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Abstract

Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate

change, amongst other factors, has led to catastrophic global biodiversity losses and spe-

cies extinctions at an accelerating rate. Amphibians are currently one of the worst affected

classes with at least a third of species categorised as being threatened with extinction. At

the same time, they are also critically important for many habitats and provide man with a

powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of

synchronised amphibian losses are varied recent research has begun to highlight a growing

role that macroparasites are playing in amphibian declines. However, diagnosing parasite

infection in the field can be problematic, principally relying on collection and euthanasia of

hosts, followed by necropsy and morphological identification of parasites in situ. The current

study developed a non-invasive PCR-based methodology for sensitive detection and identi-

fication of parasitic nematode DNA released in the faeces of infected amphibians as egg or

tissue fragments (environmental DNA). A DNA extraction protocol optimised for liberation of

DNA from resilient parasite eggs was developed alongside the design of a novel, nematode

universal, degenerate primer pair, thus avoiding the difficulties of using species specific

primers in situations where common parasite species are unknown. Used in conjunction this

protocol and primer pair was tested on a wide range of faecal samples from captive and wild

amphibians. The primers and protocol were validated and detected infections, including a

Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella

cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based proto-

col for detecting nematode infection in other hosts, such as the presence of pinworm (Aspic-

uluris) in two tortoise species and whipworm (Trichuris muris) in mice. Our environmental

DNA approach mitigates problems associated with microscopic identification and can be

applied to detect nematode parasitoses in wild and captive hosts for infection surveillance

and maintenance of healthy populations.
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Introduction

Worldwide, there is increasing scientific recognition of dramatically elevated extinction

rates in modern species and a growing biodiversity crisis [1–3]. Butchart et al. (2010) com-

prehensively reviewed global indicators of biodiversity trends, finding that 80% of state indi-

cators exhibited negative trends towards reduced biodiversity and that species extinction

risk was actually accelerating. Of all animal classes, amphibians best exemplify the current

biodiversity crisis as a third of extant species are categorised as being threatened by extinc-

tion by the IUCN with many more as yet Data Deficient [3,4]. The causes of declines in

amphibians, alike to declines in other classes, are multifactorial principally originating from

anthropogenic ecosystem alteration via habitat alteration or degradation, climate change,

pollution and introduction of alien species and novel diseases [3,5–7]. Now, more research

has focused on a growing understanding of the importance of macroparasite infections that

contribute alongside anthropogenic factors to cause amphibian extirpations and extinctions

[8–11]. For example, the trematode Ribeiroia ondatrae, is now recognised as the principal

causative agent for widespread outbreaks of severe limb deformities in many different North

American frog populations, causing high levels of mortality [12,13]. Other culprits include

members of the trematode genera Echinostoma and Echinoparyphium that are found in wet-

land habitats worldwide, infecting a range of anuran hosts. These species cause stunted

growth and oedema in tadpoles, renal pathology in adult frogs and have been observed to

reach infection prevalence as high as 100% in some zones [14]. Furthermore, captive

amphibian populations have been reported to die-off after succumbing to Rhabdias bufonis
or R. tokyoensis lungworm infection [15,16]. The opportunistic spread of a native or newly

introduced macroparasite can be the final insult to an already weakened amphibian commu-

nity that has been previously damaged by more pervasive pathogens, for example R. ondatrae
acting in synchrony with the widespread fungal pathogen Batrachochytrium dendrobatidis
(Bd) [10].

Given the importance of amphibian parasites in species decline and ecological dynamics, it

is surprising that they are relatively under researched [9]. Research attempts have primarily

been hampered by difficulties in identification, which is traditionally done based on morphol-

ogy [17]. Morphological identification requires high levels of expertise and is very susceptible

to human error, due to interspecific similarity in egg and larval stage morphology [17,18]. To

overcome this, PCR-based diagnostics can be used which are more sensitive and less time-con-

suming than microscopy [19–21].

Parasitological studies today are now beginning to focus more on non-invasive sampling,

involving collection of “environmental DNA or eDNA” that is shed and left behind by the host

under investigation; faeces is a particularly rich source due to the frequent presence of excreted

parasite transmissible stages [8,22]. Copro-diagnosis, the analysis of faeces for parasite life

cycle stages and eDNA, is a particularly attractive non-invasive technique as samples can easily

be collected in situ and species diagnostic eDNA can be targeted which also identifies the infec-

tive species i.e. DNA-barcoding [19,23–25].

