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Abstract 

We investigate switching response for an Optical Bistable (OB) device consisting 

of homogeneously broadened two-level atoms in a ring cavity supported by a 

Kerr Nonlinear Blackbody (KNB) radiation reservoir in the high-Q cavity regime 

for both absorptive and dispersive cases. In the resonant case and below a 

transition temperature, faster switching processes for OB devices with KNB can 

be triggered by a small perturbation of the incident field in the vicinity of the 

critical transition point. The switching time increases with increasing atomic 

detuning parameter. A thermal switching process is obtained for a fixed incident 

field and is triggered by small perturbation in the relative reservoir temperature,

b
T  say. The switching time is reduced considerably by slightly increasing the 

temperature 
b

T . Comparison with other cases of radiation reservoir is made, 

namely, normal vacuum, thermal field and squeezed vacuum.  
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I. Introduction 

Optical bistability is vitally important in nonlinear optical phenomena, due to its 

potential applications in different branches of science, optical computations, 

optical communications and the biological and medical sciences. It has been 

investigated theoretically and experimentally with dissipative two-level atomic 

systems placed in an optical cavity [1-4]. OB systems have attractive applications 

in all optical switches, memories, transistors and logic circuits [5,6] with normal 

vacuum field. These studies show that one can control the bistable threshold 

intensity and the hysteresis loop via many approaches, such as field-induced 

transparency [7] and phase fluctuations [8]. Reversed (clockwise) and butterfly 

(closed loop) hysteresis structures [9] were predicted for the additional first 

harmonic output field component outside the Rotating Wave Approximation 

(RWA) simultaneously with the usual bistable (anti-clockwise) hysteresis for the 

fundamental output field component. The first harmonic output field component 

outside the RWA can be further controlled to show a one- or two-way switching 

processes when atomic inhomogeneous broadening and transverse input field 

features are taken into consideration [10]. There may be applications in optical 

information signal processing as well as simultaneous opposite coding.  

The nonlinear atomic medium in OB devices is affected by the quantum state of 

the radiation reservoir responsible for the atomic damping processes as follows: 

(i) The thermal Field (TF) leads to the broadening of the longitudinal and 

transverse atomic linewidths [4]. 

(ii) The Squeezed Vacuum (SV) field induces narrowing in the transverse 

atomic linewidth associated with one quadrature component of the 
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atomic polarization [11], as a result of the simultaneous creation or 

annihilation of photon pairs in the squeezed state. 

(iii) In the KNB case, the natural atomic linewidth (the spontaneous 

emission) is suppressed as a result of the formation of photon pairs by 

the phonons of lattice vibrations under the condition that CTT � , where 

C
T  is the critical transition temperature [12, 13].  

Optical bistable systems with injected SV field [14-19], compared with the 

Normal Vacuum (NV) case [3,4]  have their advantages of achieving optical 

bistbility at a lower threshold value of the atomic cooperative parameter ( 4�C ), 

as well achieving a one – or two – phase switching processes by adjusting the 

relative phase of the degree of the squeezing parameters. 

On the other hand, OB system of a homogeneously broadened two-level atomic 

medium interacting with a single mode of the ring cavity in the presence of the 

Kerr-nonlinear blackbody reservoir has been studied recently in both absorptive 

and dispersive cases [20]. It is shown that optical bistability is observed at an 

even lower cooperativity parameter than that in the SV case [16]. Furthermore, a 

temperature induced switching process at a fixed input field is predicted near 

resonance conditions [20]. In the KNB, the resulting radiation is found to be a 

squeezed thermal state below a certain transition temperature [21]. The 

significant change occurring when a normal blackbody (thermal field) is replaced 

by a KNB, in matter-electromagnetic field interaction, is that the usual vacuum 

state of the electromagnetic field is replaced by the photon pair state and in turn 

the infinite energy of the field vacuum is replaced by the finite energy of the 

photon pairs [13, 22].  

