
1 
 

Running title: Extreme and complex variation in range-wide abundances 

Article type: Biodiversity research 

 

Extreme and complex variation in range-wide abundances across a threatened Neotropical bird 

community 

 

1. Christian Devenish (corresponding author) 

Division of Biology & Conservation Ecology, School of Science & the Environment 

Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 

c.devenish@mmu.ac.uk 

orcid.org/0000-0002-5249-0844 

 

2. Graeme M. Buchanan 

RSPB Centre for Conservation Science 

RSPB, 2 Lochside View, Edinburgh Park, Edinburgh EH12 9DH, UK 

graeme.buchanan@rspb.org.uk 

 

3. Graham R. Smith 

Division of Geography and Environmental Management, School of Science & the Environment 

Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 

G.R.Smith@mmu.ac.uk 

 

4. Stuart J. Marsden 

Division of Biology & Conservation Ecology, School of Science & the Environment 

Manchester Metropolitan, University, Chester Street, Manchester M1 5GD, UK 

S.Marsden@mmu.ac.uk  



2 
 

Abstract 

 

Aim 

Understanding patterns and drivers of variation in abundance across full species ranges is crucial in 

conservation science, but our knowledge of these forms and processes is limited, especially in the 

tropics. This study aims to; a) identify patterns in variation of abundance across sites; b) examine 

congruence of abundance hotspots across species and spatial autocorrelation of abundance within 

species; c) assess the nature and strength of environmental correlates of abundance (topography, 

habitat and human pressure). 

Location 

Twenty-six sites across the full ranges of 14 dry forest bird species in northern Peru. 

Methods 

Study sites in this patchy habitat were selected within strata derived from species distribution 

models, while also ensuring geographic representation. Species abundance data from variable-width 

transects were compared across sites and across range core versus edge; relationships between 

abundance and environmental variables were examined using GAMs, and spatial autocorrelation 

was examined with multivariate Mantel tests. 

Results 

Although most species were recorded at most sites, local abundance varied by one or two orders of 

magnitude. Several species showed a humped rather than the classic skewed abundance 

distribution, with abundance not necessarily highest at the centre of species’ ranges. Spatial 

autocorrelation in species’ local abundance was evident only at distances less than 55 km. Sites of 

maximum abundance for individual species did not coincide - nine different sites held highest 
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densities of at least one species. Relationships between local abundance and almost all 

environmental correlates were non-linear. 

Main conclusions 

The extreme variation in species abundances and the complexity in their relationships with 

environmental variables have important implications, both for design of conservation-motivated 

surveys for which we offer some recommendations, and for the need for multiple reserves to 

capture high local abundances of key species. 

 

Keywords [6-10 keywords or phrases, arranged in alphabetical order.] 

birds, distance sampling, dry forest, environmental correlates, Neotropics, Peru, survey methods, 

variation in abundance 
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(A) Introduction 

That local abundance varies across species’ ranges is well established (e.g. Grinnell, 1914; Hengeveld 

& Haeck, 1981; Brown et al., 1995; Sagarin et al., 2006), but how precisely it varies, and what drives 

this variation, remain key questions for research, with important implications for macroecology, 

evolutionary studies and conservation science. The majority of species are believed to have low 

abundance throughout most of their range with small areas of high density (Gaston, 1990; Brown et 

al., 1995; McGill & Collins, 2003). According to the ‘abundance centre hypothesis’, these hotspots of 

high abundance tend towards the centre, or multiple core areas, of species’ ranges with local 

abundance lower at the range margins (Rapoport, 1975; Brown, 1984; Hengeveld, 1990). However, 

despite some theoretical and empirical support for this hypothesis (Brown, 1984; Guo et al., 2004), 

there are examples of species that do not conform to the pattern (Sagarin & Gaines, 2002; Gaston, 

2003; Samis & Eckert, 2007), for example, when there are multiple hotspots of abundance (e.g. 

Maurer, 1994). There is general acknowledgement that it is an oversimplification (Sagarin et al., 

2006), relying on the geographical centre rather than the niche centre, as well as omitting factors 

such as biogeographical barriers and species interactions (Brown, 1995), and demographic variability 

(Williams et al., 2003). Drivers of local abundance are likely to be complex, arising from a range of 

non-biotic (e.g. climate and habitat) and biotic factors (e.g. competition and dispersal; Pearson & 

Dawson, 2003; Guisan & Thuiller, 2005), to which, anthropogenic factors are occasionally added 

separately (e.g. Smith, 1868; Yackulic et al., 2011). 

 

Understanding the above patterns and drivers is of particular importance in conservation science, 

for example, for effective population estimation or detection of abundance trends, identification of 

key sites, or identification of environmental pressures that limit abundance (Lawton, 1993; Mace et 

al., 2008). However, our understanding is severely limited by a lack of range-wide data on actual 

abundance (Sagarin & Gaines, 2002; Marsden & Royle, 2015), especially for threatened species and 

multiple species within important areas (Brooks et al., 2006). From a conservation viewpoint, there 



5 
 

are great benefits if we are able to predict local abundance from local environmental measures, or 

even from spatial patterns of abundance themselves. Scarce resources for conservation (McCarthy 

et al., 2012) can also be saved by taking similar approaches for multiple species. With this in mind, 

we ask the following questions 

 

 How does local abundance vary across species’ ranges, and is this variation consistent across 

species? Is local abundance at nearby sites autocorrelated and does abundance relate 

predictably to location within range? 

 Do local hotspots of abundance exist for multiple species sharing broad habitats and ranges? 

If so, can this congruence help in protected area selection? 

 How does local abundance across the assemblage respond to environmental correlates? If 

so, can these relationships be used to reliably predict abundance or threats to species? 
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(A) Methods 

 

(B) Study species and site selection 

The study focused on 14 lowland dry forest bird species, all but one of which have their entire ranges 

within the study area. The exception is Long-tailed Mockingbird Mimus longicaudatus Tschudi, 1844 

which has a geographically isolated subspecies in the Marañon Valley (Chapman 1926). Two further 

species (Mouse-coloured Tyrannulet Phaeomyias murina Spix, 1825 and Necklaced Spinetail 

Synallaxis stictothorax Sclater, 1859) that also have Marañon populations have recently been split 

into sister species (del Hoyo & Collar, 2016). Thus, we consider that our analyses for all 14 species 

are range-wide. The median range size of the 14 bird species was just over 50,000 km2 (min = 2,726 

km2, max = 146,892 km2). These ranges sit at a mean percentile of 22% of all Neotropical birds, as 

mapped by BirdLife International & NatureServe (2012).  