However, amphibian host-parasite systems are poorly characterised making the use of

broad-spectrum primers crucial that target higher taxonomic ranks instead of species specific

ones [17,26,27]. We report here the development of a novel pair of DNA-barcoding primers

suitable for selective amplification of nematode DNA from across the Amphibia class and used

in the context of a copro-diagnostic protocol. Furthermore, we highlight the efficacy of this

copro-diagnostic protocol in identification of parasites from other host-parasite systems, such

as reptiles and mammals, with potential applications as a conservation or veterinary tool in

these groups as well.

eDNA based copro-diagnostic of nematode infection
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Materials and methods

Mouse models of Trichuris muris and Trichinella spiralis nematode infection were initially

used to develop an effective DNA extraction and detection protocol and also used to test

designed primer specificity. T. spiralis was maintained at the University of Manchester as

described previously [28]. The Edinburgh isolate of T. muris [29] was used throughout, and

has been maintained at the University of Manchester since 1989. Non-infected mice provided

a negative control to further ascertain protocol specificity. Once an effective protocol had been

established samples from individuals of a variety of amphibian and reptile species (see below)

with an unknown infection status were analysed. The protocol developed was logged in proto-

cols.io accessible via http://dx.doi.org/10.17504/protocols.io.i32cgqe.

Sources of faecal samples

Faeces were collected from mice experimentally infected with a dosage of 200 T. muris eggs or

200 T. spiralis infective larvae as part of other, ongoing experiments at the University of Man-

chester under the under the Home Office project licence 70/8127 and regulation of the Home

Office Scientific Procedures Act (1986). Faeces were also collected from known non-infected

mice, to act as negative controls. All animal experiments were approved by the University of

Manchester Animal Welfare and Ethical Review Board.

Faecal samples from amphibian and reptile hosts with an unknown infection status were

collected for analysis from several sources. Twelve Mantella betsileo frogs purchased from the

pet trade in November 2015, two months after capture from the wild, were maintained and

kept separate from other species colonies by one of the authors (RP) at the University of Man-

chester. Faecal samples were collected weekly from these individuals to allow for optimisation

of conditions for the copro-diagnostic protocol’s DNA extraction steps. In addition, faecal

samples from wild Mantella cowani individuals were collected in December 2015 from field-

work in Madagascar under the research permit 309/15/MEEF/SG/DGF/DCD.SAP/SCB

(granted 20th of November 2015) and kept in RNAlater (Thermofisher, Loughborough, UK)

for three weeks until shipping to the UK.

Samples from 24 amphibian and reptile species S1 Table maintained at ZSL London Zoo

were also used, following freezing and delivery to the University of Manchester for processing,

two weeks post-collection.

DNA extraction from tissue

Nematode tissue DNA was extracted to test for primer functionality in amplifying nematode

DNA. DNA was extracted from 15 mg of T. muris tissue using the QIAGEN DNeasy1 Blood

& Tissue Kit (Manchester, UK) under aseptic conditions with only slight modifications to the

manufacturer’s protocol. The DNA was allowed to elute for 15 min into 200 μl of buffer AE on

the spin column membrane during the final step of the extraction protocol. When not in use

DNA samples were kept chilled at 4˚C.

DNA extraction from faeces and DNA concentration analysis

DNA was extracted from a starting faecal quantity of 10–200 mg (depending on obtainable

amount) using the QIAamp1 Fast DNA Stool Mini Kit (Qiagen) under aseptic conditions

using the manufacturer’s protocol alongside the following modifications. A disruption step

was included in which the faecal samples were added to 1 ml of InhibitEx buffer followed by

bead-beating using 4 mm diameter borosilicate glass beads (Sigma) placed within an Eppen-

dorf Safelock 2 ml test tube. Samples were then bead-beaten in a Retsch MM400 mixer mill

eDNA based copro-diagnostic of nematode infection
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(Derbyshire, UK) at 30 Hz for between 5–10 min with regular movement of the samples

between the pockets of the arm cradles to ensure a consistent beating across all samples. Next,

samples were vortexed for one minute and then incubated and shaken in an Eppendorf Ther-

momixer C (Stevenage, UK) at 45˚C and 67 g for between 1–2 hours. The Proteinase K diges-

tion was carried out for 20 min. Two elution steps were typically carried out, a first elution for

20 min in 100 μl of buffer AE with centrifugation, followed by a second elution step in 50 μl

for 15 min and centrifugation. When not in use DNA samples were kept chilled at 4˚C. After

the incubation and centrifugation steps the beads were removed and washed in Virkon, fol-

lowed by a 10% HCl acid bath and then Milli-Q water (from Millipore Advantage A10, Fel-

tham, UK) to allow for their re-use. DNA concentration analysis was performed on a

ThermoFisher Scientific NanoDrop 2000 spectrophotometer.

