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Abstract  

 
Morphometric study of modern ice masses is useful because many reconstructions of 

glaciers traditionally draw on their shape for guidance. Here we analyse data derived 

from the surface profiles of 200 modern ice masses—valley glaciers, icefields, ice caps, 

and ice sheets with length scales from 100 to 103 km—from different parts of the world. 

Four profile-attributes are investigated: relief, span, and two parameters C* and C% that 

result from using Nye’s (1952) theoretical parabola as a profile descriptor. C* and C% 

respectively measure each profile’s aspect ratio and steepness, and are found to decrease 

in size and variability with span. This dependence quantifies the competing influences of 

unconstrained spreading behaviour of ice flow and bed topography on the profile shape 

of ice masses, which becomes more parabolic as span increases (with C* and C% tending to 

low values of 2.5–3.3 m1/2). The same data reveal coherent minimum bounds in C* and C% 

for modern ice masses that we develop into two new methods of palaeo-glacier 

reconstruction. In the first method, glacial limits are known from moraines, and the 

bounds are used to constrain the lowest palaeo ice surface consistent with modern 

profiles. We give an example of applying this method over a three-dimensional glacial 

landscape in Kamchatka. In the second method, we test the plausibility of existing 

reconstructions by comparing their C* and C% against the modern minimum bounds. Of the 

86 published palaeo ice masses that we put to this test, 88% are found to be plausible. 

The search for other morphometric constraints will help us formalise glacier 

reconstructions and reduce their uncertainty and subjectiveness. 
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1. Introduction 

The evolving configurations of past glaciers and ice sheets played a key role in the 

Earth’s Quaternary environmental history, and various methods have been used to recons-

truct them from the landform record (see: Andrews, 1982; Kleman and Borgström, 1996). 

In these reconstructions, a common goal is to deduce the three-dimensional shape of an 

ice mass to gauge its volume and sea-level impact (Clark and Mix, 2000). Another goal is 

to estimate its equilibrium line altitude (ELA), and hence infer past climatic conditions 

(Sissons and Sutherland, 1976; Sutherland, 1984; Porter, 2001; Ballantyne, 2007a). Such 

inferences may be studied on a regional scale (e.g. Ballantyne, 1989; Stansell et al., 2007) 

and alongside other palaeo-environmental datasets (e.g. Mark et al., 2005); if extensive, 

they may also be used to test general circulation models (Allen et al., 2008). 

There have been numerous debates and developments on how best to estimate the 

ELA of palaeoglaciers from their surface topography (e.g. Meierding, 1982; Porter, 2001; 

Kaser and Osmaston, 2002; Benn et al. 2005; Osmaston, 2005). It is recognised, for 

instance, that a glaciologically-sensible method should account for the elevation 

dependence of glacier area, i.e., glacier hypsometry (Benn and Gemmell, 1997; Porter, 

2001; Kaser and Osmaston, 2002; Osmaston, 2005) and that this consideration is missing 

from the classic Accumulation-Area-Ratio method (Meier and Post, 1962) adopted by 

some studies (e.g. Balascio et al., 2005). However, the process of reconstructing the 

palaeo ice surface itself from geomorphological evidence is deeply uncertain, so that 

reconstructed topography could seriously misrepresent the palaeo ice masses. The lack of 

a definitive methodology in this inverse problem is well known (Sugden and John, 1976; 

Golledge and Hubbard, 2005) and is what motivates the present study. 

Given the margins of a palaeo ice mass at a certain time (e.g. delineated by 

moraines of a known age) and its bed topography, where was its surface and how thick 

was the ice? When additional clues from trimlines are absent (as in many accumulation 

zones), reconstructing the surface essentially involves extrapolation from the margins. 

 Published reconstructions usually take one of two approaches. On the one hand, 

many researchers have traditionally produced hand-drawn contour maps of palaeo ice 

surfaces (e.g. Fig. 1a) based on intuitions gained from the morphology of glaciers today 

(e.g. Sissons, 1980; Ballantyne, 1989; Benn and Ballantyne, 2005). This approach relies 

heavily on geomorphological evidence and not explicitly on glacier physics, and the 
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results depend on the practitioner’s skill―subjective notions and experience of what 

glaciers should look like. On the other hand, numerical models formulated from physics 

are now routinely used (e.g. Boulton and Hagdorn, 2006; Hubbard et al., 2006; Golledge 

et al., 2008) to stimulate three-dimensional ice masses (e.g. Fig. 1b) that evolve in time 

and respect geomorphological evidence. These models’ sophistication does not guarantee 

robust results, because some of their ingredients are debated (e.g. basal sliding law, 

anisotropy in ice rheology) and not all model parameters can be well constrained (e.g. 

palaeoclimate). Consequently, the two approaches continue to occupy their niche in the 

literature, although recent studies have used them together to improve the reliability of 

reconstructions (e.g. Golledge and Hubbard, 2005). 

The hand-drawing approach treats modern ice masses as analogues of palaeo ice 

masses, but this assumption is implicated also in the numerical approach, because models 

are inherently tuned to fit modern observations prior to their use in reconstructions. As 

modern ice masses inform both approaches, a morphometric analysis of them should 

prove beneficial; here we investigate this avenue. At least, the results may help 

practitioners of the former approach to formalise their methods. 

The specific idea is this: We assume that the surfaces of palaeo and modern ice 

masses have similar shape, and we measure the shape of modern ice masses to generate 

empirical data for guiding the reconstruction of palaeo ice surfaces. Various shape 

properties (e.g. slope, curvature) may be studied; for simplicity we explore those of 

surface profiles traced along the ice-flow direction. 

To our knowledge, a systematic analysis has not previously been made of the 

surface profiles of large samples of ice masses. In the following, Section 2 details the 

framework of our analysis, and Section 3 describes our data compilation, which involves 

selecting contemporary ice masses from satellite images, retrieving their topography from 

digital elevation models (DEMs), and sampling surface profiles from these DEMs. We 

record also the ‘glaciation style’ or ‘morphological type’ of each ice mass: whether it is 

classified as valley glacier, icefield, ice cap, or ice sheet. Interesting attributes of each 

profile include relief, length, and parameters measuring steepness and convexity (C* and 

C% introduced below). We diagnose trends among these in Section 4. It turns out that 

modern ice masses exhibit clear lower limits in the two ‘C-values’, allowing us to 

constrain the palaeo ice surface and glaciation style in reconstructions. Using this result, 



 4 

in Section 5 we develop a ‘minimum reconstruction’ tool and illustrate it through a case 

study in Kamchatka, far-eastern Siberia and by evaluating previously published glacial 

reconstructions. Conclusions and outlook are given in Section 6. 

2. A parametric model of ice-surface profiles 

The spreading motion of ice over land—thus an ice mass’s morphology—depends 

on its internal property (ice rheology), inputs and outputs (mass balance, governed by 

climate via accumulation and ablation), bed topography, and basal sliding conditions. 

Formal calculation of the ice surface requires solving the fluid mechanics of the ice flow, 

and even for the situation along flowlines this could be done using a hierarchy of models. 

At the complicated end are models consisting of the ‘full’ Stokes equations (Paterson, 

1994; p. 258-262), while popular until recently have been simplified versions of these 

equations based on the shallow-ice approximation (Hutter, 1983; Fowler, 1992). Still 

simpler models exist. In the following analysis we adopt one of the simplest models, due 

to Nye (1951, 1952).  

Our focus is not the ice-flow problem but the use of this classical model to fit 

observed surface profiles to yield a parametric description of them. Many profiles will be 

used to enable an extensive empirical analysis of modern ice masses, which has not been 

done before. Nye’s model is also used to estimate palaeo ice surfaces in the later part of 

the paper. Although any ice mass may be studied in these ways, model assumptions can 

limit their validity and how we interpret the results. We elaborate on our choice of Nye’s 

model in relation to this after first outlining its formulation. 

Nye’s (1951, 1952) model describes the cross-sectional profile of an ice mass 

lying on a horizontal bed. To capture the flow mechanics, it assumes that force gradients 

resulting from the surface slope of each vertical ice section are balanced by a constant 

basal shear stress τ0, which may be interpreted as the yield stress for flow to occur. Under 

this perfect-plasticity assumption, τ0 equals the driving stress, ρgh(dh/dx), where h is ice 

surface elevation, ρ is ice density, g is gravitational acceleration, and x is horizontal 

distance from the ice margin in the up-glacier direction. Solving the equation τ0 = 

ρgh(dh/dx) for h gives the parabolic ice-surface profile 
 

xCxh =)( ,        (1) 
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where the constant is 
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Fig. 2a shows this theoretical profile and our coordinate system. We denote by H the 

relief of the profile (difference between maximum and minimum elevations), and by L its 

length or span (for a symmetric ice sheet or cap this is halfway across). The parameter C 

describes the overall ‘stiffness’ of the flow (encapsulating ice viscosity and basal 

resistance) and can be found by fitting Eqn. (1) to the surface profile of a given ice mass. 

For example, Nye (1951) examined one east-west profile across the Greenland Ice Sheet 

and found C ≈ 4.8 m1/2, which corresponds to τ0 ≈ 105 Pa. 

We propose to fit Eqn. (1) to modern ice masses to find their H, L and C and look 

for trends among these morphological parameters. We then direct insights from this 

toward glacier reconstruction. Notably, if the data suggest a fixed C-value for specific ice 

masses, then we can use it in Eqn. (1) to back-extrapolate palaeo ice surfaces from term-

inal moraines; how such surface intersects with the three-dimensional bed also indicates 

the glaciation style. Theoretical profiles have been used before to recreate the Last Glacial 

Maximum ice sheets (Sugden, 1977; Hughes, 1981; Reeh, 1982).  