The phenomenon addressed in this paper, namely, Critical Slowing Down 

(CSD), is associated with lengthening the time taken for the system to recover 
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from a small perturbation or disturbance in one of its control parameters in the 

vicinity of a critical transition point. As a consequence, the large delay time leads 

to: (i) a large memory device, and (ii) a slow switching device. Earlier, within 

the RWA, CSD in the NV case was examined for the absorptive optical 

bistability [23] and later extended to the SV case [24].  A study of CSD would 

benefit (at some degree) the following:  

(i) Enabling decay rates of the transitional transient processes to stable 

steady-state to be measured. 

(ii) There are possible device applications in optics [25-27].  

(iii) It may be possible to achieve dynamical stabilization of the system in 

response to perturbations or fluctuations of the system parameters near 

the critical points [28]. 

Recently, we have examined the CSD of an OB model of two-level atoms placed 

inside a ring cavity outside the RWA in the high- and low-Q cavity cases [29]. 

The faster oscillatory behavior outside the RWA induces irregular oscillations 

with increased atomic detuning in the lower branch of the hysteresis curve of the 

first harmonic output field due to interference with atomic dispersion or Rabi 

oscillations. Effects of atomic inhomogeneous (Lorentzian) broadening and 

transverse (Gaussian) field variations on the CSD in the high-Q cavity limit has 

been discussed in [30]. The main result in [30] in the high-Q cavity case is that, 

the switching time decreases with increasing the Lorentzian parameter in both 

absorptive and dispersive cases. In addition, the transverse field parameter 

increases the switching response of the optical bistable device significantly in the 

dispersive case with associated irregular oscillations in the lower branch. 

Elsewhere [31,32], CSD was investigated for some bistable biological and 

environmental models. In [31] it was shown that the time-delay reduction is 
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independent of the nonlinearity form and fits an inverse square root law 
2/1�E , 

where E is the perturbation parameter (see e.g. [25-26] and refs. therein).   In 

[32] it was suggested that CSD could provide universal indicators of how close 

a complex system such as the brain, the climate, ecosystems and the financial 

markets, are to a threshold. CSD applied to the optical properties of atoms is 

covered in papers such as [33, 34]. 

 

The aim of the present work is to study the switching response of an OB system 

of 2-level atoms in the presence of KNB reservoir in the vicinity of critical 

transition point and compare it with previously studied radiation reservoir cases, 

namely, the NV, TF and SV reservoirs. This is achieved by showing the effect of 

perturbations of the incident field near a transition point. Furthermore, we 

investigate the thermal switching effects by perturbing the relative temperature 

b
T  in the vicinity of critical value of CT . 

The paper is organized as follows: A review of our model is presented in Sec. II. 

Both incident field and thermal switching responses in the OB model in the high-

Q cavity limit is examined in Sec. III. A Summary is given in Sec. IV. 

 

II. Model review 

Consider a single mode ring cavity containing a homogeneously broadened two-

level atomic medium in contact with a thermal reservoir of temperature 
B

T  and 

of transition frequency 
o

Z  and interacting with an electromagnetic field of 

frequency 
L

Z . The coherent interaction between atoms and field that propagates 

along the longitudinal axis induces macroscopic polarization and changes in the 

level population of the atomic system. The c-number model Maxwell-Bloch 
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equations in the plane wave, rotating wave and mean field approximations are 

given by [20]: 

 

> @��T��N rC22x)i1(Y
dt

dx
 ,                                       (1a)
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Here, � �1e/1n BBTk/

1
� Z!

 is the average photon number of the heat bath (thermal 

reservoir) maintained at a fixed temperature 
B

T , with central frequency Z , 

Boltzmann constant 
B

k  and  JZ�Z G /)(2
oL  is the normalised atomic detuning 

where,  J  is the A- coefficient. The notations in Eq. (1) are as follows: rr  are the 

mean values of the quadrature atomic polarization components, 
3

r  is the mean 

value of the atomic inversion. The quantities x  and Y  are the normalized output 

and input amplitude fields, respectively, NZZT /)( Lc � 
 
is the normalized cavity 

detuning with  cZ  cavity mode frequency, and  N cavity decay constant and 

)/(
2 NJgC   is the cooperative parameter, where g is the coupling between the 

cavity field and the atoms.  