Development of nematode universal barcoding primers

A comprehensive list of common parasitic nematodes that infect wild animals, such as

amphibians and reptiles, was compiled, consisting of a large range of different families and

genera from the Nematoda phylum Table 1. The 18S ribosomal RNA (rRNA) gene was chosen

as a target region as it is commonly used in nematode DNA barcoding studies and has proven

Table 1. List of species used in primer design alignment.

Nematodes Fungi

Trichuris muris Sidera vulgaris

Trichuris trichiura Sidera lenis

Trichinella spiralis Herpotrichiellaceae sp.

Paratrichosoma sp. Exophiala xenobiotica

Dicotophyme renale Exophiala castellanii

Eustrongylides ignotus Onslowia edophytica

Rhabdias bufonis Lulworthia fucicola

Rhabditis sp. Corollospora maritima

Ascaris lumbricoides Acremonium strictum

Ascaris suum Acremonium asperulatum

Strongyloides stercoralis Lindra obtusa

Strongyloides procyonis Lindra marinera

Strongyloides ratti Metarhizium anisopliae

Cosmocercoides dukae Aspergillus niger

Parastrongyloides trichosuri Pleosporaceae sp.

Nippostrongylus brasiliensis Torulaspora delbrueckii

Heligmosomoides polygyrus Sarcoleotia turficola

Trichostrongylus colubriformis Pneumocystis murina

Ancylostoma caninum Amphibians

Dracunculus medinensis Xenopus laevis

Dirofilaria immitis Xenopus borealis

Scinax rubra

Phyllomedusa bicolor

Rana chensinensis

Bufo margaritifer

Discoglossus pictus

Nematodes selected represent a wide range of parasitic families, whilst fungi selected are known to have

18S sequences that commonly cross-react with nematode primers.

https://doi.org/10.1371/journal.pone.0185151.t001
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to be more useful than the mitochondrial cytochrome oxidase 1 (COI) gene in the Nematoda

phylum [30–32]. Fungal species, especially from the Basidiomycota, were also selected as these

are known to have 18S rRNA sequences that commonly cross-react with primers designed to

be nematode specific [19,27]. Amphibian 18S rRNA sequences were included as any designed

primers must not amplify host DNA Table 1. Sequences were taken from the GenBank data-

base and aligned in the sequence visualisation program BioEdit v7.2.5 (http://www.mbio.ncsu.

edu/bioedit/page2.html) to find regions conserved within all of the nematode species but

absent in the fungi and amphibian sequences. Primers were designed for the loci of the con-

served regions and degenerate base pairs added to the sequences to increase the possible range

of nematode 18S sequences they could target. The degenerate primer sequences were analysed

using OligoAnalyzer 3.1 (www.idtdna.com/calc/analyzer) and optimised. 15 degenerate prim-

ers were designed and these were tested in 28 different combinations. Combinations were only

chosen if they amplified fragments larger than 100 bp and smaller than 700 bp and had mean

melting temperatures within approximately 5˚C of each other.

PCR amplification

PCRs were prepared in aseptic conditions with all consumables UV sterilised, mastermixes

were made on ice. PCRs were typically 25 μl in volume comprising: 10.88 μl of Mili-Q water,

2.5 mM PCR buffer, 3.5 mM Mg, 0.5 μM dNTPs, 0.024 U/μl FastStart Taq DNA Polymerase

(Roche, Sussex, UK), 0.5 μM of both forward and reverse primers and 0.5 μl BSA (100X) (New

England Biolabs Inc., Hitchin UK). 1 μl of tissue DNA extract was used, whilst between 5 and