We selected 26 sites across these ranges within dry forest and scrub habitat, below an 

altitude of 500 m, in northwest Peru (Figure 1). Given the size of the study area (approximately 

600 km from northern to southern extreme), it was logistically unfeasible to implement a random 

sampling strategy and obtain sufficient species records. Therefore, to meet the requirements of 

obtaining sufficient bird records from a wide geographic spread of sites across species' ranges, we 

selected sites randomly from within three strata representing higher probabilities of species 

occurrences, and a 50 km grid geographic stratum across the study area (see Figure S1 in Supporting 

Information). To identify the 'occurrence probability' stratum, we created species distribution 

models using occurrence records from four target bird species, representative of study species’ 

habitat requirements and distributions within the study area (Schulenberg et al., 2007). 

Environmental predictors used in the model were climate based: mean annual rainfall, mean annual 

temperature (Hijmans et al., 2005), and habitat-based: maximum and minimum Normalized 

Difference Vegetation Index from the dry and wet seasons (processed from MODIS product, 

MOD13QA1). Maxent software (Phillips et al., 2006), run through the R package Dismo (Hijmans et 
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al., 2013), was used to create distribution models for each species, and were evaluated with mean 

AUC from 5-fold cross validation. The final models were constructed using all the data points, and 

then summed to create a single composite surface, providing regions of high and low probability of 

occurrence for study species. Despite criticisms of using AUC as a means to validate models (Lobo et 

al., 2008), it is still the most widely used threshold-independent method of judging model 

performance. To create the geographic strata, we created a regular 50 km grid across the study area 

and identified the top 25 cells in terms of highest average model scores. We randomly selected sites 

only from the top three deciles of the probability of occurrence from the final model, using double 

weights for the top decile, i.e. sampling was restricted in order to avoid the large areas of high 

unsuitability for the species, including desert and urban areas. Sampling was repeated until at least 

one site fell in the top 25 grid cells. In the field, sites were chosen as close as possible to the 

randomly selected sites, and were only moved when access or safety issues prevented the 

researchers from reaching the site. All sites, except for the southernmost, were within the extant or 

former ranges of all study species as mapped by BirdLife International & NatureServe (2012). Median 

distance between sites was 150 km (range: 5-625 km). 

 

(B) Field methods 

All fieldwork was carried out from June to October 2013 by the first author and Elio Nuñez Cortez. 

Both observers participated in pilot studies at six sites in 2012 to practise distance estimation, learn 

bird calls and trial other field methods. To estimate bird abundances, we used a variable-width 

transect method, with two observers walking four 2.5 km parallel, straight transects at each site (not 

located on trails), separated by 500 m, using just GPS for guidance. We walked each transect once at 

a speed of 1-1.5 km h-1 to gather bird data. Distances to birds were estimated either by eye, or for 

distances greater than approximately 25 m, with laser rangefinders. Two transects were completed 

per day where conditions permitted, with bird data collected between 6:00 and 11:00. For each bird 

encounter, the following were noted: species; number of individuals; type of detection (aural or 
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visual); and perpendicular distance. We measured habitat characteristics within 10 m radius circular 

plots at twelve points positioned 200 m apart on each transect. Characteristics included tree species 

present; % of vegetation cover at two vertical strata (<3 m, >3 m); diameter at breast height (dBH) 

and height of three largest trees; total number of stems (dBH > 10 cm); grass cover; presence of 

epiphytes. Topographic characteristics measured were altitude and slope. Human pressure was 

assessed at each plot as presence of felled trees (cut tree trunks) and a count of ungulate dung. An 

additional human pressure index was later calculated to combine urban and rural population 

pressure, road proximity and protection status of sites as  

 

(Popurban + Poprural) x (1/Road dist) x Protection status 

 

where Popurban is the number of inhabitants of cities within 25 km; Poprural is rural population size of 

the 2nd degree administrative region containing the study site; Road dist is distance to nearest main 

road (km); and unfavourable protection status is penalised as follows, 1: non-protected, 0.5: 

protected. 

 

FIGURE 1 

 

(B) Data analysis 

(C) Local abundance estimation 

We used the multiple covariates engine of Distance 6.1 to estimate local abundance at sites 

(Buckland et al., 2001; Marques et al., 2007). An advantage for rare species is that this method 

enables a single detection function to be fitted across all sites and adjusted with site-specific 

covariates. Data were analysed as clusters and distance data were binned and truncated, following 

guidelines (Buckland et al., 2001) to improve fit of detection functions. Preliminary analyses with 

different truncation distances and intervals were trialled and a truncation distance, number of 
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intervals and candidate model families (e.g. half-normal, uniform, hazard-rate) were set for each 

species based on visual inspection of histograms and goodness of fit tests. We selected covariates 

for density estimation by assessing correlations between potential covariates, variation between 

sites, and their effect on the distances recorded per species. Covariates were selected based both on 

previous studies of those most likely to influence detectability generally (e.g. Marques et al., 2007), 

and on the nature of habitat within the study area specifically. We used mode of bird detection 

(heard or not heard) and habitat features (percentage of low cover and tree height) as covariates. 

Full details of covariate selection are given in Devenish (2017). Final models were selected per 

species using AIC minimisation. Density of groups per km2 was converted to individuals per km2 

using average cluster size, given that correlations between cluster size and detection distance were 

not significant at α = 0.05 for all species. 

 

(C) Variation in abundance 

We plotted histograms of species densities across all sites and measured symmetry of the 

distribution via skewness (Zar, 1999). Species abundance distributions were considered skewed 

when this value was significantly different from zero, following tables of critical values of the skew 

measure (Zar, 1999). To assess differences in abundance between the centre and periphery of 

species’ distributions, we represented species' ranges as convex hulls constructed from post-1970 

occurrence records from museum specimens and observations (following manual and automated 

validation; see Table S1 in Supporting Information). The coastline and upper altitudinal limits were 

used to exclude areas from each convex hull to approximate range shape further (see Figure S2 in 

Supporting Information). Although convex hulls have their limitations (Rapoport, 1975), the method 

facilitates comparison between species, in that each range was constructed following a standardised 

method. We compared local abundance between core and edge areas using Wilcoxon (Mann-

Whitney) two sample tests (Zar, 1999) which is robust to different sample sizes, and small numbers 

in each group (Fowler & Cohen, 1992). Core areas were defined as the inner polygon occupying 50% 
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of the total convex hull area with a perimeter equidistant to the full range perimeter. Sites with 

absences were only included in the analysis if they lay within the convex hull range. 

