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Abstract
The stability of the boundary-layer on a rotating disk is considered for fluids that adhere to a non-Newtonian
governing viscosity relationship. For fluids with shear-rate dependent viscosity the base flow is no longer
an exact solution of the Navier-Stokes equations, however, in the limit of large Reynolds number the flow
inside the three-dimensional boundary-layer can be determined via a similarity solution.

The convective instabilities associated with flows of this nature are described both asymptotically and
numerically via separate linear stability analyses. Akin to previous Newtonian studies it is found that
there exists two primary modes of instability; the upper-branch type I modes, and the lower-branch type II
modes. Results show that both these modes can be stabilised or destabilised depending on the choice of
non-Newtonian viscosity model. A number of comments are made regarding the suitability of some of
the more well-known non-Newtonian constitutive relationships within the context of the rotating disk
model. Such a study is presented with a view to suggesting potential control mechanisms for flows that
are practically relevant to the turbo-machinery industry.
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1. INTRODUCTION
The stability and transition of the boundary-layer on a rotating
disk is a classical fluid mechanics problem that has attracted
a great deal of attention from numerous authors over many
decades. The first theoretical investigation of this three-
dimensional problem was performed by von Kármán [1]. He
showed that the steady incompressible flow induced by the
rotation of an infinite plane with uniform angular velocity is
an exact solution of the Navier-Stokes equations.

The boundary-layer flow is characterised by the lack of
a radial pressure gradient near to the disk to balance the
centrifugal forces so the fluid spirals outwards. The disk acts
as a centrifugal fan, the fluid emanating from the disk being
replaced by an axial flow directed back towards the surface.

Batchelor [2] showed that this type of flow is in fact just
a limiting case of a whole number of flows with similarity
solutions inwhich both the infinite plane and the fluid at infinity
rotate with differing angular velocities. The corresponding
limiting case, when the infinite plane is stationary and the
fluid at infinity rotates at a constant angular velocity, was first
described by Bödewadt [3].

A vast wealth of material exists concerning the solutions
of the Newtonian rotating disk equations; the interested reader
is referred to Zandbergen & Dijkstra [4]. The authors provide
a thorough review of the major contributions made postdating
von Kármán’s seminal work.

The pioneering study of Gregory et al. [5] contains the first
observation of the stationary cross-flow vortices on a rotating
disk. The flow is convectively unstable, within certain regions,

to disturbances stationary in the frame rotating with the disk.
These disturbances are excited by roughnesses on the surface
and, because these roughnesses are fixed in time in the rotating
frame, the stationary disturbances are consistently excited
and reinforced such that they are evident in flow-visualisation
experiments.

Theoretical studies of convectivemodeswithin the rotating-
disk system have shown that the flow is susceptible to two
distinct modes of instability. The type I (upper-branch) mode
due to the cross-flow instability and the type II (lower-branch)
mode attributed to external streamline curvature. Because of
this the neutral curve has a characteristic two-lobed structure,
as noted by Malik [6] and Lingwood [7], amongst others.
Hall [8] demonstrated that in the limit of large Reynolds
number the upper and lower branches of the neutral curve
can be described (with excellent agreement) using asymptotic
theory. More recently, the aforementioned pioneering studies
have been extended to include rotating spheres, see Garrett
& Peake [9] and rotating cones, see Garrett et al. [10] and
Hussain et al. [11]. In all cases the flow can be stabilised
(or destabilised) with control of the governing parameter, that
being the spin rate, in the case of the sphere, and the half-angle,
in the case of the cone. Indeed, research on the von Kármán
boundary-layer remains a topic of active study, the interested
reader is referred to the recent review article by Lingwood &
Alfredsson [12].

