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Abstract

Mass transport such as movement of phosphorus in soils and solutes in rivers is a natural phe-

nomenon and its study plays an important role in science and engineering. It is found that there

are numerous practical diffusion phenomena that do not obey the classical advection-diffusion

equation (ADE). Such diffusion is called abnormal or super diffusion and is well described using

a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications

in various areas with great potential for studying complex mass transport in real hydrological

systems. However, solution to the FADE is difficult and the existing numerical methods are com-

plicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving

the fractional advection-diffusion equation (LabFADE). For the first time the FADE is transformed

into an equation similar to an advection-diffusion equation and solved using the lattice Botlzmann

method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and

avoids a complex solution procedure, unlike other existing numerical methods. The method has

been validated through simulations of several benchmark tests: a point source diffusion, a bound-

ary value problem of steady diffusion, and an initial-boundary value problem of unsteady diffusion

with the coexistence of source and sink terms. In addition, by including the effects of the skewness

β, the fractional order α and the single relaxation time τ , the accuracy and convergence of the

method have been assessed. The numerical predictions are compared with the analytical solutions

and indicate that the method is 2nd order accurate. The new method will allow the FADE to be

more widely applied to complex mass transport problems in science and engineering.

PACS numbers: 47.11.-j, 92.40.-t, 91.62.Rt

∗Electronic address: J.G.Zhou@liverpool.ac.uk
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I. INTRODUCTION

Understanding and studying mass transport play an essential role in science and engi-

neering. For example, the transport and fate of sediments and solutes in flowing waters

are critically important for unravelling the impacts of land-based pollutants on downstream

water quality and ecological status against a background of future climate and land use

change [1]. Such mass transport is often caused by advection arising from flow velocity

and diffusion from non-uniform distribution of the mass, or hydrodynamic dispersion from

heterogeneous flow characteristics. The phenomenon often becomes complicated under com-

plex flows within an arbitrary geometry in practical applications. Conventionally it is de-

scribed using a standard advection-diffusion equation (ADE), which is a spatially explicit

second-order partial differential equation [2]. The ADE is extensively studied using different

solution methods including the lattice Boltzmann method and applied in various areas of

science and engineering. Solutions to the ADE can predict the spreading of contaminants

in homogeneous porous media [3, 4], drug injection in the treatment of diseases [5], the

biochemical reactions during blood coagulation [6], the evolution of a phytoplankton species

[7], and solute transport in water flows [8], leading to good understanding and control of the

phenomenon.

In recent years it has been observed that many transport phenomena in nature, such as

mass transport in groundwater and stream waters do not follow the ADE. This has been

confirmed in both field studies and experimental investigations [9–12], and the ADE can

produce results with large errors. The main reason is that mass transport seldom occurs

uniformly in heterogeneous media, such as soil and sediment, but often exhibits a skewed

distribution with a heavy tail in the concentration compared to that produced from the ADE.

This phenomenon is recognised as super or abnormal diffusion and investigated using various

methods including (a) fractional Brownian motion [13], (b) generalised diffusion equations

[14], (c) continuous time random walk models [15], and (d) the aggregated dead zone model

[16, 17]. The research shows that one successful general approach is the continuous time

random walk (CTRW), which is demonstrated as a very good model for mass transport in

real complicated systems [18–21]. In particular, the CTRW model reduces to a fractional

advection-dispersion equation (FADE) and becomes a Lèvy motion when the jump length is

approximated as a Lèvy flight [9, 22]. The FADE contains the non-local fractional Laplacian
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operator unlike the local Laplacian in the ADE and is proposed to model non-local diffusion

[23]. Although such non-local behaviour may not be suitable for all abnormal diffusion, it

has been demonstrated that the FADE is a successful model for many situations of abnormal

diffusion in mass transport and its study attracts much interest in various fields of science

and engineering. Caffarelli and Silvestre [24] introduce an important dimensional reduction

technique for the fractional Laplacian and provide an analytical method for many problems.

Saichev and Zaslavsky [25] discuss the fractional operators in theory. Solving the FADE

greatly improves predictions of mass transport in real systems [9, 12, 26]. However, for

general mass transport there is no direct analytical solution to the FADE like that to the

ADE except for a simple case such as a diffusion/dispersion of a one-dimensional (1D)

point source. Instead, its solution can only be obtained by using a numerical method.