 

(C) Spatial autocorrelation in abundance 

To examine spatial autocorrelation of local abundance across sites for all species, we used a 

multivariate Mantel correlogram (Legendre & Legendre, 1998). First, pairwise distances between all 

sites were grouped into six bands between 0 and 650 km, with sample sizes of 204, 236, 122, 52, 26, 

and 10 respectively. Correlation coefficients were then calculated between a similarity matrix of all 

species’ densities (using the Jaccard metric) and the matrix of geographical distances between sites 

in each band. Significance of correlations was evaluated using permutation tests, as implemented in 

the R package, vegan (Oksanen et al., 2015). Spatial autocorrelation was also evaluated for each 

species separately, using Moran’s I, over the same six distance bands. Given the general lack of 

spatial autocorrelation (only significant at < 55 km in six of 14 species; see Results), we continued 

with the following analyses. To identify congruence of local abundance hotspots across species, we 

identified the sites holding maximum density and the highest three densities for each species. To 

assess whether species' densities varied in similar ways across sites, we calculated Spearman’s rank 

correlation coefficients for density between all species pairs at all sites (n = 91).  

 

(C) Environmental correlates of local abundance 

We evaluated the nature and strength of ten environmental correlates of bird abundance, across the 

dry forest bird community as a whole, using separate Generalised Additive Models (GAMs), where 

each correlate was modelled as a function of community density. This approach was favoured over a 

full multivariate model because in this analysis we are more interested in the complexity of the 

relationships of the community with individual environmental measures (e.g. Taylor et al., 2014) 

than with identifying suites of habitat variables that together might drive abundance of individual 

species (e.g. for conservation management). This said, we made a preliminary selection of 
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uncorrelated variables to reduce the total number of models built. We first assigned these to one of 

three groups: topography (altitude, slope); habitat structure and composition (understorey cover, 

tree height, number of stems, grass cover, tree species richness); and anthropogenic pressures 

(grazing pressure, logging pressure, human population pressure). Variables in each group were 

inspected for collinearity using pairwise scatterplots and Variance Inflation Factors (VIF). Any 

variable with VIF > 5 was removed (Zuur et al., 2007), and the group checked again until all VIF 

values were < 5. 

GAMs were used to model the relative strength and degree of complexity (non-linearity) of the 

relationship between each correlate and local bird abundances. First, an ordination based on the 

abundances of the 14 study species at each site was performed using non-metric multidimensional 

scaling (NMDS; Legendre & Legendre, 1998; as implemented in R package, vegan Oksanen et al., 

2015). Each environmental correlate was then modelled as a function of the site scores on both 

ordination axes simultaneously and a spatial term, consisting of the x and y coordinates of the sites 

(Hefley et al., 2017), using thin plate spline isometric smoothers with fixed degrees of freedom in R 

package mgcv (Wood, 2006). Best models for each correlate, from the three combinations of terms 

(NMDS scores; spatial term; NMDS + spatial term) were chosen using AIC minimisation (Anderson et 

al., 2000). In cases where the difference in AIC between models was less than 2.0, the least complex 

model was chosen. To evaluate the complexity of the relationship between density and correlates, 

models were repeated with increasing basis dimension values of 4, 6 and 8, effectively increasing the 

amount of smoothing within each model (Wood, 2006). We expected correlates with more complex 

relationships to show steeper increases in explained deviance as basis dimension increases. Where 

the best models included the NMDS term, we plotted predicted values as contours over the species 

ordination to visualise the relationship between the species’ density and correlate. Species 

centroids, weighted by density values at each site, were plotted on the NMDS axes (Oksanen et al., 

2015). We used R (R Core Team, 2014) for all analyses. 
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(A) Results 

(B) Variation of abundance across species' ranges 

We recorded a total of 7,505 bird encounters over the 26 transects for 14 species. Encounter rates 

averaged 28.7 individuals km-1, equivalent to approximately 7 birds every 10 minutes at the average 

walking speed. Overall, non-zero local abundances ranged from less than one to over 3,000 

individuals km-2 (Table 1, see Table S2 in Supporting Information). Two broad patterns of variation in 

species' densities across their ranges are distinguishable. Nine species showed extreme variation in 

local abundance across sites, with species having low densities at most sites and higher densities at 

relatively few. These species have a positively skewed intraspecific abundance distribution (Figure 

2a-i) with skew significantly different from zero (skew, g1 = 1.19 to 3.37, n = 26, p < 0.05). Median 

densities for these species are less than 10% of their maximum density (Table 1). 

 

FIGURE 2 

 

A second group (five species; Figure 2j-m) showed a humped density distribution, that is, species had 

consistently high densities across their ranges, with relatively few sites with extreme high or low 

local abundance. Median density values were generally > 40% of the maximum density value. 

Species’ abundance distributions were not significantly skewed (skew, g1 = 0.01 to 0.38, n = 26, p > 

0.20) and excess kurtosis was negative, implying that distribution of abundance is relatively flat. This 

group also shows generally high and less variable densities (Table 1). The presence of sites with zero 

density did not affect the groupings of the species' abundance distributions. 

 

TABLE 1 
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In all species, maximum and minimum densities (> 0) varied by at least an order of magnitude, and 

by two orders of magnitude in three species. Where densities showed most variability between 

sites, the interquartile range was over five times greater than the median (Table 1). We found a 

significant positive correlation between number of sites occupied and median local abundance 

(rs = 0.57, p = 0.02, n = 26). Additionally, species with higher numbers of sites occupied had lower 

variability between local abundances (rs = -0.92, p < 0.01, n = 26; Table 1). Different spatial 

arrangements of local abundance were found, with the highest species' densities not always 

occurring at the centres of their geographical ranges. Three species had significantly higher local 

abundances within the central areas of their ranges compared to the periphery (Figure 3, see Table 

S3 in Supporting Information) while all the others showed no significant relationship. 