Rotating disk flows have practical relevance to turbo-
machinery where non-Newtonian fluids are commonplace.
However, far less attention has been given to the correspond-
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ing non-Newtonian rotating disk problem. Very recently
Griffiths [13] determined the base flow profiles for numerous
generalised Newtonian fluid models. Using these results we
investigate the convective instability of the boundary-layer
on a rotating disk for shear-thinning fluids that adhere to
the power-law and Carreau constitutive governing viscosity
relationships. Results show that accurately modelling the vari-
ation of viscosity within the boundary-layer is of paramount
importance.

2. FORMULATION
Weconsider the flowof a steady incompressible non-Newtonian
fluid due to an infinite rotating plane located at z∗ = 0 (here
the superscript ∗ denotes a dimensional quantity). The plane
rotates about the z∗-axis with angular velocityΩ∗. The motion
of the fluid is in the positive z∗ direction, the fluid is infinite in
extent and the only boundary is located at z∗ = 0. In a rotating
frame of reference the continuity and Cauchy momentum
equations are expressed as

∇
∗ · u∗ = 0, (1a)

∂u∗

∂t∗
+ u∗ · ∇∗u∗ +Ω∗ × (Ω∗ × r∗) + 2Ω∗ × u∗

= −
1
ρ∗
∇
∗p∗ +

1
ρ∗
∇
∗ · τ∗. (1b)

Here u∗ = (Ũ∗, Ṽ ∗, W̃ ∗) are the velocity components in cylin-
drical polar coordinates (r∗, θ, z∗), t∗ is time, Ω∗ = (0, 0,Ω∗)
and r∗ = (r∗, 0, z∗). The fluid density is ρ∗ and p∗ is the fluid
pressure. For generalised Newtonian models the stress tensor
is given by τ∗ = µ∗(γ̇∗)γ̇∗, where γ̇∗ = ∇∗u∗+ (∇∗u∗)T is the
rate of strain tensor and µ∗(γ̇∗) is the non-Newtonian viscosity.
Themagnitude of the rate of strain tensor is γ̇∗ =

√
(γ̇∗ : γ̇∗)/2.

The governing relationships for µ∗(γ̇∗) that will be considered
herein are:

µ∗ = m∗(γ̇∗)n−1, (2a)

µ∗ = µ∗∞ + (µ∗0 − µ
∗
∞)[1 + (λ∗γ̇∗)2](n−1)/2, (2b)

these are the power-law and Carreau models, respectively.
Here m∗ is the consistency coefficient and n is the fluid index,
for n > 1 the fluid is said to be shear-thickening, whilst for
n < 1 the fluid is said to be shear-thinning. The Newtonian
viscosity relationship is recovered when n = 1 and µ∗0 = µ

∗
∞,

respectively. The infinite-shear-rate viscosity is µ∗∞, the zero-
shear-rate viscosity is µ∗0 and λ∗ is the characteristic time
constant, often referred to as the ‘relaxation time’.

In the Newtonian limit an exact solution of (1) exists, as
was first determined by von Kármán [1]. However, no such
solution exists for flows with n , 1. It is only in the large
Reynolds number limit that the leading order boundary-layer
equations admit a similarity solution analogous to the exact
Newtonian solution. The governing boundary-layer equations
are given in Griffiths [13], for brevity we exclude these here.

We introduce the generalisation of the classic Newtonian
similarity solution in order to solve for the steady mean flow
relative to the disk. The dimensionless similarity variables
are defined by

U (η) =
Ũ∗0

r∗Ω∗
, V (η) =

Ṽ ∗0
r∗Ω∗

,

W (η) =
W̃ ∗0
χ∗
, P(η) =

P̃∗1
ρ∗( χ∗)2 ,

where χ∗ = [ν∗/(r∗)1−q (Ω∗)1−2q]1/(q+1) . Here (Ũ∗0 , Ṽ
∗

0 , W̃
∗
0 )

are the leading order velocity components, P̃∗1 is the lead-
ing order fluid pressure term and ν∗ = σ∗/ρ∗ is the kine-
matic viscosity. The dimensionless similarity coordinate
is η = r (1−q)/(q+1) z, where here r and z have been made
dimensionless with respect to L∗ = [ν∗/(Ω∗)2−q]1/2. For
“power-law” fluids q = n and σ∗ = m∗, whereas for “Carreau”
fluids q = 1 and σ∗ = µ∗∞.

