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Abstract 

This study examined the neural basis of auditory selective attention using functional 

magnetic resonance imaging. The main hypothesis stated that attending to a particular 

sound frequency, would significantly enhance the neural response within those 

tonotopic regions of the auditory cortex sensitive to that frequency. To test this 

prediction, low- and high-frequency sound sequences were interleaved to produce two 

concurrent auditory streams. Six normally-hearing participants performed a task which 

required them to attend to one or the other stream, or they listened passively to the 

sounds while functional images were acquired using a high-resolution (1.5x1.5x2.5 

mm) sequence. Two statistical comparisons identified the attention-specific and general 

effects of enhancement. The first controlled for task-related processes, while the second 

did not. Results demonstrated frequency-specific, attention-specific enhancement in the 

response to the attended frequency, but no response suppression for the unattended 

frequency. Instead, a general effect of suppression was found in several posterior sites, 

possibly related to resting-state processes. Furthermore, there was widespread general 

enhancement across auditory cortex when performing the task compared to passive 

listening. This enhancement did include frequency-sensitive regions, but was not 

restricted to them. In conclusion, our results show partial support for frequency-specific 

enhancement. 
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Abbreviations

BOLD: blood oxygenated level dependent

CC: cingulate cortex

dB: decibel

IFG : inferior frontal gyrus

FDR: false discovery rate

FDRR: frequency-dependent response region

fMRI: functional Magnetic Resonance Imaging

FWHM: full width at half maximum

GLM: general lineal model

HG: Heschl’s gyrus

Hz: Hertz

mm: millimeters

ms: microseconds

PT: planum temporale

s: seconds

SPL: sound pressure level

SPM: statistical parametric mapping

TE: echo time

TPOJ : temporo-parietal-occipital junction 
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Introduction 

Selective attention is a fundamental aspect of cognitive activity that enables us to 

choose from the vast amount of information in the sensory world. The cognitive system 

has only a limited processing capacity and so behaviorally relevant information wins 

out for further processing while the rest is suppressed or ignored (Cherry, 1953). 

Studies of visual selective attention have established two important mechanisms that 

serve to optimize the perceptual contrast between the response to the object of interest 

and the background, namely enhancement (also referred to as gain) and suppression 

(Treue and Trujillo, 1999). In environments containing multiple objects defined by their 

conjunction of features, or single objects defined by multiple features, human fMRI 

studies have demonstrated feature-specific enhancement in regions that are sensitive to 

the attended features (Corbetta et al., 1990; 1991; Schoenfeld et al., 2007; Tootell et al., 

1998) and feature-specific suppression in regions that are sensitive to the unattended 

features (Somers et al., 1999; Tootell et al., 1998). 

The notions of feature-specific enhancement and suppression as the principle 

mechanisms of contrast enhancement are not restricted to the visual system. There is 

partial evidence that these mechanisms also exist in the auditory system, at least 

according to electrophysiological data recorded in awake animals when they are 

attending to sounds of a specific frequency. Sound frequency provides an excellent 

candidate for the study of feature-specific mechanisms of attention since it is the major 

organizing principle in the auditory system and neurons in primary auditory cortex are 

highly tuned to pure tones and narrowband sounds. Recordings of single-unit activity in 

awake, behaving ferrets have demonstrated frequency-specific changes in receptive 
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field properties, consistent with attentional enhancement and suppression (Fritz et al., 

2003; 2005; 2007a; 2007b).

In terms of human neuroimaging studies, evidence for attentional modulation in 

the auditory system is presently unclear. Using fMRI to quantify auditory cortical 

activity in nine listeners, Petkov et al. (2004) concluded that while responses in primary 

auditory cortex were tonotopically arranged, attentional enhancement occurred 

primarily in non-primary auditory cortex and was not frequency specific. This null 

result contradicts with other reports of significant feature-specific enhancement. For 

example, one fMRI study used a task that manipulated the focus of attention by 

instructing their nine listeners to discriminate either phonemes or spatial locations 

(Ahveninen et al., 2006). The results showed enhancement in non-primary auditory 

regions posterior to Heschl’s gyrus (HG) when attending to the spatial feature, although 

there was no significant differential effect of attending to the nonspatial feature. For a 

group of 19 listeners, Krumbholz et al. (2007) again showed a significant increase in 

activity when attention was directed to spatial motion compared to pitch in posterior 

non-primary motion-sensitive areas, especially in the right temporo-parietal junction. A 

recent fMRI study has also confirmed the same feature-specific ‘asymmetry’ for spatial 

and nonspatial selective attention (Altmann et al., 2008). For a group of 12 listeners, the 

magnitude of feature-specific adaptation in motion-sensitive auditory cortical regions 

was influenced by whether attention was directed to location or to the spectrotemporal 

pattern, whereas adaptation in pattern-sensitive regions was not significantly modulated 

by the listening task. 

At least two different experimental approaches have been used to reveal the 

effects of selective attention in auditory fMRI studies. The least-controlled method 
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identifies any ‘general’ effect of attention by comparing an attention-demanding 

condition to a passive condition. In this type of experiment, the attention condition 

usually requires the participant to make a perceptual judgment, while the passive 

condition does not. Consequently, the resulting pattern of activity will include regions 

engaged in decision making and task execution, as well as selective attention. There are 

several auditory fMRI studies of this type (Ahveninen et al., 2006; Hall et al., 2000; 

Jäncke et al., 1999; Johnson and Zatorre, 2005). Better experimental control is achieved 

by effectively ‘subtracting away’ task-related differences by comparing two conditions 

that manipulate the focus of attention in different ways. We refer to this modulation as 

‘attention-specific’. Auditory fMRI studies of this type include those in which listeners 

are required to direct their attention to either one feature of an auditory object or another 

(Ahveninen et al., 2006; Altmann et al., 2008; Krumbholz et al., 2007) or to either an 

auditory object or a visual object (Degerman et al., 2006; Johnson and Zatorre, 2005; 

Johnson and Zatorre, 2006; Petkov et al., 2004). 