The Nye model has a well-known limitation that its assumption of a flat bed 

breaks down at short length scales where basal topography can influence the ice flow and 

surface topography strongly (Van der Veen, 1999; p. 149). This restricts its application to 

large ice masses, whereas for small ice masses a variant of it, called the ‘flowline model’, 

needs to be used. Like Nye’s model, the flowline model is independent of time, assumes 

perfect plasticity, and predicts an infinite slope at x = 0 (thus does not capture the shape of 

real ice margins); however, it improves on the Nye model by accounting for the bed 

topography b(x) so that the stress balance becomes τ0 = ρg(h–b)dh/dx. Given b(x) and the 

basal shear stress τ0, this equation can be solved for the palaeo ice surface by a numerical 

integration scheme that marches back from the margin (Schilling and Hollin, 1981), and a 

user-friendly computer implementation of this scheme (as an Excel spreadsheet) has 

recently been given by Benn and Hulton (2010). The flowline model may be used to 

reconstruct ice masses of any size; examples of this appear in the work of Locke (1995), 

Fredin (2004), and Rea and Evans (2007).  
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Despite this, we have reasons to prefer the Nye model over the flowline model 

here. Crucially, our proposed analysis requires fitting either model to ice masses to extract 

τ0 or C, but this cannot be done with the flowline model unless b(x) is known, and modern 

ice masses whose bed topography have been determined by radar sounding or other 

techniques are too few to enable a sufficient study. (While more measurements may allow 

the flowline model to be used, we leave this for future research.) The Nye model, on the 

other hand, requires only the ice surface to be known. Note that when using it to measure 

profile characteristics below, we are not claiming that real ice surfaces are parabolic.  

A second reason is that Eqn. (1) is already popular in the palaeoglaciological 

literature for checking the reconstructed shape of ice caps and ice sheets (e.g. Ballantyne 

et al., 2008). We introduce a new way of doing this in Section 5.3. 

A further reason derives from the Nye-model results—on hindsight. As we shall 

see, C varies substantially between modern ice masses so in fact there is no unique C-

value in Eqn. (1) for reconstructing surface profiles directly (Section 4.3). But modern C-

values may be used to deduce a profile that represents the lowest palaeo ice surface 

consistent with modern observations (Section 5.1). In this context, the Nye model acts as 

a purely parametric device and its limitation does not matter. Physically, though, the fact 

that C reflects flow ‘stiffness’ suggests that it could be interpreted (crudely) for factors 

like ice viscosity and basal resistance, and indeed we will analyse variations in our C-

value data for such controls. In this context the model limitation does matter: we bear in 

mind that the smaller is an ice mass, the more likely might basal topography corrupt its C-

value, and the more uncertain will be the physical interpretation. 

3. Data compilation 

3.1. Surface profiles of modern ice masses 

 We have extracted surface profiles from 200 ice masses ranging in scale from 

small glaciers (L ~ 100 km) to continental ice sheets (L ~ 103 km). Table 1 lists these ice 

masses and Fig. 3 locates them on a global map. Ice streams and known surging glaciers 

are excluded. Although it is impractical for us to include all ice masses on Earth today, 

our samples cover a broad range of latitudes, climatic and elevation zones, and polar and 

mountain environments. In fact, since we are more interested in the variety of the 

morphology of ice masses than their average shape, our chief concern is not whether each 
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ice mass is regionally representative, but the number of samples in our dataset. We 

believe our sample size to be adequate for the purpose here because certain envelopes of 

our data (Section 4) seem to be stable. Worldwide glacier recession may introduce a bias 

on the shape of modern surface profiles that affects their use in palaeo reconstructions; we 

discuss this caveat alongside the assumption of modern analogues in Section 5. 

 For each ice mass, we first used Landsat ETM+ satellite imagery (15-m 

resolution) to identify its margin, and as mentioned before we classified it morpholog-

ically as a valley glacier, icefield, ice cap, or ice sheet. This was done according to 

published definitions in the World Glacier Inventory (National Snow and Ice Data Center, 

1999); where inventory data of the ice mass is lacking, we relied on our own 

interpretation of the Landsat imagery. Next we retrieved digital elevations of the area, by 

using 90-m resolution data from the Shuttle Radar Topography Mission (SRTM) if the 

area lies between 60ºN and 56ºS, or by using 1-km resolution Global Topographic Data 

(GTOPO30) if it lies above 60ºN or below 56ºS. The low resolution of the latter data is 

sufficient because our polar ice masses have length scales much greater than 1 km. (The 

recently available ASTER Global Digital Elevation Map also suits this work, but our data 

collection had finished long before its release in June 2009.)  

 From the digital elevations, surface profiles (x, h data) were extracted along 

flowlines that we traced by following the direction of the maximum surface slope. The ice 

margin on each profile is used as the elevation datum and positioned at x = 0, h = 0. For 

each valley glacier, we measured 3 profiles from the snout as far as the valley headwall; 

and for each ice sheet, ice cap, or icefield we measured 10 profiles linking the ice margin 

to interior divides in different directions. Such sampling allows the calculation of mean 

shape parameters for each ice mass later. Our dataset includes 160 valley glaciers and 40 

ice fields/caps/sheets, so a total of 880 surface profiles were measured. 

3.2. Profile shape parameters 

 Because a typical real surface profile is not precisely parabolic, there are different 

choices of fitting Eqn. (1) to it. We employ two methods, each yielding a C-value that 

reflects a different aspect of the profile. The idea is illustrated in Fig. 2b.  

The first method involves a two-point fit that uses (x, h) data at the ends of the 

profile only, i.e., the margin and its furthest (and highest) point. Thus we calculate 
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L

H
C =*          (3) 

 

(following from Eqn. (1)), where L and H denote the profile’s span and relief, as before. 

The parameter C* may be thought of as an aspect ratio of the profile (similar in spirit to 

H/L, the mean slope) but has the unit m1/2 and is therefore not dimensionless. 

The second method ‘best’ fits Eqn. (1) to the entire surface profile by minimising 

vertical errors (in h) in a least-square sense, while forcing the fit through the ice margin. It 

yields a coefficient of determination, r2, as well as the profile shape parameter, which we 

denote by C%. 

As Fig. 2b shows, we expect C% and C* to have the same order of magnitude for a 

given surface profile. C% will be approximately equal to C* for convex profiles that closely 

resemble a parabola, but much less than C* for concave or less convex profiles. Note that 

neither the ice thickness nor the bed topography enters these calculations.  

 After performing these fits to all of the collected profiles, we gathered L, H, C*, 

and C% for all profiles pertaining to each ice mass and averaged each parameter to form our 

dataset (this is listed in columns 6–9 of Table 1). From now on it is understood that these 

parameters describe the mean surface morphology of an ice mass.  

4. Modern ice masses: morphometric analysis 

 We proceed to examine the H, L, C*, and C% data (Table 1) for patterns that might 

reveal distinguished characteristics about the surface profiles of modern ice masses. In 

this section, our analysis leads us to discover empirical constraints on C* and C%, which we 

later fashion into a glacier-reconstruction tool in Section 5. 

4.1. Relief and span 

 As reconstructions typically begin with knowledge of the distances between 

terminal moraines and inferred ice divides, we query how other parameters vary with the 

span L. Fig. 4 plots relief H against L, using different symbols for glaciers, icefields and 

ice sheets/caps. In roughly this order, these morphological types cover a continuum of 

length scales over three orders of magnitude. There are few large ice masses so the data 

thin out considerably at the high end of this range.  

Not surprisingly, large ice masses have high relief, but a weak correlation between 

H and L precludes reliable reconstruction of palaeo surface relief from span. Despite this, 



 9 

the data occupy a wedge emanating from the plot origin with tentative upper and lower 

boundaries (Fig. 4b). This suggests recasting them in some ratio involving powers of H 

and L, such as C* (= H/L 0.5), and brings us to consider the C-values. 

4.2. C-values and their latitudinal distribution  

 One could expect polar ice masses to be stiffer (have higher C) than equatorial 

ones because low surface temperatures favour cold, high-viscosity ice. However, 

complicating this argument are the ice thickness and velocity, which, through their effect 

on englacial heat transfer, influence whether an ice mass is temperate- or cold-based, thus 

whether basal sliding can occur. Coupled to this is also subglacial hydrology, and we will 

see that basal topography can affect the C-values. Regardless of the details, this consider-

ation motivates a search for a latitudinal dependence of C* and C%.  

We do this in Fig. 5, alongside the comparison of C% against C* in Fig. 6 which 

shows that typically C* > C% for all morphological types. Polar ice sheets and caps have 

almost equal C* and C% for their near-parabolic surface profiles; in contrast, many low-

latitude valley glaciers display large differences between C* and C%, reflecting more 

concave profiles. Although the data in Fig. 5 do not populate the hemispheres equally, C* 

and C% decrease towards both poles and a north-south symmetry is apparent. The upper 

and lower bounds of the C-values also drop toward the poles, with the lowest values 

attained by large ice sheets: Greenland, East Antarctica and West Antarctica have C* as 

low as 3.1 m1/2 , 3.1 m1/2 and 2.7 m1/2 respectively, whereas the smallest equatorial/mid-

latitude value of C* still exceeds 5 m1/2. These trends are opposite to the expectation based 

on latitudinal control on surface temperature. We postpone their explanation to the end of 

Section 4.3, and focus first on the bounds in the C-values. 

4.3. Dependence of C-values on span 

Figs. 7 and 8 plot C* and C% versus L for modern ice masses, showing a large 

scatter but some clustering in the data. Ice sheets and caps have the lowest (and least 

variable) C-values whereas valley glaciers have the highest (most variable) C-values; 

icefields seem intermediate between these groups. As span increases, C* and C% decrease 

in size and vertical range (variability). These patterns lead to several important results. 

