
Please cite the Published Version

Eleyan, AA and Zhao, L (2011) Extending Web Service Architecture with a Quality Component:
Web Service Architecture and Quality Component. LAP LAMBERT Academic Publishing. ISBN
3845418133

Publisher: LAP LAMBERT Academic Publishing

Downloaded from: https://e-space.mmu.ac.uk/618568/

Usage rights: In Copyright

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://e-space.mmu.ac.uk/618568/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

 1

Table of Contents

Table of Contents ... 1

List of Figures .. 5

List of Tables .. 7

List of Code Listings ... 8

Abstract ... 9

Chapter 1 Introduction .. 13

1.1 Motivation .. 13
1.1.1 Research Scenarios .. 15

1.2 Research Questions ... 17

1.3 Research Objectives .. 18

1.4 Research Methodology .. 19
1.4.1 Research Context and Assumptions .. 19
1.4.2 Concepts and Terminology.. 20
1.4.3 Theories used in this Thesis .. 22

1.5 Research Contribution .. 23

1.6 Thesis Organization ... 25

Chapter 2 Background Studies ... 29

2.1 Introduction ... 29

2.2 Web Service History and Evolution ... 29
2.2.1 Service-Oriented Architecture (SOA) and Web Services.. 31
2.2.2 Web Services Definition ... 33
2.2.3 Service Definition.. 35

2.3 Web Service Architecture ... 36
2.3.1 IBM Web Service Architecture ... 36
2.3.2 Web Services Technologies .. 41

2.4 Technologies Used for Web Service Implementation 52
2.4.1 J2EE .. 53
2.4.2 Microsoft’s .NET Framework ... 54
2.4.3 Microsoft .NET versus J2EE ... 57

2.5 Limitations in UDDI and Web Service Environment 59
2.5.1 Limitations in UDDI ... 59
2.5.2 Limitations in Web Services Environment .. 60

2.6 Semantic Web and Web Services ... 61

2.7 Related Work in Quality Issues .. 62
2.7.1 Quality Requirements and classification ... 62
2.7.2 Quality Web Service Architecture ... 65
2.7.3 Quality Service Matchmaking and Selection .. 68

 2

2.8 Summary .. 73

Chapter 3 Quality Definition ... 75

3.1 Introduction ... 75

3.2 Quality Criteria in Web Services ... 75
3.2.1 Quality Concept ... 75

3.3 Quality Criteria Classification ... 76

3.4 Quality Extension to WSDL and UDDI ... 85
3.4.1 Extended WSDL ... 86
3.4.2 Extended UDDI ... 92

3.5 Summary .. 93

Chapter 4 QWSA: A Proposed Quality-Based Web Service Architecture .. 94

4.1 Introduction ... 94

4.2 The Components of the Quality-Based Web service Architecture 94

4.3 A case of Using QWSA .. 102

4.4 Summary .. 103

Chapter 5 A Theoretical Model of Service Selection 104

5.1 Introduction ... 104

5.2 Modelling Quality Service Selection .. 105
5.2.1 Problem Definition .. 106
5.2.2 Assigning Criteria Weights ... 107

5.3 Applying the Mathematical Model to Service Selection........................... 110

5.4 Quality Matchmaking ... 116

5.5 Quality Matchmaking Process ... 119

5.6 Summary .. 128

Chapter 6 Implementation of the Quality Matchmaking Process 130

6.1 Introduction ... 130

6.2 Designing the Quality Service Selection System 130

6.3 Implementing the Quality Service Selection System 133
6.3.1 Utilities Class .. 134
6.3.2 Window Forms .. 139

6.4 Sequence Diagram of Using Quality Service Selection System 146

6.5 Summary .. 154

Chapter 7 Evaluation .. 156

7.1 Introduction ... 156

7.2 Evaluation of the Quality-Based Web Service Architecture 156
7.2.1 QoS-Capable Web Service Architecture ... 157
7.2.2 UDDI eXtension Architecture ... 158
7.2.3 Web Service Quality Broker Architecture ... 159

 3

7.2.4 QoS Certifier ... 160
7.2.5 Web Service QoS Architecture ... 161
7.2.6 Web Service QoS Architecture ... 162
7.2.7 Comparison between the Quality-Based Web Service Architecture and the Related

Architecture ... 162

7.3 Evaluating the Quality Matchmaking Process.. 165
7.3.1 Semantic Matchmaking Algorithm ... 165
7.3.2 QoS Computation Algorithm .. 166

7.4 Evaluating the Quality Service Selection System 168
7.4.1 Amazon E-Commerce Service Case Study ... 168

7.5 Discussion ... 194

7.6 Summary .. 196

Chapter 8 Conclusion and Future Work .. 198

8.1 Conclusion .. 198

8.2 Future Work .. 203

References... 207

Appendix A Quality Criteria XML Schema .. 218

Appendix B: Quality Service Selection System ... 221

B-1 CriteriaSelection Form .. 221

B-2 PreferenceSelection Form ... 225

B-3 SubCriteriaSelection Form ... 228

B-4 SubPreference Selection Form ... 233

B-5 RequirementsValue Form ... 237

Appendix C: ADO.NET and Access Database .. 254

Appendix D: Amazon Web Services (AWS) Case Study 260

D-1 What is Amazon Web Services (AWS)? .. 260

D-2 Benefits of Using Amazon Web Services ... 261

D-3 Amazon E-Commerce Service (ECS) .. 262
D-3-1 E-Commerce Service (ECS) Features ... 262

D-4 Amazon E-Commerce Service (ECS) 4.0 Software Development Kit (SDK)

 .. 264
D-4-1 Introduction to Amazon E-Commerce Service (ECS) .. 264
D-4-2 Selecting a Web Services Access Method... 265
D-4-3Amazon E-Commerce (ECS) Operations ... 268
D-4-4 Response Groups ... 274

Appendix E: Using SOAP Request to Access Amazon E-Commerce Service . 285

Appendix F: REST Request and XML Data Result ... 287

 4

Appendix G: Amazon E-Commerce (ECS) database .. 294

Appendix H: Visual Studio .NET .. 296

H.1 Windows Applications and C# ... 296
H.1.1Creating Windows Application ... 296
8.2.1 Visual C# .NET ... 299

 5

List of Figures

Figure 2-1 Service-Oriented Architecture Technologies 32

Figure 2-2 Web Service Architecture .. 37

Figure 2-3 Web Services Stack taken from [7] ... 39

Figure 2-4 SOAP Message Structure... 44

Figure 2-5 Components of a Service Description ... 46

Figure 2-6 WSDL Main Elements ... 47

Figure 2-7 UDDI Business Registry (UBR) Components 49

Figure 2-8 UDDI Model .. 50

Figure 2-9 UDDI API’s Methods ... 51

Figure 2-10 UDDI and WSDL Relationship ... 52

Figure 2-11 .NET Framework Components ... 56

Figure 3-1 Quality Criteria Classification .. 79

Figure 3-2 Screenshot showing sub-criteria elements for Performance and

Failure Probability in Quality Classification 88

Figure 3-3 Screenshot showing sub-criteria elements in Trustworthiness and

Cost Criteria in Quality Classification ... 88

Figure 3-4 Screenshot showing properties for each Sub-Criteria element 89

Figure 3-5 Screenshot showing an example of Quality Requirement in

Amazon Web Service' WSDL extended with Quality Criteria

Classification ... 91

Figure 4-1 Quality-Based Web Service Architecture (QWSA)....................... 95

Figure 4-2 Interactions between the four participating roles in QWSA 102

Figure 5-1 Quality Matchmaker .. 117

Figure 5-2 Interface Matchmaking Flow Chart ... 120

Figure 5-3 Quality Type Matchmaking Flow Chart 123

Figure 5-4 Quality Value Matchmaking Flow Chart 124

Figure 5-5 Example of Quality Requirement provided by Service Requester

 .. 125

Figure 5-6 Example of Quality Specifications Description provided by

Service Providers .. 126

Figure 5-7 Quality Mathematical Matchmaking Flow Chart 128

 6

Figure 6-1 Class Diagram of QSSS System .. 133

Figure 6-2 Sequence Diagram of Quality Service Selection System 146

Figure 7-1 REST Request to Amazon database ... 169

Figure 7-2 Transaction between Requester and Amazon E-Commerce

Service ... 169

Figure 7-3 XML Data Result of REST Request ... 172

Figure 7-4 REST Request for Retrieving Seller Information 173

Figure 7-5 XML Data Result of REST Request of the seller 175

Figure 7-6 Web Service Composition using QSSS ... 193

Figure H-0-1 Designing a Windows Application in the Visual Studio .NET

IDE ... 297

Figure H-0-2 Adding a new Form to a Windows Application 298

Figure H-0-3 Compile time and Run time of C# source code [Taken from

[150]] .. 301

 7

List of Tables

Table 1-1 Web services ... 15

Table 1-2 Output of Web Service Selection .. 16

Table 1-3 Output of Book Selection ... 17

Table 2-1 Differences between Web Services and Distributed Systems 33

Table 2-2 Comparison between .NET and J2EE ... 57

Table 4-1 Service Levels with Quality Criteria .. 99

Table 4-2 Example of Quality Report ... 101

Table 5-1 Relative Importance Measurement Scale [139]............................. 109

Table 5-2 Average Random Index (RI) [139] ... 110

Table 6-1 SQL Query Result Obtained for Performance Matrix................. 151

Table 6-2 Output Result ... 154

Table 7-1 Comparison between QWSA and Related Architectures 164

Table 7-2 Parameters of REST Request ... 170

Table 7-3 Availability .. 173

Table 7-4 Parameters of REST Request ... 174

Table 7-5 Amazon ECS database .. 176

Table 7-6 Web Service Description ... 179

Table 7-7 Web services ... 179

Table 7-8 Output of Web Service Selection .. 180

Table 7-9 SQL Query Result Obtained for Performance Matrix................. 184

Table 7-10 Output Result of Scenario2 ... 185

Table 7-13 Output Result of Scenario3 ... 189

Table 7-15Output Result of Scenario 4 ... 192

 8

List of Code Listings

Listing 5- 1 REST Request ... 120

Listing 5- 2 SQL Query .. 124

Listing 6- 1 Matrix Class .. 134

Listing 6- 2 fillMatrix() Method ... 135

Listing 6-3 CalculateWeights() Method .. 136

Listing 6-4 ConsistencyRatio() Method ... 137

Listing 6-5 EuclideanDistance() Method ... 138

Listing 6-6 updateNumOfCriteria() Method .. 139

Listing 6- 7 SQL Query to an MS-Access database 150

Listing 7-1 SQL Query ... 183

 9

Abstract

The Web service technology provides standard mechanisms for describing the

interface of the services available on the Web, as well as protocols for locating

such services and invoking them. Each Web service has an associated Web

Services Description Language (WSDL) document which describes how it works

and how to invoke it. Such document is registered at a Universal Description,

Discovery and Integration (UDDI) registry that provides a discovery service for

the WSDL descriptions.

The Web services architecture consists of three components: Service Provider,

Service Requester and UDDI Registry, and the interactions between them through

publish, find, and bind operations. Between finding and binding steps there is

another crucial step, which is not fully considered by current approaches. This is

the step of selection. The UDDI service registry hosts hundreds of similar Web

services, which makes it difficult for the service requesters to choose from them,

as the selection is based on the functional properties only. However, many similar

services are differentiated by their quality criteria. Therefore, quality criteria are

important to be considered in the web service selection.

This thesis proposes a quality-based Web service architecture (QWSA) that

extends the current Web service architecture with a quality server. The quality

server consists of four main components: quality manager, quality matchmaker,

quality report analyzer, and quality database. The main purpose of quality server

is to assist service requester to select the best available service that fulfils his/her

preference by matching between a service requester’s quality requirement and the

service providers’ quality specifications. In addition, this thesis reports the

development of a quality matchmaking process (QMP) based on the proposed

architecture by building a quality service selection system (QSSS). This QSSS has

been verified and validated using a case study of Amazon E-commerce service

(ECS).

 10

Declaration

I herby declare that no portion of the work referred to in the thesis has been

submitted in support of an application for another degree or qualification of this or

any other university or other institution of learning

 11

Copyright Statement

(1) Copyright in text of this thesis rests with the Author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions

given by the Author and lodged in the John Rylands University Library of

Manchester. Details may be obtained from the Librarian. This page must form

part of any such copies made. Further copies (by any process) of copies made

in accordance with such institutions may not be made without the permission

(in writing) of the Author.

(2) The ownership of any intellectual property rights, which may be described in

this thesis, is vested in The University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

(3) Further information on the conditions under which disclosures and

exploitation may take place is available from the Head of School of

Informatics.

 12

ACKNOWLEDGMENT

I would like to express my gratitude to all those who made it possible for me to

complete this thesis. Firstly and foremost, my heartily profound thanks gratitude

and appreciation are addressed to my PhD advisor Dr. Liping Zhao for her

encouragement, help and kind support. Her invaluable technical and editorial

advice, suggestions, discussions and guidance were a real support to complete this

thesis

Secondly, I would like to express my deepest gratitude and thanks to Dr. Ludmil

Mikhailov for contributing in supporting this work with mathematical model,

which without it this work will not be carried out. I would also like to thank

AbdelBaki Djemi for offering his generous help and all of my friends in K13,

K12, and K10 research laboratories for creating ‘short breaks’ during my research

time in the university.

Thirdly special thanks to my husband Derar, who is also one of my lab-mates, and

he has recently got PhD successfully. In addition, my son Loai and my beautiful

daughters Dana, Alaa and my little baby Maryam whose patient and love enabled

me to complete this work.

Finally yet importantly, I would like to give my best regards and love to my

mother in-law, my sister in-law and my parents for their encouragement and help.

Chapter 1 Introduction

 13

Chapter 1 Introduction

1.1 Motivation

The convergence of the World Wide Web (WWW) and the Extensible Markup

Language (XML) [1] has increased the possibility for interoperable system-to-

system communications and extended the role of the WWW from the information

interaction to the service interaction. This convergence is leading to the

development of the Web services technology.

The Web services technology enables software applications to communicate with

each other in a platform and programming language in an independent manner

over the Internet. Web services achieves system interoperability by exchanging an

application development and service interactions using the XML–based standards

such as Simple Object Access Protocol (SOAP) [2], Web Service Description

Language (WSDL) [3] and Universal Description, Discovery and Integration

(UDDI) [4].

As the popularity of Web services technology grows, the service requester is

becoming increasingly aware of the importance of the service quality. Therefore,

it is necessary for him/her to have a way of evaluating and selecting the services

that meet his/her quality requirement. However, there are many challenges in

establishing a quality-based service selection mechanism, including:

1. The service selection is still done by human clients, which is not desirable if

thousands of services are available for selection [5].

2. The current service selection is only based on the functional information in the

WSDL document. Service requester requires a selection mechanism that is

based on functional information as well as non-functional information

including the quality criteria such as availability, reliability, etc.

Chapter 1 Introduction

 14

3. Quality criteria are dynamic in nature and depend on the characteristics of the

providers’ systems and the Internet.

4. Managing dynamic changes of quality criteria and ensuring up-to-date

information.

5. Requester requires a mean to express his/her quality requirements and

providers need a standard mean to express their quality specifications.

This thesis proposes a quality-based Web service architecture (QWSA) to address

the above five challenges. This architecture incorporates a quality server that

facilitates and assists service requester to discover and select the best published

Web service. The quality server consists of four main components: quality

manager, quality report analyzer, quality matchmaker and quality database.

The quality manager captures and manages the dynamic nature of the quality

criteria to keep up-to-date information and save it in the quality database. The

quality report analyzer produces statistical information about the service and store

them in the quality database. The quality matchmaker is the core component that

implements the quality matchmaking process (QMP) in order to match between

the quality requirement that specified by service requester and the published

quality specification of the services that specified by service providers to select

the best service. The QMP is based on the mathematical model. A simulation

programme called quality service selection system (QSSS) is developed to

implement the QMP and to assist service requester to select the best service in an

automated way.

Finally, this thesis has proposed a quality criteria classification that consists of

four groups: Performance, Failure Probability, Trustworthiness and Cost. This

thesis also has accommodated the quality classification within the Web Service

Description Language (WSDL) to enable the service requester to express his/her

quality requirements and the providers to express their quality specifications.

Chapter 1 Introduction

 15

1.1.1 Research Scenarios

This section differentiates the notion of “Web services” and “service” in the

coming two scenarios. The first scenario shows a selection of the best Web

service based on the requester’s quality requirements. A Web service in the first

scenario has an interface that can be dynamically discovered using a service

registry and can be invoked using SOAP messages protocol. After selecting and

invoking the best Web service, the second scenario shows a selection of the best

service provided by the previous selected Web service. A service in the second

scenario could be service, product, Web site or any result.

The following two scenarios are used to motivate this thesis:

Scenario 1: Web service selection

The requester looks for a search engine Web services to search for books. There

are four Web services as shown in Table 1-1: Amazon E-Commerce Web

Services (ECS), Google Web Service, eBay Web Service and Yahoo Web service.

The requester wants to select the best Web service with the following

requirements:

 Throughput is the most important criteria.

 The requirement value of Throughput: High, Availability : High and Price :

 Low

Table 1-1 Web services

Quality Criteria Web Services

Amazon Google eBay Yahoo

Throughput/day 2200 1000 1440 1200

Availability 98 98 95 90

Price/month 0 0 5 0

Chapter 1 Introduction

 16

After applying the mathematical model, which is described in Chapter 5, the

weight of the quality criteria is:

 234.0187.0579.0W

It is noticed that Throughput criteria is the most important criteria which has the

highest priority (0.579) then the Price (0.234) and the last is the Availability

(0.187).

The output result that is based on the requester’s quality requirements and

preferences is shows in Table 1-2. It is seen that Amazon Web service (ECS) is

the best one to select because its matching distance is the minimum “0.178”. So

ECS is the best Web service that the requester can select.

Table 1-2 Output of Web Service Selection

Web Services Matching Distance

Amazon 0.178

eBay 0.556

Yahoo 0.736

Google 0.96

Scenario 2: Service selection

After selecting the Amazon E-Commerce Service (ECS) from scenario 1, the

requester invokes it and uses it to select a service, where in this case is a book,

regarding to its availability, seller reputation and its price. The requester wants to

select the best book with the following requirements:

 The book’s availability is the most important criteria from the requester’s

point-of-view.

Chapter 1 Introduction

 17

 The requester wants a book with High availability, Medium seller reputation

and Low book’s price.

After applying the mathematical model, which is described in Chapter 5, the

weight of the selected criteria is:

 206.007.0723.0W

It is noticed that Availability criteria is the most important criteria which has the

highest priority (0.723) then the Price (0.206) and the last is the Reputation (0.07).

Table 1-3 shows the ranking books from the least matching distance to the

maximum. The matching distance is calculated using the mathematical model,

which is described in Chapter 5. The service with the minimum distance is the

best service to select. So, the book with the title “Service-Oriented Architecture”

with matching distance “0.323” is the best book to select.

Table 1-3 Output of Book Selection

Product Name Seller Name Matching Distance

Service-Oriented Architecture hebertbooks 0.323

Professional PHP Web

Services

hbytes 0.328

Professional PHP Web

Services

westcoast_books 044

How to Break Web Software studentbooks 0.52

1.2 Research Questions

Web services technology offers many benefits; however, it creates significant

challenges for application developers. One of the Web services challenges

involves defining and guaranteeing the quality of the Web service. Before

invoking a Web service, the service requester often wants to verify that the service

will meet his/her expectations [6].

Chapter 1 Introduction

 18

Unfortunately, current Web services technology is immature and still under

development by the World Wide Web Consortium (W3C) and has the following

challenges:

1. The current Web services environments do not offer comprehensive quality

support as in the following:

a. The UDDI is just a registry database and service discovery engine. It

allows requester to look for Web services based on their functionality but

not quality information.

b. WSDL does not contain any information about quality criteria.

2. Selecting Web services over the Internet is difficult and challenging because it

is not easy for the service requester to choose the best service of the same

functional properties with different quality criteria information. Thus,

effective automated technique for service matching and selection according to

the service requester’s quality requirement and preferences is needed.

Web services researchers are facing two research questions:

3. How to discover and select the desired Web services based on quality criteria?

4. How to specify the quality criteria using the Web services standards such as

WSDL and UDDI?

1.3 Research Objectives

This thesis sets out to investigate the above two questions. The investigation will

achieve the following seven objectives.

1. To create a quality criteria classification that organizes the most important

quality criteria into four groups: Performance, Failure probability,

Trustworthiness and Cost.

2. To extend the Web Services Description Language (WSDL) with the quality

criteria classification.

Chapter 1 Introduction

 19

3. To develop a quality-based Web services architecture (QWSA) that extends

the current Web service architecture with quality server.

4. To develop a quality matchmaker component within the quality server in

order to facilitate and assist the requester to select the best service based on

his/her quality requirements.

5. To develop quality matchmaking process (QMP) based on the mathematical

model.

6. To develop a simulation system called a quality service selection system

(QSSS) that implements the quality matchmaking process (QMP). The QSSS

is a graphical user interface (GUI) to enable the service requester to specify

his/her quality preferences and requirements.

7. To demonstrate the effectiveness of the QSSS in selecting the best candidate

service via simulation scenarios.

1.4 Research Methodology

1.4.1 Research Context and Assumptions

This thesis develops a quality matchmaking process that assists the service

requester to select the best advertised service based on his/her quality preferences

and requirements.

The tasks of this thesis, with respect to the research objectives will include the

following:

Chapter 1 Introduction

 20

1. Extending the current Web service architecture with quality server that called

the quality-based Web service architecture (QWSA).

2. Developing a quality matchmaker component within the quality server.

3. Developing a simulation system called a quality service selection system

(QSSS).

4. Using an Amazon E-Commerce Service (ECS) as a case study and applying it

into the QSSS.

5. Evaluating the efficiency of the QSSS through simulation scenarios.

This thesis uses the following assumptions to demonstrate the new proposed

concepts:

1. Only one requester at a time can query the QWSA architecture to select the

best advertised service.

2. The values of the quality criteria are already measured or calculated when

selecting the service.

3. The query which is sent by the service requester to QWSA architecture is

volatile that is no new services will be added to UDDI and no changes to the

quality criteria values for these services during the service selection process.

1.4.2 Concepts and Terminology

This thesis adopts the IBM Web services architecture to be extended with the

quality server. The IBM Web services architecture is based upon the interactions

between three roles: service provider, service requester and service registry. The

interactions involve the publish, find and bind operations [7], [8]. Also, this thesis

adopts the W3C Web services standards: Simple Object Access Protocol (SOAP),

Web Services Description Language (WSDL) and Universal Description

Discovery and Integration (UDDI). SOAP [2, 9] is an XML-based communication

protocol for exchanging structured information in a decentralized, distributed

system. WSDL [9] is an XML-based interface definition language for describing

Chapter 1 Introduction

 21

the services (their interfaces) in a standardized manner. UDDI [10], [11], [12] is a

Web services registry and discovery mechanism, which enables developers and

businesses to publish and locate Web services on a network.

The IBM Web services architecture does not support the quality criteria. The

UDDI service registry hosts hundreds of similar Web services, which makes it

difficult for the service requesters to choose from them, as the selection is only

based on the functional properties. The similar services are differentiated by their

quality criteria. Quality criteria are important to be considered in the web service

selection [13].

To address the above shortcomings, this thesis extends the IBM Web service

architecture with quality server and calls it quality-based Web service architecture

(QWSA). The quality server consists of four main components: quality manager,

quality matchmaker, quality report analyzer, and quality database. The main

purposes of the QWSA architecture are to:

 Enhance the current UDDI role by enabling service publishing and

discovering based on quality criteria.

 Match the quality specifications of the advertised Web services against the

quality requirement that specified by the service requester.

 Assist the service requester to choose the best available service based on

his/her quality requirements and preferences.

To achieve the above purposes, the following developments are required:

1. Construct a quality criteria classification that captures the most important

quality criteria.

2. Extend the WSDL with quality criteria classification.

3. Develop a quality matchmaking process (QMP) that measures the distance

between the quality requirements that specified by the service requester and

Chapter 1 Introduction

 22

the quality specification that specified by the service providers and select the

best match Web service with the minimum distance.

This thesis organizes the most important quality criteria into four groups under a

classification called quality criteria classification. These four groups are:

Performance, Failure probability, Trustworthiness and Cost. Each criteria group

contains sub-criteria that hold the same characteristics. Performance criteria group

contains the following sub-criteria: capacity, response time, throughput and

execution time. Failure Probability criteria group contains the following sub-

criteria: availability, reliability, accessibility and scalability. Trustworthiness

criteria group contains the following sub-criteria: security and reputation. Cost

criteria group contains the following sub-criteria: service price and execution

price.

The quality criteria classification is implemented using XML Spy editor and the

WSDL is extended with quality criteria classification by adding a new element

<QualityCriteria> in its <service> element.

1.4.3 Theories used in this Thesis

This thesis develops a core component within the quality server which is called

the quality matchmaker component. It contains the following sub-components:

interface matchmaking, quality matchmaking and mathematical matchmaking.

The quality matchmaker component matches the quality requirement of the

service requester with the quality specification of the service providers in order to

select the best match Web service. The quality matchmaker component performs

the quality matchmaking process (QMP) to select the best service.

The QMP consists of four algorithms or filters: interface matchmaking, quality

type matchmaking, quality value matchmaking and mathematical matchmaking

algorithm. Each of these algorithms or filters narrows a set of matching candidates

with respect to a given algorithm or filter criterion.

Chapter 1 Introduction

 23

The mathematical matchmaking algorithm is the most important step that uses a

mathematical model in order to select the best candidates Web service based on

requester’s quality requirements and preferences. Two techniques are used in the

mathematical model:

1. Analytical Hierarchy Process (AHP) calculates the criteria weights based on

requester’s preferences.

2. Euclidean distance measures the distance between the requester’s quality

requirements and the providers’ quality specifications. Web service with

minimum distance is considered as the best service to select.

The QMP is implemented using Windows Application and C# language within

Microsoft Visual Studio .NET 2003 software product to develop the quality

service selection system (QSSS). The QSSS is a user interface that facilitates the

service requester to specify his/her quality criteria preferences and requirements

and display the best service to select.

This thesis uses Amazon E-Commerce Service (ECS) as a case study that is

applied on the QSSS simulation system. The efficiency of QSSS is evaluated by

comparing between selecting the best book from ECS without using QSSS and

selecting the best book from ECS using QSSS. In addition, four scenarios are

applied on the QSSS simulation system to evaluate the efficiency of the QSSS

system.

1.5 Research Contribution

This thesis provides the following five contributions:

1. Definition of a classification of quality criteria

The most important quality criteria are organized in chapter 3 into four groups:

Performance, Failure probability, Trustworthiness and Cost. Each criteria group

contains sub-criteria quality that holds the same characteristics. Performance

criteria group contains the following sub-criteria: capacity, response time,

Chapter 1 Introduction

 24

throughput and execution time. Failure Probability criteria group contains of the

following sub-criteria: availability, reliability, accessibility and scalability.

Trustworthiness criteria group contains the following sub-criteria: security and

reputation. Cost criteria group contains the following sub-criteria: service price

and execution price.

The classification is generic that can be applicable in various domains and

extensible, in which new criteria group and sub-criteria can be added without

fundamentally altering the mathematical model and the service selection

techniques that build on top of the classification.

2. Extension of the WSDL with the quality criteria Classification.

The above quality classification is implemented using XML Spy in order to

design Quality Criteria XML Schema. The Quality Criteria XML Schema is

augmented in the Service Implementation Document part of the WSDL by adding

a new element <QualityCriteria> element in the <service> element. This

extension enables the service requester to express his/her quality requirements

when sending a request and the providers to express their quality specifications

through publishing the services.

3. Development of a quality-based web services architecture

This thesis proposes a quality-based Web service architecture in chapter 4 that

extends the current Web service architecture with quality server, because the

current Web service architecture does not offer comprehensive quality of the Web

service support. The quality server consists of four main components: quality

manager, quality matchmaker, quality report analyzer, and quality database. The

quality server facilitates and assists service requester to discover and select the

best published Web service.

4. Development of a quality matchmaker component and quality

matchmaking process

Chapter 1 Introduction

 25

The quality matchmaker component in the quality server is the core component in

the proposed QWSA and it is well defined in Chapter 5. The quality matchmaker

consists of the following three sub-components: Interface matchmaking, quality

criteria matchmaking and mathematical matchmaking.

A quality matchmaking process (QMP) has been introduced in chapter 5 in order

to select the best service. QMP consists of four algorithms: interface

matchmaking, quality criteria matchmaking, quality value constraints

matchmaking, and mathematical matchmaking algorithm.The mathematical

matchmaking algorithm is the most important step that is based on the

mathematical model. Two techniques are used in the mathematical model:

Analytical Hierarchy Process (AHP) and Euclidean Distance.

QMP is implemented in Chapter 6 by building a simulation program called quality

service selection system (QSSS). QSSS is developed by using C# Windows

application in the Visual Studio .NET 2003 tool as a graphical user interface

(GUI) to enable the service requester to specify his/her quality requirements.

5. Publication

This project has published the following paper:

 A. Eleyan, L. Mikhailov, and L. Zhao, "Quality-of-Service Support in Web

services Architecture," ISI, vol. 9, 2004

1.6 Thesis Organization

The remaining thesis is presented in the following seven chapters.

Chapter 2: Background Studies

This chapter provides an overview of Web service architecture and its standards.

It shows that Web services technology offers many benefits that provide more

advantages over the distributed-computing technologies. For example, Web

service is interoperable which has the ability to communicate and share data with

software from different vendors and platforms. However, Web services

Chapter 1 Introduction

 26

technology also has some challenges. The Web services standards are still

immature and under development and do not offer quality criteria support. To

address the Web service challenges, this thesis extends the current Web service

architecture with quality server and develops a quality service selection approach.

Chapter 3: Quality Definition

This chapter introduces the definition of quality criteria in Web services syntax. It

proposes a quality criteria classification that organizes the most important quality

criteria into four groups. These groups are: Performance, Failure Probability,

Trustworthiness, and Cost. The quality criteria classification is required in order

to enable the service requester to specify his/her quality requirements. Also, it

extends the current Web Service Description language (WSDL) with the quality

criteria classification by adding a new element tag called <QualityCriteria>.

Chapter 4: QWSA: A Proposed Quality-Based Web Service
Architecture

This chapter provides an introduction to a quality-based Web service architecture.

(QWSA) which extends the current Web services architecture with quality server.

The quality server acts on behalf of the requester to select the desired Web

services. It consists of four main components: quality manager, quality

matchmaker, quality report analyzer, and quality database. The role of each

component is elaborated.

Chapter 5: A Theoretical Model of Service Selection

This chapter introduces the core component in the quality server of the proposed

quality-based Web service architecture (QWSA), which is the quality

matchmaker.

The quality matchmaking challenges in UDDI and Web service environment are

introduced. The quality matchmaker sub-components and its roles are described.

The quality matchmaking process (QMP) is developed based on the mathematical

model. The mathematical model uses two techniques: Analytical Hierarchy

Chapter 1 Introduction

 27

Process (AHP) and Euclidean distance in order to select the best candidate Web

services based on requester’s quality preferences and requirements.

Chapter 6: Implementation of the Quality Matchmaking Process

This chapter presents an implementation of the quality matchmaking process

(QMP), which is applied by the quality Matchmaker component.

The QMP is implemented by using Windows Application and C# language within

Microsoft Visual Studio .NET 2003 software product. to develop the quality

service selection system (QSSS). The QSSS is a user interface that facilitates the

service requester to specify his/her quality criteria preferences and requirements

and to display the best service to select.

Chapter 7: Evaluation

This chapter evaluates the proposed QWSA architecture, the QMP process and the

QSSS simulation system.

The QWSA is evaluated by comparing it with the related architectures. In the

related architecture, the QoS brokers are introduced between the service requester

and the service providers. The QoS brokers are not well defined; they do not

describe the details of the service selection process.

The QMP is evaluated by comparing it with the related approaches. It is seen that

most of the related quality service selection approaches varies in the previous

work from semantics approaches to computation approaches. The proposed

quality matchmaking process (QMP) in this project is based on the mathematical

and it considers the service requester’s quality preferences and requirements.

The QSSS is evaluated through applying Amazon E-Commerce Sevice (ECS) as a

case study.

Chapter 8: Conclusion and Future Work

Chapter 1 Introduction

 28

This chapter shows that the contributions that has been achieved in this project.

Further investigation needed on some aspects which is out of the scope of this

thesis.

Chapter 2 Background Studies

 29

Chapter 2 Background Studies

2.1 Introduction

This chapter provides an overview about web services architecture and their

standards. Section 2.2 explains the differences between Web services and the

traditional distributed computing components. Web services architectures provide

a framework for developing, and deploying loosely coupled applications. It

enables opening business-to-business (B2B) and application-to-application

interactions on the Web, based on existing Web protocols and on open XML

standards. Section 2.3 introduces an overview of Web services architecture and

their technologies. Section 2.4 introduces the tools used to implement Web

service technology, as Microsoft’s .NET and Sun Microsystems’ J2EE (Java 2

Platform, Enterprise Edition). A comparison of these tools is presented. Section

2.5 introduces the Web services challenges. Section 2.6 introduces the semantic

web and web services. Section 2.7 discusses the related work which illustrates

different approaches that support quality issues in Web services technology.

2.2 Web Service History and Evolution

The combination of conventional middleware technologies such as OMG

CORBA, Microsoft COM+ or Enterprise JavaBeans and Web technologies

supports the integration of business processes and applications. This combination

has become insufficient because it does not consider an integration of different

data models or business rules. Enterprise Application Integration (EAI) has tried

to solve the aforementioned issue and has become widely spread in B2B

environments [14]. However, the EAI solutions are complex to use, and do not

provide interoperable solutions. For example, it is impossible to invoke a CORBA

[15] servant from a Web-based COM client. Therefore, there is a need to find an

alternative solution to the application integration with simplicity and

Chapter 2 Background Studies

 30

interoperability. This solution is to build Broker-based middleware using Internet

protocols such as Hypertext Transfer Protocol (HTTP) and Extensible Markup

Language (XML). This is the essence of Web services [16], [17]. Hence, Web

services technology is considered as the traditional distributed architecture by

addressing the issue of limited interoperability.

The initial ideas for Web services had been started by IBM and Microsoft. In

1990s, with the development of the World Wide Web (WWW), the information

technology (IT) and communications industry can work together using a common

framework including Transmission Control Protocol (TCP) and HTTP protocols.

However, the creation of XML has paved the way to Web services [18], [19].

XML was developed by an XML Working group originally known as the

Standard Generalized Markup Language (SGML) in 1996. In 1998, the XML

version 1.0 specification was accepted as a World Wide Web Consortium (W3C)

Recommendation, which means that the technology is stable for deployment in

industry [1], [6]. XML documents contain data, but no formatting instructions, so

applications that process XML documents must decide how to display the

document’s data. Software developers are integrating XML into their applications

to improve Web functionality and interoperability [6].

The next stage was the development of the simple object access protocol (SOAP)-

the standardized message-passing protocol based on XML- by Microsoft. SOAP

was conceptualized in 1998 and published as SOAP 0.9 in 1999. The newest

version of SOAP is SOAP 1.2 which is currently being defined by the W3C. The

purpose of SOAP is to enable data transfer between peers in a decentralized,

distributed environment using XML [6].

Software vendors realized that applications calling services across a network need

information about a specific service before interacting with it. Therefore, in March

2001, Microsoft, IBM and Ariba submitted Web Services Description Language

(WSDL) 1.1 to the W3C. Nearly every Web services published on the Internet is

Chapter 2 Background Studies

 31

accompanied by an associated WSDL document, which defines the kinds of

messages a Web service can send and receive [3], [6].

With SOAP and WSDL, companies can create and describe their Web services. In

March 2000, IBM, Microsoft, and Ariba started working on tools for discovering

available Web services, and in September 2000, the first version 1.0 of the

Universal Description, Discovery, and Integration (UDDI) was published. UDDI

version 2.0 was released in June 2001. The UDDI version 3.0 was published in

July 2002 [4]. UDDI simplifies the process of creating B2B relationships and

connecting electronic systems to exchange data and services[6].

The Web services with its core technologies SOAP, WSDL, and UDDI, provide a

language-neutral, environment-neutral programming model that accelerates

application integration inside and outside the enterprise [20]. By the end of 2000,

the major IT software infrastructure vendors announced their commitment to web

services. Oracle, HP, Sun, IBM, BEA, and Microsoft support and deploy the Web

services standards in their products [18].

2.2.1 Service-Oriented Architecture (SOA) and Web
Services

Service-Oriented Architecture (SOA) is an approach that represents application or

software functionality as services on the network [21]. These services can

communicate with each other either for passing data or coordinate some activity

inside or outside organizational boundaries [22], [23]. The SOA based on Web

services has solved the limitation of the distributed computing technologies such

as Common Object Request Broker Architecture (CORBA) and the Distributed

Component Object Model (DCOM) in that they are tightly coupled, which means

any change to one tightly coupled system always affects the whole architecture.

Whereas, the Web services are loosely coupled, which means the developer can

make changes to a Web services without impacting the whole architecture. The

service requester binds the service provider in a loosely coupled manner this

means the service requester has no knowledge of the provider’s programming

Chapter 2 Background Studies

 32

language or deployment platform. The service requester invokes services by using

messages (request and response messages) rather than using Application

Programming Interface (APIs) [23].

Web services technology is considered as the convergence between the service-

oriented architecture (SOA) and the Web. The Web services architecture takes all

the best features of the service-oriented architecture and combines them with the

Web [24]. Table 2-1 gives an overview of some important differences between

Web services and the traditional distributed systems technologies. It shows that

Web services technology supports universal communication using loosely coupled

connections. Web services protocols are completely vendor, platform, and

language-independent. Hence, the Web services architecture eliminates the

constraints of DCOM, CORBA, and RMI, and supports Web-based access easy

integration and service reusability [22]. Figure 2-1 shows the relation between the

distributed computing technologies: CORBA, DCOM and RMI and the SOA that

is expanded to include the Web services [25].

Distributed Systems Architecture (DSA)

Service-Oriented

Architecture (SOA)

DCOM

CORBA

RMI

Web Services

Figure 2-1 Service-Oriented Architecture Technologies

Chapter 2 Background Studies

 33

Table 2-1 Differences between Web Services and Distributed Systems

Web Services Traditional Distributed

Systems

Loose Tight

Text Message Binary

Vendor, platform and

language independent

Vendor, platform and

language dependent

interoperable
Limit in the

interoperability

Flexible and

reusable

Limit the flexibility

and reusability

2.2.2 Web Services Definition

Web services definitions range from the very generic to very specific and

restrictive. The generic Web services definition is an application accessible to

other applications over the Web. This is an open definition which means anything

has a URL is a Web service.

The more specific definition of Web services is the one provided by the World

Wide Web Consortium (W3C) as “a software application identified by a URI,

whose interfaces and bindings are capable of being defined, described, and

discovered as XML artefacts. A Web service supports direct interactions with

other software agents using XML-based messages exchanged via Internet-based

protocols” ([26] cited [27]).This definition shows that the Web services can be

“defined, described, and discovered”, which clarifies the meaning of “accessible”.

This definition also shows that Web services are components that can be

integrated into more complex distributed applications using XML as a data format

for Web-based interactions [26] .

Another more specific definition in the online technical dictionary Webopedia, as

“ a standardized way of integrating Web-based applications using the XML,

Chapter 2 Background Studies

 34

SOAP, WSD and UDDI open standards over an Internet Protocol backbone. XML

is used to tag the data, SOAP is used to transfer the data, WSDL is used for

describing the services available, and UDDI is used for listing what services are

available” ([26] cited [28]). Specific standards (SOAP, WSDL, and UDDI) are

mentioned here and used for binding and interacting with a Web services.

This thesis defines Web services as software components that use XML to

exchange information and services (functionality) with other software via

common Internet protocols (e.g., HTTP) over a network.

Web services technology is programmable, that encapsulates a task when an

application passes data or instruction to it. Web services is based on XML which

enables it to communicate with other applications, even if these applications are

written in different programming languages and run on different platforms. XML

bridging the differences between systems that use different component models,

operating systems, and programming languages [6] .

A Web services exposes the following characteristics:

 A convergence of software (the World Wide Web) and network (the Internet)

technologies [18].

 Accessible over the Internet.

 Can be invoked by another program using an interface.

 Can be registered and discovered via a Web service registry.

 Communicates using messages protocols.

 Supports loosely coupled connections between systems [29].

The Web services provides the following advantages [25]:

 It provides interoperability between various software applications running on

different platforms. Therefore, the developers do not need to change their

development environments in order to produce or consume Web Services.

 It uses open standards and protocols.

Chapter 2 Background Studies

 35

 It allows software and services from different companies and locations to be

combined easily to provide an integrated service.

 It allows reusing of services and components within an infrastructure.

 It is loosely coupled that facilitating application integration.

2.2.3 Service Definition

The “service” in the context of “Web services” represents the function or the

behaviour that is provided by a reusable software component in a business process

[23], [30], [31]. A service has an interface and can be called from another program

or service. It can be dynamically discovered using a service registry and can be

invoked using SOAP messages protocol [29]. A service stresses interoperability

and location transparency. Hence, the service implementation is hidden from the

user and may be executed either on different computers in one enterprise or on

different computers for a number of business partners [23], [31].

A Web service is a particular capability to communicate with other parties by

transmitting and receiving information in a way that is fully specified with respect

to: the requester’s requirement, how the information is formatted (messages) and

transmitted (using HTTP as a transfer protocol), how end-to-end exchanges of the

information are effected.

The service description is divided into different levels:

 Functional description. The behaviour of the service in functional terms

providing technical oriented description of the service.

 Binding/interface description. The definition of the service interface, the

communication protocol needed to interact with it and the address associated

with the protocols. This level of description is addressed by tModels, Binding

Templates of Universal Description Discovery and Integration (UDDI) and

Web Service Description Language (WSDL).

Chapter 2 Background Studies

 36

 Transaction description. A description of the service from a business point-

of-view associated with quality issues, behaviour guarantees and usage of the

service [32].

There are two types of Web services: services that support business-to-business

interaction and services support business-to-customer interaction [33]. Some of

the business-to-customer services are simple which returns simple result, e.g. a

currency converter or a weather forecast, and complex services, e.g. flight

booking or restaurant reservation. The simple service just converts for example

US Dollars to Japanese Yen, whereas the a flight booking services, the result

depends on the user needs [33].

2.3 Web Service Architecture

Web services architecture explores the principles behind the next generation of e-

business architectures, presenting a logical evolution from object-oriented systems

to systems of services [34]. Some of the fundamental concepts in Web services

are as in object-oriented systems like encapsulation, message passing, dynamic

binding, service description and querying.

There are many proposals and frameworks for Web services. The main three

frameworks are IBM Web Services [7], Microsoft’s .NET [35] and Sun Open Net

Environment (ONE) [36]. Although, each of theses frameworks has its own

particular position, they all share a common set of technologies such as SOAP,

WSDL and UDDI. However, the IBM Web Services architecture is widely used in

the industry [23, 29], and it will be described in the coming section.

2.3.1 IBM Web Service Architecture

IBM proposed a conceptual architecture for implementing Web services in terms

of a service-oriented architecture [23]. The IBM Web services architecture is

based upon the interactions between three roles: service provider, service

requester and service registry. The interactions involve the publish, find and bind

Chapter 2 Background Studies

 37

operations [7], [8]. Figure 2-2 shows the interaction between service providers,

service requester and service register in the publish, discovery, and consumption

of Web services [37]. This architecture is described below.

Service

Provider

Service

Requester

UDDI Registry

X
M

L/
S

O
A

P

XML/SOAP

Publish

(WSDL)

Find

(WSDL)

Bind

X
M

L/S
O

A
P

Figure 2-2 Web Service Architecture

Web services architecture roles are described below.

 Service provider. It is the owner of the Web services. It either represents the

services of a business entity or represents the service interface for a reusable

subsystem. The service provider defines a service description for the Web

service and publishes it to a service register [29].

 Service requester. It represents a business application component that is

looking for invoking or initiating an interaction with a service. The service

requester uses a find operation to retrieve the service description from the

service registry and uses the information in the service description to bind with

the service provider and invoke the Web service implementation [7], [29].

 Service registry. It acts as a repository where service providers publish their

service descriptions. Service requester find services and obtain static binding

during development or dynamic binding during execution. For the static

binding, the service registry is an optional role in the architecture. The service

provider can send directly the service description to service requester, and the

service requester can obtain a service description from other resources such as

Chapter 2 Background Studies

 38

FTP site, Advertisement and Discovery of Services (ADS) [7]. The Web

services architecture operations are described below.

 Publish. A service description needs to be published so that the service

requester can find it. The published location can vary depending upon the

requirements of the application [7].

 Find. The service requester retrieves a service description directly or queries

the service registry for the type of service required. The find operation can be

involved in two phases: at design time to retrieve the service’s interface

description for program development, and at runtime to retrieve the service’s

binding and location information for invocation [7].

 Bind. The service requester invokes or initiates an interaction with the service

at runtime using binding information in the service description to locate and

invoke the service.

However, between finding and binding there is another essential operation, the

current approaches ignore. This is the operation of service selection [38]. The

UDDI service registry contains hundreds of similar Web services, which makes it

difficult for the service requesters to choose from them, as the selection is only

based on the functional properties. The similar services are differentiated by their

quality criteria. So, quality criteria are important to be considered in the service

selection [13]. The service selection operation is described below.

Service selection. It is the phase where a requester selects a service instance

(implementing a discovered interface). Selection is based on non-functional

attributes such as quality criteria. The quality criteria of a service (e.g. cost,

response time) should be taken into account when selecting web services. This

facilitates differentiation among services with the same functional characteristics

and also gives some degree of confidence to the Web services’ requestors about

the quality of the service they are going to invoke. A service instance may be

replaced by another at runtime if it doesn’t meet the requester’s needs.

Chapter 2 Background Studies

 39

The Web Services Stack

The Web services stack describes the relation between the Web service standards

to their features (publish, find, and bind). Web services stack is built from layers

of technologies and standards on which services can be implemented and

deployed [29]. The upper layer is based on the layers below it. Figure 2-3

illustrates a Web services stack. It shows that this stack is a collection of

standardized technologies (the text on the left) and application programming

interface (APIs) that enable customers and applications to locate and utilize Web

services. Figure 2-3 also illustrates how each layer facilitates the use of Web

services [20].

Network

XML-Based Messaging

Service Publication

Service Description

Service Discovery

Service Flow

HTTP, FTP, email, MQ,

IIOP,etc.

SOAP

WSDL

Direct UDDI

Static UDDI

WSFL

S
e

c
u

ri
ty

M
a

n
a

g
e

m
e

n
t

Q
u

a
lit

y
 o

f
S

e
rv

ic
e

Figure 2-3 Web Services Stack taken from [7]

The network is the foundation layer for the Web services stack. Web services

must be available and accessible over a network and use deployed network

protocols such as HTTP and other Internet protocols like the Internet Inter-ORB

Protocol (IIOP), SMTP, FTP, Message Queuing (MQ), and so on [7].

The next layer of that stack is an XML-based messaging layer that facilitates the

communications between Web services and their clients [20]. The messaging

layer is based on an XML messaging protocol SOAP [39]. SOAP messaging

Chapter 2 Background Studies

 40

protocol supports publish, find and bind operations in the Web services

architecture [7].

WSDL [39] is an XML-based service description that describes available Web

services to clients. These descriptions take the form of XML documents for the

programming interface and location of Web services. WSDL defines the interface

and mechanism of service interaction.

WSDL is a standard service description to support interoperable Web services.

Additional description needed for example to specify the business context, quality

of service and service-to-service relationship can be achieved by complementing

the WSDL document with other service description documents. For example,

business context can be described by using UDDI [39] data structure in addition

to the WSDL document. Service composition and flow are described in a Web

Services Flow Language (WSFL) document [7].

Because a Web service must be a network accessible via SOAP and represented

by a service description, the first three layers represent the interoperable base

stack that all inter-enterprise or public Web services should support. The

remaining layers in the stack are optional and can be used as business needs

require them [20].

Service publication is any action that makes a WSDL document available to a

service requester. There are two Publishing mechanisms; direct publish and

dynamic publish. In direct publish, the service provider sends the service

description directly to the service requester, for example using email. In dynamic

publish; the service provider can publish the WSDL document to a local WSDL

registry, private UDDI registry or the UDDI operator node. The Web services

descriptions can be retrieved from a given URL (pointer to the WSDL) [7].

Likewise, service discovery is any action that enables the service requester to

acquire access to the service description and an associated functional description

of the service and makes them available to the application at run time[40].

Acquiring Web service descriptions depends on how the service description is

Chapter 2 Background Studies

 41

published (direct publish or dynamic publish). Service requester can find the Web

services during two phases of an application lifecycle- design time and runtime.

At design time, service requester searches the type of interface that the Web

service descriptions support. At runtime, service requester searches for a Web

services based on how they communicate or the quality of advertised services.

Service requester can retrieve a service description from a service description

repository, a simple service registry or a UDDI operator node at both design time

and runtime. The look-up mechanism provides find operation by type of interface

(based on a WSDL template), the binding information (that is, protocols),

properties (such as QoS parameters), the taxonomy of the service, business

information, and so on [7].

The topmost layer, service flow, describes service-to-service communications,

transactions, and flows. IBM proposed a Web Services Flow Language (WSFL)

to describe these interactions [41].

The vertical layers represent security, management, and quality of service, are

supplied to meet the stringent demands of today’s e-businesses. These vertical

layers must be addressed at each layer of the stack.

The lower layers of the stack are relatively mature and more standardized than the

higher layers. The Web services maturation and adoption will drive the

development and standardization of the higher and the vertical layers of the stack

[7].

2.3.2 Web Services Technologies

A web services relies on several enabling technologies including Extensible

Markup Language (XML), Simple Object Access Protocol (SOAP), Web Services

Description Language (WSDL), and Universal Description, Discovery and

integration (UDDI). These technologies form the core of Web services

technologies [26], [20] and accepted as the foundation for an open Web service

framework.

Chapter 2 Background Studies

 42

Extensible Markup Language (XML)

XML is the basic foundation of Web services. It is a standard for describing data

structure and formats (providing common syntax) [42], [43]. XML was defined by

the W3C as an open standard technology [1].

XML is a “meta-language”, that is a language for describing languages, that

enables to design their own customized markup languages for different types of

documents. Because XML is just text, any application can understand it as long as

the application understands the character encoding in use. This makes XML a

good choice for describing method invocations in a platform and language-neutral

fashion [44], [42].

XML-based Web services communicate by using standard Web protocols like

Simple Object Access protocol (SOAP) [2], Universal Description, Discovery and

Integration (UDDI) [11], and Web Services Description Language (WSDL) [3] to

define the interaction. These standards use XML interfaces and messages that

enable any application to interpret. XML allows developers to create their own

tags, enabling the definition, transmission, validation and interpretation of data

between applications [45].

Simple Object Access Protocol (SOAP)

SOAP [2, 9] is an XML-based communication protocol for exchanging structured

information in a decentralized, distributed system [46]. When an application

interacts with a Web service, the interaction relies on messages as the basic unit of

communication through which the two systems exchange data [6]. SOAP can turn

a service invocation into an XML message, to invoke object methods provided by

the service. The service then uses the information in the XML message to perform

its function, and the Web service can return the result via another XML message

[6]. The main goal of SOAP is to facilitate interoperability. Hence it is widely

viewed as the backbone to a new generation of cross-platform; cross-language

distributed computing architecture of Web services.

Chapter 2 Background Studies

 43

SOAP has the following characteristics:

 It is designed to be simple and extensible.

 It facilitates interoperable communication among computing systems in a

decentralized, distributed network [6].