Despite the fact that the contrast which controls for other task-related activity is 

the preferred contrast for identifying attention-specific modulation in auditory cortex, 

we argue that it is important to also include the additional contrast comparing the 

attention conditions with passive listening. This argument is based on the context of a 

previous report. Specifically, Ahveninen et al. (2006) found, in the posterior auditory 

region not only an attention-specific effect of enhancement (comparing two active 

tasks), but also a general effect of enhancement (compared to passive listening). This 

finding would suggest a general elevation of the response during active listening that is 

perhaps not so indicative of an attention-specific effect. This type of interpretation could 

only be made by a study that includes both active and passive listening conditions.
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The same form of logic can be applied to examine the effect of suppression. One 

can investigate the general effect of suppression by comparing a passive condition to 

one in which participants attend to the stimulus feature that is not preferentially coded 

by the brain region of interest. Alternatively, one can measure the attention-specific 

effects by contrasting two conditions that differentially manipulate the focus of attention 

(i.e. attending to the stimulus feature that is not preferentially coded by the brain region 

of interest versus attending to the ‘best’ stimulus feature. To the best of our knowledge, 

this aspect of attentional modulation has not been examined by auditory fMRI, but there 

are some good examples of general suppression from the visual literature (Somers et al., 

1999; Tootell et al., 1998). 

Although most demonstrations of feature-specific enhancement are for non-

primary auditory cortical sites, not all studies report positive findings. For example in 

the study by Krumbholz et al. (2007) described above, there was no effect of attending 

to pitch in the pitch-sensitive areas. The null findings could be attributed to a range of 

methodological issues. In both studies by Petkov et al. (2004) and Krumbholz et al. 

(2007), the fMRI data were acquired at rather low resolution (voxel volume = 17.1 mm3

and 39.1 mm3, respectively) possibly chosen to maximize the signal-to-noise ratio on 

the 1.5 Tesla MR scanner. Furthermore in both studies, the continuous data acquisition 

(interscan interval = 2 s and 2.52 s respectively) generated an intense background noise 

that is known to particularly reduce the sensitivity to detect stimulus-driven activity in 

Heschl’s gyrus (Bandettini et al., 1998), the site of both frequency- and pitch-related 

activity. Interestingly, Krumbholz noted that the size of the attentional effect when 

attending to motion was greater (about twice as large) when the motion feature 

belonged to one of two auditory objects (presented as two concurrent streams) 
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compared to when only one auditory object was presented that contained both motion 

and pitch. This effect can be explained in part by suggesting that attending to a single 

object with multiple features confers a ‘same-object’ advantage to the unattended 

features (O'Craven et al., 1999). In addition, the biased competition model predicts a 

greater effect of attentional enhancement when two competing objects are present at the 

same time, than when only one object is present (Desimone and Duncan, 1995; Luck et 

al., 1997). The size of any feature-specific enhancement may also be influenced by the 

difficulty in detecting or discriminating the attended feature (Atiani et al., 2009; 

Boudreau et al., 2006). In some cases, the null results may be attributed to the relative 

ease of the perceptual discrimination for the nonspatial feature (Altmann et al., 2008; 

Krumbholz et al., 2007).

The present experiment re-examines the evidence for frequency-specific 

attentional modulation using a carefully designed methodology. The task was made 

sufficiently difficult by manipulating the perceptual salience of the target so that 

listeners would be required to selectively attend to one stream and ignore the other. This 

was separately verified in a small group of listeners whom completed both selective and 

divided attention versions of the task.  For the fMRI study, image acquisition was 

performed on a high-field 3 Tesla MR scanner using a high-resolution (voxel volume = 

5 mm3) scanning protocol in combination with sparse temporal sampling (interscan 

interval = 9 s, see Hall et al., 1999) to reduce the masking effects of the background 

noise. Frequency- and attention-dependent responses were mapped using the same two-

step procedure reported by Tootell et al. (1998) which employed passive and active 

tasks, respectively to control for task-related differences. In the present study, although 

we do consider the general effect of enhancement, we prefer the strict definition of the 
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‘attention-specific’ effect which controls for the potential contribution of task-related 

differences to the effect of attention by considering the spatial relationship between the 

activity associated with the auditory stimulus features of interest and the effects of 

directing attention to one auditory feature or another. In other words, feature-specific 

attentional enhancement is defined as a relative increase in neural activity in brain 

regions that are sensitive to the attended attributes of the stimulus compared to when 

attending to another attribute of the same stimulus that is not preferentially coded by 

that brain region. In summary, the main hypothesis concerned the evidence for feature-

specific attentional enhancement in the part of the tonotopic field best tuned to the 

frequency that was the focus of auditory selective attention. Conversely, we also tested 

the evidence for response suppression in the same part of the tonotopic field when 

attention was diverted towards the other auditory stream (i.e. attention was diverted ‘off  

best frequency’). 

Materials and methods

Participants

Six right-handed, normally hearing (≤25 dB SPL at 0.25, 0.50, 1, 2, 3, 4 and 8 kHz) 

participants were recruited. The group comprised three males and three females, aged 

19-29 years (mean = 24). The study was approved by the local Medical School ethics 

committee and all participants gave informed written consent. Four additional 

participants completed the behavioral screening, but their performance did not meet the 

inclusion criteria for the fMRI study. 

Stimuli 

The two concurrent auditory streams were each a 16-s stream containing a sequence of 

diotic narrowband 50-ms (5-ms onset and offset ramps) noise bursts. Both streams were 
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perceived at a central spatial position, but could clearly be segregated in frequency. The 

low-frequency stream had a centre frequency of 0.25 kHz (bandwidth = 223-281 Hz) 

and the high-frequency stream had a centre frequency of 4 kHz (bandwidth = 3564-

4490 Hz). Four-octave spacing was considered adequate for separating low- and high-

frequency-dependent responses within tonotopic fields of the primary auditory cortex 

(Howard et al., 1996). As well as frequency, each stream was defined by a particular 

rhythm. The ‘fast’ rhythm comprised clusters of four bursts. Within each cluster, bursts 

were separated by 50-ms intervals of silence and between each cluster the interval was 

250 ms. The ‘slow’ rhythm comprised single bursts separated by 550-ms intervals 

(Figure 1). 

The two rhythms were counterbalanced across low- and high-frequency streams 

to generate two stimulus conditions. Henceforth, when describing the stimulus 

conditions, we use the term ‘majority’ to refer to the sound frequency occurring in the 

fast rhythm and ‘minority’ to refer to the sound frequency occurring in the slow rhythm. 

