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Abstract 

A novel hard-template synthesis approach for the fabrication of mesoporous hydroxyapatite 

(HAP) is described herein. Carbon nanorods, synthesised using mesoporous silica (SBA-15) 

and an acidified sucrose solution, are used as a hard template, after which, they are utilised to 

synthesise mesoporous HAP. Transmission electron microscopy (TEM), X-ray diffraction 

(XRD) energy-dispersive X-ray spectroscopy (EDX) and nitrogen adsorption/Brunauer–

Emmett–Teller (BET), are all employed to characterise the synthesised materials. We 

demonstrate that this approach allows for the successful fabrication of single phase HAP with 

surface area 242.20 ± 2.27 m2 g-1 and average pore diameter 3.5 nm and 18.9 nm. This work 

proposes for the first time a bespoke innovative procedure that employs carbon nanorods as a 

template for the synthesis of mesoporous HAP via a hard templating protocol.  
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1. Introduction 

Hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is an inorganic compound with an elemental 

composition similar to that found in teeth and bones, and has been extensively used as a 

substitute material in dental and orthopaedic medical fields.[1] HAP possesses a characteristic 

hexagonal structure of PO4 tetrahedrons, with the P63/m space group, whereby charge-

balancing Ca2+ and OH- ions reside on the c-axis.[2] Their high structural stability, 

bifunctionality of acidic and basic sites and the possibility of isomorphous substitution makes 

HAP an excellent catalyst support, as summarised in a recent review.[3] Its hydrophilic 

properties allow it to be used directly as a heterogeneous catalyst in dehydration reactions, e.g. 

the reaction of lactic acid to produce acrylic acid, an important intermediate for acrylate 

polymers and other key molecules[4, 5] or in the Guerbet coupling of alcohols.[6-8] The 

addition of metals, either as nanoparticles and/or substituted into the framework, greatly 

increases the range of reported reactions including acetone condensation[9], water-gas 

shift[10], alkane dehydrogenation/oxidative coupling[11-14], alcohol 

synthesis/transformation[15] or oxidation of volatile organic compounds[16-18], alcohol[19, 

20], carbon monoxide[21] and methane[22-24]. For example, Yoon and co-workers studied the 

effects of adding ceria to Ni/HAP catalysts with a view to reducing the well-established 

tendency for Ni to generate carbon during reactions. Results showed that ceria doped samples 

enhanced the catalytic stability, due to the oxygen storage capacity of ceria preventing 

excessive carbon deposition.[25] In addition to the catalytic and environmental applications of 

HAP, the most explored and described area of application of HAP is biomedicine, due to its 

biocompatibility and extreme similarity to human bones.  

There is a plethora of examples of HAP described in the literature that mostly involves 

replacement of damaged parts of musculoskeletal systems, but also plays a crucial role in drug 

or gene delivery agents using substituted HAP, all summarised in the review written by Supova 

et.al. and published in Ceramics International.[26] In fact, although it has been described that 

ingrowth of HAP in human bones increases with the porosity of HAP, at the same time the 

degradation rate of HAP also increases, limiting HAPs vitro reactivity. However such problems 

have been overcome with substituted HAP, making it a perfect biomaterial.[27, 28] For 

instance, Wiesmann and co-workers described HAP substituted with potassium that was later 

involved in the process of dentin mineralisation.[29] Other than potassium, zinc can be found 

in all biological tissues and plays vital role in different biological functions, yet deficiency of 

this mineral is associated with decreased bone density, thus Zn substituted HAP has been 

extensively investigated to promote osteoblast activity.[30]   
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In this paper, we report for the first time, the successful novel preparation methodology of 

mesoporous HAP using a hard templating approach, employing carbon nanorods as a template. 

All synthesised materials have been analysed for characteristic features in morphology, 

crystallinity and porosity of the products. 
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2. Experimental 

2.1 Materials and chemicals 

All chemicals were obtained from Sigma-Aldrich and were used as received without any 

further purification. All solutions were made by using deionised water with a resistivity not 

less than 18.2 MΩ cm. 

