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Abstract—Power line communication (PLC) technology offers
a promising platform for numerous communication applications.
The power lines however can significantly attenuate communi-
cation signals operating in high frequency band. For this reason,
multi-hop PLC systems become desirable. In this paper, we inves-
tigates the effect of multi-hop relaying on the power line channel
transfer function. Measured results are compared with results
obtained from sumulations in Matlab. Results show that the
presence of relays between a transmitting and a receiving PLC
nodes can intensify the attenuation and frequency selectivity.
Measurements show that maximum attenuation increases with
number of relays.
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I. INTRODUCTION

Power line communication (PLC) technology is attractive
for data transmission in indoor and outdoor data communica-
tion networks [1]. Research on PLC started in late 1990’s; and
recently, due a the high power demand, a major effort has been
deployed towards achieving smart grid. Communication link
reliability is a major factor in designing the next-generation
energy infrastructure. In-home PLC can also help to improve
home energy management by enabling exchange of messages.
Power line channels are highly available, and can provide
broadband data transmission. Together with smart devices,
PLC can facilitate realisation of smart buildings.

However, due to the high number of electrical devices
and the distance between them, the use of relaying becomes
inevitable in cases where direct communication is either un-
achievable or unreliable. Similar to wireless communications,
relaying in PLC can be employed to improve throughput and
increase the coverage area. It is worth nothing that relaying is
not as effective over power line channels compared to wireless
systems due the lack of diversity improvement [2]. In addition,
the position of the relay is a key factor for maximum energy
efficiency [3].

As demonstrated in [4], relay assisted PLC consists of two
keyhole channels and thus can’t be compared to wireless.
Despite its relative lower efficiency, relay assisted PLC can
enhance system performance in many scenarios. According
to [5], an intermediate node between transmitter and receive
helps to improve performance via opportunistic relaying.

While cooperative assisted PLC can improve channel ca-
pacity on the one hand, it has some limitations on the other.
In [6], it was numerically demonstrated and concluded that
in order to improve the coverage in in-home PLC, the relay
should not be placed far from the source and destination and

relaying is recommended to improve performance only when
the channel conditions of direct transmission paths are not
favorable.

The quality of service (QoS) in PLC rely on the channel
characteristic. Considerable amount of research has been con-
ducted on channel characterisation of power lines, such as in
[7, 8, 9, 10],where researchers analysed the effect of notches,
length, and distance between the source and destination on
transfer function of the channel. Furthermore, the authors in
[11] and [12], have investigated the low voltage single phase
channel transfer function and mathematically described it.

In contrast, this paper focuses on multiple relays PLC
system. The contribution of this paper resides in providing a
mathematical model and building a test circuit. A comparison
between the numerical and measured results is then made. It
has been shown that the presence of relays can have a negative
effect on channel transfer function.

The remaining of this paper is organised as follows. Section
II describes the in-home power line network and derives
mathematical transmission matrices and transfer functions
associated with each transmission path. Section III discusses
the experimental setup used in this work while in section IV
results are discussed. Finally, the main conclusions of work
are highlighted in section V.

II. TOPOLOGY OF BUILDING POWER LINE SYSTEM

In-home wiring regulations and technical standards in the
UK are described in standardised BS 7671-2008. Typical
topology for UK in-home power line system in residential
buildings and wiring practices can be seen in Fig 1. Outlet
sockets in one room are fed by the same power supply and
are placed parallel to each other, while lights in each room are
fed by own power supply directly from the main consumer
unit.

As illustrated in Fig. 1, control messages can typically
be sent from a management station in the home to turn
on/off the light or deactivate supply to socket(s) in a bid
to regulate energy consumption. In certain cases, such direct
communication is difficult or impossible to achieve. Commu-
nication between two devices can be improved by employing
an additional node to mediate between the management station
(source) and the light or socket (destination); this is the
concept of multi-hopping or relaying. In such cases, the relay
can be positioned on different sockets and in case of multiple-
floor houses, even in different floors. The resulting network
comprises of a source (S), one or more relays (R) and a
destination (D), is shown in Fig. 2.



