e-space
Manchester Metropolitan University's Research Repository

High yield synthesis of hydroxyapatite (HAP) and Palladium Doped HAP via a wet chemical synthetic route

Kamieniak, J and Bernalte, E and Foster, CW and Doyle, AM and Kelly, PJ and Banks, CE (2016) High yield synthesis of hydroxyapatite (HAP) and Palladium Doped HAP via a wet chemical synthetic route. Catalysts, 6 (8). ISSN 2073-4344

[img]
Preview

Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

© 2016 by the authors; licensee MDPI, Basel, Switzerland. A novel procedure for the synthesis of both hydroxyapatite (HAP) and palladium doped HAP via a wet chemical precipitation method is described herein. X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) and Fourier Transform Infrared (FT-IR) Spectroscopy are utilised to characterise the synthesised material’s morphology, structure and crystallinity. The developed synthetic protocol produces high purity HAP with an average yield of 83.7 (±0.10)% and an average particle size of 58.2 (±0.98) nm, such synthesis has been achieved at room temperature and within a time period of less than 24 h. Additionally, in order to enhance the overall conductivity of the material, a range of Pd (2, 4 and 6 wt %) metal doped HAP has been synthesised, characterised and, for the first time, applied towards the competitive electrocatalytic detection of hydrazine, exhibiting a linear range of 50–400 μM with a limit of detection (3σ) of 30 µM.

Impact and Reach

Statistics

Downloads
Activity Overview
42Downloads
78Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item