e-space
Manchester Metropolitan University's Research Repository

Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)

Ming, R and VanBuren, R and Liu, Y and Yang, M and Han, Y and Li, LT and Zhang, Q and Kim, MJ and Schatz, MC and Campbell, M and Li, J and Bowers, JE and Tang, H and Lyons, E and Ferguson, AA and Narzisi, G and Nelson, DR and Blaby-Haas, CE and Gschwend, AR and Jiao, Y and Der, JP and Zeng, F and Han, J and Min, XJ and Hudson, KA and Singh, R and Grennan, AK and Karpowicz, SJ and Watling, JR and Ito, K and Robinson, SA and Hudson, ME and Yu, Q and Mockler, TC and Carroll, A and Zheng, Y and Sunkar, R and Jia, R and Chen, N and Arro, J and Wai, CM and Wafula, E and Spence, A and Han, Y and Xu, L and Zhang, J and Peery, R and Haus, MJ and Xiong, W and Walsh, JA and Wu, J and Wang, ML and Zhu, YJ and Paull, RE and Britt, AB and Du, C and Downie, SR and Schuler, MA and Michael, TP and Long, SP and Ort, DR and William Schopf, J and Gang, DR and Jiang, N and Yandell, M and dePamphilis, CW and Merchant, SS and Paterson, AH and Buchanan, BB and Li, S and Shen-Miller, J (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 14 (5). ISSN 1474-760X

[img]
Preview

Available under License Creative Commons Attribution.

Download (804kB) | Preview

Abstract

© 2013 Ming et al. Background: Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan. Results: The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment. Conclusions: The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.

Impact and Reach

Statistics

Downloads
Activity Overview
37Downloads
72Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item