In the steady-state, equations (1) yield the well-known input-output field steady 

state equation [4]  
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 In the case of KNB reservoir [13, 24], the radiation is in a squeezed thermal state 

below a transition temperature 
c

T  (dependent on the Kerr nonlinear crystal), 
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which results in atomic spontaneous emission suppression due to formation of 

photon pairs via lattice vibrations. Above the temperature
c

T , the KNB behaves 

like a normal blackbody (ordinary thermal radiation of temperature
B

T ). The 

formation of photon pairs is physically understood as follows [11]: if one photon 

(first photon) is surrounded by a cloud of lattice vibrations (phonons) then with 

another photon nearby this polarization cloud, it experiences a force of attraction 

with the first photon and a photon pair is then formed. Not all KNB photons are 

paired. Unpaired photons form a new kind of quasiparticles, the nonpolaritons. 

Hence, spontaneous emission of atomic system coupled to a KNB reservoir (i.e., 

a thermal reservoir with KNB medium) is modified (suppressed) as result of this 

photon pairing process for 
cB

T<T . Accordingly, the decay rates (when
cB

T<T ) 

in Eq. (1) are modified as follows [13]: 

 

JJ r*o   (0 < Γr < 1),                                                                                       (3)   

where, the relative decay rate 
r

* is given by 

,
)T(1
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with 0)T(
B
z'  (for 

cB
T<T ) is the order parameter for pairing of photons, which 

is a monotonically decreasing function of the temperature (
B

T ) of the reservoir 

and vanishes at the transition temperature 
c

T  and yields P* /
r

with P  is the 

refractive index (dispersion free) of the medium of KNB. Note that the order 

parameter 0)T(
B
 ' in the two cases: the normal blackbody thermal reservoir 

(TF, 
cB

TT t ) and NV ( 0T
B
 ( cases, where 1

r
 * . An approximate expression of 

)T(
B

'   ≃ )T/T(12
cB

� , which holds well near Tc [32]. In OB with KNB case, 

the Maxwell-Bloch equations (1), after using (3), are modified to the following:  
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In the steady-state, equations (5) yield to the following input-output relation [22], 
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Next, we investigate the switching response of the system through two processes, 

namely; 

i. Field switching process, by perturbing the incident field with small 

perturbations in the neighberhood of the crtical (switching) point of the 

incident field.  

ii. Thermal swiching process which is triggered by small perturbations of 

the KNB reservoir temperature 
B

T  in the neighberhood of the crtical 

point of the relative temperature 
CBb

T/TT  . 

III. Critical slowin down in the high-Q cavity case 

(a) Field switching 

In the high-Q cavity case, the life time of photons inside the cavity (
1�N ) is much 

greater than the atomic lifetime (
1�J ) and hence the atomic variables can be 

eliminated adiabatically from equations (5a-c). Accordingly, equations (5) 

reduce to the single differential equation for the output field: 
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Note, equation (7) covers the three cases of NV( 0n,1
1r
  * ),TF( 0n,1

1r
z * ), 

KNB ( 0,10
1
z�*� n ) cases. The case for the SV is described by the following 

state equation [15]: 
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G
 and fs II 2� ) is the relative 

phase of the squeezed vacuum field with respect to the output field. The squeezed 

vacuum parameters: N=average photon number and sieMM I = the degree of 

squeezing, are related for maximum squeezing by )1(
2 NNM � .  Now we 

investigate the switching time of the OB device in the vicinity of the critical 

switching-on point for cases of SV ( 158237.0,
1
  ) nS ), NV( 0,1

1
  * nr ), 

KNB( 158237.0,2/1
1
  * nr ), TF( 158237.0,1

1
  * nr ) by solving equations (7, 8) 

independently, with a linear perturbation of the incident field (Yc + β); 0 < β < 1, 
evaluated at the critical points from eq. (6) and (8). Here, equations (7,8) are 

numerically integrated using Mathematica® [36] with steady-state initial 

conditions obtained by (6,8). 