This choice of terms reflects the relative difference in the proportion of each sound 

frequency within the stimulus condition. Computing the frequency-dependent activity 

relied on the different relative proportions of low and high frequencies in the different 

stimuli.

*** insert Figure 1 about here ***

Task

A 2x3 factorial design crossed the two stimulus conditions with three listening 

conditions, with the further addition of a silent baseline condition. In the passive 

listening and baseline conditions, participants were asked to “just listen”. During the 
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fMRI experiment this was indicated by a fixation cross (‘X’). Note that there were no 

targets in the stimulus conditions that were used for passive listening as we did not wish 

to inadvertently draw attention to one stream or another. 

Two further conditions directed attention either to the low-frequency stream or 

to the high-frequency stream (using the instructions ‘low pitch’ and ‘high pitch’, 

respectively). For the conditions that required directing attention to one of the streams, 

participants were required to perform a target-detection task in which the target was 

defined by an irregularity in the rhythm of the attended stream. The target in the 

majority stream occurred within the cluster and was defined by an inter-burst interval of 

80 ms. The target in the minority stream was defined by an inter-burst interval of 615 

ms. Piloting had shown that at these delays the target was detectable when attending to 

one stream, but was rather more difficult to detect when attending to the other stream. 

We reasoned that good performance would require sustained attention to the stream 

since targets could be detected only through a comparison between successive noise 

bursts and not the detection of isolated noise bursts. Each stream contained one or two 

targets and their occurrence was manipulated independently across the two streams. 

Sixteen different stimulus files were created for each experimental condition. Detection 

responses were recorded using an MR-compatible button box linked to the stimulus 

presentation computer for offline analysis.

Good task performance provides an objective marker for the ability to 

selectively attend to the target auditory stream. All participants completed two 30-

minute screening sessions in a sound-attenuating booth and we selected only those 

participants who achieved a d prime score ≥ of 2 in all four ‘attend’ conditions, 

presented in two sessions in a pseudo-randomized order. To confirm that selectively
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attending to the target stream whilst ignoring the concurrent stream was more beneficial 

to performance than dividing attention simultaneously across the two streams, three 

participants (#4, #5 and #6) completed a second version of the task in the booth. In this 

version, participants were asked to detect targets whenever they occurred in the low-

and high-frequency streams. Performance was directly compared to the selective 

attention version.

fMRI scanning was split into two 20-minute runs, each containing eight repeats 

of the six conditions and eight repeats of a silent ‘resting baseline’ condition. Sound 

files for each condition were presented in pairs, making each stimulus epoch 32 s in

duration. Otherwise, conditions were presented in a randomized order. Stimuli were 

presented at 92 dB SPL using a bespoke set of MR-compatible electrostatic headphones. 

The instructions were visually presented using fiber-optic goggles (Silent Vision SV-

7021, Avotec Inc.) mounted above the participant on the receiver head coil. 

fMRI acquisition

Participants were scanned using a Philips 3 T whole body MR scanner (Achieva/Intera 

Release 1.2/11) equipped with a an 8-channel SENSE head coil. The fMRI session 

lasted about 1 ½ hours. A sagittal whole-brain anatomical scan was first acquired 

(1x1x1 mm, 256x256 matrix, 160 slices, TR=8.2 ms, TE=3.7 ms). This scan was used 

to position the subsequent functional scans (1.5x1.5x2.5 mm, 64x64 matrix, 18 slices, 

TR=9000 ms, TE=55 ms1, flip angle = 90°) parallel to the Sylvian fissure with the 

central slice cutting through HG to maximize coverage of the supratemporal plane. To 

eliminate image artifact arising from the small field of view, saturation bands were 

positioned at the frontal and occipital poles roughly orthogonal to the imaging slice 

(Figures 2A and 2B). Each functional run contained 114 scans. 
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*** insert Figure 2 about here ***

fMRI analysis

Functional imaging data for each listener were first spatially transformed using standard 

procedures that are implemented in SPM2 software (www.fil.ion.ucl.ac.uk/spm). 

Individual time series were first motion corrected using rigid-body transformations 

(Cox and Jesmanowicz, 1999) to account for head movements both within and between 

the two runs using a central scan (i.e. the last scan of run 1) as a reference. Next the 

functional and anatomical scans were coregistered using a mutual information algorithm 

(Collignon et al., 1995; Studholme et al., 1998) to bring them into common alignment. 

To facilitate this step, a single 60-slice scan had been acquired in the same scanning 

session and using the same sequence parameters (except a shorter TE (i.e. 35 ms) to 

increase image brightness). This scan gave a greater field of view with which to better 

estimate the orientation of the functional data. For ease of localizing functional activity, 

image data were transformed into a standard brain space defined by International 

Consortium for Brain Mapping. In brief, the algorithm minimizes the sum of squares 

difference between the anatomical scan and a template scan by determining the 

optimum 12-parameter affine transformation and then by estimating the most 

appropriate nonlinear deformations based on a set of 3-dimensional discrete cosine basis 

functions (Ashburner and Friston, 1999). These same transformation parameters were 

applied to the functional scans. Normalized anatomical and functional scans preserved 

their original voxel resolution, although functional scans were smoothed using a 3 mm 

full-width at half-maximum (FWHM) Gaussian kernel to improve the signal-to-noise 

ratio.
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Functional data for each listener were then modelled within the framework of 

the general linear model (GLM), as implemented in SPM2. The design of the model

contained one regressor for each of the six experimental conditions, plus two additional 

regressors to account for the mean image intensity within each run. A high-pass filter 

with an 864-s (i.e. 0.001-Hz) cut-off was applied to the design to model low-frequency 

fluctuations in the time series. Comparisons between conditions estimated the statistical 

significance of each contrast with respect to within-subject variance.

*** insert Table 1 about here ***

Given the numerous statistical comparisons reported in the Results section, a 

detailed description of the contrasts is provided here in the same order as they are 

reported later. Initial analyses identified the low- and high-frequency dependent 

responses within tonotopically organised regions of the auditory cortex. To avoid any 

potential confound of attention, these analyses were applied to data acquired only 

during the passive listening state. The first of these contrasts (A>B, see Table 1) 

identified the low-frequency dependent response as those voxels showing a significant 

increase in activity for the sound condition containing a low-frequency majority stream 

compared to the sound condition containing a high-frequency majority stream. The 

second of these contrasts (B>A, see Table 1) identified the high-frequency dependent 

response in the converse manner. 

