e-space
Manchester Metropolitan University's Research Repository

Mesenchymal Stem Cells Loaded with p5, Derived from CDK5 Activator p35, Inhibit Calcium-Induced CDK5 Activation in Endothelial Cells

Fang, WH and Kumar, S and McDowell, G and Smith, D and Krupinski, J and Olah, P and Al-Baradie, RS and Al-Rukban, MO and Petcu, EB and Slevin, M (2016) Mesenchymal Stem Cells Loaded with p5, Derived from CDK5 Activator p35, Inhibit Calcium-Induced CDK5 Activation in Endothelial Cells. Stem Cells International, 2016. ISSN 1687-966X

[img]
Preview

Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

© 2016 Wen-Hui Fang et al.The potential use of stem cells as therapeutics in disease has gained momentum over the last few years and recently phase-I clinical trials have shown favourable results in treatment of a small cohort of acute stroke patients. Similarly, they have been used in preclinical models drug-loaded for the effective treatment of solid tumours. Here we have characterized uptake and release of a novel p5-cyclin-dependent kinase 5 (CDK5) inhibitory peptide by mesenchymal stem cells and showed release levels capable of blocking aberrant cyclin-dependent kinase 5 (CDK5) signaling pathways, through phosphorylation of cyclin-dependent kinase 5 (CDK5) and p53. These pathways represent the major acute mechanism stimulating apoptosis after stroke and hence its modulation could benefit patient recovery. This work indicates a potential use for drug-loaded stem cells as delivery vehicles for stroke therapeutics and in addition as anticancer receptacles particularly, if a targeting and/or holding mechanism can be defined.

Impact and Reach

Statistics

Downloads
Activity Overview
40Downloads
111Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item