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This paper presents examples of hysteresis from a broad range of scientific disciplines and demon- 

strates a variety of forms including clockwise, counterclockwise, butterfly, pinched and kiss-and- 

go, respectively. These examples include mechanical systems made up of springs and dampers 

which have been the main components of muscle models for nearly one hundred years. For the 

first time, as far as the authors are aware, hysteresis is demonstrated in single fibre muscle when 

subjected to both lengthening and shortening periodic contractions. The hysteresis observed in 

the  experiments  is of two forms.  Without  any relaxation at  the  end of lengthening  or short- 

ening, the  hysteresis  loop is a convex clockwise loop, whereas  a concave clockwise  hysteresis 

loop (labeled  as kiss-and-go)  is formed when the muscle is relaxed at the  end of lengthening 

and shortening. This paper also presents a mathematical model which reproduces the hysteresis 

curves in the same form as the experimental data. 
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1.   Introduction 

In 1885, Sir James Alfred Ewing first coined the term hysteresis whilst showing the persistent effects on 

ferric metals exposed temporarily to magnetic fields [Ewing, 1885]. The irreversibility of the magnetisation 
and demagnetisation processes makes these hysteretic devices useful as magnetic memory, and indeed, the 

magnetic  memory characteristics  of chromium and iron oxides  has led  to  the continued  development  of 

magnetic storage media used to store computer data as well as audio and video signals [Piramanayagam 
& Chong, 2011]. 

Hysteresis  is  the  time-based  dependence of a system’s  output  based on present  and past  outputs. 
In some applications,  the input-output diagram is the same at every frequency. Such systems have rate 
independent hysteresis. However, in most systems the dynamic response changes with the input frequency 

giving distinct diagrams for different frequencies of excitation. Therefore, these systems have rate dependent 
hysteresis [Muller & Xu, 1991]. As muscle tires with repeated use it is not surprising to find that hysteresis 

in muscle is rate dependent. 

The two essential ingredients for hysteresis are nonlinearity and feedback. Hysteresis is not a new phe- 
nomenon, indeed it abounds throughout the realms of science. Hysteresis has its foundations in physics, in 
elasticity [Muller & Xu, 1991], in ferroelectric and ferromagnetic materials [Smith et al., 2006; Damjanovic, 

2005] and Lynch et al. have demonstrated hysteresis in a wide range of nonlinear optical resonators and 
microfiber  ring resonators  [Lynch & Steele,  2011; Lynch et  al., 2015]. In electric  circuits,  Borresen and 

Lynch [2002], have demonstrated  hysteresis  in Chua’s electrical  circuit for the first time.  In mechanical 
engineering, hysteresis is possible between multiple stable limit cycles [Lynch & Christopher, 1999] when 

investigating surge in jet engines and wing rock phenomena in modern aircraft. In chemical kinetics, simple 

models of Hopf bifurcation in a Brusselator model and hysteresis in an autocatalytic chemical reaction are 
demonstrated [Lynch, 2011]. In economics, hysteresis is present in inflation-unemployment models [Ball, 

2009]. In biology, there is hysteresis in blood cell population dynamics [Lynch, 2005], muscle cross-bridge 
models [Walcott,  2009] and neuronal networks [Lynch & Bandar, 2005], and hysteresis is present in cell 

biology [Pomenering et al., 2003], genetics [Kramer & Fussenegger, 2005], immunology [Das et al., 2009], 

angiogenesis and haematopoiesis [Lynch & Borresen, 2015] and Noori [2014], covers more general examples 
of hysteresis phenomena in biology. 

Many nonlinear dynamical systems display hysteresis when some form of feedback mechanism is 
present.  When  modeling  systems  mathematically,  bifurcation  diagrams  are  plotted  in order  to  display 
the hysteresis phenomena using packages such as MATLABQR , MapleTM  and MathematicaQR

 [Lynch, 2014, 

2010, 2007]. The second iterative method is adopted where a parameter is varied and the solution to the 
previous iterate is used as the initial condition for the next iterate. In this case, there is a history associated 

with the process and only one point is plotted for each value of the parameter. For example, most of the 
bifurcation diagrams plotted in this section were plotted using the second iterative method. The system 

has to have at  least two  stable  steady states  which could be fixed points, critical  points or stable limit 
cycles. 

The different forms of hysteresis will now be illustrated by means of example. 
 
 
 
 
 

1.1.    Biological hysteresis 
 

1.1.1.  Agar gel 
 

For most biologists, if not all, agar is a well-known gelling agent in solid media used commonly in microbi- 
ology. It is defined  as a hydrophilic colloid that contains two major fractions, agarose, which is the gelling 
fraction,  and the non-gelling fraction  agaropectin.  Agar is found as the supporting structure of the cell 
walls in a certain species of algae and the interest for this study is the characteristic “gelation hysteresis“, 
as shown  in Figure 1, between the melting and setting temperature. Typically, agar gels at temperatures 

between 32◦  and 45◦  when cooled, depending on the used seaweed, and needs to be heated above 90◦  to 
melt and form a good solution [Armisen & Galatas, 1987; Lahaye & Rochas, 1991]. 
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Fig. 1.   Clockwise hysteresis cycle between the melting and setting temperatures, 3 ◦ and 9 ◦ , respectively, of the agar gel. 