 

FIGURE 3 

 

(B) Spatial autocorrelation in local abundances 

Spatial autocorrelation in species’ densities across sites was significant only within the smallest 

distance band, < 55 km (rs = 0.19, n = 204, p = 0.004). Correlation coefficients decreased with 

increasing distance between sites, but were weak for the remaining five distance bands, varying 

between 0.1 and -0.2. Correlograms for individual species also showed a generally decreasing 

pattern with larger distance bands; significant correlations were found in six of fourteen species at 

the smallest distance band (see Figure S3 in Supporting Information). 

 

(B) Congruence of abundance hotspots across species 

Sites of maximum abundance for individual species did not coincide. Nine different sites held highest 

densities of at least one species, and 20 of 26 sites held 'top three' abundances for at least one 

species. Of 91 pairwise correlations between species' densities, 21 species' pairs were significantly 

correlated, but only ten correlation coefficients were > 0.5 (Figure 4). The highest correlation 
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coefficient was 0.68, for Necklaced Spinetail Synallaxis stictothorax and Superciliated Wren 

Cantorchilus superciliaris Lawrence, 1869, both of which occupy lower strata of the dry scrub. Local 

abundances of two species pairs had significant negative correlations. 

FIGURE 4 

 

(B) Environmental correlates of species’ local abundances 

Ordination on two axes of species’ densities at sites using non-metric multidimensional (NMDS) had 

a final stress value of 0.14. McCune et al (2002) state that most ecological data produce stress values 

between 0.10 and 0.20, with values of < 0.15 being satisfactory.  

 

TABLE 2 

 

Best supported (lowest AIC) GAMs for nine of the ten environmental correlates included the NMDS 

scores, with only that for understorey cover including the spatial term alone (see Table S4 in 

Supporting Information). For the above nine models, explained deviance varied from 62% to 90% 

with the maximum basis dimension (Table 2). All relationships between correlates and density were 

non-linear, although mean number of stems most approximates a linear response (Figure 5).  

In simpler models (basis dimension = 4), the three anthropogenic pressure variables explained least 

variability in densities. However, two of these (logging and human pressure) had the highest gains in 

explained deviance with more complex models (basis dimension = 8; Table 2; Figure 5). 

 

FIGURE 5 

 

(A) Discussion 

(B) Variation in density across species' ranges 

Variation in local abundance was extreme across the ranges of most species. Although differences in 

abundance of at least one order of magnitude have been found in other studies encompassing the 
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whole ranges of species (e.g. Curnutt et al., 1996; Brewer & Gaston, 2003; Filloy & Bellocq, 2006), 

most studies evaluating spatial variation in abundance do not cover full ranges (Samis & Eckert, 

2007). In general, we found that species with lower median densities showed more variation in 

density. Nine of fourteen species in our study showed the classic skewed distribution of local 

abundances, where species are rare at most sites but abundant at a few sites (Gaston, 1990; Brown 

et al., 1995; Brewer & Gaston, 2003; McGill & Collins, 2003). The other five, showing humped local 

abundance distributions, were among the commonest species. Common species across a number of 

taxonomic groups have been found to occupy more central niche positions (e.g. habitat dimensions) 

than rare species (e.g. Gregory & Gaston, 2000; Marsden & Whiffin, 2003; Heino, 2005). Martínez-

Meyer et al. (2012) found a decline in abundance as distance from central niche positions increased. 

For such species, density can fall away on all sides, whereas for species with niche positions at one 

extreme, it cannot. The five species with humped abundance distributions did tend to occupy mid-

range conditions within our study area, at least for some environmental variables (Figure 5).  

Hotspots of local abundance were, as found in other studies, often multiple rather than singular 

(Maurer & Villard, 1994; Sagarin & Gaines, 2002; Sagarin et al., 2006), and not necessarily 

concentrated in the centres of species’ ranges (Sagarin & Gaines, 2002; Kluth & Bruelheide, 2005; 

Murphy et al., 2006). The ‘abundant centre hypothesis’ is more likely to refer to the niche centre 

than the geographic centre of the range (Blackburn et al., 1999; McGeoch & Price, 2004; Martínez-

Meyer et al., 2012), or as Hengeveld and Haeck (1981) termed it, ecologically 'central' rather than 

geographically 'central'. Carter and Prince (1981) noted that many plants are abundant at their 

limits, implying an abrupt response to the climatic gradients that control the distribution. Brown 

(1984) hypothesised that contributing factors to this response may include abrupt changes in 

availability of resources, such as caused by coastlines and mountains, important features within our 

study area. 
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Despite sharing similar ranges and broad habitats, different species did not tend to occur at their 

highest local densities at the same sites. This result is also consistent both with the lack of grouping 

of species when plotted on the two NMDS axes, and with findings elsewhere. For example, Mehlman 

(1994), working with US Breeding Bird Survey data, reported little overlap between sites of species’ 

highest abundances. A study comparing pairwise density of 14 shrubsteppe species in northwest US 

found just eight species with significant correlations between density values at sites (Wiens & 

Rotenberry, 1980). If species in our study had been clumped within hotspots of coincident high 

density, then we might expect that certain drivers of density acted on different species in similar 

ways, but this was not the case leading to the conclusion that determinants of local density are 

generally distinct for each species. A useful extension would be to identify trait attributes that 

influence differences in local abundances at sites, patterns of habitat associations across species, 

and inter-specific interactions between species. However, such a study would require a very large 

survey effort to obtain sufficient data to identify patterns, especially with rare species. 

 

Variation in local bird abundances covaried in a non-linear way with all of the environmental 

correlates. Relatively few studies have investigated correlates of local abundance, with most 

focusing on species richness or occupancy. Nevertheless, habitat variables were found to influence 

bird abundance more than climate variables at a mesoscale (1,700 km latitudinal gradient) in a study 

of 88 grassland species in Argentina (Filloy & Bellocq, 2013). Marsden and Whiffin (2003) found no 

relationship or weak correlations between local bird abundance and three composite habitat axes in 

a Neotropical forest. In our study, the least complex responses, indicative of similarity across species' 

responses, were found among the habitat-based correlates. Therefore, factors such as mean number 

of stems, tree height, and tree species richness may be useful as general indicators of avifaunal 

health, especially as they are relatively easy to measure in the field. No single group of 

environmental correlates (habitat, topography and human pressure) stood out as particularly useful 

predictors, although more complex relationships with local abundances were found for pressure-
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based than for habitat correlates. Other authors have also found variability in response of 

abundance to pressure-based predictors in the Neotropics: Piana and Marsden (2014) found 

opposing responses to cattle grazing among different raptor species, and Filloy and Bellocq (2006) 

found mixed responses among Sporophila seedeaters to agricultural development. There is a long 

history of human alteration of environments on the Peruvian coast with cycles of agricultural 

expansion and contraction (Shimada & Shimada, 1985; Hocquenghem, 1998, 1999), which have 

surely influenced current patterns of distribution and abundance. 