Given that the main experimental hypothesis concerned a strict definition of the 

attention-specific effect, what we term the ‘attention-specific enhancement’ of auditory 

cortical activity used an appropriate control for the potential contribution of task-related 

differences. By contrasting two conditions in which the participants were performing a 

target-detection task in the context of ignoring the second concurrent auditory stream, 
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we assumed that any task-related effects common to both conditions were subtracted 

away (Price et al., 1997). The first of these contrasts identified activity associated with 

directing attention to low frequencies. For this contrast, we selected the two low-

frequency majority sound conditions in which the focus of attention was directed to 

either the low-frequency or the high-frequency stream (C>E, see Table 1). The second 

of these contrasts applied the same logic to identify activity associated with directing 

attention to high frequencies (F>D, see Table 1). 

For comparison with some of the previous neuroimaging studies of selective 

attention (Ahveninen et al., 2006; Hall et al., 2000; Jäncke et al., 1999; Johnson and 

Zatorre, 2005), we also performed a subsidiary test of attention-related enhancement 

that was somewhat less stringent because it could not rule out the contribution of other

task-related differences between active and passive listening states. This comparison is 

subsequently referred to as ‘general enhancement’. Again two contrasts were 

performed; one for attending to the low-frequency stream (C>A) and one for attending 

to the high-frequency stream (F>B, see Table 1). Note that each of these contrasts 

compared the condition in which attention was directed to the majority stream with the 

passive listening condition for the same stimulus. 

The final test examined the evidence for response suppression. Theoretically

speaking, one might expect that when attention is directed to the high-frequency stream, 

processing resources will be diverted away from those parts of the tonotopic field that 

are sensitive to low frequencies. This effect could be detected by contrasting the 

experimental condition in which attention is directed to the high-frequency minority 

stream (E) with the passive listening condition for the same stimulus (A) like so, E<A

(see Table 1). Note that this interpretation of suppression is only valid for those auditory 
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cortical regions that have previously been defined as having a significant low-frequency 

dependent response. The second of these contrasts identified the effect of suppression in 

the high-frequency dependent response region (FDRR) caused by attending away from 

the high-frequency stream (D<B, see Table 1). Because these comparisons are not so 

conservative in their control for task differences, they are referred to as ‘general’ effects 

of suppression2. 

Due to the lack of a consistent voxel-wise mapping between anatomy and 

tonotopy across subjects, previous results reporting frequency-dependent activity have

typically been done so separately for each participant (e.g., Talavage et al., 2000; 2004; 

Formisano et al., 2003). One way to examine the evidence for consistent patterns of 

frequency-related activity across participants is to tabulate the results in terms of 

standardized coordinates of peak activity (e.g. Talavage et al., 2000). Another method is 

to construct incidence maps by summing binary versions of the individual uncorrected 

statistical maps (p<0.01, see Hall and Plack, 2009). Incidence maps are informative 

because they describe the distribution of suprathreshold activity across participants in a 

manner that is visually accessible. Incidence maps were created for the contrasts 

specified in Table 1. The color scale of the incidence map denotes how many of the six 

participants showed significant activity at that coordinate. When the data from the six 

participants are combined in this way, the likelihood of false positive errors is greatly

reduced. For example, the probability of activity in three out of six participants could be 

as small as 1.941 x 10-5. Basing an interpretation only on those results that are 

consistent across a proportion of the participants in the group reduces the multiple 

comparisons problem. In reality, the true probability value is influenced by the degree 

of spatial correlation across voxels and this cannot be precisely determined. A second 
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way in which the multiple comparisons problem was reduced was by restricting the 

number of voxels contributing to each incidence map. Maps showed only those voxels 

within anatomically specified borders (namely within a region encompassing the 

superior temporal gyrus and superior temporal sulcus, shown in Figure 2C).

Results

Target detection

A hit was considered to be a response made within two seconds after target offset. All 

other responses were taken as false alarms. Individual response bias was accounted for 

by calculating d prime measures of performance. To calculate correct rejections, each 

16-s sound sequence was divided into eight 2-s bins. The d prime analysis for targets in 

the low-frequency stream was modified to account for the masking of targets that 

coincided with the burst of scanner noise by simply excluding this event from the 

analysis. Targets that were excluded were four of the 24 targets from the condition in 

which participants attended to the low-frequency targets in the low-frequency majority 

stimulus and three of the 24 targets from the condition in which participants attended to 

the low-frequency targets in the low-frequency minority stimulus. The success of 

participant training is shown in Figure 3A. Overall mean performance reached a d prime 

of 3.6 (stdev = 0.8). Performance significantly declined in the MR scanner (Z=3.31, 

p<0.001, Wilcoxon signed ranks test), although it still exceeded the criterion d prime of  

≥ 2 (mean = 2.6, stdev = 0.8) (Figure 3B). After training, performance was not 

equivalent across all four conditions (p<0.05, Friedman test). Best performance was 

achieved when detecting high-frequency targets in the high-frequency majority stream 

and worst performance when detecting the same targets in the high-frequency minority 
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stream. The same trend was observed during fMRI, although this pattern was not 

significant (p>0.05).

*** insert Figure 3 about here ***

All three participants who performed both selective and divided attention 

versions of the task showed a consistent performance cost for the latter version (Z=2.20, 

p<0.05, Wilcoxon signed ranks test) (Figure 3C). The mean d prime cost was 1.2 (stdev 

= 0.4).

Frequency-dependent responses 

The incidence maps for the frequency-sensitive responses for low- and high-frequency 

sounds (A>B and B>A, respectively) across all six participants are shown in the top row 

of Figure 4. The most consistent frequency-dependent responses occurred in the area of 

primary auditory cortex on HG. Low frequencies primarily activated a strip across the 

posterior bank of HG. These peaks can be seen along the posterior (white) boundary of 

HG shown in Figure 4. The maximum incidence was 4 out of 6 on both left and right 

sides (x = -56, y = -13, z = 5 mm in left lateral HG and x = 51, y = -16, z = 6 mm in 

right central HG). These spatial co-ordinates were directly compared to the mean peaks 

of the frequency-dependent response regions (FDRR) reported by Talavage et al. 