 First, there are sharp lower bounds in both C-values, with the lowest such bounds 

(2.7 m1/2 for C*, 2.5 m1/2 for C%) achieved by ice sheets and caps. For valley glaciers such 
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bounds also exist but take higher values (5.2 m1/2 for C*, 4.1 m1/2 for C%). Because valley 

glaciers and ice sheets/caps range differently in span, these data reveal an upward 

transition in each lower bound as L decreases. If we ignore morphological distinction, the 

bounds may be summarised empirically as curved ‘envelopes’ given by the equations  
 

 C*
MIN = 3.835 – 1.165 tanh 
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where L is in metres and C*
MIN and C%MIN are the minimum C-values. These approximate 

envelopes (see Figs. 7 & 8) have been designed with the hyperbolic tangent function to 

bring out smooth transitions around L ~ 10–50 km. 

 Second, C* and C% have upper bounds that decay with span, especially for valley 

glaciers (Figs. 7 and 8a). To explain this, we recognise that while bed topography is not 

accounted for by the Nye model, it can influence the surface profiles of small ice masses. 

Notably, for glaciers whose thickness is much less than their bed-elevation range, this 

range will dominate their relief H so that a steep bed causes high C-values. As the Earth’s 

relief rarely exceeds a few kilometres, H is also limited. These arguments imply a theor-

etical maximum for C*: if we suppose the Earth’s relief to be at most 2 km (adjustable, 

order-of-magnitude estimate) and equate it to H, then Eqn. (3) gives C*=2000/√L. It is 

seen that this envelope mimics the decay in Fig. 7a, attesting the effect of bed topography 

in our data. In this explanation, ice masses overlying flat basal topography will experience 

less enhancement in their C-values. It follows that bed-slope differences may also 

underlie the large variability in C* and C% for small ice masses with similar span. 

The situation for the large ice masses is different. Figs. 7 and 8 show that alth-

ough Antarctica and Greenland contribute only three data points, their C* do not follow 

(nor fall below) the theoretical decay 2000/√L, and their C* and C% occupy a narrow range 

(2.5–3.3 m1/2). For L > tens of km’s, there is a striking absence of high values of C. Also, 

the surface profiles of ice masses at this size are nearly parabolic because the best fits to 

find their C% have high r2 (>0.8; Fig. 8b), and C*≈C%. These results show that the shape of 
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large ice masses reflects a pure ‘unconstrained spreading’ flow that is basically unaffected 

by bed topography (which makes sense because thick ice drowns basal roughness). 

Following these ideas, the observed transitions in the lower bounds of C* and C% 

can be taken to mean that, for small ice masses, bed topography is able to increase C* and 

C% above their lowest values (for unconstrained spreading) even when it is as subdued as 

possible. Such ‘residual’ effect can be explained because most small glaciers, icefields 

and ice caps exist in mountain regions, where influence from bed slopes and valley sides 

is unavoidable. However, to quantify why the effect takes hold as L drops through 105 to 

104 km and raises the C-values by ≈2 (almost doubling them) requires morphometric 

analysis of mountain landscapes that goes beyond the scope of this paper. 

In summary, we think that three key factors govern the C-values of modern ice 

masses: (i) their ‘pure’ spreading behaviour (controlled by ice viscosity and basal mech-

anics, e.g. sliding), which ideally yields C*, C% ≈ 2.5–3.3 m1/2; (ii) their bed topography, 

whose presence tends to increase C* and C%; and (iii) their size (the effect of (ii) becomes 

stronger as L decreases). The latitudinal plots in Fig. 5 can be understood in terms of 

these factors. Because ‘stiffening’ of ice by cold polar temperatures does not cause higher 

C-values, this effect must be offset by factors (ii) and (iii). In fact, we expect these factors 

to become more important as we go towards lower latitudes because the ice masses 

generally reduce in size. The observed patterns in Fig. 5 are consistent with this idea. 

5. Glacial reconstruction with C-values 

Our ‘modern’ data are now used in the problem of reconstructing palaeo ice 

masses whose span is known from landform evidence. We focus on the C vs. L relations 

in Figs. 7 and 8. To reiterate, our central assumption in this paper is that palaeo ice 

masses look like modern ones, and this suggests two uses of the data. An obvious use is to 

validate reconstructions: the surface shape of palaeo ice masses should have C* and C% 

falling within the modern data populations, otherwise they fail the analogy and could be 

viewed as implausible. In Section 5.3 we put published reconstructions to this test. 

But first we investigate a forward method which uses the data to guide recon-

struction directly (Section 5.1). Although the scatter of C* and C% in Figs. 7 and 8 means 

that these parameters cannot be reliably estimated from span (except perhaps for the 

largest ice masses), their upper and lower bounds could be exploited. We reject the upper 

bounds here for their uncertain dependence on bed slope. However, we use the lower 
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bounds C*
MIN and C%MIN—calculated via Eqns. (4) and (5)—in two steps, each 

constraining different aspects of the palaeo ice surface, to form what we call a ‘minimum 

reconstruction’. Section 5.2 then applies this method to an area in Kamchatka.  

5.1. Forward method 

Step 1: Constraining palaeo ice-surface relief 

 Consider a glaciated mountain terrain in sectional view (Fig. 9). The section is 

chosen to cross the lowest col in the area of interest and is based on map- or DEM-

elevations taken along palaeo ice-flow directions indicated by striations, streamlined 

bedforms, or (more crudely) valley axes. (Thus the section is not necessary a plane and 

may project as a curve in plan view.) Moraines dating to the same glaciation have been 

identified on both sides of the col. All distances in the section are known. 

 Did the palaeo ice mass submerge the col when its snout reached the moraines? 

To answer this, consider first the moraine on one side (Fig. 9a), whose horizontal distance 

from the col in the section is L. After evaluating C*
MIN(L) with Eqn. (4), we use Eqn. (3) 

with C=C*
MIN to construct a parabola extending from the moraine (dashed in Fig. 9a). 

Because C* derives from a two-point fit and parameterises relief (Section 3.2), the 

elevation where the parabola reaches the col (at x = L) indicates the lowest ice-surface 

relief there (HMIN). Thus we calculate 
 

 *
MIN MIN ( )H C L L=         (6) 

 

and compare HMIN to the col–moraine height difference (Fig. 9a). We conclude that the 

col was ice-covered if the profile crosses above the col, but was either ice-free or ice-

covered (an indeterminate case) if the profile crosses below the col. 

More generally, consideration of moraines from different sides of a col may 

suggest different results. The highest minimum constraint is then taken, as only one 

parabola needs to cross above the col to imply its submergence by ice. Fig. 9 illustrates 

three possibilities for the two-moraine system (indeterminate in 9a, submergence in 9b & 

9c). Note that this method of minimum constraints cannot establish for certain that a 

given col was ice-free. Also, since moraines ‘dated to the same age’ still suffer dating 

uncertainty, the method requires a palaeoglaciologist’s assumption that they synchron-
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ously delimit a glacial event. (This may not matter if the ice masses on different sides 

were disconnected because the col was ice-free, but we do not know that.) 

If the ice mass is large or its bed topography is subdued, so that thick ice may 

have submerged the col, careful interpretation of geomorphological indicators of ice-flow 

direction would be necessary to determine the ice-divide position, which may be offset 

from the col by a long way. In this case, the choice of L for each moraine should be based 

on the ice divide, not on the col. 

Step 2: Constraining the ‘minimum surface’ and glaciation style 

Next we use the (best-fit) shape parameter C% to constrain the palaeo ice surface 

between each moraine and the col. This is important for determining the glaciation style 

(valley glacier, icefield, or ice cap/sheet), a three-dimensional property that is not strictly 

inferrable from the last step, although it is true that an ice-free col would suggest separate 

valley glaciers on different sides and an ice-covered col would rule this out. Knowledge 

of the three-dimensional palaeo surface also enables the calculation of ELA, where a 

correctly identified glaciation style is critical (Golledge, 2007).  

 With L defined as before for each moraine, we evaluate C%MIN(L) from Eqn. (5) and 

use Eqn. (1) (Nye’s model) with C=C%MIN, that is, 
 

 MIN MIN( ) ( )h x C L x= ɶ ,      (7) 

 

to construct the lowest plausible surface trajectory hMIN, where x points up-glacier from 

the moraine in the section. In three dimensions, this trajectory lies in a (curved) vertical 

section, and we extend it laterally to form the minimum palaeo ice surface. Specifically, 

we build such surfaces from different moraines to form a composite minimum surface to 

see how this intersects the bed topography of the region. If the composite surface lies 

above much of the bed, we infer an icefield or ice-cap glaciation style; if it lies below the 

bed to expose many ridges and headwalls as well as nunataks, then the glaciation style 

remains indeterminate but a valley-glacier morphology cannot be ruled out. This 

procedure is explained through an example in the next Section. We emphasise our use of 

Eqn. (7) as a guide: While it identifies any reconstructed palaeo surfaces with C% < C%MIN to 

be implausible, it does not imply that the palaeo surface was exactly parabolic in shape. 
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5.2. Case study in Kamchatka, far-eastern Siberia 

 The region of interest here (Fig. 10) lies at the southern end of the Sredinny 

Mountain Range in Kamchatka and is part of our ongoing study of the glacial history of 

the area (Barr et al., 2007; Barr, 2009; Barr and Clark, 2009). The Kamchatka peninsula 

has abundant glacial geomorphological evidence. It constitutes the largest glaciated area 

in northeast Asia today (Solomina and Calkin, 2003) and was glaciated extensively during 

the Late Quaternary, but the precise extent, timing, and style of glaciation remain 

uncertain (Bigg et al., 2008 and references therein). Deciphering these variables will help 

unravel the palaeoclimate of East Siberia and the North Pacific. 