 It provides a framework to describe message content and process instructions,

and an optional set of encoding rules for representing defined data-types.

 All SOAP messages are encoded using XML.

 It is transport protocol independent. Sine Hypertext Transfer Protocol (HTTP)

is one of the supported transports. SOAP can be run over an existing Internet

infrastructure.

 It is operating system independent and not tied to any programming language

or component technology. It is object model neutral [25].

SOAP combines the data capabilities of XML with the transport capability of

HTTP and supports a loosely coupled distributed data exchange.

SOAP is different from traditional distributed protocols in that the traditional

distributed protocols such as IIOP, ORPC and JRMP are binary protocols whereas

SOAP is a text-based protocol which makes it easier to debug and to read the

binary stream.

SOAP Architecture

SOAP consists of the following four components:

 The SOAP envelope. It describes the format of a SOAP message.

 Data Encoding Rules. These rules encode data types of the data structures

sent in a message. They enable applications that receive SOAP messages to

recognize its format and therefore process it.

 Remote Procedure Call Protocol. This defines how a message can execute

remote procedure calls (i.e., the requests to execute a program component on a

Chapter 2 Background Studies

 44

remote computer). Remote Procedure Call (RPC) is a technology that

application can invoke (execute) the procedure (a set of instructions or

methods) placing on another computer. SOAP also supports document-style

communication in which no methods is invoked, it is used for notification and

not required a response.

 Binding Framework. This defines the protocol through which SOAP

message are transmitted to applications. HTTP is a common protocol used to

transmit data over the Internet. Also, SOAP can use other protocols such as

HyperText Transfer Protocol Secure (HTTPS) and Simple Mail Transfer

Protocol (SMTP) [47], [6].

SOAP Message Structure

SOAP encapsulates data in messages that are transferred to and from Web

services. Figure 2-4 illustrates the structure of a SOAP message, consisting of

three parts [44]:

SOAP <Envelope>

SOAP <Header>

SOAP <Body>

Figure 2-4 SOAP Message Structure

 SOAP Envelope. It is the outermost element in a message. It is the root of the

XML document that defines a SOAP message.

 SOAP Header. It is a child element of the envelope. It may include additional

features and functionality, such as security and quality criteria.

Chapter 2 Background Studies

 45

 SOAP Body. It is a child element of the envelope. It includes the actual data

or instructions for tasks that receiver must perform, such as calling method or

include information that must be processed by an application.

SOAP isn't the only way a requester can query database registry. The other

method is known as REST, which stands for Representational State Transfer.

REST is described below.

Making REST Requests

REST is an architectural style that was created by Roy Fielding in his Ph.D. thesis

([48] cited [49]). REST is not standard, but it uses standards such as HTTP, URL

and XML. REST unlike SOAP, doesn't require installing a separate toolkit to send

and receive data. Instead, the idea is to know to look for available Web services.

Amazon E-Commerce Service (ECS) is a case study (see Chapter 7 for details) in

this thesis has both SOAP and REST APIs. It allows requesters to make calls to

ECS by passing parameter keys and values in a URL (Uniform Resource

Locator). ECS returns its response in XML (Extensible Markup Language)

format. The developer can enter the REST URL into the browser's address bar,

and the browser displays the raw XML response.

Web Services Description Language (WSDL)

WSDL [9] is an XML-based interface definition language for describing the

services (their interfaces) in a standardized manner [26], [3]. The Web service

published on the Internet is associated with WSDL document, which defines its

location on the Web, data and message types, interaction patterns, and protocol

mappings [8]. WSDL consists of two parts as shown in Figure 2-5: service

interface definition and service implementation definition. The service interface

definition is an abstract definition of a Web service, used to describe a specific

type of service. The service implementation definition is a description of an actual

service that implements the service interface definition.

Chapter 2 Background Studies

 46

WSDL Document Syntax

Each WSDL document contains XML elements that define the characteristics and

capabilities of a Web service. These elements belong to one of two categories:

 Abstract definition, which define general concepts of the service that can be

apply to more than one instance WSDL file. Abstract elements are related to

Service Interface Definition (see Figure 2-5).

 Concrete definitions, which define specific concepts that apply to real

interactions. Concrete elements are related to Service Implementation

Definition (see Figure 2-5) [3], [50].

<definition … >

 <types … >

 <import … >

 <message … >

 <portType … >

 <binding … >

</definition>

<definition … >

 <import …>

 <service ... >

 <port … >

 </service >

 </definition>

WSDL Service

Interface Definition

WSDL Service

Implementation Definition

Figure 2-5 Components of a Service Description

The abstract definition is separated from concrete definitions which can be

reusable. Figure 2-6 shows the two categories of the WSDL Main elements with

their description [3], [50].

Chapter 2 Background Studies

 47

WSDL element

Abstract Definitions

Element description

Provides a definition of the message that is communicated

Defines the service interface of the operations that the Web

service support.

Describes an action providedby the Web service. Is a child

of portType.

Provides definitions for the data types that SOAP messages

contain.

message

portType

operation

type

Concrete Definitions

Binding Specifies the protocols by which nodes transport messages

 and for data encoding.

Port Specifies the address for a particular binding. Is a child

 element of service.

Service Specifies the actual location (URL) of the Web service on

 the server.

Figure 2-6 WSDL Main Elements

Hence, a WSDL document uses the following elements [3], [50] in the definition

of network services:

 Type. It is a container for data type definitions using some type system (such

as XSD).

 Message. It is an abstract definition of the data being communicated.

 Operation. It is an abstract description of an action supported by the service.

 Port Type. It is an abstract set of operations supported by one or more

endpoints.

 Binding. It is a concrete protocol and data format specification for a particular

port type.

 Port. It is a single endpoint defined as a combination of a binding and a

network address.

 Service. It is a collection of related endpoints.

Chapter 2 Background Studies

 48

Universal Description, Discovery and Integration (UDDI)

UDDI is a Web services registry and discovery mechanism, which enables

developers and businesses to publish and locate Web services on a network. It

defines an electronic business registry where businesses can describe their

business and register their Web services as well as discover and integrate with

other businesses that offer Web services. UDDI is based on XML and SOAP.

Interaction with UDDI is accomplished via SOAP interfaces. [10], [11], [12].

UDDI Architecture

 UDDI Business Registry. A core component of UDDI that implements the

UDDI data model and API.

 UDDI data model. An XML schema for describing businesses and Web

services.

 UDDI API. A SOAP based API for searching and publishing businesses and

Web services.

The following is a detailed description of the UDDI Architecture.

UDDI Business Registry (UBR)

The UDDI Business Registry (UBR) consists of three components as shown in

Figure 2-7:

White pages - Contains general information such as name, address and contact

information.

Yellow pages - Contains industrial categorizations based on their products and

services. For example, Software Company might be categorized under computer

software or software engineering.

Green pages - Contains technical information about services and how to invoke

it. Green pages include references to services’ WSDL documents, which contains

information on how to interact with Web services [51], [6].

Chapter 2 Background Studies

 49

White Pages

Green Pages

Yellow Pages

- business name and address, --

- contact information and

 identifiers.

- industrial categorizations based on

standard taxonomies.

- the technical information about services

 and how to invoke the services.

- include references to services’ WSDL

 documents.

Figure 2-7 UDDI Business Registry (UBR) Components

UDDI Data Model

The basic information model used by UDDI consists of hierarchy of four basic

data types. They are: business information (businessEntity), business-service

information (businessService), binding information (bindingTemplate), and

service specification information (tModel). Figure 2-8 shows the relationship

among these data types.

businessEntity component encapsulates a business general information such as

name, address, and contact information. businessEntity includes businessServices

element which references the businessService component. businessEntity

component describes different types of services offered by the company. It

includes a bindingTemplates element which references the bindingTemplate

component. bindingTemplate component provides a technical information about

the services, the access point which contains the end point address, the address

where to access a Web service. It contains tModelInstanceDetails element which

references to tModel component. tModels component defines a specific

information for a service. It contains overviewDoc element which makes tModel

references to specific technical information which is WSDL document.

CategoryBag is an element contains a list of industry, product or geographical

classifications [52].

Chapter 2 Background Studies

 50

businessEntity

businessKey

Name

Description

Contact

businessServices

identifierBag

categoryBag

businessService

serviceKey

Name

Description

bindingTemplates

categoryBag

bindingTemplate

bindingKey

Description

accessPoint http://

services.xmethod.net:80/

soap

tModelInstanceDetails

tModel

tModelKey

Name

Description Simple stock

quota interface

overviewDoc xmethods.net/

SimpleStockQuote.wsdl

categoryBag

Information about the party

who publish information about

a service

Descriptive Information about a

particular service

Technical information

about a service entry

point

Descriptions of specifications for

services or taxonomies.

Figure 2-8 UDDI Model

UDDI API

UDDI API is SOAP-based API; all the UDDI API’s methods are included within

the SOAP’s Body element. UDDI API methods can be divided into two

categories: the inquiry methods and the publishing methods as shown in Figure

2-9.

The inquiry methods allow requester to search and browse the repository

(directory), and the publishing methods allow his/her to modify the contents of the

repository. The messages for the inquiry methods have a root element in the

SOAP Body prefixed by find_ or get_.

Chapter 2 Background Studies

 51

find_business

find_service

find_binding

find_tmodel

get_businessDetail

get_serviceDetail

get_bindingDetail

get_tmodelDetail

save_business

save_service

save_binding

save_tmodel

delete_business

delete_service

delete_binding

delete_tmodel

get_authtoken

discard_authtoken

Inquiry API Publishing API

Figure 2-9 UDDI API’s Methods

The messages for the publishing methods have a root element in the SOAP Body

prefixes by save_ or delete_, except the last two methods (get_authtoken and

discard_authtoken).

The find_ methods are for general searches, and the get_ methods are for

obtaining information about a particular record. For example find_busines: search

businessEntity entities that match a specific set of criteria. Whereas

get_businessDetails: obtains one or more specific businessEntity entities. The

publishing API methods are for creating and updating the data within the

repository by using save_ methods. Dele_ methods allow requester to modify and

delete his/her record, to do so, he/she must include his/her authentication token

(such as passport token) to prove his/her identity. An authentication token can be

obtained by using get_authtoken method [53].

Relationship between UDDI and WSDL

Web Services Description Language (WSDL) is a mechanism used to define and

describe the details regarding the communication with Web services. Universal

Description Discovery and Integration (UDDI) provides a method for publishing

and finding service descriptions. The UDDI data entities provide support for

defining both business and service information. The service description

Chapter 2 Background Studies

 52

information defined in WSDL is complementary to the information found in a

UDDI registry. The WSDL service interface definition is published in a UDDI

registry as a tModel. Some of the tModel elements (such as name and

overviewURL) are constructed using the information that is copied from the

WSDL service interface definition. The WSDL service implementation definition

is published in UDDI registry as a businessService with all relevant information

copied into the businessService [54], [55]. Figure 2-10 illustrates the relationship

between the WSDL and UDDI.

businessEntity

businessService

bindingTemplate

tModel

WSDL service

implementation definition

WSDL service interface

definition

YYY

YYY

Figure 2-10 UDDI and WSDL Relationship

2.4 Technologies Used for Web Service Implementation

Web services can be implemented using Microsoft’s .NET [35] and Sun

Microsystems’ J2EE [56] (Java 2 Platform, Enterprise Edition). J2EE and .NET

are different tools with different strategies for implementing Web services [57].

J2EE and .NET are described in more details in the following sections and a

comparison between them is provided below.

Chapter 2 Background Studies

 53

2.4.1 J2EE

Java 2 Platform, Enterprise Edition (J2EE) is a Java-based technology stack. It

enables developers to build enterprise applications and deploy them onto any

platform [58]. J2EE is based on Java programming language environment and can

be run on any operating system [57]. J2EE is supported by a variety of vendors

such as IBM, BEA Systems, Sun Microsystems and Oracle. The latest version of

J2EE is 1.4 [56].

J2EE consists of the following components:

 JavaServer Pages (JSPs). Generate dynamic content for Web browsers and

mobile devices.

 ServLets: Build control and navigation logic into J2EE applications.

 Enterprise JavaBeans (EJBs). There are two types of EJB: session beans

that model business logic and entity beans that model persistent data.

 Java Connectivity Architecture (JCA). Enables Java enterprise applications

interface with non-Java enterprise applications.

 Java Message Service (JMS). Provides asynchronous messaging capabilities

to the J2EE platform.

 Java Management Extension (JMX). Manages J2EE servers and

applications.

 Java Naming and Directory Interface (JNDI). Provides component location

transparency in a clustered J2EE environment.

 Java Database Connectivity (JDBC). Handles all database input/output via

SQL.

 Java API for XML-Based RPC (JAX-RPC). (J. Jeffrey Hanson “.NET

Versus J2EE Web Services”, 2002). Uses XML to make remote procedure

calls (RPC) and exposes an API for transmitting and receiving procedure calls.

Chapter 2 Background Studies

 54

 Java API for XML parsing (JAXP). Allows developers to perform any Web

service operation by manually parsing XML documents [59].

 Java Architecture for XML Binding (JAXB). Provides a fast way to create a

two-way mapping between XML documents and Java objects. The JAXB

compiler generates a set of Java classes containing all the code to parse XML

documents based on the schema structure [59].

 Java API for XML Web Services (JAX-WS): It is a Java programming

language API for creating Web services.It is a fundamental technology for

developing SOAP based Java Web services. JAX-WS is designed to take the

place of JAX-RPC in Web services and Web applications [60].

 Web Services Interoperability Technology (WSIT): It implements next

generation Web services technologies that enable Java EE to interoperate [61].

 XML and Web Services Security (XWS-Security): It provides a framework

within which a JAX-WS or SAAJ application developer can secure

applications. Using the XWS-Security framework, developers of JAX-WS can

secure their applications by configuring the request and response security

policies at the level of service, port, or operation [62].

2.4.2 Microsoft’s .NET Framework

Microsoft .NET is a software that enables developing applications for different

environments and devices. For example, it can build XML Web services and Web

applications for the Internet and can create Windows applications, server

components and applications that run on any device such as PC or a mobile

device. .NET integrates various applications and devices by using standards such

as Hypertext Transfer Protocol (HTTP), XML and Simple Object Access Protocol

Chapter 2 Background Studies

 55

(SOAP). .NET overcomes the challenges of the software industry which is to

exchange data between applications written in different languages and for

different environments [63].

.NET runs on a single platform (Windows) but supports multiple languages such

as Visual Basic, Visual C#, Visual J# and Visual C++, so it is a rich development

platform [57].

The Microsoft .NET Framework is the infrastructure for building applications

using .NET strategy. The .NET framework provides an object-oriented

programming model that can build all types of applications such as Windows-

based applications, XML Web services and Web applications. To create a .NET

application, classes are created to define the functionality of the applications in

any language supported by the .NET framework. A class written in one language

is reusable by classes written in other languages. Also it can inherit classes across

language boundaries because the .NET framework allows language

interoperability and supports cross-language inheritance [63]. The European

Computer Manufacturers Association (ECMA) standard defines the Common

Language Specification (CLS), which contains the rules for language

interoperability. The code written in a CLS-compliant language is interoperable

with the code written in another CLS-compliant language because the code is

compiled into an intermediate language (IL) code.

Chapter 2 Background Studies

 56

Win32

Common Language Runtime

.NET Framework Class Library

Windows

Forms

Web Forms XML Web

 Services

 ASP.NET

VB.NET C# VJ# VC++.NET …...

Figure 2-11 .NET Framework Components

Figure 2-11 .NET Framework Componentsshows the following components of the

.NET framework.

 Four standard CLS-compliant languages. Microsoft Visual Basic .NET,

Microsoft Visual C#, Microsoft Visual C++ .NET and Microsoft Visual J#

.NET.C# is a new language for writing classes and components that integrates

elements of C, C++, and Java. The compiler of these languages generates

Microsoft Intermediate Language (MSIL) which makes programs written in

the .NET languages interoperable [63], [64].

 .NET applications: .NET framework is the infrastructure for building

different kinds of applications, such as console applications, Windows

applications, XML Web services and Web applications. ASP (Active Server

Pages) .NET is a technology for creating dynamic Web applications and Web

services.

 Common Language Runtime (CLR): It executes programs written in any

CLS-compliant language in two steps. First, a program is compiled into the

Chapter 2 Background Studies

 57

Microsoft Intermediate Language (MSIL). Second, MSIL is compiled into

machine code for a specific platform. Compiling to a common format such as

MSIL increases portability between platforms and interoperability between

languages. The CLR is like the Java virtual machine in providing the

environment in which programs execute [64].

 Framework Class Library (FCL): An enormous amount of pre-written of

classes for creating objects such as windows and controls like buttons and

check boxes, as well as handle strings, threads, network communications, Web

forms, Windows services, and more. The FCL contains reusable components

that programmers can incorporate into their applications, which saves them

from creating new software from the scratch [6].

 ADO+: A new generation of ADO data access components that use XML and

SOAP for data interchange [65].

2.4.3 Microsoft .NET versus J2EE

Table 2-2 shows .NET and J2EE feature comparisons as in the following:

Table 2-2 Comparison between .NET and J2EE

Feature .NET J2EE

Middleware Vendors Microsoft IBM, BEA, Sun, Oracle

Programming Language VB, C#, J#, C++ Java

Cross-Platform Portability only support Windows platform complete platform portability

Web Services Support Visual Studio .NET JAXP

Interpreted Language MSIL Java Bytecode

Runtime Environment CLR JVM/JRE

Database Access ADO.NET JDBC, SQL/J

Chapter 2 Background Studies

 58

.NET

 .NET is a Microsoft platform. It runs only on a Windows platform.

 .NET supports many languages such as VB, C#, J# and C++. .

 .NET is language-independent and language- interoperability.

 .NET supports Web services through Visual Studio .NET integrated

development environment (IDE).

 Source code is translated into Microsoft Intermediate Language (MSIL) which

is language-neutral.

 Common Language Runtime (CLR) is Microsoft’s intermediary between

.NET developers’ source code and the underlying hardware.

 Developers can access a variety of data sources through ADO.NET classes.

J2EE

 IBM, BEA systems, Sun Microsystems and Oracle offer a wide variety of

J2EE products.

 J2EE is a platform independent that is it is portable. . It has the ability to run

on any operating system [57], such as Win32, UNIX and Mainframe systems.

 J2EE supports only Java language.

 J2EE supports Web services through the Java API for XML Parsing (JAXP).

 Java source code is translated into Java bytecodes.

 J2EE offers language- level intermediation via the Java Runtime Environment

(JRE) and Java Virtual Machine (JVM) which allows Java bytecode to run on

any platform.

 Java Database Connectivity (JDBC) handles all database input/output via

SQL.

Chapter 2 Background Studies

 59

2.5 Limitations in UDDI and Web Service Environment

This section presents the challenges in the current UDDI regarding service

selection based on quality criteria and the challenges related quality matchmaking

in the Web service environment.

2.5.1 Limitations in UDDI

The Universal Description Discovery and Integration (UDDI) [11], [66], [67] is

proposed by Microsoft, IBM, and Ariba to provide a standard for an online

registry of Web services. UDDI enables the publishing and dynamic discovery of

Web services and allows developers to locate services for direct invocation or

integration into new complex services. A Web service provider registers its

businesses and Web services along with keywords for categorizations. UDDI

describes businesses by their physical attributes such as name, address and the

services that they provide. In addition, UDDI descriptions are augmented by a set

of attributes called tModels, which describe additional features such as the

classification of services within taxonomies such as NAICS (North American

Industry Classification System) [68]. A service requester retrieves advertisements

out of the registry based on keyword search [69]. UDDI suffers from the

following some shortcomings:

 UDDI performs basic searching capability. The search is only done by string

matching or keyword-based matching on some fields [70], [71]. Dynamic

selection of adequate services involves matching of services requirements with

advertised service capabilities rather than simple keywords or string [71].

 The current selection mechanism in UDDI is only based on the functional

information published in the WSDL document because UDDI does not

support or represent non-functional information of the Web services [33], [72].

Hence, UDDI can’t search for services based on non-functional information.

 UDDI is a static registry, that is its content is specified at advertising time and

can only be updated if an advertisement is replaced by a new one [32], [73].

Chapter 2 Background Studies

 60

2.5.2 Limitations in Web Services Environment

The major problems with the capability QMP in the current Web services

environment are:

 Matchmaking process occurs in an open environment (Internet) which can’t

easily predict the quality criteria that a Web service will deliver [38].

 The service providers and service requesters have very different perspectives

and it is unrealistic to expect equivalent quality specifications provided by the

service providers and quality requirements provided by the service requesters

to be equivalent, or even that exist a service that fulfils exactly the needs of the

requester.

 Need for a common language for describing and defining the quality

specification of the advertised services and the requester’s quality constraints

and preferences. This step is addressed by extending the Web Services

Description Language (WSDL) with quality criteria as explained in Chapter 3.

 UDDI lacks the matchmaking capability essentials for selecting the right Web

services. Therefore, UDDI as a service directory is important but insufficient

for searching Web services and need to be complemented with advanced

matchmaking facilities [73].

To address the above UDDI and Web services challenges, this thesis proposes a

quality-based Web service architecture (QWSA) that extends the current Web

service architecture with quality server. The core component in the quality server

is the matchmaker component, which assists the service requesters to select the

best available service that fulfil their preferences and satisfactions by matching

between the service providers’ quality specifications and service requesters’

quality requirements. In addition, this project develops a quality service selection

approach that assists the service requesters to select the best advertised service

based on their quality preferences and requirements.

Chapter 2 Background Studies

 61

In addition, it requires a description language to express quality capabilities of

services, and the specification of a matchmaking algorithm between quality

specifications and quality requirements. Web Service Description Language

(WSDL) is extended in this project to express quality capabilities of Web

services.

In order to associates quality criteria in the Web Services Description Language

(WSDL) it is required a quality classification that contains the most important

quality criteria.

2.6 Semantic Web and Web Services

The semantic Web as defined by W3C as the representation of data on the World

Wide Web. Adding semantics to the web involves two things: allowing

documents which have information in machine-readable forms, and allowing data

on the Web to be defined and linked in a way that it can be used for more

effective discovery, automation, integration, and reuse across applications. The

objective of the semantic Web is to make electronic commerce interactions more

flexible and automated [74].

The semantic Web is a participation of W3C with a large number of researchers

and industrial partners. It is based on the Resource Description Framework (RDF)

and Web Ontology Language (OWL). The RDF and OWL were released in 2004

by the World Wide Web Consortium as W3C Recommendations. RDF is used to

represent information and to exchange knowledge in the Web. OWL is used to

publish and share sets of terms called ontologies, supporting advanced Web

search, software agents and knowledge management [75].

The Web is moving from being a collection of pages toward a collection of

services [76]. The Semantic Web and Web Services are two visions of how to

make the Web more automated use. The objective of the Semantic Web services

is to describe and implement web services to make them more accessible, flexible

and automated to the service requester and service provider. The semantic Web

http://www.w3.org/RDF/

Chapter 2 Background Studies

 62

services requires that data be not only machine readable, but also to be machine

understandable.

The developers of end user applications will not to worry how to interpret the

information found on the Web, as ontologies will be used to provide vocabulary

with explicitly defined and machine understandable meaning [70]. DAML+OIL is

an ontology language that extends RDF and which is the basis for the W3C Web

Ontology Language working group’s development of the OWL ontology language

standard [77]. If the applications are to exchange semantic information, it need to

use common language. The ontology which written in DAML+OIL and has been

designed for the purpose of describing Web services, is the DAML-S ontology.

DAML-S provides vocabulary for service descriptions and it aims to make Web

services computer-interpretable and to enable automated Web service discovery,

invocation, composition and monitoring [78].

2.7 Related Work in Quality Issues

Quality has been extensively studied in the area of computer network [79] and

specially the Internet [80], and real-time computing. However, quality in the

context of Web services has been a recent research activity.

The research work touches various quality issues in the Web services context.

Therefore, relevant previous works on quality requirements and classification,

quality Web service architecture and quality-driven service matchmaking and

selection have been discussed.

2.7.1 Quality Requirements and classification

With the widespread proliferation of Web services, quality criteria will become a

significant factor in distinguishing the success of service providers and to ensure

that the selected Web services based on their qualities fulfil the requester

expectation and requirements.

Chapter 2 Background Studies

 63

Mani and Nagarajan [82] discuss various Web service QoS requirements from the

service providers perspective, that support QoS in web services: availability,

accessibility, integrity, performance, reliability, regularity, and security. A QoS

negotiation is used as a technique to match the needs of service requesters with

those of the service providers, and using service proxy method to measure

response time of the Web services.

Menasce [83] discusses the QoS issues in Web services and have to be evaluated

from the perspective of the providers of Web services and from the perspective of

the users of these services. These users are not human beings but programs that

send requests for services to Web service providers.

Tian et al. [84], [85] propose an approach that enables the QoS integration in Web

Services, and the selection of appropriate services based on QoS requirements

regarding server and network performance. They describe how QoS requirements

are mapped to the underlying platform and network. They also provide a Web

service-QoS XML schema for the both requesters and providers to define the QoS

parameters.

Seo et al. [86] present a Web service quality classification which includes the

following classifications: performance, safety and cost. Performance contains

response time and throughput, safety contains availability and reliability and cost

contains the service cost. It presents various service levels (gold, silver or bronze)

for each Web service quality aspects.

Ran [5] organizes the quality-of-service (QoS) important to Web services into

categories, which are grouped into different types: QoS related to runtime,

transaction support, configuration management and cost and security. Runtime

related QoS contains the following aspects: scalability, capacity, performance,

reliability, availability, robustness/flexibility, exception handling and accuracy.

Transaction support related QoS contains integrity aspect. Configuration

management and cost related QoS contains the following aspects: regulatory,

supported standard, stability, cost and completeness. Security related QoS

Chapter 2 Background Studies

 64

contains the following aspects: authentication, authorization, confidentiality,

accountability, traceability and auditability, data encryption and non-repudiation.

Patel et al. [87] organize the QoS parameters and classified them into the

following categories: general, Internet service specific and task specific QoS

parameters. General QoS parameters contain performance (throughput),

performance (latency), reliability and cost. Internet service specific QoS

parameters contain availability, security, accessibility and regulatory. Task

specific QoS parameters contain task specific parameter.

Zeng et al. [88] propose a Web service quality based on a set of quality criteria

such as availability, execution rate, execution duration, reputation and execution

price. The QoS model is used to select Web services and to evaluate the QoS of

composition services.

Ai-Ali et al. [31] extend the service abstraction in the Open Grid Services

Architecture for Quality of Service (QoS) properties. QoS parameters are defined

with respect to the three levels: application QoS (i.e., availability, reliability,

accessibility); middleware QoS (i.e., memory size, number of parallel CPUs); and

network QoS (i.e., bandwidth, throughput).

Gouscos et al.[89] Present a simple approach to model Web service QoS attributes

and provision price, and discuss how this information can be accommodated

within basic specification standards such as WSDL and exploited within the Web

service deployment and application life-cycle.

Liu et al.[90] present an open, fair and dynamic QoS computation model for Web

services selection. They achieve the dynamic and fair computation of QoS values

of Web services through a secure user’s feedback and a monitor. Their QoS model

is extensible and new domain specific criteria can be added without changing the

underlying computation model. They provide an implementation of a QoS registry

based on their extensible QoS model.

The quality requirements are considered ,as in this thesis, from the service

providers perspectives well as from the service requester perspectives in [82] and

Chapter 2 Background Studies

 65

[83]. Whereas, the quality requirements in [84] and [91] are considered from the

system and network perspectives.

The quality parameters in [86], [5], [87] and [31] are classified into groups from

different perspectives. In [86], the classification includes : performance, safety

and cost groups. The classification in [5] includes: QoS related to runtime,

transaction support, configuration and security. The classification in [87] includes:

general, Internet service specific and task specific. The classification in [31] is in

the Grid environment, which includes: application QoS, middlewarw QoS and

network QoS. However, this thesis proposes a quality criteria classification, which

organizes the most important quality criteria into four groups: Performance,

Failure Probability, Trustworthiness, and Cost. Each group consists of several

quality sub-criteria.

2.7.2 Quality Web Service Architecture

Because Web services can be provided by third parties and invoked dynamically

over the Internet, their quality criteria can vary greatly. Therefore it is important to

have a framework capturing the quality specifications provided by the providers

and the quality requirements required by the requesters.

Several approaches have been represented in the literature to deal with quality of

Web services.

Chen et al. [92] propose a QoS Web service architecture in which a QoS Broker

acts as a mediator between service providers and service clients to make Web

service selection instead of the client. The QoS Broker consists of four

components: QoS information manager, QoS Negotiation Manager, QoS Analyzer

and database. The Broker negotiates with QoS server(s) to make sure that the

guaranteed-quality of service can be provided to the clients. The key QoS

attributes considered in [92] are Web services response time, cost, network

bandwidth, and service availability. However, the proposed quality-based web

service architecture (QWSA) differs from the aforementioned architecture in that

Chapter 2 Background Studies

 66

it does not use negotiation to select the desired service, but it selects the best

available Web services by using the quality matchmaker component in the quality

server and use mathematical technique for matching the quality specifications

against the quality requirements and without requiring negotiation.

Seo et al. [86] propose Web Service Quality Broker Architecture, which helps

service requester to find the optimal Web service. They described negotiation

process by using Multi-Attribute Utility Theory (MAUT) on the basis of quality

information of both sides (service requester and service provider) participating in

negotiation. Quality model is proposed by classifying the quality attributes into

performance, safety, and cost aspects.

Ran [5] proposes a new Web Services discovery model in which the functional

and non-functional requirements (i.e., quality of service) are taken into account

for the service discovery. A QoS certifier is introduced in this model that certifies

the QoS claims given by the providers and verifies these claims for the clients. An

extension to UDDI’s data structure types is proposed for implementing the

proposed discovery model.

Serhani et al. [93] present a broker-based architecture for QoS management for

Web services. They propose a QoS broker which is used as a third party Web

service published in UDDI registry. It is invoked when a user requests a Web

service with QoS requirements. The role of the QoS broker is to support QoS

provisioning and assurance in delivering Web services. It introduces a new

concept, called QoS verification and certification, which is used together with the

QoS requirements in the selection process of Web services.

Yu and Lin in [94] present a QoS-Capable Web Service Architecture (QCWS) in

which a QoS broker acts as a mediator between service providers and clients. The

QoS server collects QoS information about servers, makes select decisions for

clients, and negotiates with servers to get QoS commitments. The non-

homogeneous resource allocation algorithm (RQ) is used to allocate different

amounts of resources to different clients according to their requirements.

Chapter 2 Background Studies

 67

Chen et al.[95] propose UX (UDDI eXtension), a system that is QoS-aware and

facilitates the federated discovery for Web services. The QoS feedback from

service requesters are used to predict the service’s performance. UX server

supports wide area discovery across domains. The UX server’s inquiry interface

conforms to the UDDI specification. A discovery export policy is proposed that

controls how the registered information is exported to UX servers and requesters.

Patel et al.[87] propose a QoS oriented Framework, called WebQ, that is able to

conduct the adaptive selection process and provides binding and execution of

Web services for the underlying workflow. They have designed a QoS model for

Web service selection, binding, and execution. They develop a set of algorithms

to compute QoS parameters and implement them using a rule-based system. QoS

model selects dynamically the best available services and executes these services

to maximize the overall QoS. The QoS parameters are classified into three

categories: general, Internet service specific, and task specific.

Menasce in [96] describes a framework called Q-application and Q-component for

QoS-aware software components (distributed applications)., and focus specifically

on QoS requirements such as performance, availability and security for such

framework performance. A Q-application can discover the Q-components that

provide given services and a QoS negotiation between the Q-application and Q-

component occurs and if the negotiation is successful then the Q-component

becomes part of the Q-application. However, no methods are mentioned to

describe how to discover the services.

ShaikhAli et al. in [30] implement UDDIe- an extension to UDDI which supports

the notion of “blue pages” to record user defined properties associated with a

service and to enable search on other attributes of a service by extending the

businessService class in UDDI with propertyBag and to discover of services

based on these.

Different approaches have been introduced in order to extend the current Web

service architecture with quality capabilities. A QoS Broker has been introduced

Chapter 2 Background Studies

 68

as a mediator between the service requesters and providers, and it is used in order

to select the best service in [92], [86], [94] and [95]. The negotiation process as in

[96] is used to select the best service. Also, the However, the QoS Brokers are not

well defined. These are no information about how the QoS brokers discover and

select the optimum Web services.

Another approach using QoS certification concept in both [5] and [93], but with

different functions. In [5], the QoS certifier extending the original UDDI model

and verifies the QoS claims for a Web service before registration. Whereas in

[93], QoS certifier is a module in the QoS broker for certifying Web services and

their provided QoS.The QoS certifier which introduced in [5] is not well defined;

it does not describe the details of the certification process as in [93].

The current UDDI in [30] is extended with propertyBag element in the

businessService class that enables the service providers to publish their service

with quality aspects and enables the requesters to discover the services based on

quality aspects.

From the previous approaches it can’t find a comprehensive solution for selecting

the best available Web service based on quality criteria. The Broker functions are

not well defined and no details for the service selection. This thesis proposes a

quality-based Web service architecture (QWSA), to bridge the gap between the

service requester’s quality requirement and the service providers’ quality

specifications. This architecture incorporates a quality server that facilitates and

assists the service requester to discover and select the best available Web services.

The core component of the quality server is a quality matchmaker, which selects

the best service based on a mathematical model.

2.7.3 Quality Service Matchmaking and Selection

There are several research activities related to matchmaking, discovery and

selection work which are based on, semantic and QoS characteristics as in the

following:

Chapter 2 Background Studies

 69

Facciorusso et al. [73] propose a matchmaking process in the context of Web

services by using Web Services Matchmaking Engine (WSME). WSME is a Web

service supplied as part of the IBM Web Services Toolkit (WSTK) [97]. The

WSME matchmaking process is a two ways or symmetric process where each

party (customer or provider) submits a description of itself and the requirements

of the other part. The matchmaking process evaluates the demands of each party

against the descriptions of the other parties by using rules, which allows both

parties to select each other. Also the paper proposes the drawbacks of UDDI.

UDDI is limited in search capability and the search is asymmetric which means

that only customers have the ability to express their requirements of the service

and its providers, but not vice versa. UDDI is a static directory that is its contents

is specified at advertising time and can only be updated if an advertisement is

replaced by a new one. UDDI also lacks the matchmaking capability which is

essential for selecting the right Web services. So, UDDI are important as a

directory service but insufficient for selecting the right Web services and need to

be complemented with advanced matchmaking facilities.

Ran [5] proposes a model for Web service discovery with QoS by extending the

current UDDI model with QoS information. But service research and selection are

still done by human clients. This is not desirable if thousands of services are

available for selection. Searching and finding the most suitable service that match

the requester’s QoS requirements may be better performed by an automated

system. However, this thesis develops a quality service selection system (QSSS),

which enables the requester to select the best service automatically.

Farakas and Charaf [98] propose a software architecture to provide QoS-enabled

Web services by adding a QoS broker between clients and service providers to

discover the QoS aware services in UDDI. However, there is no detailed

information about the functionality of the QoS broker.

Balke and Wagner [33] propose a cooperative discovery algorithm for selecting a

suitable services by using an ontology-driven approach DAML-S. Also, the paper

Chapter 2 Background Studies

 70

mentioned the UDDI shortcomings: UDDI is limited to keyword matching and

does not support any inference to relax descriptions associated in user preferences

or ontologies.

The above paper based on semantic matching by using DAML-S semantic Web

services framework and the matching doesn’t address the QoS issues. However,

our project will propose matchmaking algorithm using mathematical techniques

and based on requester’s QoS preferences.

Wang and Stroulia [99] propose a flexible service discovery method which based

on information retrieval and WSDL structure matching. An information retrieval

method uses vector space model to identify most similar service description files

and to order them according to their similarity. Then, a WSDL structure-matching

algorithm is used to refine and assess the quality of the candidate service set. The

WSDL structure matching includes matching the structure of the operations’ input

and output messages, and matching the data types of the objects communicated by

these messages. Also, the paper mentioned the drawback of UDDI specific QoS

properties. Also, there is no method explaining how to rank and select the best

Web services.

Maximilien and Singh [38] propose a comprehensive agent-based trust framework

for service selection in open environment. The authors introduce a policy

language to capture service consumer’s and provider’s profiles. They introduced

QoS ontology as a specification which enables matching services semantically

and dynamically. The semantic matchmaking allows the service agent to match

consumers to service using the provider’s advertised QoS policy for the services

and the consumers’ QoS preferences. The provider policy and consumer

preferences are expressed using the concepts in the QoS ontology (QoS model).

The service selection is based on user preferences and business policies, and

considers the trustworthiness of service instances. So, their approach enables

applications to be configured dynamically at run time to select the best services

with respect to each participant’s preferences.

Chapter 2 Background Studies

 71

Sycara et al. [100], [101] present a flexible and efficient matchmaking process

that uses LARKS (Language for Advertisement and Request for Knowledge

Sharing) which is a language for agent advertisements and requests. The LARKS

matchmaking process performs both syntactic and semantic matching. The service

specification is written in the concept language ITL (Information Terminological

Language). The matchmaking process uses five different filters: context

matchmaking, profile comparison, similarity matchmaking, signature

matchmaking and constraints matchmaking. Different degree of matchmaking can

result from using different combinations of these filters.

Ouzzani and Bouguettaya [102] propose a novel infrastructure that optimizes

query facilities for Web services. They propose a matchmaking process which

matching virtual operations to concrete operations. The query model determines

the best service is based on QoS parameters “QoWS”, service rating, and

matching degrees. However, the authors do not cover about the matchmaking

process related to QoS parameters.

Zhou et al. [103] propose a QoS ontology called DAML-QoS ontology as a

complement for DAML-S ontology to provide a better QoS metrics model. It is

designed for the matchmaking purpose. Matchmaking algorithm for QoS property

constraint is presented and different matching degrees are described.

However, the above paper provides a novel DAML-QoS ontology which is based

on DAML+OIL layer instead of XML layer. A DL reasoning is used to match

requester’s QoSProfile to advertisement QoSProfile according to the matching

degrees (subsume, exact, plugIn, intersection, and disjoint). DAML-S is a

DAML+OIL (an ontology language used in the Semantic Web) ontology for

describing Web services. DAML-S is extended by quality of service metrics

description for service discovery to meet user needs. Well this thesis uses WSDL

description language instead of DAML-S, and WSDL is extended with QoS

criteria specification. The matchmaking process has four stages or filters: interface

Chapter 2 Background Studies

 72

matchmaking, quality criteria type matchmaking, quality criteria value

matchmaking and mathematical matchmaking.

Pilioura et al. [104] propose an infrastructure for web service publication and

discovery (PYRAMID-S), which addresses the UDDI limitations by combining

the technologies of Web Services, Semantic Web and Peer-to-Peer Networking.

The main contribution of this infrastructure is that the Web service publication

and discovery based on syntactic semantic information as well as on QoS

characteristics in order to enable result ranking and service selection.

Al-Ali et al. [31] propose a framework in service-oriented Grid. The advertised

services are discovered based on QoS criteria by using service level agreement.

WSDL and UDDI are extended by QoS properties. The matchmaking broker

matches the queries with advertised services based on QoS properties.

Li and Horrocks [70] propose a matchmaking process which based on DAML-S

semantic Web ontology and a Description Logic (DL) reasoner to compare

ontology based service descriptions.

Zeng et al. [88] present two service selection approaches; local optimization and

global planning. A Simple Additive Weighing technique is used to select an

optimal Web services. The users express their preferences regarding QoS by

providing values for the weights. They propose a simple QoS model using the

examples of price, availability, reliability and reputation.

Liu et al.[90] present an open, fair and dynamic QoS computation model for Web

services selection. They achieve the dynamic and fair computation of QoS values

of Web services through a secure user’s feedback and a monitor. Their QoS model

is extensible and new domain specific criteria can be added without changing the

underlying computation model. They provide an implementation of a QoS registry

based on their extensible QoS model.

Fedosseev in [105] present the global planning approach which used to optimally

select component services during execution of a composite service. The approach

is based on quality-of-service (QoS) characteristics of services Different types of

Chapter 2 Background Studies

 73

quality metrics have been introduced such as QoS: system, QoS: task, quality-of-

experience (QoE), and quality-of-business (QoBiz).

Some of the matchmaking and selection technique are general and not consider

the quality issues as in [73], [100], [101] and [99].

Most of the previous research on service discovery matchmaking and selection is

based on syntactic and semantic service characteristics. The syntactic information

comprises the service name and a short textual service description. The semantic

information refers to machine-understandable meaning to the concepts of the

service description. However, rarely researches enriched their service discovery,

matchmaking, and selection techniques with quality aspects as in [73], [100],

[101] and [99]. Most of the related quality matchmaking based on either semantic

as in[33], [38], [106], [104] and [70] or computation as in [88], [90] and [105].

This thesis proposes quality matchmaking selection technique that is based on the

mathematical model. The Analytical Hierarchy Process (AHP) is used to calculate

the quality criteria weight based on the requester preferences. The Euclidean

distance is used to calculate the distance between the quality requirements and the

quality specifications. The service associated with the minimum distance is the

best service to select..

2.8 Summary

This chapter has introduced an overview about Web service architecture and its

standards. This chapter shows that Web services technology offers many benefits

and provides more advantages over the distributed-computing technologies as the

Web service is interoperable which has the ability to communicate and share data

with software from different vendors and platforms.

But Web services technology also has some challenges. The Web services

standards are still immature and under development. The UDDI standard is a

registry database and service discovery engine and allows requester to look for

Web services based on their functionality but not quality information. WSDL is

Chapter 2 Background Studies

 74

an XML format for describing Web services; it does not address issues related to

the description of quality aspects of a service. In addition, selecting services

regarding its quality over open environment is difficult and challenging because

of the dynamic nature of the quality criteria that can’t easily be predicted and it is

not easy for the service requester to select the best service of the same functional

properties with different quality criteria information.

To address the aforementioned challenges, this project proposes quality Web

service architecture (QWSA) that extends the current Web service architecture

with quality server. The quality server consists of four main components: quality

Manager, quality Matchmaker, quality Report Analyzer, and quality Database.

The main purposes of the QWSA architecture are to:

 Enhance the current UDDI role by enabling service publishing and

discovering based on quality criteria.

 Matches the quality specifications of the advertised Web services against the

quality requirement that specified by the service requester.

 Assists the service requester to choose the best available service based on

his/her quality requirements and preferences.

Also, this project develops a quality matchmaking process (QMP) that assists the

service requester to select the best advertised service based on his/her quality

preferences and requirements by matching between the service providers’ quality

specifications and service requesters’ quality requirements.

The QWSA architecture and the QMP will be discussed in details in the coming

chapters.

Chapter 3 Quality Definition

75

Chapter 3 Quality Definition

3.1 Introduction

Web services quality is an important factor from the requester point-of-view

because it differentiates similar services offered by different service providers.

Section 3.2 gives the definition of quality criteria in Web services syntax.

Section 3.3 formulates a conceptual quality criteria classification that consists of

four quality criteria groups: Performance, Failure Probability, Trustworthiness,

and Cost. Section 3.4 extends the current Web Service Description language

(WSDL) with the quality criteria classification by adding a new element tag called

<QualityCriteria>.

3.2 Quality Criteria in Web Services

Web services technology is becoming increasingly popular and more businesses

are planning to build their future solutions on it. Future business systems require

integration of business processes, business applications, and Web services over

the Internet. Delivering quality of the services is a critical and significant

challenge because of the dynamic and unpredictable nature of business

applications and Internet traffic. Due to this rapid growth, quality of the service is

becoming a significant factor and playing an important role for the success of this

emerging technology.

3.2.1 Quality Concept

Quality criteria have different definitions in different domains. However, in the

Web services context, quality criteria is defined as a set of non-functional criteria

such as availability, performance and reliability that impact the performance of

Chapter 3 Quality Definition

76

Web services [107]. Given a set of quality criteria, the aim of Web services is to

match the needs of service requester with the published services [82], [1].

Quality is the measure of how well does a particular service perform relative to

expectations, as presented to the user. The type of quality may be relative to the

expectations of the requester who requests the service or may be relative to the

expectations of the service provider who offer/deliver the service. It determines

whether the requester will be satisfied with the service delivered, that is, the

quality is meeting requirements. Quality can be expressed in user perceptions in a

number of parameters, which have either subjective or objective values. Objective

values can be measured automatically, whereas subjective can be measured by

involving the humans. Quality is dynamic which means that the requester and

provider can modify their requirements and offers’ criteria to eliminate the gap

between them [108].

The international quality standard ISO 8402 [109] describes quality as “the

totality of features and characteristics of a product or service that bear on its

ability to satisfy stated or implied need”. This thesis defines quality in Web

service environment as a set of non-functional attributes that both service provider

and service requester can be able to specify quality criteria related statements to

enable quality criteria aware service delivery, service lookup, service selection

and service consumption.

3.3 Quality Criteria Classification

The service providers and service requesters have different perspectives and that

can’t to expect equivalent quality specifications provided by the service providers

and quality requirements provided by the service requesters. Therefore, a quality

criteria classification is required in order to capture the descriptions of quality

criteria from requester’s perspective as well from provider’s perspective that are

applicable to all Web services. In addition the quality classification is required in

the selection process to enable the requester to select the best service based on

Chapter 3 Quality Definition

77

his/her quality requirements. The quality requirements consider both the Web

services quality and their corresponding services or products quality. Section 1.1.1

defines the notion of the Web services and the services they are provided.

The quality criteria classification in this thesis is similar to the quality

classification in [86], [5] and [87] in that they classify the quality criteria into

groups with different perspectives. The quality classification in [86] includes three

groups: performance, safety and cost. Performance contains response time and

throughput, safety contains availability and reliability and cost contains the

service cost. The quality classification in [5] organizes the most important quality-

of-service important to Web services into four groups: QoS related to runtime,

transaction support, configuration management and cost and security. The quality

classification in [87] classifies the QoS parameters into the following groups:

general, Internet service specific and task specific. General QoS parameters

contain performance (throughput), performance (latency), reliability and cost.

Internet service specific QoS parameters contain availability, security,

accessibility and regulatory. Task specific QoS parameters contain task specific

parameter.

However, this thesis proposes a quality criteria classification that organizes the

most important quality criteria into four groups: Performance, Failure Probability,

Trustworthiness, and Cost regarding its characteristics and includes generic sub-

criteria. The generic sub-criteria are applicable to all Web services, reusable

across domains (e.g., business and scientific) and can benefit all service

requesters. Quality criteria classification as shown in Figure 3-1 is extensible as in

[87], in which the new criteria can be added without fundamentally altering the

mathematical mechanism and the service selection techniques built on top of the

classification [90], [110]. Mathematical mechanism and service matchmaking and

selection technique will be discussed in Chapter 5.

The quality criteria groups have the following characteristics:

Chapter 3 Quality Definition

78

 Each group has a set of metrics, dimensions or parameters which capture

subjective or objective values. Objective values can be measured

automatically such as the response time, whereas subjective can be measured

by involving the humans such as the reputation.

 Some of the criteria could be negative that is, the higher the value, the lower

the quality. This includes criteria such as response time and service price.

Other criteria are positive that is the higher the value, the higher the quality.

This includes criteria such as availability and reputation [88].

 Quality criteria are deterministic and non-deterministic. Deterministic

indicates that the value of quality criterion is known when a service is

invoked, for example, the service price. The non-deterministic is for quality

criterion that is unknown when a service is invoked, for example, execution

time. For deterministic criteria, the service providers advertise them in the

UDDI registry. Whereas, the non-deterministic quality criteria are computed

during the runtime service execution [90].

The quality criteria parameters have related properties or elements qvalue (range

value), and unit for both quality specifications provided by the service providers

and quality requirement provided by service requester. In addition to the

aforementioned elements, quality requirement has also weight criteria to express

different requesters’ demands and preferences. The quality criteria elements are

described in the coming section.

The quality classification is implemented by developing a quality service selection

system (QSSS) that enables the service requester to specify his/her quality

requirements. QSSS system is described in Chapter 6.

Chapter 3 Quality Definition

79

Performance
Failure

Probability
Trustworthiness Cost

Capacity

Response Time

Latency

Throughput

Execution Time

Availability

Reliability

Accessibility

Accuracy

Scalability

Security

Reputation

Service Price

Product Price

Quality Criteria

Figure 3-1 Quality Criteria Classification

The four groups and their sub-criteria are described below.

Performance

The performance of a Web services measure the speed in completing a service

request. It can be measured by:

Capacity. The limit of concurrent requests that the service support for guaranteed

performance.

Response time. The maximum time that elapses from the moment that a web

service receives a SOAP request until it produces the corresponding SOAP

response [89]. It is positively related to capacity [5]. Response time is defined as

the total time needed by the service requesters to invoke the service. It is

measured from the time the requester initiates the invocation to the time the

requester receives the last byte of the response [103].

Latency. The round-trip time between sending a request and receiving the

response [82].

Chapter 3 Quality Definition

80

Throughput. The number of Web service request completed at a given time

period. It is the rate at which a service can process requests. Throughput is related

negatively to latency and positively to capacity [111].

Execution (processing) time: The time taken by a Web service to process its

sequence of activities [111].

In general, high performance Web services should provide higher throughput,

higher capacity, faster response time, lower latency, and lower execution duration.

Failure Probability

The failure probability is the probability of a Web service being incapable to

complete a service SOAP request within the maximum response time

corresponding to this request [89]. The failure probability is composed of:

Availability. It is related to the availability of the Web services and the availability

of their corresponding services or products.

Web service availability: The Web service is available when it is ready for

immediate invocation [111]. Associated with availability is Time-to-Repair (TTR)

which represents the time it takes to repair the Web service [82, 112]. The

availability A(s) of a service s is the probability that the Web service is accessible

or the percentage of time that a Web service is operating [83, 89]. For example,

Amazon E-Commerce Service (ECS) is available when the requester enables to

access it and searching for products such as books.

Service or Product availability: It is available when the product is ready to be

used or invoked. For example, after retrieving a result about books when

searching ECS, a book is available when the requester can buy it immediately.

Reliability: It is the probability of a service to perform its required functions

under stated conditions within a maximum expected time interval [5]. It refers to

the assured and ordered delivery for messages being sent and received by service

requesters and service providers [82]. It can be measured by: Mean time between

Chapter 3 Quality Definition

81

failure (MTBF), Mean Time to Failure (MTF), and To Transition (MTTT) [5].

Reliability is closely related to availability.

Accessibility: It is the capability of serving the Web Service request. The Web

service might be available but not accessible because of a high volume of requests

[82]. Accessibility can be represented by the following formula:

tyavailabiliityaccessibil PP at Time T=t [87].

Accuracy: It is the amount of errors produced by the service during completing of

the work [5].

Scalability: It is the capacity of increasing the computing capacity of service

provider’s computer system and system’s ability to process more operations or

transactions in a given period of time [5].

Trustworthiness

Trust in general is a rational concept involving the trusted and the trusting parties.

For example, on the eBay Web site, eBay is a trusted authority who authenticates

the sellers in its auctions and maintains their ratings. However, eBay would be

unable to authenticate parties who were not subject to its legal contracts covering

bidding and selling at its auctions [113]. IBM and Microsoft proposed WS-Trust

specification that build on WS-Security to provide a framework for requesting and

issuing security tokens for establishing trust relationship [114] .

The trustworthy of service providers affects the requester’s service selection

decision. The requester selects the services from providers of the highest level of

trust [38].

Web services trustworthiness can be achieved when the selected Web services

components fulfil its requester needs or requirements (i.e., functional and non-

functional) [115].

Web services trustworthiness can be measured by:

Chapter 3 Quality Definition

82

Security: it represents the measure of trustworthiness. With the increase in the use

of Web services which are delivered over the public Internet, there is a grown

concern about security. The Web services provider may apply different

approaches and levels of providing security policy depending on the requesters

needs.