(2000), after transformation into the same standard brainspace. A low-frequency site 

(named FDRR 1) was the closest peak and this measured 7 mm and 3 mm away, on left 

and right sides respectively. High frequencies mostly activated a focal site in the antero-

medial part of HG, with a peak incidence of 3 out of 6 on the left (x = -40, y = -22, z = 0 

mm) and 4 out of 6 on the right (x= 39, y = -21, z = 8 mm). Again, comparison with 
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Talavage et al. (2000) showed the closest peak to be a high-frequency site (named 

FDRR 2) and this measured 10 mm and 2 mm away, respectively. 

*** insert Figure 4 about here ***

Attention-specific enhancement by selective attention 

Next, we examined the effect of attention-specific enhancement (C>E and F>D). The 

incidence maps for these two contrasts are shown in the second row of Figure 4. 

Attention-specific enhancement was mainly restricted to primary auditory cortex. For 

the low frequencies, incidence peaks occurred in left lateral HG (x = -63, y = -19, z = 3 

mm) and in right central HG (x = 48, y = -12, z = 2 mm). For the high frequencies, there 

was high incidence in the antero-medial part of left HG (x = -39, y = -21, z = 0 mm) and 

central part of right HG (x = 48, y = -13, z = 0 mm), extending to the central portion on 

the right side. For these peaks, the incidence ranged from 4 to 5 out of 6. No other 

regions of consistent attention-specific enhancement were observed across the brain.

We observed reasonably good commonality between the peaks of incidence and the 

tonotopic scheme supporting the hypothesis that attention operates by enhancing the 

frequency-dependent response. For example, the shortest Euclidean distance between 

the peak of FDRR 1 and the corresponding peak of the low-frequency attention-specific

enhancement was 6 mm and between FDRR 2 and the corresponding high-frequency 

attention-specific enhancement it was a mere 1 mm. 

***Insert Table 2 and Figure 5 about here***

Incidence maps provide at best an illustrative guide to the degree of 

commonality because they represent data pooled across all six participants. To quantify 

the extent of this commonality more rigorously within each individual, the number of 
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suprathreshold (p<0.01) voxels was counted for each contrast of interest and the degree 

of overlap was computed across contrasts. To reduce the problem of multiple 

comparisons, this analysis was again restricted to voxels within the auditory cortical 

region of interest (shown in Figure 2C). The contrasts of interest were the frequency-

dependent response and the two effects of selective attention (i.e attention-specific and

general enhancement). Individual results are presented in Table 2 and mean results are 

reported in Table 2 and shown schematically in Figure 5. All participants demonstrated

significant attention-related responses for low- and high- frequency contrasts. For the 

low frequency contrasts, of those voxels that exhibited an attention-specific 

enhancement, on average 15% (107/722) were also sensitive to low frequency sounds 

(ranging from 3.9% to 33.7% across participants). For high-frequency contrasts, this 

proportion was similar (15% or 117/771; range = 1.6 to 31.7%). Note that the maximum 

incidence for attention-specific enhancement did not reach 6 out of 6 (second row, 

Figure 4) but this does not necessarily establish a lack of effect in some participants. 

Instead, the incidence data reveal simply that the effect was not present in everyone at 

any one particular voxel.

In general conclusion, while our results confirm the presence of feature-specific 

attentional enhancement when attention is directed to the best frequency for that voxel, 

this is true for only a subset of voxels. In all six participants, by far the greater

proportion of voxels showing attention-specific modulation occurred outside the 

frequency-sensitive regions, thus failing to support the strict definition of the attention-

specific, frequency-specific effect of selective attention.

General enhancement by selective attention 
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Next we considered the general effect of enhancement when attending to the low- and 

high-frequency streams (C>A and F>B, respectively). The incidence maps for these two 

contrasts are shown in the third row of Figure 4. In both cases, there was patchy but 

widespread activity involving both HG and planum temporale (PT). For the low 

frequencies, numerous incidence peaks occurred around central and lateral portions of 

the posterior bank of HG, each with an incidence of between 3 and 4 out of 6. For the 

high frequencies, three sites of consistent activity were noted. One in the antero-medial 

part of HG bilaterally (on the left, the peak of incidence was 6 out 6, x = -39, y = -24, z 

= 0 mm, and on the right it was 3, x = 42, y = -20, z = 3 mm); one in the left postero-

lateral part of HG with a peak of 4 (x = -57, y = -14, z = 5 mm), and one in the right 

postero-medial part of HG with a peak of 5 out of 6 (x = 54, y = -27, z = 10 mm). The 

limited choice of axial slices for display means that not all of the above peaks are 

clearly visible in Figure 4. However, we note that FDRR 1 generally demonstrated 

general attentional enhancement, albeit it with reduced incidence (2 out of 6). However, 

in the high-frequency site (i.e. FDRR 2), all six participants showed a general response 

enhancement on the left. 

Unlike the attention-specific enhancement, general enhancement occurred 

predominantly in regions beyond primary auditory cortex. Notable effects occurred

found in PT, consistent in at least 3 out of 6 participants. Activity here appeared not to 

be frequency-specific as it occurred for both low and high-frequency contrasts (e.g. in 

left PT, x = -48, y = -42, z = 25 mm and in right PT, x = 66, y = -36 z = 25 mm).

***Insert Figure 6 about here***

Preliminary analyses suggested some additional general enhancement in inferior 

frontal gyrus and insula bilaterally. For those unfamiliar with human neuroanatomy, the 
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approximate position of these areas is illustrated in Figure 6. Given that these prefrontal 

regions were outside our anatomically constrained hypotheses, statistical significance 

was assessed with caution. Specifically, a correction for false discovery rate (FDR)

(Genovese et al., 2002) was applied to the whole brain (p<0.05) for each individual low-

and high-frequency contrast. For inferior frontal gyrus (IFG), when new incidence maps

were created using the corrected threshold, enhancement for low and high frequencies

was most consistent across participants in the left hemisphere. The maximum overlap 

was 4 out of 6 and the coordinates of maximum incidence are reported in Table 3. Both 

peaks fell within Broca’s area (BA 44) (Amunts et al., 1999). For insula cortex, activity 

was reliably present in both hemispheres for low and high-frequency contrasts (see 

Table 3). 