10 μl of faecal DNA was used per reaction. Tissue DNA extracts typical contained 10–50 ng/μl

and faecal extract from 4–63 ng/μl. Negative controls containing 5 μl of Milli-Q water instead

of faecal or tissue DNA was run alongside PCRs to check for contamination. All primers were

synthesised by Eurofins Genomics (Wolverhampton, UK). The T. muris specific primers were

reported from Cutillas et al. (2002) whilst the nematode universal primers that were tested

from the literature were from Bhadury and Austen (2010) and Floyd et al. (2005). The de-

generate nematode specific primers developed in this study (Nem27 primers) comprised

Nem1217F which had the 3’-5’ sequence CGN BCC GRA CAC YGT RAG and Nem1619 which

had the 3’-5’ sequence GGA AAY AAT TDC AAT TCC CKR TCC. Nem27 primers amplify a 402

bp fragment of the 18S rRNA gene. DNA amplification was carried out using an initial dena-

turation at 94˚C for 5 min; 35 cycles of amplification (94˚C for 30 s; 54˚C for 30 s; 72˚C for 1

min); followed by a final extension at 72˚C for 10 min. Nem27 primers could amplify nema-

tode DNA from a faecal background at annealing temperatures as high as 62˚C to 64˚C, reduc-

ing the likelihood of non-specific amplification. All PCR amplifications were carried out in a

Techne Prime Thermal Cycler (Staffordshire, UK) with a HYBAID touchdown compression

pad (ThermoFisher). PCR product was kept chilled at 4˚C.

Gel electrophoresis

PCR products were run and visualised on 1% agarose gels comprising molecular grade agarose

(Bioline, London, UK), TBE buffer and 0.5–2 μl GelGreenTM Nucleic Acid Gel Stain (Biotium,

Cambridge, UK). To load gel, 3 μl of PCR product was added to 2 μl of blue loading buffer

(Bioline) and pipetted into the wells alongside 1 μl Hyperladder 1kb (Bioline) size standard.

Product sizes were separated using electrophoresis in a RunOneTM Electrophoresis Cell

(Cheshire, UK) at 45 v for between 30–80 min, depending on the size of the gel. After se-

paration, gels were drained, left to cool and then mounted on a PrepOneTM Sapphire illumina-

tor (EmbiTec) covered by a PI-1002 PrepOneTM filter (EmbiTec) and camera hood and

photographed.

eDNA based copro-diagnostic of nematode infection
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PCR product clean-up and Sanger sequencing

PCR product amplicons were cleaned using a MiniElute1 PCR Purification Kit (Qiagen), with

slight modifications to the manufacturer’s protocol. Cleaned DNA was eluted in 10 μl of auto-

claved Milli-Q water for 20 minutes. 10–40 ng/μl of cleaned PCR product was added to 4 pmoles

of a single relevant primer and the final volume adjusted to 10 μl using Milli-Q water. For each

PCR amplicon one sample containing the forward and one the reverse primer was sent for

sequencing. Samples were Sanger sequenced at the University of Manchester DNA Sequencing

Facility using Big Dye 3.1 chemistry on an ABI 3100 Genetic Analyzer (Fisher Scientific).

Sequence analysis

Sequence traces were examined and regions of poor quality or low-confidence sequence were

removed in BioEdit. The complimentary sequence of that produced by the reverse primer was

aligned next to the sequence produced by the forward primer, using the ClustalW function.

This allowed for the extraction of the entire DNA sequence amplified by the primers. To iden-

tify the species from which the sequences were from they were run through the GenBank

nucleotide BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch)

and the top matches noted. Top matches always returned high query cover (99–100%) and

maximum identity values (97–100%). Sequences reported in this study have been submitted to

GenBank and their accession numbers are from MF535344 to MF535352.

Faecal smears

Faecal pellets from M. betsileo amphibians were mounted on a glass slide with a few drops of

Milli-Q water. The pellets were crushed and smeared over the slide, covered with a cover slip and

sealed. Slides were then examined and photographed by light microscopy on a Leica S8APO

Microscope at x80 magnification with a Leica MC 170HD video camera (Milton Keynes, UK).

Results

Development of a faecal DNA extraction protocol

To develop the faecal DNA extraction protocol a QIAamp1 DNA stool mini kit was used on

faeces from mice infected with T. muris nematodes to see if an eDNA signal could be detected,

using nematode species specific primers from the literature [33,34]. When the manufacturer’s

protocol was followed there was no successful amplification from faecal extracted DNA.