In the absorptive case, Fig. (1), the computational results show that for fixed field 

perturbation  β = 0.03, C=20, the delay time is much reduced for the KNB case 

compared with other cases of SV, NV and TF by factors of 0.133, 0.0555 and 

10
104

�u  ,respectively. Further, in the KNB case, the switching response of the 

optical bistable device is reduced by increasing E  (Fig. 2). In the dispersive case, 

Fig. 3, for fixed 04.0 E , C=20 the increase in the atomic detuning parameter G

leads to an increase in the delay time.     
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(b) Thermal switching  

In this subsection, we investigate the thermal switching of the OB device with 

KNB by perturbing the relative temperature 
b

T  around its critical value (
bc

T ), for 

fixed incident field value Y and different values of the thermal perturbations 
T

E

(Fig. 4). The relation between the output field x and temperature 
b

T  [20] is 

shown in the inset of Fig. (4), for fixed 80Y  , C=40, 12/1
r

 T G * . Thermal 

switching process for the OB device with KNB occurs by solving equation (7) 

numerically at fixed 80Y   and replacing 
b

T  by 
Tbc

T E� ( 543.0T
bc
  which is 

obtained from the inset in Fig. 4). It is noted that, a small variation in 
T

E  of order 

0.00002 reduces the delay time significantly as shown in Fig. (4).  

IV. Summary 

We have examined the switching response of the OB device consisting of two-

level atomic medium placed in a ring cavity and interacting with a single mode 

cavity field supported by KNB reservoir in the mean field limit and high-Q cavity 

case. The switching times for different reservoirs, such as, normal vacuum (NV), 

thermal field (TF), and squeezed vacuum (SV) are compared.  

Two types of switching response are examined, namely: 

(a)  Field switching process, at fixed temperature of the KNB reservoir, shows 

that the delay time of the OB device is less than that of other OB systems 

with NV, TF and SV cases. In the dispersive case, the increase in atomic 

detuning leads to an increase in delay time.  

(b)  Thermal switching process, at fixed input field, where a very slight change 

in the temperature of the device induces a switching with less delay. This 

behavior may be useful in proposing switch that is analogous to a 

conventional thermostat switch device in which electric current levels are 
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controlled in such devices. In the suggested switch the light levels in the 

optical systems are controlled based on the change of temperature of the 

KNB reservoir. Recently, thermally-induced OB has been reported in 

silicone based-photonic crystal cavities due to the change of the refractive 

index through thermo-optic effect [37].  
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Figure captions 

Fig. 1: The transient output field component )(Wx , versus the normalized time 

tN W  for C=20, 0 T G , 04.0 E  and different bistable systems: SV(��) (

158237.0 SVn , S ) ), NV (������) ( 0n  , 1 *r ), KNB (� � � �) ( 158237.0 KNBn ,

12/1 *r ), TF(� � �) ( 158237.0 TFn , 1 *r ).  

Fig. 2: The transient output field component )(Wx , in the KNB case  (

158237.0 KNBn , 12/1 *r )  case  versus the normalized time tN W  for C=20, 

0 T G , and different values of the input field perturbation; E =0.0005(��), 

E =.001(������) and E =0.008(� � �). 

Fig. 3: The transient output field component )(Wx , in the KNB case (

158237.0 KNBn , 12/1 *r )  versus the normalized time tN W  for C=20, θ = 0, 
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04.0 E ,  and different values of the atomic detuning δ =0(��), δ =1.5(������) 

and δ=3(� � �). 

Fig. 4: The transient output field component )(Wx  versus the normalized time 

tN W  in the high-Q limit  for C=40, θ = δ = 2/1
r
 * , Y=80  and different values 

of the relative temperature perturbation TbCb TT E� , 543.0 bCT ; TE =0.00116 

(��), TE =0.00118(������) and TE =0.004(� � �). Inset shows the contour bistable 

curve ( x vs. bT ) at fixed Y=80. 
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