2.2 Carbon nanorod synthesis 

Mesoporous silica SBA-15 silica was prepared by dissolving Pluronic P123 (structure-

directing agent, 6 g) into a solution of deionized water (45 mL) and HCl (180 g, 2M), followed 

by stirring at 35–40 °C for 20 min. TEOS (silica source, 12.8 g) was added and the solution 

was stirred continuously for a further 20 hours. The entire contents were then transferred into 

a PTFE bottle and the mixture was aged for a further 24 h at 90 °C under static conditions. The 

resulting white powder was obtained by filtration and purified via washing with ethanol and 

deionized water. The product was calcined at 550 °C for 12 hours using a heating ramp rate of 

2 °C min-1. The calcined silica template (1 g) was impregnated with an aqueous solution 

containing sucrose (1.25 g), concentrated H2SO4 (78.87 µL) and deionised water (5 mL). The 

mixture was placed in the drying oven for 6 hours at 100 °C and a further 6 hours at 160 °C. 

The sample turned dark brown and contained partially carbonised sucrose, which was 

impregnated again with the solution of sucrose (0.8 g), concentrated H2SO4 (50.7 µL) and 

deionised water (5 mL) and dried in the oven in the same manner as before, increasing the 

temperature after 6 hours from 100 °C to 160 °C. The carbonisation was completed by pyrolysis 

under a flow of helium (50 mL min-1) at 800 °C. The obtained powder was washed twice with 

NaOH (50:50 ethanol:water) at 100 °C to remove the silica template, then filtered and dried at 

120 °C.  

2.3 HAP synthesis  

Carbon nanorods (0.3 g) were suspended in deionised water (6 mL) using an ultrasonic bath 

and added to a solution of (NH4)2HPO4 (0.4 M, 100 mL), which was stirred at room temperature 

(18-22 °C) in a 2 L beaker, with Ca(NO3)2 (0.6 M, 100 mL) added dropwise over one hour, 

resulting in a ‘milky’ suspension of HAP. The Ca/P molar ratio was kept at 1.67, corresponding 

to the stoichiometry of HAP. The pH was maintained through the addition of NaOH (0.1 M) 

within the range 9.4-9.5. This ‘milky’ suspension was then stirred overnight at room 

temperature using a magnetic stirring bar. The obtained precipitate was filtered, cleaned 
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alternately with water and ethanol three times, oven dried at 65 °C for six hours, and then 

calcined at 600 °C for a further 2 hours. 

2.4 Characterisation 

Microscopic images were recorded using a JEOL JEM 210 transmission electron microscope 

(TEM). Semi-quantitative chemical analysis was performed by energy-dispersive X-ray 

spectroscopy (EDX) using an Apollo 40 SDD instrument. X-ray diffraction (XRD) was 

conducted in powder spinning mode at ambient conditions using a Panalytical X’Pert Powder 

diffractometer with Cu Kα radiation (λ = 0.15406 nm). All powder diffraction patterns were 

recorded with a step size of 0.052 and step time 200 s, using an X-ray tube operated at 40 kV 

and 30 mA with a fixed 1/2° anti-scatter slit. Nitrogen adsorption/desorption measurements 

were carried out using a Micromeritics ASAP 2020 Surface Analyser at -196 °C. Samples were 

degassed under vacuum (p < 10-3 Pa) for 3 h at 300 °C prior to analysis. BET surface areas of 

the samples were calculated in the relative pressure range 0.05-0.30. 
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3. Results and Discussion 

Hydroxyapatite (HAP) was synthesised as described in the experimental section and 

summarised in Figure 1. The reported wet chemical methodology for the first time employs 

carbon nanorods as a hard approach to synthesising mesoporous HAP. After each step of the 

procedure, consequent products were characterised for crystallinity and porosity using several 

techniques. First, SBA-15, mesoporous silica with hexagonal pore morphology, was 

synthesised using TEOS as a precursor and exploited as a template for carbon nanorod 

assembly. Nitrogen adsorption isotherms were used to establish surface characteristics, 

including BET surface area and mesopore volumes, Figure 2. The surface area of SBA-15 was 

667.32 (±4.91) m2g-1 with average pore diameter 5.1 nm (Table 1). Following this, the silica 

template was impregnated with acidified sucrose solution and after a series of thermal 

treatments, a carbonisation process occurred to obtain carbon nanorods. TEM images revealed 

that these carbon nanorods were formed with a hexagonal morphology, as shown in Figure 3A.  