General effect of suppression

The bottom panel in Figure 4 displays the incidence maps for the two general effects of 

suppression (E<A and D<B) in auditory cortex. These maps indicate no reliable general 

suppression within auditory cortex. 

***Insert Figure 7 about here***

Once again however, preliminary analyses suggested that effects of general 

suppression were present elsewhere in the brain. To examine this further, incidence 

maps were created using individual corrected T contrasts (false discovery rate, p<0.05). 

Non-auditory brain regions showing a reliable effect of suppression encompassed the 

posterior part of temporo-parietal-occipital junction (TPOJ) bilaterally and the 

precuneus and posterior cingulate cortex on the midline (Table 3 and Figure 7). Just like 

general enhancement, general suppression was frequency independent. Reliability of 
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these effects was demonstrated by the peak of maximum incidence which was typically 

4 out of the 6 participants.

Within these non-auditory regions, the pattern of activity was examined by 

quantifying the contribution of each stimulus condition (i.e. the effect size) to the 

overall variability in the fMRI signal. Effect size (β) is estimated for every voxel as part 

of the GLM and so it was possible to extract these values for all peak voxels reported in 

Table 3, separately for each participant. Summarizing these data across participants and 

across hemispheres, a pattern emerged that was consistent for both low- and high-

frequency contrasts in all three regions of interest. To illustrate this pattern, the data for 

the low-frequency contrast are displayed in Figure 7. The 95% confidence intervals 

around the mean enable the reader to visually interpret which conditions statistically 

differ. We observed that the effect of suppression arose from a significant inhibition of 

activity (negative effect size) during the attention-demanding conditions, relative to 

passive listening. The functional interpretation of this result will be discussed later. 

Discussion

The results from this sample of six participants support a mechanism of general auditory 

enhancement when the listening task required an ‘active’ perceptual judgement. In 

contrast to our original hypothesis, the most consistent result was that of a spatially 

extensive increase in activation that was frequency independent and involved both 

primary and posterior nonprimary auditory cortical regions. A proportional 

representation of the number of voxels that showed the different effects are summarized 

schematically in Figure 5. By far the greatest proportion of voxels in auditory cortex to 

show a significant attention-specific modulation in their response were those not

significantly sensitive to sound frequency. Nevertheless, our results also lend partial 
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support for an additional mechanism of frequency-specific enhancement in primary 

auditory cortex during auditory selective attention because there was reasonably good 

correspondence between the peaks of frequency-dependent activity and attention-

specific modulation. Moreover, the lack of any significant task-related suppression is 

consistent with the view that selective auditory attention is dominated by general and 

enhanced sound processing activity.

Task-specific enhancement in primary auditory cortex

The findings within the proximity of human primary auditory cortex are 

generally consistent with a wide range of electrophysiological data recorded in primary 

auditory neurons of awake, behaving animals. Many such studies demonstrate that 

active engagement in a listening task increases the reliability of auditory responses 

(Benson et al., 1981; Pfingst et al., 1977). A large number of studies have also reported 

positive effects in auditory cortex when manipulating attention (Benson and Hienz, 

1978; Fritz et al., 2003; Fritz et al., 2005; Hocherman et al., 1976; Hubel et al., 1959). 

In particular, a number of shock-avoidance, conditioning studies have shown a very 

rapid plasticity of frequency tuning in favor of the conditioned tone frequency (Bakin et 

al., 1990; Diamond and Weinberger, 1986; Diamond et al., 1989; Edeline and 

Weinberger, 1993; Edeline et al., 1993; Fritz et al., 2003; 2005; Ohl and Scheich, 1996).

For example, Fritz et al. (2003) demonstrated frequency-specific enhancement of the 

response during a number of attention-demanding tasks using tone stimuli. Although 

these authors used a very different stimulus, these electrophysiological results give 

support to the existence of frequency-specific attentional enhancement in primary 

auditory cortex. Moreover, they do not predict specific enhancement of neurons tuned to 

target frequencies, but rather a recruitment of neurons not precisely tuned to the 
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stimulus. Speculatively, this might be contributing to the lack of direct correspondence 

between sites of maximal frequency sensitivity and of attentional enhancement. 

We acknowledge that comparisons between electrophysiological and fMRI 

studies must be treated with caution. While the above animal studies reported task-

related effects in terms of enhanced action potentials, the present experiment reported 

task-related changes in blood-oxygen-level-dependent (BOLD) signal. The BOLD 

response is not necessarily correlated with the actual neural firing output of that region. 

In fact, it has been shown to be more typically associated with sub-threshold input to, 

and local processing within, a region because both of these processes place demands on 

energy metabolism (Logothetis and Wandell, 2004). Thus, single-unit recordings of 

action potentials and BOLD fMRI could measure different aspects of neural activity.

A number of electrophysiological studies in animals have also examined cortical 

responses to sequences of alternating tones (e.g. Bee and Klump 2004, Fishman et al., 

2001, 2004; Micheyl et al. 2005). The results support the notion that concurrent 

auditory streams, separated by large frequency differences, are represented in 

segregated populations of neurons. Human neuroimaging studies have also suggested

that the amount of auditory cortical activation differs according to whether the sound 

sequence is perceived as one or two streams (e.g., Gutschalk et al., 2005; Snyder et al., 

2006; Wilson et al., 2007). For example, when the repeating sequence segregated into 

two streams, fMRI activation was more sustained throughout the sequence duration and 

was larger in magnitude and extent than when the repeating sequence was heard as a 

single stream (Wilson et al., 2007). There is little basis for comparing these results with 

those from the present experiment because they were specifically concerned with the 
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neural basis of the streaming phenomena, while we simply used the streaming paradigm 

as a device for manipulating the focus of frequency-specific attention.

Although our data lend support to the hypothesis that attending to sound

frequencies can modify response properties in human auditory cortex, it is not possible 

to say at this point whether or not such activity reflects enhancement to attended 

auditory features or objects. While several studies (e.g. Krumbholz et al. 2007; Fritz et 

al. 2005) do appear to support the hypothesis that selective attention can operate at the 

level of object-based representations, evidence that uniquely supports the notion of 

object-based auditory selective attention is still lacking. The present data would be 

consistent with attributing the observed changes with task to a feature-based attentional 

mechanism, especially for those voxels in the vicinity of primary auditory cortex where 

neurons are sharply tuned to frequency.