Thus the laminar-flow profiles are determined from the
following set of non-linear ordinary differential equations:

2U + η̄U ′ +W ′ = 0, (3a)

U2 − (V + 1)2 + (W + η̄U)U ′ − (µU ′)′ = 0, (3b)
2U (V + 1) + (W + η̄U)V ′ − (µV ′)′ = 0, (3c)

where η̄ = η(1 − q)/(q + 1) and the primes denote differenti-
ation with respect to η. The power-law viscosity function is
given by

µ = [(U ′)2 + (V ′)2](n−1)/2, (3d)

whilst the Carreau viscosity function takes the form

µ = 1 + c0{1 + k2[(U ′)2 + (V ′)2]}(n−1)/2. (3e)

Here c0 = (σ∗ − µ∗0)/σ∗ is the viscosity ratio, and
k = r∗λ∗Ω∗(ρ∗Ω∗/σ∗)1/2 is the dimensionless equivalent
of λ∗. Throughout this study we fix the values of c0 and k
such that c0 = 1 and k = 100, this is consistent with previous
investigations, see, for example, Dabrowski [14].

Using a fourth-order Runge-Kutta quadrature routine
twinned with a Newton iteration scheme to determine the
values of the unknowns U ′(0) and V ′(0) the set of ordinary
differential equations are solved subject to

U (η = 0) = V (η = 0) = W (η = 0) = 0, (4a)
U (η → ∞) → 0, V (η → ∞) → −1. (4b)

Although the formulation here is different the results represent
an exact reproduction of those detailed by Griffiths [13]. As
such, here, we do not graphically present the radial, azimuthal
and axial velocity profiles and instead choose to discuss
the differences between the base flow characteristics, and
their significance in relation to the resulting linear stability
calculations, in section 4. We note that throughout this
anlalysis the reference Newtonian viscosity for the Carreau
fluid problem is µ = 1 + c0 , 1.
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3. STABILITY ANALYSES
3.1 Type I asymptotic analysis
This analysis is based on the assumption that the Reynolds
number is large and that the disturbances have wavelengths
scaled on the boundary-layer thickness, δ = Re−1/(q+1) , where

Re =
(Ω∗)2−q (l∗)2

ν∗
,

is the asymptotic representation of the Reynolds number and l
is some reference length scale.

When considering the type I modes we observe the exis-
tence of three distinct layers. An inviscid layer, or zone, a
wall layer and a critical layer. The inviscid zone encompasses
the entirety of the boundary-layer, the wall layer is needed to
ensure the no-slip condition at the wall is satisfied and the
critical layer exists so that the singularities that arise within
the inviscid zone are smoothed out.

The full details regarding the determination of the type
I “power-law” modes has already been reported by Griffiths
et al. [15]. For brevity we choose to omit the full details
concerning the corresponding Carreau modes as the analysis is
largely similar. Here we present only the most pertinent results.
However, the interested reader is referred to Griffiths [16] for
full details regarding the asymptotic structure of the type I
modes for both the power-law and Carreau shear-thinning
models.

Perturbing the self-similar boundary-layer flow, and ne-
glecting non-linear terms, we arrive at a set of generalised
Newtonian linear disturbance equations. These governing
equations are dependent on both the unperturbed and per-
turbed viscosity functions. The perturbation of the viscosity
owes from the first-order cross-product terms associated with
the generalised binomial expansion of (2).

We introduce the small parameter ε = δ1/3 and following
Hall [8], we consider disturbances proportional to

E = exp
{

i
ε3

[∫ r

αA(r, ε ) dr + θ βA(ε )
]}
,

where here r has been made dimensionless with respect l
and αA and βA are the radial and azimuthal wavenumbers,
respectively. We seek to find neutrally stable disturbances
thus αA, βA ∈ R. Within this asymptotic framework the
wavenumbers are expanded in the following forms

αA = α0 + εα1 + · · · ,

βA = β0 + ε β1 + · · · .

