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SUMMARY 

When using particle methods to simulate water-air flows with compressible air pockets, a major 

challenge is to deal with the large differences in physical properties (e.g. density and viscosity) 

between water and air. In addition, the accurate modelling of air compressibility is essential. To this 

end, a new two-phase strategy is proposed to simulate incompressible and compressible fluids 

simultaneously without iterations between the solvers for incompressible and compressible flows. 

Water is modeled by the recently developed 2-phase Consistent Particle Method (2P-CPM) for 

incompressible flows. For air modeling, a new compressible solver is proposed based on the ideal gas 

law and thermodynamics. The formulation avoids the problem of determining the actual sound speed 

which is dependent on the temperature and is therefore not necessarily constant. In addition, the 

compressible air solver is seamlessly integrated with the incompressible solver 2P-CPM because they 

both use the same predictor-corrector scheme to solve the governing equations. The performance of 

the proposed method is demonstrated by three benchmark problems as well as an experimental study 

of sloshing impact with entrapped air pockets in an oscillating tank. 
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1. INTRODUCTION 

Most two-phase flow models [1-3] treat both gas and liquid as incompressible. While 

incompressibility is a reasonable assumption in some water-air flow scenarios [4], air entrapment or 

entrainment may be generated in some other problems such as violent wave impact on structures [5, 

6]. The compressibility of entrapped air pockets can play an important role in the water-air interaction 

in terms of influencing the pressure peak and impact duration in a wave impact process [7, 8]. 

Therefore, it is necessary to include air compressibility to better simulate such water-air flow 

problems. 

The main numerical difficulties to model water-air flows with entrapped air pockets include the 

large and discontinuous deformation of fluid and the abrupt discontinuity of fluid properties (density 

and viscosity) at the interface between water and air. An even greater challenge is to have an 
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integrated solution for water and air that behave very differently, the former being practically 

incompressible and the latter highly compressible. To address these issues, many mesh-based methods 

(such as Finite Difference Method and Finite Volume Method) and meshless methods have been 

developed. While Element Free Galerkin Method [9] and Particle Finite Element Method [10] may be 

considered “meshless” methods, they still require mesh to define shape functions with which the 

governing equations are solved, although the particles (nodes) can move independently of the mesh. 

The main meshless methods that completely remove the need of mesh include Smoothed Particle 

Hydrodynamics (SPH), Incompressible Smoothed Particle Hydrodynamics (ISPH) and Moving 

Particle Semi-implicit (MPS) method. Due to the meshless and Lagrangian nature, particle methods 

possess three inherent advantages over mesh-based methods: (1) better capability in modeling large 

and discontinuous fluid motion such as breaking waves, (2) better tracking of moving interface of 

different fluids, and (3) no numerical diffusion induced by the convection term in the Navier-Stokes 

equation. Considering these advantages, a particle method is adopted in this study. 

The main differences between the three commonly used particles methods, i.e. SPH, ISPH and 

MPS, lie in the computations of fluid pressure and spatial derivatives (for gradient and Laplacian). In 

SPH, the fluid pressure is explicitly solved by an equation of state (EOS), whereas ISPH computes 

fluid pressure implicitly by solving a pressure Poisson equation (PPE). Both SPH and ISPH adopt the 

same derivative-approximation schemes which essentially use a kernel function (with finite values in 

a finite influence region) to approximate Dirac delta function. The underlying principle is that, in the 

limiting case as the influence radius approaches zero, the kernel function would approach the Dirac 

delta function. Nevertheless, since the influence radius should be sufficiently large to involve 

sufficient neighbor particles for computation, it would be difficult for any kernel function to 

accurately approximate Dirac delta function which has an infinitely high value over an infinitesimal 

region. While a good choice of kernel function may be appropriate to approximate a scalar variable, 

its use in computing spatial derivatives would require the derivative of a kernel function, which is 

tantamount to approximating the (non-existent) derivative of Dirac delta function. Similar to ISPH, 

MPS solves fluid pressure implicitly by solving PPE but using a different derivative approximation 

strategy. The gradient term is computed as a weighted average of the gradient vectors evaluated 

between the reference particle and all neighbor particles. Derived based on the analogy of transient 

diffusion, the Laplacian operator of a parameter is a weighted average of the quantities distributed 

from neighbor particles.  

In computing derivatives, all these methods need a predefined kernel or weighting function, which 

is non-unique and has significant influence on the numerical accuracy. Particularly when the particle 

distribution is irregular (inevitable in violent fluid motion), large numerical errors would be generated 

and the inaccurate approximation of derivatives would induce spurious pressure fluctuation. 
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Consequently, numerical treatments such as artificial viscosity, artificial sound speed and artificial 

surface tension are required in some of these methods on free-surface or two-phase flow problems. 

To address this issue, a new meshless method named Consistent Particle Method (CPM) has 

recently been proposed [11]. In this method, the spatial derivatives are solved by adopting the 

Generalized Finite Difference (GFD) scheme [12]. Being consistent with Taylor series expansion and 

eliminating the use of a kernel function, CPM is fundamentally different from the above-mentioned 

particle methods in terms of the derivative-approximation scheme. Note also that the first-order 

derivatives (for gradient) and second-order derivatives (for Laplace operator) are simultaneously 

solved instead of using different equations unlike some other particle methods. Due to the accurate 

computation of derivatives, the problem of spurious pressure fluctuation that exists in some other 

particle methods has been largely resolved [11, 13]. This also enhances computational efficiency since, 

with more accurate pressure solution, an iterative solver would be able to converge fast when solving 

the PPE. More specifically, the computational efficiency of CPM should be at least comparable to 

those of MPS and ISPH, both of which need to solve a PPE [14]. Considering the advantages of CPM 

including its consistent computation of spatial derivatives and smoother pressure solution, this method 

has been recently extended to model incompressible two-phase flows with large density difference 

[14]. This involves a new derivative-computation scheme accounting for abrupt density discontinuity 

and an adaptive particle selection scheme. The method is able to model violent water-air flows with 

density ratio of about a thousand between the two phases. Nevertheless, for problems where 

compression of air is significant, it would be necessary to account for air compressibility while 

treating water as incompressible. Therefore, the incompressible 2P-CPM [14] is further improved by 

accounting for air compressibility in the present study such that water-air flows with air entrapment 

can be accurately simulated. 