 

(B) Implications for conservation 

A shortfall in conservation funding (James et al., 1999; McCarthy et al., 2012), especially in the most 

biodiverse countries (Brooks et al., 2006), has led to conservation prioritisation schemes such as Red 

Listing (IUCN, 2001; Rodrigues et al., 2006), often informed by data on population sizes and trends. 

Extreme heterogeneity in local abundances across species’ ranges has important implications for the 

generation of such data. Many species of conservation importance lack even a single density 

estimate from anywhere within their range (Marsden & Royle, 2015). For example, one of the best-

studied parrot species, the Scarlet Macaw Ara macao has just four density estimates from an extent 

of occurrence greater than 5 million km2. Single density estimates cannot reflect the likely complex 

variation in local abundance across species’ ranges, and scaling up from such estimates runs the risk 

of local data not being representative of the species as a whole (Hengeveld & Haeck, 1981). In terms 

of survey design, the more local abundance varies across the range of a species, the more field sites 

will be needed to capture this variability. The negative relationship between proportion of sites 

occupied and variability in local densities indicates that a desk-based survey of presence/absence of 

the target species (e.g. using online occurrence databases) may help to inform how many sites need 

to be visited. It may also be useful to examine encounter rates/density estimates for the target 

species at sites as the survey progresses or during pilot studies. Again, high variability may indicate 

that a greater number of sites needs to be surveyed. We argue that this study obtained high 
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numbers of records for the target species despite covering a tiny proportion of the 50,000 km2 study 

area. This was achieved by disregarding many areas of unsuitable habitat by stratifying the study 

area using probability of occurrence from species distribution models and adjusting survey effort in 

areas of low probability accordingly (see also Aizpurua et al., 2015). Finally, our study indicated that 

survey sites at geographically marginal sites should not be neglected and may contribute 

significantly to overall abundance, given that range margins do not always coincide with ecological 

margins (Chardon et al., 2015).  

 

Spatial autocorrelation of local abundance was strong only very locally (typically < 55 km), a 

pattern found in most, but not all, studies (e.g. Eber & Brandl, 1994; Brewer & Gaston, 2003; Murphy 

et al., 2006). Distances over which spatial autocorrelation of local abundances is significant could be 

determined from a pilot study and guide minimum distances between survey sites to reduce survey 

effort. This distance may also be useful when evaluating the effect of disturbance on species’ 

abundance. Such studies often designate 'natural' or control (undisturbed) sites as baselines and 

then compare them with disturbed sites at different  locations (e.g. Barthlott et al., 2001) rather 

than comparing the same sites before and after disturbance. However, extreme variation in local 

abundance could confound changes in abundance attributed to disturbance (Gardner et al., 2007). 

For example, despite a heavily altered study area, Jones et al (2003) found that habitat variables 

were more important in controlling abundance than pressure variables. In these kind of studies, sites 

should be positioned within distances where spatial autocorrelation makes them comparable. 

 

There was little congruence in local abundance hotspots across species due to complex responses 

to environmental correlates, as found among communities elsewhere (Garrido et al., 2003; 

McGeoch & Price, 2004). This means that multiple protected/management areas will be required to 

capture large proportions of the populations of each species, given the large differences in 

abundance between sites. Most conservation planning algorithms are based on species’ presence 
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and/or species richness (e.g. site selection algorithms, priority site identification; Brooks et al., 2006; 

Fleishman et al., 2006). This may lead to an insufficient network of proposed sites when patterns of 

species’ presence or absence is similar but local abundance varies greatly. Recent studies provide 

further evidence for improving systematic conservation planning and site selection algorithms with 

site-based abundance estimates (Johnston et al., 2015; Veloz et al., 2015). However, the added costs 

of collecting abundance data may not always outweigh the benefits, especially in the case of more 

common species (Joseph et al., 2006). Further research is still needed to find cost-efficient methods 

to determine patterns of range-wide abundance in species without implementing full surveys. 

Promising results in quantifying changes in abundance, which may be possible to adapt to the above 

needs, have been shown with a widespread, poorly known species (Senyatso et al., 2013). Other 

techniques, such as interpolating density surfaces from several local abundance estimates across a 

range (e.g. Thomas et al., 2010), combined with carefully planned surveys, may also increase the 

utility and cost-efficiency of using local abundance to inform conservation.  
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Table 1. Maximum, minimum, median and coefficient of dispersion (interquartile range/median) of species 

abundance across 26 sites. Species are ordered by increasing variability in density. 
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Table 2. Complexity of relationships between environmental correlates and bird densities represented by 

change in explained deviance with increasing basis dimension (smoothing) in GAMs. Correlates are ordered by 

decreasing complexity as measured by difference in explained deviance between models with basis dimension 

8 and 4. Correlates marked + are those where the best models included the spatial term, the remainder only 

included the NMDS scores. 

 

Correlate 

Explained deviance 

Basis 
dimension: 4 

Basis 
dimension: 6 

Basis 
dimension: 8 

Logging pressure+ 22.69% 66.63% 79.22% 

Human pressure+ 33.26% 59.11% 80.17% 

Altitude+ 54.26% 82.75% 90.08% 

Grass presence+ 56.49% 70.65% 85.45% 

Grazing pressure+ 35.41% 52.05% 62.18% 

Tree height 46.51% 69.29% 71.41% 

Tree species richness+ 64.45% 79.01% 85.06% 

Slope 47.03% 54.11% 65.59% 

Mean no. stems 53.68% 56.26% 61.73% 
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Figure 1. Study sites in northern Peru, with maximum NDVI values over the wet season (December to May) to 

illustrate extent of ground vegetation cover and desert/scrub areas. See Table S2 for key to site names. 

 

Figure 2. Distribution of species’ local abundance at 26 sites, ordered by decreasing skewness. The first bar 

(black) shows zeros at sites, the following bars are of equal width in each histogram. 