At leading order, O(ε−3), in the inviscid zone we determine
that the disturbances must satisfy a modification of Rayleigh’s
equation. At the next order we determine a nonhomogeneous
form of Rayleigh’s equation that is required to match with our
leading order solution in the wall layer. This wall layer solution
is given in terms of the decaying Airy function. Despite
the appearance of additional viscous terms in the leading
order governing equations we find that analytic solutions are

n γ0 γ1 λ0 λ1
0.25 1.154 9.16 4.182 16.63
0.5 1.112 9.06 4.135 16.56
0.75 1.004 8.57 4.126 17.34
0.95 0.822 7.58 4.215 19.00

Table 1. Numerical values for the constants that relate to the
asymptotic expansions of the neutral wavenumber (6a), and
wave angle (6b), for shear-thinning Carreau fluids.

obtainable. Matching these solutions between the two layers
produces the following linear eigenrelation

−
91/3

ςΓ
(

1
3

) = 2r2(q−1)/(q+1)
(
α0α1 +

β0 β1

r2

)
I1

+ r *
,

α1
β0
−
α0 β1

β2
0

+
-

I2, (5)

where ς = {i[α0U ′(0)r + β0V ′(0)]/A}1/3 and the constant A
is a function of the fluid index n and the value of viscosity
at the wall µ(0). The exact form of this constant differs
depending on the fluid model in question. The integrals I1 and
I2 are defined and calculated in Griffiths [16] for a range of
shear-thinning power-law and Carreau boundary-layer flows.

Solving this eigenrelation enables us to determine expres-
sions for the asymptotic representation of the wavenumber
γA, and wave angle φA, of the disturbances as functions of
R = r2/(q+1) Re1/(q+1) . Here R is the numerical representation
of the Reynolds number. Doing so enables us to make direct
comparisons between our asymptotic and numerical solutions.
We find that

γA = r (q−1)/(q+1)

√
α2
A
+
β2
A

r2

= γ0 − γ1R−1/3 + · · · , (6a)

and

φA = arccot
(
αAr
βA

)
= arccot(λ0 + λ1R−1/3 + · · · ). (6b)

Numerical values for the constants γi and λi for a range of
shear-thinning Carreau flows are displayed in Table 1. The
equivalent power-law results are presented in Griffiths et
al. [15].

In this study we present only the type I asymptotic analysis
with the viewpoint of validating our numerical results when the
Reynolds number is large. Indeed, initial investigations have
begun on the corresponding type II analysis, we hope to report
on this investigation in due course. For more details regarding
the type I analysis see Griffiths et al. [15] and Griffiths [16].

3.2 Numerical analysis
The stability analysis, applied at a specific radial location,
involves imposing infinitesimally small disturbances on the
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Figure 1. Wavennumber neutral stability curves for
shear-thinning power-law,and Carreau fluid flows.

steadymean flow, in the form of scaled normal-mode quantities

(u, v,w, p) = (û, v̂, ŵ, p̂)(η; α, β, ω; R, n)ei(αr+βθ−ωt) . (7)

The frequency of the disturbance in the rotating frame is
ω (taken to be zero in this stationary study), the complex
radial wavenumber is α = αr + αi and β is the real azimuthal
wavenumber.

After making an approximation akin to the parallel-flow
assumption and a viscous assumption stemming from the
asymptotic results, the stability equations may be written as
sets of six first-order ODEs using transformed perturbing
variables φi (η) with i = 1, 2 . . . 6. The governing equations
for shear-thinning fluids that adhere to the power-law viscosity
model can be found in Griffiths et al. [17], the equivalent
equations for fluids that adhere to the Carreau viscosity model
can be easily inferred therein. In all that follows the eigenvalue
problem defined by the stability equations is solved with the
homogeneous boundary conditions

φi = 0 at η = 0, (8a)
φi → 0 as η → ∞, (8b)

for all i. This eigenvalue problem is solved for certain com-
binations of values of α, β and ω at each Reynolds number,

R
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Figure 2. Neutral stability curves for large R with
corresponding asymptotic predictions. Excellent agreement is
observed in both cases for every n in the range of interest.

