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In a recent issue of Clinical Science, Ventura-Clapier et al. highlight a potentially important aspect of 

mitochondrial biology: they may exhibit sexual dimorphism (1). This not-often-considered trait may 

well underlie the sex-related difference in risk to develop a wide range of pathologies. Our knowledge 

of mitochondria has increased vastly in recent times, and we know now that mitochondria are much 

more than simply the “powerhouse of the cell”; mitochondria are now widely recognised to be involved 

in a vast range of cellular processes, and their dysfunction is intrinsically associated with many 

pathologies. 

 

Ventura-Clapier et al. provide an excellent overview of mitochondrial function, and give evidence for 

sexual dimorphism of mitochondrial function in a range of cells and tissues. They elegantly cover a 

wide range of disease states, but we feel the authors have overlooked the opportunity to discuss 

mitochondrial dysfunction and the impact of sex in one of the most mitochondria rich/dense tissues in 

the body, skeletal muscle. Skeletal muscle plays a crucial role in whole-body homeostasis, accounts for 

40% of total protein and 50% of body mass and is indispensable for maintenance of body posture, 
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locomotion, respiration, thermoregulation and metabolism. Around 4-7% of the skeletal muscle volume 

consists of mitochondria (2). The significance of skeletal muscle for whole body homeostasis becomes 

particularly apparent in ageing and in pathological conditions such as cachexia, chronic obstructive 

pulmonary disease (COPD) and a wide range of neuromuscular disorders, where loss of skeletal muscle 

mass and function is a key predictor of mortality. Moreover, research has shed light on the potential 

impact of sexual dimorphism on a range of muscle pathologies, where dysfunctional mitochondria 

again, play a central role (3-5). In this editorial, we endeavour to convey the importance of mitochondria 

in skeletal muscle pathologies further evaluating the postulate by Ventura-Clapier et al., to consider 

mitochondrial sexual dimorphism in these conditions.  

 

Mitochondria play an integral role in muscle homeostasis, derived from their fundamental involvement 

in energy metabolism necessary for muscle contraction, mediation of adaptive responses via the 

generation of reactive oxygen and nitrogen species (RONS), regulation of apoptosis, and as a calcium 

sink alongside many other processes (6, 7).  Mitochondrial RONS generation has received considerable 

attention as a key cell signalling molecules (3, 8). Specifically, optimal levels of mitochondrial RONS 

play an important role in modulating multiple signaling pathways and adaptive responses (9, 10), 

whereas elevated levels induce cell death and oxidative damage to cellular components (11). An 

intriguing facet of mitochondria in skeletal muscle is that they are present in two sub-populations: the 

inter-myofibrillar mitochondria located between the myofibrils and the sub-sarcolemmal mitochondria 

in the sub-sarcolemmal regions (12). The inter-myofibrillar mitochondria account for ~80% of total 

mitochondrial density and are primarily responsible for the generation of ATP required for muscle 

contraction (2), whereas the sub-sarcolemmal mitochondria provide ATP for restoring the membrane 

potential following depolarisation and maintaining  cytoplasmic homeostasis (2).  

 

Mitochondria and sexual dimorphism in myopathologies 

We usually consider loss of muscle mass (atrophy), diminished capacity for aerobic ATP generation 

and impaired neuromuscular activation the key tenets of myopathologies. Such changes in muscle 

structure and function can stem from genetic disorders (e.g. Duchenne Muscular Dystrophy), sepsis, 



cancer, disuse, ageing and/or have autoimmune (myositis) and/or neurodegenerative (e.g. Amyotrophic 

lateral sclerosis) origins. Mitochondrial dysfunction contributes to muscle dysfunction in these 

instances, in analogous ways to those reported by Ventura-Clapier et al. in the context of wider 

pathologies.  

 

Ventura-Clapier et al. offer insight into the role of Ca2+ in mediating mitochondrial dysfunction via 

opening of the mitochondrial permeability transition pore (mPTP) and swelling. The authors highlight 

several studies that report that females are more resilient to Ca2+-mediated mitochondrial dysfunction. 