Furthermore, as a fractional order of derivative is involved, there exists a great difficulty to

develop a simple and efficient numerical method to solve the FADE. The available solution

methods often contain complex procedures and are inefficient in applications to general

mass transport problems in practice, e.g., the numerical methods presented by Diethelm et

al. [27], the finite-volume method described by Zhang et al. [26], and the characteristic

difference method by Shen et al. [28].

On the other hand, the lattice Boltzmann method (LBM) has been shown to be a very

successful alternative numerical method in computational fluid dynamics for capturing com-

plex flows, such as those through porous media, which still challenges competing methods

[29, 30]. Compared to conventional numerical methods, it involves only simple arithmetic

calculations, efficiently handles complicated boundary conditions and is naturally amenable

for parallel programming [31], which is crucial for modelling real-time large-scale mass trans-

port under complex flows. Xia et al. recently developed a first LBM based on a multi-speed

mode to solve the FADE [32]. However, the method is far more complicated than the stan-

dard lattice Boltzmann method, and loses the aforementioned advantages of the LBM over

conventional numerical methods such as the finite-difference method.

In this paper, we develop an efficient lattice Boltzmann method to solve the fractional

advection-diffusion equation (LabFADE). Firstly we rewrite the FADE in an expression sim-

ilar to the standard advection-diffusion equation; then we formulate a simple lattice Boltz-

mann method to solve it; and finally we validate the proposed method through simulations

and analyses of several benchmark tests including comparisons with analytical solutions,
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convergence order and model parameter effect on solutions.

II. FRACTIONAL ADVECTION-DIFFUSION EQUATION

In the present study, we consider the following fractional advection-diffusion equation

with a source or sink term [9],

∂C

∂t
+

∂(uC)

∂x
= D

[

β
∂αC

∂+xα
+ (1− β)

∂αC

∂−xα

]

+ Sc, (1)

where C is the concentration and has SI dimension of [ML−3] in base dimensions of length

[L], mass [M] and time [T]; t is time [T]; x is the Cartesian coordinate [L]; D is a fractional

diffusion coefficient [Lα/T ]; u is the flow velocity [LT−1]; Sc stands for a source or sink term

[ML−3T−1]; α is a dimensionless constant and represents the order of fractional differenti-

ation; and β is a dimensionless constant and defined as a skewness parameter. α takes a

value in a range of 1 < α ≤ 2 as founded in the existing researches [9–12]. β takes a value in

a range of 0 ≤ β ≤ 1; it is found in theory that β > 0.5 produces a solution that is skewed

backward, while β < 0.5 produces a solution that is skewed forward. Eq. (1) reduces to the

classical advection-diffusion equation when α = 2 and β = 0.5.

If the reference dimensional concentration is C0, time t0, velocity u0, and length x0

together with bars over the original variables for their corresponding non-dimensional ones

such as C̄, after setting

C = C0C̄, t = t0t̄, uj = u0ūj, x = x0x̄, D = D̄xα
0 /t0, (2)

Eq. (1) can be written in a non-dimensional equation as follows

∂C̄

∂t̄
+

∂(ūC̄)

∂x̄
= D̄

[

β
∂αC̄

∂+x̄α
+ (1− β)

∂αC̄

∂−x̄α

]

+ S̄c, (3)

on condition that x0 = u0t0. In the above equation, S̄c = Sct0/C0 and the reciprocal of D̄

may be defined as the Peclet number for fractional diffusion, i.e.

Pei =
1

D̄
=

u0x
α−1
0

D
. (4)

If all the overbars are dropped in Eq. (3), it will become identical to Eq. (1). For convenient

presentation they are dropped in the rest of the paper.
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In the present study, we adopt the Riemann-Liouville definition [26, 33] for the left and

right fractional derivatives as

∂αC

∂+xα
=

1

Γ(m− α)

∂m

∂xm

∫ x

0

C(ξ, t)

(x− ξ)(α−m+1)
dξ, (5)

and
∂αC

∂−xα
=

(−1)m

Γ(m− α)

∂m

∂xm

∫ L

x

C(ξ, t)