 Fig. 10 shows our steps of arriving at a minimum glacial reconstruction for the 

area. We have previously mapped moraines from the SRTM digital elevation data (Barr 

and Clark, 2009), and Fig. 10a shows two moraines, M1 and M2, on the two sides of the 

range. Shown also are inferred centre ice-flow lines and hydrological catchments upvalley 

from the moraines. Lacking information on local trimlines, we wish to constrain the 

palaeo ice cover associated with M1 and M2. We do not know the age of these moraines 

but assume that they relate to the same glacial phase for this reconstruction. 

 As outlined before, we first use the C* data of modern glaciers (based on two-

point fits through their surface profiles) to constrain the minimum palaeo ice-surface near 

the col. The results, found with Eqn. (6) in the longitudinal section of each catchment, are 

marked by two crosses in Fig. 10b. The upper cross indicates that the col must have been 

submerged by >120 m of ice, which in turn suggests an ice cap or icefield may have 

covered the higher topography in the area. Valley-glacier style glaciation can be ruled out. 

The next step uses the C% data of modern glaciers (which best-fits parabolas to their 

surface profiles) to constrain the continuous ice surface in each catchment. This is done 

with Eqn. (7), and Fig. 10b shows the resulting minimum parabolas. In this case, the 

parabola stemming from M2 predicts an ice-covered col, thereby also ruling out valley 

glaciers. Fig. 10b shows a complete minimum ice surface formed by joining the parabolas 

across the divide constraint by hand. When this is projected in three dimensions and 

extended sideways until it meets the valley walls (straightforward to do in ArcGIS), it 

produces the ice cover in Fig. 10d. Because this ‘ice mass’ expresses a minimum 

constraint, we are not worried that its planform looks unusual (wide main trunk fed by 
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narrow catchments), and neither have we curved its surface contours deliberately to make 

them look realistic. The actual palaeo surface is expected to lie above this surface. 

We are left to wonder whether the palaeo ice mass was an icefield or ice cap, and 

for estimating its ELA we need to know its surface topography. We therefore move away 

from constraints here and consider what our modern dataset tells us to be ‘typical’; by this 

we mean that the ice mass’s C-values should land among the modern values. We first 

identify the approximate range of modern C-values at the relevant spans (46.1 km for 

catchment 1, 21.1 km for catchment 2), as shown by the vertical grey bars in Figs. 7a and 

8a, and we choose C* and C% from halfway up each range (a tentative, non-unique choice). 

Nye parabolas are then constructed in both catchments to find surface profiles and divide 

elevations, yielding four estimates in total (Fig. 10c). Although these do not agree, 

pragmatically we draft a surface profile to best accommodate them. Fig. 10e shows the 

plan view of this reconstruction, which indicates an icefield by the extensive intersections 

of its surface with sidewalls. This icefield’s ELA is 944 m if we apply the Balance-Ratio 

Method (Furbish and Andrews, 1984; Benn and Gemmell, 1997), assuming a balance 

ratio of 2. (In this method, which uses the known glacier hypsometry and the assumed 

ratio between linear mass-balance gradients below and above the equilibrium line, the 

ELA takes a value that ensures zero overall balance for the glacier.) 

In this example, alternative reconstructions could be made by the traditional hand-

drawing approach, but without elevation constraints from trimlines this is difficult and 

uncertain. Our reconstructions, guided by modern data, are more objective. Reconstruct-

ions can also be made via the flowline model (Section 2) but require trimline positions 

again, if not an assumed basal shear stress (Benn and Hulton, 2010). It follows that 

extensive empirical analysis of the basal shear stress for modern ice masses—as done 

here for C in Nye’s model—will also benefit reconstructions using the flowline model. 

5.3. Assessing published reconstructions 

 In this final analysis, we examine the plausibility of 86 palaeo ice masses from 

around the world (Table 2) by comparing their shape with modern ones. Published in 

peer-reviewed literature, these ice masses were chosen mainly for the availability of 

information regarding their three-dimensional surface, but some of them have consider-

able palaeo-glaciological significance too. Among their reconstruction approaches are 4 

examples of flowline modelling, 1 example of numerical ice-sheet modelling, 1 example 
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of glacio-isostatic inversion, and 2 examples of the use of theoretical surface profiles; the 

rest used the hand-drawing approach.  

For each ice mass, the method in Section 3 was used to extract surface profiles 

(typically from map contours) and derive the mean span L and C-values. Fig. 11 plots C* 

and C% against span for all 86 ice masses, showing also modern data in the background. 

Reassuringly, 88% of them plot among the modern populations and above the minimum 

envelopes (C*
MIN and C%MIN); their profile shape is thus ‘plausible’ for being indisting-

uishable from those of the modern ice masses. Below the envelopes, however, plot 10 

palaeo ice masses (numbered in Table 2 and Fig. 11). Two of these are reconstructions of 

the Laurentide Ice Sheet—these are probably acceptable because their data plot only 

slightly below the envelopes, which are themselves approximate. Of the remaining 8 

palaeo ice masses, all from Scotland, two are icefields (including the Drumochter 

Icefield; see Fig. 1a), three are cirque glaciers, and three are ‘saddle glaciers’ that spill 

into opposite valleys from relatively small source areas situated on topographic highs.  

What could have caused these outliers? If we assume that the 8 ice masses had 

their extent reliably constrained by (well-dated, correctly-assembled) moraines, trimlines, 

and other landforms in the reconstructions, then our analysis shows their surface profiles 

to be anomalously shallow. One reason for this is underestimation of their maximum 

elevation. In the lack of geomorphic evidence at altitude, which is common, this elevation 

is difficult to fix, and we think that it is more likely for reconstructionists to suppose 

thinner ice that exposes some bed topography, than thicker ice that submerges the bed 

everywhere (the maximum elevation would then be a guess). Such tendency would lower 

C* and C%.  In this connection, in McDougall’s (2001) reanalysis of the glacial cover in the 

central Lake District, England during the Loch Lomond Stadial, he pointed out that many 

palaeo icefields could have been reconstructed incorrectly as cirque and valley glaciers. 

More generally, the tendency discussed here may mean that many of the palaeo C-values 

in Fig. 11 may be biased, reduced systematically from the modern data. 

5.4. Limitations 

Although our preceding results would seem to challenge the credibility of some 

published reconstructions, we raise important caveats. First, our modern data may not 

encompass the full range in L–C space, and we welcome efforts to collect more ice 

masses to resolve the envelopes more accurately. Other morphological measures besides 
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the C-values should also be investigated. Moreover, the possibility should not be over-

looked that all of the 86 palaeo ice masses are in fact correct, but fundamental 

glaciological and climatic differences exist between palaeo and modern ice masses to 

decouple their C-values. If this is true, the use of modern analogues in reconstructions 

(and so central to this paper) is itself called into question. We leave this outstanding 

philosophical issue for future research to tackle. For these reasons, it is best to label 

implausible reconstructions meanwhile as ‘unlikely’, and certainly not ‘wrong’. 

Another caveat relates to transient glacier response to changing climate, which 

could potentially have changed the modern C-values in ways that complicate their use in 

reconstructions. Many modern ice masses worldwide, notably valley glaciers, have 

experienced thinning and/or frontal retreat under regional warming; it is unknown how 

much the corresponding adjustments in ice-surface profiles modified C* and C% from their 

values for steady-state ice masses. Thinning and frontal retreat, respectively, would cause 

underestimation and overestimation of modern C* and C%, while frontal retreat decreases L 

and shifts the modern data in Figs. 7, 8, and 11 towards the left. In a complete (long-term) 

response, combined thinning and frontal retreat of an ice mass would have effects on the 

C-values that cancel partially, although these processes may differ across ice masses as 

well as across different stages of the transient response (one process may dominate 

initially), and we acknowledge that our data collection (Section 3.1) does not quantify 

these processes. Nevertheless, any resulting numerical bias on C* and C% is expected to be 

small; even if significant, it does not invalidate our proposed reconstruction tools because 

numerical ice-flow models of the transient evolution can (in principle) be used to correct 

bias due to the establishment of characteristic profiles during glacier advance and retreat. 

We also note that the caveat raised here applies generally to other reconstruction 

approaches. Practitioners who use the hand-drawing method or flowline model rarely 

recognise the dynamism of modern ice masses when deriving data for their analogue (of 

shape or basal shear stress), or recognise explicitly whether their reconstructed ice masses 

are equilibrium forms. These considerations should stimulate further work that refines the 

use of analogues in palaeo-glacier reconstructions. 

6. Conclusions   

In this paper, we have analysed the shape of modern ice masses, focusing on the 

relationships between their horizontal scale (span, L) and two parameters, C* and C%, that 
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characterise the relief and steepness of their surface profiles. The C-values derive from 

using Nye’s plastic ice-sheet model as a parameterisation. Our data yield insights on the 

morphology and flow of ice masses globally (Section 4). As their size increases, their 

profiles become more parabolic because the effect of bed topography becomes dominated 

by an ‘unconstrained spreading’ tendency of ice flow. Thus, C* and C% of the largest ice 

masses tend towards 2.5–3.3 m1/2, but, for smaller ice masses, are higher and more 

variable (Figs. 7 and 8). Although the competing influences of flow and basal roughness 

on glacier morphology may seem obvious, our dataset quantifies this competition and its 

scale-dependence for the first time. 

Importantly, the discovery of minimum bounds in C* and C% (Eqns. (4) and (5)) led 

us to develop practical methods for constraining glacier reconstructions (Section 5). 

Given past glacial limits, these bounds allow us to estimate the lowest palaeo ice surface 

consistent with the modern variety of surface profiles, and this also constrains the corres-

ponding palaeo glaciation style and ELA. Used in a different way, the bounds can 

adjudicate the plausibility of reconstructions. While minimum constraints may seem less 

powerful than absolute ones, we emphasise that glacier reconstructions have inherent 

uncertainties, so it is as important to recognise these as to strive towards unique results. In 

our Kamchatkan case study, for instance, the ‘typical’ reconstruction (Fig. 10e) would 

change markedly had we chosen different values of C* and C%, but the range of these 

parameters in Figs. 7 and 8 informs us reliably of the range of acceptable reconstructions. 

