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ABSTRACT 

An efficient catalyst for the enantioselective synthesis of chiral methyl carbinols from aldehydes is 

presented. The system uses methyltriisopropoxititanium as nucleophile and a readily available 

binapthyl derivative as chiral ligand. The enantioselective methylation of both aromatic and aliphatic 

aldehydes proceeds with good yields and high enantioselectivities under mild conditions. 

Introduction 

The enantioselective synthesis of the chiral methyl carbinol moiety, present in a large number of 

natural products and biologically active compounds,1 is of great importance to both academia and 

industry. The asymmetric addition of a nucleophilic methyl group to an aldehyde is one of the most 

efficient and direct approaches to this structural fragment.2 Enantioselective catalyzed versions of this 

key transformation have been studied extensively with dimethylzinc3,4 trimethylaluminium5 and, more 

recently, with the more reactive methyllithium6 and methyl Grignard reagents.7,8 Many of these 

methodologies involve the use of Ti(OR)4,4-8 normally in excess, which generates a titanium-based 

active species bearing a chiral ligand which is ultimately responsible for the stereocontrol in the 

addition process. It has also been suggested that these reactions involve the addition of organotitanium 

species, which are generated in situ by transmetallation of the organometallic reagent with Ti(OR)4.9 

The direct asymmetric addition of organotitanium reagents to carbonyls10 has also been described 

under catalytic conditions9a,11 using TADDOL,9a,11a,b H8-BINOL11e (for alkyltitanium reagents) or 

BINOL (for aryltitanium reagents)11c derivatives as chiral ligands, in the presence of Ti(OiPr)4. In the 

particular case of Me(OiPr)3, the only catalytic methodologies reported to date require the use of 

chiral TADDOL ligands9a,11a,b at 20 mol% loading and low temperatures of 70 C in order to obtain 

good enantioselectivities. 

 

We have recently developed an efficient catalytic system for the enantioselective addition of 

organolithium,6b,c organomagnesium7a,c,j and organoaluminum5c reagents to aldehydes,12 based on the 

use of Lai’s and Xu’s 1,1-binaphthalene-2-α-arylmethan-2-ols (Ar-BINMOLs)7b,13 chiral ligands 

(Scheme 1). High enantioselectivities (up to 99%) are obtained when the reaction is performed in the 

presence of an excess of titanium tetraisopropoxide,14 avoiding salt exclusion procedures9a and 

chelating additives.7f,g From these results, we envisioned that organotitanium reagents would also be 

suitable nucleophiles for use with this class of chiral ligand. Herein, we describe the results from the 

enantioselective addition of commercially available Me(OiPr)3 to aldehydes, generating versatile 

methyl carbinol units in high enantioselectivities under mild conditions. No Ti(OiPr)4 is needed and 

higher, more practical temperatures can be used in contrast to systems using TADDOL ligands. 
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Scheme 1. Previous work on the catalytic enantioselective addition of organolithium, Grignard and 

organoaluminium reagents to aldehydes using Ar-BINMOL ligands. 

 

Results and Discussion 

The process optimization was carried out using benzaldehyde (1a) as the model substrate. Our first 

tests provided very promising results (Table 1). Using 20 mol% of L1, the addition of 1.5 equiv of 

MeTi(OiPr)3 to 1a in toluene at 40 C (optimal solvent and temperature for the addition of Grignard 

reagents to aldehydes using L1 as ligand)7c provided 78% conversion and 94% ee after 1 h (entry 1). 

In the search for alternative reaction conditions that involve more practical temperatures, we found 

out that the use of Et2O as solvent, allowed full conversion and increased enantioselectivity 97% 

(entry 2) at 0 C. Under these conditions, the catalyst loading could be reduced to 10 mol% without 

any significant loss of conversion or enantioselectivity (entry 3). Lower catalyst loadings (5 mol%, 

entry 4) provided full conversion but lower ee (78%). In the presence of 10 mol% of L1, the reaction 

could be carried out at room temperature (entry 5) and only an small decrease in enantioselectivity 

was observed (compare entries 3 and 5). As a means of comparison, we performed the addition of 

MeTi(OiPr)3 to benzaldehyde (1a) in Et2O at 0 C using (R)-BINOL as chiral ligand (entry 6); very 

low conversion (11%) and enantioselectivity (24%) were obtained. 