IBM and Microsoft proposed a WS-Security [114] standard which a family of

protocols that enhances SOAP [2] messaging technique to solve the problems

about the quality of protection for Web services such as: authentication and

authorization of users, message integrity, and message encryption.

Security for Web service can be provided by the following mechanisms:

 Transport- Level Security. Secure Socket Layer (SSL) [116] is the most

widely used transport security data-communication protocol. SSL is a protocol

developed by Netscape for transmitting private documents via the Internet.

SSL provides authentication (the communication is established between two

trusted parties), confidentiality (the data exchanged is encrypt), and message

integrity (the data is checked for corruption). SSL support transport security

between two SSL-enabled parties. For example, when an application invokes

Web services A for purchasing and Web services B for shipping, then two

SSL sessions is needed. Another protocol for transmitting data securely over

the World Wide Web is Secure HTTP (S-HTTP). SSL creates a secure

connection between a client and a server, over which any amount of data can

be sent securely, whereas S-HTTP transmits individual messages securely.

SSL and S-HTTP are complement each other and have been approved by the

Internet Engineering Task Force as a standard [117].

 Authentication. Determining the identity of the sender [118] Service

requesters need to be authenticated by the service provider before sending

information. Standard Web technologies using passwords, certificates,

Kerberos, LDAP, and Active Directory can be used to authenticate service

requesters.

Chapter 3 Quality Definition

83

 Authorization. Determining if the sender is authorized to perform the

operation requested (explicitly or implicitly) by the message [118]. That is,

what the requester are permitted to access?

 Integrity. Message integrity is protecting the message content from being

illegally modified or corrupted [114]. Data integrity is to protect the data in a

database from an unauthorized insertion, modification or destruction.

 Confidentiality. Confidential information is to ensure that information/data is

protected against the access of unauthorised principals (users or other services)

[119]. Also Confidential message is to protect the message content from being

intercepted [114]. WS-Security specification provides a means to protect a

message by encryption and /or digital signing [114].

 Accountability. The provider can be hold accountable for their services [5].

 Traceability and Auditability. The possibility to trace the history of a service

when a request was serviced [5].

 XML Data encryption. XML data encryption used to satisfy the high-level

security principle of confidentiality for Web services [120], [121]. XML

encryption allow encryption of digital content, such as Graphical Interchange

Format (GIF) images, Scalable Vector Graphics (SVG) images, or XML

fragments [122]. Encryption of an XML document can be partial, that is

encrypt parts of an XML document while leaving other parts open The XML

Encryption specification describes how to use XML Signature with XML

Encryption so that trusted parties can selectively encrypt and sign parts of

documents [123].

 XML Digital signature. It is a standard for securely verifying the origins of

messages. The purpose of an XML signature is to associate a private key with

referenced data to guarantee the sender’s authentication and thus assuring that

the data is really coming from a trusted originator [123], [124]. XML digital

Chapter 3 Quality Definition

84

signature is used to satisfy the high-level security principle of integrity [121]

and can be used for validation of messages and for non-repudiation [122].

 Non-Repudiation. It proves the identity of the originator of the SOAP

message, and to prove the fact that they sent the message [122].

Reputation: it is the measure of trustworthiness of a service, based on the

requester experiences of using the service. Different requesters may have different

opinions on the same service. The reputation can be defined as the average

ranking given to the service by the requesters. The value of the reputation is

computed using the expression
repq =

n

R
n

i

i
1 , where iR is the requester ranking

on a service’s reputation, n is the number of times the service has been graded.

Usually, the requesters are given a range to rank Web services, for example, in

Amazon.com, the range is [0,5] [110].

The notion of reputation is tightly bound to history and time. An approach to

associate timestamps with attribute values that allowing the reputation rating to

weight attributes depending on their ages.

Cost

It is the cost charged by the service provider entity to the service client entity fro a

request that is successfully responded [89]. The successful response is the

response produced within the maximum response time defined for this type of

request. The cost value is measured by:

Web Service Price It is the amount of money that the service requester has to pay

for using or invoking a Web service such as using Amazon E-Commerce Service

(ECS) to search for products.

Product Price: It is the amount of money the service requester has to pay to the

seller to buy a product such as a book after searching the ECS Web service.

Chapter 3 Quality Definition

85

The total cost is calculated by:

Total Cost=Web service price+ product price

3.4 Quality Extension to WSDL and UDDI

Different requesters may have different preferences or requirements on qualities

as well as different service providers may offer different quality specifications for

the same offered services. It is important to represent quality criteria from the

perspective of service requesters’ preference as well as from service provider

perspective [90]. Quality criteria from requester perspective is that the service

specifications of the WSDL can be extended with quality statements which

describe the required qualities associated with the service required by the

requester [82]. Whereas quality criteria from provider perspective is the quality

statements that describe the offered qualities associated with the service offered

by the service provider [82] . This thesis focuses on the quality criteria from the

requester perspective.

The requester needs to specify his/her quality requirements in the Web Services

Description Language (WSDL). The WSDL does not support quality issues, so it

needs to be extended with quality criteria. In order to associate quality criteria in

the WSDL it is required a quality classification that contains the most important

quality criteria. This classification is described in Chapter 3.

Various approaches were proposed to enable standardized quality specification for

Web services. Tosic et al [125], [126] present a special-purpose language Web

Service Offerings Language (WSOL) dedicated to formally specifying QoS

attributes of Web services, as well as other management information (such as

access rights and pricing policies), on the top of the WSDL templates. DAML-S

(DAML-Services) [78] is a semantic description language of Web services,

including specification of functional and some QoS constraints. IBM’s Web

Service Level Agreement (WSLA) framework [127], [128], [129] is an XML

specification of SLA which enable the specification and monitoring of QoS-aware

Chapter 3 Quality Definition

86

Web services by applying an electronic SLA. Maximilien and Singh [108] use

XML policy language (WS-Policy) to specify service consumer’s QoS

preferences or policies and service provider’s quality advertisements. DAML-QoS

ontology in [103] is complement to the semantic description ontology DAML-S

[78] and has been developed to design patterns for the formal specification of

various types of constraints and QoS metrics. All these efforts are not focusing

solely on quality criteria specifications, but rather on various facets of Web

services in order to support the modelling and management of service level

agreements (WSOL and WSLA specifications), service invocation policy (WS-

Policy specifications), as well as semantic annotation (DAML-QoS

specifications).

But, this thesis accommodates quality criteria classification within existing Web

services core specification standards that is Web Service Description Language

(WSDL) and Universal Description Discovery and Integration (UDDI). The key

idea behind this work is to accommodate service description with quality criteria

and to enhance the service matchmaking and selection process based on quality

criteria [31].

3.4.1 Extended WSDL

WSDL is the current standard for specification of Web services. WSDL

documents can be used to register services with the UDDI registry. There are two

kinds of documents that are used while registering a service [55]. The first is

known as the Service Interface Document that provides an abstract definition of a

Web service and omits implementation details such as port address,

communication protocol, etc. The other document is the Service Implementation

Document that contains a description of a service that implements a service

interface. The relationship between WSDL and UDDI is described in section 2.3.2

Although WSDL is an XML format for describing Web services, it does not

address issues related to the description of quality aspects of a service [130]. In

this thesis, WSDL is extended to accommodate quality criteria of the proposed

Chapter 3 Quality Definition

87

quality criteria classification. The quality criteria extension is made in the Service

Implementation Document part as extended in [89], [131]. Because WSDL is an

XML based language, the proposed quality classification is implemented using

XML Spy in order to design Quality Criteria XML Schema (see appendix A for

details). XML Spy is the industry standard XML development environment for

designing and editing professional applications involving XML, XML Schema,

XSL/XSLT, and other XML-based technologies. XML Spy Home Edition [132]

allows creating and editing XML Schema but not allow creating, editing,

visualizing, and validating any WSDL file. XML Spy Home Edition is selected

because it is free application and suitable for students. XML Spy Enterprise

Edition [133] allows editing WSDL but it is expensive to buy. Then a new

<QualityCriteria> element is augmented within the WSDL <service> element.

This extension is explained in the following figures.

QualityCriteria

Chapter 3 Quality Definition

88

Figure 3-2 Screenshot showing sub-criteria elements for Performance and Failure

Probability in Quality Classification

QualityCriteria

Figure 3-3 Screenshot showing sub-criteria elements in Trustworthiness and Cost Criteria

in Quality Classification

Figure 3-2 and Figure 3-3 show quality sub-criteria of each quality criteria group

(Performance, Failure Probability, Trustworthiness, and Cost).

Chapter 3 Quality Definition

89

QualityCriteria

Figure 3-4 Screenshot showing properties for each Sub-Criteria element

Figure 3-4 shows the properties or child elements (qValue, unit, weight) for each

sub-criterion. qValue has the value of sub-criteria, unit has enumerator values

(Msec, Percentage, Request/sec, Pound and None), weight has value range

between [0,1] and the default value is 1. qvalue includes further child elements

(Min, Max, Preferred) and attribute called qlevel. Min, Max, and Preferred has

the minimum, maximum and preferred values from the requester point of view.

qlevel has enumerator values (High, Medium, and Low) which is the level of

importance associated with every quality sub-criteria. For example, High value

regarding the sub-criteria Availability is between [90, 99], whereas for Reputation

is between [4, 5], these levels will be described in Chapter 6. The above elements

and child elements are shown in Appendix A.

Figure 3-5 shows an example of quality requirements by extending Amazon Web

service WSDL with Quality Criteria XML Schema. Amazon Web service WSDL

document can be retrieved from the URL:

http://webservices.amazon.com/AWSECommerceService/AWSECommerceServi

ce.wsdl. Amazon Web Service or Amazon E-Commerce Service (ECS) [134] (see

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Chapter 3 Quality Definition

90

Appendix D for details) provides many request operations to look up Amazon

products. Two request operations are selected: ItemSearch and ItemLookup.

WSDL as explained in Section 2.3.2 consists of two primary parts: the services

interface definition that contains message, portType and binding elements as

shown in the first part of Figure 3-5; and the service implementation definition

that contains service and port elements as shown in the last part of Figure 3-5.

WSDL is extended by augmenting Quality Criteria XML Schema (see Appendix

A) in the <service> element as shown in Figure 3-5.

The quality specification offered by the service provider contains the same XML

structure, but does not include weight child element within each quality sub-

criteria and using Promised child element within qValue element instead of

Preferred one.

Chapter 3 Quality Definition

91

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://webservices.amazon.com/AWSECommerceService/

2006-02-15" targetNamespace="http://webservices.amazon.com/AWSECommerceService/2006-02-15">

 <message name="ItemSearchRequestMsg">

 <part name="body" element="tns:ItemSearch"/>

 </message>

 <message name="ItemSearchResponseMsg">

 <part name="body" element="tns:ItemSearchResponse"/>

 </message>

 <portType name="AWSECommerceServicePortType">

 <operation name="ItemSearch">

 <input message="tns:ItemSearchRequestMsg"/>

 <output message="tns:ItemSearchResponseMsg"/>

</operation>

 </portType>

 <binding name="AWSECommerceServiceBinding" type="tns:AWSECommerceServicePortType">

 <operation name="ItemSearch">

 <soap:operation soapAction="http://soap.amazon.com"/>

 </operation>

 </binding>

 <service name="AWSECommerceService">

 <port name="AWSECommerceServicePort" binding=" tns:AWSECommerceServiceBinding">

 <soap:address location=" http://soap.amazon.com/onca/soap?Service=AWSECommerceService"/>

 </port>

 <QualityCriteria>

 <FailureProbability>

 <Availability>

 <qValue qlevel="High">

 <Min>90 </Min>

 <Max>99 </Max>

 <Preferred> 95 </Preferred>

 </qValue>

 <unit>Percentage </unit>

 <Weight>0.5 </Weight>

 </Availability>

 </FailureProbability>

 <Trustworthiness>

 <Reputation>

 <qValue qlevel="High">

 <Min>4 </Min>

 <Max>5 </Max>

 <Preferred>4.5 </Preferred>

 </qValue>

 <unit>None </unit>

 <Weight> 0.3 </Weight>

 </Reputation>

 </Trustworthiness>

 <Cost>

 <ServicePrice>

 <qValue qlevel="Medium">

 <Min>30 </Min>

 <Max>60 </Max>

 <Preferred>40 </Preferred>

 </qValue>

 <unit>Pound </unit>

 <Weight> 0.2 </Weight>

 </ServicePrice>

 </Cost>

 </QualityCriteria>

 </service>

</definitions>

Message element

portType element

Binding element

Service element

QualityCriteria element

Figure 3-5 Screenshot showing an example of Quality Requirement in Amazon Web

Service' WSDL extended with Quality Criteria Classification

Chapter 3 Quality Definition

92

3.4.2 Extended UDDI

UDDI provides a registry of businesses and Web services. UDDI describes

business by their physical attributes such as name and address and the services

they provide. Business services are associated with tModels which can be

associated with description standards such as WSDL or taxonomies such as

NAICS [68]. The current UDDI allows search to be carried out on limited

attributes of services such as service name, key Reference (which must be unique

for a service), or based on a categoryBag (which list all the business categories

within which a service is listed). Because UDDI does not represent service quality

capabilities, it can’t search for services on the basis of quality criteria [135].

Various approaches were used in order to enable UDDI to support quality-of-

service capabilities. Farkas and Charaf [98] extend UDDI inquiry API with two

methods(find_business_qos and find_service_qos), which correspond to the QoS

queries. These methods are used to choose the best available Web service. Ran [5]

Extends UDDI data structure with qualityInformation data structure under the

businessService data structure which provide different categories of quality of

service information about a particular service, such as availability, reliability, etc.

Ali et al. [30] extend UDDI as “UDDIe” which supports the notion of “blue

pages”. UDDIe enables discovery of services based on QoS attributes by

extending the businessService class in UDDI with propertyBag.

This thesis enables the current UDDI in the proposed quality-based Web service

architecture (QWSA) to publish and discover Web services based on the proposed

quality criteria classification by extending the current Web services architecture

with quality server. Quality server registers quality specifications in its database

by using quality manager and enables service discovery and selection based on

quality criteria by using quality matchmaker component as is described in Section

4.2.

Chapter 3 Quality Definition

93

3.5 Summary

This chapter proposes a quality criteria classification that is required to be

augmented within the WSDL to enable the requester to select the best services

based on quality issues and to achieve his/her satisfaction. The quality criteria

classification consists of four groups: Performance, Failure Probability,

Trustworthiness, and Cost. Each group consists of several quality sub-criteria.

The current Web services standards; Web Services Description language (WSDL)

and Universal Description Discovery and Integration (UDDI) do not support

quality-of-service capabilities. This chapter associated Quality criteria XML

Schema (the implementation of the quality criteria classification) within the

WSDL. The extension is made in the Service Implementation Document part by

adding a new element tag called <QualityCriteria>. Also, this chapter enables the

current UDDI to publish and discover Web services based on quality criteria by

extending the current Web services architecture with quality server.

The quality classification enables the proposed quality-based Web service

architecture (QWSA), which is described in Chapter 4, to select the best available

services based on quality aspects.

Chapter 4 A proposed Quality –Based Web Service Architecture

94

Chapter 4 QWSA: A Proposed Quality-
Based Web Service Architecture

4.1 Introduction

Since Web services can be provided by third parties and invoked dynamically

over the Internet, their quality can vary greatly. It is important to have a

framework capturing the quality of the Web services provided by the provider as

well as required by the requester, and the quality matchmaking to explore and

select the best Web service.

Section 4.2 introduces a quality-based Web service architecture (QWSA), which

extends the IBM Web service architecture with quality server. The quality server

acts on behalf of the requester to select the desired Web services. The quality

server consists of four main components: quality manager, quality matchmaker,

quality report analyzer, and quality database. The role of each component is

introduced.

4.2 The Components of the Quality-Based Web service
Architecture

The current Web services architecture does not offer comprehensive quality

support. The UDDI is just a registry database and service discovery engine and it

allows requesters to look for Web services based on their functionality. UDDI

does not represent service quality capabilities that can’t search for services on the

basis of quality criteria [135].

Different approaches have introduced for enhancing the current Web services

architecture to support quality aspects. The current Web services architecture is

extended with a QoS broker in [94] [98], [86], [84], [91] in order to select the

service. However, the aforementioned QoS brokers are not well defined; they do

not describe the details of the service selection process.

Chapter 4 A proposed Quality –Based Web Service Architecture

95

This thesis proposes a quality-based Web service architecture (QWSA), which

extends the IBM Web service architecture with a quality server [136]. This

extension enables the current UDDI to publish and discover Web services based

on the proposed quality criteria classification by extending the current Web

services architecture with a quality server. The quality server registers quality

specifications in its database and enables service discovery and selection based on

quality criteria.

The QWSA as shown in Figure 4-1 has four components: service requester,

service provider, quality server, and UDDI registry. These components interact

with each other to discover and select the desired advertised service.

UDDI Registry

Quality Manager

Quality Report

Analyzer

Quality Server

Quality

Database

Quality

Matchmaker

Quality

Requirement

Quality

Report

Service

Requester
Service

Provider

Quality

Specification

Figure 4-1 Quality-Based Web Service Architecture (QWSA)

These components and their responsibilities are described below.

1) Service Provider

This thesis makes two assumptions on service providers:

Chapter 4 A proposed Quality –Based Web Service Architecture

96

 Service providers describe their services based on their functionality and

quality specification, and publish the Web services based on their functionality

(such as the service name, service access point, UDDI classification of the

service, etc.) in the current UDDI registry. Whereas, the service providers send

the quality specification of their services to the quality server and store in its

database. Service providers separate the service’s functionality from quality

specification because the current UDDI registry is not designed to accept

quality specification and does not allow the requester to look for Web services

based on their quality issues.

 Service providers describe their services associated with quality specification

using the WSDL standard. WSDL is extended with the quality specification

based on the proposed quality criteria classification.

2) Service Requester

Service requester has the following tasks:

 Service requester sends his/her request including both the functional

requirements as well as the quality requirements to quality server and let the

server select the most suitable Web service on behalf of him/her. If the result

is not satisfying the requester, then he/she can reduce his/her quality of service

constraints or consider trade-offs between the desired qualities of service [5].

 After invoking the service, requester submits a quality report regarding his/her

feeling about the service. The quality report is sent to the quality report

analyzer for processing.

3) UDDI Registry

UDDI is a registry that allows the service providers to publish their services and

the service requesters to look for Web services based on their functionality but not

quality specifications. To enable current UDDI to publish and discover Web

services based on quality specifications, the IBM Web service architecture is

Chapter 4 A proposed Quality –Based Web Service Architecture

97

extended by quality server. Quality server registers quality specifications provided

by service providers in its database by using quality manager and enable service

discovery and selection based on quality criteria by using quality matchmaker.

The quality server and its components are described below.

4) Quality Server

The quality server is a separate component from requesters and providers. It

enables the server to make independent decision and to be independent of the

application domain. The quality server consists of four main components:

(1) Quality Manager.

(2) Quality Matchmaker.

(3) Quality Report Analyzer.

(4) Quality Database.

The quality server provides the following tasks:

 Enhance the current UDDI role by enabling service publishing and

discovering based on quality criteria

 Quality server collects quality specifications about Web services provided by

the service providers. By doing so, it enables the service providers to register

their quality descriptions.

 Quality server submits a query to UDDI registry on behalf of the requester for

services’ functional information such as service name, service URL, service

category, etc.

 Quality server holds up-to-date information on quality specifications currently

available for services.

 Quality server matches the quality specifications against the quality

requirements.

Chapter 4 A proposed Quality –Based Web Service Architecture

98

 Quality server makes service selection decisions for requester. The service

selection is based on the mathematical model, which uses the Analytical

Hierarchy Process (AHP) and the Euclidean distance. So, the quality server

assists the requester to choose the best available service based on quality

criteria.

There are two types of queries:

Volatile query: The requester sends a query to UDDI, the matched services are

immediately returned, and then the query is discarded by the UDDI [70]. This

thesis assumes that the query is volatile that is no new services will be added to

UDDI and no changes to the quality criteria values for this service.

Persistent query: The requester sends a query to UDDI. This query is persistent

as it remains valid for a long time defined by the requester. The matched services

are returned. Within the valid period of the query, when the new matched service

is added to UDDI or has been changed, the UDDI notifies the requester of the new

of matched services. The persistent query is removed when the validity period is

ended [70].

Through the quality server, service providers can augment their Web services’

specifications with quality criteria while a requester can define its requirements

related to quality criteria.

The four quality server components and their functions are described below.

Quality Manager

The quality manager has the following tasks:

 When the service providers publish their Web services with functional

descriptions to UDDI registry, the quality manager collects quality

specifications of the corresponding published services in the UDDI from the

service providers and places them in the quality server’s database. The quality

specifications are required for quality matchmaking and selection.

Chapter 4 A proposed Quality –Based Web Service Architecture

99

 Quality manager stores the services information such as endpoint, URL, and

functional name in quality server’s database based on their categorization

(tModel) by using matchmaking process which is described in Chapter 5.

 Quality manager updates regularly the quality server’s database whenever

significant changes happen, to keep the server’s information consistent and up

to date with UDDI registries.

 Quality manager checks regularly the available services for new quality

specifications. Once an offer expires, it is deleted from the quality server

database.

 Quality manager maintains the quality statistical information generated by the

quality report analyzer.

Quality specifications include services with different quality criteria. Table 4-1

shows an example of three service’s levels offered by the service providers with

different quality criteria values.

Table 4-1 Service Levels with Quality Criteria

Service Levels High Medium Low

Processing Time 2msec 5msec 8msec

Throughput 500 request/s 200 request/s 100 request/s

Availability 99% 80% 60%

Quality Matchmaker

The quality matchmaker is the core of a quality server. Before a requester binds to

Web services and begins to execute its tasks, the quality matchmaker must first

determine whether the service quality desired by the requester can be achieved.

Quality matchmaker has the following tasks:

Chapter 4 A proposed Quality –Based Web Service Architecture

100

 When the requester sends the service request including both the functional

requirements and quality requirements to the quality server, a quality

matchmaker matches:

 The functional requirements with the functional specifications in the

UDDI registry.

 The quality requirements with the quality specifications in the quality

database, by using quality criteria classification (see Section 3.3) and

mathematical model (see Section 5.5).

 Quality matchmaker discovers and selects the best available Web service on

behalf of the requester. The Web service selection

Quality matchmaker component is described in details in Chapter 5.

Quality Report Analyzer

The quality report analyzer has the following tasks:

 After the Web service is consumed, the requester sends a quality report based

on his judgments on the services to quality report analyzer, which can be

subjective.

 The quality report includes information such as service location, invocation

date, service execution duration, quality criteria offered, service rank, and

comments as shown in Table 4-2.

 The quality report analyzer produces statistical information about the service

and store them in the quality server’s database as the historical quality

information. The statistical information contains the Reputation criterion

which depends on the “service rank” that the requester can assign for the

service after invoking it. The value of the Reputation is calculated using the

equation
repq =

n

R
n

i

i
1 , where iR is the requester ranking on a service’s

Chapter 4 A proposed Quality –Based Web Service Architecture

101

reputation, n is the number of times the service has been graded. The service

rank are given to the requesters, for example, the range is between [0,5] [110].

 The quality matchmaker uses this quality information for future service

matchmaking and selection.

Table 4-2 Example of Quality Report

Quality Report

Service URL http://architag.com/WeatherInfo

Invocation Date 1/9/2004

Sevice Execution Duration 40 msec

Quality Criteria offered Processing Time, Throughput, Availability

Service Rank 4

Comments …..

Quality Database

The quality database stores the information retrieved by the quality manager and

quality report analyzer. The information stored in quality database includes:

 Service functional specifications retrieved from the UDDI registry, such as

service endpoint, URL, function name, description, etc.

 Quality specifications retrieved from the service providers, such as

availability, service price, etc.

 Statistical information of each service which produced by quality report

analyzer, such as reputation.

The quality manager collects the first two service specifications (functional and

non-functional) and stores them in the quality database. The quality report

analyzer collects requester’s quality report and stores it in the quality database as a

historical data.

The quality information stored in quality database will be used by quality

matchmaker for selecting the best candidates Web service.

Chapter 4 A proposed Quality –Based Web Service Architecture

102

4.3 A case of Using QWSA

Service Requester Service Provider

QoS Server UDDI Registry

1

Publish service

(interface)

Request

(interface+quality

requirements)

2

3

Request list of services

(interface)

4

Get list of services

(interface)

5

Request service

description

6

Get service description

(quality specifications in

WSDL)

7

Match quality

specifications against

quality requirements

8

Select best services

9

Get best services

10

Invoke service

11

Send quality report

Figure 4-2 Interactions between the four participating roles in QWSA

Figure 4-2 illustrates one possible sequence of interactions between the

components of quality-based Web service architecture (QWSA). All

communications between the components uses SOAP messages. These

interactions are listed below:

1. Service providers register their services in the UDDI registry.

2. Service requester sends quality request to quality server. The requester may

use graphical user interface (GUI) (as it is used in this thesis; see Chapter 6)

to specify requests include services implementing interfaces and quality

requirements associated with weights regarding requester’s quality criteria

preferences (This process is discussed in details in the implementation

chapter; see Chapter 6).

3. When quality server receives an inquiry from the requester, it searches the

UDDI registry for related results.

Chapter 4 A proposed Quality –Based Web Service Architecture

103

4. Quality server gets a list of services implementing interfaces and stores it in

the quality database.

5. Quality server requests service providers for service descriptions augmented

with quality specification related to the list of services stored in quality

server’s database.

6. Quality server gets the result and stores it in the quality database.

7. All the discovered Web services can be ranked between the shortest distance

and the farthest distance by using Euclidean distance technique.

8. Then the quality server selects the service with shortened distance as the best

available Web service .This step is discussed in section 5.3.

9. Quality server sends a list of best services to service requester.

10. If requester is satisfied with the result, he/she invokes the service, and if the

result is not satisfied then the requester can change the request with different

quality preferences associated by reducing the quality criteria values or

considering trade-offs between the desired qualities of service [137], [5].

11. After the requester invoke the service, he/she sends a quality report to quality

server as a feedback and be stored in the database as historical quality

information which can be used in the future selection.

4.4 Summary

This chapter proposes quality-based Web service architecture (QWSA). The

proposed QWSA extends the IBM Web service architecture with quality server,

because the current Web service architecture does not offer comprehensive quality

support. The quality server consists of four main components: quality manager,

quality matchmaker, quality report analyzer, and quality database. The roles of

each component are introduced. The main purpose of the quality server is to assist

requester to select the best available Web service based on quality criteria.

Chapter 5 A Theoretical Model of Service Selection

104

Chapter 5 A Theoretical Model of
Service Selection

5.1 Introduction

Web services architecture, and standards, support publishing, finding, and binding

to services. However, between finding and binding operation, there is another

operation, which is service selection wherein a specific service is chosen by a

prospective requester. In addition, the number and diversity of Web services

grows exponentially, and the Internet is an open environment, where information

sources and communication links are unpredictable. With the ever growing

number and diversity of Web services, enhanced techniques for service discovery

and selection are desperately needed.

This chapter introduces the quality matchmaker as a core component in the quality

server of the proposed quality-based Web service architecture (QWSA).

The mathematical model is explained in Section 5.2 and Section 5.3. The quality

matchmaker components and their roles are described in Section 5.4, which is the

most important stage in the matchmaking algorithm. The mathematical model

uses two techniques: Analytical Hierarchy Process (AHP) and Euclidean distance

in order to select the best candidate Web services based on requester’s quality

preferences and quality levels (High, Medium or Low). The quality matchmaking

algorithm is illustrated by using an example from the Amazon E-Commerce

service (AEC) case study in Section 5.5.

Chapter 5 A Theoretical Model of Service Selection

105

5.2 Modelling Quality Service Selection

Most of the related quality service selection approaches depend on matchmaking

mechanisms. The matchmaking mechanism either using semantics approaches as

in [76], [70], [103], [33], [108], [38] or computation approaches as in [90], [72].

The quality service selection in this thesis depends on the quality matchmaking

process (QMP), which is described in Section 5.4. QMP is based on the

mathematical model , which is similar to the QoS matchmaking algorithm that is

presented in [72]. The QoS matchmaking algorithm is based on the QoS

computation model. The QoS computation model uses the Euclidean distance

measure in order to find the nearest Web service to the QoS specifications of the

requester that is to find a Web service with a minimum Euclidean distance. The

QoS matrix is normalised by using maximizing and minimizing equations that

considering the type of the QoS parameter. For example, Response Time needs to

be normalized by minimization using the minimizing equation while Availability

needs to be normalized by maximization using maximizing equation. But the QoS

computation modeldoes not consider the service requester’s quality preferences of

the quality criteria and therefore does not consider the weight or priority of each

quality criteria.

The proposed mathematical model uses two methods in order to select the best

Web service. Analytical Hierarchy Process (AHP) method is used to calculate the

quality criteria weights based on service requester quality preferences. Euclidean

distance method is used as in [72], to measure the distance between the quality

requirements specified by the service requester and the quality specifications

specified by the service provider. The Web service with minimum Euclidean

distance is the best service to select. The mathematical model is described in the

following sections.

Chapter 5 A Theoretical Model of Service Selection

106

5.2.1 Problem Definition

This thesis assumes that there is a set of Web services S of n available web

services with identical functional properties, }...,,,{ 21 nSSSS . It also assumes

that all services are characterized by the same set of m quality

criteria, }...,,,{ 21 mCCCC .

The performance of any service in terms of each quality criterion can be measured

and represented in a performance matrix }{ ijpP of the type:

mnmm

n

n

ppp

ppp

ppp

P

...

............

...

...

21

22221

11211

 [1]

Each column of the performance matrix P corresponds to a specific web service

published by the service providers and each row corresponds to a given offered

quality specification criterion, so any element of this matrix ijp represents the

performance measure of the j-th service jS in terms of the i-th quality criterion

iC .

Requester requirements with respect to all quality criteria are given as a vector of

m elements,)...,,,(21 mrrrr , where the element ir represents the quality required

preferred value of service in terms of the i-th criterion. The requester’s

preferences on the importance of all quality criteria should be assessed and

represented as a vector of criteria weights }...,,,{ 21 mwwww .

The problem is to select a service that best matches requester’s quality

requirements by considering the weights of quality criteria that based on

requester’s quality preferences.

Chapter 5 A Theoretical Model of Service Selection

107

5.2.2 Assigning Criteria Weights

Criteria weights could be assigned either directly or indirectly to a service

requester. Direct assessment requires a scale, for instance from 1 to 10, where

larger scale values represent greater importance of the quality criteria. However,

indirect assessment via pair wise comparisons, as shown below, yields more

precise criteria weights, which better correspond to requester’s preferences.

The method of pair wise comparisons, used in the well-known Analytic Hierarchy

Process [138], [139], requires a set of comparison judgments to be provided by

the requester. Comparing any two criteria iC and jC , the requester assigns a

numerical value ija , which represents the relative importance of preference of

quality criterion iC over jC . Saaty in [139] suggested a nine-point relative scale

measurement as shown in Table 5-1. If the criterion iC is preferred to jC , say three

times, then ija =3. If both criteria are equally important, then 1ija . Obviously,

the comparison judgments satisfy the reciprocal property ijji aa /1 .

A full set of comparisons for m criteria requires m (m-1)/2 judgments. In such a

way a positive reciprocal matrix of pair wise comparisons }{ ijaA can be

constructed:

1

1

1

21

221

112

mm

m

m

aa

aa

aa

A [2]

The criteria weights are calculated from this matrix by the using the following

equation [140]:

Chapter 5 A Theoretical Model of Service Selection

108

mcriteriaofcolumninentriestheofsum

mcolumninicriterionofprefernce

criteriaofcolumninentriestheofsum

columninicriterionofprefernce

criteriaofcolumninentriestheofsum

columninicriterionofprefernce

criteriaofnumber
wi

2

2

1

1

1
 [3]

The set of m relative weights is normalized to sum of one,

1
1

m

i

iw , 0iw , mi ,...,2,1 , [4]

Therefore the number of independent weights is (m-1).

After constructing the pair-wise comparison matrix and obtaining the criteria

weights, the next step is to determine the consistency of the criteria judgements.

The Consistency Ratio (CR) is used to measure the consistency in the pair-wise

comparison matrix A [141]. Matrix A is consistent if the following condition is

satisfies [139].

ij

ik

jk
a

a
a , where i, j, k=1,…,m. [5]

The consistency can be determined by the measure called Consistency Ratio (CR),

defined as [140]:

RI

CI
CR [6]

where CI is the consistency index and RI the random index. The Random Index RI

value is selected from Table 5-2.

Consistency Index (CI) is defined as [142], [13]:

 1
max

m

m
CI

 [7]

Where max is the largest eigenvalue of matrix A, and it is calculated from the

following:

Chapter 5 A Theoretical Model of Service Selection

109

1. Calculate the weighted sum matrix by the following [142]:

nw

w

w

ann

an

an

wn

a

a

a

w

na

a

a

w

s

s

s

...

2

1

...
2

1

...

23

...
22

21

2

1

...
12

11

1

2. Divide all the elements of the weighted sum matrices by their respective

priority vector element to obtain:

1

1
1

w

ws ,
2

2
2

w

ws , …,
wn

nws

n

3. max can be obtained from the average of the above values:

n

n

...21
max

If the Consistency Ratio (CR) in equation (6) is high, this means that the

requester’s preferences are not consistent and not reliable. A Consistency Ratio

(CR) of 0.10 or less is considered acceptable.

Table 5-1 Relative Importance Measurement Scale [139]

Relative Importance Measurement Scale

Importance Intensity Definition

9 Extremely Preferred

8 Very strongly to extremely

7 Very strongly preferred

6 Strongly to very strongly

5 Strongly preferred

4 Moderately to strongly

3 Moderately preferred

2 Equally to moderately

1 Equally preferred

Chapter 5 A Theoretical Model of Service Selection

110

Table 5-2 Average Random Index (RI) [139]

Average random index (RI)

Size of matrix 1 2 3 4 5 6 7 8 9 10

Random index 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

5.3 Applying the Mathematical Model to Service Selection

This section proposes a method that applies the mathematical model described in

Section 5.2 to service selection.

The proposed method is based on the assumption that each criterion has a

tendency towards monotonically increasing or decreasing utility, so it is easy to

rank all services and locate the best one. Web services should be evaluated on the

basis of their closeness to the requester requirements, taking into consideration the

relative weights of criteria. In mathematical terms, the closeness between two

objects can be expressed by their Euclidean distance ([143] cited [144]), which

geometrically is the straight-line distance between two points, representing these

objects in the m-dimensional space. Therefore, the best service is this one that has

the shortest distance from the given requester quality requirements, while the one

with the farthest distance is the worst. All other services can be ranked in between

these two extremes, with regard to the values of their Euclidean distances.

The proposed method for selecting the best Web service is illustrated with an

example as in the following steps:

Step-1: Construct pair-wise comparison matrix

The pair-wise comparison matrix A, equation [2], is constructed with respect to

the service requester’s quality preferences and compares them in a pair wise way.

The pair-wise comparison matrix A is a reciprocal matrix representing the service

requester judgements of selecting the relative importance of his preference of

quality criterion iC over jC from Table 5-1. The main diagonal of the matrix is

Chapter 5 A Theoretical Model of Service Selection

111

always 1. The requester specifies m(m-1)/2 preferences, where m is the number of

quality criteria.

Example:

The service requester’s quality preferences are:

 Availability (AV) is assigned by the service requester as two times more

important than the Reputation (REP).

 Availability (AV) is assigned by the service requester as four times more

important than the Price (P).

 Reputation is the same as important as Price.

The number of quality criteria, m=3. The requester specifies 3 preferences or

judgments.Thus, a comparison matrix A from the equation [2] is formed:

PREPAV

P

REP

AV

A

114/1

112/1

421

Step-2: Calculate the weight vector of quality criteria

The weights of quality criteria can be calculated from the matrix A by using

equation [3].

Example:

579.0
6

4

4

2

75.1

1

3

1
)(

AVW

234.0
6

1

4

1

75.1

5.0

3

1
)(

REPW

187.0
6

1

4

1

75.1

25.0

3

1
)(

PW

The weight vector is:

Chapter 5 A Theoretical Model of Service Selection

112

 187.0234.0579.0W

Step-3: Calculate the Consistency Ratio (CR)

The Consistency Ratio (CR) measures the degree of consistency among the pair-

wise judgements [145]. It can be calculated from equation [6]. The Consistency

Ratio (CR) of value 0.10 or less is considered acceptable and the requester

judgement is consistent[139]. An acceptable consistency property helps to ensure

decision-maker reliability in determining the priorities of a set of quality criteria.

Example:

The Consistency Ratio (CR) is calculated from equations [6], [7], and [8] as in the

following.

1. Random Index RI for matrix A of size 3 is equal to 0.58, as given in Table 5-2.

2. Calculate max from the following:

 Calculate the weighted sum matrix by the following:

566.0

711.0

795.1

1

1

4

187.0

1

1

2

234.0

25.0

5.0

1

579.0

 Divide all the elements of the weighted sum matrices by their respective

priority vector element to obtain:

1.3
579.0

795.1
 , 04.3

234.0

711.0
 , 02.3

187.0

566.0

 max can be obtained from the average of the above values:

053.3

3

02.304.31.3
max

3. Calculate the Consistency Index CI from equation [7]

0265.0
13

3053.3

1

max

m

m
CI

Chapter 5 A Theoretical Model of Service Selection

113

4. Calculate the Consistency Ratio (CR) from equation [6]

046.0
58.0

0265.0

RI

CI
CR

The Consistency Ratio (CR) is equal to 0.046 which is less than 0.1, so the pair-

wise requester’s judgement is consistent and therefore the procedures will

continue in order to select the best Web service.

Step-4: Normalize the proposed performance matrix

It is assumed that the performance matrix P is published by the service providers.

The service providers publish their Web services with the same functional

information but differ with their quality criteria values.

Since the criteria are measured in different measurement units, the performance

matrix P, equation [1], should be converted into a non-dimensional one. This

could be done as each element of P is normalized by the following calculation:

n

k

ik

ij

ij

p

p
q

1

2

 [8]

This step produces a normalized performance matrix }{ ijqQ .

Example:

Suppose that there are three Web services (n=3) have the same functional

properties and published by different service providers, characterized by three

quality criteria (m=3): 1C =Availability, 2C =Reputation and 3C =Price. The values

of the quality criteria are represented in a performance matrix P from the equation

[1]:

38.3827.3037.38

5.35.34

959995

P

REP

AV

P

Chapter 5 A Theoretical Model of Service Selection

114

The normalized performance matrix can be obtained from equation [8] as shown

below:

618.0487.0617.0

550.0550.0628.0

569.0593.0569.0

Q

Step-5: Construct a weighted normalized performance matrix

The normalized values are then assigned weights with respect to their importance

to the requester, given by the vector }...,,,{ 21 mwwww . When these weights are

used in conjunction with the matrix of normalized values }{ ijqQ , this produces

the weighted normalized matrix }{ ijvV , defined as }{ ijiqwV , or

mnmmmmm

n

n

qwqwqw

qwqwqw

qwqwqw

V

...

............

...

...

21

22222212

11121111

 [9]

Example:

The weighted normalized performance matrix can be obtained from equation

[10]; }{ ijiqwV , where iw is obtained from step-2, as shown below:

116.0091.0115.0

129.0129.0147.0

329.0343.0329.0

V

Step-6: Calculate the relative distances

In this step each of the services is measured according to its closeness to the

requester quality requirements. The relative Euclidean distances are calculated as

follows:

m

i

m

i

ijiiijj prwvE
1

2

1

2)/([10]

Where j=1,2,…, n is the number of Web services.

Chapter 5 A Theoretical Model of Service Selection

115

Example:

Suppose that requester’s quality requirements are)40,3,98(r for the

corresponding Availability, Reputation and Price. The values of the relative

Euclidean distances, measuring the closeness between these requirements and the

available services are obtained from equation [11]:

268.01 E , 239.02 E , 258.03 E

Step-7: Rank services in preference order

This is done by comparison of the values calculated in Step-6. Obviously, the

Web service with smallest value }...,,,min{* 21 nEEEE gives the closest match

to the requester quality requirements and should be selected as the best one.

Example:

It is seen from the result of step-6 that the second Web service is the best one,

since its Euclidean distance is smallest (0.239), compared to the distances of other

services. So, the requester will select the second Web service.

If the requester’s preferences are changed so that the weight vector is:

 192.0677.0131.0)()()(PWREPWAVWW

Then the Euclidean distance will be:

399.01 E , 398.02 E , 35.03 E

It is seen that the third Web service is the best for having the smallest Euclidean

distance.

This example illustrates that the relative weight given to the quality criteria affects

the final ranking of the service and depends on the requester preferences and

therefore make certain quality criteria weigh more than others.

In the proposed quality-based Web service architecture (QWSA), it is considered

to select more than one best service to be a more efficient approach; if one

selected service failed, the others can be used instead.

Chapter 5 A Theoretical Model of Service Selection

116

5.4 Quality Matchmaking

Quality matchmaking is defined as a process that requires the quality matchmaker

to match the quality inquiry to all the quality advertisements stored in the quality

server’s database, in order to find appropriate advertised services, which satisfy

the quality requirements specified in the quality inquiry.

Different requesters may have different requirements and preferences regarding

quality of Web service. For example, a requester may require to minimize the

execution time while satisfying certain constraints in terms of price and

reputation, while another requester may give more importance to the price than to

the execution time [88]. Therefore, a quality matchmaking approach is needed to

match quality requirements of requesters with the published quality specifications

of providers in order to select the best service based on quality criteria constraints

and preferences of the requesters.

The quality matchmaker is the core component in quality server. Every service

request received by quality matchmaker will be matched with the service

specifications that stored in the quality server database. If the match is successful,

the quality matchmaker returns a ranked set of desired Web services and selects

the appropriate service based on relevance quality criteria using mathematical

technique.

Chapter 5 A Theoretical Model of Service Selection

117

Interface

Matchmaking

Quality Criteria

Matchmaking

Quality Matchmaker

Quality

Database

Requester
Mathematical

Matchmaking

Figure 5-1 Quality Matchmaker

The quality matchmaker component includes the following sub-components (as

shown in Figure 5-1)

 Interface matchmaking

 Quality criteria matchmaking

 Mathematical matchmaking

The roles of each sub-component are described in the following:

1) Interface Matchmaking

The interface matchmaking discovers the Web services which fitting functionality

with the request requirements. Functionality means an action that either the

service or the service requester can do [130]. This step finds all of the services

matching the interface by using the operation called find_tModel() API on the

UDDI registry. This step serves as an interface matchmaking filter and retrieves a

list of all relevant description tModels for the services which have the same

function. Once a set of tModels that match the specified requirements have been

found, then a requester can find the corresponding services by using find_service()

Chapter 5 A Theoretical Model of Service Selection

118

operation. This returns a list of all services that implement the description in the

chosen tModel [71] then quality manager stores the result in the quality database.

The interface matchmaking is important but not sufficient to achieve requester

satisfaction, because there are many services implement the same functional

properties but have different non-functional (behaviour) properties and need to

differentiate between them based on its quality issues. Therefore, further

matchmaking is needed regarding quality criteria.

2) Quality Criteria Matchmaking

Quality criteria matchmaking compares quality specifications with quality

requirements based on quality descriptions of the services’ behaviours. This step

reduces or filters the returned list provided by the above interface matchmaking

using the quality criteria matchmaking filter by considering the structure of the

quality criteria XML Schema (as shown in Appendix A). The quality criteria

exact match occurs when the group quality criteria type and value (such as

Performance, Failure Probability, Trustworthiness, and/or Cost) and its quality

sub-criteria type and value (such as Response Time, Availability, Reputation, etc.)

are the same for both quality requirements and quality specifications.

Quality criteria matchmaking then uses the quality value constraint matchmaking

filter in order to reduce the returned last list by satisfying the condition that the

value of the required or preferred value of a certain quality sub-criteria type is

within the range of the offered quality sub-criteria and also the requested quality

sub-criteria range is a subset of offered quality range. Further filtering needed to

choose the optimum Web services from this list.

3) Mathematical Matchmaking

Mathematical matchmaking reduces the returned last list of services by using

mathematical matchmaking filter in order to choose the optimum Web services.

Chapter 5 A Theoretical Model of Service Selection

119

Mathematical matchmaking ranks the services by calculating the distance between

the required quality sub-criteria and the offered quality sub-criteria by using the

mathematical model. The smallest distance means the best match and therefore

the requester can select the best Web services. Once the services are ranked using

Euclidean Distance technique, the requester needs to invoke the service by using

find_binding() operation. This stage is explained in the following section.

5.5 Quality Matchmaking Process

The quality matchmaking process (QMP) determines which Web service from the

published Web services is the best service to be selected based on requesters

quality requirements and preferences. The matchmaking process is classified into

two types:

 The first is the functional (interface) matchmaking that is used to search the

UDDI for a Web service with the required functionality.

 The second is to use the quality criteria classification and the mathematical

model to match the quality requirements against the quality specifications in

the quality database to select the best Web service that fulfils the requester

satisfaction and needs.

The quality matchmaking process (QMP) has four algorithms or filters: Interface

matchmaking (functional matchmaking), quality criteria type matchmaking (non-

functional matchmaking), quality criteria value constraint matchmaking and

mathematical matchmaking. Each of these algorithms or filters narrows a set of

matchmaking candidates with respect to a given filter criterion. These four

algorithms are illustrated below with an example using Amazon E-Commerce

Service (ECS) case study (see Appendix D for details).

Step -1: Interface Matchmaking Algorithm:

This step finds all of the matching services that only consider the published Web

services matching the required interface. Figure 5-2 shows a flow chart of an

Chapter 5 A Theoretical Model of Service Selection

120

interface matchmaking algorithm that matches the advertised functional

specifications in the Web services database with the functional requirements and

keeps the result in an iList array. This step is evaluated in Section 7.4.1.1.

Start

Requester specifies

functional requirement

“r”

Database of

Web services

Match “r” with

Functional Specifications

of Web services ‘s’

Is

r = s

Save the matched

services in iList []

End

Yes

No

Figure 5-2 Interface Matchmaking Flow Chart

Example:

Http://webservices.amazon.com/onca/xml?

Service=AWSECommerceService&SubscriptionId=1NC71HN9R7AE4KJ1G3G2&

Operation=ItemSearch&Title=web services

&SearchIndex=Books&ResponseGroup=Reviews,ItemAttributs,SalesRank,Offers

Listing 5- 1 REST Request

The service requester sends his functional requirements to the quality

matchmaker. The quality matchmaker sends REST request to the ECS database as

Chapter 5 A Theoretical Model of Service Selection

121

shown in Listing 5- 1. In ECS there are two types of request REST (XML over

HTTP) and SOAP request. These request’s types are mentioned in Appendix D.

The interface description as shown in Listing 5- 1 includes the following:

 Operation request ItemSearch. Amazon E-Commerce Service (ECS) provides

two types of inquiries: search and lookup request, see Appendix D.

 SearchIndex Books. ECS provides several search indexes: Books, Music,

Computer, etc.

 Title Web Services. Title is a parameter to the ItemSearch operation.

 ResponseGroup: specifies the type of the retrieved information.

The interface matchmaking steps are:

 The quality matchmaker first searches the ECS database using ItemSearch

operation. The matchmaker matches the keyword Web Services with the

offered books within the Books category.

 The matchmaker returns a large list iList of matched books includes Web

Services keyword.

Step-2: Quality Criteria Type Matchmaking Algorithm:

This step is based on quality criteria classification structure. Figure 5-3 shows a

flow chart of a quality criteria and sub-criteria matchmaking algorithm. The

service requester selects the quality criteria and sub-criteria. The required criteria

type (such as Performance, failure Probability, Trustworthiness, and/or Cost) and

the sub-criteria type (such as Response Time, Availability, reputation, etc.) are

matched with the advertised criteria and sub-criteria type, which are saved in the

returned list iList in step-1. If both the required and advertised criteria and sub-

criteria type are same, then the result is saved in an sqList[] array. This thesis for

simplicity assumes that the criteria and sub-criteria type of the advertised services

are always similar. This step is evaluated in Section 7.4.1.1.

Chapter 5 A Theoretical Model of Service Selection

122

Example:

The above result which stored in iList is filtered by using quality criteria type

matchmaking algorithm. The matchmaker returns a list sqList of services contains

the following sub-criteria: Availability, Reputation, and Service Price.

Start

Requester selects

quality requirement

“qr”

iList []

Match quality criteria type

of ‘qr’ with the quality

criteria type of quality

specifications of web

services ‘qs’

Save the matched

services in qList []

End

iList []

Is

qr = qs

Match quality sub-criteria

type of ‘qr’ with the quality

sub-criteria type of quality

specifications of web

services ‘qs’ in qList []

Is

qr=qs

Save the matched

services in sqList []

Chapter 5 A Theoretical Model of Service Selection

123

Figure 5-3 Quality Type Matchmaking Flow Chart

Step-3: Quality Criteria Value Matchmaking Algorithm:

This step is based on the quality sub-criteria level (High, Medium, or Low) that

the requester specifies. Each quality level has a preferred value. The returned list

sqList from step-2 is further filtered by using quality criteria value matchmaking

algorithm as shown in Figure 5-4. The following rule must be satisfied in order to

save the result in qvList array list:

qlr<=qls

That is the required quality sub-criteria value must be less than or equal the

advertised quality sub-criteria value.

Start

Requester specifies

quality sub-criteria

levels “qlr” {High,

Medium, Low}

iList []Match ‘qlr’ with the quality

sub-criteria level of web

services ‘qls’

Save the matched

services in qvList []

End

sqList []

Is

qlr <= qls

Yes

No

Chapter 5 A Theoretical Model of Service Selection

124

Figure 5-4 Quality Value Matchmaking Flow Chart

Example:

The returned result which stored in sqList is further filtered by using quality sub-

criteria value constraints matchmaking. The matchmaker returns a list of services

qvList which their offered quality values are within the range of the required

values. The ranges of the required quality values are related to the required quality

level parameter qlevel (High, Medium, or Low) as shown in Figure. 5-5. The

query is shown in Listing 5- 2.

SELECT Availability, Reputation, ServicePrice

FROM QualityDatabase

WHERE QualityDatabase.Availability=”High” AND

QualityDatabase.Reputation=”Medium” AND

QualityDatabase.ServicePrice=”Medium”

Listing 5- 2 SQL Query

Chapter 5 A Theoretical Model of Service Selection

125

Quality Requirement Description

Operation=ItemSearch

SearchIndex=Books

Title=Web Services

Availability= qlevel: High

 Min: 90

 Max: 99

 Unit: Percentage

 Weight: 0.579

Reputation= qlevel: Medium

 Min: 2.5

 Max: 4

 Unit: None

 Weight: 0.234

ServicePrice= qlevel: Medium

 Min: 30

 Max: 60

 Unit: Pound

 Weight: 0.187

Figure 5-5 Example of Quality Requirement provided by Service Requester

The quality database is the database in the quality server. Figure 5-6 shows the

result of quality value matchmaking algorithm. It shows different providers

providing services with the same functional specifications but different in its

quality specifications.