Fig. 1. Building power line network topology

Fig. 2. Cooperative relay network model

A. Direct Path from Source to Destination

Consider the direct path from the source to the destination
(SD), see Fig. 2. SD path resides on the main channel line
and exhibits channel characteristics different from other paths
through the branches. The impedance of each branch can be
expressed as

Zeqbri =
ARiZ

′
LRi +BRi

CRiZ ′
LRi +DRi

(1)

where the ARi, BRi, CRi and DRi represent the transmission
matrix parameters of the relay branch while i is the index of
the branch. Z ′

LRi, which represents the equivalent impedance
at the relay consists of ZRi and ZLRi connected in parallel,
therefore can be calculated as

Z ′
LRi =

ZRiZLRi

ZRi + ZLRi
(2)

The transmission matrix for the direct path can be expressed
as
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and the path gain for SD is given by

HD
SD =

ZL

AD
SDZL +BD

SD + CD
SDZLZS +DD

SDZS
(4)

B. Path Through First Relay

A path through a relay can be described as a connection
between two paths to a midpoint between source and desti-
nation. When the signal travels from the source to R1, R1 is
considered as destination while R2 and D jointly behave as
a branch. Therefore, the branch impedance can be considered
as the sum of impedance of R2 and D. Hence, the impedance
of R2 can be derived from (1) while the impedance of D is
calculated as

ZDeq =
A3Z

′
L +B3

C3Z ′
L +D3

(5)

R2 and D are connected in parallel, hence, their resultant
impedance can be expressed as:

ZFDR2 =
Zeqbr2ZDeq

Zeqbr2 + ZDeq
(6)

and the impedance of the whole branch ZFDR2eq (formed
between R2 and D) can be calculated

ZFDR2eq =
A2ZFDR2 +B2

C2ZFDR2 +D2
(7)

combined with the second relay impedance expressed in (1),
the path matrix can be written as
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(8)

Path gain between S and R1 is

H1
SR1 =

ZR1

A1
SR1ZR1 +B1

SR1 + C1
SR1ZR1ZS +D1

SR1ZS

(9)

Additionally, we consider the path from R1 to D in which
R1 behaves as the source and D remains the destination where
S and R2 become branches. In this case, the impedance of S
can be calculated as

ZSeq =
A1ZS +B1

C1ZS +D1
(10)

and the ABCD matrix can be written as
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and the path gain is given as

H2
SR1 =
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(12)

Finally, the composite path gain of the entire S-R1-D,
consisting of S-R1 and R1-D paths, can be expressed as the
sums of the two path gains expressed as



HR1
SD =

(
H1

SR1A
)
+H2

SR1 (13)

where A represents amplifying ratio if amplify and forward
relay is in use.

C. Path Through Second Relay

Similar to (2), the path through second relay can be
described as the signal propagation from the S through R2
to D. On receiving the signal, R2 forwards it to D. Therefore,
in the first part R2 acts as a signal destination while R1
and D combined act as a branch. Mathematically, the branch
impedance of R1 can be calculated using (1) . Similarly,
the equivalent impedance of D is calculated using (5). The
transmission ABCD matrix can be expressed as

T 1
SR2 =

[
A1

SR2 B1
SR2

C1
SR2 D1

SR2

]
=

[
1 0
ZS 1

] [
A1 B1

C1 D1

] [
1 0
1

Zeqbr1
1

]
[

A2 B2

C2 D2

] [
1 0
1

ZDeq
1

] [
AR2 BR2

CR2 DR2

]
(14)

and the path gain

H1
SR2 =

ZR2

A1
SR2ZR2 +B1

SR2 + C1
SR2ZR2ZS +D1

SR2ZS

(15)

Considering the path from R2 to D, S and R1 jointly behave
as a branch. The equivalent impedance at S can be derived
from (10) and S is now parallel to R1 and impedance of R1
can be calculated using (1). Furthermore, the impedance of the
branch can be calculated as parallel impedance connection of
R1 and S as

Z ′
SR1 =

Zeqbr1ZSeq

Zeqbr1 + ZSeq
(16)

and the impedance of the whole branch (formed by R1 and
S) is calculated

ZSR1 =
A2Z

′
SR1 +B2

C2Z ′
SR1 +D2

(17)

The ABCD matrix is given by:
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Now, the path gain on R2-D can be described as:

H2
SR2 =

ZL

A2
SR2ZL +B2

SR2 + C2
SR2ZLZR2 +D2

SR2ZR2

(19)

Again the whole path of the connection through R2 can be
calculated as a sum of the two parts:

HR2
SD =

(
H1

SR2A
)
+H2

SR2 (20)

D. Path Through First and Second Relay

In this section, the connection through both relays is
considered. Here, the signal propagation is considered in three
stages. In the first stage, S sends the signal to R1. R2 and D
are considered as branches and their equivalent impedance is
calculated using (7).

In the second stage, the communication signal originates
from R1, which is now considered as the source of the signal,
to R2, now considered as the destination. S and D now form
a branch on the network. The equivalent impedance of S is
given in (10), while the impedance of D can be calculated
using (5). Therefore, the ABCD matrix for the considered path
can be written as
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The path gain can be mathematically calculated as

H2
SR12 =

ZR2

A2
SR12ZR2 +B2

SR12 + C2
SR12ZR2ZR1 +D2

SR12ZR1
(22)

The last part of the communication path is from R2 to D. In
this case, R2 behaves as a source of information and R1 and
S are considered as a branch whose equivalent impedances
are given by (16) and (17), respectively.

