e-space
Manchester Metropolitan University's Research Repository

An integrated modelling framework from cells to organism based on a cohort of digital embryos

Villoutreix, P and Delile, J and Rizzi, B and Duloquin, L and Savy, T and Bourgine, P and Doursat, R and Peyriéras, N (2016) An integrated modelling framework from cells to organism based on a cohort of digital embryos. Scientific Reports, 6. ISSN 2045-2322

[img]
Preview

Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

We conducted a quantitative comparison of developing sea urchin embryos based on the analysis of five digital specimens obtained by automatic processing of in toto 3D+ time image data. These measurements served the reconstruction of a prototypical cell lineage tree able to predict the spatiotemporal cellular organisation of a normal sea urchin blastula. The reconstruction was achieved by designing and tuning a multi-level probabilistic model that reproduced embryo-level dynamics from a small number of statistical parameters characterising cell proliferation, cell surface area and cell volume evolution along the cell lineage. Our resulting artificial prototype was embedded in 3D space by biomechanical agent-based modelling and simulation, which allowed a systematic exploration and optimisation of free parameters to fit the experimental data and test biological hypotheses. The spherical monolayered blastula and the spatial arrangement of its different cell types appeared tightly constrained by cell stiffness, cell-adhesion parameters and blastocoel turgor pressure.

Impact and Reach

Statistics

Downloads
Activity Overview
18Downloads
69Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item