Table 1. Influence of catalyst loading, temperature and solventa 

 

Entry Solvent T (C) L1 (mol%) Conv. (%)b ee (%)b 

1 Toluene 40 20 78 94 

2 Et2O 0 20 >99 97 

3 Et2O 0 10 99 96 

4 Et2O 0 5 99 78 

5 Et2O RT 10 >99 94 

6 Et2O 0 10c 11 24 
a Reaction conditions: 1a (1 equiv, 0.07 M), MeTi(OiPr)3 (1 M in THF, 1.5 equiv), 

(Ra,S)-L1, 1.5 h. b Determined by chiral GC. c (R)-BINOL was used as ligand. 

 

Under the optimized conditions, the scope of the addition of MeTi(OiPr)3 was examined with 

different aldehydes (Table 2), proving the system as remarkably efficient. Thus, methyl carbinol units 

were prepare in good yields (84-96%) and enantioselectivities (56->99%, entries 1-13) from a variety 

of (hetero)aromatic substrates containing both electron-donating and -withdrawing substituents. In 

some cases, the charge of MeTi(OiPr)3 was increased up to 1.7 equiv. (entries 2, 4, 5 and 9) or 2.0 



equiv. (entries 10 and 12), to allow the reaction to reach full conversion. A small increase in 

enantioselectivity was also observed upon the increased charge of MeTi(OiPr)3 (compare entries 1-2, 

9-10 and 11-12). The lower enantioselectivity obtained for o-methoxybenzaldehyde (56%, entry 2) 

might be ascribed to higher steric hindrance around the reactive site. The tolerance of this 

methodology towards functionalized substrates such as 1e and 1g should be emphasized (entries 6 and 

8). Remarkably, all reactions were complete in less than 1.5 h without any byproduct formation. 

Moreover, the unreacted starting material and ligand could be recovered, and the latter, recycled and 

reused without any loss of activity. The robustness of the method was tested by performing a larger 

scale reaction with benzaldehyde (1a, 47 mmol, 0.5 g, entry 13); no erosion of conversion or 

enantioselectivity was observed compared to the small scale reaction (compare entry 3, Table 1 with 

entry 13, Table 2). 

Table 2. Enantioselective addition of MeTi(OiPr)3 to aromatic aldehydes: scope of the reactiona 

 

 

 

Entry ArCHO Conv. (%)b Yield (%)c ee (%)b 

1 

 

90 n.d. 55 

2d >99 96 56 

3 

 

82 n.d. >99 

4d 99 92 >99 

5d 

 

99 96 93 

6 

 

97 90 97 

7 

 

99 89 95 

8 

 

97 94 96 

9d 

 

58 n.d. 86 

10e 89 84 87 



11 

 

67 n.d. 90 

12e 98 95 94 

13f 

 

97 95 95 

a Reaction conditions: 1 (1 equiv, 0.07 M), MeTi(OiPr)3 (1 M in THF, 1.5 

equiv), (Ra,S)-L1 (10 mol%), 1.5 h. b Determined by chiral GC or HPLC. c 

Isolated yield after flash chromatography. d Reaction performed with 1.7 equiv 

of MeTi(OiPr)3. e Reaction performed with 2.0 equiv of MeTi(OiPr)3. f Reaction 

performed using 0.5 g of 1a. 

 

Next, we examined the substrate generality for aliphatic and ,-unsaturated aldehydes (Table 3). 

Ligand L1 provided moderate conversion and enantioselectivity in the addition of MeTi(OiPr)3 to 

cinnamic aldehyde (1j), even when 1.7 equiv. of nucleophile were employed (entry 1). The use of L2, 

which had shown higher efficiency in the addition of organolithium reagents to aliphatic and ,-

unsaturated aldehydes,7a allowed a slight improvement in the results (entry 2). L2 also proved to be 

more effective than L1 when the aliphatic phenylaldehyde (1k) was employed as substrate (compare 

entries 3,4). In general, the addition of MeTi(OiPr)3 to linear-1l, and - branched 1m proceeds with 

high enantioselectivities (90 and 94% ee, respectively, entries 5-6) and full conversion in the presence 

of 10 mol% of L2 as chiral ligand. Only the -branched substrate 1n provided high enantioselectivity, 

but moderate conversion (entry 7). For the bulkier pivaldehyde (1o), high enantioselectivity and very 

low conversion (94% ee, 20% conv, entry 8), were obtained. Gratifyingly, the lack of reactivity of 

pivaldehyde (1o) could be rectified by using L1 as a ligand and 2 equiv of MeTi(OiPr)3 (entry 9). 