No evidence for task-specific suppression in primary auditory cortex

Electrophysiological studies have suggested that two-tone discrimination not only to 

increases firing rate of frequency-specific responses in primary auditory cortex, but also  

decreases firing rate (suppression) in that spectral region of the STRF corresponding to 

the non-target reference tone (Fritz et al., 2005). Our fMRI results are somewhat 

difficult to reconcile with these findings because we did not find any significant or 

consistent suppression in auditory cortex. It is interesting to note that Fritz et al. (2007a) 

noted a qualitative difference between enhancement and suppression. While 

enhancement persisted over a relatively long time after the task was completed (up to 45 

minutes), suppression faded rather quickly. 

The effect of sound level on fMRI mapping of frequency-dependent responses
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In the present study, stimuli were presented at rather high sound levels and so it is 

worthwhile considering how this might influence the sensitivity to localising frequency-

specific effects within tonotopically organized areas of auditory cortex. Loud tones are 

well known to stimulate additional neurons tuned to adjacent frequencies. On the low-

frequency side in particular, tuning curves become progressively less sharply tuned with 

increasing sound level. Such an upward spread of excitation might be particularly 

expected to result in high-frequency regions responding to the low-frequency stimulus. 

While this certainly occurs, it does not unduly compromise our conclusions regarding 

the peak locations of low- and high-frequency dependent responses. First, the frequency 

separation between the low- and high-tones was about 4 octaves and so, even for sounds 

as loud as 92 dB SPL, the high and low-sensitive regions are unlikely to overlap 

considerably. Although the incidence maps did show a greater extent of activity for the 

low-frequency regions than the high frequency regions, nevertheless there was general 

separation between the two. Second, we note that in the present fMRI study ‘activity’ 

was defined as a differential (frequency-related) response between the low and high 

tones, not as a contrast between each tone condition and a silent baseline as had been 

done previously in our group (see Hart et al., 2002; 2003). A differential contrast is 

more sensitive to defining the peak of the frequency-related response and less sensitive 

to the tails of the response. 

The role of nonprimary auditory cortex and prefrontal cortex in attention-

demanding listening 

Our data indicate that non-primary auditory cortex (especially PT) was engaged by the 

attention-demanding listening task. Regions within PT were significantly activated by 

general attention and not by the attention-specific contrast. This pattern of results is 
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consistent with a role for PT in auditory selective attention, since one could argue that 

such attention is not required during passive listening but is required for all target-

detection conditions. Griffiths and Warren (2002) proposed that PT might play a key 

role in auditory scene analysis, and although they did not rule out its potential 

contribution to an auditory attentional network, they claimed that its computational role 

did not necessarily depend on attention. In the present study, the target-detection task

required stream segregation which is one form of auditory scene analysis. Therefore, 

while our data are certainly not inconsistent with this model, they cannot clearly 

distinguish whether the role of PT here is primarily one of stream segregation or 

whether it forms part of a general auditory attentional network.

Inferior frontal gyrus in the left hemisphere showed a similar pattern in its 

response, namely a reasonably consistent effect of general enhancement but no reliable 

attention-specific enhancement across the group. Given the status of prefrontal cortex as 

a hub for higher-order cognitive processes, we argue that it is unlikely to be the site of 

those neural computations required to parse different auditory objects within the scene. 

Instead, inferior frontal gyrus is one of a number of prefrontal regions that is 

consistently found to be recruited for solving a broad range of different cognitive 

problems, including aspects of perceptual discrimination, response selection, executive 

control, working memory, and problem solving (Duncan and Owen, 2000). It could be 

argued that all of these processes distinguish the active from the passive listening 

conditions. Likewise, activity in bilateral insula cortex was also enhanced during active 

compared with passive listening. While one of the main functions of the insula concerns 

the generation of subjective emotional experiences for sensory stimulation and for 

visceral states, this region has also been implicated in a range of attention-demanding 
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tasks (Altmann et al., 2008; Sridharan et al., 2008). It has been suggested that inferior 

frontal gyrus and insula play a co-ordinated role in providing an enhanced level of 

attention directed towards multimodal stimuli during difficult tasks (Downar et al., 

2001).

A putative cognitive role for TPOJ, precuneus and posterior cingulate cortex

Despite a lack of suppression in the auditory cortex, there was a reliable effect of 

suppression in a number of other regions arising from a negative response in all 

attention-demanding conditions. The functional significance of a negative response has 

been widely debated. There are a number of general proposals. One is that the negative 

response has a vascular origin in which passive decreases in arterial cerebral blood flow 

stem from a spatial redistribution of blood flow and a reduction in blood flow to 

nonstimulated brain areas (Harel et al., 2002). We suggest that, in our case the 

suppression is unlikely to reflect ‘blood steal’, since TPOJ precuneus and posterior 

cingulate cortex are all situated far from the auditory cortex and have no unique 

neurovascular links (Duvernoy, 1999). 

Another explanation is that the negative response reflects a genuine local 

reduction in neural activity relative to its intrinsic spontaneous level (Shmuel et al., 

2006). Although our indirect fMRI measure of brain activity cannot ascertain this for 

certain we favor this interpretation. We propose that the decreases might reflect the 

operation of a ‘default’ brain system that is highly active when the participants is at rest 

and deactivated when they are engaged in a task (Buckner and Vincent, 2007; Gusnard 

and Raichle, 2001). The default network involves precuneus and posterior cingulate 

cortex, and also prefrontal and lateral parietal regions. In a meta-analysis of nine 

neuroimaging studies of visual processing, Shulman et al. (1997) reported that this 
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default-mode network consistently included TPOJ. Our results extend these findings to 

suggest that the default-mode network is modality independent. Note that the other 

target region in prefrontal cortex was not within the volume of the functional scanning.

Footnotes

1 At the time of scanning, this value was considered to be the optimal echo time for 

auditory cortical grey matter using the chosen scanning sequence. Optimal TE is 

equivalent to the T2* relaxation rate and can be computed from a plot of MR signal 

intensity as a function of TE (T2* = -1/(gradient)). In practice, an error in our original 

calculations of the values generating the linear regression increased our estimate of the 

optimal TE. In itself, this does not invalidate our results since it was applied to all 

participants and to all stimulus conditions, but it perhaps does somewhat reduce the 

overall BOLD sensitivity.