R, and for the specified value of n. From these we form the
dispersion relation, D(α, β, ω; R, n) = 0, at each n, with the
aim of studying the convective instabilities. The step size in
η was reduced and the value of infinity increased until there
were no discernible differences in the numerical results. The
values taken were such that the boundary layer was approx-
imated by 2000 equally spaced data points between η = 0
and η = 20. This discretization is known to be consistent
with Lingwood [7] and Garrett & Peake [18], for example,
and represents an appropriate balance between accuracy and
computational effort for each n.

In order to investigate the structure of the spatial branches
at each n, we solve the dispersion relation for α whilst march-
ing through values of β at fixed R. For each n in the particular
range of interest two spatial branches determine the convec-
tive instability characteristics of the system. Neutral curves,
defined by αi = 0, have been calculated for a variety of shear-
thinning values of n using both the power-law and Carreau
constitutive viscosity laws.

All the results have been validated by equivalent calcula-
tions performed using a Chebyshev polynomial discretisation
method. For details on the implementation of this method,
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n Rc (type I) Rc (type II)
0.6 703.77 1402.0
0.7 534.55 1006.3
0.8 417.49 746.23
0.9 334.01 569.27

Table 2. The values of the type I and type II critical Reynolds
numbers (Rc) for shear-thinning power-law flows as noted by
Griffiths et al. [15].

for Newtonian rotating disk flows, the interested reader is
referred to Alveroglu et al. [19]. Excellent agreement was
found between the two numerical schemes. Some minor
discrepancies were found in the values of the type II critical
Reynolds numbers. However, as noted by Garrett et al. [20],
the determination of this mode is strongly dependent on the
choice of numerical solution method, whereas the type I mode
appears not to be. In this study we choose to report the results
owing from our transformed variables method.

4. DISCUSSION & CONCLUSIONS
Our results, both asymptotic and numerical, predict differing
behaviour for shear-thinning fluids described by the power-law
model when compared to those described by the Carreau
fluid model. We observe from Figure 1, where we plot the
wavenumber

γ =

√
Rq−1α2 +

β2

R2 = γA,

against the Reynolds number R, that the power-law model pre-
dicts a strong stabilising effect as the fluid index is decreased,
whereas the Carreau model suggests that shear-thinning desta-
bilises the boundary-layer flow. Under the power-law regime
the value of both the type I and type II critical Reynolds num-
bers significantly increases with decreasing n (see Table 2).
In addition to this the area encompassed by the neutral curves
noticeably shrinks as the effect of shear-thinning increases.
Contrary to this, using the Carreau fluid model, we predict
that both the critical Reynolds numbers will be marginally
decreased as the shear-thinning parameter is increased (see
Table 3), and moreover the area encompassed by the neutral
curve also significantly increases. In this sense we observe
that the type I mode is being strongly destabilised.

Figure 2 outlines the excellent agreement obtained between
the results of the asymptotic analysis when compared to our
numerical solutions. The large Reynolds number asymptotic
analysis does indeed predict boundary-layer stabilisation in
the power-law limit and destabilisation in the Carreau limit.
This is wholly consistent with the numerical predictions at
much lower Reynolds numbers.