 

Table 3. Enantioselective addition of MeTi(OiPr)3 to aliphatic and ,-unsaturated aldehydes: scope 

of the reactiona 

 

Entry ArCHO L Conv. (%)b Yield (%)c ee (%)b 

1d 

 

L1 65 n.d. 80 

2 L2 90 88 82 

3 

 

L1 99 n.d. 81 

4 L2 99 93 85 

5 

 

L2 99 95 90e 



6 

 

L2 99 n.d.f 94e 

7 

 

L2 77g  n.d.f 90e 

8d 

 

L2 20 n.d. 94 

9h L1 78 n.d. 93 

a Reaction conditions: 1 (1 equiv, 0.07 M), MeTi(OiPr)3 (0.5 M in THF, 1.5 equiv), (Ra,S)-L (10 

mol%), 1 h. b Determined by chiral GC or HPLC. c Isolated yield after flash chromatography. d 

Reaction performed with 1.7 equiv of MeTi(OiPr)3. e Determined by chiral GC on the acetate 

derivative. f Volatile compound. Not isolated. g 7% of (CH3)2CHCH2CH2OH was detected. h 

Reaction performed with 2.0 equiv of MeTi(OiPr)3.  

 

 

Conclusions 

In conclusion, we have developed an efficient catalytic system for the enantioselective addition of 

methyltriisopropoxititanium to aldehydes. This methodology allows fast and operationally-simple 

one-pot preparation of highly valuable, optically active methyl carbinols using readily available 

reagents. In comparison to the existing TADDOL-based procedures, a number of benefits are realised, 

such as higher, more industrially relevant temperatures, shorter reaction times and no requirement for 

Ti(OiPr)4 in the reaction media. 

 

Experimental 

 

General: See Supporting Information.  

 

General procedure for the addition of methyltriisopropoxitanium to aldehydes General 

Procedure A. To a stirred solution of L1 or L2 (0.20 equiv.) in Et2O (3.0 mL, 0.067 M) at 0 ºC, 

MeTi(i-OPr)3 (0.3 mL, 1.5 equiv. 0.5 M in THF, unless stated otherwise) was added. The solution was 

stirred for 1 min and then the aldehyde (0.1 mmol) was added. The reaction was stirred for 10 min and 

then quenched with water. The layers were separated and the aqueous layer was extracted three times 

with Et2O. The combined organic layers were dried over anhydrous MgSO4 and the solvent was 

removed under reduced pressure. The reaction crude was purified by flash silica gel chromatography. 

(R)-1-Phenylethanol (2a):15  

Following the general procedure A, the reaction of benzaldehyde (20 µL, 0.2 mmol) with 

methyltriisopropoxytitanium (0.3 mL, 1.5 equiv., 1.0 M in THF) in the presence of and (Ra,S)-Ph-

BINMOL L1 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R)-1-phenylethanol (23.4 mg) as a 

colorless oil after column chromatography (Hex/EtOAc 6:1). Yield: 96%. Ee: 96%. [α]D
24 = 47 (c 

0.7, CHCl3) {Lit. [α]D
26 = 97 (c 0.3, CHCl3) for 95% ee}. Ee determination by chiral GC analysis, 

Cyclosil β column, T = 100 °C, P = 15.9 psi, retention times: tr(R) = 30.9 min (major enantiomer), 

tr(S) = 34.8 min. 

 

(R)-1-(2-Methoxyphenyl)ethanol (2b):15  



Following the general procedure A, the reaction of 2-methoxybenzaldehyde (27 mg, 0.2 mmol) with 

methyltriisopropoxytitanium (0.34 mL, 1.7 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R)-1-(2-methoxyphenyl)ethanol (29 

mg) as a colorless oil after column chromatography (Hex/EtOAc 7:1). Yield: 95%. Ee: 56%. [α]D
24 = 

33 (c 0.3, CHCl3) {Lit. [α]D
26 = 24 (c 1.0, CHCl3) for 99% ee}. Ee determination by chiral GC 

analysis, Cyclosil β column, T = 150 °C, P = 15.9 psi, retention times: tr(R) = 9.1 min, tr(S) = 10.4 min 

(major enantiomer). 