The surface area of the nanorods was 315.59 (± 4.60) m2 g-1 with average pore diameter 3.9 nm 

(see Table 1).  

Next, carbon nanorods were dispersed and used in the precipitation of HAP, employing 

a wet chemical synthetic route, reported elsewhere[31], followed by template removal, giving 

porous HAP as a final product. The TEM image shown in Figure 3B shows hexagonal crystals 

of HAP with repeated structural arrangements, which happen to be columns of calcium ions 

and oxygen atoms that are located parallel to the hexagonal axis.[19] Subsequently, the XRD 

pattern of the synthesised HAP is shown in Figure 3C. All major peaks correspond to hexagonal 

HAP when compared to standard diffraction pattern (JCPDS 09/0432)[31] and shows that there 

is not any secondary phases observed, such as α- or β-Tricalcium phosphate (α- or β-TCP).[32] 

EDX analysis was performed to examine the elemental composition of the synthesised product 

and, based on the results, it is clear that the elemental ratio of materials corresponds to the 

stoichiometry of HAP (Ca: 37.32 wt%; P: 19.99 wt%; O: 36.13 wt%). However, there is also 

sodium present in an amount of 1.67 wt% in the obtained powder, which can be explained, 

because NaOH was utilised to maintain a stable basic pH during the synthesis process. 

Nevertheless, this impurity can be considered as insignificant. BJH pore size distributions show 

that the HAP contained a mixture of pores; pores with diameter 3.5 nm are present due to the 

direct templating with the carbon nanorods while capillary condensation between HAP 

particles results in a broad distribution of pores with average diameter 18.9 nm (Figure 3D).  

What makes this novel approach even more interesting is that the surface area of the 
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synthesised HAP is 242.20 (± 2.27) m2g-1, having large pores with an average pore diameter of 

18.9 nm. The high porosity described herein considerably exceeds that reported by Cheikhi 

et.al., where surface areas over four times lower have been previously reported.[9] The other 

synthesis protocol has been published by Chen et.al.[33], where nonionic biodegradable 

surfactant Tomadol 23-6.5 and petroleum ether were employed as an emulsion system to 

improve porosity, giving a surface area of 190 m2g-1. Amer et.al [34] however, utilised 

zwitterions surfactant as a template using sol-gel synthetic route assisted by microwave 

irradiation to synthesise mesoporous nano-HAP and obtained surface area of 87 m2 g-1 . Finally, 

all the results presented here demonstrate the successful synthesis of single-phase mesoporous 

HAP via a hard template protocol giving significantly higher porosity to that previously 

reported (see above).  
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4. Conclusions 

This paper has reported a novel methodology to obtain mesoporous single crystal 

hydroxyapatite (HAP) using carbon nanorods as a hard-templating approach. The proposed 

synthetic approach utilised carbon nanorods synthesised using an acidified sucrose solution 

impregnated onto a silica template (SBA-15). TEM confirmed HAP formation and reveals 

large pores and characteristic parallel channels that involve calcium ions and oxygen atoms. 

Hexagonal P63/m crystal arrangements were successfully obtained and the crystallinity of the 

structure was confirmed by XRD. Moreover, BET analysis determined that the reported HAP 

possesses a surface area of 242.20 (± 2.27) m2 g-1 with the average pore diameter 3.5 nm and 

18.9 nm making it a promising biomaterial for further medical or environmental applications.  
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Figure 1.  

Overview of the bespoke synthetic process of HAP using carbon nanorods as a hard template 

fabrication method. 
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Figure 2. 

TEM images and nitrogen adsorption isotherm of SBA-15. 
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Figure 3.  

TEM images of carbon nanorod templates (A) and fabricated mesoporous HAP (B); XRD 

pattern of the synthesised HAP (C); BJH pore size distribution (D) 
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Table 1. Nitrogen adsorption porosimetry data. 

Material Surface Area  

(m2 g-1) 

BJH pore diameter 

(nm) 

Particle diameter 

(nm) 

SBA-15 667.32 (± 4.91) 5.1 ca. 100 

Carbon nanorods 315.59 (± 4.61) 3.9 4.5 

HAP 242.20 (± 2.27) 3.5; 18.9 14.9 
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