Hence, to liberate parasite DNA from resilient transmissible stages a disruption step was

added. A T. muris model of infection was used as eggs from this species are extremely tough

and difficult to lyse [35]. The addition of a lysis step that used either 5 or 10 minutes of bead-

beating permitted faecal eDNA amplification from mice infected with T. muris (Fig 1). Ampli-

fication did not occur at high lysis temperatures of 95˚C but was possible when 45˚C tempera-

tures were used (Fig 1).

Testing of designed primers and confirmation of specificity

Of the 28 primer pairs tested only eight amplified all nematode tissue DNA extracts (T. muris,
T. spiralis, A. lumbricoides and H. polygyrus) and of these eight only two did not cross-react on

faecal DNA from non-infected mice and tissue DNA from Platyhelminthes (Schistosoma man-
soni and Hymenolepis microstoma). Cross-reactivity against Platyhelminth DNA was tested as

other nematode specific primers from the literature [19,31] had previously been demonstrated

to amplify DNA from this group, S1 and S2 Figs.

eDNA based copro-diagnostic of nematode infection
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Testing of primers on faecal DNA from laboratory mice known to have no parasite infec-

tion acted as a negative control, ensuring a lack of primer cross-reactivity to DNA from other

organisms found in faeces.

Of the two primer pairs that demonstrated no cross-reactivity, only one primer pair

(Nem27 primers) amplified faecal DNA from mice infected with T. muris and T. spiralis.
Nem27 primers also successfully amplified faecal DNA from captive colonies of the amphibi-

ans; Mantella betsileo, M. aurantiaca, M. ebenaui, Dendrobates auratus and Agalychnis calli-
dryas, indicating infections.

Testing using annealing temperature thermal gradients found that Nem27 primers still

amplified nematode eDNA from faeces at annealing temperatures as high as 62˚C to 64˚C.

This produced tighter banding and reduces the possibility of primer cross-reactivity on DNA

from outside of the Nematoda phylum, a factor which is particularly important given the

Nem27 primers degeneracy and therefore increased potential to bind to non-target DNA.

Primer specificity was confirmed by sequencing, revealing that the Nem27 primers were

binding at the expected region of the T. muris 18S rRNA gene. BLAST matches in GenBank

returned a top match of T. muris when using the amplicon from the infected mouse faecal

DNA and a top match from the genus Poikilolaimus from the M. betsileo faecal DNA. This

data was supported by investigating faecal smears from M. betsileo by microscopy (Fig 2)

which showed the presence of nematode worms.

Applications of copro-diagnostic protocol with Nem27 primers to wild

amphibians and captive herpetofauna

Faecal samples from wild M. cowani that had undergone a 5 minute bead-beating step ampli-

fied better than those bead-beaten for one minute as indicated by a brighter band on the gel

(Fig 3). This extraction obtained the lowest faecal DNA concentration of all extractions carried

out in the present study (4.3 ng/μl), making 21.5 ng the known lower limit of total faecal DNA

Fig 1. PCR amplification using T. muris primers on tissue, egg and faecal DNA. T. muris primers amplified DNA

from T. muris tissue DNA (Tm) and T. muris eggs (E) beaten for 5 and 10 minutes (numbers in superscript). Faecal DNA

from T. muris infected mice when unbeaten (Ub) did not amplify, as did faecal DNA that was beaten (B) but carried out at

the DNA extraction lysis temperature of 95˚C (Numbers in black above lanes in ˚C). Bead-beaten faecal samples

amplified when the extraction lysis temperature was dropped to 45˚C. Arrow indicates the position of the expected 1,000

bp product. 1kb hyperladders were run (HL) and negative controls (X).

https://doi.org/10.1371/journal.pone.0185151.g001
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that Nem27 primers were able to amplify from. Amplicons produced were sequenced and

returned a top match in GenBank from a nematode of the genus Railletnema. This genus lies

phylogenetically within the Cosmocercidae, including species known to infect amphibians

[36,37]. The next highest matches were from Rhigonema ingens and species of the genus Heth
which are parasites of arthropods [38,39]. The fifth match was from the nematode parasite

Pseudonymus islamabadi documented from the lizard, Iguana iguana [40].