 

(R)-1-(3-Methoxyphenyl)ethanol (2c):16  

Following the general procedure A, the reaction of 3-methoxybenzaldehyde (24 µL, 0.2 mmol) with 

methyltriisopropoxytitanium (0.3 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R)-1-(4-methoxyphenyl)ethanol (28 

mg) as a colorless oil after column chromatography (Hex/EtOAc 7:1). Yield: 92%. Ee: 99.5%. [α]D
24 

= 28 (c 1.0, CHCl3) {Lit. [α]D
20 = 51.2 (c 1.0, CHCl3) for 96% ee}. Ee determination by chiral GC 

analysis, CP-Chirasil-DEX CB column, T = 125 °C, P = 6 psi, retention times: tr(R) = 45.1 min (major 

enantiomer), tr(S) = 49.4 min. 

 

(R)-1-(4-Methylphenyl)ethanol (2d):17  

Following the general procedure A, the reaction of 4-tolualdehyde (12.0 µL, 0.1 mmol) with 

methyltriisopropoxytitanium (0.15 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (3.8 mg, 0.1 equiv.) in Et2O (1.5 mL) provided (R)-1-(4-methylphenyl)ethanol (13 mg) 

as a colourless oil after column chromatography (eluent Hex/EtOAc 9:1). Yield: 96%. Ee: 93%. 

[α]D
25 = 39.4 (c 0.7, CHCl3) {Lit. [α]D

26 = 56 (c 1.0, CHCl3) for 96% ee}. Ee determination by chiral 

GC analysis, CP Chirasil-DEX CB column, T = 130 °C, P = 6 psi, retention times: tr(R) = 14.7 min 

(major enantiomer), tr(S) = 16.4 min. 

 

(R)-1-(4-Bromophenyl)ethanol (2e):15 

Following the general procedure A, the reaction of 4-bromobenzaldehyde (37 mg, 0.2 mmol) with 

methyltriisopropoxytitanium (0.3 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R)-1-(4-bromophenyl)ethanol (18 mg) 

as a white solid after column chromatography (Hex/EtOAc 6:1). Yield: 90%. Ee: 97%. [α]D
25 = 28 

(c 0.4, CHCl3) {Lit. [α]D
20 = 34.6 (c 1.7, CHCl3) for 94% ee}. Ee determination by chiral GC analysis, 

CP-Chirasil-DEX CB column, 140 °C, P = 6 psi, retention times: tr(R) = 34.3 min (major enantiomer), 

tr(S) = 39.3 min. 

 

(R)-1-[4-(Trifluoromethyl)phenyl]ethanol (2f):18  

Following the general procedure A, the reaction of 4-(trifluoromethyl)benzaldehyde (14 µL, 0.1 

mmol) with methyltriisopropoxytitanium (0.15 mL, 1.5 equiv., 1.0 M in THF) in the presence of 

(Ra,S)-Ph-BINMOL L1 (3.8 mg, 0.1 equiv.) in Et2O (1.5 mL) provided (R)-1-[4-

(trifluoromethyl)phenyl]ethanol (17 mg) as a yellow oil after column chromatography (Hex/EtOAc 

9:1). Yield: 89%. Ee: 95%. [α]D
25 = 28.9 (c 0.9, CHCl3) {Lit. [α]D

20 = 35.3 (c 1.6, CHCl3) for 99% 

ee}. Ee determination by chiral GC analysis, CP Chirasil-DEX CB column, T = 140 °C, P = 6 psi, 

retention times: tr(R) = 10.9 min (major enantiomer), tr(S) = 12.5 min. 

 

(R)-4-(1-Hydroxyethyl)benzonitrile (2g):19  

Following the general procedure A, the reaction of 4-formylbenzonitrile (13 mg, 0.1 mmol) with 

methyltriisopropoxytitanium (0.15 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (3.8 mg, 0.1 equiv.) in Et2O (1.5 mL) provided (R)-4-(1-hydroxyethyl)benzonitrile (17 

mg) as a yellow oil after column chromatography (Hex/EtOAc 8:2). Yield: 94%. Ee: 96%. [α]D
25 = 

35.3 (c 0.9, CHCl3) {Lit. [α]D
25 = 43.1 (c 1.02, CHCl3) for 96% ee}. Ee determination by chiral GC 

analysis, CP Chirasil-DEX CB column, T = 170 °C, P = 6 psi, retention times: tr(R) = 18.8 min (major 

enantiomer), tr(S) = 21.0 min. 