As with previous subsections, the path gain of the whole
path can be calculated as a sum of all three paths previously
which can be expressed as

HR12
SD =

(
H1

SR1A
)
+
(
H2

SR12A
)
+

(
H2

SR2

)
(23)

III. EXPERIMENTAL SETUP

This section describes the network setup employed in this
work. Five network topologies are created in the laboratory
as shown in Fig. 3. These topologies are based on possible
use scenarios of multiple relays in an in-building power line
network. In the first scenario, both relays located on the
branches and both branches located close to the source as
illustrated in Fig. 3a. In the second scenario, R1 is connected
to the short branch while R2 is connected directly to the
main line, see Fig.3b. In the third case, relay R1 is connected
directly on the main line while R2 is connected to the long
branch as shown in Fig. 3c. Next, both relays are connected
directly on the main line as demonstrated in Fig. 3d. Finally,
a case is considered in which R2 is closer to D than S as
shown in Fig.3e.

Each channel occupies the frequency band from 1.7MHz
to 30MHz. Our aim here is to measure and compare line
attenuation among the different topologies as well as the trans-
mission paths. Although the use of relay is well established in
wireless communication, the effect of multiple relays on the
transmission line transfer characteristics is of interest in this
work. It will be shown in the next section that indeed, there



Fig. 3. Measured power line topologies

Fig. 4. Comparison between measured and simulated results while R1 and
R2 are connected to a branch (topology 3a)

is a correlation and some trade-off between the use of relay
and path attenuation.

IV. RESULTS

In this section, we present and compare simulation results
of various system configurations under consideration.

A. Case 3a: R1 and R2 connected to branches

In this scenario, relays R1 and R2 are positioned at 5.2m
and 10.4m respectively from S. Lengths of the branches are
2.1m (short branch) and 7.8m (long branch) for R1 and
R2 respectively as shown in Fig. 3a. Fig. 4 presents some
measured results for S-D, S-R1-D, S-R2-D and S-R1-R2-D
and calculated results for S-D and S-R1-R2-D paths. It can
be seen from the figure that when R2 is connected, the channel
transfer function degradeds compared to the S-R1-D path. It
can be also that with R1 and R2 connected on branches close
the S, the depth of the notches increases from about -47.5dB
in case of (S-D) to -121dB implying additional loss of 73.5dB
for the transmission line with both relays. In the case of S-R1-
D and S-R2-D, maximum attenuation are -84dB and -103dB,
respectively.

B. Case 3b: R1 on the short branch and R2 the main line

This scenario employs the topology illustrated in Fig. 3b.
Fig. 5 presents measured and calculated results for direct
path S-D, measured results through R1 and R2, measured and
calculated results for S-R1-R2-D paths. As can be seen from
Fig. 5, the path through relay R2, which connects to the main

Fig. 5. Comparison between measured and simulated results when R1 is
located on the branch while R2 is connected to the main line (topology 3b)

Fig. 6. Comparison between measured and simulated results when R1
connected on the main line and R3 on a long branch (topology c)

line experiences more attenuation (-80 dB) compared to the
path through R1 (-76 dB). Further, we can see that the path
through both relays have a maximum attenuation of -122dB.

C. Case 3c: R1 on main line, R2 on long branch

In this experiment, the setup in Fig. 3c is employed but
R1 is now connected directly to the main line. In Fig.
6, measured results of S-D, S-R1-D, S-R2-D, S-R1-R2-D
paths and calculated results of S-R2-D and S-R1-R2-D are
presented. From the Fig. 5, it is evident that the S-R1-D path
experiences maximum attenuation of -80.5dB compared with
and R2 with -85dB. It can also be seen that the path through
R1 and R2 exhibits the highest loss with peak attenuation of
-138dB, making it worse than the cases 4a and 4b.

D. Case 3d: R1 and R2 on the main line

In this case, the topology in Fig. 3d in which both relays
connect directly to the main transmission line applies. Fig.
7 illustrates the measured results of S-D, S-R1-D, S-R2-D,
S-R1-R2-D paths and calculated results of S-R1-D and S-R1-
R2-D paths. While S-R1-D and S-R2-D show a maximum
attenuation of -83dB and -67dB, respectively, the performance
is worse on the transmission line with R1 and R2 as the line
attenuation increases to -133dB.