2 Given the lack of any significant effects of general suppression in auditory cortex, we 

did not perform the more conservative analysis that would have controlled for task 

differences between active and passive listening states. 
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Table legends

Table 1 Summary of the main statistical contrasts used for testing the frequency-

dependent response, and for testing the effects of enhancement and suppression on the 

frequency-dependent response during the attention-demanding task.

Table 2 The number of suprathreshold (p<0.01) voxels showing combinations of the 

three main effects (frequency sensitivity, attention-specific and general enhancement). 

Voxel counts are reported separately for the six participants and averaged across the 

group. Note that data are pooled across left and right hemispheres.

Table 3 The peaks of maximum incidence for two of the putative effects of selective 

attention (general enhancement and general suppression) for the low- and the high-

frequency contrasts. Note that these peaks were observed in incidence maps that were 

generated from the individual contrast maps, FDR corrected (p<0.05). Abbreviations : 

IFG : inferior frontal gyrus, TPOJ : temporo-parietal-occipital junction, CC : cingulate 

cortex.

Figure legends
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Figure 1 Schematic diagram to represent the two concurrent sound sequences. Panel A) 

represents the stimulus condition with the low-frequency majority stream. Panel B) 

represents the stimulus condition with the high-frequency majority stream.

Figure 2 Panel A: The chosen orientation of the functional scan was parallel to the 

Sylvian fissure. This position is denoted by the black rectangle. Note that the field of 

view is smaller than the head and so to reduce the resulting Nyquist artefacts saturation 

bands, marked by the white rectangles, were placed at the anterior and posterior edges 

of the scan. Panel B: An example of the resultant functional scan showing the nulled 

MR signal at the temporal poles (top of the image) and the occipital lobe (bottom of the 

image). Panel C: The region encompassing the superior temporal gyrus and superior 

temporal sulcus (shown in white) defined the anatomical region of the interest for 

examining the incidence maps.

Figure 3 Target-detection performance (A) during training (B) in the MR scanner, for 

the four ‘attend’ conditions. The height of the bars indicate the average performance for 

all six participants, the symbols indicate individual performance. Panel (C) shows 

target-detection performance for the selective attention and the divided attention task for 

participants #4, #5 and #6 tested separately. L: Low-frequency majority stimulus.  H: 

high-frequency majority stimulus. 

Figure 4 Distribution of frequency sensitivity, attention-related enhancement, general 

enhancement and general suppression shown as an incidence map of activity for the six 
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listeners (p<0.01). The three horizontal slices are chosen to illustrate activity throughout 

the auditory cortex and the spread of activation can be viewed relative to the position of 

HG (outlined in white), and PT (outlined in yellow). The images in the left-hand 

column show the results for the low-frequency contrasts, and the images in the right-

hand column show the results for the high-frequency contrasts. 

Figure 5 Venn diagram displaying the number of suprathreshold (p<0.01) voxels 

showing the three main effects (frequency-dependence, general and attention-specific 

enhancement), separately for low- and high-frequency contrasts. Voxel counts show the

average across the six participants using the same values that are reported in Table 2. 

The area of the circles represents the proportional relationship between the extent of the 

different effects.

Figure 6 A schematic summary of the different regions of functional activity discussed 

in the text. Some regions are located on the cortical surface and these are shown on the 

lateral view. Other regions are located in the inner surface and these are shown on the 

medial view. The insular cortex is tucked away deeply in the Sylvian fissure.

Figure 7 Distribution of general suppression in TPOJ, precuneus and posterior 

cingulate cortex for the low-frequency contrast. This is shown as an incidence map 

displayed in sagittal and axial views for the six listeners, based on the individual FDR 

corrected (p<0.05) maps. The graphs for each region of interest show the average effect 

size for the voxels of peak incidence reported in Table 3. The error bars denote the 95% 
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confidence intervals. L: Low-frequency majority stimulus.  H: high-frequency majority 

stimulus.
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Table 1 Summary of the main statistical contrasts used for testing the frequency-

dependent response, and for testing the effects of enhancement and suppression on the 

frequency-dependent response during the attention-demanding task.

Statistical contrast Functional response
Just listen low-frequency
majority stimulus >
Just listen high-frequency
majority stimulus

A>B Low-frequency dependent
response

Just listen high-frequency
majority stimulus >
Just listen low-frequency
majority stimulus

B>A High-frequency dependent
response

Attend low-frequency targets 
in the low-frequency majority 
stimulus > 
Attend high-frequency targets 
in the low-frequency majority 
stimulus

C>E Attention-specific  
enhancement by selectively 
attending to low-frequency
stream

Attend high-frequency targets 
in the high-frequency
majority stimulus >
Attend low-frequency targets 
in the high-frequency
majority stimulus

F>D Attention-specific  
enhancement by selectively 
attending to high-frequency
stream

Attend low-frequency targets 
in the low-frequency majority 
stimulus >
Just listen low-frequency 
majority stimulus

C>A General enhancement by 
selectively attending to low-
frequency stream

Attend high-frequency targets 
in the low-frequency majority 
stimulus >
Just listen high-frequency
majority stimulus

F>B General enhancement by 
selectively attending to high-
frequency stream

Attend high-frequency targets 
in the low-frequency majority 
stimulus < Just listen low-
frequency majority stimulus

E<A General suppression by 
attending away from low-
frequency stream

Attend low-frequency targets 
in the high-frequency
majority stimulus < Just listen 
high-frequency majority 
stimulus

D<B General suppression by 
attending away from high-
frequency stream

Table(s)
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Table 2 The number of suprathreshold (p<0.01) voxels showing combinations of the 

three main effects (frequency sensitivity, attention-specific and general enhancement). 

Voxel counts are reported separately for the six participants and averaged across the 

group. Note that data are pooled across left and right hemispheres.

Table 3 The peaks of maximum incidence for two of the putative effects of selective 

attention (general enhancement and general suppression) for the low- and the high-

frequency contrasts. Note that these peaks were observed in incidence maps that were 

generated from the individual contrast maps, FDR corrected (p<0.05). Abbreviations : 

IFG : inferior frontal gyrus, TPOJ : temporo-parietal-occipital junction, CC : cingulate 

cortex.
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