 
(R)-1-(Naphthalen-2-yl)ethanol (2h):15  



Following the general procedure A, the reaction of naphthaldehyde (31.2 mg, 0.2 mmol) with 

methyltriisopropoxytitanium (0.4 mL, 2.0 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R)-1-(naphthalen-2-yl)ethanol (29.1 

mg) as a white solid after column chromat0ography (eluent Hex/EtOAc 8:1). Yield: 92%. Ee: 84%. 

[α]D
24 = 31 (c 0.4, CHCl3) {Lit. [α]D

28 = 30 (c 0.97, CHCl3) for 87% ee. Ee determination by chiral 

HPLC analysis, Lux 5u Cellulose 3 column, Hex/i-PrOH 97:3 flow = 1 mL/min, retention times: tr(R) 

= 29.7 min, tr(S) = 38.7 min (major enantiomer). 

 

(R)-1-(Thiophen-2-yl)ethanol (2i):15  

Following the general procedure A, the reaction of thiophene-2-carbaldehyde (9.4 µL, 0.1 mmol) with 

methyltriisopropoxytitanium (0.4 mL, 2.0 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R)-1-(thiophen-2-yl)ethanol (24.3 mg) 

as a volatile colorless oil after column chromatography (Hex/EtOAc 6:1). Yield: 95%. Ee: 94%. 

[α]D
24 = 12.5 (c 0.8, CHCl3) {Lit. [α]D

25 = 20 (c 1.04, CHCl3) for 96% ee}. Ee determination by 

chiral GC analysis, CP-Chirasil-DEX CB column, T = 125 °C, P = 6 psi, retention times: tr(R) = 14.5 

min (major enantiomer), tr(S) = 15.9 min. 

 

(R,E)-4-Phenylbut-3-en-2-ol (2j):20  

Following the general procedure A, the reaction of trans-cinnamaldehyde (25.2 µL, 0.2 mmol) with 

methyltriisopropoxytitanium (0.3 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Py-

BINMOL L2 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R,E)-4-phenylbut-3-en-2-ol (26 mg) as 

a white solid after column chromatography (Hex/EtOAc 5:1). Yield: 88%. Ee: 82%. [α]D
24 = 35 (c 

0.6, CHCl3) {Lit. [α]D
20 = 23 (c 1.0, CH2Cl2) for 99% ee. Ee determination by chiral HPLC analysis, 

Lux 5u Cellulose 3 column, Hex/i-PrOH 97:3 flow = 1 mL/min, retention times: tr(S) = 14.2 min, tr(R) 

= 15.3 min (major enantiomer). 

 

(R)-1-Phenylpropan-2-ol (2k):21  

Following the general procedure A, the reaction of phenylacetaldehyde (12 µL, 0.1 mmol) with 

methyltriisopropoxytitanium (0.15 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Py-

BINMOL L2 (3.8 mg, 0.1 equiv.) in Et2O (1.5 mL) provided (R)-1-phenylpropan-2-ol (13 mg) as a 

colourless oil after column chromatography (Hex/EtOAc 9:1). Yield: 93%. Ee: 85%. [α]D
25 = 35.4 

(c 0.7, CHCl3) {Lit. [α]D
28 = 35.4 (c 0.8, CHCl3) for 99% ee}. Ee determination by chiral GC analysis, 

Cyclosil β column, T = 85 °C, P = 15.9 psi, retention times: tr(S) = 76.0 min, tr(R) = 78.2 min (major 

enantiomer). 

 

(R)-2-Nonanol (2l):22  

Following the general procedure A, the reaction of octanal (16.0 µL, 0.1 mmol) with 

methyltriisopropoxytitanium (0.15 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Py-

BINMOL L2 (3.8 mg, 0.1 equiv.) in Et2O (1.5 mL) provided (R)-2-nonanol as a colourless oil. 

Conversion: 99%. Ee: 90%. Ee was determined by chiral GC analysis on derivative 3. 

 

 (R)-1-Cyclohexylethan-1-ol (2m):23  

Following the general procedure A, the reaction of cyclohexanecarbaldehyde (24 µL, 0.2 mmol) with 

methyltriisopropoxytitanium (0.3 mL, 1.5 equiv., 1.0 M in THF) in the presence of  (Ra,S)-Py-

BINMOL L2 (7.5 mg, 0.1 equiv.) in Et2O (1.6 mL) provided (R)-1-cyclohexylethan-1-ol. This 

product was volatile and could not be isolated. Conversion: 99%. Ee: 94%. Ee was determined by 

chiral GC analysis on derivative 4. 