(ξ − x)(α−m+1)
dξ, (6)

where m is the smallest integer greater than α; Γ is the gamma function; and L is the length

of the domain under consideration. In Eq. (3), 1 < α ≤ 2, which gives m = 2, and the above

definitions become
∂αC

∂+xα
=

1

Γ(2− α)

∂2

∂x2

∫ x

0

C(ξ, t)

(x− ξ)(α−2+1)
dξ, (7)

and
∂αC

∂−xα
=

1

Γ(2− α)

∂2

∂x2

∫ L

x

C(ξ, t)

(ξ − x)(α−2+1)
dξ. (8)

Let Z+ and Z− stand for the integrals in Eqs. (7) and (8), respectively,

Z+ =

∫ x

0

C(ξ, t)

(x− ξ)(α−2+1)
dξ, (9)

and

Z− =

∫ L

x

C(ξ, t)

(ξ − x)(α−2+1)
dξ. (10)

Substitution of Eqs. (7) - (10) into Eq. (3) leads to

∂C

∂t
+

∂(uC)

∂x
=

D

Γ(2− α)

∂2Z

∂x2
+ Sc, (11)

in analogy to an ordinary advection-diffusion equation, where

Z =
[

βZ+ + (1− β)Z−

]

. (12)

III. LATTICE BOLTZMANN METHOD

The fractional advection-diffusion equation (11) is simulated by using the following lattice

Boltzmann equation,

fθ(x+ eθ∆t, t +∆t) = fθ −
1

τ
(fθ − f eq

θ ) +
Sc

b
∆t, (13)

where fθ is the particle distribution function; τ is the single relaxation time; ∆t is the time

step; b is the lattice link number; and eθ is the particle velocity vector of particle θ and
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defined as e0 = 0 for θ = 0 or the still particle, eθ = e for θ = 1, and eθ = −e for θ = 2,

which gives b = 3, where e = ∆x/∆t and ∆x is the lattice size.

We define the following local equilibrium distribution function,

f eq
θ =







C − λZ, θ = 0,

1
2
λZ + eθu

2e2
C, θ = 1, & 2,

(14)

where

λ = D
∆t(τ−1/2)e2Γ(2−α)

, α = 1, & 2. (15)

It can be shown that Eq. (14) has the properties,

∑

θ

f eq
θ = C, (16)

∑

θ

eθf
eq
θ = uC, (17)

and
∑

θ

eθeθf
eq
θ = λe2Z. (18)

The concentration C is calculated from

C =
∑

θ

fθ. (19)

Z+ and Z− defined in Eqs. (9) and (10) are two definite integrals. In numerical calculations,

the former at lattice point xi is the integration from Point x1 to xi and the latter at lattice

point xi is the integration from Point xi to xN , where N is the total lattice number covering

the domain length L. Consequently, they can be evaluated respectively as

Z+=

∫ xi

0

C(ξ, t)

(xi − ξ)(α−1)
dξ

=

j=i
∑

j=1

C(xj , t)
(xi − xj)

(2−α) − (xi − xj+1)
(2−α)

(2− α)
, (20)

and

Z−=

∫ L

xi

C(ξ, t)

(ξ − xi)(α−1)
dξ

=

j=N
∑

j=i

C(xj, t)
(xj+1 − xi)

(2−α) − (xj − xi)
(2−α)

(2− α)
. (21)

Through the Chapman-Enskog Ansatz, it can be shown that the described lattice Boltz-

mann model can correctly simulate the FADE. The complete recovery of the FADE from

the lattice Boltzmann equation (13) is given in the appendix.
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IV. SOLUTION PROCEDURE

The solution procedure may be summarised as:

1. Give an initial concentration C,

2. Determine Z+ and Z− from Eqs. (20) and (21),

3. Calculate f eq
θ from Eq. (14),

4. Compute fθ via the lattice Boltzmann equation (13),

5. Update the concentration C according to Eq. (19),

6. Repeat Steps (2) - (5) until a solution is obtained.

The boundary condition for 1D FADE is straightforward. If the concentration is given

at an inflow boundary, the only unknown distribution function f1 is determined using f1 =

C−f0−f2; if the concentration gradient is known, the concentration at the inflow boundary

can be calculated using an interpolation method and then f1 is calculated as f1 = C−f0−f2.