 

Figure 3. Variation in local abundance across species' ranges. Minimum convex polygons show core and edge 

areas (see methods) with abundance at sites expressed in quartiles to facilitate comparison. Boxplots show 

difference in abundance (individuals km-2) between the two regions, those bordered in dashed red lines are 

significantly different (α = 0.05) according to the Wilcoxon two sample test. Note different scale of each map. 

 

Figure 4. Frequency of Spearman’s rank correlation coefficients for pairwise correlations between densities at 

26 sites (n = 91). Red (dashed) and blue (dotted) lines show critical values of Spearman's correlation coefficient 

for p values corresponding to 0.05 and 0.01. 

 

Figure 5. NMDS ordination (stress = 0.14) based on species densities across 26 sites with fitted GAM surfaces 

(using a basis dimension of six for each plot) representing smooth trends between species densities and 

habitat-based, topographic, and pressure-related correlates. The plots are ordered according to decreasing 

complexity. Key to species (see Table 1 for English names): Mm - M. micrura; Fc - F. coelestis; Ss - S. 

stictothorax; Pm - P. murina; Pl - P. leucospodia; Ts - T. salvini; Ms - M. semirufus; Pr - P. raimondii; Cf - C. 

fasciatus; Cs - C. superciliaris; Ml - M. longicaudatus; Pc - P. cinerea; St - S. taczanowskii; Rs - R. stolzmanni. 
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Supporting Information 

Devenish, C., Buchanan, G. M., Smith, G. R. & Marsden, S. J. 2017. Extreme and complex variation in range-

wide abundances across a threatened Neotropical bird community. Diversity and Distributions. 

 

Table S1. Data sources of species occurrence points used to make convex hulls 

Source Record type 
Percentage of 
records 

Online references 

eBird Observations 66 http://ebird.org/content/ebird/ 

Literature and 
unpublished reports 

Observations and 
specimens 

30 n/a 

Museum databases 
(VertNet and other 
museums) 

Museum specimens 2 
http://vertnet.org/ 
http://www.lsu.edu/mns/collections/ornithology.php 

Xenocanto Sound recordings 2 http://www.xeno-canto.org/ 
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Table S2. Bird density estimates (individuals km-2) ± standard error and sample size (in parentheses) per site. See Figure 1 for location of numbered sites. 

No. Site M. micrura F. coelestis S. stictothorax P. murina P. leucospodia T. salvini M. semirufus 

 Mean of all sites 19.1 ± 4.5 (132) 51.2 ± 6.7 (244) 63.2 ± 3.7 (758) 60.1 ± 6.2 (851) 44.5 ± 2.8 (871) 4.1 ± 0.7 (101) 5.9 ± 1.2 (69) 

1 Tucillal 4.8 ± 4.2 (1) 120.5 ± 29.9 (20) 0 0 0 3.5 ± 9.1 (1) 0 

2 Fernandez Bajo 15.3 ± 5.5 (5) 66.5 ± 23.8 (15) 13.7 ± 4.9 (7) 0 3.0 ± 2.9 (2) 1.9 ± 1.1 (2) + 

3 Enace 0 42.5 ± 23.6 (10) 37.1 ± 4.5 (21) 63.3 ± 11.6 (32) 7.4 ± 4.4 (5) 0 + 

4 Lancones 42.3 ± 12.0 (14) 145.7 ± 49.7 (27) 83.6 ± 9.3 (38) 15.8 ± 2.7 (10) 35.8 ± 9.1 (25) 2.3 ± 1.8 (1) 8.2 ± 3.2 (3) 

5 Puerta Pulache 6.7 ± 3.7 (2) 24.8 ± 10.0 (9) 4.6 ± 2.4 (2) 35.1 ± 6.1 (26) 50.4 ± 2.8 (39) 18.1 ± 9.0 (16) 2.2 ± 2.0 (1) 

6 Pampa Larga 9.5 ± 5.6 (2) 48.5 ± 33.4 (8) 48.8 ± 7.1 (29) 33.6 ± 5.1 (17) 22.9 ± 3.9 (20) 0 2.0 ± 1.8 (1) 

7 Progreso Bajo 0 2.2 ± 1.9 (1) 146.1 ± 21.7 (57) 25.4 ± 10.0 (17) 67.4 ± 19.7 (45) 0 18.5 ± 10.4 (9) 

8 Cruz de Caña 23.1 ± 9.2 (6) 27.3 ± 18.3 (3) 118.8 ± 13.6 (53) 64.5 ± 10.4 (29) 65.0 ± 6.2 (45) 0 + 

9 Sagrado Corazón 16.8 ± 8.9 (4) 49.0 ± 24.5 (8) 59.4 ± 11.7 (31) 138.5 ± 14.9 (57) 54.3 ± 4.0 (35) 0 2.2 ± 2.3 (1) 

10 Islilla 0 0 91.2 ± 19.4 (49) 0 23.2 ± 7.2 (18) 0 8.0 ± 5.4 (4) 

11 Ancajima 113.9 ± 52.6 (26) 60.7 ± 17.4 (13) 124.3 ± 16.7 (50) 159.5 ± 28.2 (70) 58.1 ± 10.9 (37) 3.5 ± 2.3 (4) 4.7 ± 4.5 (2) 

12 Ñapique 0 34.9 ± 23.3 (3) 143.9 ± 34.1 (65) 0 9.6 ± 4.7 (8) 0 13.0 ± 5.8 (5) 

13 Ñaupe 39.8 ± 16.6 (11) 210.7 ± 93.5 (22) 103.1 ± 7.7 (43) 191.2 ± 19.8 (92) 42.8 ± 11.6 (28) 21.0 ± 2.7 (23) 6.8 ± 4.4 (3) 

14 Piedra Mora 54.3 ± 11.2 (16) 113.7 ± 59.1 (19) 44.6 ± 10.9 (24) 11.6 ± 3.2 (9) 55.2 ± 10.9 (43) 4.0 ± 1.4 (4) + 

15 Las Norias 6.6 ± 4.3 (2) 81.1 ± 32.7 (9) 30.3 ± 9.0 (14) 70.9 ± 11.7 (49) 60.2 ± 12.1 (48) 3.4 ± 1.8 (4) 6.1 ± 3.4 (3) 