To model incompressible or weakly compressible flows, the approach of artificial compressibility 

was used by other researchers [4, 15], by replacing the transient density term in the continuity term 

with a pressure term through an EOS. Nevertheless, employing the real compressibility parameter (via 

sound speed sc ) may require very small time step to satisfy the Courant-Friedrichs-Lewy (CFL) 

condition [16]. Therefore, an artificial value of sound speed (generally much smaller than the real 

value) is adopted in many studies; otherwise the required time step would be very small. However, 

since fluid compressibility is related to the sound speed, the choice of artificial sound speed would 

affect the accuracy of the compressible solver significantly [17]. Hence, careful calibration is required 

to achieve a compromise between accuracy and efficiency for each case. While most of the artificial 

compressibility studies are mesh based, some particle methods such as SPH also use a similar concept 

to simulate water-air two-phase flows [18]. The compressibility of air and water is controlled by 

different artificial sound speeds which are often very different from the actual values. 
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Besides artificial compressibility, the predictor-corrector (or split) scheme has been used to model 

compressible flows. Such studies include the C-CUP (C for Cubic-interpolated propagation and CUP 

for combined unified procedure) [19] and its variants [20, 21]. Due to the implicit treatment of fluid 

pressure, a larger time step can be used and the computed pressure is generally more stable than the 

artificial compressibility approach [16, 20]. In addition, these methods can be readily formulated to 

model incompressible and compressible fluids simultaneously because they solve the Navier-Stokes 

equations of primitive (non-conservative) form [21]. Based on the predict-corrector scheme, MPS has 

also been used for compressible flows by using the sound speed dependent EOS. Using this 

compressibility scheme, Ikari et al. [22] presented a decoupled MPS model in which the 

incompressible water and compressible air domains were solved separately and the interaction 

simulated by force terms. Even though relatively stable results were obtained, this decoupled scheme 

could not accurately model the interaction of different fluids near interface accurately. From the 

viewpoints of formulation elegance and ease of implementation, the same computational procedure to 

couple incompressible water and compressible air is desired. 

To model compressible flow, the most commonly used EOS involves sound speed which is given 

by sc p     where
 
p and ρ are the fluid pressure and density respectively. An advantage of this 

type of EOS is that it can describe both liquid and gas. Nevertheless, when modelling violent water-

air flows, this approach has some limitations because sc  is dependent on the composition [23] and 

temperature of fluid [24]. Therefore, it is difficult to determine the correct value of sound speed in 

different scenarios (e.g. during and immediately after wave impact in a wave impact problem). 

Another type of EOS for compressible gases is the ideal gas law, i.e. p RT , where T is 

temperature and R is the gas constant. The ideal gas law can be written into the form ( 1)p e   , 

where γ is the ratio of specific heats and e the internal energy [25]. The ideal gas law governs many 

real gases of engineering interests under normal pressure and temperature. By assuming an isentropic 

process, the ideal gas law leads to the polytropic gas law 2 1 2 1( )p p   . Because of its simplicity, 

this type of EOS has been used to model air pockets or bubbles [5, 26, 27]. Compared to the sc  

dependent EOS, the polytropic formulation does not involve the sound speed and thus avoids the issue 

of determining the real (or artificial) sound speed. In some studies [5, 26, 27], however, the air 

pressure is assumed to be spatially uniform in each air pocket and hence the spatial variation of air 

pressure (e.g. pressure wave) could not be captured. 

In this study, a new compressible solver is proposed that is consistent with thermodynamics. This 

solver does not involve sound speed nor assume uniform pressure in the entrapped air pocket. In 

addition, based on the same predictor-corrector scheme, this compressible solver can be coupled 

seamlessly with the recently developed incompressible solver for two-phase flows [14]. This leads to 
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the complete 2P-CPM capable of simulating two-phase incompressible and compressible flows with a 

wide range of density ratio. Using the proposed method, wave-impact problems in which air 

compressibility is important are studied. In addition to comparison with published results, an 

experimental study of water sloshing with air pocket in an oscillating task is conducted for validation 

purpose. 

 

2. CONSISTENT PARTICLE METHOD 

The governing equations for viscous Newtonian fluids (both incompressible and compressible) in a 

two-fluid system are the Navier-Stokes equations as follows [28]: 

 
1

0
D

Dt




  v   (1) 

   1 1 TD
p

Dt


 
         
 

v
v v g   (2) 

where ρ is the density of fluid, v  the particle velocity vector, p the fluid pressure,   the dynamic 

viscosity of fluid and g the gravitational acceleration. The unified equations for incompressible and 

compressible fluids make it possible to model flows of different phases simultaneously. 

For both incompressible and compressible fluids, Equations (1) and (2) can be solved by a 

predictor-corrector scheme. In the predictor step, the intermediate velocity 
*

v  and position 
*

r  of fluid 

particles are computed by neglecting the pressure gradient term in Equation (2) as 

   * ( ) ( ) ( )1 T
k k k t


     
  

 
    

 
v vv v g   (3) 

 
* ( ) *k t  r r v   (4) 

where
( 1) ( ) ( ) ( ) ( ), ( , )k k k k kt t t t   v v r , 

( )k
v and 

( )k
r are the particle velocity and position at time

( )kt . 

In the corrector step, a PPE can be derived as follows: 

 
( 1) *

( 1)

* 2 ( 1)

1 1 k
k

k
p

t

 

 






  
    

 
  (5) 

For incompressible fluids, the incompressibility condition 
( 1)

0

k   , where 0  
is the initial fluid 

density, is imposed on the right-hand side of Equation (5). Within the influence radius er  ( 03.1er L  

is adopted in one-dimensional cases and 02.1er L  is adopted in two-dimensional cases of the present 
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study to achieve a balance between accuracy and efficiency, where 0L  is the initial particle spacing), 

the intermediate fluid density 
*
 
for particle i is evaluated as [29] 

  *

i i ij

j

m w r     (6) 

where ijr
 
is the distance between the reference particle (i) and neighbor particles (j) based on the 

intermediate positions,  ijw r  a weighting function defined in [13], and mi the mass of particle i (fixed 

during simulation). Letting the initial density of particle i be 0i , mi can be computed based on the 

initial particle distribution as follows: 

  0i i ij

j

m w r    (7) 

For compressible fluids, the intermediate density is evaluated in the same way as incompressible 

fluids but with a different weighting function. As pointed out by Koshizuka and Oka [30], the sharp 

weighting function generates large repulsive force when particles get closer and hence is suitable in 

the simulation of incompressible flows. In contrast, the slow-slope weighting functions whose value at 

r = 0 is smaller allows more compressibility of fluids, such as the following function [31] 

  

2 3 4

2

1 6 8 3 , 0

0 ,

e

ij e e e

e

r r r
r r

w r r r r

r r

      
          

       




 (8) 

Using Equation (8), the computed air density agrees well with the theoretical value when air is 

compressed or expanded. This is the first difference in modelling incompressible water and 

compressible air. Another distinct feature in the simulation of compressible flows is that, without the 

incompressibility condition, the fluid density 
( 1)k 

 in Equation (5) should be treated as unknown 

(more details will be presented in the following section). 