The outflow boundary condition can be treated similarly.

V. VERIFICATION

In order to verify the new lattice Boltzmann method for the fractional advection-diffusion

equation (LabFADE), a number of benchmark tests are simulated and presented. This

includes a point source release, steady and unsteady diffusion from a combination of source

and sink terms. In addition, the effect of the skewness β, the fractional order α and the

single relaxation time τ on solutions as well as convergence order, and accuracy are analysed.

All the calculations are carried out on a PC with Intel i5 CPU and 4GB RAM, and take

about 8 minutes or less.

A. Point source

Firstly, a 1D point source is considered. A unit point source is released at x = 500 cm

initially. The FADE is solved with α = 1.7 and β = 0.5, which is the same test problem as
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FIG. 1: Comparison of the present numerical results at times t = 1 minute and t = 10 minutes

with the analytical solutions for a unit point source released at x = 500 cm initially (α = 1.7,

β = 0.5, D = 1 cm1.7/min and u = 1 cm/min).

that used by Zhang et al. using a finite-volume method [26]. In the numerical simulation,

D = 1 cm1.7/min and u = 1 cm/min together with ∆x = 1 cm and ∆t = 0.1 min. The

point source is specified at one lattice point, which is located at x = 500 cm. In theory, the

analytical solution to the normal advection-diffusion equation, i.e., α = 2 and β = 0.5, is

the Gaussian distribution, and the analytical solution to the fractional advection-diffusion

equation (3) is the α-stable distribution [9]. Such an α-stable distribution can be obtained

using the numerical procedure and the software described by Nolan [34], which is used to

compare with the present numerical solutions in Fig. 1 and shows good agreement. We

also simulate this problem using β = 1.0, which again generates numerical results skewed

backward in good agreement with the corresponding analytical solution in Fig. 2.
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FIG. 2: Comparison of the present skewed numerical results at times t = 1 minute and t = 10

minutes with the analytical solutions for a unit point source released at x = 500 cm initially

(α = 1.7, β = 1.0, D = 1 cm1.7/min and u = 1 cm/min).

B. Effect of skewness parameter β

The second benchmark test is run to show the effect of the skewness parameter β on the

solution to the transport of a unit point source. Three values of 0, 0.5 and 1 are used for β

with α = 1.6. D = 1 cm1.6/min, and the other parameters remain the same as those used

in the first test. The numerical results at time t = 20 min are shown in Fig. 3, revealing

the clear effect of the skewness factor β on the solutions, i.e., fractional advection-diffusion

equation predicts faster spreading of the source or a long tail when β < 0.5, or slower

spreading when β > 0.5 compared to the result by the classic advection-diffusion equation.

This is consistent with the results reported in the literature [26].
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FIG. 3: Effect of skewness parameter β on numerical solutions, showing forward skewness of β = 0

and backward skewness of β = 1 as well as the normal case without skewness of β = 0.5 at time

t = 20 minutes (α = 1.6 and D = 1 cm1.6/min).

C. Effect of fractional order α

In the third benchmark test, the effect of the fractional order α on the solution to a

unit point source is carried out. The parameters used in the simulations are β = 0, D =

1 cmα/min, ∆x = 1.0 cm, ∆t = 1.0 min and u = 0, and the domain size is [0, 400 cm]. The

simulations are run with three different α values, i.e., α = 1.4, 1.6, and 1.8. The solutions at

time t = 400 min are shown in Fig. 4, which demonstrates that the smaller the α value, the

faster the concentration of the point source diffuses downstream. The figure also includes

the result from usual diffusion of α = 2, making strong contrast with the fractional diffusion.

Figure 5 shows the concentration profiles at different times for α = 1.4. All these results

are in excellent agreement with those reported by Zhang et. al. [26], suggesting that the

proposed method is accurate for the prediction of mass transport described by the FADE.
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FIG. 4: Effect of the order of fractional differentiation α on the spreading of a point source at

time t = 400 minutes, indicating faster diffusion downstream for smaller values of α (β = 0,

D = 1 cmα/min, and u = 0 cm/min).