Chapter 5 A Theoretical Model of Service Selection

126

Service Provider1

Service1 Specification:

Title= Understanding Web Service:XML,

WSDL, SOAP, and UDDI

Availability=98

Reputation=4

ServicePrice=29.07

Service2 Specification:

Title=Web Services Security

Availability=90

Reputation=4

ServicePrice=26.44

Service3 Specification:

Title=J2EE Web Services

Availability=95

Reputation=4

ServicePrice=38.37

Service Provider2

Service1 Specification:

Title= Understanding Web Service:XML,

WSDL, SOAP, and UDDI

Availability=90

Reputation=4.8

ServicePrice=39.69

Service2 Specification:

Title=Web Services Security

Availability=95

Reputation=4.8

ServicePrice=42.94

Service3 Specification:

Title=J2EE Web Services

Availability=99

Reputation=4.8

ServicePrice=45.72

Service Provider3

Service1 Specification:

Title= Understanding Web Service:XML,

WSDL, SOAP, and UDDI

Availability=99

Reputation=3.5

ServicePrice=30.27

Service2 Specification:

Title=Web Services Security

Availability=90

Reputation=3.5

ServicePrice=28.47

Service3 Specification:

Title=J2EE Web Services

Availability=95

Reputation=3.5

ServicePrice=38.38

Quality Specifications Description

Figure 5-6 Example of Quality Specifications Description provided by Service Providers

The result is organised in the following matrix:

38.3827.3037.38

5.35.34

959995

P

REP

AV

The first row is related to sub-criterion Availability (AV), the second row is

related to Reputation (REP), the third row is related to Service Price (P).

The first column is related to book with title “J2EE Web Services” which

provided by provider 1 (see Figure 5-6), the second column is related to book title

“Understanding Web Service: XML, WSDL, SOAP, and UDDI” which provided

by provider 3, the third column is related to book title “J2EE Web Services”

which provided by provider 3.

Chapter 5 A Theoretical Model of Service Selection

127

Step-4: Mathematical Matchmaking Algorithm

This step is based on the mathematical model that explained in Section 5.2. This

step is the most important step in the quality matchmaking process (QMP) and it

is implemented in Chapter 6. The mathematical matchmaking algorithm selects

the best Web service from the last list qvList from step-3 as shown in Figure 5-7.

The service requester specifies the selected quality criteria and sub-criteria

preferences. The weight of the quality criteria and sub-criteria is calculated using

Analytical Hierarchy Process. Then the consistency ratio (CR) must be less than

0.1 to continue the process. Then the Euclidean distance measures the distance

between the requester’s quality requirements and the provider’s quality

specifications of the services that are saved in qvList[] array from step-3. The

service associated with a minimum distance is the best service to select. The AHP

and Euclidean distance are explained in Section 5.2.

Example:

The mathematical technique (Analytical Hierarchy process and Euclidean

Distance) is used to measure the distance between the quality requirements and

the quality specifications. The minimum distance calculated will be the best

service to select. After using the mathematical technique the final result are:

The distance of the book title “J2EE Web Services” which provided by provider 1

is: 0.268.

The distance of the book title “Understanding Web Service: XML, WSDL, SOAP,

and UDDI” which provided by provider 3 is: 0.239.

The distance of the book title “J2EE Web Services” which provided by provider 3

is: 0.258.

From the above result the minimum distance is 0.239 which is related to the book

title “Understanding Web Service: XML, WSDL, SOAP, and UDDI” and

provided by provider 3, so this is the best book which the requester can select to

Chapter 5 A Theoretical Model of Service Selection

128

buy. It is noticed from the result that the book with highest Availability value is

selected and it is reasonable because the requester specifies the quality level qlevel

for the Availability sub-criterion to High, whereas for Reputation and Service

Price for Medium, this affect to the weight priority of the Availability which is the

highest priority (0.579) and therefore affect the book selection.

Start

Requester specifies quality

criteria preferences “qp” and

sub-criteria preferences “qsp”

Calculate weights of “qp”

and “qsp” using Analytical

Hierarchy Process

Calculate the

Euclidean distance

End

qvList []

Is

CR < 0.1

Yes

No

Calculate Consistency

Ratio “CR”

Select the Web service

with minimum distance

Figure 5-7 Quality Mathematical Matchmaking Flow Chart

5.6 Summary

This chapter has described the role of the quality matchmaker component, which

is the core component in the proposed quality-based Web service architecture

(QWSA). The quality matchmaker introduces four algorithms or filters: interface

matching, quality criteria matchmaking, quality value constraints matching, and

Chapter 5 A Theoretical Model of Service Selection

129

mathematical matchmaking. These four algorithms use the quality matchmaker

sub-components to implement their roles. The quality matchmaker ha three sub-

components which are: interface matchmaking, quality criteria matchmaking and

mathematical matchmaking.

A quality matchmaking process (QMP) is introduced to demonstrate the above

four algorithms and to select the best Web service. The last step in the

matchmaking process is a mathematical matchmaking algorithm. It is the most

important step that uses a mathematical model in order to select the best

candidates Web service based on requester’s quality requirements and

preferences. Two techniques are used in the mathematical model:

1. Analytical Hierarchy Process (AHP) in order to calculate the criteria weights

based on requester’s preferences.

2. Euclidean distance which measures the distance between the requester’s

quality requirements and the providers’ quality specifications. The Web

service with the smallest distance is considered as the best match service to the

requester quality requirements.

QMP is illustrated by an example using Amazon E-Commerce Service (AEC)

case study. This example shows how the service selection is affected by two

factors: the criteria weights and the quality requirements values.

Chapter 6 Implementation of the Quality Matchmaking Process

130

Chapter 6 Implementation of the Quality
Matchmaking Process

6.1 Introduction

This chapter presents an implementation of the quality matchmaking process

(QMP), which is performed by the quality matchmaker component.

Section 0 introduces a class diagram of the quality service selection system (QSSS

). Section 6.3 develops a quality service selection system (QSSS), which is a

simulation of the QMP. The QSSS system is a Windows application which

enables the service requester to select the best web service based on the quality

criteria classification and mathematical model. Section 6.4 presents a sequence

diagram of the QSSS system and demonstrates the QMP with an example.

6.2 Designing the Quality Service Selection System

The Visual Studio .NET technology is used to implement the QMP for the

following reasons:

 .NET is independence from a specific programming language, which enables

the developers to create .NET applications in any .NET-compatible language

(Visual Basic, Visual C++ and C#) rather than forcing them to use a single

language as using Java language in J2EE.

 Although .NET runs only on a Windows platform, its SOAP capabilities allow

components on other platforms to exchange data messages with .NET

components, and it is opening up a channel to non-.NET components by

integrating XML and SOAP into their messaging scheme [65].

Chapter 6 Implementation of the Quality Matchmaking Process

131

 .NET is developer friendly, easy to use and it is visualised programming. The

Framework Class Library (FCL) contains tens of thousands of pre-written

classes which are used to create applications [64].

 Visual Studio .NET 2003 development tool is already available in the Lab.

To implement the QMP, Microsoft Visual Studio .NET 2003 software product has

been used. Windows Application and C# language (see Appendix H for details)

have been used to build a simulation system called “quality service selection

system (QSSS). Microsoft Visual Studio .NET 2003 is described in Section 2.4.2.

The QSSS is a user interface which facilitates the service requester to specify the

following: his/her quality criteria (Performance, Failure Probability,

Trustworthiness and/or Cost) preferences, sub-criteria (Response Time,

Availability, Reputation, Service Price, etc.) preferences and the quality sub-

criteria requirement values (High, Medium, or Low).

QMP which is described in Section 5.5 is applied in the QSSS with the following

assumptions:

 Assume that the QMP occurs in the same domain, for example e-commerce

domain as occurred in this thesis.

 Assume that the functional interface matchmaking that matches the advertised

functional specification with the functional requirements (step-1 in Section

5.5) is already done and the result of step-1 is stored in the Access database.

This assumption is described in Section 7.4.1.1.

 Assume that the returned services in the Access database include the same

quality criteria classification (step-2 in Section 5.5), that is, having the same

quality criteria (Performance, Failure Probability, Trustworthiness and/or

Cost) and sub-criteria (Response Time, Availability, Reputation, Service

Price, etc.) types.

Chapter 6 Implementation of the Quality Matchmaking Process

132

Hence, the QSSS supports step-3 (quality value matchmaking algorithm) and

step-4 (mathematical matchmaking algorithm) of the QMP (see Section 5.5). This

program is described below.

The QSSS consists of class called Utilities and window forms. The class diagram

in Figure 6-1 shows the relationship between window forms and Utilities class.

Utilities class contains Matrix class and four methods: FillMatrix(),

CalculateWeights(), ConsistencyRatio() and EuclideanDistance(). These methods

are called by the five window forms: CriteriaSelection, PreferenceSelection,

SubCriteriaSelection, SubPreferenceSelection and RequirementsValue. The

window forms as shown in Error! Reference source not found.1 are used to

facilitate the requester to specify his/her quality preferences and requirements.

CriteriaSelection form contains the quality criteria group. CriteriaSelection form

switches to SubCriteriaSelection form if only one criteria group is selected

otherwise switches to PreferenceSelection form. SubCriteriaSelection form

contains the quality sub-criteria within the selected criteria group.

PreferenceSelection form contains the preferences values between the selected

criteria group. SubPreferenceSelection form contains the preferences values for

the selected quality sub-criteria. RequirementsValue form contains the quality

requirements values for the selected sub-criteria. The form sends a query to the

Access database to retrieve list of services associated with matchmaking distance.

The service with the minimum distance is the best service to select. The Utilities

class and each of these Window forms are explained below.

Chapter 6 Implementation of the Quality Matchmaking Process

133

+updateNumOfCriteria() : void

«interface»

CriteriaSelection

«interface»

PreferenceSelection

{if CR<=0.1}

+updateNumOfSubCriteria() : void

«interface»

SubCriteriaSelection

«interface»

SubPreferenceSelection

+responeConvert() : double

+thptConvert() : double

+avalRelConvert() : double

+secRepConvert() : double

+serPriceConvert() : double

+execPriceConvert() : double

+dataRetreive() : void

«interface»

RequirementsValue

+FillMatrix() : void

+CalculateWeights() : double

+ConsistencyRatio() : double

+EuclideanDistance() : double

Utilities

-numOfRows : int

-numOfColumns : int

Matrix

{ if only one group is selected}{ if more than one group are selected}

Figure 6-1 Class Diagram of QSSS System

6.3 Implementing the Quality Service Selection System

This section describes an implementation of the quality service selection system

(QSSS). In QSSS, there are Utilities class and five forms: CriteriaSelection,

PreferenceSelection, SubCriteriaSelection, SubPreferenceSelection and

RequirementsValue. The functions of the class and each form are explained

below.

Chapter 6 Implementation of the Quality Matchmaking Process

134

6.3.1 Utilities Class

Utilities class contains the Matrix class and methods such as: FillMatrix(),

CalculateWeights(), ConsistencyRatio() and EuclideanDistance(). The matrix

class and the methods are described below.

Matrix class

Matrix class is used to create matrix instances. The matrix is a multidimensional

array as shown in Listing 6-2.

public class Matrix

{

double[,] matrix;

int numberOfRows, numberOfColumns;

public Matrix(int rows, int columns)

{

numberOfRows = rows;

numberOfColumns = columns;

matrix = new double[rows, columns];

}

// Constructor to initialize the data in the matrix

public double this[int i, int j]

{

set { matrix[i,j] = value; }

get { return matrix[i,j]; }

}

// Return number of rows in the matrix

public int Rows

{

get { return numberOfRows; }

}

// Return number of columns in the matrix

public int Columns

{

get { return numberOfColumns; }

}

}

Listing 6- 1 Matrix Class

FillMatrix() method

FillMatrix() method as shown in Listing 6- 2 is used to construct pair-wise

comparison matrix A that based on the service requester’s quality preferences.

The input parameters to fillMatrix() method are the requester’s quality

preferences. The output of the fillMatrix() method is the pair-wise comparison

matrix A.

Chapter 6 Implementation of the Quality Matchmaking Process

135

The number of columns and rows of matrix A is equal to the number of quality

criteria (i.e. Trustworthiness) or sub-criteria (i.e. reputation), which are selected

by the requester from the CriteriaSelection form; that is described below.

//fillMatrix0 method construct pair-wise comparison matrix based on the service

// requester's criteria and sub-criteria preferences

 public void fillMatrix0(Matrix A, double[] arrValue)

{

 //if the service requester selects only one quality criteria

 if(A.Rows==1)

 {

 for (int i=0;i<A.Rows;i++)

 {

 for(int j=0;j<A.Rows;j++)

 {

 A[i,j]=1;

 A[j,i]=1;

 }

 }

 }

 //if the service requester selects more than one quality criteria

 else if(A.Rows>1)

 {

 for (int i=0;i<A.Rows-1;i++)

 {

 for(int j=i+1;j<A.Rows;j++)

 {

 double nextVal = getNextValue(arrValue);

 if(nextVal != -1)

 {

A[i,j]=nextVal;

 A[j,i]=1/nextVal;

A[i,i]=1;

A[j,j]=1;

 }

 }

 }

 }

}

Listing 6- 2 fillMatrix() Method

CalculateWeights() method

CalculateWeights() method as shown in Listing 6-3 is used to calculate the criteria

and sub-criteria weights from the pair-wise comparison matrix A. This method is

explained in Section 5.2.2.

Chapter 6 Implementation of the Quality Matchmaking Process

136

The input parameters to CalculateWeights() method are the matrix A and the

number of selected criteria. The output of the CalculateWeights() method is an

array contains the weights of the selected quality criteria.

// calculateWeights() method calculates the criteria and sub-criteria weights

from pair-wise comparison matrix

public double[] calculateWeights(Matrix MatrixA, int criteriaNumber)

{

//calculate the sum of each column in MatrixA

criteriaNumber= MatrixA.Rows;

double [] Sum = new double[criteriaNumber];

for(int j=0; j<criteriaNumber; j++)

{

for(int i=0; i<criteriaNumber; i++)

{

Sum[j]=Sum[j]+MatrixA[i,j];

}

}

// create the normalized matrix Normalised

//by dividing each entry in the matrix by its column sum

Matrix Normalised = new Matrix(criteriaNumber,criteriaNumber);

for(int j=0; j<criteriaNumber; j++)

{

for(int i=0; i<criteriaNumber; i++)

{

Normalised [i,j]=MatrixA[i,j]/Sum[j];

}

}

//Calculate the weight of each criteria

//which is equal to the avarage of its corresponding row

double [] WeightCriteria = new double[criteriaNumber];

double sumOfRow = 0;

for(int i=0; i<criteriaNumber; i++)

{

for(int j=0; j<criteriaNumber; j++)

{

sumOfRow=sumOfRow+Normalised[i,j];

WeightCriteria[i]=sumOfRow/criteriaNumber;

}

sumOfRow=0;

}

return WeightCriteria;

}

Listing 6-3 CalculateWeights() Method

ConsistencyRatio() method

ConsistencyRatio() method as shown in Listing 6-4 is used to calculate

Consistency Ratio (CR). The CR measures the degree of consistency of the

selected preferences values of the quality criteria that considered as a condition

Chapter 6 Implementation of the Quality Matchmaking Process

137

for allowing the service requester to continue the selection procedures or to

specify new quality preferences values. This method is explained in Section 5.3.

The input parameters to ConsistencyRatio() method are the matrix A, the number

of selected criteria and the weights array. The output of the ConsistencyRatio()

method Consistency Ratio (CR) value.

//ConsistencyRatio() method calculated the Consistenct Ratio (CR)

public double ConsistencyRatio (Matrix A, double [] weight, int criteriaNumber)

{

 double consistencyIndex;

double consistencyRatio;

 double randomIndex=1;

double sum=0;

double weightSum=0;

double eigenMax;

double [] eigenValue=new double[criteriaNumber];

 // the values of Random Index (RI)for differrent number of criteria selected

 // 3<=RI<=10

if (criteriaNumber==3)

{

randomIndex=0.58;

}

if (criteriaNumber==4)

{

randomIndex=0.9;

}

if (criteriaNumber==5)

{

randomIndex=1.12;

}

if (criteriaNumber==6)

{

randomIndex=1.24;

}

if (criteriaNumber==7)

{

randomIndex=1.32;

}

if (criteriaNumber==8)

{

randomIndex=1.41;

}

if (criteriaNumber==9)

{

randomIndex=1.45;

}

if (criteriaNumber==10)

{

randomIndex=1.49;

}

//calculate the eigenvalue max

for(int i=0; i<criteriaNumber; i++)

{

for (int j=0; j<criteriaNumber; j++)

{

weightSum=weightSum+weight[j]*A[i,j];

}

eigenValue[i]=weightSum/weight[i];

weightSum=0;

}

for(int k=0; k<criteriaNumber; k++)

{

sum=sum+eigenValue[k];

}

eigenMax=sum/criteriaNumber;

 //calculate the Consistency Index (CI)

consistencyIndex=(eigenMax-criteriaNumber)/(criteriaNumber-1);

//calculate the Consistency Ratio (CR)

consistencyRatio=consistencyIndex/randomIndex;

return consistencyRatio;

}

Listing 6-4 ConsistencyRatio() Method

EuclideanDistance() method

Chapter 6 Implementation of the Quality Matchmaking Process

138

EuclideanDistance() method as shown in Listing 6-5 is used to calculate the

Euclidean distance of the advertised Web services. The service with the smallest

distance is the best one that the service requester can select it. This method is

explained in Section 5.3.

The input parameters to EuclideanDistance() method are the performance matrix

P that contains the advertised services, the number of selected criteria, the weights

array and an array of the quality requirement values. The output of the

EuclideanDistance() method is an array of the Euclidean distance values for all

the advertised services in matrix P.

 // EuclideanDistance() method calculates the Euclidean distance for each service in the

performance matrix

public double[]EuclideanDistance(Matrix P, int subCriteriaNumber, int serviceNumber,

double[] Weight,double []requirement)

{

subCriteriaNumber=P.Rows;

serviceNumber=P.Columns;

double sum=0;

double[] Sqrt=new double[subCriteriaNumber];

for(int i=0; i<subCriteriaNumber;i++)

{ for(int j=0; j<serviceNumber; j++)

{

sum=sum+P[i,j]*P[i,j];

}

 Sqrt[i]=Math.Sqrt(sum);

sum=0;

}

 // calculate the normalized performance matrix

Matrix PNormalised = new Matrix(subCriteriaNumber,serviceNumber);

for(int i=0; i<subCriteriaNumber; i++)

{

for(int j=0; j<serviceNumber; j++)

{

PNormalised [i,j]=P[i,j]/Sqrt[i];

}

}

// create V matrix by multiplying weight vector with the normalized performance matrix

Matrix V =new Matrix(subCriteriaNumber, serviceNumber);

for(int i=0; i<subCriteriaNumber; i++)

{

for(int j=0; j<serviceNumber;j++)

{

V[i,j]=Weight[i]*PNormalised[i,j];

}

}

 //multiply the weight vector with requirement value vector

double[] wr=new double[subCriteriaNumber];

for(int i=0; i<subCriteriaNumber;i++)

{

wr[i]=Weight[i]*requirement[i];

}

double[] SqrtC=new double[serviceNumber];

for(int j=0; j<serviceNumber; j++)

{

for(int i=0; i<subCriteriaNumber; i++)

{

sum=sum+P[i,j]*P[i,j];

}

SqrtC[j]=Math.Sqrt(sum);

sum=0;

}

 //calculate the Euclidean distance

double[] EucDistance=new double[serviceNumber];

double finalSum=0;

for(int j=0; j<serviceNumber; j++)

{

for(int i=0; i<subCriteriaNumber; i++)

{

 finalSum = finalSum +(V[i,j]-(wr[i]/SqrtC[j]))*(V[i,j]-(wr[i]/SqrtC[j]));

}

EucDistance[j]=Math.Sqrt(finalSum);

finalSum=0;

}

 return EucDistance;

}

Listing 6-5 EuclideanDistance() Method

Chapter 6 Implementation of the Quality Matchmaking Process

139

6.3.2 Window Forms

In the quality service selection system (QSSS), there are five window forms:

Criteria Selection, Preference Selection, Sub-Criteria Selection, Sub-Preference

Selection and Requirements Value. Each of these window forms are described

below.

CriteriaSelection Form

From the Criteria Selection form, the service requester selects at least one

criterion by click the checkbox next to the criteria group. The Criteria Selection

form includes four criteria groups: Performance, Failure Probability,

Trustworthiness, and Cost. Each of these groups consists of several sub criteria,

which will be seen, in SubCriteriaSelection form.

This form provides the following functions:

 Counts the number of quality criteria selected by calling

updateNumofCriteria() method as shown in Listing 6-6. The hierarchy of

quality criteria in the CriteriaSelection form and the quality sub-criteria in the

SubCriteriaSelection form is based on the quality criteria classification as

described in Section 3.3.

 // count the number of quality criteria selected

 static public int numOfCriteria;

 private void updateNumOfCriteria()

 {

numOfCriteria=0;

if (checkBox1.Checked) numOfCriteria++;//if Performance is selected

if (checkBox2.Checked) numOfCriteria++;//if Failure Probability is selected

if (checkBox3.Checked) numOfCriteria++;//if Trustworthiness is selected

if (checkBox4.Checked) numOfCriteria++;//if Cost is selected

 }

Listing 6-6 updateNumOfCriteria() Method

 If the service requester selects only one quality criterion then this form will:

Chapter 6 Implementation of the Quality Matchmaking Process

140

 Calculate the criterion weight which is equal to “1” by calling

CalculateWeights() method form Utilities class. The criterion weight in

this case is always equal “1” because the importance or preference value

of one criterion compare to itself is always equal “1”.

 Switch to SubCriteriaSelection form and skip PreferenceSelection form

when clicking Next button (see Figure B-1 in Appendix B). This is

because the criterion preference value is always equal “1”.

 If the service requester selects more than one quality criterion then this form

will switch to PreferenceSelection form in order to compare between these

quality criteria by selecting the preference values

The source code of this form is shown in Appendix B.

PreferenceSelection Form

If the service requester selects more than one quality criteria group the

CriteriaSelection form are selected then the PreferenceSelection form will appear.

For example, if the last three criteria group (see Figure B-1 in Appendix B)

(Failure Probability, Trustworthiness and Cost) are selected in CriteriaSelection

form, then the last three preferences will appear in the PreferenceSelection form

(see Figure B-2). That means the number of service requester’s preferences or

judgements which calculated from the equation m (m-1)/2 (see Section 5.3) is

equal to 3, where m is the number of selected quality criteria. The preference

values are specified by clicking each “comboBox “as shown in Figure B-2. The

preference values are divided into three parts:

 The more importance, which includes the values (2, 3, 4, 5, 6, 7, 8, 9).

 The less importance, which includes the values (1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3,

1/2).

 The same importance by selecting the value “1” which is the default value.

Chapter 6 Implementation of the Quality Matchmaking Process

141

The PreferenceSelection form provides the following functions:

 Enables the service requester to select his/her quality criteria preferences or

importance by clicking the combobox next to each comparison probability as

shown in Figure B-2.

 Constructs pair-wise comparison matrix A by calling FillMatrix0() method

from Utilities class. The valuesArray [] is an array contains the preferences

values of the selected quality criteria. Comparison matrix A is an instance of

the Matrix class and filled with requester’s quality preferences. This function

is described in Section 5.3.

 Calculates the weight vector of selected quality criteria by calling

CalculateWeights() method from Utilities class. The weight calculation is

described in Section 5.2.2.

 Calculates the Consistency Ratio (CR) by calling ConsistencyRatio() method

from Utilities class. The ConsistencyRation() method is called if the number of

selected quality criteria is more than two and less than or equal 10. The

Consistency Ratio (CR) calculation is described in Section 5.3.

 If the Consistency Ratio (CR) is less than 0.1, then the requester judgements or

preferences are consistent he can continue the selection procedure, otherwise,

the requester has to specify new preferences values as shown in Error!

Reference source not found..

 When the service requester clicks the Next button, SubCriteriaSelection form

will appear.

The source code of this form is shown in Appendix B.

SubCriteriaSelection Form

SubCriteriaSelection form sub-criteria within the selected criteria group in the

CriteriaSelection form..

Chapter 6 Implementation of the Quality Matchmaking Process

142

Performance group consists of: Capacity, Response Time, Latency, Throughput

and Execution Time. Failure Probability group consists of: Availability,

Reliability, Accessibility, Accuracy and Scalability. Trustworthiness group

consists of: Security and Reputation. Cost group consists of: Service Price,

Execution Price and Total Price.

The hierarchy of criteria groups and its sub-criteria is based on the quality criteria

classification which is described in Section 3.3.

The quality criteria groups and its sub-criteria in this form will be enabled (see

Figure B-3 in Appendix B) if the service requester selects the criteria group from

the first form CriteriaSelection form. At least one sub-criterion must be selected

in each criteria group. For example, if the first two criteria group are selected in

the first form (Performance and Failure Probability), then the above sub-criteria

will be enabled: Response Time, Throughput, Availability and Reliability. When

the requester clicks the Next button (see Figure B-3), SubPreferencSelection form

will appear.

The SubCriteriaSelection form provides the following functions:

 Counts the number of sub-criteria selected in each criteria group by calling

updateNumOfSubCriteria() method.

 If the service requester selects only one sub-criteria in each enabled quality

criteria group then this form will:

 Calculate the total weight vector which is equal to the quality criteria

weight which calculated in CriteriaSelection form if one criterion group

is selected, or to the criteria weight calculated in preferenceSelection

form if more than one criterion is selected. The weight calculation is

described in 5.2.2.

 Switch to RequirementsValue form and skip SubPreferenceSelection

form when clicking Next button. This is because the sub-criterion

preference value is always equal “1”.

Chapter 6 Implementation of the Quality Matchmaking Process

143

 If the service requester selects more than one quality sub-criterion then this

form will switch to SubPreferenceSelection form in order to compare between

these quality sub-criteria by selecting the preference values

The source code of this form is shown in Appendix B.

SubPreferenceSelection Form

If the sub-criteria selected in SubCriteriaSelection form is more than one then the

preferences probabilities will appear in SubPreferenceSelection form (see Figure

B-4 in Appendix B). For example, if the service requester selects Response Time

and Throughput within Performance criteria and Availability and Reliability

within Failure Probability criteria then the first two importance probabilities will

be seen in order to specify their preferences. The preferences values in the

“comboBoxes”as shown in Figure B-4 are the same as in the PreferenceSelection

form. The default value is “1”.

The SubPreferenceSelection form provides the following functions:

 Enables the service requester to specify preferences values (i.e. 1, 2,…, 9) for

the selected sub-criteria by clicking the “comboBoxes” in Figure B-4.

 Constructs a pair-wise comparison matrix for each criteria group. For

example, if Performance is selected then the comparison matrix contains the

preferences values of Response Time and Throughput sub-criteria.

 Calculates the weight of each criteria group individually. For example, the

TotalWeightPerformance() method calculates the Performance sub-criteria

weight in two cases:

 If the Performance criteria is only selected by the service requester then

the total weight of Performance sub-criteria will be:

Total Weight= [Performance sub-criteria weight (related to preferences

values in Sub-Preference Selection form)]*[Performance weight

(calculated in Criteria Selection form)].

Chapter 6 Implementation of the Quality Matchmaking Process

144

 If the Performance criteria is selected with other criteria groups then the

total weight of Performance sub-criteria will be:

Total Weight= [Performance sub-criteria weight (related to preferences

values in Sub-Preference Selection form)]* [Performance weight (related

to preferences values in Preference Selection form)].

 The Consistency Ratio (CR) is not calculated in this form because this thesis

assumes for simplicity to specify two sub-criteria in each criteria group, and

the Consistency Ratio (CR) calculation need more than two sub-criteria.

 When the requester clicks Next button (see Figure B-4) then

RequirementsValue form will appear.

The source code of this form is shown in Appendix B.

Requirements Value Form

The Requirements Value form (See Figure B-5 in Appendix B) contains the

requirement value of the selected sub-criteria from SubCriteriaSelection form.

Each of the quality requirement value or level has the following options: High,

Medium (the default value) or Low.

The RequirementsValue form provides the following functions:

 Enables the service requester to specify his/her quality requirement level of the

selected sub-criteria quality by clicking the “comboBox” in Figure B-5.

 Converts the requirement levels (High, Medium, or Low) of the quality sub-

criteria to values based on the selected sub-criteria type (e.g., Availability,

Reputation, etc.) and the service domain (e.g., E-commerce). The methods

used in QSSS to convert the sub-criteria requirement levels to values are:

responseConvert(), thptConvert(), avalRelConvert(), secRepConvert(),

serPriceConvert() and execPriceConvert(). avalRelConvert() and

secRepConvert() methods. The requirement level is equivalent to qlevel

Chapter 6 Implementation of the Quality Matchmaking Process

145

element which assigned in the quality criteria XML Schema (see Appendix A

for details).

 Calls the dataRetreive() method when the requester clicks Submit button see

Figure B-5. The dataRetreive() method provides the following tasks:

 Sends a query request based on the service requester’s sub-criteria levels

(High, Medium, or Low) to the Access database which called Amazon

database. The contents of Amazon database will be described in the

coming Chapter 7.

 The RequirementsValue form is connected to an Access database using

oleDbConnection1 as shown in Error! Reference source not found.. The

query result is retrieved and displayed in the DataGrid using

oleDbDataAdapter1 and dataSet1 with ADO.NET

(ActiveXDataObjects.NET). oleDbConnection1, oleDbDataAdapter1 and

dataSet1 appear below the RequirementsValue form see Figure B-5. Further

information about ADO.NET and Access database connection are explained in

Appendix C.

 Matches the quality requirements specified by the service requester with the

quality specification that offered by the service provider

 The matching result is stored in the performance matrix (see Section 5.2)

called criteriaOffered [,] matrix which contains the services with different

quality sub-criteria values.

 The Euclidean distance is calculated for each service by calling

EuclideanDistance() method from Utilities class. The Euclidean distance

calculation is explained in Section 5.2.

 The service are ranked from the smallest distance to the largest and displayed

in the data grid. The first service with smallest distance is the best service that

the service requester can select it.

Chapter 6 Implementation of the Quality Matchmaking Process

146

The source code of this form is shown in Appendix B.

6.4 Sequence Diagram of Using Quality Service Selection
System

Requester CriteriaSelection PereferenceSelection SubCriteriaSelection SubPreferenceSelection RequirementsValue Utilities Database

select criteria (Failure Probability,Trustworthiness,Cost)

select preferences between Failure Probabilty, Trustworthiness and Cost

Calculate weight criteria of selected quality criteria

select sub-criteria(Failure Probability"Availability",Trustworthiness "Reputation", Cost"Service Price")

calculate total weight of selected quality sub-criteria

select quality requirement value(Availability "High", Reputation "Medium", Service Price "Medium")

matching between quality req. and quality specification using "ED"

Display ranked services

Figure 6-2 Sequence Diagram of Quality Service Selection System

Figure 6-2 shows an example of the quality service selection system (QSSS)

process as in the following:

Step-1: Service requester selects the quality criteria; for example, Failure

Probability, Trustworthiness and Cost from the CriteriaSelection.

Step-2: Service requester specifies the quality preferences between Failure

Probability, Trustworthiness and Cost from the PreferenceSelection form as the

following:

Chapter 6 Implementation of the Quality Matchmaking Process

147

 Failure probability is assigned by the service requester as five times more

important than the Trustworthiness.

 Failure probability is assigned by the service requester as two times more

important than the Cost.

 Cost is assigned by the service requester as four times more important

than the Trustworthiness.

Step-3: Construct pair-wise comparison matrix A by creating an instance of a

Matrix class and fill matrix A with the requester’s quality preferences by calling

FillMatrix0() method from Utility class.. The pair-wise comparison matrix A is:

CTFP

C

T

FP

A

145.0

25.012.0

251

Step-4 Call CalculateWeights() method from the Utilities class in order to

calculate the criteria weight based on requester preferences.

The CalculateWeight() method calculates the criteria weights by using the

following equation:

mcriteriaofcolumninentriestheofsum

mcolumninicriterionofprefernce

criteriaofcolumninentriestheofsum

columninicriterionofprefernce

criteriaofcolumninentriestheofsum

columninicriterionofprefernce

criteriaofnumber
wi

2

2

1

1

1

568.0
25.3

2

10

5

7.1

1

3

1
)(

FPW ; the Failure Probability weight.

098.0
25.3

25.0

10

1

7.1

2.0

3

1
)(

TW ; the Trustworthiness weight.

Chapter 6 Implementation of the Quality Matchmaking Process

148

334.0
25.3

1

10

4

7.1

5.0

3

1
)(

CW ; the Cost weight.

The weight vector is: 334.0098.0568.0W

The total weight is equal to 1:

)(FPW +)(TW +)(CW =1

Step-5: Calculate the Consistency Ratio (CR). CR measures the degree of

consistency of the selected preferences values of the quality criteria. CR is also

calculated if the number of selected quality criteria are more than 2 and less than

10, by calling ConsistencyRatio() method from Utilities class. If CR value is less

than 0.1, then the requester can continue in the selection process otherwise he/she

has to specify new quality criteria preferences from PreferenceSelection form.

The ConsistencyRatio() method is calculated by the following:

1. Random Index RI for matrix A of size 3 is equal to 0.58, as given in Table 5-2

2. Calculate max from equation wAw max :

 Calculate the weighted sum matrix by the following:

010.1

295.0

726.1

1

25.0

2

334.0

4

1

5

098.0

5.0

2.0

1

568.0

 Divide all the elements of the weighted sum matrices by their respective

priority vector element to obtain:

04.3
568.0

726.1
 , 01.3

098.0

295.0
 , 02.3

334.0

01.1

 max can be obtained from the average of the above values:

Chapter 6 Implementation of the Quality Matchmaking Process

149

023.3

3

02.301.304.3
max

3. Calculate the Consistency Index CI

0115.0
13

3023.3

1

max

m

m
CI

4. Calculate the Consistency Ratio (CR)

02.0
58.0

0115.0

RI

CI
CR

CR is equal to 0.02 which is less than 0.1, so the pair-wise requester’s judgement

is consistent and therefore the procedures will continue in order to select the best

book.

Step-6: Service requester selects sub-criteria within each selected quality criteria

group from SubCriteriaSelection form. For example, the requester selects

Availability within Failure Probability criteria group, Reputation within

Trustworthiness criteria group and Service Price within Cost criteria group.

Step-7: Calculate the total weight of the selected sub-criteria which equal to the

weight of criteria group multiplied by the weight of sub-criteria within the

corresponding criteria group, by the following:

Total weight= (criteria weight) * (sub-criteria weight)

Because the requester selects only one sub-criterion in each quality criteria group,

the total weight of each sub-criterion is equal to the weight of its criteria group.

So, the weight of the Availability (AV) sub-criteria is equal to the weight of

Failure probability and equal 0.568, the weight of the Reputation (REP) sub-

criteria is equal to the weight of Trustworthiness (T) and equal 0.098, the weight

of the Service Price (SP) sub-criteria is equal to the weight of Cost (C) and equal

0.334.

Chapter 6 Implementation of the Quality Matchmaking Process

150

Step-8: The service requester selects the quality requirement levels for each sub-

criterion from RequirementsValue form. For example, the requirement value for

Availability is “High”, Reputaion is “Medium”and Service Price is “Medium”.

Step-9: By clicking the “Submit” button in the RequirementsValue form, a query

request is sent to the Access database. The result is stored in the Performance

matrix.

The performance matrix is retrieved by sending an SQL query to an MS-Access

database which contains information about books as shown in Appendix G. The

SQL query consists of requirement values (High, Medium or Low) of the selected

sub-criteria (Availability, Reputation and Service Price) as shown in Listing 6- 7.

 // if Availability's level is High, Reputaion's level is Medium and Service Price's level is Medium

if(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.Equals("Medium")

&&boxArray[6].SelectedItem.Equals("Medium"))

 {

 oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

 ProductTitle,ProductAvailability,SellerReputation,Price FROM AmazonTable WHERE

 AmazonTable.ProductAvailability BETWEEN 80 AND 100 AND

 AmazonTable.SellerReputation BETWEEN 2.5 AND 4 AND AmazonTable.Price BETWEEN

 30 AND 60";

 }

Listing 6- 7 SQL Query to an MS-Access database

The requester selects the requirement level of sub-criteria Availability is “High”,

Reputation is “Medium”, and Service Price is “Medium” as shown in Listing 6- 7.

The range of requirement values depends on the service domain and on the type of

the quality sub-criteria. For example, the requirement level of “High” for

Availability is between [80-100], the requirement level “Medium” for Reputation

is between [2.5-3.9] and the requirement level “Medium” for Service Price is

between [25-49.99].

The query result is saved first in dataSet1, using FillMatrix() method of

OleDbDataAdapter1, which is an instance of OleDbDataAdapter class that

Chapter 6 Implementation of the Quality Matchmaking Process

151

represents a bridge between a dataset and an OLE DB database. The dataset acts

as a local repository of the retrieved data. The data result is then stored in

dataTable, which is an instance of DataTable class and its represents a table of

data. The datasets are made up of collections of data tables [64].

The result is then organized in the performance matrix which called

criteriaOffered matrix. The criteriaOffered matrix is an instance of the Matrix

class, with rows that contain the sub-criteria fields (Availability, Seller Reputation

and Price) and columns that contain the books records as shown in Table 6-1.

Table 6-1 SQL Query Result Obtained for Performance Matrix

Product Name Seller Name Availability Price Seller Reputation

Service-Oriented Architecture allnewbooks 80 29.19 2.6

Web Services Platform Architecture a1books_nj 95 34.11 3.6

Web Services Platform Architecture alphacraze 82 34.34 3.4

Web Services Platform Architecture alphacrazeoutlet 97 34.34 3.7

J2EE Web Services thebookrackrh 80 35.4 2.8

J2EE Web Services allnewbooks 95 35.49 2.6

J2EE Web Services alphacraze 99 37.93 3.4

J2EE Web Services a1books_nj 96 38.51 3.6

How to Break Web Software powells_books 90 34.99 2.8

Core Security Patterns fun-for-all58 98 33.85 3.5

Core Security Patterns allnewbooks 85 38.64 2.6

Core Security Patterns thebookrackrh 97 39.2 2.8

Core Security Patterns amz_book 84 39.95 3

Building Web Services with Java allnewbooks 82 32.34 2.6

Building Web Services with Java alphacraze 97 34.34 3.4

Understanding SOA with Web Services superbookdeals 96 25.04 2.5

Understanding SOA with Web Services amz_book 95 25.95 3

Understanding SOA with Web Services a1books_nj 86 27.28 3.6

Understanding SOA with Web Services lphacrazeoutlet 98 27.39 3.7

So, the performance matrix criteriaOffered will be created from the SQL query

result as the following:

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19

 AV 80 95 82 97 80 95 99 96 90 98 85 97 84 82 97 96 95 86 98

P=REP 2.6 3.6 3.4 3.7 2.8 2.6 3.4 3.6 2.8 3.5 2.6 2.8 3 2.6 3.4 2.5 3 3.6 3.7

 P 29.19 34.11 34.34 34.34 35.4 35.49 37.93 38.51 34.99 33.85 38.64 39.2 39.95 32.34 34.34 25.04 25.95 27.28 27.39

Chapter 6 Implementation of the Quality Matchmaking Process

152

Step-10: Call EuclideanDistance() method from the Utilities class, in order to

calculate the distance or the gap between the quality requirement value and the

quality specifications which stored in the Performance matrix.

The EuclideanDistance() method is calculated as in the following:

1. Normalize the performance matrix using the following equation:

n

k

ik

ij

ij

p

p
q

1

2

This step produces a normalized performance matrix }{ ijqQ as shown below:

AV 1.922 2.282 1.97 2.33 1.922 2.282 2.378 2.386 2.162 2.354 2.042 2.33 2.018 1.97 2.33 2.386 2.282 2.066 2.354

Q= REP 0.338 0.468 0.442 0.481 0.368 0.338 0.442 0.468 0.364 0.455 0.338 0.364 0.39 0.338 0.442 0.325 0.39 0.468 0.481

P 1.156 1.35 1.359 1.359 1.4 1.4 1.5 1.524 1.385 1.34 1.529 1.552 1.582 1.278 1.359 0.991 1.027 1.08 1.084

2. Construct a weighted normalized performance matrix by multiplying the

weight vector which obtained from Step-2 with the normalized performance

matrix using equation }{ ijiqwV . The V matrix will be:

 AV 1.092 1.296 1.118 1.323 1.092 1.296 1.351 1.355 1.228 1.337 1.159 1.323 1.146 1.118 1.323 1.355 1.296 1.173 1.337

V= REP 0.033 0.046 0.043 0.047 0.036 0.033 0.043 0.046 0.036 0.044 0.033 0.036 0.038 0.033 0.043 0.032 0.038 0.046 0.047

 P 0.386 0.451 0.454 0.454 0.468 0.468 0.501 0.509 0.462 0.448 0.511 0.518 0.528 0.428 0.454 0.331 0.343 0.361 0.362

3. Calculate the relative Euclidean distances using the following equation:

m

i

m

i

ijiiijj prwvE
1

2

1

2)/(

Where j=1,2,…, n is the number of books in the performance matrix which is

equal to 19 and r is the requirement values for the sub-criteria as shown below:

40

3

98

Medium

Medium

High

P

REP

AV

r

Chapter 6 Implementation of the Quality Matchmaking Process

153

The requirement value for the Availability is “High” which is equal 98 and

located within its range [80-100]. The requirement value for Reputation is

“Medium” which is equal 3 and located within its range [2.5-3.9]. The

requirement value for Service Price is “Medium” which is equal 40 and located

within its range [25-49.99]. The aforementioned values for the requirement value:

High, Medium and low, can be determined by the system developer or the system

administrator and depend on the service domain and on the type of the sub-

criteria. For example, the requirement value for buying a book is different than

buying a computer and the requirement value of Availability is different than

Reputation.

Step-11: Display the services ranked from the smallest distance to the largest

distance. The service with the smallest distance is the best one the service

requester can select it.

Table 6-2 shows the output result which is based on requester’s preferences and it

is ranked from the smallest matching distance to the largest one. The matching

distance values in Table 6-2 are the values of the relative Euclidean distances,

which measuring the closeness between the quality requirements that specified by

the service requester and the quality specification that specified by the service

providers.

From the output result as shown in Table 6-2, the first book with title “J2EE Web

Services” and its provider is “alphacraze” is the best book to select because its

matching distance is the smallest (0.387). It is reasonable that the first book is the

best because it has the highest Availability value (99%) as seen in Table 6-2 and

the required Availability has the highest priority (0.568).

Chapter 6 Implementation of the Quality Matchmaking Process

154

Table 6-2 Output Result

Product name Seller Name Matching distance Seller URL

J2EE Web Services alphacraze 0.387 http://www.amazon.com/seller=A3H8H6KI3KCVA5

Core Security Patterns thebookrackrh 0.399 http://www.amazon.com/seller=A1MD3EN9VM2K1F

Core Security Patterns fun-for-all58 0.4 http://www.amazon.com/seller=A1MD3EN9VM2K1F

J2EE Web Services a1books_nj 0.404 http://www.amazon.com/seller=A3H8H6KI3KCVA5

Web Services Platform Architecture alphacrazeoutlet 0.405 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

Building Web Services with Java alphacraze 0.406 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

Understanding SOA with Web Services lphacrazeoutlet 0.409 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

Web Services Platform Architecture a1books_nj 0.419 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

J2EE Web Services allnewbooks 0.419 http://www.amazon.com/seller=A3H8H6KI3KCVA5

Understanding SOA with Web Services superbookdeals 0.431 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

Understanding SOA with Web Service amz_book 0.434 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

How to Break Web Software powells_books 0.454 http://www.amazon.com/seller=A1C3QU77DDT2KW

Core Security Patterns allnewbooks 0.482 http://www.amazon.com/seller=A1MD3EN9VM2K1F

Core Security Patterns amz_book 0.484 http://www.amazon.com/seller=A1MD3EN9VM2K1F

Understanding SOA with Web Services a1books_nj 0.498 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

Web Services Platform Architecture alphacraze 0.514 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

Building Web Services with Java allnewbooks 0.522 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

J2EE Web Services thebookrackrh 0.529 http://www.amazon.com/seller=A3H8H6KI3KCVA5

Service-Oriented Architecture allnewbooks 0.548 http://www.amazon.com/seller=A1RAFT0AR298LX

6.5 Summary

The quality matchmaking process (QMP) has been implemented by developing a

simulation system called quality service selection system (QSSS). QSSS is

developed using Windows application within Visual Studio .NET 2003 tool.

QSSS is a user interface, which enables service requester to specify his/her quality

preferences and requirements. QSSS consists of the following forms and classes:

 Criteria Selection form

 Preference Selection form

 Sub-Criteria Selection form

 Sub-Preference Selection form

Chapter 6 Implementation of the Quality Matchmaking Process

155

 Requirements Value form

 Utilities class

The functions of each form are described. The Utilities class consists of methods

which used to calculate the criteria and sub-criteria weight and to calculate the

Euclidean distance between the quality requirement values specified by the

service requester and the quality specifications offered by service providers.

A sequence diagram of QSSS system is presented to demonstrate the quality

service selection process with an example.

Chapter 7 Evaluation

156

Chapter 7 Evaluation

7.1 Introduction

This chapter evaluates (1) the proposed quality-based Web service architecture

(QWSA), (2) the quality matchmaking process (QMP) and (3) the quality service

selection system (QSSS). The QWSA is evaluated in Section Error! Reference

source not found. by comparing it with the related architectures regarding five

criteria: scalability, extensibility, commodity to standards, ease of implementation

and technique for selection. The QMP is evaluated in Section 7.3 by comparing it

with the related matchmaking techniques. The QSSS is evaluated in Section 7.4

through a case study. The efficiency of QSSS and the QMP are discussed in

Section 7.5

7.2 Evaluation of the Quality-Based Web Service
Architecture

The proposed quality-based Web service architecture (QWSA) is evaluated by

comparing it with the related Web services architectures regarding the following

five criteria:

1. Scalability: It is the capability of a system to increase total throughput and

transactions under an increased load when resources or hardware are added.

2. Extensibility: It is the ability to extend a system through the addition of new

functionality or through modification of existing functionality.

3. Conformity to standards: Extending either the Web services’ core standards

or other higher standards with quality aspects.

4. Ease of implementation: The ability to implement the system in an easy

way.

Chapter 7 Evaluation

157

5. Techniques for selection: Specify the type of the selection technique.

7.2.1 QoS-Capable Web Service Architecture

A QoS-capable Web service architecture (QCWS) which is presented in [94], [92]

has three components: server (provider), QoS broker and client. The server

assigns different amount of system resources to different clients according to their

QoS requirements. The server contains QoS information and QoS admission. The

QoS information includes service levels with corresponding costs and maximum

service capacities. After a broker selects a service, QoS admission sends request

to the server for confirmation (admission). QoS broker acts as a mediator between

service providers and clients. It receives clients QoS requests and identifies

qualified services for them. Its main components are: QoS information manager,

QoS negotiation manager and QoS analyzer. QoS information manager collects

QoS information from the server for QoS negotiation. It checks UDDI registry

periodically to get up-to-date servers information and contacts servers for QoS

information. The collected information is placed in he broker’s database. QoS

negotiator manager is the core of a QoS broker. It manages service selection for

clients. After receiving client’s request, it searches through broker’s database to

look for qualified services. A decision algorithm is used to select the most suitable

one. Once the candidate is selected, the QoS negotiation manager negotiates with

the server to meet the QoS requirements. If the negotiation is not successful, the

broker must identify another candidate server and repeat the negotiation process.

QoS analyzer produces statistical information about the server and put them in the

broker’s database. Clients send their QoS requirements to a broker and let it

choose the most suitable server for them.

The evaluation criteria of the QCWS system:

1. Scalability: QCWS supports scalability by providing a QoS Admission and

Enforcement component. The admission control compares the number of

accepted users with the maximum capacity of the system. If current used

Chapter 7 Evaluation

158

capacity is less than maximum capacity, the server accepts the user’s request;

otherwise the request is rejected.

2. Extensibility: no information about it.

3. Commodity to standards: no information about it.

4. Ease of implementation: the implementation is easy but not completed; it

considers only the number of accepted requesters within the maximum

capacity of the system and the number of rejected requesters when the system

is overloaded. But not consider how the system selects the service.

5. Technique for selection: The negotiation technique is used to select the best

service.

7.2.2 UDDI eXtension Architecture

A UDDI eXtension (UX) architecture is proposed in [95]. UX architecture

facilitates requesters to discover services with good qualities. It is comprised of

service requester, local UDDI registry, test host and UX server. The service

requester queries the UX server to find the matching services and invoke the

services. The requester then sends a QoS report about the performance of the

service to UX server. The local UDDI registry records the local service

description and connected to the UX server as a backend registry. The test host

generates QoS reports for the services registered in local registry. The UX server

plays an important role in the system. When it receives an inquiry from the

requester, it searches the UDDI for related results. The server then sorts the

service results according to QoS requirements and sends the result back to the

requester. The UX server also receives the requester’s QoS report and stores it in

a database.

The evaluation criteria of the UX system are:

Chapter 7 Evaluation

159

1. Scalability: UX system supports scalability by using the federated discovery

approach. The system be able to scale to support a huge number of requesters

and services while adapting the underlying domains’ changes.

2. Extensibility: A lookup interface between servers is extended to support the

federated discovery. It contains query ID, sender, query response and QoS

summery.

3. Commodity to standards: The extended inquiry interface conforms to the

UDDI specification.

4. Ease of implementation: the implementation is not completed; the federated

discovery hasn’t been fully implemented.

5. Technique for selection: Keyword matching in addition to requester’s

preferences on the service’s QoS metrics.

7.2.3 Web Service Quality Broker Architecture

The Web Service Quality Broker Architecture, which is proposed in [86], helps

the service requester to find the optimal Web service. The quality broker is

located between the requesters and providers. It monitors quality attribute values

of registered services and store them in WSLA (Web Service Level Agreement)

document. The quality broker performs the negotiation through investigating

WSLA details with same function and quality attributes of requester.

The aforementioned related architecture used the WSLA to accommodate the

quality attributes in order to be used in the negotiation process to select the

optimal Web services. Wherein the proposed QWSA, the WSDL (Web Services

Description Language) is extended with quality criteria, which is used further in

the quality matchmaking process (QMP) to select the best Web service. Also, the

related architecture didn’t manage the dynamic nature of the quality criteria that is

to keep up-to-date information on quality specifications currently available for

Chapter 7 Evaluation

160

services. But the propose quality server address this issue by its component the

quality manager.

The evaluation criteria of the Web Service Quality Broker Architecture are:

1. Scalability: The architecture does not support scalability.

2. Extensibility: The quality model, which is based on the architecture, is

extensible that can add more QoS attributes within each Web service quality

aspects: Performance, Safety and Cost.

3. Commodity to standards: The WSLA is used to accommodate the quality

attributes rather than using the Web service standard description language

WSDL.

4. Ease of implementation: No information about the system implementation..

5. Technique for selection: Negotiation process is used to select the best service.

7.2.4 QoS Certifier

A Web service discovery architecture which is proposed in [5] extends the current

Web service architecture with Web service QoS certifier in order to discover Web

services by considering the functional and non-functional requirements. There are

four roles in the proposed architecture: Web service supplier, Web service

consumer, Web service QoS certifier and the new UDDI registry. The Web

service provider sends its QoS claim to the Web service QoS certifier. The QoS

certifier certifies the claim and sends the certification identification information

back to the provider. After the QoS certification been issued, the provider then

registers the service with both functional description and its associated certified

quality in the new UDDI. The new UDDI differs from the current UDDI by

having information about the functional description of the Web service as well as

its associated certified quality of service information. The consumer searches the

new UDDI registry for a service with certain functional and quality of service

requirements. Once a Web service result is found, the WSDL and the certified

Chapter 7 Evaluation

161

QoS information are retrieved by the consumer then he/she can invoke the Web

service.

The evaluation criteria of the QoS Certifier are:

1. Scalability: The architecture does not support scalability.

2. Extensibility: The architecture extends the current UDDI data structure with

qualityInformation data structure.

3. Commodity to standards: The architecture is commodity to Web services core

standards such as UDDI and WSDL.