 

(R)-4-Methylpentan-2-ol (2n):5b  

Following the general procedure A, the reaction of 3-methylbutanal (22 µL, 0.2 mmol) with 

methyltriisopropoxytitanium (0.3 mL, 1.5 equiv., 1.0 M in THF) in the presence of (Ra,S)-Py-

BINMOL L2 (7.5 mg, 0.1 equiv.) in Et2O (3.0 mL) provided (R)-4-methylpentan-2-ol. This product 

was volatile and could not be isolated. Conversion: 77%. Ee: 90%. Ee was determined by chiral GC 

analysis on derivative 5. 



 

(R)-3,3-Dimethylbutan-2-ol (2o):24  

Following the general procedure A, the reaction of pivaldehyde (11.0 µL, 0.1 mmol) with 

methyltriisopropoxytitanium (0.20 mL, 2.0 equiv., 1.0 M in THF) in the presence of (Ra,S)-Ph-

BINMOL L1 (3.8 mg, 0.1 equiv.) in Et2O (1.5 mL) provided (R)-3,3-dimethylbutan-2-ol. This 

product was volatile and could not be isolated. Conversion: 78%. Ee: 93%. Ee determination by 

chiral GC analysis, CP Chirasil-DEX CB column, T = 35 °C, P = 6 psi, retention times: tr(R) = 96.3 

min (major enantiomer), tr(S) = 97.0 min. 

 

General procedure for the synthesis of acetates derivatives  General Procedure B. 

In a flame dried Schlenk tube, the corresponding aliphatic alcohol [2l, 2m, or 2n] (0.2 mmol) was 

dissolved in anhydrous DCM (2 mL, 0.1 M) at 0 °C and Et3N (56 µL, 0.4 mmol, 2 equiv.), DMAP 

(2.6 mg, 0.02 mmol, 0.1 equiv.) and acetic anhydride (44 µL, 0.4 mmol, 2 equiv.) were added 

sequentially. The reaction mixture was stirred at RT for 12 h. The reaction was quenched with water 

(2 mL), extracted with Et2O (3 × 5 mL) and the combined organic layers were dried over MgSO4 and 

concentrated under vacuum. The crude product was purified by chromatographic column to provide 

the desired products 3-5. 

 

(R)-Nonan-2-yl acetate (3):25  

Following the general procedure B, the reaction of product 2l (0.1 mmol) with Et3N (35 µL, 0.25 

mmol, 2.5 equiv.), DMAP (1.2 mg, 0.01 mmol, 0.1 equiv.) and acetic anhydride (24 µL, 0.25 mmol, 

2.5 equiv.). Compound 7 was obtained after purification by column chromatography (eluent 

Hex/EtOAc 97:3) as colorless oil. Yield: 95%. Ee: 90%. [α]D
25 = 5.6 (c 0.9, CHCl3). {Lit. [α]D

25 = 

3.8 (c 5.3, CHCl3) for 91% ee}. Ee determination by chiral GC analysis, CP Chirasil-DEX CB 

column, T = 125 °C, P = 6 psi, retention times: tr(S) = 10.6 min, tr(R) = 11.9 min (major enantiomer). 

 

(R)-1-Cyclohexylethyl acetate (4):26  

Following the general procedure B, the reaction of product 2m (0.2 mmol) with Et3N (56 µL, 0.4 

mmol, 2 equiv.), DMAP (2.6 mg, 0.02 mmol, 0.1 equiv.) and acetic anhydride (44 µL, 0.4 mmol, 2 

equiv.). Compound 9 could not be isolated due to the high volatility. Ee: 94%. Ee determination by 

chiral GC analysis, CP-Chirasil-DEX CB column, T = 100 °C, P = 6 psi, retention time: tr(S) = 27.7 

min, tr(R) = 34.3 min (major enantiomer). 

 

(R)-4-Methylpentan-2-yl acetate (5):27  

Following the general procedure B, the reaction of product 2n (0.2 mmol) with Et3N (56 µL, 0.4 

mmol, 2 equiv.), DMAP (2.6 mg, 0.02 mmol, 0.1 equiv.) and acetic anhydride (44 µL, 0.4 mmol, 2 

equiv.). Compound 5 could not be isolated due to the high volatility. Ee: 90%. Ee determination by 

chiral GC analysis, CP-Chirasil-DEX CB column, T = 100 °C, P = 6 psi, retention time: tr(S) = 4.9 

min, tr(R) = 5.3 min (major enantiomer). 
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