D. Steady diffusion with a source/sink term

The fourth problem is described by the following steady fractional diffusion equation,






D(x) ∂αC
∂+xα +D(x) ∂αC

∂
−
xα + Sc(x) = 0, 0 < x < 2,

C(0) = 0, C(2) = 0,
(22)

where α = 1.8, D(x) = Γ(1.2), and Sc is the source and sink term given by

Sc(x) = −8

[

(x0.2 + (2− x)0.2)−
5

2
(x1.2 + (2− x)1.2) +

25

22
(x2.2 + (2− x)2.2)

]

. (23)

This is a boundary value problem of a steady-state fractional diffusion and is used by Wang

and Nu for verification of a fractional finite-difference method [35]. It has an analytical

solution of

C(x) = x2(2− x)2. (24)
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FIG. 5: Spreading of a point source with time depicted with results at times t = 50, 100, 300 and

600 minutes for α = 1.4, β = 0, D = 1 cm1.4/min, and u = 0 cm/min.

In the simulation, 200 lattices were used with ∆x = 0.01, ∆t = 6.67 × 10−5, β = 0.5 and

D = 2D(x). After the 30000th iterations, the steady solution is obtained and the results are

compared with the analytical solution in Fig. 6, showing good agreement.

E. Accuracy and convergence

In order to assess the accuracy and convergence of the presented scheme, the boundary

value problem described in Section VD has been investigated using 25, 50, 100 and 200

lattices. The relative error is defined as

Er =
1

N

√

∑

(

Cn − Ca

Ca

)2

, (25)

where Cn and Ca stand for the numerical result and the analytical solution, respectively, and

N is the total number of the lattice points. The errors Er for the results using the various
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FIG. 6: Comparison of numerical solution with the analytical solution for the steady diffusion with

the source term Sc 6= 0 and α = 1.8, β = 0.5, D = 2Γ(1.2), and u = 0.

lattices are listed in Table I and also plotted against the relative lattice size or Knudsen

number kn = ∆x/L (L = 2) in Fig. 7, showing that the proposed model has good accuracy;

as seen from the figure, a trendline is best fitted through the points, suggesting that the

model is second-order accurate consistent with lattice Boltzmann dynamics although the

power of the trendline is 1.86 and slightly smaller than 2 due to the effect of using the

first-order accurate boundary conditions.

TABLE I: Relative errors for various lattice sizes and numbers.

Lattice Size, ∆x 0.08 0.04 0.02 0.01

Lattice number, N 25 50 100 200

Relative Error, Er 1.35× 10−2 9.37 × 10−3 9.60× 10−4 3.95 × 10−4
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FIG. 7: Relative errors against lattice sizes for steady fractional diffusion phenomenon with the

source term Sc 6= 0 and α = 1.8, β = 0.5, D = 2Γ(1.2), and u = 0.

F. Effect of single relaxation time τ

In order to study the effect of the single relaxation time τ on the method, the above

steady fractional diffusion problem is simulated using values of 0.92, 0.95, 1.0, 1.3, 1.5 and

2.0 for the single relaxation τ . It is found that the model is stable with the use of these

values but becomes unstable for a value less than 0.92. The stable numerical results are

plotted in Fig 8, which shows that use of 0.92 ≤ τ ≤ 1.5 can provide accurate solutions to

this test.
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FIG. 8: Effect of the single relaxation time τ on solutions for steady fractional diffusion phenomenon

with the source term Sc 6= 0 and α = 1.8, β = 0.5, D = 2Γ(1.2), and u = 0.

G. Unsteady diffusion with a source term

The final problem is described by the following unsteady fractional diffusion equation,


















∂C
∂t

= D(x, t) ∂αC
∂+xα +D(x, t) ∂αC

∂
−
xα + Sc(x), 0 < x < 2, 0 < t ≤ 1

C(0, t) = 0, C(2, t) = 0, 0 ≤ t ≤ 1

C(x, 0) = x2(2− x)2, a ≤ x ≤ 2,

(26)

where α = 1.8, D(x) = Γ(1.2)t, and Sc is the source term given by

Sc(x) = −e−tx2(2−x)2−8te−t

[

(x0.2 + (2− x)0.2)−
5

2
(x1.2 + (2− x)1.2) +

25

22
(x2.2 + (2− x)2.2)

]

.