Applying the derivative computation scheme as shown in Equation (13) [14] to the left hand side 

of Equation (5) and Equation (24) leads to a system of linear equations with sparse coefficients, which 

can be solved effectively by the generalized minimal residual (GMRES) method with incomplete LU 

factorization [32]. Using the solved fluid pressure, particle velocities and positions are updated as 

 

( 1)

( 1) *

k

k p
t





  
   

 
v v   (9) 

and 

 
( 1) ( ) ( 1)k k k t   r r v  (10) 
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where the pressure gradient term is computed by Equation (12) [14] and the time step Δt at step k+1 

has to satisfy the Courant condition as [33] 

 0

max

0.2
L

t
v

    (11) 

where maxv is the maximum particle velocity at step k. 

The above solution scheme is similar to those in MPS [34] and ISPH [33]. Nevertheless, there are 

two significant differences between the proposed 2P-CPM and other particle methods for two-phase 

flows. The first difference is that the proposed method computes spatial derivative (for gradient and 

Laplacian operators) for two fluids with drastic density difference (e.g. water versus air) on the basis 

of Taylor series expansion. The computation of first- and second order derivatives (in the x direction) 

is as follows (more details are given in [11] and [14]): 

  1

1 1

0.5( )
j j i

j i i ji

p
C p p

x  

  
   

     
   (12) 

and 

  3

1 1

0.5( )
j j i

j i i ji

p
C p p

x x  

    
    

        
   (13) 

where 
i  and j  are the fluid density at particle i and j, 

ip  and jp  are the fluid pressure at particle i 

and j, and 1 jC  and 3 jC  are the coefficients (dependent on the relative positions between the reference 

particle and its neighboring particles) generated by GFD. In a similar way, the derivatives along the y 

direction are computed. Since the gradient and Laplacian terms on an interface particle (whose 

influence domain contains water and air particles) are computed by using the neighbor particles of 

both fluids and the whole computational domain (both water and air) is solved simultaneously, the 

interaction forces between interface particles can be accurately simulated. This is in contrast to some 

decoupled models for two-fluid or two-phase flows such as Ikari et al. [22] and Gotoh and Sakai [35] 

in which the interaction forces between interface particles were represented by force terms. Besides 

dealing with drastic density difference, CPM is able to treat abrupt viscosity change across fluid 

interface by enforcing the continuity condition of viscous stress at the interface (see Appendix A). 

This capability has been demonstrated in [14] with a Rayleigh-Taylor instability example in which 

fluid viscosity plays an important role. Note that the derivation of spatial derivatives of pressure and 

velocity in CPM involves imposing the continuity of fluid motion and traction forces at the two-fluid 

interface (Appendix A). 
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The second significant feature of the present 2P-CPM is that a thermodynamically consistent 

compressible solver is formulated to account for air compressibility, as elaborated below. 

 

3. COMPRESSIBLE SOLVER 

For incompressible flow (liquid), the fluid density at the current time step, i.e. 
( 1)k 

 
in Equation 

(5), is enforced to be 0 . Therefore, the PPE with only one variable can be directly solved to obtain 

fluid pressure. For compressible flows (gas), however, 
( 1)k 

 is unknown and hence an additional 

condition called closure condition is needed to solve the pressure equation. The closure condition is 

obtained from the relation linking fluid properties in the context of thermodynamics. The main idea is 

briefly explained next. 

3.1. Thermodynamic considerations 

The pressure p, density ρ (or volume V) and temperature T are related by an EOS, the general form 

of which is 

 ( , , ) 0f p T    (14) 

Some useful relations can be derived [25], including the speed of sound as follows 

 s

s

p
c



 
  

 
  (15) 

where subscript s means that the derivative is taken at constant entropy. 

As mentioned earlier, some studies used the above equation to relate fluid pressure and density. 

These studies [4, 18], however, have some drawbacks such as the need to determine numerical 
sc  

which is not necessarily the actual sound speed and has to be calibrated. To address this issue, the 

present study employs the polytropic gas law without using the speed of sound explicitly. 

3.2. Polytropic gas law 

At normal pressure and temperature, most real gases can be assumed to obey the ideal gas law as 

follows [36]: 

 p RT  (16) 

Based on the First and Second Laws of Thermodynamics, and assuming an adiabatic and 

reversible (hence isentropic) process, the following ‘polytropic’ equation can be readily obtained 

 constant
p

   (17) 
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where γ is the ratio of specific heats at constant pressure and constant volume. Its value for air is about 

1.4. Equation (17) is also a special case of the more general polytropic process governed by 

constantnp   , where n is called the polytropic index and n = γ for isentropic processes. 

In real applications such as wave impact problems in marine and offshore engineering, the wave 

impact process is generally very rapid. There is little time for heat transfer to take place significantly 

between an air pocket and its surroundings such as water particles (and solid boundary if any) that 

entrap the air particles. Hence, it is reasonable to assume adiabatic process for air in wave-impact 

problems (the main focus of this paper). In addition, since energy loss is small due to the low 

viscosity of air, the air expansion or compression process in two-phase flow problems can be 

approximated as reversible. With these two assumptions, Equation (17) with n = γ is applicable and 

will be utilized in the present study unless otherwise stated. This value has also been adopted in other 

numerical studies on wave impact problems [5, 26, 27] and verified experimentally by Abrahamsen 

and Faltinsen [8] in their work of sloshing impact on tank walls. 

Derived in the thermodynamics framework, the polytropic gas law for ideal gases does not contain 

the parameter of sc . Hence it avoids the problem to determine sound speed (dependent on the 

composition and temperature of a fluid) in numerical simulation, unlike in the  dependent EOS. 

Therefore, the polytropic gas law is used as the constitutive equation for modeling air compressibility 

in two-phase flow problems. 

3.3. Pressure Poisson equation considering fluid compressibility 

Choosing a reference state, the polytropic gas law can be written as 

 
1

ref 1

ref

p

p




   (18) 

where 
ref  

and 
refp  

are the gas density and pressure at the reference state. There are two options for 

the reference state: (a) the initial state and (b) the previous time step. The latter option has been shown 

to induce the propagation of numerical errors [24]. Therefore, the initial values, i.e. 0a  and 0ap , are 

adopted herein as the reference values. 