Viewed in this light, directional (maximum/minimum) constraints can be very valuable, 

and we advocate searching for more of them. The design of new tools using them to 

reduce the subjectivity of reconstructions has considerable potential, and could also 

involve more glacier physics than has been used in the current study. 

Morphometric analyses are common in many areas of geomorphology for 

enabling (i) rigorous descriptions of forms and (ii) tests of physical understanding against 

observations. While not new in glaciology, they should be explored further. Hitherto, 

size-volume scalings have been used to predict the sea-level impact of glaciers (Bahr et 

al, 1997), and ELA estimation has long relied on glacier area properties (see Benn et al., 

2005). This paper has pursued the same spirit. Besides properties of surface profiles along 

flow lines, many other attributes of the complex shape of ice masses may be investigated 

(e.g. three-dimensional surface curvature, the topology of glacier networks). Studying 



 19 

them is now timely, given a recent explosion in the availability of new datasets that can 

resolve the Earth’s surface elevation at unprecedented resolution and accuracy. 
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Captions of Figures and Tables 

Figure 1 

Examples of glacial reconstructions from the literature. (a) A map of the Loch-Lomond 

Stade icefield in the West Drumochter Hills, Scotland, reconstructed from geomorphol-

ogical mapping by the ‘hand-drawing’ approach (figure redrawn from Fig. 9 of the paper 

by Benn and Ballantyne (2005)). Dashed lines on the icefield locate surface profiles that 

have been used to derive the shape parameters in entry no. 4 in Table 2. (b) A 

numerically-computed surface topography of the British-Irish Ice Sheet at 17 ka (reprod-

uced from Fig. 14 of the paper by Boulton and Hagdorn (2006)).  

*** We seek permission with Quaternary Science Reviews to reproduce panel (b) 

while this paper is under review. *** 

 

Figure 2 

Mathematical symbols and definitions used in this paper. (a) Nye’s (1951, 1952) 

theoretical parabola, as given by Equation (1). (b) Two ways of fitting the parabola to a 

sampled ice-surface profile (with sample points shown by dots). A two-point fit (upper 

dashed line) yields the shape parameter C*; a best fit (lower dashed line) yields the shape 

parameters C%. Note that x is distance up-glacier along a flowline (which usually describes 

a curve in plan view). 

 

Figure 3 

Location of the 200 modern ice masses from which surface profiles were extracted for the 

analysis of this paper. See Table 1 for the morphological data of these ice masses. 

 

Figure 4 

(a) Relief H against span L for the modern ice masses of our dataset. (b) Enlargement of 

panel (a) for 0 ≤ L ≤ 60 km. This range excludes the three data points shown in (a) for 

East Antarctica and West Antarctica and Greenland. In both panels, symbols identify 

different types of ice masses. 
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Figure 5 

Latitudinal distribution of (a) the shape parameter C* (deriving from two-point fits of 

surface profiles) and (b) the shape parameter C% (deriving from best fits of surface 

profiles) for the modern ice masses of our dataset.  

 

Figure 6 

Relation between the shape parameters C% and C* for the modern ice masses of our dataset. 

Most data points fall under the dashed line, in the region C* > C%. 

 

Figure 7 

(a) The (two-point fit) shape parameter C* plotted against span L for the 200 modern ice 

masses of our dataset. L is in logarithmic scale. The cluster of three data points at the 

lower right of the plot derive from the Antarctic and Greenland Ice Sheets. The solid line 

and dashed line, respectively, are the lower and upper envelopes discussed in Section 4.3. 

Vertical grey bars show the approximate ranges of C* used later in the reconstruction of 

Fig. 10. (b) Enlargement of panel (a) for 0 ≤ L ≤ 60 km (linear scale). Data for ice sheets 

and ice caps have been ignored. 

 

Figure 8 

(a) The (best-fit) shape parameter C% against span L for the 200 modern ice masses of our 

dataset. L is in logarithmic scale. The cluster of three data points at the lower right of the 

plot derive from the Antarctic and Greenland Ice Sheets. The solid line is the approximate 

lower envelope of the data C%MIN(L), discussed in Section 4.3. Vertical grey bars show the 

approximate ranges of C% used later in the reconstruction of Fig. 10. (b) Average r2-values 

of the best fits for the surface profiles of each ice mass that yield the corresponding shape 

parameter C% in (a). 
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Figure 9 

Minimum constraints in glacier reconstruction for a mountain topography. Given moraine 

position M and its horizontal distance from the col, L, the equation HMIN = C*
MIN√L (with 

C*
MIN given by Eqn. (4)) is used to find the minimum palaeo ice-surface elevation at the 

col (HMIN uses the moraine elevation as datum). A cross marks the minimum elevation 

thus inferred from each moraine. Crosses associated with different moraines (M1 and M2) 

are used to judge whether the ice mass submerged the col. For the three scenarios, we 

conclude that (a) yields an indeterminate result whereas ice submerged the col in (b) and 

(c). Note that the sectional view is made along palaeo flowlines or valley axes, thus it is 

not necessary planar and may project as a curve in plan view. 

 

Figure 10 

Glacial reconstruction with C-values, applied to an area of the Sredinny Mountains in 

Kamchatka near 54˚N, 157˚E. (a) Mapped moraine positions M1 and M2, catchment 

boundaries (solid), and valley axes (dashed) overlaid on shaded SRTM digital elevations. 

Inset shows study-area location in Kamchatka. (b) A minimum reconstruction of the 

palaeo ice-divide elevation (crosses) and palaeo ice surface (parabolas) in a sectional 

view containing the valley axes. The method of Section 5.1 is used. In each catchment, 

the moraine elevation serves as datum for the minimum divide relief (HMIN) and 

minimum surface relief (hMIN). We calculate these by using Eqns. (6) and (7) with L = 

46.1 km, C*
MIN = 2.67, C%MIN = 2.54 for catchment 1, and L = 21.1 km, C*

MIN = 3.67, C%MIN 

= 3.34 for catchment 2. Dashed line has been added by hand to complete the minimum ice 

surface. (c) A ‘typical’ reconstruction of the palaeo ice-divide elevation (crosses) and ice 

surface (parabolas) in the sectional view. The equations HTYP = C*√L and hTYP = C%√x are 

evaluated with L = 46.1 km, C* = 5.1, C% = 4.5 for catchment 1, and L = 21.1 km, C* = 7.2, 

C% = 6.5 for catchment 2. Dashed line has been added by hand to complete the typical ice 

surface. (d) Plan view of the minimum ice cover (white) computed by laterally extending 

the hMIN-parabolas in (b). (e) Plan view of the typical ice cover (white) computed by later-

ally extending the hTYP-parabolas in (c). This result indicates an icefield glaciation style. 
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Figure 11 

Comparison of the surface-profile parameters of 86 palaeo ice masses from the literature 

(listed in Table 2) with those of modern ice masses. (a) A plot of the shape parameter C* 

against span L. (b) A plot of the shape parameter C% against span L. In both panels, solid 

dots locate palaeo ice mass data, grey symbols locate the data of 200 modern ice masses 

from Figs. 7 and 8, and the data points numbered 1 to 10 identify palaeo ice masses 

whose C* falls below the minimum envelope C*
MIN(L) in Eqn. (4). The same numbering 

system is used in Table 2. 

 

 

 

Table 1 

Geographical coordinates and morphological data of 200 modern ice masses whose 

surface profiles were analysed in this paper. Columns 6 and 7 show the mean span (L) and 

relief (H) of multiple profiles extracted from each ice mass. 

 

Table 2 

Palaeo ice masses in published reconstructions, and parameters L, C* and C% for their 

surface profiles. Entries are ordered by decreasing span (L). Shaded entries have C% < 

C%MIN. Methods in column four are: 1 = Hand drawing (observing geomorphic constraints 

and using modern ice masses as analogues), 2 = iterative flowline modelling, 3 = glacio-

isotatic numerical inversion, 4 = three-dimensional thermo-mechanically coupled 

numerical ice sheet model, 5 = parabolic profiling. 
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 1 

Table 1. Geographical coordinates and morphological data of 200 modern ice masses whose surface profiles were analysed in this paper. 

Columns 6 and 7 show the mean span (L) and relief (H) of multiple profiles extracted from each ice mass. 

 

Geographical region Name of ice mass (if known) 
Morphological   
type 

Latitude Longitude Span, L (km) Relief, H (m) 
C* (m

1/2
) C   (m

1/2
) 

Antarctica East Antarctic Ice Sheet Ice Sheet  see Fig. 3 see Fig. 3 1164 3234 3.1 3.0 
 West Antarctic Ice Sheet Ice Sheet  see Fig. 3 see Fig. 3 393 1636 2.7 2.5 
Greenland Greenland Ice Sheet Ice Sheet  see Fig. 3 see Fig. 3 629 2296 3.1 3.3 
         
South America Quelccaya Ice Cap Ice cap -13.92 -70.81 2.0 345 7.2 6.5 
 North Patagonia Icefield Icefield -46.86 -73.52 37.2 1326 7.0 6.1 
 South Patagonia Icefield Icefield -48.93 -73.46 36.2 1348 7.7 7.2 
 — Valley Glacier -9.11 -77.57 4.3 930 14.3 7.3 
 Kinzl Glacier (Chopicalqui) Valley Glacier -9.07 -77.59 3.8 701 11.4 5.8 
 — Valley Glacier -9.35 -77.38 3.7 1096 18.1 12.7 

 — Valley Glacier -9.36 -77.34 3.2 952 16.9 13.9 
 — Valley Glacier -9.09 -77.55 3.0 796 14.5 10.7 

 — Valley Glacier -9.23 -77.50 2.8 1182 22.4 22.2 
 — Valley Glacier -9.18 -77.51 2.8 695 13.0 8.5 
         