Fig 2. Light microscopy of M. betsileo faecal smears. Faecal smears from M. betsileo individuals were examined by light

microscopy at x80 magnification. Nematode worm larvae (A) and adults (B) were observed. Bars are 100 μm.

https://doi.org/10.1371/journal.pone.0185151.g002

Fig 3. PCR amplification using Nem27 primers on faecal DNA from wild M. cowani amphibians. DNA

was successfully amplified using the Nem27 primers on bead-beaten M. cowani faecal DNA, regardless of

whether 1 or 5 minutes of bead-beating were employed. However, amplification was better when 5 minutes of

bead-beating were used (Δ indicates 5 minutes of bead-beating). Both M. cowani faecal DNA extracts from

different individuals amplified (numbers in superscript). A 40 cycle thermocycling program was chosen due to

the low DNA concentrations obtained by the extraction (4.3 ng/μl) and permitted amplification. Such results

indicate that these amphibians have nematode stages in their faeces and may therefore be infected. Arrow

indicates the expected 402 bp size product. A positive control (+) containing 1 μl of tissue extracted T. muris

DNA and 4μl of faecal DNA was included. 1kb hyperladder was run (HL) and a negative control (X).

https://doi.org/10.1371/journal.pone.0185151.g003
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30 faecal samples from 7 different amphibian and 17 different reptile species maintained at

ZSL London Zoo were also analysed. Six samples yielded amplification products when either

5 μl or 10 μl of faecal DNA was used. The following herpetofauna species produced an amplifi-

cation signal: Phyllobates bicolor, Dendrobates tinctorius, Shinisaurus crocodilurus, Rhynchophis
boulengeri, Testudo graeca floweri and T. g. whitei. These results indicate the presence of nema-

tode eDNA in these faecal DNA extracts and therefore a possible parasitic nematode infection.

An example of successful amplification from three reptile species is shown (Fig 4).

Sequencing of amplicons from the D. tinctorius, S. crocodilurus, T. g. whitei and T. g. floweri
hosts returned top matches from nematode species and genera known to be parasitic. The top

match for the two tortoise species, T. g. whitei and T. g. floweri, was from the pinworm species

Aspiculuris tetraptera which infects laboratory mice, alongside other vertebrates [41,42]. The

next match, Ozolaimus linstowi is known to be a parasite of lizards [40]. The top nematode

sequence match for the amphibian host D. tinctorius, was from the Railletnema genus the same

as that found in the M. cowani hosts. The sample from the host lizard, S. crocodilurus, obtained

top matches with the nematode genus Diploscapter a genus that contains both parasitic and

free-living species [43,44].

The sequenced amplicons from P. bicolor and R. boulengeri both returned top matches with

Oscheius tipulae and Poikilolaimus oxycercus both recognised as common non-parasitic soil

dwelling nematodes [45,46].

Discussion

Declines in global biodiversity continue despite efforts to alleviate the situation, with many fac-

tors and synergies between anthropogenic effects and natural ecological processes as yet poorly

understood [1,2,47]. Species losses in the amphibian class are possibly the most severe among

terrestrial vertebrates, with many previously abundant species now extinct and numerous oth-

ers still threatened [3,5]. Now, studies are beginning to shed light on the role metazoan para-

sites are playing in this crisis, weakening already susceptible populations in the wild or causing

die-offs in ex situ colonies intended for species conservation [13,48,49]. Hence, effective tech-

niques are needed for detecting parasitic infection that are non-damaging to host populations,

Fig 4. PCR amplification using Nem27 primers on faecal DNA from ZSL London Zoo reptiles. Nem27 primers successfully

amplified both 5 μl and 10 μl (asterisked) of faecal DNA from S. crocodilurus (Sc), R. boulengeri (Rb), and T. g. whitei (Tw) indicating

a likely nematode infection in these reptile species but not from Chamaeleo jacksoni (Cj) which exhibited no amplification. Arrows

indicate the expected 400 bp size product. Positive controls (+) containing 1 μl of tissue extracted T. muris DNA and 4 μl of the

relevant reptile faecal DNA were included, demonstrating an absence of PCR inhibitors in these extracts. 1kb hyperladders were run

(HL) and negative controls (X).

https://doi.org/10.1371/journal.pone.0185151.g004
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unlike necropsy, or that are more sensitive than common non-invasive methods, e.g. micros-

copy on faecal smears [8,50]. Molecular based copro-diagnostic detection and barcoding of

eDNA presents a viable alternative and has already been used in other hosts to successfully

track and discover reservoirs of zoonotic parasite infections, such as ancylostomiasis [51], tri-

churiasis and echinostomiasis [52].