Replacing 
ref  

and 
refp  

by 0a  
and 0ap

 
in Equation (18) and taking derivative with respect to p 

yields 

 
1 10

1

0

1a

a

d
p

dp p









  (19) 

By Taylor series expansion, the air density at time step k + 1, i.e.
( 1)k 

, can be approximated as 

sc
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  
0

( 1) ( 1)

0 0

a

k k

a a

p p

d
p p

dp


  



     (20) 

Substituting Equation (19) into (20) gives 

  ( 1) ( 1)0
0 0

0

1k ka
a a

a

p p
p


 



      (21) 

To incorporate this relationship in the PPE, the right hand side of Equation (5) is split as 

 
* ( 1)

( 1) 0 0

* 2 ( 1)

1 1
k

k a a

k
p

t
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 






   
    

 
 (22) 

Since 
( 1)k 

 also exists in the denominator, the right hand side of Equation (22) is a non-linear 

term. To linearize it, 
( 1)k 

 is approximated as 
*  because the difference between the intermediate 

and corrected fluid densities is small in each sufficiently small time step, leading to 

 
* ( 1)

( 1) 0 0

* 2 * 2 *

1 1 1
k

k a ap
t t
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  


   

     
  

 (23) 

Substituting Equation (21) into (23), the pressure equation accounting for fluid compressibility is 

 
*

( 1) ( 1)0 0 0

* 2 * 2 * 2 *

0

1 1 1 1 1k ka a i a
i i

i i a i i

p p
t p t t

   

     

   
      

   
 (24) 

It is noted that since sound speed is related to gas properties as cs p  , Equation (24) can be 

converted to the one involving sound speed and can reproduce the propagation of sound (a numerical 

example will be presented in Section 4.2). However, the advantage of Equation (24) is that it avoids 

the issue to determine the parameter of actual sc  (which is not necessarily constant). This is a 

significant benefit of the present compressible solver. More importantly, this compressible solver and 

the previously developed incompressible solver [14] both use the predictor-corrector scheme to solve 

the same governing equations. The only difference lies in the treatment of fluid density in PPE. The 

compressible and incompressible solvers can thus be easily integrated leading to the complete two-

phase model. Named 2P-CPM, it is capable of simultaneously simulating two-phase incompressible 

and compressible flows with large density difference. The computational procedure is schematically 

shown in Figure 1 and its performance will be demonstrated in Section 5. 

The computational efficiency of 2P-CPM is improved compared to the previous version 2P-CPM 

which assumes that water and air are both incompressible [14]. The reason is as follows. In the 

coefficient matrix of the PPE (denoted as A) generated by applying the derivative-approximation 

scheme to the first term (incompressible 2P-CPM) of the left hand side of Equation (24), the elements 
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in the i-th row satisfy 0ii ij

j i

A A


  ( 0, 0)ii ijA A   (to meet the diagonal-dominant condition). 

With the second term in the left hand side of Equation (24), a positive coefficient is added to the 

diagonal term of the i-th row (for air particles). This helps to meet the diagonal-dominant condition 

and hence makes A matrix better conditioned. As a result, less iteration steps are required to solve the 

pressure equation and the computational efficiency is improved. 

In addition to improved computational efficiency, the better conditioned coefficient matrix of PPE 

in the 2P-CPM further reduces the spurious pressure fluctuation. Noting that making the diagonal 

element of the coefficient matrix bigger helps to stabilize the pressure results, Tanaka and Masunaga 

[37] proposed a quasi-compressibility scheme in MPS by multiplying the diagonal terms with an 

artificial coefficient which needs to be calibrated. In contrast, the compressible solver in 2P-CPM is 

derived from gas thermodynamics without any artificial coefficient or artificial sound speed, and is 

hence more rigorous from physics point of view. Note also that the influence of temperature on air 

pressure is accounted for in the polytropic gas law. 

 

4. PERFORMANCE TEST OF NUMERICAL SCHEMES 

4.1. Accuracy of derivative approximation schemes 

As explained above (more details in [14]), CPM computes spatial derivatives in the framework of 

Taylor series expansion, achieving better accuracy than the use of kernel function. This advantage is 

numerically demonstrated by evaluating the Laplacian of a two-dimensional (2D) function 

2( , ) sin cosx y x y   with known exact solution. The most commonly used Laplacian operators in 

MPS [34, 38] and ISPH [33, 39] are adopted here for comparison. Since particles are generally not 

evenly spaced in a dynamic fluid problem, the Laplacian computation on irregularly spaced particles 

in the x-y domain of [3, 5] × [3, 5] is conducted with initial particle spacing (L0) 0.05 m and influence 

radius 2.1L0. The irregular particles are generated by imposing uniformly distributed random noises 

within a radius of 0.1L0 to the regularly distributed particles (41 × 41). In Figure 2, the three 

numerical solutions of 2  
are compared with the exact solution. The Laplacian surfaces obtained by 

MPS and ISPH are not smooth whereas CPM gives a very smooth surface in very good agreement 

with the exact solution. To test the robustness in accuracy, 100 groups of irregular particle 

distributions are randomly generated and the global 2-norm errors of the numerical solution of 2  

are computed. Figure 3 shows that the global errors of MPS and ISPH results are about 13% and 19%, 

respectively, while that of CPM result is only about 2.4%. It shows that, due to the consistent 

formulation, CPM gives significantly improved accuracy in computing spatial derivatives even for 

irregular particle distribution. 
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4.2. Pressure wave propagation in an air tube 

Consider the one-dimensional (1D) problem of sound wave in a tube of 25 m length filled with 

inviscid air (Figure 4). The air properties at the normal temperature and pressure (NTP) condition are 

adopted, i.e. density 1.204 kg/m3 and pressure 1.01325×105 Pa. Pressure wave is generated at the left 

end of the tube by an oscillating piston governed by max( ) sinx t s t  , where the oscillating 

amplitude maxs
 
and frequency ω are respectively 0.01 m and 100π rad/s. When the piston is pushed 

into the tube, a compressed air region, called “compression", is formed. The compression will 

propagate along the tube and continuously push the region in front of it. Pulling the piston back, 

however, produces a rarefaction with a lower air density. Theoretically, both the compression and 

rarefaction propagate in the tube by the sound speed in air, i.e. sc
 
(approximately 343.2 m/s in the 

NTP condition). Based on wave propagation theory, the change in sound pressure can be derived as 

  max cosa sp c s kx t       (25) 

where a  is the air density and s
k c  is the wave number. Accordingly, the amplitude of sound 

pressure in the air tube is about 1293.1 Pa. 

For comparison, 1D numerical simulation by the developed compressible solver is carried out with 

initial particle displacement 0.02 m and fixed time step 2.5×10-5 s. The wall boundary is modeled by 

the mirror particle approach [40] in the present paper. Since sound propagation is rapid, it is 

reasonable to assume an adiabatic condition and adopt n = 1.4. The predicted pressure distributions in 

the tube at several time instants are in very good agreement with the analytical solutions as shown in 

Figure 5. Periodic pressure waves generated at the oscillating source propagate forward. At about 0.07 

s, the wave reaches the other end of the tube. Tracking the positions of the wave front, the propagation 

speed can be determined to be about 338 m/s, which is very close to the real sound speed in air (with 

only 1.5% relative error). Hence, although the sound speed is not a required input, the compressible 

solver reproduces the sound speed accurately. 

 

5. VALIDATION FOR 2P-CPM 

The above examples demonstrate the good accuracy of the derivative computation and the 

developed compressible solver. The capability of 2P-CPM to model water-air flows with entrapped 

air pocket is validated by three benchmark numerical examples and one experimental study. 