New Zealand Murchison Glacier Valley Glacier -43.53 170.28 10.7 832 8.0 5.7 
 Fox Glacier Valley Glacier -43.51 170.11 10.3 1821 17.9 14.9 
 Franz Josef Glacier Valley Glacier -43.46 170.18 7.4 1686 19.6 16.9 
         
Iceland Vatnajökull Ice Cap 64.42 -16.68 41.1 1004 5.0 4.4 
 Hofsjökull Ice Cap 64.80 -18.82 17.7 839 6.3 5.5 
 Langjökull Ice Cap 64.64 -20.15 10.6 518 5.0 4.8 
         
Russian Arctic Novaya Zemlya Ice Cap 75.81 61.97 37.6 720 3.7 3.4 
         
Canadian Arctic Penny Ice Cap, Baffin Island Ice Cap 67.25 -66.06 33.0 1184 6.6 5.5 
 Barnes Ice Cap, Baffin Island Ice Cap 70.04 -73.62 24.9 562 3.6 3.6 
 Sydkap Ice Cap, Ellesmere Island Ice Cap 76.87 -85.68 17.6 721 5.5 5.0 
 Devon Ice Cap, Devon Island Ice Cap 75.16 -82.26 3.2 462 6.9 6.0 

 Aktineq Glacier, Bylot Island Valley Glacier 72.95 -78.79 27.2 1121 6.7 4.7 
 Sermilik Glacier, Bylot Island Valley Glacier 72.95 -78.14 23.7 1091 7.2 5.2 
         
Alaska Juneau Icefield Icefield 59.01 -134.41 28.3 1404 8.5 7.0 
 Harding icefield Icefield 60.00 -150.01 19.5 991 7.3 7.1 
 Sargent icefield Icefield 60.29 -148.60 15.4 996 8.3 7.5 
 Grewingk-Yalik Glacier Complex Icefield 59.54 -150.85 10.6 844 8.3 7.5 

 Mt. Douglas-Fourpeaked Glacier Complex Icefield 58.83 -153.60 8.9 881 9.3 6.9 
 Kahiltna Glacer Valley Glacier 62.79 -151.29 57.0 1648 6.9 5.1 
 Steller Glacier Valley Glacier 60.39 -143.63 56.9 1482 6.2 5.0 
 Nabesna Glacier Valley Glacier 61.96 -143.04 51.5 1187 5.2 4.6 
 Ruth Glacier Valley Glacier 62.75 -150.62 42.7 1296 6.3 4.6 
 Harvard Glacier Valley Glacier 61.63 -147.57 33.1 1159 6.4 4.6 
 — Valley Glacier 61.36 -148.33 30.0 1192 6.9 4.8 
 — Valley Glacier 61.57 -141.90 26.9 954 5.8 4.1 
 — Valley Glacier 61.60 -146.89 26.6 870 5.3 4.1 
 Copper Glacier Valley Glacier 62.12 -143.75 17.8 1171 8.7 5.8 
 Trimble Glacier Valley Glacier 61.70 -152.13 16.8 985 7.6 7.0 
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 — Valley Glacier 61.20 -148.44 14.8 752 6.2 5.6 
 — Valley Glacier 60.12 -149.24 7.0 646 7.7 7.3 

 — Valley Glacier 60.26 -149.14 5.2 689 9.6 8.8 
 — Valley Glacier 60.18 -149.27 4.4 447 6.7 6.1 
 — Valley Glacier 60.18 -149.13 3.8 520 8.4 6.3 
 — Valley Glacier 60.30 -149.04 2.9 853 15.9 13.6 
 — Valley Glacier 60.18 -149.20 2.9 459 8.6 8.4 
Alaska (South) Mendenhall Glacier Valley Glacier 58.49 -134.54 51.1 1570 6.9 6.6 
 Baird Glacier Valley Glacier 57.14 -132.67 38.8 1399 7.1 6.3 
 Dawes Glacier Valley Glacier 57.48 -132.73 25.5 1178 7.4 6.9 
 Mud Glacier  Outlet Glacier 57.01 -131.91 9.8 643 6.5 4.9 
         
Canada Coast Mountains (North) Cambria Icefield Icefield 55.88 -129.68 10.8 1004 9.1 8.2 
 Flood Glacier Valley Glacier 57.16 -132.06 22.7 949 6.3 5.5 
 Salmon Glacier Valley Glacier 56.16 -130.07 20.4 1406 9.8 8.6 
 Great Glacier  Valley Glacier 56.85 -131.89 19.5 1029 7.4 6.8 
 Frank Mackie Glacier Valley Glacier 56.32 -130.15 18.9 1160 8.4 7.4 
 Knipple Glacier Valley Glacier 56.42 -130.00 14.0 1095 9.2 8.2 
 Berendon Glacier Valley Glacier 56.24 -130.10 6.8 753 9.1 8.0 
 Leduc Glacier Valley Glacier 56.20 -130.33 5.3 550 7.5 5.9 
         
Canada Coast Mountains (South) Homathko Icefield Icefield 51.08 -124.56 12.4 1086 10.0 9.1 
 Silverthrone Glacier Valley Glacier 51.43 -125.83 30.1 1421 8.2 7.1 
 Breccia Glacier  Valley Glacier 51.28 -125.34 21.8 1594 10.8 9.7 

 Smoking Canyon Glacier  Valley Glacier 51.33 -125.06 13.2 797 6.9 5.6 
 Bert Glacier  Valley Glacier 51.24 -125.11 8.7 1182 12.7 11.8 
 Gilbert Glacier Valley Glacier 50.84 -124.09 7.5 843 9.7 9.1 
 Falcon Glacier Valley Glacier 50.83 -124.19 7.3 910 10.6 8.5 
 Esdras Glacier Valley Glacier 50.87 -124.20 5.3 587 8.1 7.3 
 Eridanus Glacier Valley Glacier 50.85 -124.02 4.6 763 11.3 9.8 
         
Canadian Rockies Clemenceau Icefield Icefield 52.19 -117.82 7.2 1233 14.8 12.3 
 Columbia Icefield Icefield 52.14 -117.30 6.9 1016 13.0 10.7 
 — Valley Glacier 52.42 -118.00 3.9 1011 16.1 14.4 
 — Valley Glacier 52.44 -118.02 3.6 576 9.5 7.6 

         
Alps Aletschgletscher Valley Glacier 46.47 8.06 15.7 1178 9.4 8.8 
 Glacier du Tacul (Mer de Glace) Valley Glacier 45.88 6.93 11.0 1812 17.3 11.8 
 Fieschergletscher Valley Glacier 46.50 8.14 9.9 1278 12.8 11.1 
 Glacier de Leschaux (Mer de Glace) Valley Glacier 45.89 6.96 9.6 1581 16.1 9.7 
 Glacier d’Argentière Valley Glacier 45.95 6.98 9.0 1469 15.5 14.9 
 Unteraargletscher Valley Glacier 46.56 8.19 8.9 692 7.3 6.0 
 Glacier de Tré-La-tête Valley Glacier 45.78 6.78 6.5 1237 15.4 11.4 
         
Caucasus Karagom Glacier Valley Glacier 42.80 43.72 9.9 1904 19.2 17.2 
  Tcey Glacier Valley Glacier 42.75 43.84 6.2 1399 17.8 14.1 

  Aylata Glacier Valley Glacier 42.95 43.22 5.6 1058 14.2 12.3 
 Bartuy Glacier Valley Glacier 42.83 43.62 4.4 980 14.8 10.0 
  Songuti Glacier Valley Glacier 42.81 43.81 4.3 1156 17.7 11.5 
         
Tibetan Plateau / Kunlun Mtns. / Qilian Mtns. Guliya Ice Cap Ice Cap 35.30 81.46 10.4 764 7.8 6.1 
 Puruogangri Ice Cap Ice Cap 33.91 89.14 8.0 591 6.7 5.4 
 Dunde Ice Cap Ice Cap 38.09 96.43 3.4 498 8.2 7.1 
 West Kunlun Shan Glacier Complex Icefield 35.35 80.96 18.0 932 6.9 6.1 
 Monuomaha Icefield 36.03 90.96 7.9 603 7.4 6.1 
 Geladandong Icefield 33.41 91.13 6.8 469 5.8 5.0 
 Gaergangri–Gaqiadirugang Complex Icefield 33.46 90.88 5.2 435 6.1 5.0 
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 Malan Icefield 35.82 90.70 4.5 408 6.2 5.3 
 Jinyang Gangri Icefield 35.61 89.74 4.3 425 6.5 5.7 

 — Icefield 33.41 91.53 4.2 407 6.3 5.5 
 Kangzhagri Icefield 35.56 89.58 3.8 416 6.8 6.2 
 — Icefield 33.93 90.68 3.6 373 6.5 5.7 
 Dongkemadi Icefield 33.11 92.06 3.6 355 6.1 5.2 
 Shulenanshan Glacier Complex Icefield 38.48 97.73 2.9 414 7.3 6.2 
 — Icefield 36.12 90.11 2.7 379 7.4 6.3 
 — Icefield 35.82 91.94 2.5 321 6.5 5.7 
 — Icefield 35.88 91.45 2.5 373 7.6 6.7 
 — Valley Glacier 38.19 96.18 5.8 480 6.3 5.5 
 — Valley Glacier 38.20 96.14 5.5 411 5.6 4.7 
 — Valley Glacier 38.19 96.28 5.5 472 6.4 5.9 

