 mixture of isomers was observed
(Entries 1–3).9 For the olefination reactions with allyl acetate or N-
allylphthalimide, more complex mixtures of products can be
formed.8 However, in all of the examples evaluated, we observed
only the products from internal carbopalladation (Entries 4–14).
After the carbopalladation step, b-OAc [or b-(NPhth)] elimination
or b-hydride elimination can take place. However, under our reac-
tion conditions, we did not detect the products derived from b-OAc
[or b-(NPhth)] elimination. Furthermore, with respect to the b-
hydride elimination pathway, although two possible products
can be formed, we observed mainly the products from the b-
hydride elimination that leads to the double bond in conjugation
with the arene. This high regioselectivity has been previously
attributed to chelation between the O and the Pd atom.7,8a,8b This
chelation impedes rotation around the C–C bond and therefore,
hinders the syn relationship between the Pd and Ha (Scheme 2).

To this general trend, we found that the reaction with mesitylene
and 1,3,5-trifluorobenzene afforded the allylated products 9, 13
and 14 with moderate regioselectivity (71/29 for mesitylene and
62/38 for 1,3,5-trifluorobenzene; Entries 8, 12 and 13, respec-
tively). In addition, some isomerization of double bond to the Z iso-
mer occurred in the reaction of these arenes with allyl acetate
(Entries 8 and 12). The low regioselectivity observed can be
explained by the steric hindrance of the arene, which hampers
rotation around the C–C bond, disfavouring the syn relationship
between the Pd and Hb.10

Table 1 (continued)

Entry Product Yield (%)a with L1 Yield (%)a or b without L1 a/b or o/m/p (%)c a/a’ or b/b’ or c/c’ (%)c E/Z (%)c

10 11b/b’ 82 30a 17/83 91/9 e

11

12b/b’

88 47b – 94/6d 95/5d

12 13b/b’ 40 25b – 62/38 69/31

13 14c/c’ 73 20b – 71/29 93/7

14

15c/c’

61 36b – 98/2 f

Reagents and conditions: arene (33 or 66 equiv.), olefin (1.0 equiv.), Pd(OAc)2/S,O-Ligand (10 mol%), AgOAc (1.5 equiv.), DCE, 80–100 �C, 20–24 h.
a Isolated yield.
b Calculated yield based on 1H-NMR yield using dibromomethane as an internal standard.
c Determined by 1H-NMR analysis of the isolated mixture.
d Determined by GC analysis.
e No Z isomer detected.
f Traces of Z isomer detected.
g Ratio measured from the b isomer.

Scheme 2. Source of the high observed regioselectivity.

Scheme 3. Late-stage C–H olefination of Estrone.
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To further prove the generality of the new catalytic system, we
applied the new developed methodology to the late-stage func-
tionalization of a complex molecule (Scheme 3). The reaction of
O-methylestrone (1 equiv.) with allyl acetate (1.5 equiv.) and Pd
(OAc)2 (10 mol%) provided the desired product in only 10% 1H-
NMR yield. To our delight, the same reaction in the presence of
L1, furnished the olefinated product 16 in 55% isolated yield as a
mixture of ortho-olefinated isomers (a:b = 60:40).

In summary, the combination of Pd(OAc)2 and the bidentate S,
O-ligand L1, was found to promote the CAH olefination of arenes
with different allyl substrates, providing the desired allylated
products in good yields. This transformation tolerates a wide range
of arenes, including bulky, electron-rich and electron-poor arenes.
The olefination reaction occurs preferentially at the most electron-
rich position of the arene. Regarding the regioselectivity of the b-
hydride elimination, mixtures of isomers were obtained in the
reaction with allyl benzene and mainly one isomer in the reaction
with allyl acetate and N-allylphthalimide; these results are in line
with the general outcome of the Heck reaction. The applicability of
the new catalytic system has been demonstrated in the late-stage
functionalization of O-methylestrone.
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