4. Ease of implementation: No information about the system implementation.

5. Technique for selection: No information about the selection technique.

7.2.5 Web Service QoS Architecture

A Web service QoS (WS-QoS) architecture in [84], [91], extends the current Web

service architecture with Web service broker (WSB) in order to select the

appropriate service based on QoS requirements regarding server and network

performance. The Web service client contacts the WSB for looking up a service

instead of searching the UDDI registry. The WSB checks regularly the UDDI for

new offers to keep up-to-date information.

The evaluation criteria of the WS-QoS architecture are:

1. Scalability: The Ws-QoS architecture supports scalability by providing the

following components: requirement Manager that retrieves and updates the

user’s QoS requirements, Web service Broker that selects services

dynamically and efficiently, and WS-QoS Monitor that checks the compliance

of service offers. The architecture serves a high number of users with assured

QoS.

2. Extensibility: The WS-QoS architecture is extensible by providing a

standardised XML-based QoS specification, which contains three XML

Chapter 7 Evaluation

162

documents: WS-QoSRequirementDefinition that specifies user’s QoS

requirements, WSQoSOfferDefinition that contains the specification of QoS

offers and QoSInf that holds information on different aspects of QoS

properties.

3. Commodity to standards: The architecture is commodity to Web services core

standards such as UDDI and WSDL.

4. Ease of implementation: The WS-QoS architecture is implemented using C#

and ASP.NET application. The implementation does not consider how the

architecture selects the service.

5. Technique for selection: No information about the selection technique.

7.2.6 Web Service QoS Architecture

A Web services QoS architecture (WQA) in [98] extends the current Web service

architecture with QoS broker. The user sends a QoS query to the broker then it

connects to UDDI registry and collects all the Web services with the similar

function. The QoS broker filters the QoS-aware services using an algorithm to

choose the optimum services.

The evaluation criteria of the WQA Certifier are:

1. Scalability: The architecture does not support scalability.

2. Extensibility: The architecture extends the current UDDI Inquiry functions

with two methods: find_business_qos and find_service_qos.

3. Commodity to standards: The architecture is commodity to Web services core

standards such as UDDI and WSDL.

4. Ease of implementation: No information about the system implementation.

5. Technique for selection: No information about the selection technique.

Chapter 7 Evaluation

163

7.2.7 Comparison between the Quality-Based Web
Service Architecture and the Related Architecture

The evaluation criteria of the proposed quality-based Web service architecture

(QWSA) are:

1. Scalability: The QWSA architecture supports scalability from the service

providers’ side that enables them to publish huge number of their services

specified with functional specification to UDDI and with quality specifications

to quality server. QWSA manages the dynamic nature of the quality criteria

that is to keep up-to-date information on quality specifications currently

available for services. However, QWSA does not support scalability from the

requester’s side. Only one requester at a time can request the system. It needs

to extend the functionality of the quality server to manage several queries that

are sent concurrently by multi- requesters

2. Extensibility: The functionality of the quality server within the QWSA

architecture can be extended with a notification mechanism that sends a

notification to quality manager of any changes in the quality criteria to keep

update information in the quality database. Also, the functionality of the

quality server can be extended to manage several queries that are many

requesters send their queries concurrently. The quality model, which is based

on the architecture, is extensible, that can add more quality sub-criteria within

each quality criteria group without altering the selection process. The WSDL

is extended with the quality criteria classification to support quality aspects.

3. Commodity to standards: The quality criteria classification is accommodated

within existing Web services core specification standards that is WSDL and

UDDI. This enhancement is used in the quality matchmaking process (QMP)

to select the best Web service.

4. Ease of implementation: The quality matchmaking process, which is based on

the QWSA architecture is implemented easily using Windows application

Chapter 7 Evaluation

164

written in C# language in the Visual Studio .NET 2003 environment. The

QWSA architecture can be further implemented using Web Service

Application in the Visual Studio .NET 2003 environment.

5. Technique for selection: The service selection technique depends on the

matchmaking mechanism that is based on the mathematical model. A quality

matchmaking process (QMP) is developed in order to select the best service.

Table 7-1 shows comparison result between the proposed quality-based Web

service architecture and the related above six architectures. It is seen that the

QWSA is best to select because it considers all the evaluation criteria except the

scalability one. The only disadvantage of QWSA architecture is that it does not

support concurrent huge number of requests. But the architecture is extensible that

can support the scalability without having to make major changes to the system

infrastructure. So, this disadvantage is required further investigation in the future

work.

Table 7-1 Comparison between QWSA and Related Architectures

Architectures

Evaluation Criteria

Scalability Extensibility Commodity

to standards

Ease of

implementation

Technique for

selection

QCWS Yes No No Yes Negotiation

UX Yes Yes Yes No Keyword

matching

Quality Broker

Architecture

No Yes No No Negotiation

QoS Certifier No Yes Yes No No

WS-QoS Yes Yes Yes Yes No

WQA No Yes Yes No No

QWSA No Yes Yes Yes matchmaking

based on

mathematical

Chapter 7 Evaluation

165

model

7.3 Evaluating the Quality Matchmaking Process

Most of the proposed quality-based Web service selection approaches depend on

matchmaking mechanisms. The matchmaking mechanism matches quality

requirements of the service requester with the published quality specifications of

the service provider. The matchmaking mechanism varies in the previous work

from one approach to another, in its simplest form a simple query matching

process is used, others using semantics approaches [76], [70], [103], [33], [108],

[38] or computation approaches [90], [72].

7.3.1 Semantic Matchmaking Algorithm

The matchmaking algorithm in [76], [70], [103], [33] supports semantic

matchmaking between service advertisements and service requirements. Semantic

matchmaking is based on DAML-S service description ontology. DAML-S aims

to make Web services computer-interoperable and to facilitate Web service

discovery. It defines the notions of a Service Profile (what the service does), a

Service Model (how the service work) and a Service Grounding (how to use the

service). However, this thesis proposes a quality matchmaking process (QMP),

which is based on the mathematical model. Also, this thesis uses WSDL

description language instead of DAML-S and extends the WSDL with the quality

classification.

Maximilien and Singh [38], [108] propose a matchmaking algorithm, which is

used to match consumers policies or constraints to advertised service policies. The

matchmaking algorithm is divided into four steps: interface matchmaking, policy

matchmaking, semantic matchmaking and quality matchmaking. The first step is

Chapter 7 Evaluation

166

to find the services by considering only the interface matchmaking. Next policy

matchmaking is performed on the returned list by matching the advertised policy

for each service with the required policy. Next the returned list is reduced by

applying the semantic matchmaking by semantically match two qualities by

considering their relationship to find if they are related. A quality match occurs

when the quality type and unit are the same and the required value of the quality is

within the range of the advertised quality value.

The proposed quality matchmaking process (QMP) in this thesis consists of four

steps: interface matchmaking, quality criteria type matchmaking, quality criteria

value matchmaking and mathematical matchmaking. The first step interface

matchmaking is similar to the interface matchmaking in [38] and [108] but the

remaining steps are different. In the proposed QMP, the quality criteria type

matchmaking matches the required quality type such as Availability with the

advertised quality type. The quality criteria value matchmaking retrieves the result

if the required value is less than or within the range of the advertised quality

values. The mathematical matchmaking is the core step in QMP, which is based

on the mathematical model to find the best advertised service with a minimum

distance.

7.3.2 QoS Computation Algorithm

The quality matchmaking process (QMP) in this thesis is based on the

computation approach. There are three approaches which are similar to the

proposed QMP, as described below.

The QoS matchmaking algorithm, which is proposed in [72], is based on the QoS

computation model. The QoS computation model uses the Euclidean distance

measure in order to find the nearest Web service to the QoS specifications of the

consumer that is to find a Web service with a minimum Euclidean distance. They

normalize the QoS matrix by using maximizing and minimizing equations that

considering the type of the QoS parameter. For example, Response Time needs to

Chapter 7 Evaluation

167

be normalized by minimization using the minimizing equation while Availability

needs to be normalized by maximization using maximizing equation.

A QoS computational model is presented in [90] for Web service selection. The

QoS computation computes the QoS value for each Web service, the higher the

value the best the service to select. The QoS criteria for each Web service

represents in a matrix Q. The Q matrix is normalized by considering the type of

the criteria. The increase of certain criteria benefits the service requester such as

availability while the decrease of certain criteria benefits the service requester

such as cost criteria.

A service selection approach that are based on QoS computation is presented in

[88]. The candidate Web services with different quality criteria values are

represented in a matrix Q. Some of the criteria could be negative that is the higher

the value the lower the quality such as Execution Time and Price. Other criteria

are positive that is the higher the value the higher the quality such as Availability.

The above computation three approaches that used the matchmaking mechanism

do not consider the service requester quality preferences of the quality criteria and

therefore do not consider the weight or priority of each quality criteria.

The proposed mathematical model uses two methods in order to select the best

Web service. Analytical Hierarchy Process (AHP) method is used to calculate the

quality criteria weights based on service requester quality preferences. Euclidean

distance method is used as in [72], to measure the distance between the quality

requirements specified by the service requester and the quality specifications

specified by the service provider. The Web service with minimum Euclidean

distance is the best service to select.

However, the proposed mathematical model has a drawback that it is only

consider the positive quality sub-criteria and not consider the negative criteria as

in the above three computation approaches. The positive sub-criteria are

Availability and Reputation, which is the higher the value the higher the quality.

Chapter 7 Evaluation

168

The negative quality sub-criterion is the Price, which is the higher the value, the

lower the quality. That drawback is noticed through the scenarios mentioned in

Section 7.4.1.

7.4 Evaluating the Quality Service Selection System

This section evaluates the quality service selection system (QSSS), which based

on the mathematical model and quality classification, through two steps. Firstly,

use an Amazon E-Commerce Service (ECS) case study. Secondly, use e-

commerce scenarios applied on the ECS case study.

Amazon E-Commerce Service (ECS) is selected as the best Web service as shown

scenario 1 in Section 1.1.1. The following sections use ECS Web service to select

the best books. The selection is based on the quality matchmaking process (QMP).

7.4.1 Amazon E-Commerce Service Case Study

Amazon E-Commerce Service (ECS) [48] (see Appendix D for details) is an

Amazon API (Application Program Interface), which is a set of building blocks

made up of routines, protocols, and tools that influence how users interface with

the service. ECS publishes a Web Services Description Language (WSDL)

document that defines all the available ECS APIs, their parameters and the data

that they return. ECS offers applications that retrieve information about a set of

products, vendors, and transactions. Requesters can access the ECS using either

XML over HTTP (REST) or a remote procedure call API with a Simple Object

Access Protocol (SOAP) interface. Both of these methods return structured data

(product name, manufacturer, price, etc.) in an XML format.

ECS is used as a case study to retrieve information about the products that are

offered by different sellers/vendors with different quality criteria such as product

price, seller reputation and product availability. The information is retrieved by

sending a REST request to Amazon database. The REST request is sent rather

Chapter 7 Evaluation

169

than the SOAP in this thesis because when sending a simple SOAP request to

access ECS, an error appears when running the application at the ECS side when

processing the request. A simple ASP.NET Web application is taken from [146] is

used SOAP request to access Amazon E-Commerce Service (ECS) (see Appendix

E for details).

7.4.1.1 Test Amazon E-Commerce Case Study without the
Proposed QSSS

A REST (Representational State Transfer) request as shown in Figure 7-1 is sent

to Amazon database through Amazon E-Commerce service (ECS). The requester

enter REST request URL (Uniform Resource Locator) into the browser and hit the

“Go” button to make the request. The browser will make an HTTP GET request to

the server and display the result as shown in Figure 7-2. If the requester is using

Internet explorer, the XML data returned by ECS is displayed in readable form.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService &

SubscriptionId=1NC71HN9R7AE4KJ1G3G2 &Operation=ItemSearch &Title=web

services & SearchIndex=Books &MerchantId=All &ResponseGroup=Item Attributes.

OfferFull

Figure 7-1 REST Request to Amazon database

ECS ServerWeb Browser

HTTP GET request

XML data result

Figure 7-2 Transaction between Requester and Amazon E-Commerce Service

Every REST request to ECS as shown in Figure 7-1: begins with an URL:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

The URL is followed by a series of parameters separated by an ampersand (&)

character. Each parameter consists of a key and a value, separated from each other

by an equal sign (=). The parameter and their values are case sensitive.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

Chapter 7 Evaluation

170

Figure 7-1 shows an example of a REST request that searches for books about

Web services. The parameters in the example are described below:

Table 7-2 Parameters of REST Request

Parameter

Description

SubscriptionId=

1NC71HN9R7AE4KJ1G3G2

Required in all ECS request. The developer/requester must sign

up for a subscription ID before he/she can use ECS

Operation= ItemSearch Required in all ECS request. The Operation tells ECS what action

it should perform. The operation is ItemSearch, which tells ECS

to perform a search for products in the Amazon.com catalog that

meet particular criteria.

SearchIndex=Books

Required by the ItemSearch operation. SearchIndex tells the

ItemSearch operation what type of product to search for. The

example searches through the Books index. There are many other

search indexes available such as Music, Video, Computer, Tools,

Software, etc.

Title= Web services Title tells the ItemSearch operation to search Amazon.com

catalog for specific text value which is in the example Web

services.

ResponseGroup=

ItemAttributes, OfferFull

Specifies what kinds of data are returned in a response. The

default response groups in the ItemSearch operation are Request

and Small. In the example, the response groups are:

ItemAttributes and OfferFull. These response groups are selected

in order to retrieve the following quality criteria: product price,

availability and seller reputation. ItemAttributes provides

information about the book such as its title. OfferFull provides

information about the product (book) availability, product price

and seller ID and nickname.

MerchantId=All It includes in the request to get availability information for

products sold by vendors excluding Amazon. OfferFull response

provides availability information for products sold by Amazon.

When Service requester sends REST request of Figure 7-1 to ECS database, the

interface matchmaking algorithm (step-1 in the quality matchmaking process

(QMP)) matches the functional requirements (category “Books” and Title “Web

services”) with category of type “Books” in the ECS database and then retrieves

all the books contain the keyword “Web services”. The result is retrieved in an

XML data format as shown in Figure 7-3. The result contains 933 books and 94

pages as shown in Figure 7-3 from the elements <TotalResults> and

Chapter 7 Evaluation

171

<TotalPages>. Appendix F displays some of the XML data result. The result is

further filtered by using the quality criteria type matchmaking algorithm (step-2 in

the quality matchmaking process (QMP)). This algorithm retrieves the books

associated with quality criteria type provided by the Response Group (Item

Attributes, Offer Full) that the requester has specified it when sent the request to

ECS (see Figure 7-1). The quality criteria that are provided by Item Attributes and

Offer Full response groups are:

Seller reputation: is retrieved from the element AverageFeedbackRating as

shown in Figure 7-3. Seller reputation value is between 1 and 5, where 5 is the

best.

Product price: is retrieved from the element Price as shown in Figure 7-3.

Availability: is retrieved from the Availability as shown in Figure 7-3.

Availability in Amazon E-Commerce Service (ECS) is non-quantitative value

such as “Usually ships in 24 hours”, “Limited availability”. To quantify the

availability, a percentage value is given to each availability message as shown in

Table 7-3. For example, the availability message “Usually ships in 24 hours” gets

value from 95-100%.

Chapter 7 Evaluation

172

?xml version="1.0" encoding="UTF-8" ?>

<ItemSearchResponse xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">

<Items>

<Request>

<ItemSearchRequest>

<MerchantId>All</MerchantId>

<ResponseGroup>OfferFull</ResponseGroup>

<ResponseGroup>ItemAttributes</ResponseGroup>

<SearchIndex>Books</SearchIndex>

<Title>web services</Title>

</ItemSearchRequest></Request>

<TotalResults>933</TotalResults>

<TotalPages>94</TotalPages>

<Item>

<ASIN>0131428985</ASIN>

<ItemAttributes>

 <Author>Thomas Erl</Author>

 <ISBN>0131428985</ISBN>

 <Height Units="hundredths-inches">145</Height>

 <Weight Units="hundredths-pounds">231</Weight>

 <ProductGroup>Book</ProductGroup>

 <PublicationDate>2004-04-16</PublicationDate>

 <Publisher>Prentice Hall PTR</Publisher>

 <Title>Service-Oriented Architecture :

 A Field Guide to Integrating XML and Web Services</Title>

</ItemAttributes>

<Offers>

 <TotalOffers>35</TotalOffers>

 <TotalOfferPages>4</TotalOfferPages>

<Offer>

<Seller>

 <SellerId>A2ZGNN73WLXVFQ</SellerId>

 <Nickname>a1books</Nickname>

 <AverageFeedbackRating>4.5</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>2243</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$28.21</FormattedPrice>

</Price>

<Availability>Usually ships in 1-2 business days</Availability>

 </Offer>…….

</Offers>

</Item>

…..

</Items>

</ItemSearchResponse>

Request

parameters

Attributes of

the first book

Quality criteria such as

Seller reputation, Price

and Availability

Total Result

Figure 7-3 XML Data Result of REST Request

Chapter 7 Evaluation

173

Table 7-3 Availability

Availability

Value

Availability Element

Description

95-100%

Usually ships in %X

A dynamic response where %X represents a

variable amount of time.

85-94% In stock soon. Order now

to get in line. First come,

first served.

The item is available for purchase, but is not in

stock.

70-84%

Limited Availability

Used for items sold by third-parties if an item

is out of stock, but may be available for

purchase later.

70-84%

Out of Print—Limited

Availability

Customers can choose to be notified if a copy

becomes available.

40-69%

Special Order

Titles occasionally go out of print or

publishers run out of stock. The buyer is

notified if the item becomes unavailable."

0-39%

Not yet released

The item is not available for purchase. The

item may or may not have a projected release

date.

0-39%

Not yet published

The item is not available for purchase. The

item may or may not have a projected release

date.

0-39%

This item is not stocked

or has been discontinued.

The item is not available for purchase.

0-39%

Out of Stock

The item is currently not available for

purchase, but may be in the future.

%X Only %X left in stock-

-order soon (more on

the way).

The item is available for purchase, but there

may only be a few copies left where %X

represents a variable amount of time.

%X Only %X left in stock-

-order soon.

The item is available for purchase, but there

may only be a few copies left where %X

represents a variable amount of time.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService &

SubscriptionId=1NC71HN9R7AE4KJ1G3G2&AssociateTag=webservice1-20

&Operation=SellerLookup &SellerId=A3E0GMZ4YFS6AQ & ResponseGroup=Seller

Figure 7-4 REST Request for Retrieving Seller Information

The request in Figure 7-1 doesn’t provide information about the sellers. However,

another request is needed as shown in Figure 7-4, which includes the following

parameters:

Chapter 7 Evaluation

174

Table 7-4 Parameters of REST Request

Parameter

Description

SubscriptionId=

1NC71HN9R7AE4KJ1G3G2

It is same as the parameter in request shown in Figure 7-1

AssociateTag=webservice1-20 Amazon’s associate includes Web site owner, Amazon

seller or Web developer. The associates must sign up for

an associate tag before using ECS.

Operation=SellerLookup

The SellerLookup operation allows the requester to

retrieve information related to specific vendors’ feedback

from customers, rating, location and name. The rating is

returned in the Seller/AverageFeedbackRating element

and it is equivalent to seller reputation criteria which its

value is between 1 and 5.

SellerId=A3E0GMZ4YFS6AQ SellerId values are retrieved from the first request of

Figure 7-1. The request in Figure 7-4 looks up for up to

five Seller IDs by inserting commas between them.

ResponseGroup=Seller

The Seller response group provides the seller ID,

nickname, average feedback rating which is equivalent to

the seller reputation and location for each seller.

When send REST request of Figure 7-4, the XML data is returned as shown in

Figure 7-5. It provides information about a specific seller by retrieving the seller

ID from the result of Figure 7-3. The information retrieved is:

Seller URL: is retrieved from the element GlancePage as shown in Figure 7-5.

Seller Reputation: is retrieved from the element AverageFeedbackRating as

shown in Figure 7-5 . Seller reputation value is calculated from the equation:

repq =
n

R
n

i

i
1 where iR is the customer’s feedback rating on the seller, n is the

number of times the seller has been graded. The value of seller reputation is

between 1 and 5, where 5 is the best.

Chapter 7 Evaluation

175

<?xml version="1.0" encoding="UTF-8" ?>

<SellerLookupResponse xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">

<Sellers>

<Request>

<IsValid>True</IsValid>

<SellerLookupRequest>

<ResponseGroup>Seller</ResponseGroup>

<SellerId>A2PH0OU9DK0NPM</SellerId>

</SellerLookupRequest>

</Request>

<Seller>

<SellerId>A2PH0OU9DK0NPM</SellerId>

<Nickname>fantastic_shopping</Nickname>

<GlancePage>http://www.amazon.com/gp/help/seller/at-a-glance.html?

 seller=A2PH0OU9DK0NPM&marketplaceSeller=1</GlancePage>

<Location>

<City>Olsmar</City>

<State>FL</State>

</Location>

<AverageFeedbackRating>4.5</AverageFeedbackRating>

<SellerFeedback>

<Feedback>

<Rating>5</Rating>

<Comment>Perfect condition, fast and easy...they were great to work with and would do it again!</Comment>

<Date>2006-08-01T09:36+0000</Date>

<RatedBy>AFB4TV461N47C</RatedBy>

</Feedback>

………….

</SellerFeedback>

</Seller>

</Sellers>

</SellerLookupResponse>

Seller URL

Seller

Reputation

Figure 7-5 XML Data Result of REST Request of the seller

The information retrieved from the XML data results (as shown in Figure 7-3 and

Figure 7-5) is organized in Appendix G into Table G-1; some of the data is shown

in Table 7-5. Table G-1 shows nine books with 76 different sellers and different

quality criteria values. The service requester can’t easily select manually the

preferred book among 76 options in Table G-1, so he/she needs a technique in

order to assist him/her to select the preferred book in automated way. This thesis

proposes a quality matchmaking process (QMP) depends on requester quality

preferences and requirements in order to select the best book. The QMP is

illustrated by developing a quality service selection system (QSSS) and Table G-1

is used as a database in the QSSS as described in the coming section.

Chapter 7 Evaluation

176

Table 7-5 Amazon ECS database

Product Name Seller Name Availability Price Seller Reputation Seller URL

Service-Oriented hebertbooks 99 24.1 3.4 http://www.amazon.com/seller=A1RAFT0AR298LX

Architecture fantastic_shopping 87 24.14 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

fun-for-all58 75 24.3 3.5 http://www.amazon.com/seller=A1MD3EN9VM2K1F

yaleiz 80 27.99 4 http://www.amazon.com/seller=A1MOV0BA9DKUFU

a1books 97 28.21 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

Amazon.com 99 28.34 5 http://www.amazon.com/seller=ATVPDKIKX0DER

allnewbooks 80 29.19 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 95 30.07 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

Web Services Platform fantastic_shopping 90 29.94 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

Architecture amz_book 78 29.95 3 http://www.amazon.com/seller=A3B9364CV8QDO9

a1books 98 31.05 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

Amazon.com 99 31.49 5 http://www.amazon.com/seller=ATVPDKIKX0DER

allnewbooks 65 32.34 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 30 33.41 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

thebookrackrh 75 34.09 2.8 http://www.amazon.com/seller=A1SSUO20DOKMFO

a1books_nj 95 34.11 3.6 http://www.amazon.com/seller=A3E0GMZ4YFS6AQ

alphacraze 82 34.34 3.4 http://www.amazon.com/seller=A2NT0F3A6LH7YD

alphacrazeoutlet 97 34.34 3.7 http://www.amazon.com/seller=A13MCS24BSAIL1

J2EE Web Services bookbensara 95 29.75 4.2 http://www.amazon.com/seller=A3H8H6KI3KCVA5

fantastic_shopping 85 34.63 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

Amazon.com 99 34.64 5 http://www.amazon.com/seller=ATVPDKIKX0DER

a1books 98 35.04 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

thebookrackrh 80 35.4 2.8 http://www.amazon.com/seller=A1SSUO20DOKMFO

allnewbooks 95 35.49 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 20 37.2 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

alphacrazeoutlet 79 37.93 3.7 http://www.amazon.com/seller=A13MCS24BSAIL1

alphacraze 99 37.93 3.4 http://www.amazon.com/seller=A2NT0F3A6LH7YD

a1books_nj 96 38.51 3.6 http://www.amazon.com/seller=A3E0GMZ4YFS6AQ

7.4.1.2 Test Amazon E-Commerce Case Study with the
Proposed QSSS

In the previous section, it is seen that when sending a request to Amazon E-

Commerce Service (ECS), the result contains 933 books as shown in Figure 7-3.

The result is large enough that the service requester can’t easily select the best

service or book manually.

To overcome the above limitation, this thesis develops a quality service selection

system (QSSS) (see Chapter 6), which enables the service requester to specify

his/her quality preferences and requirements and assists the requester to select the

best service automatically. QSSS implements the quality matchmaking process

Chapter 7 Evaluation

177

(QMP), which described in Section 5.5 . The QSSS technique is based on the

mathematical model, quality classification and the requester quality preferences

and requirements.

Some of the returned result of REST requests in Figure 7-1 and Figure 7-4, is

saved in Table G-1 (see Appendix G for details). Table G-1 contains the following

fields: ProductName, SellerName, Availability, Price, SellerReputation and

SellerURL, and contains 76 records or books with different quality criteria values.

The ProductName field is the title of the books, SellerName is the name of the

book seller, Availability is the book’s availability and its ready for shipment, Price

is the price of the book offered by the seller, SellerReputation is the reputation of

the book seller and is based on the requester feedback and SellerURL is the Web

site location of the sellers that the requester after selecting the best book he/she

contacts the seller in order to buy it. The Availability, Price and SellerReputation

are considered as Availability sub-criteria within the Failure Probability, Service

Price sub-criteria within the Cost group and Reputation sub-criteria within the

Trustworthiness group respectively.

The requester wanted to select the best book from the books which is saved in

Table G-1 using the QSSS. The scenarios below demonstrate the books selection

based on different requester quality preferences and requirements.

7.4.1.3 Applying Quality Service Selection System to Use Case
Scenarios

The quality service selection system (QSSS) is based on the quality classification

and the mathematical model. The quality classification, which is explained in

Chapter 3 consists of quality criteria groups: Performance, Failure probability,

Trustworthiness and Cost. Each of these quality criteria contains number of sub-

criteria. QSSS enables the service requester to select freely his/her preferred

quality criteria group and the corresponding sub-criteria. The service requester

specifies the quality requirements from two perspectives: Web service and the

Chapter 7 Evaluation

178

services or products provided from the corresponding selected Web service. These

two perspectives are described is Section 3.3.

This section shows scenarios in two levels. The first scenario illustrates the

selection of Web service as in scenario 1 and the remaining scenarios illustrate the

selection of services or products provided by the corresponding selected Web

service.

Scenario 1: Web service selection

The requester looks for a search engine Web services to search for books. There

are four Web services as shown in Table 7-6: Amazon E-Commerce Web

Services (ECS), Google Web Service, eBay Web Service and Yahoo Web service.

These four Web services have the same functionality that it enables the requester

to search for products or items. However, there is no criterion to differentiate

between them, so the quality criteria is an important factor to differentiate

between them. Also, it is not easy for the requester to select manually the best

Web service with different quality criteria values, so it requires a way that enables

the requester selects the best Web service automatically. The QSSS system

enables the service requester to select the best Web service in an automated way

as shown below.

The requester uses QSSS system to select the best Web service with the following

requirements:

 Throughput is six times more important than the Availability.

 Throughput is three times more important than the Price.

 Price is two times more important than the Availability.

 The requirement value of Throughput: High, Availability : High and Price :

Chapter 7 Evaluation

179

 Low.

The selected above quality criteria (Throughput, Availability and Price) is from

the Web service’s perspective and based on the quality criteria classification (See

Section 3.3). Table 7-7 shows the four Web services (Amazon, Google, eBay and

Yahoo) with its corresponding quality criteria.

Table 7-6 Web Service Description

Web Services Description

Amazon ECS
 Search catalogue, retrieve product information,

images and customers reviews.

 Search sellers and offers.

eBay Web Service
 View information about items listed on eBay.

 Retrieve lists of items a particular user is currently

selling through eBay.

 Provide feedback about other users at the

conclusion of a ecommerce transaction.

Yahoo Web Service
Enables developers, businesses and researchers to

search for products and services in a powerful way.

Google Web Service
 Search Web pages.

 Get information about search result including URL,

title and directory category.

Table 7-7 Web services

Quality Criteria Web Services

Amazon Google eBay Yahoo

Throughput/day 2200 1000 1440 1200

Availability 98 98 95 90

Price/month ($) 0 0 5 0

Chapter 7 Evaluation

180

After applying the mathematical model, which is described in Chapter 5, the

weight of the quality criteria is:

 222.0111.0667.0W

It is noticed that Throughput criteria is the most important criteria which has the

highest priority (0.667) then the Price (0.222) and the last is the Availability

(0.111).

The output result that is based on the requester’s quality requirements and

preferences is shows in Table 7-8. It is seen that Amazon Web service (ECS) is

the best one to select because its matching distance is the minimum “0.167”. So

ECS is the best Web service that the requester can select. The output displays the

quality criteria values for each Web service in order enable the requester judge if

that the Web service with the minimum distance satisfies his/her requirements. If

the result does not satisfy his/her expectation, then he/she can specify another

quality preferences and requirements.

Table 7-8 Output of Web Service Selection

Web Services Matching Distance Throughput Availability Price

Amazon 0.167 2200 98 0

eBay 0.628 1440 95 5

Yahoo 0.852 1200 90 0

Google 1.115 1000 98 0

Scenario 2:

After selection Amazon E-Commerce Service (ECS) as a best Web service, the

requester wants to search ECS to select a book regarding to its availability, seller

reputation and its price. When sending a REST request to ECS database, it is

Chapter 7 Evaluation

181

noticed that the output result contains a huge number of books about 933 , which

is not easy for the requester to select manually the best book with different quality

criteria values, so it requires a way that enables the requester selects the best book

automatically. The QSSS system enables the service requester to select the best

Web service in an automated way as shown below.

The requester specifies his/her quality requirements using QSSS system as in the

following:

1. The service requester selects the quality criteria with the following preferences

or importance:

 Failure probability is assigned by the service requester as five times more

important than the Trustworthiness.

 Failure probability is assigned by the service requester as three times more

important than the Cost.

 Cost is assigned by the service requester as two times more important than the

Trustworthiness.

2. The service requester specifies the sub-criteria requirement values as in the

following:

 Requirement value of Availability sub-criterion value, which is included in the

Failure probability criteria group, is equal “High”.

 Requirement value of reputation sub-criterion value, which is included in the

Trustworthiness criteria group, is equal “Medium”.

 Requirement value of Service Price sub-criterion value, which is included in

the Cost criteria group, is equal “Medium”.

Chapter 7 Evaluation

182

The requester specifies the quality preferences or importance from the Preference

Selection form, and specifies the sub-criteria quality values from the

Requirements Value form as described in Section 6.3.2.

From the input values: the quality criteria preferences and the quality sub-criteria

requirement levels specified by the requester above, QSSS calculates the

following:

1. The pair-wise comparison matrix A is formed by creating an instance of a

Matrix class and calling FillMatrix() method from Utilities class. The matrix

A is formed based on requester preferences values as in the following:

CTFP

C

T

FP

A

12333.0

5.012.0

351

2. The weights of quality criteria can be calculated from the matrix A calling

CalculateWeights() method from Utilities class. The weights vector of quality

criteria is:

 23.0122.0648.0W

The total weight is equal to 1:

)(FPW +)(TW +)(CW =1

It is noticed that Failure probability criteria is the most important criteria which

has the highest priority (0.648) then the Cost (0.23) and the last is the

Trustworthiness (0.122).

Because the requester selects only one sub-criterion in each quality criteria group,

the weight of each sub-criterion is equal to the weight of its criteria group that is

the weight of the Availability (AV) sub-criteria is equal to he weight of the

Failure probability (FP) weight (0.648), the weight of the Reputation (REP) sub-

criteria is equal to the weight of Trustworthiness (T) (0.122) and The weight of

the Service Price(SP) sub-criteria is equal to the weight of Cost (C) (0.23).

Chapter 7 Evaluation

183

3. The Consistency Ratio (CR) measures the degree of consistency of the

selected preferences values of the quality criteria. The Consistency Ratio (CR)

is calculated by calling ConsistencyRatio() method from Utilities class, The

Consistency Ratio (CR) is equal to 0.0032 which is less than 0.1, so the pair-

wise requester preferences is consistent and the procedure will continue to

select the best book.

4. The performance matrix P is retrieved by sending an SQL query as shown in

Listing 7-1, to an MS-Access database which contains information about the

books (see Table G-1). The query matches the sub-criteria requirement levels

(High Availability, Medium Seller Reputation and Medium Price) with the

books in the MS-Access database as shown in Table G-1. The result of the

SQL query is shown in Table 7-9.

if(Availability.Equals("High")&&Reputation.Equals("Medium")&&ServicePrice.Equals("Medium"))

 {

 oleDbDataAdapter1.SelectCommand.CommandText="SELECT ProductName,SellerName,SellerURL,

 Availability,Price,SellerReputation FROM AmazonTable WHERE AmazonTable.Availability

 BETWEEN 80 AND 100 AND AmazonTable.SellerReputation BETWEEN 2.5 AND 3.9 AND

 AmazonTable.Price BETWEEN 25 AND 49.99";

 }

Listing 7-1 SQL Query

Chapter 7 Evaluation

184

Table 7-9 SQL Query Result Obtained for Performance Matrix

Product Name Seller Name Availability Price Seller Reputation

Service-Oriented Architecture allnewbooks 80 29.19 2.6

Web Services Platform Architecture a1books_nj 95 34.11 3.6

Web Services Platform Architecture alphacraze 82 34.34 3.4

Web Services Platform Architecture alphacrazeoutlet 97 34.34 3.7

J2EE Web Services thebookrackrh 80 35.4 2.8

J2EE Web Services allnewbooks 95 35.49 2.6

J2EE Web Services alphacraze 99 37.93 3.4

J2EE Web Services a1books_nj 96 38.51 3.6

How to Break Web Software powells_books 90 34.99 2.8

Core Security Patterns fun-for-all58 98 33.85 3.5

Core Security Patterns allnewbooks 85 38.64 2.6

Core Security Patterns thebookrackrh 97 39.2 2.8

Core Security Patterns amz_book 84 39.95 3

Building Web Services with Java allnewbooks 82 32.34 2.6

Building Web Services with Java alphacraze 97 34.34 3.4

Understanding SOA with Web Services superbookdeals 96 25.04 2.5

Understanding SOA with Web Services amz_book 95 25.95 3

Understanding SOA with Web Services a1books_nj 86 27.28 3.6

Understanding SOA with Web Services lphacrazeoutlet 98 27.39 3.7

The performance matrix is created from the SQL query result (see Table 7-9) as

the following:

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19

 AV 80 95 82 97 80 95 99 96 90 98 85 97 84 82 97 96 95 86 98

P=REP 2.6 3.6 3.4 3.7 2.8 2.6 3.4 3.6 2.8 3.5 2.6 2.8 3 2.6 3.4 2.5 3 3.6 3.7

 P 29.19 34.11 34.34 34.34 35.4 35.49 37.93 38.51 34.99 33.85 38.64 39.2 39.95 32.34 34.34 25.04 25.95 27.28 27.39

5. The requirement values r for the sub-criteria, which is selected by the

requester is shown below:

Chapter 7 Evaluation

185

40

3

98

Medium

Medium

High

P

REP

AV

r

The requirement level for the Availability is “High” which its value equals 98

and located within its range [80-100]. The requirement level for Reputation is

“Medium” which is equal 3 and located within its range [2.5-3.9]. The

requirement level for Price is “Medium” which is equal 40 and located within

its range [25-49.99]. The aforementioned values for the requirement value:

High, Medium and low depends on the service domain and on the type of the

sub-criteria. For example, the requirement value for buying a book is different

than buying a computer and the requirement value of Availability is different

than Reputation.

6. Euclidean distance is calculated by calling EuclideanDistance () method from

Utilities class.

Table 7-10 Output Result of Scenario2

Product Name Seller Name Matching distance Availability Reputation Price

J2EE Web Services alphacraze 0.44 99 3.4 37.93

Core Security Patterns thebookrackrh 0.452 97 2.8 39.2

Core Security Patterns fun-for-all58 0.454 98 3.5 33.85

J2EE Web Services a1books_nj 0.459 96 3.6 38.51

Web Services Platform Architecture alphacrazeoutlet 0.46 97 34.34 3.7

Building Web Services with Java alphacraze 0.461 97 34.34 3.4

Understanding SOA with Web Services lphacrazeoutlet 0.466 98 27.39 3.7

J2EE Web Services allnewbooks 0.475 95 35.49 2.6

Web Services Platform Architecture a1books_nj 0.476 95 34.11 3.6

Understanding SOA with Web Servicessuperbookdeals 0.487 96 25.04 2.5

Understanding SOA with Web Serviceamz_book 0.492 95 25.95 3

How to Break Web Software powells_books 0.514 90 34.99 2.8

Core Security Patterns allnewbooks 0.545 85 38.64 2.6

Core Security Patterns amz_book 0.549 84 39.95 3

Understanding SOA with Web Services a1books_nj 0.565 86 27.28 3.6

Web Services Platform Architecture alphacraze 0.583 82 34.34 3.4

Building Web Services with Java allnewbooks 0.59 82 32.34 2.6

J2EE Web Services thebookrackrh 0.599 80 35.4 2.8

Service-Oriented Architecture allnewbooks 0.619 80 29.19 2.6

Chapter 7 Evaluation

186

From the output result in Table 7-10, the first book with title “J2EE Web

Services” and its provider is “alphacraze” is the best book to select because its

matching distance is the smallest (0.44). It is reasonable that the first book is the

best because it has the highest Availability value (99) and the required

Availability has the highest priority (0.648). The output displays the quality

criteria values for each Web service in order enable the requester judge if that the

Web service with the minimum distance satisfies his/her expectations. If the result

does not satisfy his/her expectation, then he/she can specify another quality

preferences and requirements.

Scenario 3:

A requester wants to select a book regarding to its availability, seller reputation

and its price constraint. The book’s reputation is the most important from the

requester’s point-of-view, which has the highest priority then the availability and

the last important is the price. Also, the requester wants a book with high

availability, medium seller reputation and medium book’s price.

1. The service requester selects the quality criteria with the following preferences

or importance:

 Trustworthiness is assigned by the service requester as two times more

important than the Failure probability.

 Failure probability is assigned by the service requester as four times more

important than the Cost.

 Trustworthiness is assigned by the service requester as seven times more

important than the Cost.

Chapter 7 Evaluation

187

2. The service requester specifies the sub-criteria requirement l as in scenario 1

as the following:

 Requirement value of Availability sub-criterion value, which is included in the

Failure probability criteria group, is equal “High”.

 Requirement value of reputation sub-criterion value, which is included in the

Trustworthiness criteria group, is equal “Medium”.

 Requirement value of Service Price sub-criterion value, which is included in

the Cost criteria group, is equal “Medium”.

The requester specifies the quality preferences or importance from the Preference

Selection form, and specifies the sub-criteria quality values from the

Requirements Value form as described in Section 6.3.2.

From the input values which specified by the requester above, QSSS calculates

the following:

1. The pair-wise comparison matrix A is formed based on requester’s

preferences values as in the following:

CTFP

C

T

FP

A

1143.025.0

712

45.01

2. The weights vector of quality criteria are calculated from the matrix A as in

the following:

 082.0602.0315.0W

The Reputation sub-criterion is the most important criterion which has the highest

priority (0.602) then the Availability (0.315) and the last is the Service Price

(0.082).

Chapter 7 Evaluation

188

3. The Consistency Ratio (CR) is equal to 0.002 which is less than 0.1, so the

pair-wise requester’s judgement is consistent and therefore the procedures will

continue in order to select the best book.

4. The performance matrix P is retrieved by sending an SQL query as in step 4 in

scenario1, to an MS-Access database which contains information about books

(see Table G-1). The result of the SQL query is shown in Table 7-10. The

performance matrix P is

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19

 AV 80 95 82 97 80 95 99 96 90 98 85 97 84 82 97 96 95 86 98

P=REP 2.6 3.6 3.4 3.7 2.8 2.6 3.4 3.6 2.8 3.5 2.6 2.8 3 2.6 3.4 2.5 3 3.6 3.7

 P 29.19 34.11 34.34 34.34 35.4 35.49 37.93 38.51 34.99 33.85 38.64 39.2 39.95 32.34 34.34 25.04 25.95 27.28 27.39

5. The requirement values r for the sub-criteria, which is selected by the

requester is shown below:

40

3

98

Medium

Medium

High

P

REP

AV

r

6. The Euclidean distance is calculated as in step-5 in scenario1.

7. shows the Output result, which is based on requester’s preferences and it is

ranked from the smallest matching distance to the largest one.

From the output result as shown in Table 7-13, the first book with title

“Understanding SOA with Web Services” and its provider is “alphacrazeoutlet” is

the best book to select because its matching distance is the smallest (0.245). It is

reasonable that the first book is the best because it has the highest Reputation

value (3.7) as seen in Table 7-13 and the required Reputation has the highest

priority (0.602).

Chapter 7 Evaluation

189

Table 7-11 Output Result of Scenario3

Product name Product provider Matching distance Availability Reputation Price

Understanding SOA with Web Services alphacrazeoutlet 0.245 98 3.7 27.39

Understanding SOA with Web Services superbookdeals 0.25 96 2.5 25.04

Core Security Patterns fun-for-all58 0.251 98 3.5 33.85

J2EE Web Services alphacraze 0.254 99 3.4 37.93

Understanding SOA with Web Services amz_book 0.254 95 3 25.95

Web Services Platform Architecture alphacrazeoutlet 0.255 97 3.7 34.34

Building Web Services with Java alphacraze 0.255 97 3.4 34.34

Web Services Platform Architecture a1books_nj 0.261 95 3.6 34.11

Core Security Patterns thebookrackrh 0.261 97 2.8 39.2

J2EE Web Services allnewbooks 0.262 95 2.6 35.49

J2EE Web Services a1books_nj 0.263 96 3.6 38.51

How to Break Web Software powells_books 0.278 90 2.8 34.99

Understanding SOA with Web Services a1books_nj 0.289 86 3.6 27.28

Core Security Patterns allnewbooks 0.298 85 2.6 38.64

Core Security Patterns amz_book 0.302 84 3 39.95

Web Services Platform Architecture alphacraze 0.307 82 3.4 34.34

Building Web Services with Java allnewbooks 0.307 82 2.6 32.34

Service-Oriented Architecture allnewbooks 0.315 80 2.6 29.19

J2EE Web Services thebookrackrh 0.315 80 2.8 35.4

The output displays the quality criteria values for each Web service in order

enable the requester judge if that the Web service with the minimum distance

satisfies his/her requirements. If the result does not satisfy his/her expectation,

then he/she can specify another quality preferences and requirements.

Scenario 4:

A requester wants to select a book regarding to its availability, seller reputation

and its price constraint. The book’s price is the most important from the

requester’s point-of-view, which has the highest priority then the availability and

the last important is the seller reputation. Also, the requester wants a book with

high availability, medium seller reputation and medium book’s price.

1. The service requester selects the quality criteria with the following preferences

or importance:

Chapter 7 Evaluation

190

 Failure probability is assigned by the service requester as four times more

important than the Trustworthiness.

 Cost is assigned by the service requester as three times more important than

the Failure probability.

 Cost is assigned by the service requester as nine times more important than the

Trustworthiness.

2. The service requester specifies the sub-criteria requirement values as in

scenario 1 as the following:

 Requirement value of Availability sub-criterion value, which is included in the

Failure probability criteria group, is equal “High”.

 Requirement value of reputation sub-criterion value, which is included in the

Trustworthiness criteria group, is equal “Medium”.

 Requirement value of Service Price sub-criterion value, which is included in

the Cost criteria group, is equal “Medium”.

The requester specifies the quality preferences or importance from the Preference

Selection form, and specifies the sub-criteria quality values from the

Requirements Value form as described in Section 6.3.2.

From the input values which specified by the requester above, QSSS calculates

the following:

1. The pair-wise comparison matrix A is formed based on requester’s

preferences values as in the following:

CTFP

C

T

FP

A

193

111.0125.0

333.041

Chapter 7 Evaluation

191

2. The weights vector of quality criteria are calculated from the matrix A as in

the following:

 68.0069.0251.0W

The book Price sub-criterion is the most important criterion which has the highest

priority (0.68) then the Availability (0.251) and the last is the seller Reputation

(0.069).

3. The Consistency Ratio (CR) is equal to 0.007 which is less than 0.1, so the

pair-wise requester’s judgement is consistent and therefore the procedures will

continue in order to select the best book.

4. The performance matrix P is retrieved by sending an SQL query as in step 4 in

scenario1, to an MS-Access database which contains information about books

(see Table G-1). The result of the SQL query is shown in Table 7-6. The

performance matrix P is

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19

 AV 80 95 82 97 80 95 99 96 90 98 85 97 84 82 97 96 95 86 98

P=REP 2.6 3.6 3.4 3.7 2.8 2.6 3.4 3.6 2.8 3.5 2.6 2.8 3 2.6 3.4 2.5 3 3.6 3.7

 P 29.19 34.11 34.34 34.34 35.4 35.49 37.93 38.51 34.99 33.85 38.64 39.2 39.95 32.34 34.34 25.04 25.95 27.28 27.39

5. The requirement values r for the sub-criteria, which is selected by the

requester is shown below:

40

3

98

Medium

Medium

High

P

REP

AV

r

6. The Euclidean distance is calculated as in step-5 in scenario1.

7. Table 7-12 shows the Output result, which is based on requester’s preferences

and it is ranked from the smallest matching distance to the largest one.

From the output result as shown in Table 7-12, the first book with title “J2EE

Web Services” and its provider is “alphacraze” is the best book to select because

its matching distance is the smallest (0.192). It is noticed that the first book is the

Chapter 7 Evaluation

192

best because it has the minimum Euclidean distance (0.192). However, the

Service Price as seen in Table 7-15 (37.93) of the best service is not the minimum

price.

Table 7-12Output Result of Scenario 4

Product Name Seller Name Matching distance Availability Reputation Price

J2EE Web Services alphacraze 0.192 99 3.4 37.93

Web Services Platform Architecture alphacrazeoutlet 0.196 97 3.7 34.34

J2EE Web Services a1books_nj 0.197 96 3.6 38.51

Core Security Patterns fun-for-all58 0.197 98 3.5 33.85

Understanding SOA with Web Services alphacrazeoutlet 0.199 98 3.7 27.39

Building Web Services with Java alphacraze 0.202 97 3.4 34.34

Web Services Platform Architecture a1books_nj 0.205 95 3.6 34.11

Core Security Patterns thebookrackrh 0.213 97 2.8 39.2

Understanding SOA with Web Services amz_book 0.229 95 3 25.95

J2EE Web Services allnewbooks 0.23 95 2.6 35.49

Understanding SOA with Web Services superbookdeals 0.24 96 2.5 25.04

How to Break Web Software powells_books 0.244 90 2.8 34.99

Understanding SOA with Web Services a1books_nj 0.251 86 3.6 27.28

Core Security Patterns amz_book 0.256 84 3 39.95

Web Services Platform Architecture alphacraze 0.264 82 3.4 34.34

Core Security Patterns allnewbooks 0.266 85 2.6 38.64

J2EE Web Services thebookrackrh 0.288 80 2.8 35.4

Building Web Services with Java allnewbooks 0.29 82 2.6 32.34

Service-Oriented Architecture allnewbooks 0.305 80 2.6 29.19

The output displays the quality criteria values for each Web service in order

enable the requester judge if that the Web service with the minimum distance

satisfies his/her requirements. If the result does not satisfy his/her expectation,

then he/she can specify another quality preferences and requirements.

7.4.1.4 Web Service Composition Scenario

Web service composition is the creation of a Web process from individual Web

services.

The proposed quality service selection system (QSSS) can be published as a Web

service and used in the Web service composition [147] as shown Figure 7-6.

Chapter 7 Evaluation

193

The following scenario explains how the QSSS which is called SelectProduct

service in Figure 7-6 is involved in the Web service composition.

Scenario

SearchAmazonCatalog

SelectProduct CheckCreditValid

SendCreditLowInfo

ReleaseOrder

Figure 7-6 Web Service Composition using QSSS

Figure 7-6 shows a Web service composition using QSSS in buying a book in

Amazon.com. The Web services involved in this process are:

SearchAmazonCatalog, SelectProduct, CheckCreditValid, ReleaseOrder and

SendCreditLowInfo.The SearchAmazonCatalog service is used to search Amazon

database within the Book catalogue for a certain book title. The SelectProduct

service selects the best product (book) based on quality criteria classification and

the mathematical model as described in Chapter 6. After the requester selects the

desired book, the requester’s credit card is checked for validation using the

CheckCreditValid service. If the CheckCreditValid service returns success, the

ReleaseOrder service is invoked to send the book(s), else the SendCreditLowInfo

service is invoked to give information that the credit card is invalid.

Chapter 7 Evaluation

194

7.5 Discussion

The efficiency of the quality service selection system (QSSS) has been introduced

by comparing the book selection from the Amazon E-Commerce (ECS) database

without applying the QSSS and the book selection from ECS with applying the

QSSS. It is noticed in Section 7.4 that when sending a REST request to ECS, the

output result contains 933 books and 94 pages as shown in Figure 7-3. There are

76 books out of 933 are selected and organized in Table G-1 in order to illustrate

the quality matchmaking process (QMP) in a simple way. The 76 books are

offered by different sellers and with different quality criteria values. The service

requester can’t easily select manually the preferred book among 76 books in Table

G-1 regarding his/her quality preferences, so he/she needs a technique to assist

him/her to select the preferred book in an automated way. To solve the

aforementioned problem, this thesis has developed QSSS to enable the requester

to specify his/her quality preferences and requirements. It calculates the distance

between the requester’s quality requirements and the books quality specifications

saved in the database. The book with the minimum distance is the best book to

select.

It is noticed that when implementing different scenarios with different requester’s

quality preferences and different sub-criteria requirement levels as described in

Section 7.4, the mathematical model when normalizing the performance matrix P

considers the monotonically increasing sub-criteria and does not consider the

monotonically decreasing. The monotonically increasing sub-criteria are that the

increasing of criteria benefits the service requester such as Availability and

Reputation. The monotonically decreasing sub-criteria are the decreasing of

criteria benefits the service requester such as the Service Price.

When the service requester selects the Availability and Reputation with the

highest weight then the best service with the minimum Euclidean distance has the

highest value of Availability and Reputation, which is desirable by the requester,

as shown in scenarios 1, 2 and 3. However, when the service requester selects

Chapter 7 Evaluation

195

Service Price with the highest weight then the best service with the minimum

Euclidean distance has the maximum price, which is not desirable by the requester

as shown in scenario 4.

There are two factors that affect the service selection approach:

 The relative weights assigned to the quality criteria. Each service requester has

preferences between 1 and 9, that biases it toward certain quality criteria and

therefore make these criteria weight more than others for a specific domain.

 The requirement values assigned to the quality sub-criteria. The service

requester specifies his/her requirement value (High, Medium or Low) for each

sub-criterion which affects with the combination of the sub-criterion weight

the Euclidean distance and therefore selecting the best matching service that

has the minimum Euclidean distance.

In summery, the QSSS has the following advantages:

 It is a combination of subjective (based on requester’s preferences and

selecting the quality sub-criteria requirement values) and objective (using

mathematical method) methods to select the best candidate Web service.

 It is a generic approach because it is based on generic quality classification

and it is applied on any service domain.

 It is extensible that new quality criteria group and sub criteria can be added

without affecting the mathematical model and the selection technique.