5.1. Water injection into a closed air tube 

The first example of water-air flow involves water injection into a closed air tube as shown in 

Figure 6a. A gas volume initially contained in a closed tube is compressed when water is injected 
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from the bottom end at a constant speed v [41]. According to mass conservation, the analytical 

solution of air density in the tube is 

   0
0

0

a
a a

a

H
t

H vt
 


 (26) 

where 0a  is the initial air density at NTP condition and the initial length of air domain is 0aH  = 0.5 

m. Since the size of the computational domain is not large, the average pressure in the tube is studied. 

Assuming the tube to be thermally insulated (i.e. γ = 1.4), the air pressure in the tube as a function of 

time can be obtained by using Equation (18). Numerical simulation is conducted with initial particle 

spacing 0.005 m and fixed time step 0.001 s. The water density is taken to be 1000 kg/m3 and this 

value will be used in the following water-air flow cases unless otherwise stated. 

The snapshot at t = 3.0 s in Figure 6b shows air compression with a clear fluid interface. The 

relative error of the mean air density is only 1.35 % with respect to the analytical value, i.e. 1.72 

kg/m3 according to Equation (26). For the water domain, its volume is well conserved which can be 

seen from the good agreement between the simulated water level and the analytical value (the red 

dash line in Figure 6b). The average air pressure in the tube versus time is presented in Figure 7. The 

simulated result agrees well with the analytical solution till 3 s when the compression ratio of air 

reaches about 45% (this value is far beyond the compression ratio of air in real wave impact 

problems). This demonstrates the capability of the 2P-CPM to simulate incompressible and 

compressible two-phase flows with large density difference (three orders of magnitude) in an 

integrated way. 

5.2. Oscillating Water Column 

Another validation case of water-air flow is the oscillating water column as shown in Figure 8 [4, 

42]. A 1D closed tube is filled with a water column between two columns of air. Neglecting gravity 

and viscosity, the water column with an initial velocity v0 leads to dynamic motion of the system. 

Different from the previous example in which the water motion is prescribed, the motion of the water 

mass is dependent on the response of air columns in this case. Using Equation (18), the air pressure in 

the tube is  

 0
0 0

0

a
a a

a a

H
p p p

H

 





   
    

   
 (27) 

where Ha0 is the initial length of the air column and Ha the length of air column at time t. The dynamic 

equation of water mass can be derived as 

 
   

0 0

0 0

1 1a a

w w a a

p H
x

H H x H x



 

 
  
   

 (28) 
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where x and x  are respectively the displacement and acceleration of water column, w  
water density 

and wH  the length of water column. Given the initial boundary conditions, Equation (28) can be 

solved numerically and used as the benchmark solution. 

2P-CPM simulation is conducted with initial particle spacing 0.005 m, fixed time step 0.0001 s and 

γ = 1.4. The predicted pressure history at the right end of the tube in Figure 9 shows very good 

agreement with the analytical solution. As in the previous validation example, the air domains are 

compressed or expanded while the water volume is well conserved during the 2P-CPM simulation. 

5.3. Large dam break 

The dam break example as shown in Figure 10 contains some important features of practical 

hydrodynamics problems such as wave slamming on offshore and coastal structures and sloshing 

impact in containers [18]. In addition, a distinct air pocket is generated, allowing investigation of air 

cushion effect on impact pressure. In the experimental work by Zhou et al. [43], impact pressure was 

measured by a pressure sensor located at 160 mm from the bottom on the right wall. In large scale 

problems with violent waves, surface tension is normally small compared to others forces; thus 

surface tension can be neglected in the numerical simulations of this case and the case in the next 

section. The dynamic viscosities of water and air are 10-3 Pa·s and 1.983×10-5 Pa·s respectively in this 

example (and also in the next example). The initial particle spacing of 0.01 m (7200 water particles 

and 30,999 air particles) and fixed time step of 0.0005 s are used in the 2P-CPM simulation. The 

computational time is about 0.86 hour per 1000 time steps on a personal computer with i7-2600 CPU 

@ 3.40 GHz. 

The simulated wave profiles at several time instants are shown in Figure 11, in which the right 

column contains the 2P-CPM results and the left column the 1P-CPM results for comparison. Water 

flow develops after the dam breaks. At about 0.7 s, water hits and runs up the right wall of the tank. 

The upward-moving water jet overturns and falls back under gravity to the main water body as a 

plunging wave which forms an air pocket (t = 1.5 s). The entrapped air pocket deforms in shape (t = 

1.5 to 3.0 s) and then breaks near the water surface (t = 3.0 s). The wave profiles predicted by 1P-

CPM and 2P-CPM are similar for the time period without an entrapped air pocket. It is noted that a 

clear water-air interface is reproduced by CPM without the use of artificial value for any physical 

parameter. This is attributed to the novel derivative computation scheme to treat abrupt density and 

viscosity discontinuity at the water-air interface (details given in [14]). In contrast, some other studies 

such as Colagrossi and Landrini (2003) have to use an artificial surface tension term to numerically 

control interface sharpness owing to difficulty in dealing with large density difference across fluid 

interface. From 1.5 to 3.0 s with an entrapped air pocket, however, the difference between single-

phase and two-phase results is notable. In the 2P-CPM solution, the air pocket exists for some time 

and its shape keeps changing, because pressure is developed inside the air pocket and offers resistance 
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to adjacent water particles (particularly those above the air pocket). In addition, the air pocket vibrates 

because of air compressibility (the influence of which on impact pressure will be discussed later). In 

contrast, the water bulk above the entrapment region falls quickly and disappears before t = 2.0 s in 

the 1P simulation. This is because the pressure in the entrapment zone is the same as the free-surface 

boundary condition (zero pressure in the present 1P-CPM simulation) and hence the air pocket offers 

no resistance (incorrectly) to adjacent water particles. 

Figure 12 presents the pressure histories at Point P1 simulated by 1P-CPM and 2P-CPM, the 

overall trends match well with the experimental result by Zhou et al. [43] (the difference between 1P 

and 2P solutions to be discussed later). The first sharp pressure peak, which corresponds to the first 

impact of water on the right wall (at around 0.7 s), has been captured by both the 1P and 2P solutions. 

The slight difference is that the occurrence time of the first peak in the experiment is later than the 

numerical results. The reason is likely that it was impossible to have a complete dam break instantly 

in the experiment. 