E. Case 3e: R2 is connected closer to the destination

Unlike cases 4a-d, in this experiment, we change the posi-
tion of R2 by moving it closer to D than S and investigate the



Fig. 7. Comparison between measured and simulated results when R1 and
R2 connected on the main line (topology d)

Fig. 8. Comparison between measured and simulated results when R2 is
connected closer to the destination (topology e)

effect of a such relocation. Fig. 8 depict the measured results
of S-D, S-R1-D, S-R2-D, S-R1-R2-D paths and calculated
results of S-D and S-R1-R2-D. It can be seen from Fig.8 that
when the second branch is connected closer to its destination
with R2 on it, maximum line attenuation of S-R1-D, S-R2-
D, S-R1-R2-D are -108dB, -89dB and -160dB, respectively.
The main observation here is that S-R1-D and S-R1-R2-D
experience the highest attenuation in case 4e than in previous
four cases.

V. CONCLUSIONS

It can be concluded that the use of relays can potentially
improve coverage and throughput of PLC systems. However,
multiple relays between transmitter and receiver involves
some performance trade-off. It has been shown in this paper
that, compared with direct paths and paths with single relay,
the use of two relays results in higher attenuation. It has also
been presented (case 4e) that position of the relay relative to
the transmitter or receiver can affect transfer characteristics
of the transmission line. The significance of these results is
that although multiple relays can generally improve commu-
nication performance, the direct path remains the preferred
option. Mulitple relays should be employed only when direct
path is either unavailable or significantly inefficient.

ACKNOWLEGMENT

These investigations were carried out within research activi-
ties funded by the Innovate UK under the “Smart In-Building

Micro Grid for Energy Management” project (Innovate UK
Project 101836).

REFERENCES

[1] A. M. Tonello and F. Versolatto, “Bottom-up statistical
PLC channel modeling ;part i: Random topology model
and efficient transfer function computation,” IEEE Trans.
on Power Del., vol. 26, no. 2, pp. 891–898, Apr. 2011.

[2] M. Noori and L. Lampe, “Multi-way relaying for cooper-
ative indoor power line communications,” IET Commun.,
vol. 10, no. 1, pp. 72–80, Feb. 2016.

[3] W. Bakkali, P. Pagani, and T. Chonavel, “Energy effi-
ciency performance of relay-assisted power-line commu-
nication networks,” in IEEE Consumer Commun. and
Networking Conf. (CCNC), Jan. 2015, pp. 525–530.

[4] L. Lampe and A. J. H. Vinck, “Cooperative multihop
power line communications,” in IEEE Int. Symp. Power
Line Commun. and Its Appl. (ISPLC), Mar. 2012, pp.
1–6.

[5] A. M. Tonello, F. Versolatto, and S. D’Alessandro,
“Opportunistic relaying in in-home PLC networks,” in
IEEE Global Telecommun. Conf. (GLOBECOM), Dec.
2010, pp. 1–5.

[6] M. S. P. Facina, H. A. Latchman, H. V. Poor, and M. V.
Ribeiro, “Cooperative in-home power line communica-
tion: Analyses based on a measurement campaign,” IEEE
Trans. on Commun., vol. 64, no. 2, pp. 778–789, Feb.
2016.

[7] K. Kale and S. K. Patra, “Characterization of broadband
power line channel,” in Global Conf. Commun. Technol.,
Apr. 2015, pp. 673–677.

[8] L. Wang, G. Avolio, G. Deconinck, E. V. Lil, and L. L.
Lai, “Estimation of multi-conductor powerline cable
parameters for the modelling of transfer characteristics,”
IET Sci., Meas. Technol., vol. 8, no. 1, pp. 39–45, Jan.
2014.

[9] Z. Jie, Y. Xiao, and Q. Kaiyu, “Research on characteris-
tics of low voltage power line communication channel,”
in IEEE Power Engin. and Automat. Conf. (PEAM),
Sept. 2012, pp. 1–5.

[10] B. Adebisi, S. Ali, and B. Honary, “Multi-emitting/multi-
receiving points mmfsk for power-line communications,”
in Power Line Commun. and Its Applicat., 2009. ISPLC
2009. IEEE Int. Symp. on, Mar. 2009, pp. 239–243.

[11] H. Meng, S. Chen, Y. L. Guan, C. L. Law, P. L. So,
E. Gunawan, and T. T. Lie, “Modeling of transfer char-
acteristics for the broadband power line communication
channel,” IEEE Trans. on Power Delivery, vol. 19, no. 3,
pp. 1057–1064, Jul. 2004.

[12] S. Wei, D. Liu, X. Xu, X. Yang, and Y. Chang, “Research
of channel characteristics of the low voltage power line
under the coal mine,” in Int. Congress Image and Signal
Proc. (CISP), vol. 03, Dec. 2013, pp. 1372–1375.