 It is friendly and easy to use that can requesters specify his/her quality

preferences and requirements easily.

QSSS has the following disadvantages:

 It is using Analytical Hierarchy Process (AHP) which is subjective method

that depends on requester’s quality preferences, so it is subject to human error.

Chapter 7 Evaluation

196

 The mathematical model does not consider the decreasing quality sub-criteria

such as the Service Price, in calculating the Euclidean distance.

7.6 Summary

This chapter has evaluated the proposed quality-based Web Service Architecture

(QWSA), the quality matchmaking process (QMP) approach and the quality

service selection system (QSSS).

The QWSA is evaluated by comparing it with the related architectures regarding

five criteria: scalability, extensibility, commodity to standards, ease of

implementation and technique for selection. It is noticed that the QWSA is the

best among the related architectures because it considers all the evaluation criteria

except the scalability one. The only disadvantage of QWSA architecture is that it

does not support concurrent huge number of requests. But the architecture is

extensible that can support the scalability without having to make major changes

to the system infrastructure.

The QMP is evaluated by comparing it with the related approaches. It is seen that

most of the related service selection approaches depend on matchmaking

mechanisms. The matchmaking mechanism varies in the previous works from

semantics approaches to computation approaches. The service selection approach

in this thesis depends on the quality matchmaking process (QMP). The QMP is

based on the mathematical model and it considers the service requester’s quality

preferences. The related computation approaches do not consider the service

Chapter 7 Evaluation

197

requester’s quality preferences of the quality criteria and therefore do not consider

the weight or priority of each quality criterion.

The quality service selection system (QSSS) is evaluated by comparing between

selecting the best book from the Amazon E-Commerce Service (ECS) without

using QSSS and selecting the best service from the ECS by using QSSS. It is seen

that when sending a request to ECS, the requester can’t easily select manually the

best book because of the huge number of returned books. Whereas by using the

QSSS the requester can automatically selects the best book based on his/her

quality preferences.

Four scenarios are presented in order to evaluate the efficiency of the QSSS. It is

noticed that the QSSS has a main drawback that it is only consider the

monotonically increasing sub-criteria (e.g. Availability) and does not consider the

monotonically decreasing (e.g., Service Price) when selecting the best service.

Because of the time constrain, the drawback of the service selection will be

addressed in the future work.

Chapter 8 Conclusion and Future Work

198

Chapter 8 Conclusion and Future Work

8.1 Conclusion

This thesis has made the following four contributions to Web services

technologies:

1. Definition of a classification of quality criteria

The quality criteria classification is created in Chapter 3, which organizes the

most important quality criteria into four groups: Performance, Failure probability,

Trustworthiness and Cost. Each criteria group contains sub-criteria quality that

holds the same characteristics. Performance criteria group contains the following

sub-criteria: capacity, response time, throughput and execution time. Failure

Probability criteria group contains of the following sub-criteria: availability,

reliability, accessibility and scalability. Trustworthiness criteria group contains the

following sub-criteria: security and reputation. Cost criteria group contains the

following sub-criteria: service price and execution price.

The quality criteria classification captures the descriptions of quality criteria from

requester’s perspective as well from provider’s perspective that are applicable to

all Web services. The classification is generic as in the quality model in [90] that

can be applicable in various domains and to meet different requester’s demands.

The classification is also flexible and extensible as in [87], in which the new

criteria group and sub-criteria can be added without fundamentally altering the

mathematical model and the service selection techniques that build on top of the

classification.

The quality criteria classification in this thesis is similar to the quality

classification in [86], [5] and [87] in that they classify the quality criteria into

groups with different perspectives.

Chapter 8 Conclusion and Future Work

199

The quality classification in [86] includes three groups: performance, safety and

cost. Performance contains response time and throughput, safety contains

availability and reliability and cost contains the service cost. The quality

classification in [5] organizes the most important quality-of-service (QoS)

important to Web services into four groups: QoS related to runtime, transaction

support, configuration management and cost and security. Runtime group contains

the following aspects: scalability, capacity, performance, reliability, availability,

robustness/flexibility, exception handling and accuracy. Transaction support

related QoS contains integrity aspect. Configuration management and cost related

QoS contains the following aspects: regulatory, supported standard, stability, cost

and completeness. Security related QoS contains the following aspects:

authentication, authorization, confidentiality, accountability, traceability and

auditability, data encryption and non-repudiation.

The quality classification in [87] classifies the QoS parameters into the following

groups: general, Internet service specific and task specific. General QoS

parameters contain performance (throughput), performance (latency), reliability

and cost. Internet service specific QoS parameters contain availability, security,

accessibility and regulatory. Task specific QoS parameters contain task specific

parameter.

The quality criteria classification is implemented using XML Spy editor in order

to design Quality Criteria XML Schema as seen in Appendix A. The Quality

Criteria Schema is accommodated in the WSDL as described in the coming

contribution.

2. Extension of the Web Services Description Language (WSDL) with the

quality criteria classification

WSDL is extended in Chapter 3 to accommodate the above quality criteria

classification. This extension enables the service requester to express his/her

Chapter 8 Conclusion and Future Work

200

quality requirement when sending a request and the providers to express their

quality specifications through publishing the services.

Because WSDL is an XML based language, the quality classification is

implemented using XML Spy in order to design Quality Criteria XML Schema.

The Quality Criteria XML Schema is augmented in the Service Implementation

Document part of the WSDL as in [89], [131], by adding a new element

<QualityCriteria> element in the <service> element.

3. Development of a quality-based web services architecture

A quality-based Web service architecture (QWSA) is developed in Chapter 4 (see

Figure 4-1). The QWSA extends the current Web service architecture with quality

server, because the current Web service architecture does not offer comprehensive

quality of the Web service support. The quality server consists of four main

components: quality manager, quality matchmaker, quality report analyzer, and

quality database.

The main tasks of the quality server are the following

1. Enables the service providers to register their quality descriptions and store it

in the quality database.

2. Matches the quality requirement specified by the service requester against the

quality specifications of the advertised services.

3. Assists the requester to choose the best available service based on quality

criteria.

4. Receives a requesters’ quality report based on his/her judgments after

consuming the selected services.

The task 2 and 3 are defined well in Chapter 5, but task 1 and 4 required further

investigation.

Chapter 8 Conclusion and Future Work

201

The quality matchmaking component is the core component in the quality server

that implements the quality matchmaking process (QMP) in order to select the

best service as described in the coming section.

The related Web services architectures provide several techniques for enabling

quality aspects in the current Web service architecture. A QoS broker in [94],

[92], [86], [93] and [98] is used as a mediator between the service requester and

service provider in order to select the best service based on quality aspects. An

UX server in [95] architecture facilitates requesters to discover services with good

qualities. The server sorts the service results according the QoS requirements and

sends the result back to the requester. A QoS certifier in [5] extends the current

Web service architecture in order to discover Web services by considering the

functional and non-functional requirements.

However, the aforementioned techniques are not well defined and need more

details for describing how their techniques select the best service.

4. Development of a quality matchmaker component and quality

matchmaking process

The service selection based on quality criteria depends on the quality

matchmaking process. Chapter 5 introduces a quality matchmaker component and

the quality matchmaking process (QMP).

The quality matchmaker component in the quality server is the core component in

the proposed QWSA and it is well defined in Chapter 5. The quality matchmaker

consists of the following components: Interface matchmaking, quality criteria

matchmaking and mathematical matchmaking.

The quality matchmaker introduces four algorithms or filters: interface

matchmaking, quality criteria matchmaking, quality value constraints

matchmaking, and mathematical matchmaking algorithm or filter. These four

Chapter 8 Conclusion and Future Work

202

algorithms or filters use the quality matchmaker components in order to

implement their roles.

The matchmaking process implements the above four algorithms or filters in order

to select the best Web service. The mathematical matchmaking algorithm is the

most important step that is based on the mathematical model. Two techniques are

used in the mathematical model:

1. Analytical Hierarchy Process (AHP) in order to calculate the criteria weights

based on requester’s preferences.

2. Euclidean distance which measures the distance between the requester’s

quality requirements and the providers’ quality specifications. The Web

service with the smallest distance is considered as the best service to select

The quality matchmaking process (QMP) is implemented in Chapter 6 by building

a simulation program called a quality service selection system (QSSS). The QSSS

program is developed by using C# Windows application in the Visual Studio

.NET 2003 tool as a graphical user interface (GUI) to enable the service requester

to specify his/her quality preferences. The QSSS program consists of the

following forms and classes:

 Criteria Selection form

 Preference Selection form

 Sub-Criteria Selection form

 Sub-Preference Selection form

 Requirements Value form

 Utilities class

The functions of each form are described in Chapter 6. The hierarchy of the

quality criteria group and the sub-criteria is based on the quality criteria

classification that described in Chapter 3. The Utilities class consists of methods

Chapter 8 Conclusion and Future Work

203

which used to calculate the criteria and sub-criteria weight and to calculate the

Euclidean distance between the quality requirement values specified by the

service requester and the quality specifications offered by service providers.

The QMP process is evaluated by comparing it with the related approaches as

described in Chapter 7. Also, the quality service selection system (QSSS) is

evaluated in Chapter 7 by comparing between selecting the best book from the

Amazon E-Commerce Service (ECS) without using QSSS and selecting the best

service from the ECS by using QSSS. It is seen that when sending a request to

ECS, the requester can’t easily select manually the best book because of the huge

number of returned books. Whereas by using the QSSS the requester can

automatically selects the best book based on his/her quality preferences.

Four scenarios are presented in Chapter 7 in order to evaluate the efficiency of the

QSSS. It is seen that the service requester can specify his/her quality requirements

and preferences easily and select automatically the best Web service. But, it is

noticed that the QSSS has a drawback that it is only consider the monotonically

increasing sub-criteria (e.g. Availability) and does not consider the monotonically

decreasing (e.g., Service Price) when selecting the best service. Because of the

time constrain, the drawback of the service selection will be further investigated

in the future work.

8.2 Future Work

Future enhancement of the proposed quality-based Web service architecture

includes the following aspects:

1. Query type management

The proposed quality matchmaking process (QMP) has been derived with the

assumption that the query, which is sent by the service requester, is volatile that is

no new services will be added to UDDI and no changes to the quality criteria

values for these services. These limitations will be further investigated by

Chapter 8 Conclusion and Future Work

204

adapting the requesters to any changes in the quality criteria during a long time

query.

2. Notification mechanism

The functionality of the quality server needed to be extended with a notification

mechanism to capture the dynamic nature of the quality criteria and sending a

notification to quality manager of any changes in the quality criteria to keep

update information in the quality database.

3. Feedback report

It is required a way to automate the collection of feedback report from the service

requester after invoking the best service. The feedback report affects the final

decision of service selection.

4. Quality specification publishing

This thesis has introduced quality-based service searching and selecting from the

service requester side and not consider the quality-based service publishing from

the service provider side. Hence, it is required a way to automate publishing of

quality specifications from the service providers to the quality server.

5. Quality criteria type

The mathematical model considers only the increasing quality criteria such as

Availability in the final decision of service selection. Further work needs to

consider the decreasing quality criteria such as the Price. The proposed

mathematical model normalise the performance matrix P, regarding the increasing

quality criteria, with the equation

n

k

ik

ij

ij

p

p
q

1

2

,

It requires to use different equation to consider the decreasing criteria to normalise

the performance matrix.0

Chapter 8 Conclusion and Future Work

205

6. Multi- queries management

Only one requester a time can query the quality-based web service architecture

(QWSA) to select the best service. Further investigation needs to extend the

functionality of the quality server to manage several queries that are sent

concurrently by multi- requesters.

7. Quality criteria ontology

The quality criteria classification is a generic classification that can be applied in

any domain. Further investigation needs to develop a quality criteria ontology that

can be applied in a specific domain. The quality criteria ontology can be used to

match services semantically and dynamically.

8. Quality matchmaking Process (QMP)

The QMP contains four algorithms: interface matchmaking algorithm, quality

type matchmaking algorithm, quality value matchmaking algorithm and

mathematical matchmaking algorithm. The interface matchmaking and the quality

type matchmaking has demonstrated in Section 7.4.1.1. Where the requester sends

a REST request to ECS database and retrieves the result of books. The result is

saved in an Access database, which is further used in the implementation and

evaluation of the quality matchmaking process (QMP). QMP is implemented by

developing a quality service selection (QSSS) system. QMP implements the

quality value matchmaking algorithm (Step-3) and the mathematical matchmaking

algorithm (Step-4). Whereas, the interface matchmaking algorithm (Step-1) and

the quality type matchmaking algorithm (Step-2) is already done and saved in the

Access database. Further work need to implement Step-1 and Step-2 of the QMP

in the QSSS system. It requires adding another window forms that enables the

Chapter 8 Conclusion and Future Work

206

requester to specify his/her functional requirements and match it with the

functional specifications that are published in the UDDI registry.

.

 References

207

References

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler,
"Extensible Markup Language (XML) 1.0 (Third Edition)," 4
February 2004. Available at: http://www.w3c.org/TR/REC-xml.

[2] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F.
Nielsen, "SOAP Version 1.2 Part 1: Messaging Framework,"
24 June 2003. Available at :http://www.w3c.org/TR/SOAP12-
part1.

[3] E. Christensen, F. Curbea, G. Meredith, and S. Weerawarana,
"Web Services Description Language (WSDL) 1.1," March
2001. Available at: http://www.w3.org/TR/wsdl.

[4] A. Manes, "Web Services Standardization: UDDI," 19
September 2003. Available at: http://www.uddi.org/news.html.

[5] S. Ran, "A Model for Web Services Discovery With QoS,"
ACM SIGecom Exchanges, vol. 4, pp. 1-10, 2003.

[6] H. M. Dietel, P. J. Dietel, B. Duwaldt, and L. K. Trees, Web
Services A Technical Introduction: Prentice Hal, Upper Saddle
River, 2003.

[7] H. Kreger, "Web Services Conceptual Architecture (WSCA
1.0),", IBM Software Group, May 2001.

[8] E. Newcomer, Understanding Web Services. Boston: Pearson
Education, 2002.

[9] A. E. Walsh, UDDI, SOAP, and WSDL: The Web Services
Specification Reference Book: Prentice Hall, 2002.

[10] T. Bellwood, "Understanding UDDI," available at:http://www-
128.ibm.com/developerworks/webservices/library/ws-featuddi/,
2002.

[11] "The UDDI Version 3 Specification," Available at:
http://www.uddi.org, 2002.

[12] "The Universal Description, Discovery, and Integration
(UDDI)," Available at: http://www.uddi.org. Last visited June
2004.

http://www.w3c.org/TR/REC-xml
http://www.w3c.org/TR/SOAP12-part1
http://www.w3c.org/TR/SOAP12-part1
http://www.w3.org/TR/wsdl
http://www.uddi.org/news.html
http://www-128.ibm.com/developerworks/webservices/library/ws-featuddi/
http://www-128.ibm.com/developerworks/webservices/library/ws-featuddi/
http://www.uddi.org/
http://www.uddi.org/

 References

208

[13] L. Taher, H. Khatib, and R. Basha, "A Framework and QoS
Matchmaking Algorithm for Dynamic Web Services Selection,"
presented at The Second International Conference on
Innovations in Information Technology (IIT'05), 2005.

[14] "Leveraging Web Services And 'Traditional' EAI.," April 2004.
Available at:
http://www.ebizq.net/hot_topics/web_services/features/4262.ht
ml?page=1. Last visited June 2004.

[15] J. W.-K. Hong, J.-S. Kim, and J.-K. Park, "A CORBA-Based
Quality of Service Management Framework for Distributed
Multimedia Services and Applications," IEEE Network, vol. 13,
March/April 1999.

[16] M. Stal, "Web Services:Beyond Component-Based
Computing," Communications of the ACM, vol. 45, pp. 71-76,
October 2002.

[17] G. Glass, Web Services: Building Blocks for Distributed
Systems: Prentice-Hall, 2002.

[18] P. Muschamp, "An Introduction to Web Services," BT
Technology Journal, vol. 22, pp. 9-18, January 2004.

[19] E. Cerami, Web Services Essentials: O'Reilly & Associates,
2002.

[20] K. Gottshalk, S. Graham, H. Kreger, and J. Snell, "Introduction
to Web Services Architecture," IBM Systems Journal, vol. 41,
pp. 170-177, 2002.

[21] "Service-Oriented Architecture (SOA) Definition," Available at:
http://www.service-architecture.com/web-
services/articles/service-
oriented_architecture_soa_definition.html. last visited:June
2004.

[22] D. Barry, Web Services and Service-Oriented Architecture.
San Francisco: Morgan Kaufmann Publishers, 2003.

[23] M. Colan, "Services-Oriented Architecture expands the Vision
of Web Services, Part1," Available
at:http://www6.software.ibm.com/software/developer/library/ws
-soaintro.pdf . Last visited June 2004.

http://www.ebizq.net/hot_topics/web_services/features/4262.html?page=1
http://www.ebizq.net/hot_topics/web_services/features/4262.html?page=1
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://www6.software.ibm.com/software/developer/library/ws-soaintro.pdf
http://www6.software.ibm.com/software/developer/library/ws-soaintro.pdf

 References

209

[24] W. Oellermann, Architecting Web Services: William L.
Oellermann, Jr., 2001.

[25] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P.
Krogdahl, D. M. Luo, and T. Newling, "Patterns: Service-
oriented Architecture and Web Services," Redbook, SG24-
6303-00, April 2004.

[26] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web
Services Concepts, Architectures and Applications: Springer-
Verlag Berlin Heidelberg, 2004.

[27] W3C, "Web Services Architecture Requirements," Oct. 2002.
Available at: http://www.w3.org/TR/wsa-reqs. last visited June
2004.

[28] Jupitermedia Corporation, "Webopedia:Online Dictionary for
Computer and Internet Terms," Available at:
http://www.webopedia.com.

[29] M. Serhani, "Web Services Roadmap," Concordia University,
PhD Seminar January 2003.

[30] A. Ali, O. Rana, R. Al-Ali, and D. Walker, "UDDIe:An Extended
Registry for Web Services," presented at Proceedings of the
service oriented computing:Models,Architectures and
Applications, SAINT-2003 IEEE Computer Society Press.,
Orlando Florida, USA., January 2003.

[31] R. Al-Ali, O. Rana, and D. Walker, "G-QoSM:Grid Service
Discovery Using QoS Properties," presented at e-Science
AHM02 Proceedings, Sheffield,UK, September 2002.

[32] S. Field and Y. Hoffner, "Web services and matchmaking,"
International Journal of Networking and Virtual Organisations,
vol. 2, pp. 16-32, 2003.

[33] W.-T. Balke and M. Wagner, " Cooperative Discovery for User-
centered Web Service Provisioning," presented at
Proccedings of the International Conference on Web Services
(ICWS'03), Las-Vegas, USA, 2003.

[34] I. W. S. A. Team, "Web Services Architecture Overview," 1
September 2000. Available at: http://www-
106.ibm.com/developerworks/web/library/w-ovr/?dwzone=web
. Last visited June 2004.

http://www.w3.org/TR/wsa-reqs
http://www.webopedia.com/
http://www-106.ibm.com/developerworks/web/library/w-ovr/?dwzone=web
http://www-106.ibm.com/developerworks/web/library/w-ovr/?dwzone=web

 References

210

[35] The Microsoft .NET: http://www.microsoft.com/net.

[36] The SunONE: Available at: http://www.sun.com/sunone.

[37] J. Roy and A. Ramanujan, "Understanding Web Services,"
IEEE IT Professional, vol. 3, pp. 69-73, Nov./Dec. 2001.

[38] E. M. Maximilien and M. P. Singh "Toward autonomic web
services trust and selection," presented at International
Conference On Service Oriented Computing, New York, NY,
USA, 2004.

[39] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, "Unraveling the Web Services Web," IEEE
Internet Computing, vol. 6, pp. 86-98, March/April 2002.

[40] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,
C. Ferris, and D. Orchard, "Web Services Architecture.," 11
February 2004. Available at:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf.
Last visited June 2004.

[41] F. Leymann, "Web Services Flow Language (WSFL 1.0),"
Available at: http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.
Last visited September 2004, 2001.

[42] A. Bergholz, "Extending Your Markup: An XML Tutorial," IEEE
Internet Computing, vol. 4, pp. 74-79, July/August 2000.

[43] E. Wilde, "XML Technologies Dissected," IEEE Internet
Computing, vol. 7, pp. 74-78, 2003.

[44] F. P. Coyle, XML, Web Services and the Data Revolution:
Addison- Wesely, 2002.

[45] "Introduction to XML For Web Developers," Available at:
http://www.extropia.com/tutorials/xml/history.html. Last visited
June 2004.

[46] "The Simple Object Access Protocol (SOAP)," Available at
:http://www.w3c.org/TR/SOAP12-part1. Last visited June
2004.

[47] Systinet, "Web Services: A practical Introduction to SOAP
Web Services," White Paper, 2003.

http://www.microsoft.com/net
http://www.sun.com/sunone
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.extropia.com/tutorials/xml/history.html
http://www.w3c.org/TR/SOAP12-part1

 References

211

[48] "Amazon E-Commerce Service Developer Guide," Available
at:
http://images.amazon.com/images/G/media/i3d/01/associates/
aws-ecs-devguide_2005-01-19.pdf.

[49] R. Fielding, "Architectural Style and the Design of Network-
based Software Architecture," PhD Thesis, University of
California, Irvine.

Available at:
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm.

[50] R. Chinnici, M. Gudgin, J.-J. Moreau, J. Schlimmer, and S.
Weerawarana, "Web Services Description Language (WSDL)
Version 2.0

Part 1: Core Language," Available at:
http://www.w3.org/TR/2004/WD-wsdl20-20040803/wsdl20.pdf,
2004.

[51] T. A. Bellwood, "UDDI - A Foundation for Web Services,"
Available at:
http://www.idealliance.org/papers/xml2001/papers/html/03-02-
03.html . Last visited 16th August 2004.

[52] "UDDI Version 2.03 Data Structure Reference," 19 July 2002.
Available at: http://uddi.org/pubs/DataStructure-V2.03-
Published-20020719.htm . Last visited July 2004.

[53] T. Bellwood, "UDDI Version 2.04 API Specification," Available
at: http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.htm, 2002.

[54] P. Brittenham and D. Ehnebuske, "Understanding WSDL in a
UDDI Registry, Part1," Available at: http://www-
106.ibm.com/developerworks/library/ws-wsdl/?n-ws-9201.
Last visited March 2004, Sep 2002.

[55] F. Curbera, D. Ehnebuske, and D. Rogers, "Using WSDL in a
UDDI Registry," May 21,2002.Available at:
http://www.uddi.org/pubs/wsdlbestpractices-V1.07-Open-
20020521.pdf. Last visited June 2004.

[56] Java 2 Platform Enterprise Edition (J2EE):
http://java.sun.com/j2ee.

http://images.amazon.com/images/G/media/i3d/01/associates/aws-ecs-devguide_2005-01-19.pdf
http://images.amazon.com/images/G/media/i3d/01/associates/aws-ecs-devguide_2005-01-19.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.w3.org/TR/2004/WD-wsdl20-20040803/wsdl20.pdf
http://www.idealliance.org/papers/xml2001/papers/html/03-02-03.html
http://www.idealliance.org/papers/xml2001/papers/html/03-02-03.html
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www-106.ibm.com/developerworks/library/ws-wsdl/?n-ws-9201
http://www-106.ibm.com/developerworks/library/ws-wsdl/?n-ws-9201
http://www.uddi.org/pubs/wsdlbestpractices-V1.07-Open-20020521.pdf
http://www.uddi.org/pubs/wsdlbestpractices-V1.07-Open-20020521.pdf
http://java.sun.com/j2ee

 References

212

[57] J. Williams, "The Web services debate: J2EE vs. .NET,"
Communications of the ACM, vol. 46, pp. 58-63, 2003.

[58] C. Vawter and E. Roman, "J2EE vs. Microsoft.NET

A comparison of building XML-based web services," White Paper,
2001.

[59] Sun Microsystems, "The Java™ Architecture for XML Binding
User's Guide," Available at:
http://mediasrv.ns.ac.yu/extra/java2/specs/jaxb-docs.pdf,
2001.

[60] JAX-WS 2.0 specification: Available at: https://jax-
ws.dev.java.net/.

[61] T. O'Donnell, "WSIT Components are Made Available,"
Available at: http://www.ftponline.com/special/javaart/interop/,
2006.

[62] XML and Web Services Security 3.0: Available at:
https://xwss.dev.java.net/overview.html.

[63] Microsoft Corporation, Developing XML Web Services and
Server Components with Microsoft Visual Basic .NET and
Microsoft Visual C# .NET: Microsoft Press, 2003.

[64] S. Holzner, Microsoft Visual C# .NET 2003: Sams Publishing,
2003.

[65] J. J. Hanson, ".NET versus J2EE Web Services

A Comparison of Approaches,"
http://www.webservicesarchitect.com/content/articles/hanson0
1.asp, 2002.

[66] S. Graham, "The role of private UDDI nodes, Part 2: Private
nodes and operator nodes," Web Services Architect, IBM
Emerging Internet Technologies, 2001.

[67] S. Graham, "The role of private UDDI nodes in Web services,
Part 1: Six species of UDDI," Web Services Architect, IBM
Emerging Internet Technologies, 2001.

[68] North American Industry Classification System (NAICS):
Available at: http://www.census.gov/epcd/www/naics.html,
2002.

http://mediasrv.ns.ac.yu/extra/java2/specs/jaxb-docs.pdf
http://www.ftponline.com/special/javaart/interop/
http://www.webservicesarchitect.com/content/articles/hanson01.asp
http://www.webservicesarchitect.com/content/articles/hanson01.asp
http://www.census.gov/epcd/www/naics.html

 References

213

[69] W.-T. Balke and M. Wagner, "Towards Personalized Selection
of Web Services," presented at Proceedings of the
International World Wide Web Conference (WWW2003).
Budapest, Hungary, 2003.

[70] L. Li and I. Horrocks, "A Software Framework For Matching
Based on Semantic Web Technology," presented at
Proceedings International World Wide Web Conference
(WWW2003), Budapest, Hungary., 2003.

[71] J. Colgrave, R. Akkiraju, and R. Goodwin, "External matching
in UDDI," presented at IEEE International Conference on Web
Services (ICWS'04), San Diego, California, June 2004.

[72] L. Taher, R. Basha, and H. Khatib, "QoS Information &
Computation (QoS-IC) Framework for QoS-Based Discovery
of Web Services," UPGRADE, vol. VI, 2005.

[73] C. Facciorusso, S. Field, R. Hauser, Y. Hoffner, R. Humbel, R.
Pawlitzek, W. Rjaibi, and C. Siminitz, "A Web Services
Matchmaking Engine for Web Services," presented at E-
Commerce and Web Technologies: 4th International
Conference, Czech, 2003.

[74] J. Hendler, T. Berners-Lee, and E. Miller, "Integrating
Applications on the Semantic Web," The Institute of Electrical
Engineers of Japan, vol. 122, pp. 676-680, 2002.

[75] Semantic Web Activity Group, "Semantic Web," Available at:
http://www.w3.org/2001/sw/.

[76] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara,
"Semantic Matching of Web Services Capabilities," presented
at Proceedings of the International Semantic Web Conference
(ISWC'02), Sardinia, Italy, 2002.

[77] M. Dean, D. Connolly, F. V. Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein,
"OWL Web Ontology Language 1.0 Reference," Available at:
http://www.w3.org/TR/owl-ref, July 2002.

[78] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L.
Martin, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne,
K. Sycara, and H. Zeng, "DAML-S: Semantic Markup For Web
Services," presented at Proceedings of the International
Semantic Web Workshop, 2001.

http://www.w3.org/2001/sw/
http://www.w3.org/TR/owl-ref

 References

214

[79] R. L. Cruz, "Quality of Service Guarantees in Virtual Circuit
Switched Networks," IEEE Journal on Selected Areas in
Communications, vol. 13, pp. 1048-1056, 1995.

[80] W. Stallings, High-Speed Networks and Internets, second ed:
Prentice Hall, 2002.

[81] X. Xiao and L. M. Ni, "Internet QoS:A Big Picture," IEEE
Network, vol. 13, pp. 8-18, March/April 1999.

[82] A. Mani and A. Nagarajan, "Understanding Quality of Service
for Web Services,", IBM DeveloperWorks Technical Paper,
January 2002.

[83] D. A. Menasce', "QoS Issues in Web Services," IEEE Internet
Computing, vol. 6, pp. 72-75, November-December 2002.

[84] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller,
"A Concept for QoS Integration in Web Services," presented at
1st Web Services Quality Workshop (WQW 2003), Rome,
13th December 2003.

[85] M. Tian, A. Gramm, H. Ritter, and J. Schiller, "Efficient
Selection and Monitoring of QoS-aware Web services with the
WS-QoS Framework," presented at IEEE/WIC/ACM
International Conference on Web Intelligence (WI'04), Beijing,
China, 2004.

[86] Y.-J. Seo, H.-Y. Jeong, and Y.-J. Song, "A Study on Web
Services Selection Method Based on the Negotiation Through
Quality Broker: A MAUT-based Approach," presented at First
International Conference on Embedded Software and Systems
(ICESS 2004), Hangzhou, China, 2004.

[87] C. Patel, K. Supekar, and Y. Lee, "A QoS Oriented Framework
for Adaptive Management of Web Service Based Workflows,"
in Database and Expert Systems Applications, vol. 2736 /
2003: Springer-Verlag Heidelberg, October 2003, pp. 826 -
835.

[88] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.
Kalagnanam, and H. Chang, "QoS-aware middleware for Web
services composition," IEEE Transactions on Software
Engineering, vol. 30, pp. 311 - 327, 2004.

[89] D. Gouscos, M. Kalikakis, and P. Georgiadis, "An Approach to
Modeling Web Service QoS and Provision Price," presented at

 References

215

4th International Conference on Web Information Systems
Engineering Workshops (WISEW'03), Roma, Italy, December
13,2003.

[90] Y. Liu, A. H. Ngu, and L. Z. Zeng, "QoS computation and
policing in dynamic web service selection," presented at
International World Wide Web Conference, New York, NY,
USA, 2004.

[91] M. Tian, A. Gramm, H. Ritter, and J. Schiller, "Efficient
Selection and Monitoring of QoS-aware Web services with the
WS-QoS Framework."

[92] H. Chen, T. Yu, and K.-J. Lin, "QCWS: An Implementation of
QoS-Capable Multimedia Web Services," presented at IEEE
Fifth International Symposium on Multimedia Software
Engineering (ISMSE'03), 2003.

[93] M. Serhani, A. Benharref, A. Hafid, and H. Sahraoui, "QoS
Broker-Based Architecture for Web Services," Available at:
http://www.iro.umontreal.ca/~serhanim/NOTERE04_finale_su
bmission.pdf.

Last visited: June 2004.

[94] T. Yu and K.-J. Lin, "The Design of QoS Broker Algorithms for
QoS-Capable Web Services," presented at IEEE International
Conference on e-Technology, e-Commerce and e-Service,
EEE '04, Taipei, Taiwan, 2004.

[95] Z. Chen, C. Liang-Tien, B. Silverajan, and L. Bu-Sung, "UX-An
Architecture Providing QoS-Aware and Federated Support for
UDDI," presented at Proceeding of the first International
Conference on Web Services (ICWS03), Las Vegas, Nevada,
USA, 2003.

[96] D. A. Menasce', "QoS-Aware Software Components," IEEE
Internet Computing, pp. 91-93, March/April2004.

[97] Alphaworks, "Web Services Toolkit," Available at:

http://www.alphaworks.ibm.com/tech/webservicestoolkit, 2003.

[98] P. Farkas and H. Charaf, "Web Services Planning Concepts,"
Journal of WSCG, vol. 11, pp. 3-7, February 2003.

[99] Y. Wang and E. Stroulia, "Flexible Interface Matching for Web-
Services Discovery," presented at Proceedings of the 4th

http://www.iro.umontreal.ca/~serhanim/NOTERE04_finale_submission.pdf
http://www.iro.umontreal.ca/~serhanim/NOTERE04_finale_submission.pdf
http://www.alphaworks.ibm.com/tech/webservicestoolkit

 References

216

International Conference on Wen Information Systems
Engineering, 2003.

[100] K. Sycara, S. Widoff, M. Klusch, and J. Lu, "LARKS: Dynamic
Matchmaking Among Heterogeneous Software Agents in
Cyberspace," Journal of Autonomous Agents and Multi-Agent
Systems, vol. 5, pp. 173-203, 2002.

[101] K. Sycara and M. Klusch, "Dynamic Service Matchmaking
Among Agents in Open Information environments," ACM
SIGMOD Record (Special Isuue on Semantic Interoperability
in Global Information Systems), vol. 28, pp. 47-53, 1999.

[102] M. Ouzzani and A. Bouguettaya, "Efficient Access to Web
Services," IEEE Internet Computing, vol. 8, pp. 34-44,
March/April 2004.

[103] Z. Chen, C. Liang-Tien, and L. Bu-Sung, "DAML-QoS
Ontology for Web Services," presented at proceeding of the
International Conference on Web Services 2004(ICWS04),
San Diego, California, USA, 2004.

[104] T. Pilioura and A. Tsalgatidou, "PYRAMID-S:A Scalable
Infrastructure for Semantic Web Service Publication,"
presented at 14th International Workshop on Research Issues
on Data Engineering: Web Services for e-Commerce and e-
Government Applications, Boston,Massachusetts, March
2004.

[105] P. Fedosseev, "Composition of Web Services and QoS
Aspects," Seminar: Data Communication and Distributed
Systems in the WS 2003/2004.

[106] C. Zhou, L.-T. Chia, and B.-S. Lee, "Semantics in Service
Discovery and QoS Measurement," IT Professional, vol. 7, pp.
29 - 34, 2005.

[107] R. Sumra and A. D, "Quality of Service for Web Services-
Demystification,Limitations, and Best Practice," Available at:
http://www.developer.com/services/article.php/2027911. Last
visited February 2004.

[108] E. M. Maximilien and M. P. Singh, "A Framework and
Ontology for Dynamic Web Services Selection," IEEE Internet
Computing, vol. 8, pp. 84-93, September-October 2004.

http://www.developer.com/services/article.php/2027911

 References

217

[109] ISO: Available at:
http://www.iso.ch/iso/en/ISOOnline.frontpage.

[110] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng, "Quality Driven Web services Composition," presented
at Proceedings of the Twelfth International World Wide Web
Conference (WWW'2003), Budapest,Hungary, May 2003.

[111] K. Lee, J. Jeon, W. Lee, S.-H. Jeong, and S.-W. Park, "QoS
for Web Services: Requirements and Possible Approaches,"
25 November 2003. Available at: http://www.w3c.or.kr/kr-
office/TR/2003/ws-qos/ . Last visited July 2004.

[112] S. Rajesh and D. Arulazi, "Quality of Service for Web
Services-Demystification,Limitations, and Best Practice,"
Available at:
http://www.developer.com/services/article.php/2027911. Last
visited February 2004.

[113] M. P. Singh, "Trustworthy Service Composition:

Challenges and Research Questions," Lecture Notes on Artificial
Intelligence, vol. 2631, pp. 39-52, 2003.

[114] B. Atkinson, G. Della-Libera, S. Hada, and et al., "Web
Services Security (WS-Security)," Available at: http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/,
2002.

[115] J. Zhang, "Trustworthy Web Services: Actions for Now," IP
Professional, vol. 7, pp. 32-36, 2005.

[116] W. Chou, "Inside SSL: the secure sockets layer protocol," IT
Professional, vol. 4, pp. 47-52, 2002.

[117] A. Karve, "Secure Communication over the Internet.," in
Network Magazine, vol. 1, 1997.

[118] R. Salz, "Securing Web Services," Available at:
http://webservices.xml.com/pub/a/ws/2003/01/15/ends.html,
2003.

[119] M. C. Mont, K. Harrison, and M. Sadler, "The HP time vault
service: exploiting IBE for timed release of confidential
information," presented at the 12th international conference on
World Wide Web, Budapest, 2003.

http://www.iso.ch/iso/en/ISOOnline.frontpage
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.developer.com/services/article.php/2027911
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://webservices.xml.com/pub/a/ws/2003/01/15/ends.html

 References

218

[120] Reagle and Dillaway, "XML Encryption Syntax and
Processing." Available at:
http://www.w3.org/Encryption/2001/03/12-proposal.html, 2001.

[121] M. O'Neill, "We Know Web Services Need Security, But What
Type?," Web Services Journal, vol. 3, pp. 18-21, 2003.

[122] M. Hondo, N. Nagaratnam, and A. Nadalin, "Securing Web
Services," IBM Systems Journal, vol. 41, pp. 228-241, 2002.

[123] M. Chanliau, "The Security Challenge," Web Services Journal,
vol. 3, pp. 32-36, 2003.

[124] M. Bartel, J. Boyer, B. Fox, and E. Simon, "XML-Signature
Syntax and Processing." Available at:
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/,
2000.

[125] V. Tosic, K. Patel, and B. Pagurek, "WSOL - Web Service
Offerings Language," presented at International Workshop on
Web Services, E-Business, and the Semantic Web: CAiSE'02,
Toronto, Canada, 2002.

[126] V. Tosic, B. Pagurek, B. Esfandiari, K. Patel, and W. Ma, "Web
Service Offerings Language (WSOL) and Web Service
Composition Management (WSCM)," presented at Workshop
on Object- Oriented Web Services, Seattle, USA, 2002,.

[127] IBM Corporation, "Web Service Level Agreement (WSLA)

Language Specification," available at:
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf, 2003.

[128] A. Keller and H. Ludwig, "The WSLA Framework: Specifying
and Monitoring Service Level Agreements for Web Services,"
Journal of Network and Systems Management, vol. 11, March
2003.

[129] H. Ludwig, A. Keller, A. Dan, and R. P. King, " A Service Level
Agreement Language for Dynamic Electronic Services,"
presented at 4th IEEE International Workshop on Advanced
Issues of E-Commerce and Web-based Information Systems
(WECWIS'02), Newport Beach, USA, June, 2002.

[130] S. Andreozzi, D. Montesi, and R. Moretti, "Web Services
Quality," presented at Conference on Computer,

http://www.w3.org/Encryption/2001/03/12-proposal.html
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

 References

219

Communication and Control Technologies (CCCT03),
Orlando, 31 July - 2 August 2003.

[131] C. Marchetti, B. Pernici, and P. Plebani, "A Quality Model for
e-Service Based Multi-Channel Adaptive Information
Systems," presented at 4th International Conference on Web
Information Systems Engineering Workshops (WISEW'03),
Roma, Italy, December 13, 2003.

[132] XML Spy Home Edition: Available at:
http://www.altova.com/support_freexmlspyhome.asp.

[133] Altova® Enterprise XML Suite 2006: Available at:
http://www.altova.com/download_spy_enterprise.html.

[134] "Amazon Web Services," Available at:
http://amazon.com/webservices.

[135] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara,
"Importing the Semantic Web in UDDI," presented at
Proceedings of Web Services, E-Business and Semantic Web
Workshop, CAiSE 2002., Toronto, Canada, 2002.

[136] A. Eleyan, L. Mikhailov, and L. Zhao, "Quality-of-Service
Support in Web services Architecture," ISI, vol. 9, 2004.

[137] N. Thio and S. Karunasekera, "Automatic Measurement of a
QoS Metric for Web Service Recommendation," presented at
Software Engineering Conference, Australian, March 2005.

[138] T. Saaty, "A scaling method for priorities in hierarchical
structures," Journal of Mathematical Psychology, vol. 15, pp.
234-281, 1977.

[139] T. L. Saaty, "How to make a decision: The Analytic Hierarchy
Process," European Journal of Operational Research, vol. 48,
pp. 9-26, 1990.

[140] M. Hajeeh and A. Al-Othman, "Application of the analytical
hierarchy process in the selection of desalination plants,"
Desalination, vol. 174, pp. 97-108, 2005.

[141] E. W. L. Cheng and H. Li, "Information Priority-Setting for
Better Resource Allocation Using Analytic Hierarchy Process
(AHP)," Information Management and Computer Security, vol.
9, pp. 61-70, 2001.

http://www.altova.com/support_freexmlspyhome.asp
http://www.altova.com/download_spy_enterprise.html
http://amazon.com/webservices

 References

220

[142] L. Taher, R. Basha, and H. El Khatib, "Establishing
Association between QoS Properties in Service Oriented
Architecture," presented at Proceedings of the IEEE
International Conference on Next Generation Web Services
Practices (NWeSP'05), 2005.

[143] L. Taher, H. El Khatib, and R. Basha, "A Framework and QoS
Matchmaking Algorithm for Dynamic Web Services Selection,"
presented at Second International Conference on Innovations
in Information Technology (IIT'05), Dubai, UAE, 2005.

[144] M. Dunham, Data Mining, Introductory and Advanced Topics:
Prentice Hall, upper Saddle River, New Jersy, 2003.

[145] H. Ye, B. Kerherve, and G. V. Bochmann, "QoS-based
Distributed Query Processing," Ingénierie des Systèmes
d'Information (RSTI série ISI), vol. 9, 2004.

[146] P. Miseldine, "Use Amazon Web Services in ASP.NET,"
Available at: http://www.sitepoint.com/print/amazon-web-
services-asp-net, 2004.

[147] S. Chandrasekaran, G. Silver, J. A. Miller, J. Cardoso, and A.
P. Sheth, " Web service technologies and their synergy with
simulation," presented at In Proceedings of the 2002 Winter
Simulation Conference, 2002.

[148] S. Holzner, Microsoft Visual C# .NET 2003: Sams Publishing,
2004.

[149] Amazon E-Commerce Service: Available at:
http://www.amazon.com/gp/browse.html/ref=sc_fe_l_2/102-
0952141-
0410546?%5Fencoding=UTF8&node=12738641&no=343536
1&me=A36L942TSJ2AJA.

[150] "Architectural Style and the Design of Network-based Software
Architecture," PhD Thesis, University of California, Irvine.

Available at:
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm.

[151] Visual Studio .NET: Available at:
http://msdn2.microsoft.com/en-
us/library/ms269115(vs.80).aspx.

http://www.sitepoint.com/print/amazon-web-services-asp-net
http://www.sitepoint.com/print/amazon-web-services-asp-net
http://www.amazon.com/gp/browse.html/ref=sc_fe_l_2/102-0952141-0410546?%5Fencoding=UTF8&node=12738641&no=3435361&me=A36L942TSJ2AJA
http://www.amazon.com/gp/browse.html/ref=sc_fe_l_2/102-0952141-0410546?%5Fencoding=UTF8&node=12738641&no=3435361&me=A36L942TSJ2AJA
http://www.amazon.com/gp/browse.html/ref=sc_fe_l_2/102-0952141-0410546?%5Fencoding=UTF8&node=12738641&no=3435361&me=A36L942TSJ2AJA
http://www.amazon.com/gp/browse.html/ref=sc_fe_l_2/102-0952141-0410546?%5Fencoding=UTF8&node=12738641&no=3435361&me=A36L942TSJ2AJA
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://msdn2.microsoft.com/en-us/library/ms269115(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms269115(vs.80).aspx

Appendix A Quality Criteria XML Schema

218

Appendix A Quality Criteria XML Schema

Quality Criteria XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2005 sp2 U (http://www.altova.com) by Amna Eleyan

(University of Manchester) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="QualityCriteria">

 <xs:annotation>

 <xs:documentation> root element</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Performance" type="PerformanceType"

minOccurs="0"/>

 <xs:element name="FailureProbability" type="FailureProbabilityType"

minOccurs="0"/>

 <xs:element name="Trustworthiness" type="TrustworthinessType"

minOccurs="0"/>

 <xs:element name="Cost" type="CostType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:complexType name="qValueType">

 <xs:sequence>

 <xs:element name="Min" type="xs:double"/>

 <xs:element name="Max" type="xs:double"/>

 <xs:element name="Preferred" type="xs:double"/>

 </xs:sequence>

 <xs:attribute name="qlevel" type="qlevelType" use="required"/>

</xs:complexType>

<xs:simpleType name="unitType">

 <xs:restriction base="xs:string">

 <xs:enumeration value=""/>

 <xs:enumeration value="Msec"/>

 <xs:enumeration value="Request/sec"/>

 <xs:enumeration value="Percentage"/>

 <xs:enumeration value="Pound"/>

 <xs:enumeration value="None"/>

 </xs:restriction>

</xs:simpleType>

Appendix A Quality Criteria XML Schema

219

<xs:simpleType name="qlevelType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="High"/>

 <xs:enumeration value="Medium"/>

 <xs:enumeration value="Low"/>

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="weightType">

 <xs:restriction base="xs:double">

 <xs:maxInclusive value="1"/>

 <xs:minInclusive value="0"/>

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="qCriteriaType">

 <xs:sequence>

 <xs:element name="qValue">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="qValueType">

 <xs:attribute/>

 <xs:anyAttribute/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="unit" type="unitType"/>

 <xs:element name="weight" type="weightType"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="PerformanceType">

 <xs:complexContent>

 <xs:extension base="subCriteriaType">

 <xs:sequence>

 <xs:element name="Capacity" type="qCriteriaType"

minOccurs="0"/>

<xs:element name="ResponseTime"

type="qCriteriaType" minOccurs="0"/>

<xs:element name="Latency" type="qCriteriaType"

minOccurs="0"/>

<xs:element name="Throughput"

type="qCriteriaType" minOccurs="0"/>

<xs:element name="ExecutionTime"

type="qCriteriaType" minOccurs="0"/>

 </xs:sequence>

 </xs:extension>

Appendix A Quality Criteria XML Schema

220

 </xs:complexContent>

</xs:complexType>

<xs:complexType name="FailureProbabilityType">

 <xs:sequence>

 <xs:element name="Availability" type="qCriteriaType" minOccurs="0"/>

 <xs:element name="Reliability" type="qCriteriaType" minOccurs="0"/>

 <xs:element name="Accessibility" type="qCriteriaType" minOccurs="0"/>

 <xs:element name="Accuracy" type="qCriteriaType" minOccurs="0"/>

 <xs:element name="Scalability" type="qCriteriaType" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="TrustworthinessType">

 <xs:sequence>

 <xs:element name="Reputation" type="qCriteriaType" minOccurs="0"/>

 <xs:element name="Security" type="qCriteriaType" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="CostType">

 <xs:sequence>

 <xs:element name="ServicePrice" type="qCriteriaType" minOccurs="0"/>

 <xs:element name="TransactionPrice" type="qCriteriaType" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

</xs:schema>

Appendix B: Quality Service Selection System

221

Appendix B: Quality Service Selection System

This appendix displays the source codes of quality service selection system, which

called QSSS using C# Windows application implemented using Visual Studio

.NET 2003. QSSS consists of several forms in order to enable the service

requester to specify his quality preferences and sub-criteria quality levels. Quality

criteria classification and mathematical model are used to assist the service

requester to select the best candidates Web service. These forms and techniques

are explained in the following sections.

B-1 CriteriaSelection Form

Figure B-1 shows the Criteria Selection form.