 — Valley Glacier 36.59 91.16 5.3 390 5.4 4.7 
 — Valley Glacier 38.20 96.22 4.4 380 5.7 4.8 
 — Valley Glacier 38.53 97.86 4.2 399 6.1 5.3 
 — Valley Glacier 38.71 97.24 4.2 412 6.4 5.6 
 — Valley Glacier 38.73 97.19 3.9 386 6.2 5.0 
 — Valley Glacier 38.20 96.12 3.8 329 5.3 4.4 
 — Valley Glacier 36.61 91.21 3.8 335 5.5 4.9 
 — Valley Glacier 38.19 96.33 3.1 413 7.4 6.6 
 — Valley Glacier 36.23 91.95 2.7 300 5.9 4.8 
 — Valley Glacier 38.21 96.01 2.1 274 5.9 5.0 
 — Valley Glacier 38.23 96.10 2.1 288 6.2 5.9 

 — Valley Glacier 38.19 96.39 1.8 259 6.2 5.4 
 — Valley Glacier 38.19 96.36 1.8 280 6.7 6.1 
 — Valley Glacier 38.74 97.23 1.6 221 5.5 4.6 
 — Valley Glacier 38.37 95.93 1.3 337 9.3 7.5 
 — Valley Glacier 38.38 95.88 1.0 304 9.5 7.7 
 — Valley Glacier 38.38 95.90 0.9 295 9.9 8.6 
 — Valley Glacier 38.37 95.94 0.9 312 10.6 8.1 
         
Tien Shan North Inylchek Glacier Valley Glacier 42.23 79.97 52.7 1603 7.0 4.5 
 South Inylchek Glacier Valley Glacier 42.16 80.11 49.6 1738 7.8 5.6 
 Tuomur Glacier Valley Glacier 41.89 79.95 30.8 1689 9.6 7.8 

 Karagul Glacier  Valley Glacier 42.26 80.46 27.9 1397 8.4 6.8 
 Tugbelchi Glacier Valley Glacier 42.17 80.41 25.9 1410 8.7 6.5 
 Muzart Glacier Valley Glacier 42.32 80.83 24.6 1164 7.4 6.1 
 Kayndy Glacier Valley Glacier 42.09 79.71 23.3 1220 8.0 6.2 
 Mushketova Glacier Valley Glacier 42.29 79.90 19.5 1020 7.3 5.2 
 Qong-Tailan Glacier (West) Valley Glacier 41.92 80.20 18.0 1387 10.3 7.4 
 Semenov Glacier Valley Glacier 42.33 80.02 14.5 824 6.8 5.6 
 Keqike-Tailan Glacier (West) Valley Glacier 42.02 80.37 13.4 943 8.1 5.8 
 Ayransu Glacier Valley Glacier 41.91 79.82 12.9 1275 11.2 8.1 
 Qong-Tailan Glacier (East) Valley Glacier 41.98 80.26 12.2 1004 9.0 6.3 
 Kolpakovsky Glacier Valley Glacier 42.08 78.28 11.1 961 9.1 8.2 

 Qong-Kozibai Valley Glacier 42.00 80.60 11.0 803 7.6 6.2 
 Keqike-Tailan Glacier (East) Valley Glacier 41.98 80.48 9.4 1483 15.2 9.9 

 North Karasai Glacier Valley Glacier 41.80 78.23 8.4 673 7.3 5.8 
 Dzhamasu Glacier Valley Glacier 41.90 78.36 8.3 802 8.8 7.0 
 Metallurg Glacier Valley Glacier 42.15 78.49 6.0 673 8.7 7.8 
 East Boroko Glacier Valley Glacier 42.12 78.38 5.9 657 8.5 7.6 
 Dzhangarttinbashi Glacier Valley Glacier 41.64 78.90 5.9 561 7.3 6.0 
 Kotortor (South) Glacier  Valley Glacier 42.04 78.20 5.6 416 5.5 5.0 
 Kayndy Glacier (Ak-Shirak Range) Valley Glacier 41.78 78.32 5.6 581 7.7 5.6 
 — Valley Glacier 42.33 79.81 5.4 686 9.3 7.4 
 Saiktor Glacier Valley Glacier 41.72 79.10 5.2 491 6.8 5.4 
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 — Valley Glacier 42.33 79.84 5.2 671 9.3 7.3 
 East Kiche Bordu Glacier Valley Glacier 42.14 78.45 5.0 991 14.0 10.5 

 Chuloktor Glacier Valley Glacier 41.70 79.02 4.8 654 9.4 8.3 
 — Valley Glacier 42.04 78.17 4.8 487 7.1 6.0 
 — Valley Glacier 42.33 79.88 4.4 571 8.6 7.0 
 Kichik Saiktor Glacier Valley Glacier 41.71 79.05 4.3 521 7.9 6.4 
 East Ontor Glacier Valley Glacier 42.19 78.48 4.3 782 12.0 9.1 
 — Valley Glacier 41.66 78.93 4.2 484 7.4 6.7 
 South Bordu Glacier Valley Glacier 41.79 78.15 4.1 537 8.3 6.9 
 West Kiche Bordu Glacier Valley Glacier 42.14 78.43 3.9 836 13.3 11.2 
 — Valley Glacier 42.32 79.94 3.7 586 9.7 7.8 
 — Valley Glacier 42.32 79.91 3.6 520 8.7 7.2 
         
Himalaya Kanchenjunga Glacier Valley Glacier 27.78 88.13 21.2 1319 9.1 5.8 
 Zemu Glacier Valley Glacier 27.74 88.25 20.1 1031 7.3 6.1 
 Gyabrag Glacier Valley Glacier 28.17 86.58 18.0 1117 8.2 5.2 
 Kangshung Glacier Valley Glacier 27.98 87.02 16.7 1131 8.8 6.8 
 Yarlung Glacier Valley Glacier 27.62 88.06 16.5 981 7.6 5.0 
 Nangpa-Lunag Glacier Valley Glacier 28.01 86.57 15.0 836 6.8 4.1 
 Ngozumpa Glacier Valley Glacier 28.00 86.69 14.1 1029 8.7 4.6 
 Gyachung Kang Glacier Valley Glacier 28.15 86.75 13.2 1112 9.7 6.8 
 — Valley Glacier 28.25 86.28 12.4 934 8.3 5.1 
 Khumbu Glacier Valley Glacier 27.98 86.83 12.3 1193 10.7 5.1 
 — Valley Glacier 28.45 85.57 11.3 825 7.8 5.1 

 Daqu Glacier Valley Glacier 28.44 85.70 11.2 724 6.8 4.4 
 — Valley Glacier 28.25 86.39 11.2 855 8.1 4.9 
 — Valley Glacier 28.34 86.36 10.1 883 8.8 6.4 
 — Valley Glacier 27.91 88.92 9.6 1102 11.2 8.6 
 — Valley Glacier 28.50 85.53 8.8 902 9.6 6.2 
 — Valley Glacier 28.26 86.22 8.2 718 7.9 5.1 
 — Valley Glacier 28.36 85.16 8.2 785 8.7 6.7 
 — Valley Glacier 28.58 85.44 7.6 852 9.7 5.6 
 — Valley Glacier 28.14 85.83 6.7 1411 17.2 14.9 
 — Valley Glacier 27.87 88.91 6.7 603 7.4 6.8 
 — Valley Glacier 27.87 88.82 6.7 1091 13.4 6.4 

 — Valley Glacier 28.31 85.14 6.6 1219 15.0 10.0 
 — Valley Glacier 28.36 86.42 6.4 773 9.6 8.0 
 — Valley Glacier 28.35 86.39 5.8 650 8.5 7.2 
 — Valley Glacier 28.34 86.27 5.5 465 6.3 5.3 
 — Valley Glacier 28.65 85.40 5.3 547 7.5 5.6 
 — Valley Glacier 28.56 85.40 5.3 635 8.7 6.4 
 — Valley Glacier 28.42 85.14 5.0 1288 18.3 10.6 
 — Valley Glacier 28.54 85.37 4.8 902 13.0 8.6 
 — Valley Glacier 28.36 86.44 4.5 556 8.3 6.8 
 — Valley Glacier 27.98 88.25 4.3 625 9.5 6.9 
 — Valley Glacier 28.37 86.45 4.2 585 9.0 6.9 
 — Valley Glacier 28.33 86.23 4.1 445 7.0 4.6 
 — Valley Glacier 28.58 85.47 4.1 647 10.1 7.0 

 — Valley Glacier 27.97 88.20 3.8 405 6.6 6.0 
 — Valley Glacier 28.57 85.35 3.6 454 7.5 6.6 
 — Valley Glacier 28.37 86.46 3.1 466 8.3 6.3 
 — Valley Glacier 28.70 85.44 2.7 606 11.6 8.7 
 — Valley Glacier 28.38 86.47 2.6 384 7.5 6.4 
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Table 2. Palaeo ice masses in published reconstructions, and parameters L, C* and C  for their surface profiles. Entries are ordered by decreasing 

span (L). Shaded entries have C  < C MIN. Methods in column four are: 1 = Hand drawing (observing geomorphic constraints and using modern ice 

masses as analogues), 2 = iterative flowline modelling, 3 = glacio-isotatic numerical inversion, 4 = three-dimensional thermo-mechanically 

coupled numerical ice sheet model, 5 = parabolic profiling. 
 