Here, we have developed an effective alternative and created a novel copro-diagnostic

molecular technique capable of liberating and detecting eDNA shed in faeces from amphibian,

as well as reptile and mammal, hosts. We have also designed a novel pair of nematode univer-

sal (Nem27) primers capable of binding to tightly conserved regions of the 18S rRNA gene

from a variety of nematode species. Sequencing and comparison in GenBank of amplicons

produced by these Nem27 primers demonstrated their specificity for nematode DNA. In addi-

tion, testing of Nem27 primers on faecal DNA from non-infected and infected mice (using T.

muris and T. spiralis infection models) assisted in confirmation of their specificity to nematode

DNA alone.

Key findings made included identification of infection in the Madagascan frog M. cowani
by a nematode of the genus Railletnema, a genus known to contain at least 22 species of

amphibian parasites [36,37]. D. tinctorius dart frogs from ZSL London Zoo were also infected

with nematodes from this genus. This species has historically been diagnosed with ‘very

numerous helminth larval forms’ in faecal smears but the identity of helminths had not previ-

ously been established (C. Michaels, pers. comm., October 15, 2016). In addition, our method

highlighted a potential pinworm infection by A. tetraptera or close relative, in two tortoise spe-

cies from samples provided by ZSL London Zoo. These results corroborated separate findings

made by staff at ZSL London Zoo that had previously identified ‘Strongyle-like ova’ and ‘mod-

erate Tachygonetria ova’ in the faeces of two tortoises (C. Michaels, pers. comm., August 25,

2016). Members of the genus Tachygonetria are near relatives of A. tetraptera and are also in

the Oyxuridae family [53,54]. However, due to A. tetraptera being a common pinworm infec-

tion in rodents [55] there exists a small likelihood of enclosure contamination by frozen

murine material used to feed other carnivorous reptile species. In all cases, potentially infected

animals at ZSL London Zoo and the University of Manchester were clinically healthy animals

and were not showing signs or symptoms of parasitoses. At ZSL London Zoo, faeces is rou-

tinely screened for elevated or pathological parasitoses and a strategy of management of nor-

mal parasite loads, rather than elimination of all gut metazoan, is implemented (C. Michaels,

pers. comm., November 10, 2016). In fact, some parasitic infection is entirely expected, often

in the complete absence of clinical signs of infection and is an important driver of individual

immune competency and overarching ecological structure and function [56]. Thus, our

copro-diagnostic technique could be applied to shed light on natural nematode biodiversity in

both wild and captive amphibian host populations, accruing data that would alternatively

require lengthy amounts of microscopic examination.

A number of unexpected caveats within the copro-diagnostic method were also revealed,

including the detection of eDNA from common free-living bacterivorous nematodes. Given

the ubiquitous nature of nematodes it is unsurprising that individuals may have migrated

from the soil compartment of the terraria into the amphibian faeces. Studies investigating the

effects of organic soil amendments have found that addition of manure to soils causes distinct

increases in the number of bacterivorous free-living nematodes present [57]. This is thought to

arise due to manure increasing the bacterial content of the soil, followed by heightened preda-

tion and proliferation by bacterivorous nematodes [58]. Moreover, the common bacterivore,

Caenorhabditis elegans has been observed to display preferences for different manure types,

migrating into faeces following trails of faecal compounds released into the soil [59]. Thus, the
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issue of detection of DNA from free-living nematodes in faeces may reflect the fact that many

nematodes exhibit a preference for the faecal microhabitat.

Contamination by non-parasitic nematodes is relatively unique to the current study, owing

to the fact that the molecular detection system was developed to detect all nematodes given the

dearth of information regarding the common parasites of amphibians. Parasitism has evolved

independently in the Nematoda phylum many times in different clades, making the identifica-

tion of targetable, conserved DNA sequences in parasitic groups that are absent in non-para-

sitic ones unlikely [60]. However, sequencing of amplicons produced can quickly identify

which positive results are from true infections. Furthermore, PCR tends to amplify the more

abundant sequences in a DNA extract [61]. Hence, in faecal samples from a heavily infected

host the eDNA signal in the faeces is likely to be stronger and outcompete any potential con-

taminant DNA from free-living nematodes [61].