Figure B-1 CriteriaSelection Form

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

Appendix B: Quality Service Selection System

222

namespace ServiceSelection2

{

public class CriteriaSelection : System.Windows.Forms.Form

{

 private System.Windows.Forms.Label label1;

 private System.Windows.Forms.Label label2;

 private System.Windows.Forms.Button Next;

 private System.Windows.Forms.Button Exit;

 public System.Windows.Forms.CheckBox checkBox1;

 public System.Windows.Forms.CheckBox checkBox2;

 public System.Windows.Forms.CheckBox checkBox3;

 public System.Windows.Forms.CheckBox checkBox4;

 Utilities utility=new Utilities();

 private double [] oneValue=new double[1];

 public static double[] weightCriteria1=new double[1];

 static int MAX_NUM = 4;

 public static CheckBox []checkBoxesArray = new

 CheckBox[MAX_NUM];

 public CriteriaSelection()

 {

 // Required for Windows Form Designer support

 InitializeComponent();

 oneValue[0]=1.0;

 }

 static void Main()

 {

 Application.Run(new CriteriaSelection());

 }

 private void Exit_Click(object sender, System.EventArgs e)

 {

 if(MessageBox.Show("Are You Sure You want to exit", "message

 Box", MessageBoxButtons.OKCancel)==DialogResult.OK)

 {

 base.Dispose();

 }

 }

// count number of quality criteria selected by service requester

 static public int numOfCriteria;

 private void updateNumOfCriteria(){

 numOfCriteria=0;

 if (checkBox1.Checked) numOfCriteria++;

 if (checkBox2.Checked) numOfCriteria++;

 if (checkBox3.Checked) numOfCriteria++;

Appendix B: Quality Service Selection System

223

 if (checkBox4.Checked) numOfCriteria++;

 }

 private void Next_Click(object sender, System.EventArgs e)

 {

 updateNumOfCriteria();

 SubCriteriaSelection subForm1=new SubCriteriaSelection();

 preferenceSelection form = new preferenceSelection();

 CriteriaSelection CriteriaSelection=new CriteriaSelection();

//create M matrix instance from Matrix class

 Matrix M=new Matrix(numOfCriteria, numOfCriteria);

//requester has to select at least one quality criteria

 if(checkBox1.Checked==false && checkBox2.Checked==false &&

 checkBox3.Checked==false && checkBox4.Checked==false)

 {

 MessageBox.Show("Please make sure you select at least one

 criteria ", "message Box", MessageBoxButtons.OK);

 }

//if only Performance criterion is selected

 else if (checkBox4.Checked==false checkBox2.Checked==false&&

 checkBox3.Checked==false && checkBox1.Checked==true)

 {

 utility.fillMatrix0(M,oneValue);

//calculate the weight of selected criteria by calling //calculateWeights method

from Utilities class

 weightCriteria1=utility.calculateWeights(M,numOfCriteria);

 subForm1.groupBox1.Enabled=true;// switch to SubCriteriaSelection form

 subForm1.Show();

 }

//if Failure Probability and Trustworthiness are selected

 else if(checkBox2.Checked==true &&

 checkBox3.Checked==true&&checkBox4.Checked==false &&

 checkBox1.Checked==false)

 {

 form.comboBox1.Visible=false;

 form.comboBox2.Visible=false;

 form.comboBox3.Visible=false;

 form.comboBox5.Visible=false;

 form.comboBox6.Visible=false;

 form.PFlabel.Visible=false;

 form.PTlabel.Visible=false;

 form.PClabel.Visible=false;

 form.FClabel.Visible=false;

Appendix B: Quality Service Selection System

224

 form.TClabel.Visible=false;

 form.FTlabel.Location = new

 System.Drawing.Point(0, 65);

 form.comboBox4.Location=new

 System.Drawing.Point(300, 65);

 checkBoxesArray[0] = checkBox2;

 checkBoxesArray[1] = checkBox3;

 form.Show();// open preferenceSelection form

 }

//if Failure Probability, Trustworthiness and Cost are selected

 else if(checkBox2.Checked==true && checkBox3.Checked==true

 && checkBox4.Checked==true&& checkBox1.Checked==false)

 {

 form.comboBox1.Visible=false;

 form.comboBox2.Visible=false;

 form.comboBox3.Visible=false;

 form.PFlabel.Visible=false;

 form.PTlabel.Visible=false;

 form.PClabel.Visible=false;

 form.FTlabel.Location = new System.Drawing.Point(0,

 65);

 form.FClabel.Location = new System.Drawing.Point(0,

 90);

 form.TClabel.Location = new System.Drawing.Point(0,

 115);

 form.comboBox4.Location=new System.Drawing.Point(300,

 65);

 form.comboBox5.Location=new System.Drawing.Point(300,

 90);

 form.comboBox6.Location=new System.Drawing.Point(300,

 115);

 checkBoxesArray[0] = checkBox2;

 checkBoxesArray[1] = checkBox3;

 checkBoxesArray[2] = checkBox4;

 form.Show();// open preferenceSelection form

 }

//if Performance, Failure Probability, Trustworthiness and Cost //are selected

 else if(checkBox1.Checked==true && checkBox2.Checked==true&&

 checkBox3.Checked==true && checkBox4.Checked==true)

 {

 checkBoxesArray[0] = checkBox1;

 checkBoxesArray[1] = checkBox2;

 checkBoxesArray[2] = checkBox3;

Appendix B: Quality Service Selection System

225

 checkBoxesArray[3] = checkBox4;

 form.Show();// open preferenceSelection form

 } } }

B-2 PreferenceSelection Form

Figure B-2 shows the PreferenceSelection Form

Figure B-2 PreferenceSelection Form

namespace ServiceSelection2

{

 public class preferenceSelection : System.Windows.Forms.Form

 {

 public System.Windows.Forms.Label label1;

 private System.Windows.Forms.Button Next;

 private System.Windows.Forms.Button Back;

 private System.Windows.Forms.Button Exit;

 public System.Windows.Forms.ComboBox comboBox1;

 public System.Windows.Forms.ComboBox comboBox2;

 public System.Windows.Forms.ComboBox comboBox3;

 public System.Windows.Forms.ComboBox comboBox4;

 public System.Windows.Forms.ComboBox comboBox5;

 public System.Windows.Forms.ComboBox comboBox6;

 public System.Windows.Forms.Label PTlabel;

 public System.Windows.Forms.Label FTlabel;

Appendix B: Quality Service Selection System

226

 public System.Windows.Forms.Label PClabel;

 public System.Windows.Forms.Label FClabel;

 public System.Windows.Forms.Label TClabel;

 public System.Windows.Forms.Label PFlabel;

 SubCriteriaSelection subform=new SubCriteriaSelection();

 public static double[] weightCriteria=new double[4];

 Utilities utility=new Utilities();

 static int MAX_NUM_OF_VALUES = 6;

 double [] valuesArray = new double[MAX_NUM_OF_VALUES];

 ComboBox [] comboBoxesArray = new

 ComboBox[MAX_NUM_OF_VALUES];

 double consistency;

 public preferenceSelection()

 {

 // Required for Windows Form Designer support

 InitializeComponent();

 comboBoxesArray[0] = comboBox1;

 comboBoxesArray[1] = comboBox2;

 comboBoxesArray[2] = comboBox3;

 comboBoxesArray[3] = comboBox4;

 comboBoxesArray[4] = comboBox5;

 comboBoxesArray[5] = comboBox6;

 }

 }

private void Exit_Click(object sender, System.EventArgs e)

 {

 if(MessageBox.Show("Are You Sure You want to exit", "message

 Box", MessageBoxButtons.OKCancel)==DialogResult.OK)

 {

 base.Dispose();

 }

 }

 private void Back_Click(object sender, System.EventArgs e)

 {

 this.Close();

 }

//This method opens SubCriteriaSelection form which based on the

// selected criteria group if CriteriaSelection form

 public static void subFormEnable()

 {

 for(int i=0; i< CriteriaSelection.allBoxesArray.Length; i++)

 {

 if(CriteriaSelection.allBoxesArray[i].Checked)

Appendix B: Quality Service Selection System

227

 {

 SubCriteriaSelection.groupBoxesArray[i].Enabled=true;

 }

 }

 }

 private void Next_Click(object sender, System.EventArgs

 e)

 {

 Result result=new Result();

 Result result1=new Result();

 Matrix A=new Matrix(CriteriaSelection.numOfCriteria,

 CriteriaSelection.numOfCriteria);

// Convert comboBox1,2,3,4,5,6 from text values to double values

 for (int i =0; i< comboBoxesArray.Length; i++)

 {

 if(comboBoxesArray[i].Visible==true)

 {

 utility.convert(i, comboBoxesArray[i],

 valuesArray);

 }

 }

//construct pair-wise comparison matrix A by filling it with //requester's

preference values by calling fillMatrix0() method //from Utilities class

 utility.fillMatrix0(A, valuesArray);

// calculate the criteria weight by calling calculateWeights() //method from

Utilities class

weightCriteria = utility.calculateWeights(A,CriteriaSelection.numOfCriteria);

//calculate the Consisteny Ratio (CR)if the number of

//selected quality criteria is more than two by calling //ConsistencyRatio()method

from Utilities class

if(CriteriaSelection.numOfCriteria>2 && CriteriaSelection.numOfCriteria<=10)

 {

 consistency=utility.ConsistencyRatio(A, weightCriteria,

 CriteriaSelection.numOfCriteria);

 }

//if the Consistency Ratio(CR) is less than 0.1 then the judgement is consistent

and the requester can continue the selection process

if(consistency<0.1)

Appendix B: Quality Service Selection System

228

 {

 subFormEnable();

 subform.Show(); }

 else

// if the Consistency Ratio (CR) is more than 0.1 then the requester has to specify

new preferences values

MessageBox.Show("Please enter new quality preferences values ", "message

Box", MessageBoxButtons.OK);

 } }}

B-3 SubCriteriaSelection Form

Figure B-3 shows the SubCriteriaSelection form.

Figure B-3 SubCriteriaSelection

public class SubCriteriaSelection : System.Windows.Forms.Form

 {

 public System.Windows.Forms.GroupBox groupBox4;

public System.Windows.Forms.GroupBox groupBox3;

 public System.Windows.Forms.GroupBox groupBox2;

 public System.Windows.Forms.GroupBox groupBox1;

public System.Windows.Forms.CheckBox respBox;

public System.Windows.Forms.CheckBox thptBox;

public System.Windows.Forms.CheckBox avalBox;

public System.Windows.Forms.CheckBox relBox;

Appendix B: Quality Service Selection System

229

public System.Windows.Forms.CheckBox secBox;

public System.Windows.Forms.CheckBox repBox;

public System.Windows.Forms.CheckBox serpBox;

public System.Windows.Forms.CheckBox expBox;

private System.Windows.Forms.Button Exit;

 private System.Windows.Forms.Button Back;

private System.Windows.Forms.Button Next;

 public static int totalSubNum;

 Utilities utility=new Utilities();

 private double [] subValue=new double[1];

 public double[] weightSubCriteria=new double[1];

 public double[] weightSubCriteria1=new double[1];

 public double[] weightSubCriteria2=new double[1];

 public double[] weightSubCriteria3=new double[1];

 public static double[] totalWeight=new double[4];

public SubCriteriaSelection()

 {

// Required for Windows Form Designer support

 InitializeComponent();

 subValue[0]=1;

private void Exit_Click(object sender, System.EventArgs e)

 {

 if(MessageBox.Show("Are You Sure You want to exit", "message Box",

 MessageBoxButtons.OKCancel)==DialogResult.OK)

 {

 base.Dispose();

 }

 }

private void Back_Click(object sender, System.EventArgs e)

 {

 this.Close();

 }

 public static int numOfSubCriteria;

 public static int numOfSubCriteria1;

 public static int numOfSubCriteria2;

 public static int numOfSubCriteria3;

// Count the number of sub-criteria selected in each criteria group(Performance,

// Failure Probability, Trustworthiness and Cost)

 private void updateNumOfSubCriteria()

 {

 numOfSubCriteria=0;

 numOfSubCriteria1=0;

 numOfSubCriteria2=0;

Appendix B: Quality Service Selection System

230

 numOfSubCriteria3=0;

 if (respBox.Checked==true) numOfSubCriteria++;

 if (thptBox.Checked==true) numOfSubCriteria++;

 if (avalBox.Checked==true) numOfSubCriteria1++;

 if (relBox.Checked==true) numOfSubCriteria1++;

 if (secBox.Checked==true) numOfSubCriteria2++;

 if (repBox.Checked==true) numOfSubCriteria2++;

 if (serpBox.Checked==true) numOfSubCriteria3++;

 if (expBox.Checked==true) numOfSubCriteria3++;

 }

private void Next_Click(object sender, System.EventArgs e)

 {

 RequirementsValue requirement=new RequirementsValue();

 SubPreferenceSelection subprefSelection=new SubPreferenceSelection();

 updateNumOfSubCriteria();

 Matrix P=new Matrix(numOfSubCriteria,numOfSubCriteria);

 Matrix P1=new Matrix(numOfSubCriteria1,numOfSubCriteria1);

 Matrix P2=new Matrix(numOfSubCriteria2,numOfSubCriteria2);

 Matrix P3=new Matrix(numOfSubCriteria3,numOfSubCriteria3);

// Requester has to select at least one sub-criteria in each criteria group

if((groupBox1.Enabled==true &&

respBox.Checked==false&&thptBox.Checked==false)||(groupBox2.Enabled==tru

e&&avalBox.Checked==false&&relBox.Checked==false)||(groupBox3.Enabled=

=true && repBox.Checked==false&&secBox.Checked==false)||

(groupBox4.Enabled==true &&serpBox.Checked==false&&

expBox.Checked==false))

 {

 MessageBox.Show("Please make sure you select at least one Sub-criteria from

each criteria group", "message Box", MessageBoxButtons.OK);

 }

 //If only one quality sub-criterion is selected within each quality criteria group

//then this form will jump to select requirement values from RequirementsValue

form

//and skip SubPreferenceSelection form.

//Select only Availability

if(respBox.Checked==false&&

thptBox.Checked==false&&avalBox.Checked==true&&relBox.Checked==false

&&

Appendix B: Quality Service Selection System

231

secBox.Checked==false&&repBox.Checked==false&&serpBox.Checked==false

&&expBox.Checked==false)

{

 totalSubNum=numOfSubCriteria1;

 result.textBox1.AppendText("The number of criteria : "+numOfSubCriteria1);

 utility.fillMatrix0(P1,subValue);

//calculate the weight of sub-criteria in each criteria group by calling

calculateWeights method

 weightSubCriteria1=utility.calculateWeights(P1, numOfSubCriteria1);

 requirement.label10.Visible=false;

 requirement.label5.Visible=false;

 requirement.label6.Visible=false;

 requirement.label7.Visible=false;

 requirement.label3.Visible=false;

 requirement.label9.Visible=false;

 requirement.label8.Visible=false;

 requirement.comboBox1.Visible=false;

 requirement.comboBox5.Visible=false;

 requirement.comboBox6.Visible=false;

 requirement.comboBox7.Visible=false;

 requirement.comboBox3.Visible=false;

 requirement.comboBox4.Visible=false;

 requirement.comboBox8.Visible=false;

 requirement.label2.Location=new System.Drawing.Point(0, 40);

 requirement.comboBox2.Location=new System.Drawing.Point(242, 40);

// The final weight array "totalWeight" which is used in the Euclidean distance

calculation

 for(int j=0; j<totalSubNum;j++)

 {

 totalWeight[j]=Math.Round(weightSubCriteria1[j]*CriteriaSelection.weightCrit

eria1[j],3

);

 requirement.Show();//open RequirementsValue form

}

//If two sub-criteria are selected in each criteria group then the requester needs to

select their //preferences or importance

//Select Availability and Reliability

if(respBox.Checked==false&&

thptBox.Checked==false&&avalBox.Checked==true&&relBox.Checked==true&

&

secBox.Checked==false&&repBox.Checked==false&&serpBox.Checked==false

&&expBox.Checked==false)

{

Appendix B: Quality Service Selection System

232

 totalSubNum=numOfSubCriteria1;

subprefSelection.comboBox1.Visible=false;

 subprefSelection.comboBox3.Visible=false;

 subprefSelection.comboBox4.Visible=false;

 subprefSelection.label2.Visible=false;

 subprefSelection.label4.Visible=false;

 subprefSelection.label5.Visible=false;

 subprefSelection.comboBox2.Location=new System.Drawing.Point(323, 65);

 subprefSelection.label3.Location = new System.Drawing.Point(0, 65);

 subprefSelection.Show(); //open SubPreferenceSelection form

}

//Select Availability ,Reputation and Service Price

if(respBox.Checked==false&&thptBox.Checked==false&&avalBox.Checked==tr

ue&&relBox.Checked==false&&secBox.Checked==false&&repBox.Checked==t

rue&&serpBox.Checked==true&&expBox.Checked==false)

{

totalSubNum=numOfSubCriteria1+numOfSubCriteria2+numOfSubCriteria3;

 utility.fillMatrix0(P1,subValue);

 utility.fillMatrix0(P2,subValue);

 utility.fillMatrix0(P3,subValue);

//calculate the weight of sub-criteria in each criteria group by calling

/calculateWeights() method from Utilities class

 weightSubCriteria1=utility.calculateWeights(P1, numOfSubCriteria1);

 weightSubCriteria2=utility.calculateWeights(P2, numOfSubCriteria2);

 weightSubCriteria3=utility.calculateWeights(P3, numOfSubCriteria3);

 double [] weightSubArray=new double[totalSubNum];

 weightSubCriteria1.CopyTo(weightSubArray,0);

 weightSubCriteria2.CopyTo(weightSubArray,1);

 weightSubCriteria3.CopyTo(weightSubArray,2);

// The final weight array "totalWeight" which is used in the Euclidean distance

calculation

for(int k=0; k<totalSubNum;k++)

{

totalWeight[k]=Math.Round(weightSubArray[k]*preferenceSelection.weightCrite

ria[k],3

);

 }

 requirement.label10.Visible=false;

 requirement.label5.Visible=false;

 requirement.label6.Visible=false;

 requirement.label7.Visible=false;

 requirement.label8.Visible=false;

Appendix B: Quality Service Selection System

233

 requirement.comboBox1.Visible=false;

 requirement.comboBox5.Visible=false;

 requirement.comboBox6.Visible=false;

 requirement.comboBox7.Visible=false;

 requirement.comboBox8.Visible=false;

 requirement.label2.Location=new System.Drawing.Point(0, 10);

 requirement.comboBox2.Location=new System.Drawing.Point(242, 10);

 requirement.label3.Location=new System.Drawing.Point(0, 40);

 requirement.comboBox3.Location=new System.Drawing.Point(242, 40);

 requirement.label9.Location=new System.Drawing.Point(0, 70);

 requirement.comboBox4.Location=new System.Drawing.Point(242, 70);

 requirement.Show();//open RequirementsValue form

}

//Select Response time,Throughput, Availability, Reliability, Security, Reputation,

Service Price and Execution Price

if(respBox.Checked==true&&

thptBox.Checked==true&&avalBox.Checked==true&&

relBox.Checked==true&&secBox.Checked==true&&repBox.Checked==true&&s

erpBox.Checked==true&&expBox.Checked==true)

{

totalSubNum=numOfSubCriteria+numOfSubCriteria1+numOfSubCriteria

2+numOfSubC

 riteria3;

 subprefSelection.Show(); //open SubPreferenceSelection form }

B-4 SubPreference Selection Form

Figure B-4 shows the SubPreferenceSelection Form

Appendix B: Quality Service Selection System

234

Figure B-4 SubPreferenceSelection Form

public class SubPreferenceSelection : System.Windows.Forms.Form

 {

 public System.Windows.Forms.ComboBox comboBox1;

 public System.Windows.Forms.ComboBox comboBox2;

 public System.Windows.Forms.ComboBox comboBox3;

 public System.Windows.Forms.ComboBox comboBox4;

 private System.Windows.Forms.Button Exit;

 private System.Windows.Forms.Button Back;

 private System.Windows.Forms.Button Next;

 public static int subCriteriaNum;

 public static double[] totalWeight=new double[8];

 private double []weightSub=new double[2];

 private double[] totalWeightP=new double[2];

 private double[] totalWeightFP=new double[2];

 Utilities utility1=new Utilities();

 static int MAX_NUM_OF_VALUES=4;

 double [] subValuesArray = new double[MAX_NUM_OF_VALUES];

 ComboBox [] subComboArray = new

ComboBox[MAX_NUM_OF_VALUES];

 public SubPreferenceSelection()

 { // Required for Windows Form Designer support

 InitializeComponent();

 subComboArray[0] = comboBox1;

 subComboArray[1] = comboBox2;

 subComboArray[2] = comboBox3;

Appendix B: Quality Service Selection System

235

 subComboArray[3] = comboBox4;

private void Back_Click(object sender, System.EventArgs e){

this.Close();}

private void Exit_Click(object sender, System.EventArgs e){

base.Dispose(); }

//Calculate Performance’ sub-criteria weight

private double[] TotalWeightPerformance(

{

 Matrix B=new Matrix(SubCriteriaSelection.numOfSubCriteria,

 SubCriteriaSelection.numOfSubCriteria);

 for (int i =0; i< subComboArray.Length; i++)

 {

 if(subComboArray[i].Visible==true)

 {

 utility1.convert(i, subComboArray[i], subValuesArray);

 } }

//Construct pair-wise comparison matrix regarding Performance' sub-criteria

//preferences by calling fillMatrix0() method from Utilities class

 utility1.fillMatrix0(B, subValuesArray);

 double[] weightSCriteria =

 utility1.calculateWeights(B,SubCriteriaSelection.numOfSubCriteria);

//Performance weight "totalWeightP" calculation if more than

//one criteria group are selected

 if(CriteriaSelection.numOfCriteria>1)

 { for(int k=0; k<SubCriteriaSelection.numOfSubCriteria;k++)

 {

totalWeightP[k]=Math.Round(preferenceSelection.weightCriteria[k]*weightSCrit

eria[k],3);

 } }

//Performance weight "totalWeightP" calculation if only

// Performance criteria group is selected

 else if(CriteriaSelection.numOfCriteria==1)

 {

 CriteriaSelection.weightCriteria1.CopyTo(weightSub,0);

 CriteriaSelection.weightCriteria1.CopyTo(weightSub,1);

 for(int k=0; k<SubCriteriaSelection.numOfSubCriteria;k++)

 {

 totalWeightP[k]=Math.Round(weightSub[k]*weightSCriteria[k],3);

 }

 }

 return totalWeightP;

 }

 //Calculate Failure Probability' sub-criteria weight

 private double[] TotalWeightFP()

Appendix B: Quality Service Selection System

236

 {

 Result result1=new Result();

 Matrix B=new Matrix(SubCriteriaSelection.numOfSubCriteria1,

SubCriteriaSelection.numOfSubCriteria1);

 for (int i =0; i< subComboArray.Length; i++)

 {

 if(subComboArray[i].Visible==true)

 {

 utility1.convert(i, subComboArray[i], subValuesArray);

 }

 }

//Construct pair-wise comparison matrix regarding Failure Probability ' sub-

criteria preferences by calling fillMatrix0() method from Utilities class

 utility1.fillMatrix0(B, subValuesArray);

double[] weightSCriteria =

utility1.calculateWeights(B,SubCriteriaSelection.numOfSubCriteria1);

/Failure Probability weight "totalWeightFP" calculation if more than

//one criteria group are selected

 if(CriteriaSelection.numOfCriteria>1)

 {

 for(int k=0; k<SubCriteriaSelection.numOfSubCriteria1;k++)

 {

 totalWeightFP[k]=Math.Round(preferenceSelection.weightCriteria[k]*wei

ghtSCriteria[k],3);

 }

 }

//Failure Probability weight "totalWeightFP" calculation if only

// Failure Probability criterion group is selected

 else if(CriteriaSelection.numOfCriteria==1)

 {

 CriteriaSelection.weightCriteria1.CopyTo(weightSub,0);

 CriteriaSelection.weightCriteria1.CopyTo(weightSub,1);

 for(int k=0; k<SubCriteriaSelection.numOfSubCriteria1;k++)

 {

 totalWeightFP[k]=Math.Round(weightSub[k]*weightSCriteria[k],3);

 }

 }

 return totalWeightFP;

 }

private void Next_Click(object sender, System.EventArgs e)

 {

 RequirementsValue requirementValue=new RequirementsValue();

 SubCriteriaSelection subSelection=new SubCriteriaSelection();

// if Performance and Failure Probability criteria group are selected

Appendix B: Quality Service Selection System

237

if(label2.Visible==true&&label3.Visible==true&&label4.Visible==false&

& label5.Visible==false)

 {

 requirementValue.label3.Visible=false;

 requirementValue.label7.Visible=false;

 requirementValue.label8.Visible=false;

 requirementValue.label9.Visible=false;

 requirementValue.comboBox3.Visible=false;

 requirementValue.comboBox4.Visible=false;

 requirementValue.comboBox7.Visible=false;

 requirementValue.comboBox8.Visible=false;

 requirementValue.label5.Location=new System.Drawing.Point(0,

 40);

 requirementValue.comboBox5.Location=new

 System.Drawing.Point(242, 40);

 requirementValue.label2.Location=new System.Drawing.Point(0,

 70);

 requirementValue.comboBox2.Location=new

 System.Drawing.Point(242, 70);

 requirementValue.label6.Location=new System.Drawing.Point(0,

 100);

 requirementValue.comboBox6.Location=new

 System.Drawing.Point(242, 100);

 subCriteriaNum=SubCriteriaSelection.numOfSubCriteria+SubCriteriaSele

 ction.numOfSubCriteria1;

 TotalWeightPerformance();// calculate Performance' sub-criteria weight

 TotalWeightFP();

// calculate Failure probabilty' sub-criteria weight

 //the final weight "totalWeight" will be used in Euclidean distance calculation

 totalWeightP.CopyTo(totalWeight,0);

 totalWeightFP.CopyTo(totalWeight,2);

 }

requirementValue.Show();//open RequirementsValue form

}

B-5 RequirementsValue Form

Figure B-5 shows the RequirementsValue Form.

Appendix B: Quality Service Selection System

238

Figure B-5 RequirementsValue Form

Figure B-5

namespace ServiceSelection2

{

 public class RequirementsValue : System.Windows.Forms.Form

 {

 public System.Windows.Forms.Label label1;

 public System.Windows.Forms.Label label2;

 public System.Windows.Forms.Label label3;

 public System.Windows.Forms.Label label4;

 public System.Windows.Forms.ComboBox comboBox1;

 public System.Windows.Forms.ComboBox comboBox2;

 public System.Windows.Forms.ComboBox comboBox3;

 public System.Windows.Forms.ComboBox comboBox4;

 private System.Windows.Forms.Button button1;

 private System.Windows.Forms.Button button2;

 private System.Windows.Forms.Button button3;

 public System.Windows.Forms.Label label5;

 public System.Windows.Forms.ComboBox comboBox5;

 public System.Windows.Forms.Label label6;

 public System.Windows.Forms.ComboBox comboBox6;

 public System.Windows.Forms.Label label7;

 public System.Windows.Forms.ComboBox comboBox7;

 public System.Windows.Forms.Label label8;

Appendix B: Quality Service Selection System

239

 public System.Windows.Forms.ComboBox comboBox8;

 public System.Windows.Forms.Label label9;

 Utilities utility=new Utilities();

 ComboBox[] boxArray=new ComboBox[8];

 double[] val=new double[8];

 double values;

 public System.Windows.Forms.Label label10;

 private System.Data.OleDb.OleDbConnection oleDbConnection1;

 private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;

 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;

 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;

 private System.Data.DataSet dataSet1;

 private System.Windows.Forms.DataGrid dataGrid1;

 private System.Windows.Forms.ListBox listBox1;

 private System.Windows.Forms.TextBox textBox1;

 public RequirementsValue()

 {

 InitializeComponent();

 boxArray[0]=comboBox1;

 boxArray[1]=comboBox5;

 boxArray[2]=comboBox2;

 boxArray[3]=comboBox6;

 boxArray[4]=comboBox7;

 boxArray[5]=comboBox3;

 boxArray[6]=comboBox4;

 boxArray[7]=comboBox8;

 }

// Convert the sub-criteria requirements values or levels (High,

//Medium, or Low)for Response Time,Throughput, Availability,

//Reliability, Security, Reputation, Service Price and Execution

//Price from string to double values based on the sub-criteria

type and the service //domain

// convert Response Time requirement value from string to double

//type

private double responseConvert(ComboBox box)

{

 if(box.Visible==true)

 {

 string scale=(String)box.SelectedItem;

 //range of High values: High=<1msec

 if (scale.Equals("High")==true)

 values=1;

Appendix B: Quality Service Selection System

240

 // Medium=[2-20]msec

 else if(scale.Equals("Medium")==true)

 values=15;

 //Low=>=20msec

 else if(scale.Equals("Low")==true)

 values=30;

 }

 return values;

}
// convert Throughput requirement value from string to double

//type

private double thptConvert(ComboBox box)

{

 if(box.Visible==true)

 {

 string scale=(String)box.SelectedItem;

 //range of High values: High=>20 req/sec

 if (scale.Equals("High")==true)

 values=20;

 //Medium=[10-20]req/sec

 else if(scale.Equals("Medium")==true)

 values=15;

 //Low<=15 req/sec

 else if(scale.Equals("Low")==true)

 values=5;

 }

 return values;

}
// convert Availability and Reliabilityt requirement value from

string to double //type

private double avalRelConvert(ComboBox box)

{

 if(box.Visible==true)

 {

 string scale=(String)box.SelectedItem;

 //range of High values: High [80-100]

 if (scale.Equals("High")==true)

 values=98;

 // Medium=[50-80]

Appendix B: Quality Service Selection System

241

 else if(scale.Equals("Medium")==true)

 values=70;

 //Low=<50

 else if(scale.Equals("Low")==true)

 values=40;

 }

 return values;

}
// convert Security and Reputation requirement value from string

to double //type

private double secRepConvert(ComboBox box)

{

 if(box.Visible==true)

 {

 string scale=(String)box.SelectedItem;

 //range of High values: [4-5]

 if (scale.Equals("High")==true)

 values=4.5;

 // Medium=[2.5-4]

 else if(scale.Equals("Medium")==true) values=3;

 //Low=[1-2.5]

 else if(scale.Equals("Low")==true)

 values=2;

 }

 return values;

}
// convert Service Price requirement value from string to double

//type

private double serPriceConvert(ComboBox box)

{

 if(box.Visible==true)

 {

 string scale=(String)box.SelectedItem;

 //range of High values: High=>60 Pound

 if (scale.Equals("High")==true)

 values=60;

 // Medium=[30-60]Pound

 else if(scale.Equals("Medium")==true)

 values=40;

Appendix B: Quality Service Selection System

242

 //Low<=30 Pound

 else if(scale.Equals("Low")==true)

 values=15;

 }

 return values;

}
// convert Execution Price requirement value from string to double

//type

 private double execPriceConvert(ComboBox box)

 {

 if(box.Visible==true)

 {

 string scale=(String)box.SelectedItem;

 //range of High values: High=>8Pound

 if (scale.Equals("High")==true)

 values=8;

 // Medium=[4-8]Pound

 else if(scale.Equals("Medium")==true)

 values=5;

 //Low=[1-4]Pound

 else if(scale.Equals("Low")==true)

 values=2;

 }

 return values;

 }

 //Convert the selected sub-criteria levels(H,M,or,L) into values and store it

 //in an array val1[]

private double[] requirementArray()

{

 if(boxArray[0].Visible==true)

 val[0]=responseConvert(boxArray[0]);

 if(boxArray[1].Visible==true)

 val[1]=thptConvert(boxArray[1]);

 if(boxArray[2].Visible==true)

 val[2]=avalRelConvert(boxArray[2]);

 if(boxArray[3].Visible==true)

 val[3]=avalRelConvert(boxArray[3]);

 if(boxArray[4].Visible==true)

 val[4]=secRepConvert(boxArray[4]);

Appendix B: Quality Service Selection System

243

 if(boxArray[5].Visible==true)

 val[5]=secRepConvert(boxArray[5]);

 if(boxArray[6].Visible==true)

 val[6]=serPriceConvert(boxArray[6]);

 if(boxArray[7].Visible==true)

 val[7]=execPriceConvert(boxArray[7]);

 ArrayList list = new ArrayList();

 for(int i=0; i<val.Length;i++)

 {

 if(val[i]!=0)

 {

 list.Add(val[i]);

 }

 }

 double[] val1=(double[]) list.ToArray(typeof (double));

 return val1;

}

// Retreive the data result by sending a query request based on the service

//requester's sub-quality level (H,M, or L)to the Amazon database and matching

//between the requirement values or levels and the provided quality specifications

//which stored in the Amazon database

private void dataRetreive()

{

// For simplicity, the sub-criteria types selected are:Availability, Reputaion and/or

Service Price

 if(boxArray[2].Visible==true&& boxArray[5].Visible==true &&

 boxArray[6].Visible==true)

 {

// if Availability's level is High, Reputaion's level is High and Service Price's level

is High

 if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("High")&&boxArray[6].SelectedItem.Equals("High"))

 {

//Quality Matchmaker sends a query to Amazon database by matching

//between the quality requirement values or levels specified by the service

//requester and the quality specification provided by the service provider

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

Appendix B: Quality Service Selection System

244

AND 100 AND AmazonTable.SellerReputation BETWEEN 4 AND 5

AND AmazonTable.Price>=60";

 }

// if Availability's level is Medium, Reputaion's level is Medium and Service

Price's level is Medium

else if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("Medium")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 OR AmazonTable.SellerReputation BETWEEN 2.5 AND 4 AND

AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is Low, Reputaion's level is Low and Service Price's level

is Low

else if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("Low")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 OR

AmazonTable.SellerReputation BETWEEN 1 AND 2.5 AND

AmazonTable.Price<=30";

 }

// if Availability's level is High, Reputaion's level is High and Service Price's level

is Medium

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("High")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 4 AND 5

AND AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is High, Reputaion's level is High and Service Price's level

is Low

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("High")&&boxArray[6].SelectedItem.Equals("Low"))

Appendix B: Quality Service Selection System

245

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 4 AND 5

AND AmazonTable.Price<=30";

 }

// if Availability's level is High, Reputaion's level is Medium and Service Price's

level is High

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("Medium")&&boxArray[6].SelectedItem.Equals("High"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 2.5 AND 4

AND AmazonTable.Price>=60";

 }

// if Availability's level is High, Reputaion's level is Medium and Service Price's

level is Medium

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("Medium")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 2.5 AND 4

AND AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is High, Reputaion's level is Medium and Service Price's

level is Low

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("Medium")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 2.5 AND 4

AND AmazonTable.Price<=30";

 }

// if Availability's level is High, Reputaion's level is Low and Service Price's level

is High

Appendix B: Quality Service Selection System

246

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("Low")&&boxArray[6].SelectedItem.Equals("High"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 1 AND 2.5

AND AmazonTable.Price>=60";

 }

// if Availability's level is High, Reputaion's level is Low and Service Price's level

is Medium

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("Low")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 1 AND 2.5

AND AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is High, Reputaion's level is Low and Service Price's level

is Low

if

(boxArray[2].SelectedItem.Equals("High")&&boxArray[5].SelectedItem.

Equals("Low")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 80

AND 100 AND AmazonTable.SellerReputation BETWEEN 1 AND 2.5

AND AmazonTable.Price<=30";

 }

// if Availability's level is Medium, Reputaion's level is High and Service Price's

level is High

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("High")&&boxArray[6].SelectedItem.Equals("High"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 4 AND 5

AND AmazonTable.Price>=60";

Appendix B: Quality Service Selection System

247

 }

// if Availability's level is Medium, Reputaion's level is High and Service Price's

level is Medium

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("High")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 4 AND 5

AND AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is Medium, Reputaion's level is High and Service Price's

level is Low

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("High")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 4 AND 5

AND AmazonTable.Price<=30";

 }

// if Availability's level is Medium, Reputaion's level is Medium and Service

Price's level is High

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("Medium")&&boxArray[6].SelectedItem.Equals("High"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 2.5 AND 4

AND AmazonTable.Price>=60";

 }

// if Availability's level is Medium, Reputaion's level is Medium and Service

Price's level is Low

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("Medium")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

Appendix B: Quality Service Selection System

248

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 2.5 AND 4

AND AmazonTable.Price<=30";

 }

// if Availability's level is Medium, Reputaion's level is Low and Service Price's

level is High

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("Low")&&boxArray[6].SelectedItem.Equals("High"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 1 AND 2.5

AND AmazonTable.Price>=60";

 }

// if Availability's level is Medium, Reputaion's level is Low and Service Price's

level is Medium

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("Low")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 1 AND 2.5

AND AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is Medium, Reputaion's level is Low and Service Price's

level is Low

if

(boxArray[2].SelectedItem.Equals("Medium")&&boxArray[5].SelectedIte

m.Equals("Low")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability BETWEEN 50

AND 80 AND AmazonTable.SellerReputation BETWEEN 1 AND 2.5

AND AmazonTable.Price<=30";

 }

// if Availability's level is Low, Reputaion's level is High and Service Price's level

is High

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("High")&&boxArray[6].SelectedItem.Equals("High"))

Appendix B: Quality Service Selection System

249

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 4 AND 5 AND

AmazonTable.Price>=60";

 }

// if Availability's level is Low, Reputaion's level is High and Service Price's level

is Medium

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("High")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 4 AND 5 AND

AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is Low, Reputaion's level is High and Service Price's level

is Low

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("High")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 4 AND 5 AND

AmazonTable.Price<=30";

 }

// if Availability's level is Low, Reputaion's level is Medium and Service Price's

level is High

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("Medium")&&boxArray[6].SelectedItem.Equals("High"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 2.5 AND 4 AND

AmazonTable.Price>=60";

 }

// if Availability's level is Low, Reputaion's level is Medium and Service Price's

level is Medium

Appendix B: Quality Service Selection System

250

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("Medium")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 2.5 AND 4 AND

AmazonTable.Price BETWEEN 30 AND 60";

 }

// if Availability's level is Low, Reputaion's level is Medium and Service Price's

level is Low

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("Medium")&&boxArray[6].SelectedItem.Equals("Low"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 2.5 AND 4 AND

AmazonTable.Price<=30";

 }

// if Availability's level is Low, Reputaion's level is Low and Service Price's level

is High

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("Low")&&boxArray[6].SelectedItem.Equals("High"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle, ProductAvailability, SellerReputation, Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 1 AND 2.5 AND

AmazonTable.Price>=60";

 }

// if Availability's level is Low, Reputaion's level is Low and Service Price's level

is Medium

if

(boxArray[2].SelectedItem.Equals("Low")&&boxArray[5].SelectedItem.E

quals("Low")&&boxArray[6].SelectedItem.Equals("Medium"))

 {

oleDbDataAdapter1.SelectCommand.CommandText="SELECT SellerID,

ProductTitle,ProductAvailability,SellerReputation,Price FROM

AmazonTable WHERE AmazonTable.ProductAvailability<=50 AND

AmazonTable.SellerReputation BETWEEN 1 AND 2.5 AND

AmazonTable.Price BETWEEN 30 AND 60";

Appendix B: Quality Service Selection System

251

 }

 }

 dataSet1.Clear();

//Fill dataSet1 with result from the query

 oleDbDataAdapter1.Fill(dataSet1, "AmazonTable");

//create a datatable named dataTable and assign it the collection of data stored

//by dataSet1. The Tables columns contains: SellerID, ProductTitle,

//ProductAvailability, Seller Reputaion,and Price fields

 DataTable dataTable=dataSet1.Tables[0];

 Matrix criteriaOffered=new Matrix(dataSet1.Tables[0].Columns.Count-

 2,dataSet1.Tables[0].Rows.Count);

 string [,] col=new string [

 dataSet1.Tables[0].Rows.Count,dataSet1.Tables[0].Columns.Count];

// if no result retreived then the service requester has to specify new requirements

//of quality levels

 if(dataSet1.Tables[0].Rows.Count==0)

 {

 MessageBox.Show("There are no results relating to your criteria, please try

again", "message Box", MessageBoxButtons.OK);

 }

// if result retrieved from the matching between the quality requirement and

quality specification

 else

 {

 for(int j=0; j<dataSet1.Tables[0].Columns.Count;j++)

 {

 for(int i=0; i<dataSet1.Tables[0].Rows.Count; i++)

 {

 col[i,j]=(dataTable.Rows[i][j].ToString());

 listBox1.Items.Add(col[i,j]);

 }

 }

//store the result from the dataset and put it in the Performance matrix

// called criteriaOffrered[,], which will be used for Euclidean distance calculation

 for(int i=0; i<dataSet1.Tables[0].Columns.Count-2;i++)

 {

 for(int j=0; j<dataSet1.Tables[0].Rows.Count;j++)

 {

Appendix B: Quality Service Selection System

252

//criteriaOffered [,] rows contain the sub-criteria fields and the columns contain

the service records

 criteriaOffered[i,j]=(Double.Parse(col[j,i+2]));

 textBox1.AppendText("the matrix["+i+","+j+"] is

 "+criteriaOffered[i,j]+" "+"\n");

 }

 }

 double []reqArray=requirementArray();

// calculate the Euclidean distance for each service by calling EuclideanDistance

// method from Utilities class

double[]EuclDistance=utility.EuclideanDistance(criteriaOffered,SubCriter

iaSelection.totalSubNum,dataSet1.Tables[0].Rows.Count,SubCriteriaSelec

tion.totalWeight,reqArray);

// Rank the result services based on Euclidean distance value

// the rank is from the smallest distance to the largest one

 for(int i=1; i<=EuclDistance.Length-1; i++)

 {

 if(EuclDistance[i-1]>EuclDistance[i])

 {

 double temp = EuclDistance[i-1];

 EuclDistance[i-1]=EuclDistance[i];

 EuclDistance[i]=temp;

 }

 }

 DataTable table;

 DataColumn serviceProvider = new DataColumn("Service provider");

 DataColumn serviceName = new DataColumn("Service name");

 DataColumn distance = new DataColumn("Service distance");

//create table called Services which contains:Service provider, Service name,

//and Service distance fields for each service's record

 table = new DataTable("Services");

 table.Columns.Add(serviceProvider);

 table.Columns.Add(serviceName);

 table.Columns.Add(distance);

 for(int j=0; j<dataSet1.Tables[0].Rows.Count; j++)

 {

 textBox1.AppendText("the matching distance of "+ col[j,0]+" " + col[j,1] +"

"+ "is: "+Math.Round(EuclDistance[j],3)+" \n\n");

 DataRow row;

 row=table.NewRow();

Appendix B: Quality Service Selection System

253

 row["service provider"]= col[j,0];

 row["Service name"]= col[j,1];

 row["Distance"]= Math.Round(EuclDistance[j],3);

 table.Rows.Add(row);

 }

// create a new DataSet object named dataset2

 DataSet dataset2 = new DataSet();

//add the new table to the dataset's Tables

 dataset2.Tables.Add(table);

// bind the new dataset to a data grid to display the final result

 dataGrid1.SetDataBinding(dataset2, "Services");

 }

}

 private void Submit_Click(object sender, System.EventArgs e)

 {

// call the dataRetreive method which display the ranked services' result

// based on Euclidean distance

 dataRetreive();

 }

 private void Back_Click(object sender, System.EventArgs e)

 {

 this.Close();

 }

 private void Exit_Click(object sender, System.EventArgs e)

 {

 base.Dispose();

 }

}

}

Appendix C: ADO.NET and Access Database

216 254

Appendix C: ADO.NET and Access Database

This Appendix describes the connection to an Access database called Amazon,

using oleDbConnection1. The query result data is retrieved and displayed in the

DataGrid using oleDbDataAdapter1 and dataSet1 with ADO.NET (ActiveX Data

Objects.NET.

The following steps describe how to connect to an Access database from

Windows application:

Step-1: Create a Data Connection:

 Server Explorer establish the connections to databases by right-click Data

Connections and choose Add Connection as shown in the screenshot below:

Figure C- 1Screenshot of Data Connections

 In the Provider tab Microsoft Jet 4.0 OLE DB Provider is selected for

connecting to an Access database and then clock Next, as shown in the

screenshot below.

Appendix C: ADO.NET and Access Database

255

Figure C- 2 Screenshot of Selecting Database Provider

 Enter the Access database path and click ‘Test Connection’ button. It appears

‘Test connection succeeded’ as shown in the screenshot below.

Figure C- 3 Screenshot of Access Database Connection

 Then the screenshot below browse the Access file database which called

“Amazon.mdb.Admin”.

Appendix C: ADO.NET and Access Database

256

Figure C- 4 Access File Database

 Drag the Access file path “Access.E\erviceSelection-V2\amazon.mdb.Admin”

and drop it on the RequirementsValue form and oleDbConnection1 will appear

below the form as shown in Figure C- 9.

Step-2 Create a Data Adapters

After creating a connection to the database, it needs to create a data adapter with

appropriate SQL statement for managing the connection and retrieving the result

of query from the data source [148].

 From the “Data” group “OleDbDataAdapter” is dragged and the “Data

Adapter Configuration Wizard” starts as shown in the two screenshots below.

Figure C- 5 Screenshot of dragging OleDbDataAdapter from Data group

Appendix C: ADO.NET and Access Database

257

Figure C- 6 Screenshot of Data Adapter Configuration Wizard

 Data adapter uses SQL statements to access the Access database as shown in

the screenshot below.

Figure C- 7 Screenshot of Choosing Query Type

 Create SQL statement that selects all the columns in the AmazonTable table as

in the following:

SELECT AmazonTable.*

FROM AmazonTable

As shown in the screenshot below

Appendix C: ADO.NET and Access Database

258

Figure C- 8 Screenshot of Generating SQL Statement

 Then oleDbDataAdapter1 will appear below the RequirementsValue form as

shown in Figure C- 8.

Step-3 Create Dataset

DataSets are used to store the query results and display the result using DataGrid

 Drag the DataSet from Data group and drop it in the RequirementsValue form

then dataSet1 object will appear below the form as shown in Figure C- 9.

Appendix C: ADO.NET and Access Database

259

Figure C- 9 Screenshot shows oleDbConnection1, oleDbDataAdapter1 and

dataSet1 objects

Appendix D: Amazon Web Services (AWS) Case Study

260

Appendix D: Amazon Web Services (AWS)
Case Study

D-1 What is Amazon Web Services (AWS)?

Web services can be defined as the Web-based applications that dynamically

interact with other Web applications using XML-based open standards such as

SOAP, UDDI and WSDL. Web services are a way of accessing information or

services over the Web. The requester makes a specific request to a server for a

type of information, and the server returns the information in some form.

Microsoft's .NET and Sun's Sun ONE (J2EE) are the major development

platforms that support these standards.

Amazon.com was debuted Amazon Web Services (AWS) in July 2002,

announcing that the service can use XML-based Web services technology to make

the contents of its catalog (database) freely available for use by any Web site or

software application.

Amazon Web Services (AWS) [134] is Amazon API (Application Program

Interface). An API is a set of building blocks made up of routines, protocols, and

tools that influence how users interface with the service. AWS offers applications

that range from retrieving information about a set of products, vendors, and

transactions to adding a product to a shopping car, wish list, or registry. Figure D-

1 illustrates the interactions between Amazon Web Services (AWS) and its

customers The Amazon’s customer (such as buyers, sellers (merchants who sell

on Amazon’s platform), Web site owners (associates), and developers (people

who use Amazon’s Web services)) can access the Amazon Web Services using

either XML over HTTP (REST) or a remote procedure call API with a Simple

Object Access Protocol (SOAP) interface. Both of these methods return structured

data (product name, manufacturer, price, etc.). Only about 15% of Amazon Web

Appendix D: Amazon Web Services (AWS) Case Study

261

Services calls are made with SOAP and the remainder with REST. Amazon.com

has provided a Web Services Definition Language (WSDL) file, which contains

the definition of the Web service. A developer with access to this WSDL file can

write a client application to use the Amazon Web Services.

Amazon Web

Services

Associates

(Web sites owners)

Developer

(people who use AWS

platform)

Seller

(merchants who sell on

Amazon’s platform)

buyers

SOAP/R
EST

SOAP/REST
SOAP/REST

SOAP/REST

Figure D- 1 Relationship between Amazon Web Services (AWS) and its

Customers

D-2 Benefits of Using Amazon Web Services

Here are some of the key benefits to using Amazon Web Services:

 Scalable product integration: AWS enables the customers to add much of the

rich product content that makes Amazon.com a great place to shop, such as

real-time pricing and availability, product images, customer reviews, product

descriptions, sales rank, and more. This content enable Associates to create

and display full product detail pages that provide visitors the information they

need to make a purchasing decision

 Flexible merchandising: Product content can be integrated into the look and

design of client Web site.

 Product Search: Enable the visitors to conduct product searches across all

major product categories available at Amazon.com. Product search results can

be embedded directly into client Web site.

Appendix D: Amazon Web Services (AWS) Case Study

262

 Remote Shopping Cart: Enable the visitors to add products into the Amazon

shopping cart while on the associates’ site.

 AWS is free to join and use.

So Amazon’s aims in providing Web services were, to support industry standards,

provide remote access to data and functionality, and to create a software

development platform (AWS platform) to create websites and applications that

perform various functions, such as enabling and completing transactions,

retrieving information about Amazon products or adding a product to an Amazon

shopping cart, wish list, or registry.

Amazon Web Services (AWS) provides E-Commerce Service (ECS) Version

3.0/4.0. Amazon E-Commerce Service is explained in the following section.

D-3 Amazon E-Commerce Service (ECS)

Amazon E-Commerce Service (ECS) [149] exposes Amazon’s product data and

E-Commerce functionality which allowing developers, Web site owners and

merchants to leverage the data and functionality that Amazon uses to power its

own E-Commerce business. ECS 4.0, which has launched on October 4th, 2004, is

available free-of-charge, makes it extremely easy for developers to build rich Web

sites and applications.

D-3-1 E-Commerce Service (ECS) Features

With ECS 4.0, developers can add rich content and powerful capabilities to Web

sites and applications by using the following features:

Detailed Product Information on all Amazon.com Products

ECS 4.0 provides detailed product and pricing information for all products across

every product category in the Amazon.com product catalog. It provides access to

product attributes, which used to describe and differentiate products on a Web site

Appendix D: Amazon Web Services (AWS) Case Study

263

or in an application. For example, developers can obtain the color, luster, size, and

clarity of a pearl sold in Amazon.com's Jewelry store.

Access to Amazon.com Product Images

ECS 4.0 provides access to images in all product categories, even for the newest

product categories Amazon.com has launched.

All Customer Reviews associated with a Product

ECS 4.0 allows developers to retrieve all customer reviews for a specific product,

which used to enhance the richness of Web sites and applications.

Extended Search

With ECS 4.0, developers can create applications with more complex search

options than before. Previously, developers were limited to a simple keyword

search. Now developers can build on the same functionality as Amazon.com’s

“Advanced Search,” which allows searching by numerous attributes, including

brand, price, and category.

Remote Shopping Cart

ECS 4.0 allows developers to add Remote Shopping Cart functionality to their

own Web site or application. With this Remote Shopping Cart functionality,

developers can add items to an Amazon.com shopping cart and submit it to

Amazon.com for check-out processing.

Amazon Wish List Search

Developers can now add wish list search by name, email address, city, and state

into their applications.

Appendix D: Amazon Web Services (AWS) Case Study

264

Precise Response Groups

ECS 4.0 introduces Response Groups; a new feature that allows developers to

specify and retrieve only the information they want from Amazon.com. This

approach is far more flexible and efficient than the previous response types (lite

(some data) or heavy (more data). ECS 4.0 includes more than 30 response groups

that developers can mix and match to get exactly the information they want.

Multi-Operation and Batch Interfaces

ECS 4.0 enables developers to input a single request and receive responses that

include data from up to two operations, which means more data from fewer

requests and faster application performance.

Amazon E-Commerce (ECS) provides ECS 4.0 SDK documentation guide which

provides all the information the developer needs to create Web sites or

applications that integrate ECS as well as diagnose and resolve the problems. ECS

4.0 SDK documentation guide [48] is described in the following section.

D-4 Amazon E-Commerce Service (ECS) 4.0 Software
Development Kit (SDK)

ECS 4.0 SDK provides all the information the developer needs to create Web sites

or applications that integrate ECS as well as diagnose and resolve the problems.

In order to access ECS, the developer must first register with the Amazon Web

Services program. Registration is free. The developer will be assigned a

subscription ID after completing the registration that will allow him to access all

ECS functionality.

D-4-1 Introduction to Amazon E-Commerce Service (ECS)

ECS is an Application Programming Interface (API) that allows the requester to

access Amazon data and functionality through a Web site or Web-enabled

application. ECS follows the standard Web services model: the requester requests

Appendix D: Amazon Web Services (AWS) Case Study

265

data through REST (XML over HTTP) or SOAP and data is returned by the

service as an XML-formatted stream of text.

ECS is currently incorporated in thousands of Web sites and applications around

the world. Amazon partners use ECS for competitive pricing, inventory

management, and other online retailing tasks.

ECS is available for all Amazon sites (or locales):

 US (amazon.com)

 UK (amazon.co.uk)

 Germany (amazon.de)

 Japan (amazon.co.jp)

 France (amazon.fr)

 Canada (amazon.ca)

D-4-2 Selecting a Web Services Access Method

There are two options for accessing ECS:

 Making REST requests

 Making SOAP requests

 Making REST Requests

This section explains how to use REST (Representational State Transfer) to make

requests through Amazon E-Commerce Service (ECS). REST is a Web services

protocol that was created by Roy Fielding in his Ph.D. thesis ([48] cited [150]).

REST allows the user to make calls to ECS by passing parameter keys and values

in a URL (Uniform Resource Locator). ECS returns its response in XML

(Extensible Markup Language) format. The developer can enter the REST URL

into the browser's address bar, and the browser displays the raw XML response.

 Request Parameters

Appendix D: Amazon Web Services (AWS) Case Study

266

The REST request to ECS begins with a base URL which is specific to the locale

in which the requester wants to make the request. The following base URLs are

available:

For Amazon.com (US)

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

For Amazon.co.uk (UK)

http://webservices.amazon.co.uk/onca/xml?Service=AWSECommerceService

The base URL is followed by a series of request parameters. Parameters are

separated from each other by an ampersand (&) character. Each parameter

consists of a key and a value, separated from each other by an equals sign (=). The

parameters and their values are case-sensitive; for example,

Operation=ItemSearch works correctly, but operation=itemsearch produces an

error.

The following example shows a simple REST request that searches for books on

Amazon.com.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[your subscription ID here]

&Operation=ItemSearch

&SearchIndex=Books

&Keywords=dog

The parameters in the example are described below:

SubscriptionId=[your subscription ID here]

SubscriptionId is required in all ECS requests. After registering as an Amazon

Web Services Developer, the requester will be assigned a subscription ID which

allows him to access all ECS functionality.

Operation=ItemSearch

Appendix D: Amazon Web Services (AWS) Case Study

267

Operation is required in all ECS requests; it tells ECS what action it must

perform. In the example, the operation is ItemSearch, which tells ECS to perform

a search for products in the Amazon.com catalog that meet particular criteria.

SearchIndex=Books

SearchIndex is required by the ItemSearch operation. SearchIndex tells the

ItemSearch operation what type of product to search for. The example searches

through the Books index.

Keywords=dog

Keywords tells the ItemSearch operation to search the Amazon.com catalog for

specific text values. In the example, the request searches for the word "dog."

The requester can search for more than one keyword separated by URL-encoded

space characters (%20). For example, to search for cats and dogs, the requester

specifies Keywords=cats%20dogs in the request.

Controlling Return Data with Response Groups

The requester/developer can control the amount and what kinds of data are

returned in a response by specifying the ResponseGroup parameter. If he does not

specify the ResponseGroup parameter, ECS returns a default response groups

(Request and Small response groups as in the previous example), depending on

the operation he uses. He can specify more than one response group, separated by

commas, in order to refine and tailor response data to fit the needs of his

application.

The Request response group returns the list of parameters and values that he has

requested. Request is a default response group for every operation.

The Small response group returns global, item-level data about items included in

the response. For example, the item's Amazon Standard Item Number (ASIN),

name, creator (for example, author or artist), product group, URL, and

manufacturer. The requester/developer can expand the information returned by

Appendix D: Amazon Web Services (AWS) Case Study

268

specifying Medium or Large response group. He can also narrow the response to

include specific information about each item by specifying response groups like

Images or Accessories. The Response Groups will be described in details in the

coming sections.