A higher resilience to mitochondrial dysfunction in females has significant implications for 

myopathologies, in particular myositis. Myositis is an acquired autoimmune disease, which causes 

profound muscle weakness, myalgia and disability – a significant unmet clinical need. Patients display 

chronic endoplasmic reticulum (ER) stress in affected muscles, which has been associated with Ca2+ 

leakage from the ER to the mitochondria. The accumulation of Ca2+ induces mitochondrial dysfunction, 

associated with aberrant ROS generation and bioenergetic deficits – both reported to contribute to 

muscle weakness in myositis patients (13, 14). Current research into the mechanisms underpinning 

myositis pays little to no consideration to the impact of sexual dimorphism on muscle weakness, but 

the narrative presented by Ventura-Clapier et al. highlights the importance of stratifying the population 

of myositis patients by sex. 

 

By the time a human reaches their 80s, they will have lost approximately 50% of their muscle mass 

(15), contributing significantly to reductions in strength, locomotion and coordination. The age-related 

loss of muscle mass and function is inevitable and occurs independent of any comorbidities or physical 

activity levels. Despite the large number of studies, there is no consensus on how mitochondrial function 

in skeletal muscle changes during ageing (6, 16-22). Given the evidence summarised by Ventura-

Clapier et al. it is reasonable to hypothesise that sexual dimorphism in mitochondria leads to a higher 

rate of loss of muscle mass in males and females during ageing. In support of this hypothesis, it has 

been observed in rat gastrocnemius muscles that even though they had smaller mass, female muscles 

exhibited higher levels of mitochondrial DNA, mitochondrial complex proteins and antioxidant 



enzymes (23). Many other studies show a higher mitochondrial capacity in muscles from females 

compared to the male in a number of species. These findings may explain at least to some extent the 

higher muscle fatigue resistance and better ability to combat the impact of increased RONS generation 

in male than female muscles (24-27). This is not unequivocal, however, as another study in adult mice 

(10 months) reported no sex differences in mitochondrial bioenergetics, oxidative damage and apoptosis 

(28), or mass –specific aerobic capacity in muscles from men and women (29). Nevertheless, muscle 

mitochondria remain a popular target to counteract the age-related loss of muscle mass and function. 

Administration of SS-31 (a mitochondria-targeted antioxidant) to mice resulted in an overall decrease 

in markers of oxidative damage, improved specific aspects of skeletal muscle mitochondrial function, 

mitophagic potential and organelle integrity. However, SS-31 drug treatment did not attenuate the age-

related myofiber atrophy and reduction in muscle force generation (30). Similarly, a mitochondria-

targeted antioxidant mitoquione mesylate (MitoQ) intervention in old mice failed to rescue the loss of 

muscle mass and function associated with ageing (31). However, it is important to recognise the use of 

a mixed population of both male and female mice in both studies (30, 31). Overall, these observations 

challenge the role of mitochondria-derived RONS in mediating the age-related loss of muscle mass and 

function, suggesting that in contrast to pathologies as suggested by Ventura-Clapier et al., mitochondrial 

dimorphism is unlikely to cause a differential rate of age-related changes in skeletal muscle in males 

and females. 

 

The contrasting observations between many studies are likely attributable to several factors, such as 

species and strain of animal models, and the methodologies used to examine mitochondrial function. 

The latter point is particularly salient and needs to be considered when evaluating the narrative of 

Ventura-Clapier et al. Many studies used isolated mitochondria to assess bioenergetic function. 

However, mitochondria exist in a reticulum, and disruption of this reticulum during isolation alters and 

impairs mitochondrial morphology and function respectively, in contrast to intact or permeabilised 

preparations (17, 32).  Thus, preparations that disrupt the mitochondrial reticulum may well exacerbate 

or mask changes in bioenergetics in a pathology. Therefore, characterising models with different 



methods of preparation is a crucial aspect of gaining a robust understanding of mitochondrial function 

in a wide range of pathologies. 

 

Collectively, the concept of sexual dimorphism in mitochondria is new and it is no surprise that this 

aspect has been given little, if any, attention to explain the differences in muscle function and muscle 

disease susceptibility between men and women. It is questionable whether such a sexual dimorphism 

does exist, particularly when one considers that both males and females derive their mitochondria from 

their mother. Even if mitochondrial sexual dimorphism does exist, it requires more research to establish 

whether it indeed explains or contributes to the different risk and progression of myopathologies 

between men and women. In ageing, for instance, the pattern of muscle loss is similar in males and 

females, and men and women also have similar mitochondrial metabolic activity (29). This does not 

mean, however, that targeting mitochondria therapeutically should not be pursued. Rather, it invites us 

to carefully study whether also in muscle such a sexual dimorphism in mitochondria does contribute to 

different susceptibility to myopathologies in men and women.  
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