16 Illescas 0 0 136.3 ± 17.6 (65) 0 20.1 ± 3.2 (16) 0 1.9 ± 1.8 (1) 

17 Pañalá 15.7 ± 5.9 (6) 0.9 ± 0.9 (1) 86.4 ± 8.3 (45) 27.8 ± 13.2 (19) 52.7 ± 5.9 (45) + + 

18 La Peña 2.7 ± 2.3 (1) 11.0 ± 7.1 (3) 18.6 ± 3.0 (11) 101.7 ± 11.5 (70) 103.2 ± 10.6 (84) 5.2 ± 2.1 (5) + 

19 Pomac - Poma III 20.2 ± 7.9 (5) 17.2 ± 12.8 (3) 91.6 ± 16.0 (37) 0 78.6 ± 9.7 (58) 3.0 ± 0.9 (3) 5.9 ± 2.1 (3) 

20 Pomac - Zona Recuperada 91.9 ± 23.9 (21) 41.1 ± 13.3 (12) 45.5 ± 8.1 (23) 0 55.4 ± 10.3 (45) 0.9 ± 1.0 (1) 2.1 ± 1.9 (1) 

21 Pomac - Salinas 31.4 ± 9.3 (9) 31.3 ± 14.0 (8) 59.6 ± 12.6 (30) 12.4 ± 4.6 (8) 69.1 ± 7.6 (54) 1.1 ± 1.0 (1) 5.8 ± 3.5 (3) 

22 La Viña 2.3 ± 2.1 (1) 10.2 ± 5.1 (4) 0 0 49.5 ± 8.5 (43) 0 0 

23 Cañoncillo 0 15.7 ± 7.0 (8) 157.1 ± 28.9 (64) 3.8 ± 2.3 (5) 71.3 ± 12.1 (53) 38.4 ± 6.2 (36) 44.6 ± 11.4 (19) 

24 Mocan 0 103.0 ± 38.9 (19) 0 223.2 ± 26.8 (102) 57.4 ± 11.1 (37) 0 5.0 ± 5.2 (2) 

25 La Arenita 0 82.7 ± 27.4 (19) 0 284.4 ± 120.4 (159) 28.3 ± 11.0 (23) 0 0 

26 Monte Zarumo 0 0 0 114.1 ± 19.9 (80) 17.4 ± 1.8 (15) 0 16.3 ± 6.9 (8) 
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No. Site P. raimondii C. fasciatus C. superciliaris M. longicaudatus P. cinerea S. taczanowskii R. stolzmanni 

 Mean of all sites 27.5 ± 5.0 (370) 12.9 ± 2.0 (196) 38.8 ± 2.3 (752) 142.9 ± 7.9 (1578) 65.1 ± 3.3 (779) 341.6 ± 83.3 (197) 77.4 ± 5.6 (440) 

1 Tucillal 0 13.6 ± 8.3 (7) 13.6 ± 3.5 (11) 173.2 ± 23.2 (61) 4.4 ± 3.8 (3) 221.7 ± 73.6 (9) 89.7 ± 15.1 (19) 

2 Fernandez Bajo 0 0 8.9 ± 3.2 (7) 121.1 ± 15.9 (56) 0 356.7 ± 126.0 (15) 242.0 ± 33.5 (42) 

3 Enace 19.9 ± 3.9 (19) 0 50.6 ± 9.4 (44) 112.8 ± 7.8 (52) 31.0 ± 5.8 (21) 214.0 ± 91.0 (15) 0 

4 Lancones 0 3.3 ± 1.7 (2) 38.8 ± 7.0 (28) 200.8 ± 38.9 (80) 30.8 ± 10.1 (14) 113.5 ± 66.9 (4) 130.4 ± 24.7 (30) 

5 Puerta Pulache 0 6.4 ± 2.3 (4) 18.7 ± 4.0 (14) 58.0 ± 8.1 (28) 0 0 62.3 ± 14.7 (13) 

6 Pampa Larga 0 0 34.0 ± 9.2 (30) 157.1 ± 22.8 (71) 46.2 ± 6.5 (24) 210.6 ± 90.9 (13) 5.0 ± 2.6 (2) 

7 Progreso Bajo 0 25.1 ± 6.4 (16) 39.0 ± 6.5 (31) 106.4 ± 29.5 (42) 85.8 ± 23.9 (36) 3060.2 ± 1645.3 (19) 42.9 ± 19.5 (8) 

8 Cruz de Caña 1.8 ± 1.6 (1) 4.2 ± 2.2 (3) 76.9 ± 7.6 (56) 78.0 ± 9.4 (37) 161.7 ± 13.1 (76) 1108.1 ± 654.8 (29) 146.4 ± 17.1 (36) 

9 Sagrado Corazón 14.0 ± 6.5 (14) 0 61.4 ± 12.1 (44) 132.5 ± 15.5 (50) 139.3 ± 9.0 (61) 188.6 ± 63.0 (14) 207.0 ± 26.0 (48) 

10 Islilla 17.5 ± 7.0 (17) 0 45.3 ± 10.2 (37) 36.7 ± 5.9 (19) 61.0 ± 12.5 (34) 0 0 

11 Ancajima 7.4 ± 1.6 (6) 22.6 ± 8.1 (15) 90.0 ± 14.1 (63) 186.0 ± 17.5 (61) 114.5 ± 29.6 (34) 40.3 ± 34.2 (3) 344.9 ± 50.7 (66) 

12 Ñapique 0 14.0 ± 7.7 (9) 40.8 ± 12.8 (31) 26.8 ± 12.6 (12) 19.6 ± 6.9 (10) 0 0 

13 Ñaupe 16.0 ± 10.8 (16) 9.0 ± 3.6 (3) 78.0 ± 9.2 (56) 281.6 ± 67.8 (99) 40.9 ± 12.7 (19) 20.2 ± 16.3 (2) 223.7 ± 28.4 (45) 

14 Piedra Mora 0 20.8 ± 9.1 (15) 19.9 ± 6.4 (18) 111.1 ± 26.6 (54) 115.3 ± 16.2 (52) 1201.0 ± 644.5 (25) 163.1 ± 25.7 (38) 