The second pressure peak appears at about 1.5 s when the overturning flow plunges into the main 

water body, generating relatively large pressure and creating an air pocket. Since air compressibility is 

modeled by 2P-CPM but not in 1P-CPM, the fluid pressures near the air pocket predicted by these 

two methods are different until the disappearance of the air pocket. As shown in Figure 12, the overall 

trend of water pressure at P1 predicted by 1P-CPM gradually decreases as the upward-moving jet falls 

down. In contrast, the pressure result from 1.5 to 2.3 s predicted by 2P-CPM exhibits oscillations of 

relatively large amplitude. It is important to note that this oscillation is physical (not spurious) and is 

caused by the pressure change in the compressible air pocket (compression and expansion). The 

pressure in the entrapped air acts on adjacent water particles and hence the water pressure measured at 

P1 changes with the air-pocket pressure. This explanation can be further supported by Figure 13, in 

which the average pressure of the air pocket and the fluid pressure at Point P1 fluctuate synchronously 

in the duration with the existence of air pocket. This shows the importance of capturing the cushion 

effect of air pocket, which is a significant phenomenon in wave impact scenarios with air entrapment. 

It is noted that the experimental result published by Zhou et al. [43] did not show obvious pressure 

oscillation upon the existence of the air pocket. Since the pressure fluctuation near the first impact 

peak (see Figure 12) was successfully captured, the pressure sensor used in the experiment should 

have been able to measure the pressure vibration in the duration with an enclosed air pocket if the 

pressure vibration did exist. The pressure oscillation might have been filtered out in post processing. 

Another possible reason is that though the experiment was intended to produce 2D motion, it was 

difficult to get a perfectly enclosed air tube. Air could have escaped in the third spatial dimension, 

thereby diminishing the pressure oscillation. To verify this doubt, a new experiment with targeted 

measurement of air-pocket pressure and water pressure near the air pocket is designed and conducted 

in this study (Section 5.4). 
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Another remarkable difference between 1P and 2P results is that the 1P simulation predicts a very 

large pressure peak at around 2.0 s (see Figure 12) that is not observed in 2P simulation and was not 

measured in experiment. This is because the air entrapment region in 1P modeling is effectively 

vacuum and offers no resistance to water particles around it. Hence water particles above the air 

entrapment region fall and hit the water body below it, inducing a very large (but unreal) impact 

pressure. For the same reason, in the single-phase SPH simulations by Colagrossi and Landrini [18] 

and Xu [44] (not shown here), this large peak also appears and matches well with 1P-CPM. In 

contrast, the 2P-CPM solution does not have this large peak and agrees better with the experimental 

results because the cushion effect in the air entrapment region is modeled accurately. Due to the 

rebound of the impact water (see the circled cavity region in the 1P-CPM snapshot at 2.08 s), another 

relatively smaller pressure peak is captured by 1P-CPM at about 2.3 s. Thereafter, the 1P-CPM and 

2P-CPM results are similar because the influence of the air pocket on fluid motion and pressure 

becomes very small. 

Similar to the 2P-CPM result, the pressure oscillation from 1.5 to 2.3 s has also been captured in 

the two-phase SPH simulation as shown in Figure 14. However, the difference between the two-phase 

SPH and two-phase CPM results is that the pressure peak (about 5.2 kPa) at approximately 1.5 s 

predicted by 2P-CPM agrees better with the experimental result (about 5.0 kPa) than the pressure 

peak (about 7.8 kPa) predicted by SPH. 

5.4. Experimental study with pressure measurement of air pocket 

Benchmark examples of wave impact with entrapped air pockets are limited in the literature, 

particularly for experimental studies with air pressure measurement. In the dam break case presented 

in the previous section, although an entrapped air pocket was generated in the experiment, no direct 

measurement of air pressure change was available for validating numerical results. To fill this gap and 

further validate the 2P-CPM, sloshing experiments are conducted in a specially designed container so 

that the shape and pressure variation of an air pocket can be measured. Figure 15 shows the overall 

experimental setup. The water container (made of Plexiglas plates of thickness 15 mm) comprises a 

big left tank connected by a short channel to a small right tank as shown in Figure 16. This is designed 

such that, when water in the left tank sloshes to the right (or left), some water will move through the 

connecting channel and compress (or expand) the air in the right tank. The tank is mounted on a 

translational shake table (see Figure 15) whose motion is generated by a hydraulic actuator. The input 

displacement of the shake table is sinusoidal and governed by ( ) sin( )x A t t   , where ( )A t  and ω 

are the amplitude and frequency of the excitation respectively. To avoid a sudden jerk on fluid caused 

by the non-zero initial velocity of the shake table, the excitation with a linear ramping function 
0 / rA t t  

is used, where 5srt   is the ramping time and 
0A  

= 0.0412 m is the steady-state amplitude of the 

excitation. The shake table motion is measured by a displacement transducer and used as input for 
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numerical simulation. The air pressure at the middle of the top wall of the right tank, i.e. PA1 in Figure 

16, is measured by an absolute pressure sensor (Model ATM.1ST). Water pressures at 60 mm from 

the bottom on the right wall of the right tank (PW1), 145 mm from the bottom on the right wall of the 

left tank (PW2) and 30 mm from the bottom on the left wall of the left tank (PW3) are measured by 

gauge pressure sensors (Model WIKA S-10). The wave profiles are recorded by a video camera from 

the front of the water container. To enhance the clarity of video image, red dye is added to water. 

For the designed tank shape, water sloshing with relatively low filling tends to generate larger 

variation of air pressure in the right tank. This is because the horizontal component of water velocity 

near the tank bottom is larger in shallow water than in deep water, thereby generating a larger force on 

water in the connecting channel. But the water level should not be too low so as to maintain a closed 

air pocket in the right tank. A suitable filling level is 0.17 m (dL and dR in Figure 16). Based on some 

preliminary studies, the excitation frequency of 
00.95 (= 3.6807 rad/s) is found to generate a 

relatively large variation of air pressure in the right tank, where ω0
 

is the reference frequency 

computed based on the linear wave theory with water depth (dL) and length (LL) in the left tank. 

Therefore, this excitation frequency is used in the following cases. 

Based on the experimental work, it is found that there is no entrapped air pocket in the left tank in 

the cases studied below. In addition, the lid of the left tank (located in the middle of the top wall as 

shown in Figure 15) is only used to prevent water from gushing out (in cases of very violent sloshing) 

but not sealed to provide air tightness. Therefore, the air pressure in the void of the left tank is 

atmospheric pressure during experiments. And hence, air in the void of the left tank is neglected in 

numerical simulation. The free surface particles are recognized by the “arc” method [11]. In contrast, 

the right tank is closed (air-tight) and the entrapped air in the void region is included in the simulation 

as compressible air particles. The fluid properties of water and air are the same as those in the 

previous case. An initial particle distance of 0.005 m (7735 water particles and 793 air particles) and 

fixed time step 0.0005 s are adopted. The computational time is about 0.57 hour per 1000 time steps 

by using the computer mentioned in Section 5.3. 