(27)

This is an initial-boundary value problem of an unsteady-state fractional diffusion and is

used by Wang and Nu for verification of a fractional finite-difference method [35]. It also

has an analytical solution of

C(x) = e−tx2(2− x)2. (28)
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FIG. 9: Comparisons of numerical results with the analytical solutions for unsteady fractional

diffusion phenomenon with the source term Sc and α = 1.8, β = 0.5, D = 2tΓ(1.2), and u = 0.

In the simulation, 100 lattices were used with ∆x = 0.02, ∆t = 2 × 10−4, β = 0.5 and

D = 2D(x). The numerical results at different times t = 0.2, 0.4, 0.6, 0.8, and 1.0 are

shown in Fig. 9, and are further compared with the corresponding analytical solutions,

demonstrating excellent agreements. This again confirms that the described scheme is able

to produce accurate solutions to unsteady fractional diffusion phenomena with a complicated

source or sink term.

VI. CONCLUSIONS

An efficient lattice Boltzmann method is proposed to solve the fractional advection-

diffusion equation for prediction of complicated mass transport in practical hydrological

systems (LabFADE). Use of a relaxation time in the range of 0.92 ≤ τ < 1.5 can produce

accurate solutions. The results have shown that the method is second-order accurate at

17



similar accuracy to other more complicated numerical methods for solving the FADE. It

retains the simplicity and advantages of the standard lattice Boltzmann method that has

been developed for computational fluid dynamics. This enables the new method to be

suitable for application of the FADE to a wide range of investigations into complex large-

scale mass transport in hydrological sciences and environmental engineering.
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Appendix A: Recovery of the FADE

To prove that the concentration C calculated from Eq. (19) satisfies the fractional

advection-diffusion equation (11), we apply the Chapman-Enskog analysis to the lattice

Boltzmann equation (13). Assuming that ∆t is small and

∆t = ε, (A1)

substitution of Eq. (A1) into Eq. (13) yields

fθ(x+ eθε, t+ ε)− fθ(x, t) = −
1

τ
(fθ − f eq

θ ) +
Sc

b
ε. (A2)

Taking a Taylor expansion to the left hand side of the above equation in time and space at

a point (x, t) leads to

ε

(

∂

∂t
+ eθ

∂

∂x

)

fθ +
1

2
ε2
(

∂

∂t
+ eθ

∂

∂x

)2

fθ +O(ε3)

=
Sc

b
ε−

1

τ
(fθ − f eq

θ ). (A3)

Using the Chapman-Enskog Ansatz, fθ can be expressed as,

fθ = f
(0)
θ + εf

(1)
θ + ε2f

(2)
θ +O(ε3). (A4)

The centred scheme [36] is used for term Sc,

Sc = Sc

(

x+
1

2
eθε, t+

1

2
ε

)

, (A5)
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which can also be written, via a Taylor expansion, as

Sc

(

x +
1

2
eθε, t+

1

2
ε

)

= Sc(x, t)

+
1

2
ε

(

∂

∂t
+ eθ

∂

∂x

)

Sc(x, t) +O(ε2). (A6)

After inserting Eqs. (A4) and (A6) into Eq. (A3), the equation to order ε0 is

f
(0)
θ = f eq

θ , (A7)

to order ε
(

∂

∂t
+ eθ

∂

∂x

)

f
(0)
θ =

Sc

b
−

f
(1)
θ

τ
, (A8)

and to order ε2

(

∂

∂t
+ eθ

∂

∂x

)

f
(1)
θ +

1

2

(

∂

∂t
+ eθ

∂

∂x

)2

f
(0)
θ

=
1

2

(

∂

∂t
+ eθ

∂

∂x

)

Sc

b
−

f
(2)
θ

τ
. (A9)

Substitution of Eq. (A8) into the above equation gives
(

1−
1

2τ

)(

∂

∂t
+ eθ

∂

∂x

)

f
(1)
θ = −

1

τ
f
(2)
θ . (A10)

Combining Eq. (A8) with ε times Eq. (A10), we obtain
(

∂

∂t
+ eθ

∂

∂x

)

f
(0)
θ + ε

(

1−
1

2τ

)(

∂

∂t
+ eθ

∂

∂x

)

f
(1)
θ

=
Sc

b
−

1

τ
(f

(1)
θ + εf

(2)
θ ). (A11)