Our study also highlighted some potential difficulties with using the 18S rRNA gene for

effective nematode barcoding. Sequenced amplicons generated using the Nem27 primers fre-

quently returned high matches with existing sequences in the GenBank database; however,

these were often from nematodes of differing families and genera, providing poor consensus

as to the exact species present. For example, the top nematode matches from the ratsnake, R.

boulengeri were predominantly from the free-living genus Poikilolaimus [46]. Nonetheless, the

fourth match which had an equivalent query cover and sequence identity belonged to the

genus, Krefftascaris known to be common parasites of turtles [62]. In this case, the R. boulen-
geri snakes had repeatedly shown no signs of nematode infection when tested using traditional

faecal screening, suggesting that environmental contamination with Poikilolaimus is more

likely than infection with Krefftascaris (C. Michaels, pers. comm., October 15, 2016).

In addition, matches obtained in GenBank frequently returned sequences annotated as

‘Uncultured Eukaryote clone’, providing no data on the identity of the matching sequence and

therefore no help in identification of the query sequence. A number of studies have found fault

with the quality of sequence metadata in GenBank, highlighting the prevalence of absent or

poor taxonomic resolution provided with sequences, alongside a lack of country of origin and

ecological data [63,64]. Furthermore, even if a taxonomic identification based on morphology

is provided there is no way of guaranteeing its accuracy [63,65]. Other, more regulated data-

bases could be used in future studies, such as that maintained by The International Barcode of

Life (iBOL) project [63,66]. This project’s database uses a 650 bp region of the COI gene to bar-

code all animal life and is compiled of standardised DNA sequences that have come from

museum and voucher specimens with thorough taxonomic identification [63,66]. The quality

of such data is rigorously checked, permitting effective comparison of sequences between spe-

cies and clades for more accurate phylogenetic investigation [63].

In summary, we have realised a novel molecular methodology, demonstrating that eDNA

released from parasitic nematodes can be detected in the faeces of amphibian, reptile and

mammalian hosts and therefore provide important information on these organisms infection

status. With some refinement, to be truly independent of post-mortem examination of hosts,

our protocol lays down a crucial framework upon which further development may potentiate

its use for the conservation of ecologically significant bioindicator groups, such as the amphib-

ians [67]. Future work may explore the potential of using the Nem27 primers developed here

in a real-time PCR format to provide quantitative data on parasite eDNA in host faeces and

therefore provide a potential proxy for parasite burden [24]. Such modifications could give,

our protocol utility as a quantitative diagnostic in the veterinary sciences where wild parasites

may be infecting livestock, or to advance general scientific understanding of wild host-parasite

systems, providing information on the dynamics of parasite populations [24,68].
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Supporting information

S1 Table. ZSL, London Zoo herpetofauna species faecal samples.

(PDF)

S1 Fig. Test for published[31] nematode universal primer efficacy on nematode tissue DNA

and cross-reactivity on Platyhelminth tissue DNA. A: Nematode universal primers [31]

designed for specific amplification of nematode DNA successfully amplified DNA from the

nematodes T. muris (Tm) and T. spiralis (Ts). B, C: Nematode universal primers [31] also dem-

onstrated cross-reactivity on S. mansoni (Sm) and H. microstoma (Hm) tissue DNA producing

multiple bands, including a strong band at the expected 900 bp (arrows). Numbers in super-

script indicates whether the PCR was carried out at an annealing temperature of 59.4˚C (1) or

60.3˚C (2). 1kb hyperladders were run (HL) and negative controls (X).

(TIF)

S2 Fig. Test for published[19] nematode universal primer efficacy on nematode tissue DNA

and cross-reactivity on Platyhelminth tissue DNA. Nematode universal primers [19]

designed for specific amplification of nematode DNA successfully amplified DNA from the

nematodes T. spiralis (Ts), A. lumbricoides (Al), N. brasiliensis (Nb), H. polygyrus (Hp) but not

T. muris (Tm). These primers also demonstrated cross-reactivity on S. mansoni (Sm) and H.

microstoma (Hm) tissue DNA. Arrow indicates the expected 427 bp size product. 1kb hyper-

ladders were run (HL) and negative controls (X).

(TIF)
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