The following example uses the ItemIds response group to retrieve only the

ASINs for books about dogs:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[your subscription ID here]

&Operation=ItemSearch

&SearchIndex=Books

&Keywords=dog

&ResponseGroup=ItemIds

Making SOAP Requests

SOAP (Simple Object Access Protocol) allows third-party developers to use

Amazon E-Commerce Service (ECS) by making remote procedure calls. This

information is encoded using XML (Extensible Markup Language). ECS

publishes a Web Services Description Language (WSDL) document that defines

all the available ECS APIs, their parameters, and the data that they return.

The SOAP End Points

For Amazon.com (US) data

http://webservices.amazon.com/onca/soap?Service=AWSECommerceService

For Amazon.co.uk (UK) data

http://webservices.amazon.co.uk/onca/soap?Service=AWSECommerceService

D-4-3Amazon E-Commerce (ECS) Operations

Amazon E-Commerce Service (ECS) operations allow the requester/developer to

access the information available on Amazon's Web site.

Appendix D: Amazon Web Services (AWS) Case Study

269

ECS operations fall into two categories. Search operations, whose names end in

"Search," allow the requester/developer to query an Amazon Web site for content

or data using keywords, titles, creator names, or other information. Lookup

operations, whose names end in "Lookup," allow the requester/developer to

request content or data keyed by an ID such as an ASIN (Amazon Standard Item

Number), a UPC (Universal Product Code), a wish list ID, or a seller ID.

All Operations

The following operations are available in Amazon E-Commerce Service:

 BrowseNodeLookup

 CartAdd

 CartClear

 CartCreate

 CartGet

 CartModify

 CustomerContentLookup

 CustomerContentSearch

 Help

 ItemLookup

 ItemSearch

 ListLookup

 ListSearch

 SellerListingLookup

 SellerListingSearch

 SellerLookup

Appendix D: Amazon Web Services (AWS) Case Study

270

 SimilarityLookup

 TransactionLookup

ItemLookup and ItemSearch operations will be explained in the following. Further

information about the remaining operations can be found in [48].

ItemLookup Operation

Description

The ItemLookup operation allows the requester/developer to retrieve catalog

information for up to ten products or restaurants (US only). ItemLookup provides

access to customer reviews, variations, product similarities, pricing, availability,

images, product accessories, and other information.

Sample Request

Using ItemLookup (REST)

The following ItemLookup example demonstrates a request for item information

for an ASIN.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[ID]

&Operation=ItemLookup

&ItemId=[An ASIN]

Request Parameters

Request parameters specify the terms of the requester/developer request and

control the output data that is returned to him.The required parameters must be

include in every request.

The following parameters are specific to the ItemLookup operation:

Table D- 1ItemLookup Request Parameters
Parameter Description Required? Value

Operation

The operation

Always

Required

ItemLookup

ItemId

Product(s) the requester/developer would

like information about. By default the item

IDs are assumed to be ASINs, unless he

Always

Required

Product IDs

Appendix D: Amazon Web Services (AWS) Case Study

271

specifies the IdType parameter.
IdType

Type of product ID the

requester/developer is requesting

information about.

SKU requires a MerchantId. US only.

UPC is US only.

EAN is the same as JAN (Japanese article

Number)

If the requester/developer selects SKU,

UPC, or EAN as the IdType for his

request, he also needs to include the

SearchIndex parameter.

Required

for

SKU,

UPC or

EAN

search

Default Value

• ASIN

Valid Values

• ASIN

• SKU (US only)

• UPC (US only)

• EAN (DE/JP
only)

SearchIndex

The Amazon store to search. This

parameter

is ignored for ASIN searches.

SearchIndex is required any time the

requester/developer selects SKU, UPC, or

EAN as the IdType for his request

Required

for

UPC,

SKU or

EAN

searches

Valid Values:

• Electronics

•Music

• Classical

• DVD

• VHS

• Video

• OutdoorLiving

•HealthPersonal-
Care

• Kitchen

• Software

• SoftwareVideo-
Games

• VideoGames

• Tools

Condition

Use the Condition parameter to filter the

offers returned in the product list by

condition type.

Always

Optional

Default Value

• New

Valid Values

• All

• New

• Used

• Refurbished

• Collectible

DeliveryMethod

Use the DeliveryMethod parameter to filter

offers returned in the product list by

delivery method. Valid values are Ship

and ISPU (In-store pickup).

Always

Optional

Default Value

• Ship

Valid Values

• Ship

• ISPU

ResponseGroup

Controls the data returned by the

operation.

Use this parameter to specify which

response group(s), or group(s) of data

elements that wiuld be returned.

The requester/developer can specify as

many response groups as he wishes using

a comma-separated list (REST) or multiple

elements (SOAP).

Always

Optional

Default Values

• Request

• Small

Valid Values

• Request

• ItemIds

• Small

• Medium

• Large

Appendix D: Amazon Web Services (AWS) Case Study

272

• OfferFull

• Offers

• OfferSummary

• Variations

•VariationMinimum

•VariationSummary

• ItemAttributes

• Tracks

• Accessories

• EditorialReview

• SalesRank

• BrowseNodes

• Images

• Similarities

• Reviews

• ListmaniaLists

ItemSearch Operation

Description

The ItemSearch operation allows the requester/developer to search for products

and restaurants.

Sample Request

Using ItemSearch (REST)

The following ItemSearch example demonstrates a keyword search within a

specified index. It also returns the search results in the order specified by the sort

that is entered.

http://webservices.amazon.com/onca/

xml?Service=AWSECommerceService&SubscriptionId=[Your Subscription ID

Here]&Operation=ItemSearch&Keywords=[A

Keywords String]&SearchIndex=[A Search Index

String]&Sort=[A Sort String]

Request Parameters

Request parameters specify the terms of our request and control the output data

that is returned to the requester/developer.

The following parameters are specific to the ItemSearch operation:

Table D- 2 itemSearch Request Parameters
Parameter Description Required? Value

Operation The operation Always ItemSearch

Appendix D: Amazon Web Services (AWS) Case Study

273

 Required

SearchIndex

The list of available SearchIndex values,

listed by locale.

Always

Required

Valid Values:

• A Search Index

(varies by locale)

Keywords

Amazone E-Commerce Service (ECS) will

match the word or phrase that include in the

request against various product fields,

including product title, author, artist,

description, manufacturer, etc.

 Valid Value:

• A KeywordsString

Title

Use the Title parameter when the

requester/developer wants to query against

product titles only.

 Valid Value:

• A Title String

ItemPage

This parameter returns the specified page.

When we use ItemPage, Item-Search will

return 10 search results at a time. The

maximum ItemPage number that can be

returned is 3200. If we do not include

ItemPage in our request, the first page

(containing the first 10 items or all of the

items if there are less than 10) will be

returned by default.

Always

Optional

Default Value:

• 1

Valid Values:

• Integers 1 to 3200

Sort

Use the Sort parameter to specify how the

item search results will be ordered.

Always

Optional

Valid Values:

•Varies by

SearchIndex and

Locale

MinimumPrice

Use the MinimumPrice parameter to set a

lower price bound on products returned by

ItemSearch. The MinimumPrice value must

be specified in pennies (or equivalent in

local currency).

Always

Optional

Valid Value:

• An Integer

MaximumPrice

Use the MaximumPrice parameter to set an

upper price bound on products returned by

ItemSearch. The MaximumPrice value must

be specified in pennies (or equivalent in

local currency).

Always

Optional

Valid Value:

• An Integer

Condition

Use the Condition parameter to filter the

offers returned in the product list by

condition type.

Always

Optional

Default Value

• New

Valid Values

• All

• New

• Used

• Refurbished

• Collectible

DeliveryMethod

Use the DeliveryMethod parameter to filter

offers returned in the product list by delivery

method. Valid values are Ship and ISPU (In-

store pickup).

Always

Optional

Default Value

• Ship

Valid Values

• Ship

• ISPU

ResponseGroup

Controls the data returned by the operation.

Use this parameter to specify which response

group(s), or group(s) of data elements that

Always

Optional

Default Values

• Request

• Small

Appendix D: Amazon Web Services (AWS) Case Study

274

would be returned.

The requester/developer can specify as many

response groups as he wishes using a

comma-separated list (REST) or multiple

elements (SOAP).

Valid Values

• Request

• ItemIds

• Small

• Medium

• Large

• Offers

• OfferSummary

• Variations

• VariationMinimum

• VariationSummary

• ItemAttributes

• Tracks

• Accessories

• EditorialReview

• SalesRank

• BrowseNodes

•Images

• Similarities

• Reviews

• ListmaniaLists

D-4-4 Response Groups

Response groups are data sets that can be returned by Amazon E-Commerce

Service (ECS). They allow the requesters/developers to tailor their requests to

return only the data they need. Each operation, such as ItemSearch or

SimilarityLookup, has a list of valid response groups that can be used with it. The

list of valid response groups supported for an operation is found in that operation's

ResponseGroup request parameter as shown in Table D- 1 and Table D- 2.

All Response Groups

 Accessories

 BrowseNodeInfo

 BrowseNodes

 Cart

 CartSimilarities

 CustomerFull

 CustomerInfo

Appendix D: Amazon Web Services (AWS) Case Study

275

 CustomerLists

 CustomerReviews

 EditorialReview

 Help

 Images

 ItemAttributes

 ItemIds

 Large

 ListFull

 ListInfo

 ListItems

 ListmaniaLists

 ListMinimum

 Medium

 OfferFull

 Offers

 OfferSummary

 Request

 Reviews

 SalesRank

 Seller

 SellerListing

 Similarities

 Small

Appendix D: Amazon Web Services (AWS) Case Study

276

 Tracks

 TransactionDetails

 VariationMinimum

 Variations

 VariationSummary

Some of the response groups are explained and further information about the

remaining is found in [48].

CustomerReviews Response Group

Description

The CustomerReviews response group provides the Reviews for each customer

listed in the response. Each review in the response is described by the elements

for the ASIN reviewed, the product rating, the review Summary, the review

Comment, and DateOfReview. The product rating is used to calculate the product

Reputation by using the equation:

repq =
n

R
n

i

i
1 , where iR is the customer’s product rating, n is the number of

times the product has been graded (see Section Error! Reference source not

found.).

REST Sample Response and Request

Sample Response (REST)

<?xml version="1.0" encoding="UTF-8"?>

<CustomerContentLookupResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/

2004-08-01">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)"/>

</HTTPHeaders>

<RequestId>0ZX5BT4M4DEMTWK6YC76</RequestId>

<Arguments>

<Argument Name="Service" Value="AWSECommerceService"/>

<Argument Name="AssociateTag" Value="[Your Associate ID Here]"/>

<Argument Name="CustomerId" Value="A2KEKKJ9CAC2KC"/>

Appendix D: Amazon Web Services (AWS) Case Study

277

<Argument Name="SubscriptionId" Value="[Your Subscription ID Here]"/>

<Argument Name="ResponseGroup" Value="CustomerReviews"/>

<Argument Name="Operation" Value="CustomerContentLookup"/>

</Arguments>

</OperationRequest>

<Customers>

<Request>

<IsValid>True</IsValid>

</Request>

<Customer>

<CustomerReviews>

<Review>

<ASIN>B0000VUP40</ASIN>

<Rating>5</Rating>

<Date>1068860248</Date>

<Summary>Ridiculously Good Cookies</Summary>

</Review>

The Request that Generated the Response (REST)

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[Your Subscription ID Here]

&AssociateTag=[Your Associate ID Here]

&Operation=CustomerContentLookup

&CustomerId=A2KEKKJ9CAC2KC

&ResponseGroup=CustomerReviews

ItemAttributes Response Group

Description

The ItemAttributes response group provides information about each item in the

response that is unique to the item's product category (Books, DVD, Electronics,

Apparel, etc.). It provides ListPrice element that include the product price which

is equivalent to Service Price in the proposed quality criteria classification in 3.3.

REST Sample Response and Request

Sample Response (REST)

<?xml version="1.0" encoding="UTF-8"?>

<ItemLookupResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/
2004-08-01">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)"/>

</HTTPHeaders>

<RequestId>0NSJAG4Y97K07K4SFJX0</RequestId>

<Arguments>

<Argument Name="Service" Value="AWSECommerceService"/>

Appendix D: Amazon Web Services (AWS) Case Study

278

<Argument Name="AssociateTag" Value="[Your Associate ID Here]"/>

<Argument Name="SubscriptionId" Value="[Your Subscription ID Here]"/>

<Argument Name="ItemId" Value="B00008OE6I"/>

<Argument Name="ResponseGroup" Value="ItemAttributes"/>

<Argument Name="Operation" Value="ItemLookup"/>

</Arguments>

</OperationRequest>

<Items>

<Request>

<IsValid>True</IsValid>

</Request>

<Item>

<ASIN>B00008OE6I</ASIN>

<ItemAttributes>

<Height Units="inches">2.24</Height>

<Length Units="inches">1.09</Length>

<ListPrice>

<Amount>44999</Amount>

<CurrencyCode>USD</CurrencyCode>

<FormattedPrice>$449.99</FormattedPrice>

</ListPrice>

<Manufacturer>Canon Cameras US</Manufacturer>

<NumberOfItems>1</NumberOfItems>

<ProductGroup>Photography</ProductGroup>

<Title>Canon PowerShot S400 4MP Digital Camera w/ 3x Optical Zoom

</ Title>

<UPC>013803023961</UPC>

<Weight Units="pounds">0.41</Weight>

<Width Units="inches">3.43</Width>

</ItemAttributes>

</Item>

</Items>

</ItemLookupResponse>

The Request that Generated the Response (REST)

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[Your Subscription ID Here]

&AssociateTag=[Your Associate ID Here]

&Operation=ItemLookup

&ItemId=B00008OE6I

&ResponseGroup=ItemAttributes

Offers Response Group

Description

The Offers response group is a parent response group that returns the contents of

the OfferSummary response group plus, by default, all "New" offer listings. For

each offer listing, this response groups will return the SellerId and the

MerchantId, as well as the offer listing condition, sub-condition, and description.

Offers response group provides information about product availability and the

Appendix D: Amazon Web Services (AWS) Case Study

279

product price which are equivalent to Availability and Service Price in the

proposed quality criteria classification in Section 3.3.

REST Sample Response and Request

Sample Response (REST)

<?xml version="1.0" encoding="UTF-8"?>

<ItemLookupResponse
xmlns="http://webservices.amazon.com/AWSECommerceService/
2004-08-01">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)"/>

</HTTPHeaders>

<RequestId>1PZJ2MKA8YY3452P0PZX</RequestId>

<Arguments>

<Argument Name="MerchantId" Value="All"/>

<Argument Name="Service" Value="AWSECommerceService"/>

<Argument Name="AssociateTag" Value="[Your Associate ID Here]"/>

<Argument Name="SubscriptionId" Value="[Your Subscription ID Here]"/>

<Argument Name="ItemId" Value="0439358078"/>

<Argument Name="ResponseGroup" Value="Offers"/>

<Argument Name="Operation" Value="ItemLookup"/>

</Arguments>

</OperationRequest>

<Items>

<Request>

<IsValid>True</IsValid>

</Request>

<Item>

<ASIN>0439358078</ASIN>

<OfferSummary>

<LowestNewPrice>

<Amount>514</Amount>

<CurrencyCode>USD</CurrencyCode>

<FormattedPrice>$5.14</FormattedPrice>

</LowestNewPrice>

<LowestUsedPrice>

<Amount>525</Amount>

<CurrencyCode>USD</CurrencyCode>

<FormattedPrice>$5.25</FormattedPrice>

</LowestUsedPrice>

<LowestCollectiblePrice>

<Amount>957</Amount>

<CurrencyCode>USD</CurrencyCode>

<FormattedPrice>$9.57</FormattedPrice>

</LowestCollectiblePrice>

<TotalNew>48</TotalNew>

<TotalUsed>46</TotalUsed>

<TotalCollectible>7</TotalCollectible>

<TotalRefurbished>0</TotalRefurbished>

Appendix D: Amazon Web Services (AWS) Case Study

280

</OfferSummary>

<Offers>

<TotalOffers>48</TotalOffers>

<TotalOfferPages>5</TotalOfferPages>

<Offer>

<Seller>

<SellerId>ASYDZOX0HKBSE</SellerId>

</Seller>

<OfferAttributes>

<Condition>New</Condition>

<SubCondition>new</SubCondition>

<ConditionNote>100% Brand New! - Ships Today! Identical to

Copy! *We recommend Expedited Shipping option for much faster mail delivery</

ConditionNote>

</OfferAttributes>

<OfferListing>

<OfferListingId>fGC28xteSrZMVrPT%2BTRkFtuDQaiixLJKXzIWLQqk295vz96a7M4f%2BQi4

z RQlYyi9QAYXPhyqM2aThqdd8YA1aIr3SxsQ7HMB</OfferListingId>

<ExchangeId>Y01Y0538529Y2514641</ExchangeId>

<Price>

<Amount>514</Amount>

<CurrencyCode>USD</CurrencyCode>

<FormattedPrice>$5.14</FormattedPrice>

</Price>

<Availability>Usually ships in 1-2 business days</Availability>

</OfferListing>

</Offer>

</Offers>

</Item>

</Items>

</ItemLookupResponse>

The Request that Generated the Response (REST)

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[Your Subscription ID Here]

&AssociateTag=[Your Associate ID Here]

&Operation=ItemLookup

&ItemId=0439358078

&MerchantId=All

&ResponseGroup=Offers

Reviews Response Group

Description

The Reviews response group provides a list of customer reviews, an average rating

(1 to 5 stars) that is equivalent to the product Reputation (see Section Error!

Reference source not found.) in the proposed quality criteria classification, and

the total number of reviews for each item in the response. Each customer review

will contain the rating, summary, date of review, and full review text.

Appendix D: Amazon Web Services (AWS) Case Study

281

REST Sample Response and Request

<?xml version="1.0" encoding="UTF-8"?>

<ItemLookupResponse xmlns="http://webservices.amazon.com/AWSECommerceService/

2004-08-01">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)"/>

</HTTPHeaders>

<RequestId>01WJMPWPKSVTA7B567M2</RequestId>

<Arguments>

<Argument Name="Service" Value="AWSECommerceService"/>

<Argument Name="AssociateTag" Value="[Your Associate ID Here]"/>

<Argument Name="SubscriptionId" Value="[Your Subscription ID Here]"/>

<Argument Name="ItemId" Value="0060006781"/>

<Argument Name="ResponseGroup" Value="Reviews"/>

<Argument Name="Operation" Value="ItemLookup"/>

</Arguments>

</OperationRequest>

<Items>

<Request>

<IsValid>True</IsValid>

</Request>

<Item>

<ASIN>0060006781</ASIN>

<CustomerReviews>

<AverageRating>3.95</AverageRating>

<TotalReviews>20</TotalReviews>

<Review>

<ASIN>0060006781</ASIN>

<Rating>4</Rating>

<HelpfulVotes>9</HelpfulVotes>

<TotalVotes>11</TotalVotes>

<Date>2003-06-13</Date>

<Summary>It's in the genes, just not in the way we thought.</Summary>

</Review>

</CustomerReviews>

</Item>

</Items>

</ItemLookupResponse>

The Request that Generated the Response (REST)

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[Your Subscription ID Here]

&AssociateTag=[Your Associate ID Here]

&Operation=ItemLookup

&IdType=ASIN

&ItemId=0060006781

&ResponseGroup=Reviews

Seller Response Group

Description

Appendix D: Amazon Web Services (AWS) Case Study

282

The Seller response group provides the seller ID, nickname, average feedback

rating which is equivalent to the seller Reputation in the proposed quality criteria

classification, description, and location for each seller in the response.

REST Sample Response and Request

Sample Response (REST)

<?xml version="1.0" encoding="UTF-8"?>

 <SellerLookupResponse xmlns="http://webservices.amazon.com/AWSECommerceService/

2004-08-01">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)"/>

</HTTPHeaders>

<RequestId>0VFWPQA26CMF97MGFKXJ</RequestId>

<Arguments>

<Argument Name="Service" Value="AWSECommerceService"/>

<Argument Name="AssociateTag" Value="[Your Associate ID Here]"/>

<Argument Name="SubscriptionId" Value="[Your Subscription ID Here]"/>

<Argument Name="ResponseGroup" Value="Seller"/>

<Argument Name="Operation" Value="SellerLookup"/>

<Argument Name="SellerId" Value="A3ENSIQ3ZA4FFN"/>

</Arguments>

</OperationRequest>

<Sellers>

<Request>

<IsValid>True</IsValid>

</Request>

<Seller>

<SellerId>A3ENSIQ3ZA4FFN</SellerId>

<SellerName>abebooks.com</SellerName>

<Nickname>abebooks</Nickname>

<Location>

<City>Pt. Roberts</City>

<State>WA</State>

</Location>

<AverageFeedbackRating>4.39</AverageFeedbackRating>

<TotalFeedback>149642</TotalFeedback>

<TotalFeedbackPages>29929</TotalFeedbackPages>

<SellerFeedback>

<Feedback>

<Rating>4</Rating>

<Comment>excellent condition and service if a little lengthy in

overseas delivery time</Comment>

<Date>2004-09-28T05:41+0000</Date>

<RatedBy>A1J4CF92QNWOAE</RatedBy>

</Feedback>

</SellerFeedback>

</Seller>

</Sellers>

Appendix D: Amazon Web Services (AWS) Case Study

283

</SellerLookupResponse>

The Request that Generated the Response (REST)

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[Your Subscription ID Here]

&AssociateTag=[Your Associate ID Here]

&Operation=SellerLookup

&SellerId=A3ENSIQ3ZA4FFN

&FeedbackPage=1

&ResponseGroup=Seller

TransactionDetails Response Group

Description

The TransactionDetails response group provides information about Amazon

transactions, including the seller ID, the condition of the transaction, the date of

the transaction, and the total dollar amount of the transaction which is equivalent

to Execution Price in the proposed quality criteria classification.

TransactionDetails does not return information about the items that were

purchased or about the customers who completed the transaction.

REST Sample Response and Request

Sample Response (REST)

<?xml version="1.0" encoding="UTF-8"?>

<TransactionLookupResponse xmlns="http://webservices.amazon.com/AWSECommerceService/

2004-08-01">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)"/>

</HTTPHeaders>

<RequestId>0JGK2H9TFCDSXN0BTY6B</RequestId>

<Arguments>

<Argument Name="Service" Value="AWSECommerceService"/>

<Argument Name="AssociateTag" Value="[Your Associate ID Here]"/>

<Argument Name="SubscriptionId" Value="[Your Subscription ID Here]"/>

<Argument Name="TransactionId" Value="104-1867480-8536729"/>

<Argument Name="ResponseGroup" Value="TransactionDetails"/>

<Argument Name="Operation" Value="TransactionLookup"/>

</Arguments>

</OperationRequest>

<Transactions>

<Request>

<IsValid>True</IsValid>

</Request>

<Transaction>

Appendix D: Amazon Web Services (AWS) Case Study

284

<TransactionId>104-1867480-8536729</TransactionId>

<SellerId>ATVPDKIKX0DER</SellerId>

<Condition>Complete</Condition>

<TransactionDate>2004-06-14T21:51:53</TransactionDate>

<TransactionDateEpoch>1087249913</TransactionDateEpoch>

<SellerName>Amazon.com</SellerName>

<Tax>

<Amount>2.49</Amount>

<CurrencyCode>USD</CurrencyCode>

<FormattedPrice>$2.00</FormattedPrice>

</Tax>

<ShippingCharge>

<Amount>4.98</Amount>

<CurrencyCode>USD</CurrencyCode>

<FormattedPrice>$4.00</FormattedPrice>

</ShippingCharge>

<Shipments>

<Shipment>

<Condition>Shipped</Condition>

<DeliveryMethod>Mail</DeliveryMethod>

<ShipmentItems>

<TransactionItemId>jjsnptouplox</TransactionItemId>

<TransactionItemId>jjsnptouorox</TransactionItemId>

</ShipmentItems>

</Shipment>

</Shipments>

</Transaction>

</Transactions>

</TransactionLookupResponse>

The Request that Generated the Response (REST)

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

&SubscriptionId=[Your Subscription ID Here]

&AssociateTag=[Your Associate ID Here]

&Operation=TransactionLookup

&TransactionId=104-1867480-8536729

&ResponseGroup=TransactionDetails

Appendix E: Using SOAP Request to Access Amazon E-Commerce

Service

285

Appendix E: Using SOAP Request to Access
Amazon E-Commerce Service

A simple ASP.NET Web application is taken from [146] to use SOAP request to

access ECS. In order to access Amazon E-Commerce Service server, it is required

to add a Web reference to Amazon Web Services by selecting the Project | Add

Web Reference menu option from Visual Studio .NET and then enter the

following URL in the address text box as shown in Figure E- 1 Add Web

Reference:

http://soap.amazon.com/schemas2/AmazonWebServices.wsdl

Figure E- 1 Add Web Reference

The source code of ASP.NET Web application taken from [146]:

using System;

using System.Threading;

using System.Drawing;

Appendix E: Using SOAP Request to Access Amazon E-Commerce

Service

286

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using amazonCache.com.amazon.webservices;

namespace amazonCache

{

public class Form1 : System.Windows.Forms.Form

{

 private System.Windows.Forms.Button button1;

 private System.Windows.Forms.TextBox textBox1;

 private System.Windows.Forms.Label label1;

 static void Main()

 {

 Application.Run(new Form1());

 }

 private void button1_Click(object sender, System.EventArgs e)

 {

 ItemSearchResponse response;

 AWSECommerceService aws=new AWSECommerceService();

 ItemSearchRequest request=new ItemSearchRequest();

 request.SearchIndex="Books";

 request.Power="title:"+textBox1.Text;

 request.ResponseGroup=new string[] {"Large"};

 request.Sort="salesrank";

 ItemSearchRequest[] requests=new
 ItemSearchRequest[] {request};

 ItemSearch itemSearch =new ItemSearch();

 itemSearch.AssociateTag="webservice1-20";

 itemSearch.SubscriptionId=" 1NC71HN9R7AE4KJ1G3G2";

 itemSearch.Request=requests;

 response=aws.ItemSearch(itemSearch);

 Items info =response.Items[0];

 Item[] items=info.Item;

 label1.Text="";

 for(int i=0; i<items.Length;i++)

 {

 Item item=items[i];

 label1.Text+="Book

 Title:"+item.ItemAttributes.Title+"
";

 }

 }

 }

Appendix F: REST Request and XML Data Result

287

Appendix F: REST Request and XML Data
Result

By typing the REST request1 as shown in Figure F- 1 in the address bar in the

Internet explorer and hit “Go” button, the following XML result is displayed:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService &

SubscriptionId=1NC71HN9R7AE4KJ1G3G2 &Operation=ItemSearch &Title=web

services & SearchIndex=Books &MerchantId=All &ResponseGroup=Item Attributes.

OfferFull

Figure F- 1REST Request 1

<?xml version="1.0" encoding="UTF-8" ?>

<ItemSearchResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50215)" />

</HTTPHeaders>

<RequestId>0VX4GE3BHXPQDZ60AFQA</RequestId>

<Arguments>

<Argument Name="MerchantId" Value="All" />

<Argument Name="Service" Value="AWSECommerceService" />

<Argument Name="Title" Value="web services" />

<Argument Name="SearchIndex" Value="Books" />

<Argument Name="SubscriptionId" Value="1NC71HN9R7AE4KJ1G3G2" />

<Argument Name="ResponseGroup" Value="ItemAttributes,OfferFull" />

<Argument Name="Operation" Value="ItemSearch" />

</Arguments>

<RequestProcessingTime>0.901411056518555</RequestProcessingTime>

</OperationRequest>

<Items>

<Request>

<IsValid>True</IsValid>

<ItemSearchRequest>

<MerchantId>All</MerchantId>

<ResponseGroup>OfferFull</ResponseGroup>

<ResponseGroup>ItemAttributes</ResponseGroup>

<SearchIndex>Books</SearchIndex>

<Title>web services</Title>

</ItemSearchRequest>

</Request>

<TotalResults>933</TotalResults>

<TotalPages>94</TotalPages>

<Item>

 <ASIN>0131428985</ASIN>

Appendix F: REST Request and XML Data Result

288

<ItemAttributes>

 <Author>Thomas Erl</Author>

 <ISBN>0131428985</ISBN>

 <Height Units="hundredths-inches">145</Height>

 <Length Units="hundredths-inches">918</Length>

 <Weight Units="hundredths-pounds">231</Weight>

 <ProductGroup>Book</ProductGroup>

 <PublicationDate>2004-04-16</PublicationDate>

 <Publisher>Prentice Hall PTR</Publisher>

 <Title>Service-Oriented Architecture : A Field Guide to Integrating XML and Web

Services</Title>

</ItemAttributes>

<Offers>

 <TotalOffers>35</TotalOffers>

 <TotalOfferPages>4</TotalOfferPages>

<Offer>

<Seller>

 <SellerId>A2ZGNN73WLXVFQ</SellerId>

 <Nickname>a1books</Nickname>

 <AverageFeedbackRating>4.5</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>2243</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$28.21</FormattedPrice>

</Price>

<Availability>Usually ships in 1-2 business days</Availability>

 </Offer>

<Offer>

<Seller>

 <SellerId>A2PH0OU9DK0NPM</SellerId>

 <Nickname>fantastic_shopping</Nickname>

 <AverageFeedbackRating>4.5</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>2243</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$24.14</FormattedPrice>

</Price>

<Availability>only 70% left in stock</Availability>

</Offer>

…….

</Offers>

</Item>

<Item>

<ASIN>0131488740</ASIN>

<ItemAttributes>

<Author>Sanjiva Weerawarana</Author>

<Author>Francisco Curbera</Author>

<Author>Frank Leymann</Author>

<Author>Tony Storey</Author>

<Author>Donald F. Ferguson</Author>

<ISBN>0131488740</ISBN>

Appendix F: REST Request and XML Data Result

289

<Height Units="hundredths-inches">82</Height>

<Length Units="hundredths-inches">938</Length>

<Weight Units="hundredths-pounds">136</Weight>

<ProductGroup>Book</ProductGroup>

<PublicationDate>2005-03-22</PublicationDate>

<Publisher>Prentice Hall PTR</Publisher>

<Title>Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging, and More</Title>

<Offers>

 <TotalOffers>47</TotalOffers>

 <TotalOfferPages>5</TotalOfferPages>

<Offer>

<Seller>

<SellerId>A3B9364CV8QDO9</SellerId>

<Nickname>amz_book</Nickname>

<AverageFeedbackRating>3</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>2895</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$29.95</FormattedPrice>

</Price>

<Availability>Limited availability</Availability>

<Offer>

<Seller>

 <SellerId>A1KIF2Y9A1PQYE</SellerId>

 <Nickname>allnewbooks</Nickname>

<AverageFeedbackRating>2.6</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>2924</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$32.34</FormattedPrice>

 </Price>

<Availability>Special order</Availability>

</Offer>

</Item>

<Item>

<ASIN>0321369440</ASIN>

<ItemAttributes>

 <Author>Mike Andrews</Author>

 <Author>James A. Whittaker</Author>

 <ISBN>0321369440</ISBN>

 <Height Units="hundredths-inches">65</Height>

 <Length Units="hundredths-inches">916</Length>

 <Weight Units="hundredths-pounds">108</Weight>

 <ProductGroup>Book</ProductGroup>

 <PublicationDate>2006-02-02</PublicationDate>

 <Publisher>Addison-Wesley Professional</Publisher>

 <Title>How to Break Web Software: Functional and Security Testing of Web Applications

and Web Services</Title>

</ItemAttributes>

<Offer>

Appendix F: REST Request and XML Data Result

290

<Merchant>

 <MerchantId>ATVPDKIKX0DER</MerchantId>

 <Name>Amazon.com</Name>

</Merchant>

<Price>

 <Amount>2204</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$22.04</FormattedPrice>

</Price>

 <Availability>Usually ships in 10 to 14 days</Availability>

</Offer>

<Offer>

<Seller>

 <SellerId>A2E9OWRCF7T08Y</SellerId>

 <Nickname>pbshopus</Nickname>

 <AverageFeedbackRating>4</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>2329</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$43.54</FormattedPrice>

</Price>

 <Availability>Usually ships in 1-2 business days</Availability>

</Offer>

……..

</Item>

<Item>

 <ASIN>0131463071</ASIN>

<ItemAttributes>

 <Author>Christopher Steel</Author>

 <Author>Ramesh Nagappan</Author>

 <Author>Ray Lai</Author>

 <ISBN>0131463071</ISBN>

 <Height Units="hundredths-inches">220</Height>

 <Length Units="hundredths-inches">938</Length>

 <Weight Units="hundredths-pounds">377</Weight>

 <ProductGroup>Book</ProductGroup>

 <PublicationDate>2005-10-14</PublicationDate>

 <Publisher>Prentice Hall PTR</Publisher>

 <Title>Core Security Patterns: Best Practices and Strategies for J2EE(TM), Web Services,

and Identity Management (Core) </Title>

</ItemAttributes>

<Offer>

<Seller>

 <SellerId>AT7MC65GYVR0L</SellerId>

 <Nickname>backalleytextbooks</Nickname>

 <AverageFeedbackRating>2</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>3556</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$36.41</FormattedPrice>

Appendix F: REST Request and XML Data Result

291

</Price>

 <Availability> Limited availability </Availability>

</Offer>

<Offer>

<Seller>

 <SellerId>A1MD3EN9VM2K1F</SellerId>

 <Nickname>fun-for-all58</Nickname>

 <AverageFeedbackRating>3.5</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>3585</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$33.85</FormattedPrice>

</Price>

 <Availability>Usually ships in 1-2 business days</Availability>

</Offer>

………

</Item>

<Item>

 <ASIN>0321180860</ASIN>

<ItemAttributes>

 <Author>Eric Newcomer</Author>

 <Author>Greg Lomow</Author>

 <ISBN>0321180860</ISBN>

 <Height Units="hundredths-inches">88</Height>

 <Length Units="hundredths-inches">920</Length>

 <Weight Units="hundredths-pounds">156</Weight>

 <ProductGroup>Book</ProductGroup>

 <PublicationDate>2004-12-14</PublicationDate>

 <Publisher>Addison-Wesley Professional</Publisher>

 <Title>Understanding SOA with Web Services (Independent Technology Guides)</Title>

</ItemAttributes>

<Offer>

<Seller>

 <SellerId>AHNEEZ9CVAP3Q</SellerId>

 <Nickname>superbookdeals</Nickname>

 <AverageFeedbackRating>4.6</AverageFeedbackRating>

</Seller>

<Price>

 <Amount>2463</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$24.63</FormattedPrice>

</Price>

 <Availability>Usually ships in 1-2 business days</Availability>

</Offer>

<Offer>

<Seller>

 <SellerId>A2ZGNN73WLXVFQ</SellerId>

 <Nickname>a1books</Nickname>

 <AverageFeedbackRating>4.5</AverageFeedbackRating>

</Seller>

<Price>

Appendix F: REST Request and XML Data Result

292

 <Amount>2505</Amount>

 <CurrencyCode>USD</CurrencyCode>

 <FormattedPrice>$25.05</FormattedPrice>

</Price>

 <Availability>Usually ships in 1-2 business days</Availability>

</Offer>

…………..

</Item>

…………

</Items>

</ItemSearchResponse>

By typing the REST request2 as shown in Figure F- 1 in the address bar in the

Internet explorer and hit “Go” button, the following XML result is displayed:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService &

SubscriptionId=1NC71HN9R7AE4KJ1G3G2&AssociateTag=webservice1-20

&Operation=SellerLookup &SellerId=A3E0GMZ4YFS6AQ & ResponseGroup=Seller
Figure F- 2 REST Request 2

<?xml version="1.0" encoding="UTF-8" ?>

<SellerLookupResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent" Value="Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50215)" />

</HTTPHeaders>

<RequestId>1P846BC2TQGNJ4GRQS69</RequestId>

<Arguments>

<Argument Name="AssociateTag" Value="webservice1-20" />

<Argument Name="SubscriptionId" Value="1NC71HN9R7AE4KJ1G3G2" />

<Argument Name="ResponseGroup" Value="Seller" />

<Argument Name="Operation" Value="SellerLookup" />

<Argument Name="Service" Value="AWSECommerceService" />

<Argument Name="SellerId" Value="A2PH0OU9DK0NPM" />

</Arguments>

<RequestProcessingTime>0.149191856384277</RequestProcessingTime>

</OperationRequest>

<Sellers>

<Request>

<IsValid>True</IsValid>

<SellerLookupRequest>

<ResponseGroup>Seller</ResponseGroup>

<SellerId>A2PH0OU9DK0NPM</SellerId>

</SellerLookupRequest>

</Request>

<Seller>

<SellerId>A2PH0OU9DK0NPM</SellerId>

Appendix F: REST Request and XML Data Result

293

<Nickname>fantastic_shopping</Nickname>

<GlancePage>http://www.amazon.com/gp/help/seller/at-a-

glance.html?seller=A2PH0OU9DK0NPM&marketplaceSeller=1</GlancePage>

<Location>

<City>Olsmar</City>

<State>FL</State>

</Location>

<AverageFeedbackRating>4.5</AverageFeedbackRating>

<TotalFeedback>77105</TotalFeedback>

<TotalFeedbackPages>15421</TotalFeedbackPages>

<SellerFeedback>

<Feedback>

<Rating>5</Rating>

<Comment>Perfect condition, fast and easy...they were great to work with and would do it

again!</Comment>

<Date>2006-08-01T09:36+0000</Date>

<RatedBy>AFB4TV461N47C</RatedBy>

</Feedback>

<Feedback>

<Rating>4</Rating>

<Comment>book is in great codition, would be better if seller had contacted me about the

delay. otherwise a good, responsible seller</Comment>

<Date>2006-08-01T07:46+0000</Date>

<RatedBy>A2VGXBM60L3X</RatedBy>

</Feedback>

<Feedback>

<Rating>5</Rating>

<Comment>Thank you very much! A great book, quick shipping</Comment>

<Date>2006-08-01T07:18+0000</Date>

<RatedBy>AQKF5TAQWT08E</RatedBy>

</Feedback>

<Feedback>

<Rating>5</Rating>

<Comment>Perfect condition and arrived before delivery estimate</Comment>

<Date>2006-08-01T06:39+0000</Date>

<RatedBy>A2JKT9E6JK093T</RatedBy>

</Feedback>

<Feedback>

<Rating>5</Rating>

<Comment>The item was exactly as described, well-packed and arrived promptly.

Great.</Comment>

<Date>2006-08-01T05:46+0000</Date>

<RatedBy>A1PA3JWMNLQ913</RatedBy>

</Feedback>

………….

</SellerFeedback>

</Seller>

</Sellers>

</SellerLookupResponse>

Appendix G: Amazon E-Commerce (ECS) database

294

Appendix G: Amazon E-Commerce (ECS)
database

Table G- 1 Amazon Database

Product Name Seller Name Availability Price Seller Reputation Seller URL

Service-Oriented hebertbooks 99 24.1 3.4 http://www.amazon.com/seller=A1RAFT0AR298LX

Architecture fantastic_shopping 87 24.14 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

fun-for-all58 75 24.3 3.5 http://www.amazon.com/seller=A1MD3EN9VM2K1F

yaleiz 80 27.99 4 http://www.amazon.com/seller=A1MOV0BA9DKUFU

a1books 97 28.21 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

Amazon.com 99 28.34 5 http://www.amazon.com/seller=ATVPDKIKX0DER

allnewbooks 80 29.19 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 95 30.07 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

Web Services Platform fantastic_shopping 90 29.94 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

Architecture amz_book 78 29.95 3 http://www.amazon.com/seller=A3B9364CV8QDO9

a1books 98 31.05 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

Amazon.com 99 31.49 5 http://www.amazon.com/seller=ATVPDKIKX0DER

allnewbooks 65 32.34 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 30 33.41 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

thebookrackrh 75 34.09 2.8 http://www.amazon.com/seller=A1SSUO20DOKMFO

a1books_nj 95 34.11 3.6 http://www.amazon.com/seller=A3E0GMZ4YFS6AQ

alphacraze 82 34.34 3.4 http://www.amazon.com/seller=A2NT0F3A6LH7YD

alphacrazeoutlet 97 34.34 3.7 http://www.amazon.com/seller=A13MCS24BSAIL1

J2EE Web Services bookbensara 95 29.75 4.2 http://www.amazon.com/seller=A3H8H6KI3KCVA5

fantastic_shopping 85 34.63 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

Amazon.com 99 34.64 5 http://www.amazon.com/seller=ATVPDKIKX0DER

a1books 98 35.04 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

thebookrackrh 80 35.4 2.8 http://www.amazon.com/seller=A1SSUO20DOKMFO

allnewbooks 95 35.49 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 20 37.2 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

alphacrazeoutlet 79 37.93 3.7 http://www.amazon.com/seller=A13MCS24BSAIL1

alphacraze 99 37.93 3.4 http://www.amazon.com/seller=A2NT0F3A6LH7YD

a1books_nj 96 38.51 3.6 http://www.amazon.com/seller=A3E0GMZ4YFS6AQ

How to Break Web tudent2studentbooks 82 20.95 2.5 http://www.amazon.com/seller=A1BU1B4BZ1L0UY

Software Amazon.com 95 22.04 5 http://www.amazon.com/seller=ATVPDKIKX0DER

indoobestsellers 69 25.67 3.5 http://www.amazon.com/seller=A1C3QU77DDT2KW

powells_books 90 34.99 2.8 http://www.amazon.com/seller=AZPQKLIWQKVZ

pbshop 37 41.68 4.3 http://www.amazon.com/seller=AGLPMRINU0Q3T

pbshopus 96 43.54 4 http://www.amazon.com/seller=A2E9OWRCF7T08Y

the_book_depository_ltd80 43.68 4 http://www.amazon.com/seller=A3TJVJMBQL014A

bestdictionaries 99 60.08 4.7 http://www.amazon.com/seller=AXQ97OWZ5BK0

Core Security Patterns fun-for-all58 98 33.85 3.5 http://www.amazon.com/seller=A1MD3EN9VM2K1F

bargainbookswest 20 34.5 2.9 http://www.amazon.com/seller=A1XZPX0I00ZMJB

fantastic_shopping 99 36.4 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

Amazon.com 99 37.79 5 http://www.amazon.com/seller=ATVPDKIKX0DER

a1books 65 38.15 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

allnewbooks 85 38.64 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

thebookrackrh 97 39.2 2.8 http://www.amazon.com/seller=A1SSUO20DOKMFO

amz_book 84 39.95 3 http://www.amazon.com/seller=A3B9364CV8QDO9

caiman_com 96 40.59 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

Appendix G: Amazon E-Commerce (ECS) database

295

Professional PHP Web ultimatediscountbook 99 5.93 2 http://www.amazon.com/seller=A1P7V4VA92G0N5

Services westcoast_books 90 5.93 3.2 http://www.amazon.com/seller=A21YEUH7S5G16G

hbytes 98 22.99 2.5 http://www.amazon.com/seller=AG28AH8GM6N4A

torianme 75 24.5 3.5 http://www.amazon.com/seller=AAHR384CN72UL

smartlion 98 49.99 4 http://www.amazon.com/seller=A31F8XEATOE7XI

Business Process Execution Amazon.com 99 69.99 5 http://www.amazon.com/seller=ATVPDKIKX0DER

Language for Web Services pbshopus 84 73.97 4.3 http://www.amazon.com/seller=A2E9OWRCF7T08Y

caiman_com 60 82.35 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

bigrockmedia_dot 98 83.19 3 http://www.amazon.com/seller=A1LZ6NN9EPDRKV

mediacrazy_com 25 83.36 2.5 http://www.amazon.com/seller=A1ZGIGWL4Q5LD0

bigrockmedia_com 95 83.49 2.8 http://www.amazon.com/seller=AQUOVJUDTTXEN

movieweb_com 87 83.65 3.6 http://www.amazon.com/seller=A3FXKQSDE6Q9HK

oddbanana_com 97 84.01 4 http://www.amazon.com/seller=A1L1LPVB9RINQ5

Building Web Services with fantastic_shopping 95 31.48 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

Java Amazon.com 99 31.49 5 http://www.amazon.com/seller=ATVPDKIKX0DER

a1books 78 32.04 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

allnewbooks 82 32.34 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 98 34.06 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

alphacraze 97 34.34 3.4 http://www.amazon.com/seller=A2NT0F3A6LH7YD

alphacrazeoutlet 66 34.34 3.7 http://www.amazon.com/seller=A13MCS24BSAIL1

pbshopus 98 34.44 4 http://www.amazon.com/seller=A2E9OWRCF7T08Y

Understanding SOA with fantastic_shopping 80 24.81 4.5 http://www.amazon.com/seller=A2PH0OU9DK0NPM

Web Services superbookdeals 96 25.04 2.5 http://www.amazon.com/seller=AHNEEZ9CVAP3Q

a1books 82 25.05 4.5 http://www.amazon.com/seller=A2ZGNN73WLXVFQ

Amazon.com 99 25.19 5 http://www.amazon.com/seller=ATVPDKIKX0DER

thebookrackrh 39 25.71 2.8 http://www.amazon.com/seller=A1SSUO20DOKMFO

amz_book 95 25.95 3 http://www.amazon.com/seller=A3B9364CV8QDO9

allnewbooks 68 26.04 2.6 http://www.amazon.com/seller=A1KIF2Y9A1PQYE

caiman_com 98 26.73 4.4 http://www.amazon.com/seller=A1MSHKP33DCC6

a1books_nj 86 27.28 3.6 http://www.amazon.com/seller=A3E0GMZ4YFS6AQ

lphacrazeoutlet 98 27.39 3.7 http://www.amazon.com/seller=A13MCS24BSAIL1

AAppendix G: Amazon E-Commerce (ECS) database

Windows Applications and C#

296

Appendix H: Visual Studio .NET

H.1 Windows Applications and C#

Visual Studio .NET is a tool that Microsoft has created for helping developers to

build next generation of application for the .NET platform [24]. Visual Studio

.NET is Microsoft’s Integrated Development Environment (IDE)- software used

to create, run and debug programs [6].

Visual Studio .NET IDE provides a sophisticated environment for visual

programming by which the pre-packaged components can be dragged and

dropped into an application. Visual Studio .NET’s tools facilitate code reuse by

making it easy to build applications from existing code [6].

H.1.1Creating Windows Application

Figure H-0-1 displays a Windows application in Visual Studio .NET with project

name quality service selection system (QSSS). QSSS is a system used to

implement the quality matchmaking process (QMP) to select the best available

Web service based on requester’s quality preferences and mathematical model.

QSSS system displays a graphical user interface (GUI) and contains at least one

window. Windows applications execute within the Windows operating system.

The large gray box is called form and represents a Windows application. In Figure

H-0-1, the form name is “CriteriaSelection.cs” and the programming language is

C#. Programmers customize forms by adding controls from the Toolbox. The

Toolbox contains reusable software components (or controls) that developers can

use them to customize applications. The form and controls comprise the

program’s graphical user interface (GUI) [6]. The Properties window allows

programmers to manipulate form or control properties.

AAppendix G: Amazon E-Commerce (ECS) database

Windows Applications and C#

297

In quality service selection system (QSSS), many forms are added by selecting

(File, Add New Item) then select Windows Form as shown in Figure H-0-2. In

QSSS, there are five forms: Criteria Selection, Preference Selection, Sub-Criteria

Selection, Sub-Preference Selection and Requirements Value. The functions of

each form will be explained in the coming section.

From Figure H-0-2, class can be added in QSSS and it is called Utilities. Utilities

class contains Matrix class and methods, which is described in Section Error!

Reference source not found..

Toolbox Form (Windows application) Form Properties

Tabs Solution Explorer

Figure H-0-1 Designing a Windows Application in the Visual Studio .NET IDE

AAppendix G: Amazon E-Commerce (ECS) database

Windows Applications and C#

298

Figure H-0-2 Adding a new Form to a Windows Application

The Framework Class Library (FCL) is used to display the above five forms and

these controls (Checkbox, Button, Label, ComboBox, GroupBox, etc.,) in them. A

new form, for example Criteria Selection form, is created by deriving the main

class Criteria Selection from the System.Windows.Forms.Form class and adding

labels(class:System.Windows.Forms.Label),buttons(class:System.Windows.Form

s.Button) and checkbox (class:System.Windows.Forms.ChechBox) to the form as

shown in Error! Reference source not found..

AAppendix G: Amazon E-Commerce (ECS) database

Windows Applications and C#

299

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Data.OleDb;

namespace ServiceSelection2

{

 public class CriteriaSelection : System.Windows.Forms.Form

 {

private System.Windows.Forms.Label label1;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Button button1;

private System.Windows.Forms.Button button2;

public System.Windows.Forms.CheckBox checkBox1;

public System.Windows.Forms.CheckBox checkBox2;

public System.Windows.Forms.CheckBox checkBox3;

public System.Windows.Forms.CheckBox checkBox4;

The FCL is made up of a hierarchy of namespaces that expose classes, structures,

interfaces, enumerations, and delegates that can access to these resources. There

are more than 20,000 classes in the FCL, all logically grouped in a hierarchical

manner. To use an FCL class in the application, it needs to use the using

statement in C#. System is the namespace used for most FCL classes.

The namespaces are logically defined by functionality. For example, the

System.Data namespace contains all the functionality available to accessing

databases. This namespace is further broken down into System.Data.OleDb,

which exposes specific functionality for accessing OLEDB data sources.

8.2.1 Visual C# .NET

C# is an object-oriented programming language designed for building a wide

range of applications that run on the .NET Framework; it was announced in July

2000 by Anders Hejlsberg and Scott Wiltamuth. C# classes are very similar to

C++ classes but there are many differences between C++ and C# as in the

following:

AAppendix G: Amazon E-Commerce (ECS) database

Windows Applications and C#

300

 C# does not use header files as C++ does.

 C# supports an XML style of documentation comments marked with ///.

 C# de-emphasizes pointers by inventing delegates, which acts like function

pointers.

 C# implements structs as a lightweight type very different from classes,

whereas structs and classes are very close in C++.

 C# entry point is Main (), not main ().

 Conditional statements such as if are restricted to Boolean operands in C#.

Source code written in C# is compiled into an Intermediate language (IL) that

stores in an executable file called an assembly with an extension of .exe or .dll.

An assembly provides information on the assembly's types, version and security

requirements.

When the C# program is executed, the assembly is loaded into the Common

Language Runtime (CLR). If the security requirements are met, the CLR performs

Just in Time (JIT) compilation to convert the Intermediate language (IL) code into

native machine instructions. The CLR also provides other services related to

automatic garbage collection, exception handling, and resource management. The

following diagram illustrates the compile-time and run time relationships of C#

source code files, the base class libraries, assemblies, and the CLR.

AAppendix G: Amazon E-Commerce (ECS) database

Windows Applications and C#

301

C# Source File(s)

Resources

References

C# Compiler

Managed Assembly (.exe or .dll)

IL Metadata

Common Language Runtime

JIT Compiler

.NET Framework Class

Libraries

Operating System

Creates

IL metadata and References

loaded by CLR

Uses

Converted to native

machine code

Figure 0H-0-3 Compile time and Run time of C# source code [Taken from [151]]

Language interoperability is a key feature of the .NET Framework. Because the IL

code produced by the C# compiler conforms to the Common Type Specification

(CTS), IL code generated from C# can interact with code that was generated from

the .NET versions of Visual Basic, Visual C++ or Visual J#. A single assembly

may contain multiple modules written in different .NET languages, and the types

can reference each other as if they were written in the same language [151].

Visual Studio supports Visual C# with a full-featured Code Editor, project

templates, designers, code wizards, a powerful and easy-to-use debugger, and

other tools. The .NET Framework class library provides access to a wide range of

operating system services and other useful, well-designed classes that speed up

the development cycle significantly.