Now, summing Eq. (A11) over θ provides

∂

∂t

∑

θ

f
(0)
θ +

∂

∂x

∑

θ

eθf
(0)
θ

+ ε

(

1−
1

2τ

)

∂

∂x

∑

θ

eθf
(1)
θ = Sc. (A12)

Putting Eq. (A8) into the above equation results in

∂

∂t

∑

θ

f
(0)
θ +

∂

∂x

∑

θ

eθf
(0)
θ

= ε

(

τ −
1

2

)

∂

∂x

∑

θ

eθeθ
∂f

(0)
θ

∂x

+ Sc + ε

(

τ −
1

2

)

∂

∂x

∂

∂t

∑

θ

eθf
(0)
θ . (A13)
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It can be shown that the last term on the right side of the above equation is much smaller than

the first term. If we assume that the characteristic velocity is Uc, length Lc, time tc, and con-

centration Cc, the term (∂/∂t
∑

θ eθf
(0)
θ ) is of order UcCc/tc and the term (∂/∂x

∑

θ eθeθf
(0)
θ )

is of order e2Cc/Lc. Thus the ratio of the former to the latter terms has the order of

O

(

∂/∂t
∑

θ eθf
(0)
θ

∂/∂x
∑

θ eθeθf
(0)
θ

)

= O

(

UcCc/tc
e2Cc/Lc

)

= O

(

Uc

e

)2

= O(M2), (A14)

in which Cs is the sound speed with the same order as e andM = Uc/Cs is the Mach number.

It follows that the last term in Eq. (A13) is much smaller compared to the first term and can

be neglected if M << 1, which is consistent with the lattice Boltzmann dynamics; hence

Eq. (A13) becomes

∂

∂t

∑

θ

f
(0)
θ +

∂

∂x

∑

θ

eθf
(0)
θ

= ε

(

τ −
1

2

)

∂2

∂x2

∑

θ

eθeθf
(0)
θ + Sc. (A15)

Referring to Eq. (A7), after the terms are evaluated using Eq. (14), the above equation

becomes the exact fractional advection-diffusion equation (11).

Appendix B: Pseudocode for the LabFADE

The Pseudocode consists of main programme and one module. The former is used to run

the simulation after defining the problem, providing computation parameters and initialising

variables and the latter is the core algorithm for implementation of the LabFADE. Only the

main programme is required to change for modelling different mass transport. Without loss

of generality, the complete set-up main programme for Example D - Steady diffusion with

a source/sink term is presented below, which can be changed to reproduce other examples

in this paper.

program main

------------
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This main code is the complete set-up for Example D

& - Steady diffusion with a source/sink term.

call module fracdiff

Notations

a - Lattice link direction

C - Concentration

Dfx - dispersion coefficient

dt - Time step

dx - Lattice size

Lx - Total lattice number

u - Velocity

x - Index

alpha - Fractional differentiation order

Beta - Skewness parameter

& - Continuation

Basic set up and problem is defined

alpha = 1.8

Beta = 0.5

Lx = 201

dx = 0.001

dt = 0.000067

Dfx = 1.8363 [= 2*gamma(1.2)]

Define single relaxation time tau = 1.0

Assign particle velocity e(0) = 0, e(1) = e and e(2) = -e

(e = dx/dt)
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Initialise variables velocity & concentration

u = 0

C = 0

Determine the source/sink term

Sc = - 8*( x**0.2+(2-x)**0.2 - 5/2*(x**1.2+(2-x)**1.2) +

& 25/22*(x**2.2+(2-x**2.2) )