The numerical and experimental wave profiles at six time instants are compared in Figure 17, 

which shows generally good agreement. Because the filling level is low, the water in the left tank 

moves as a bore. This is consistent with the observations made by Wu et al. [45] and Koh et al. [11]. 

The bore becomes steeper and its amplitude becomes larger with time (see snapshots at t = 3.56 s and 

4.56 s in Figure 17). At 6.36 s, the wave approaches the right side of the left tank and generates large 

impact force on the tank wall and water in the connecting channel (Figure 18c). Consequently, water 

in the connecting channel is pushed towards right and compresses the enclosed air pocket in the right 

tank. As expected, a large peak of air pressure appears in the right tank, which is measured in the 

experiment and predicted well by 2P-CPM (Figure 18a). It is noteworthy that the amplitude of the air-

pressure change is comparable to the dynamic pressure (i.e. gauge pressure minus the hydrostatic 
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pressure) of the very violent and direct wave impact on the tank wall (see Figure 18c). During the 

impact process from 6.36 s to 6.96 s, the experimental and numerical results of air pressure in the 

right tank show vibration and are in good agreement, showing that the pressure vibration in 2P-CPM 

result is real. The mean air pressure at the wave impact stage is larger than the initial pressure because 

air is compressed by the impinging water. The air pressure, in turn, influences the water pressure near 

the air pocket (see water pressure at Point Pw1 in Figure 18b). The interaction between water and air 

corroborates the observation in the 2D dam break case of Section 5.3 that the water pressure at Point 

P1 on the tank wall oscillates with the pressure in adjacent air pockets. 

To demonstrate the spatial convergence of CPM, two cases of particle spacing (l0) of 0.01 m and 

0.0025 m are studied in addition to the above-mentioned particle spacing of 0.005 m. As shown in 

Figure 19, the results of PA1 and PW2 for l0 = 0.005 m and l0 = 0.0025 m are very similar, whereas the 

result in the coarsest case (l0 = 0.01 m) is slightly different from the other two cases. This shows the 

“grid” convergence of the proposed method. In numerical implementation, the particle spacing is 

selected to achieve a balance between computational accuracy and efficiency. 

For comparison, water sloshing in the same container but without closed air pocket is conducted 

by drilling holes on the top cover of the right tank to allow air to move in and out freely. Since air 

gives negligible influence on water motion, this case is simulated as single-phase by 1P-CPM. The 

same initial particle spacing and time step as those in 2P-CPM simulation are used and the 

computational time is about 0.3 hour per 1000 time steps on the abovementioned computer. Figure 20 

presents the good agreement between the numerical and experimental wave profiles at different time 

instants. Similar to the sloshing case with enclosed air pocket, the water in the left tank moves as a 

bore (see t = 3.56 s and 4.56 s in Figure 20) and generates large impact forces on tank walls (Figure 

21c and 20d). However, in contrast to the case with enclosed air pocket, the water in the right tank 

moves up and down violently in the case without enclosed air pocket. When water in the left tank 

impacts on the right wall, water is pushed into the connecting channel and the water level in the right 

tank rises up as shown in the snapshots at 6.48 s and 6.88 s in Figure 20. Different wave motion 

further induces different wave pressure at Point Pw1 as shown in Figure 21 (a and b). When water 

moves from the connecting channel to the right tank, flow separation occurs at the top right corner of 

the connecting channel. This is the reason for the small void in the water domain near the right corner 

of the connecting channel at 6.48 s. When water in the left tank departs from the connecting channel 

as shown in the snapshot at 7.56 s, the water level in the right tank drops quickly.  

The difference between the wave-impact cases with and without an enclosed air pocket 

demonstrates the significant influence of air entrapment on wave motion and impact. Therefore, it is 

essential to conduct two-phase simulation with the consideration of compressible air in many 

engineering applications involving entrapped air pocket. 
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In Section 3.2, it has been explained why the polytropic index n = 1.4 for air is adopted in the 

numerical examples of wave impact with entrapped air pocket. To further verify the rationality of this 

selection, the sloshing case with entrapped air pocket is re-simulated by using n = 1.0 (isothermal) and 

n = 1.2 (an intermediate state between isentropic and isothermal). As shown in Figure 22, the 

simulated air pressure at PA1 using n = 1.4 (Figure 22a) gives the best agreement with the 

experimental result. In the other two cases, i.e. n = 1.2 (Figure 22b) and n = 1.0 (Figure 22c), the 

frequencies of air-pressure vibration are smaller than the experimental result. And this discrepancy is 

more obvious for the case of n = 1.0. This can be explained by Equation (18) which indicates that, 

with a smaller polytropic index, a smaller force is required to compress air and hence the stiffness of 

the simulated air pocket is smaller. Considering the best agreement between the numerical result and 

the experimental result, the polytropic gas law with n = 1.4 is recommended for modelling entrapped 

air pockets in which air compressibility is important and formation of air pockets is relatively fast 

with little time for heat exchange between the air pocket and the surroundings. This finding is 

consistent with the analytical studies by Hattori et al. [46] and Abrahamsen and Faltinsen [8]. 

 

6. CONCLUSIONS 

In this study, a new numerical method 2P-CPM is formulated for incompressible and compressible 

two-phase flows with the following advantageous features. 

(1) The first- and second-order derivatives are computed consistently and simultaneously in the 

framework of Taylor series expansion and do not require kernel function. By using density-

normalized pressure terms in the formulation, abrupt density discontinuity at the fluid interface 

is handled without the use of smoothing (or smearing) treatment or any other artificial schemes. 

(2) A compressible solver is developed for air modelling by employing the polytropic law for 

ideal gas. The thermodynamic formulation has theoretical rigor and avoids the problem in 

determining the sound speed (real or artificial). The compressible solver is shown to simulate 

compression/expansion of air and propagation of pressure wave accurately. 

(3) Both the proposed compressible solver and the recently developed incompressible solver for 

CPM [14] use the same predictor-corrector scheme to solve the governing equations. They are 

easily integrated to give coupled solution without iteration between the compressible and 

incompressible solvers. 

The capability of 2P-CPM in simulating water-air flows with entrapped air pocket is demonstrated 

by four numerical examples. For water injection into a closed air tube and oscillating water column, 

the air pressure and water motion are in good agreement with the analytical solutions and, in 

particular, a clear fluid interface is reproduced without any special treatment. For the case of large 
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dam break, an air pocket trapped by overturning water and its cushion effect characterized by pressure 

oscillation is successfully simulated by the method. 