15 Las Norias + 5.3 ± 1.9 (3) 19.9 ± 3.0 (16) 139.5 ± 25.3 (57) 75.0 ± 18.0 (38) 551.0 ± 109.4 (22) 162.4 ± 48.9 (38) 

16 Illescas 5.3 ± 2.8 (6) 0 35.4 ± 5.0 (28) 22.9 ± 6.6 (14) 80.4 ± 6.8 (35) 0 0 

17 Pañalá 0 16.5 ± 3.9 (12) 39.6 ± 3.1 (33) 116.0 ± 10.8 (53) 139.8 ± 7.0 (64) 441.6 ± 353.1 (4) 39.1 ± 10.8 (13) 

18 La Peña 0 0.7 ± 0.6 (1) 38.6 ± 5.2 (33) 110.7 ± 28.9 (45) 112.7 ± 22.2 (40) 6.6 ± 5.9 (1) 110.5 ± 10.5 (30) 

19 Pomac - Poma III 2.5 ± 2.3 (3) 35.7 ± 7.4 (19) 62.1 ± 10.5 (44) 234.1 ± 37.5 (104) 73.8 ± 17.1 (39) 0 0 

20 Pomac - Zona Recuperada 46.7 ± 11.3 (49) 15.7 ± 5.0 (11) 41.9 ± 8.6 (35) 305.5 ± 32.0 (130) 72.8 ± 13.0 (41) 0 0 

21 Pomac - Salinas 2.6 ± 2.3 (3) 28.7 ± 3.9 (22) 69.4 ± 14.8 (54) 233.9 ± 57.9 (99) 106.9 ± 12.6 (50) 516.7 ± 377.2 (3) 0 

22 La Viña 0 0 21.7 ± 4.9 (18) 163.7 ± 58.1 (79) 119.0 ± 15.7 (57) 453.0 ± 155.6 (19) 32.4 ± 14.5 (12) 

23 Cañoncillo 0 97.6 ± 33.9 (45) 22.6 ± 6.0 (19) 86.5 ± 6.7 (40) 0 0 0 

24 Mocan 104.7 ± 33.4 (96) 0 1.1 ± 1.0 (1) 207.2 ± 20.6 (78) 27.9 ± 3.8 (10) 0 0 

25 La Arenita 94.1 ± 23.2 (102) 13.8 ± 3.6 (9) 1.0 ± 0.9 (1) 242.7 ± 19.8 (116) 23.5 ± 4.3 (17) 0 0 

26 Monte Zarumo 35.6 ± 7.1 (38) 0 0 75.4 ± 9.0 (41) 7.4 ± 2.2 (4) 0 0 
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Table S3. Wilcoxon two sample tests between local abundance in the centre and at the edge of species' 

ranges. 

Species 

Wilcoxon two sample test between core 

 and edge local abundance 

W (nedge, ncore) p 
Δ median 

(core - edge) 

Short-tailed Woodstar Myrmia micrura 7 (5,13) 0.01 18.4 

Pacific Parrotlet Forpus coelestis 65 (12,11) 0.976 7.3 

Necklaced Spinetail Synallaxis stictothorax 59 (12,13) 0.313 31.8 

Mouse-coloured Tyrannulet Phaeomyias murina 65 (8,15) 0.77 -20.7 

Grey-and-white Tyrannulet Pseudelaenia leucospodia 55 (9,17) 0.263 31.1 

Tumbes Tyrant Tumbezia salvini 41 (4,15) 0.289 -2.4 

Rufous Flycatcher Myiarchus semirufus 58 (10,14) 0.497 1.4 

Peruvian Plantcutter Phytotoma raimondii 90 (9,14) 0.077 -16 

Fasciated Wren Campylorhynchus fasciatus 41 (9,14) 0.172 11.6 

Superciliated Wren Cantorchilus superciliaris 54 (8,17) 0.44 2 

Long-tailed Mockingbird Mimus longicaudatus 51 (8,18) 0.261 36.4 

Cinereous Finch Piezorina cinerea 36 (12,13) 0.024 56.4 

Sulphur-throated Finch Sicalis taczanowskii 17 (5,12) 0.187 305.9 

Tumbes Sparrow Rhynchospiza stolzmanni 4 (7,10) 0.003 130.3 
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Table S4. AIC and Δ AIC values for Generalised Additive Models of environmental correlates as a 

function of NMDS scores and spatial terms. Asterisks in the column Δ AIC show best model (in cases 

where Δ AIC is less than 2.0 between two or more models, the least complex model was chosen). 

Correlate 
Response 
distribution 

Model Degrees 
of 

freedom 
AIC Δ AIC NMDS 

scores 
Spatial 
term 

Altitude Gaussian 

+ + 10 277.28 0.00* 

 + 5 282.77 5.48 

+  5 288.94 11.66 

Grass presence Binomial 

+ + 10 345.55 0.00* 

+  5 542.50 196.95 

 + 5 548.11 202.56 

Grazing pressure Poisson 

+ + 10 3701.69 0.00* 

 + 5 3917.26 215.58 

+  5 4766.47 1064.78 

Human pressure Gaussian 

+ + 10 8.83 0.00* 

 + 5 14.04 5.21 

+  5 17.74 8.90 

Logging pressure Binomial 

+ + 10 220.60 0.00* 

+  5 238.32 17.72 

 + 5 354.28 133.67 

Mean no. stems Gaussian 

+ + 10 57.24 0.00 

+  5 57.92 0.68* 

 + 5 69.67 12.43 

Slope Gaussian 

+  5 105.07 0.00* 

+ + 10 107.07 2.00 

 + 5 121.15 16.09 

Tree height Gaussian 

+  5 69.92 0.00* 

+ + 10 74.77 4.86 

 + 5 96.90 26.99 

Tree species richness Gaussian 

+ + 10 55.65 0.00* 

+  5 61.39 5.75 

 + 5 74.49 18.84 

Understorey cover Gaussian 

 + 5 241.05 0.00* 

+ + 10 248.57 7.51 

+  5 253.28 12.23 
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Figure S1 Overview of site selection methods 
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Figure S2. Occurrence records used to construct convex hulls for centre-periphery analysis. Coastline and 

elevations over maximum elevations at which species were recorded were cut from convex hulls. 
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Figure S3. Spatial autocorrelation of density estimates at 26 sites, evaluated over six distance bands with 

midpoints between 55 and 570 km (n = 204, 236, 122, 52, 26, 10 per band, respectively). Green points 

represent significant Moran’s I values (p < 0.05) as evaluated through permutation tests.

 

 

 