Calculate local equilibrium distribution function

using the initial variables feq

call compute_feq

Set f = feq

open a file to save the result

Start the loop for time marching

call collide_stream

Inflow boundary condition f_1 = C-f_0-f_2

outflow boundary condition f_2 = C-f_0-f_1

call solution

update the local equilibrium distribution function feq

call compute_feq

End the loop when a solution is obtained

Output result to the file
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end program main

module fracdiff

---------------

function collide_stream

Implement lattice Boltzmann equation Eq. (13)

for x = 1: Lx

xp = x+1

xn = x-1

ftemp(0,x) = f(0,x) - (f(0,x)-feq(0,x))/tau + dt/5*Sc(x)

if (xp <= Lx) ftemp(1,xp) = f(1,x) - (f(1,x)-feq(1,x))/tau + dt/5*Sc(x)

if (xe >= 1) ftemp(2,xn) = f(2,x) - (f(2,x)-feq(2,x))/tau + dt/5*Sc(x)

end

end function collide_stream

function solution

Set the global f

f = ftemp
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Calculate the concentration

for x = 1: Lx

Cen(x) = 0.0

for a = 0: 2

Cen(x) = Cen(x) + f(a,x)

end

end

end function solution

function compute_feq

For the local equilibrium distribution function

for x = 1: Lx

Qxp(x) = 0. [See Eq. (20)]

for xt = 1: x-1

Qxp(x) = Qxp(x) + Cen(xt+1,y)*( (real(x-xt)*dx)**(2-alpha)

& - (real(x-xt-1)*dx)**(2-alpha) ) /(2-alpha)

end

end

Qxm(Lx) = 0. [See Eq. (21)]
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for x = 1: Lx-1

Qxm(x) = 0.

for xt = x: Lx-1

Qxm(x) = Qxm(x) + Cen(xt,y)*( (real(xt+1-x)*dx)**(2-alpha)

& - (real(xt-x)*dx)**(2-alpha) ) /(2-alpha)

end

end

Determine feq [See Eq. (14)]

for a = 1: 2

feq(a,x) = Dfx/(Gamma2ma*2*dt*(tau-0.5)*e*e)*( Beta*Qxp(x)

& + (1-Beta*Qxm(x) )

& + Cen(x)/(2*e*e)* e(a)*u(x)

end

feq(0,x) = Cen(x) - Dfx/(Gamma2ma*dt*(tau-0.5)*e*e)*( Beta*Qxp(x)

& + (1-Beta)*Qxm(x) )

end function compute_feq

end module fracdiff
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[21] D. Fulger, E. Scalas, and G. Germano, Physical Review E 77, 021122 (2008).

[22] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Water Resour. Res. 36, 1413 (2000).

26



[23] T. M. Michelitsch, G. A. Maugin, A. F. Nowakowski, F. C. G. A. Nicolleau, and M. Rahman,

Fractional Calculus and Applied Analysis 16, 827 (2013).

[24] L. Caffarelli and L. Silvestre, Communications in Partial Differential Equations 32, 1245

(2007).

[25] A. I. Saichev and G. M. Zaslavsky, Chaos 7, 753 (1997).

[26] X. Zhang, J. W. Crawford, L. K. Deeks, M. I. Stutter, A. G. Bengough, and I. M. Young,

Water Resources Research 41, W07029 (2005), ISSN 00431397, URL http://doi.wiley.

com/10.1029/2004WR003818.

[27] K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, Computer Methods in Applied Mechanics

and Engineering 194, 743 (2005), ISSN 00457825, URL http://linkinghub.elsevier.com/

retrieve/pii/S0045782504002981.

[28] S. Shen, F. Liu, V. Anh, I. Turner, and J. Chen, Journal of Applied Mathematics and Com-

puting 42, 371 (2013).

[29] N. S. Martys and H. Chen, Physical Review E 53, 743 (1996).

[30] E. Boek and M. Venturoli, Computers and Mathematics with Applications 59, 2305 (2010).

[31] C. K. Aidun and J. R. Clausen, Annual Review of Fluid Mechanics 42, 439 (2010).

[32] Y. Xia, J. Wu, and Y. Zhang, Engineering Applications of Computational Fluid Mechanics 6,

581 (2012).

[33] F. Liu, V. Anh, and I. Turner, Journal of Computational and Applied Mathematics

166, 209 (2004), ISSN 03770427, URL http://linkinghub.elsevier.com/retrieve/pii/

S0377042703008616.

[34] J. P. Nolan, Communications in Statistics. Stochastic Models 13, 759 (1997).

[35] H. Wang and N. Nu, Journal of Computational and Applied Mathematics 255, 376 (2014).

[36] J. G. Zhou, Lattice Boltzmann Methods for Shallow Water Flows (Springer-Verlag, Berlin,

2004).

27