Finally, an experimental study of water sloshing in a specially designed tank is conducted to 

measure the pressure change of a closed air pocket under wave impact. Numerical results including 

wave profiles, sloshing pressures and particularly the pressure vibration in the air pocket predicted by 

2P-CPM agree generally well with the experimental results. This shows the accuracy of 2P-CPM and 

demonstrates the rationality of using polytropic gas law with γ = 1.4 to model air entrapment in wave 

impact processes. The sloshing case without closed air pocket is also studied experimentally and 

numerically, showing significant differences from the sloshing case with a closed air pocket. This 

demonstrates the capability of the proposed 2P-CPM in accounting for compressible air in wave 

impact problems. 
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APPENDIX A 

A.1. Computation of viscosity term for abrupt viscosity discontinuity 

To deal with abrupt viscosity discontinuity, the computation of the viscosity term in Equation (2) 

is derived by enforcing the continuity of viscous stress (tangential traction) at the two-fluid interface, 

i.e.  

 

1i i I

v v v

y y y
  
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       
 (A1) 

where i and i+1 are adjacent air and water particles near the interface, and I represents the water-air 

interface which is the midpoint between particles i and i+1 as illustrated in Figure A1. 

 

Figure A1. 1-D illustration example of water-air interface 

The viscous stress at particle i (air) and particle i+1 (water) can be computed by involving particles 

in their respective fluids as follows 
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where iv  is the velocity at particle i and Iv  is the velocity at the water-air interface. To enforce 

continuity of viscous stress at the interface (as the particle spacing approaches zero), we equate the 

above two equations, resulting in the following interface velocity: 
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 (A3) 

which is the viscosity-weighted average of the velocities at particles i and i+1. Substituting Equation 

(A3) into Equation (A2a) gives 
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The above equation implies that the viscosity at interface can be taken as the harmonic mean of 

viscosities at the particles i (air) and i+1 (water) near the interface. Applying finite difference to 

obtain the spatial derivative of viscosity stress gives 
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Using Equation (A1) leads to 
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The second term in the right hand side of Equation (A5) can be computed as follows (noting that 

particles i and i-1 are both in the air and hence 0.5 1i i i     )  

 1
0.5

10.5

i i
i

ii

v vv

y k
  





  
 

 
 (A7) 

which can be, for generality, written as  
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Substituting Equations (A6) and (A8) into (A5) gives 
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This means that the spatial derivative of viscous stress can be computed by using the harmonic mean 

of fluid viscosities at the reference and neighbor particles (irrespective of whether the particles are of 

the same fluid or different fluids). Note that the above equation recovers the special case of single-

phase flow by letting μi = μi+1 = μ : 
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 (A10) 

The above formulation is implemented by the GFD scheme which can handle non-uniformly 

distributed particles, leading to the following derivative computation scheme for the viscosity term 

with abrupt viscosity discontinuity 
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A.2. Continuity of fluid motion 

The velocity continuity implies that the pressure gradient term 
1

p

  is continuous across fluid 

interface [47, 48]. In CPM [14], the formulation of density weighted pressure is derived by imposing 

the following continuity equation at the interface (similarly in the x-direction): 
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 (A12) 

where i and i+1 are adjacent air and water particles near the fluid interface I (Figure A1). Hence, the 

continuity condition of fluid motion is achieved at the interface (as the particle spacing approaches 

zero). 

A.3. Continuity of traction force 

The traction continuity condition requires the tangential fluid stress due to viscous force be 

continuous. As shown in Section A.1, the viscosity-weighted velocity is in fact derived by enforcing 

continuity of viscous stress at the two-fluid interface. Thus, the continuity condition of tangential 

traction is ensured. 

For normal traction, the continuity condition requires that the water and air pressures be the same 

at the interface (if surface tension force is neglected), i.e. 

 W A

I Ip p   (A13) 

where W

Ip  and A

Ip  are the water and air pressure at the fluid interface respectively. In CPM [14], the 

pressure gradients at particles i (air) and i+1 (water) near the interface are computed as follows 
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The continuity of normal traction is enforced by setting W A

I I Ip p p   in CPM. 
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Figure 1. Flow chart of 2P-CPM for two-phase incompressible and compressible flows with large 

density difference 
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Figure 2. Analytical and numerical results of the Laplace of a 2D function 
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Figure 3. Global error of Laplacian approximation by CPM, MPS and ISPH 
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Figure 4. Schematic view of pressure wave propagation in an air tube 
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Figure 6. Water injection into a closed air tube: (a) initial configuration, (b) snapshot at t = 3.0 s 
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Figure 7. Water injection into a closed air tube: average air pressure 

 

 

Figure 8. Oscillating water column: initial configuration 
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Figure 9. Oscillating water column: pressure history on the right wall of the tube 

 

 

 

Figure 10. Large dam break: initial configuration (Unit: mm) 
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Figure 11. Large dam break: predicted wave profiles by 1P-CPM and 2P-CPM 
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Figure 12. Large dam break: predicted pressure history at Point P1 by 1P-CPM and 2P-CPM in 

comparison with experimental result by Zhou et al. [43] and 1P SPH result by Colagrossi and 

Landrini [18] 
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Figure 14. Large dam break: predicted pressure history at Point P1 by 2P-CPM in compassion with 

experimental result by Zhou et al. [43] and 2P SPH result by Colagrossi and Landrini [18] 
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Figure 15. Water-air sloshing in a connected container under translational excitation 

 

 

Figure 16. Geometric dimensions of the connected container used in sloshing experiments (Unit: mm) 
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Experiment 2P-CPM 
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Figure 17. Wave profiles of sloshing with closed air pocket: experimental result and 2P-CPM 

simulation 
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Figure 18. 2P-CPM results of air pressure at Point PA1 and water pressures at Point PW1, PW2 and PW3 

in comparison with experimental results (with enclosed air pocket) 
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Figure 19. Comparison of PA1 and PW2 at initial particle spacing of 0.01m, 0.005m and 0.0025 m 
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Experiment 1P-CPM 
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Figure 20. Wave profiles of sloshing without enclosed air pocket: experimental result and 1P-CPM 

simulation 



39 

 

2 4 6 8 10 12 14 16
-1.2

0.0

1.2

2.4

3.6

0.0

1.2

2.4

3.6

0.0

1.2

2.4

3.6

2 4 6 8 10 12 14 16

1.2

2.4

3.6

4.8

 

P
re

ss
u

re
 (

k
P

a)

Time (s)

 

P
re

ss
u

re
 (

k
P

a)

 

P
re

ss
u

re
 (

k
P

a)

(a) P
W1

 - P
0
     2P-CPM

(b) P
W1

 - P
0
     1P-CPM

(c) P
W2

 - P
0
     1P-CPM

 

P
re

ss
u

re
 (

k
P

a)

 Experiment     CPM(d) P
W3

 - P
0
     1P-CPM

 

Figure 21. 1P-CPM results of water pressures at Point PW1, PW2 and PW3 in comparison with 

experimental results (without enclosed air pocket) and 2P-CPM result 
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Figure 22. Air pressures at PA1 simulated by 2P-CPM with polytropic index n = 1.4, 1.2 and 1.0 in 

comparison with experimental result 