 

No. Location Ice mass 

 
Reconstruction  

method 
Span, L (km) C* 

(m
1/2

) 
C   

(m
1/2

) 
Reference 

1 North America Laurentide Ice Sheet 5 1970 2.4 2.4 CLIMAP (1981) 
2 North America Laurentide Ice Sheet 5 1510 2.4 2.3 Dyke et al. (2002); modified by Winsborrow (2007) 

3 Isle of Mull, Scotland Mull Icefield 1 9.8 4.5 4.0 Ballantyne (2002) 
4 West Drumochter Hills, Scotland Drumochter Icefield 1 7.2 4.5 3.9 Benn and Ballantyne (2005) 
5 North Harris, Outer Hebrides, Scotland Glen Langdale Glacier 1 7.0 3.9 3.5 Ballantyne (2007a) 
6 North Harris, Outer Hebrides, Scotland Glen Meavaig Glacier 1 5.5 3.1 2.8 Ballantyne (2007a) 
7 North Harris, Outer Hebrides, Scotland Glen Ulladale Glacier 1 4.4 3.9 3.5 Ballantyne (2007a) 

8 North Harris, Outer Hebrides, Scotland Gleann Bearraray Glacier 1 1.3 4.2 3.8 Ballantyne (2007a) 
9 North Harris, Outer Hebrides, Scotland Gleann Dubh Glacier 1 1.3 3.8 3.5 Ballantyne (2007a) 

10 North Arran, Scotland Tanna Glacier 1 1.2 2.4 2.3 Ballantyne (2007b) 
 North America Laurentide Ice Sheet 3 1610 2.9 2.6 Peltier (2004) 
 British Isles British Isles Ice Sheet  4 365 2.8 2.7 Boulton and Hagdorn (2006) 
 Montana, USA Ice cap 2 88 4.0 3.8 Locke (1995) 
 Northern Scandinavia Icefield 2 63 5.8 6.0 Fredin (2004; Figs. 4 and 5) 
 Colorado, USA Taylor River Glacier Complex 1 12.0 6.7 5.5 Brugger (2006) 
 Isle of Skye, Scotland Cullin Icefield 1 9.6 5.6 5.1 Ballantyne (1989) 
 Venezuelan Andes Mucubaji 1 9.2 11.8 8.9 Stansell et al. (2007) 
 Isle of Skye, Scotland Glacier 9 1 9.0 10.3 8.8 Ballantyne (1989) 
 Venezuelan Andes Negra  1 8.7 14.0 10.4 Stansell et al. (2007) 

 North Norway Plateau Icefield 2 8.5 11.6 10.0 Rea and Evans (2007) 
 Western Mexico glacier at (19º 24.5’, –102º 19’) 1 6.5 7.7 6.8 Lachniet and Vazquez-Selem (2005) 
 Venezuelan Andes Michurao 1 6.2 8.3 7.2 Stansell et al. (2007) 
 Western Mexico glacier at (19º 26’, –102º 19’) 1 5.9 6.8 5.8 Lachniet and Vazquez-Selem (2005) 
 Serra da Estrela, Portugal Plateau Icefield 2 5.6 13.0 11.9 Vieira (2008)  
 Venezuelan Andes Cerros Los Pantanos 1 5.3 9.6 8.3 Stansell et al. (2007) 
 English Lake District Glacier 7 1 4.9 9.1 7.4 Sissons (1980) 
 Western Mexico glacier at (19º 26’, –102º 20.5’) 1 4.9 7.5 7.0 Lachniet and Vazquez-Selem (2005) 
 Venezuelan Andes El Balcon 1 4.9 7.1 6.1 Stansell et al. (2007) 
 Venezuelan Andes Granates 1 4.7 9.5 8.8 Stansell et al. (2007) 
 English Lake District Plateau Icefield 1 4.6 9.5 8.1 McDougall (2001) 
 English Lake District Glacier 9 1 4.5 9.6 7.9 Sissons (1980) 
 Venezuelan Andes Llano del Trigo 1 4.4 10.6 9.1 Stansell et al. (2007) 
 Venezuelan Andes Filo Los Pantanos 1 4.4 7.5 6.5 Stansell et al. (2007) 
 Isle of Mull, Scotland Corrie Glacier 5 1 4.1 9.0 7.5 Ballantyne (2002) 
 Isle of Skye, Scotland Glacier 6 1 4.0 10.4 8.6 Ballantyne (1989) 
 Western Mexico glacier at (19º 26’, –102º 19.8’) 1 3.5 10.9 9.6 Lachniet and Vazquez-Selem (2005) 
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 English Lake District Glacier 2 1 3.4 5.3 5.2 Sissons (1980) 
 Isle of Mull, Scotland Corrie Glacier 4 1 3.3 8.8 7.3 Ballantyne (2002) 
 Western Mexico glacier at (19º 25’, –102º 21’) 1 3.3 6.6 5.8 Lachniet and Vazquez-Selem (2005) 
 Venezuelan Andes Las Viraviras 1 3.3 5.2 4.6 Stansell et al. (2007) 
 English Lake District Glacier 6 1 3.1 13.4 9.8 Sissons (1980) 
 North Harris, Outer Hebrides, Scotland Glen Scaladale Glacier 1 3.0 6.6 5.5 Ballantyne (2007a) 
 North Arran, Scotland Glen Catacol Glacier 1 3.0 6.3 5.9 Ballantyne (2007b) 
 Island of Rhum, Scotland Glacier 9 1 2.8 8.7 7.6 Ballantyne and Wain-Hobson (1980) 
 Island of Rhum, Scotland Glacier 5 1 2.8 7.8 7.0 Ballantyne and Wain-Hobson (1980) 
 English Lake District Glacier 3 1 2.8 6.6 6.4 Sissons (1980) 
 Isle of Skye, Scotland Glacier 5 1 2.6 11.2 9.6 Ballantyne (1989) 
 Isle of Skye, Scotland Glacier 10 1 2.6 7.3 6.8 Ballantyne (1989) 
 Isle of Skye, Scotland Glacier 2 1 2.5 13.6 11.4 Ballantyne (1989) 
 Western Mexico glacier at (19º 24.5’, –102º 21’) 1 2.5 7.9 7.5 Lachniet and Vazquez-Selem (2005) 
 English Lake District Glacier 10 1 2.4 13.0 11.9 Sissons (1980) 
 Isle of Skye, Scotland Glacier 3 1 2.4 12.5 10.4 Ballantyne (1989) 
 Isle of Skye, Scotland Glacier 4 1 2.4 12.2 10.7 Ballantyne (1989) 
 North Arran, Scotland Glen Sannox Glacier 1 2.4 9.4 8.5 Ballantyne (2007b) 
 Isle of Mull, Scotland Corrie Glacier 6 1 2.3 5.0 4.5 Ballantyne (2002) 
 Island of Rhum, Scotland Glacier 7 1 2.2 9.1 8.5 Ballantyne and Wain-Hobson (1980) 
 Isle of Mull, Scotland Corrie Glacier 2 1 2.1 6.7 5.5 Ballantyne (2002) 
 English Lake District Glacier 4 1 2.0 7.8 7.1 Sissons (1980) 
 Western Mexico glacier at (19º 24.5’, –102º 20’) 1 1.9 9.3 8.2 Lachniet and Vazquez-Selem (2005) 
 North Arran, Scotland Glen Lorsa Glacier 1 1.9 6.5 6.0 Ballantyne (2007b) 
 North Arran, Scotland Gleann Easan Biorach Glacier 1 1.9 5.6 5.6 Ballantyne (2007b) 
 North Arran, Scotland Glen Rosa Glacier 1 1.8 10.1 8.5 Balantyne (2007b) 
 Western Mexico glacier at (19º24.5’, –102º20.5’) 1 1.8 8.0 6.9 Lachniet and Vazquez-Selem (2005) 
 English Lake District Glacier 1 1 1.8 7.1 6.9 Sissons (1980) 
 English Lake District Glacier 5 1 1.8 5.4 5.5 Sissons (1980) 
 Isle of Skye, Scotland Glacier 8 1 1.6 7.3 5.9 Ballantyne (1989) 
 North Harris, Outer Hebrides, Scotland Glen Skeaudale Glacier 1 1.6 5.5 5.1 Ballantyne (2007a) 
 Isle of Skye, Scotland Glacier 1 1 1.5 13.7 11.5 Ballantyne (1989) 
 North Arran, Scotland Coire a’Bhradain Glacier 1 1.5 7.9 6.8 Ballantyne (2007b) 
 Isle of Skye, Scotland Glacier 7 1 1.4 12.6 12.1 Ballantyne (1989) 

 English Lake District Glacier 8 1 1.4 7.6 6.8 Sissons (1980) 
 Isle of Mull, Scotland Corrie Glacier 1 1 1.3 7.6 6.9 Ballantyne (2002) 
 North Harris, Outer Hebrides, Scotland Cleister Glacier 1 1.2 8.1 7.8 Ballantyne (2007a) 
 North Harris, Outer Hebrides, Scotland Coire Dubh Glacier 1 1.2 7.3 6.7 Ballantyne (2007a) 

 North Harris, Outer Hebrides, Scotland An Coire Glacier 1 1.1 8.9 8.0 Ballantyne (2007a) 
 North Arran, Scotland Coire nan Ceum Glacier 1 1.1 8.6 7.4 Ballantyne (2007b) 

 North Arran, Scotland Garbh Choire Glacier 1 1.1 6.8 5.9 Ballantyne (2007b) 
 Isle of Mull, Scotland Corrie Glacier 3 1 1.1 6.1 5.5 Ballantyne (2002) 
 Island of Rhum, Scotland Glacier 8 1 0.9 6.5 5.9 Ballantyne and Wain-Hobson (1980) 

 Island of Rhum, Scotland Glacier 3 1 0.8 5.8 5.6 Ballantyne and Wain-Hobson (1980) 
 North Arran, Scotland Ealta Choire Glacier 1 0.7 7.5 7.0 Ballantyne (2007b) 

 Island of Rhum, Scotland Glacier 4 1 0.7 5.4 5.0 Ballantyne and Wain-Hobson (1980) 
 Island of Rhum, Scotland Glacier 2 1 0.6 6.1 5.5 Ballantyne and Wain-Hobson (1980) 
 Island of Rhum, Scotland Glacier 1 1 0.6 7.2 6.2 Ballantyne and Wain-Hobson (1980) 
 Island of Rhum, Scotland Glacier 10 1 0.6 7.5 6.4 Ballantyne and Wain-Hobson (1980) 
 Island of Rhum, Scotland Glacier 6 1 0.5 6.3 5.9 Ballantyne and Wain-Hobson (1980) 
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