In Figure 3 we plot the spatial branches of the type I
mode through the convectively unstable region in order to
visualise the growth rates. We denote −ᾱi = −R(q−1)/2αi as
the spatial growth rate. In all cases we find that the type II
growth rates are comparatively very small, this suggests that

n Rc (type I) Rc (type II)
0.25 301.11 492.11
0.5 328.80 546.03
0.75 364.51 612.90
0.95 383.93 633.34

Table 3. The values of the type I and type II critical Reynolds
numbers (Rc) for a range of shear-thinning Carreau fluid
flows.
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Figure 3. Linear convective growth rates for stationary mode
disturbances of type I through the convectively unstable
region for shear-thinning flows. Under the Carreau model the
maximum predicted spatial growth rate is larger at n = 0.5
than it is when compared to the equivalent power-law result
with n = 0.8.

the type I mode is dominant for all shear-thinning rotating
disk boundary-layer flows. Under the power-law framework
we find that the type I growth rates are significantly reduced
as n decreases whereas results owing from the Carreau fluid
model suggest that shear-thinning serves to markedly increase
the spatial growth rates.

The opposing results for our two shear-thinning models are
indeed quite striking. These surprising results are attributed
to the inability of the power-law model to describe shear-
thinning flows for vanishing shear-rates, i.e. far from the disk
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Figure 4. Base flow viscosity profiles for shear-thinning
power-law and Carreau boundary-layer flows. The viscosity
functions are defined in (3d) and (3e), respectively.

surface. It is well known that for shear-thinning power-law
fluids µ∗(γ̇∗ → 0) → ∞, which is exemplified by our base
flow solutions where we see that the viscosity function grows
without bound as we move away from the surface of the disk,
or equivalently move towards a region of low shear-rate, see
Figure 4. This essentially has the effect of increasing the
predicted boundary-layer thickness. Contrastingly, we have
that µ∗(γ̇∗ → 0) → µ∗0 for shear-thinning Carreau fluids.
Thus, far from the disk, in regions of low shear-rate, we find
that µ→ 1+c0, and in this case the boundary-layer thickness is
reduced. It is this failing of the power-law model in regions of
low shear rates that dramatically affects the predicted velocity
profiles and therefore our linear stability results.

It transpires that the inability of the power-law model to
accurately describe shear-thinning flows in the limit as γ̇∗ → 0
has such a significant effect on the base flow profiles that it in
turn effects the predicted stability characteristics. Therefore it
is with relative confidence that we can say that the results owing
from the Carreau fluid model do indeed provide a much better
description of the observed cross-flow instabilities. Indeed, a
recent report by Griffiths et al. [21] shows that shear-thinning
strongly destabilises the boundary-layer flow over a flat plate.

The results from this study would also suggest that it is the
effect of shear-thinning the destabilises the boundary-layer
flow over a rotating disk.

These results clearly show the importance of accurately
modelling the variation of viscosity within the boundary-layer.
The power-law model may be useful for describing experimen-
tal results in regions of moderate shear-rate, however, it fails
within the confines of our theoretical framework. As such, we
conclude that the Carreau model provides a better physical
representation of the boundary-layer flow and hence that the
introduction of shear-thinning fluids will have a destabilising
effect. We should note that similar qualitative results are
obtained from the Carreau model if one chooses to make
the viscosity function dimensionless with respect to µ∗0, as
opposed to µ∗∞.

This work clearly motivates the need for detailed experi-
mental results with which to compare our theoretical analysis.
To the best of the authors’ knowledge no such experiments
have yet taken place. Certainly in the Newtonian regime a
wealth of literature exists, and this is currently a topic of
particular interest, see Imayama et al. [22–24], for example.
Personal communication with these authors has revealed the
difficulty of obtaining consistently accurate experimental re-
sults; therefore we can only envisage that the introduction of
non-Newtonian fluids would serve to significantly complicate
any experimental procedure.

It is acknowledged that the parallel-flow approximation
utilised within the numerical stability analysis means that
the perturbation equations solved here are not rigorous at
O(R−1). Although it is clear that the approximation will lead
to inaccuracies at the predicted critical Reynolds numbers,
it is our opinion that these will be small. The excellent
agreement obtained between our numerical neutral curves
and our asymptotic predictions shows that the effects of this
approximation are negligible at high Reynolds number.
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