Whether the agar is solid or liquid at a certain temperature between the melting and gelling states will depend on the previous 

state of the substance. 

 
1.2.    Mechanical hysteresis 

1.2.1.  The preloaded two-bar linkage mechanism 
 

Historically, muscle has been modeled using springs and dampers and so this section includes those type 

of models. Drincic and Berstein [2011], analysed the dynamics of a two-bar linkage mechanism with joints 
P, Q and R, preloaded by a stiffness k, as shown in Figure 2. A periodic force F is applied at Q, where the 

two bars are joined by a frictionless pin. The angle θ denotes the counterclockwise angle the left bar makes 

with the horizontal, q denotes the distance between P and R, and x is the distance between the joint Q 
and the horizontal dashed line shown in Figure 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.   The preloaded two-bar linkage with a periodic force F acting at the joint Q. As the point Q moves vertically up and 

down, the mass m moves horizontally left and right. 
 
 

Then, 
 

 
x = l sin θ (1) 

 

q = 2l cos θ 
 

(2) 

 

F = sin(wt). 
 

(3) 

The equations of dynamics for the preloaded two-bar linkage are given by 
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Fig. 3.   Input-output clockwise hysteresis loop between F and x at ω = 0.05 radians per second. The area of the loop is the 

energy dissipated in a complete cycle and is proportional to the frequency of stimulation. The lower the frequency, the lower 

the dissipated energy, thus, the smaller the area of the loop. Note the ringing at the ends of the hysteresis loop, a common 

occurrence in hysteresis. The parameters used are k = 1 (N/m), m = 1 (kg), c = 1 (Ns/m), mbar  = 0.5 (kg), l = 1 (m) and 

F = sin(ωt). As with other hysteresis loops shown in this section, the blue curve represents ramp up, in this case F increase 

from F = −1 to F = 1, and the red curve represents ramp down, where F decreases from F = 1 to F = −1. 
 

 
and the dynamics in terms of the displacement q, using equations (1) to (4) is given by 

 
 
 

((m + 

 

mbar )(4l
2 − q2 ) + 

 

mbar l
2 )(4l2 − q2 )q̈  + 

 

mbar l
2 qq̇2 

12 
 
 

+cq̇(4l2 − q2)2 + k(q − q0)(4l
2 − q2)2 = 

 

3 

q(4l2 q2) 2 F.  (5) 
2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.   Input-output map between the vertical force, F , and the horizontal displacement, q, given by equation (5) at a low 

frequency ω = 0.05(r/s). Note the ringing at the ends of the hysteresis loop. The parameters used are k = 1 (N/m), m = 1 

(kg), c = 1 (Ns/m), mbar  = 0.5 (kg), l = 1 (m) and F = sin(ωt). 

 
Equations (4) and (5) represent the linkage dynamics under a periodic external force F . As in [Drincic & 

Bernstein, 2011], take parameter values k = 1 (N/m), m = 1 (kg), c = 1 (Ns/m), mbar  = 0.5 (kg) and 

l = 1 (m). Figure 3 shows the hysteresis loop for the vertical force F , measured in Newtons, against the 
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vertical  displacement x, measured in metres. This figure demonstrates a clockwise hysteresis loop. Note 
the ringing at either  end of the hysteresis loop where the steady state  oscillates  before settling  on to a 

stable critical point. This ringing phenomenon is a standard feature with hysteresis loops. Note also that 
the area bounded by the hysteresis loop represents the energy dissipated in one cycle and is proportional 

to the frequency of stimulation. 

Figure 4 shows the hysteresis loop for the vertical force F , measured in Newtons, against the horizontal 
displacement q. This hysteresis loop has been labeled a butterfly hysteresis. 

 

 

1.2.2.  The periodically forced nonlinear pendulum 
 

The Duffing equation can be used to model different physical systems [Thompson, 2002; Ott, 2002]. Here it 
is used to model a pendulum that is periodically driven and it has a nonlinear restoring force [Thompson, 

2002]. A diagram of this system is presented in Figure 5. 
 
 
 

Γ cos(ω t) 
 

 
 
 
 
 
 
 
 
 
 
 
 

x 
 

Fig. 5.   Periodically forced pendulum with a cubic spring. The driving force is given by F = Γ cos(ωt) and x represents the 

displacement from equilibrium. 
 

 
The equation modeling this system is given by 

 

 

ẍ + kẋ + βx + αx3  = Γ cos(ωt), (6) 
 

where k ≥ 0 is the damping coefficient, β is the stiffness, α is the nonlinear stiffness parameter, ẋ 
 

is the 

speed of the mass, Γ is the amplitude of force vibration and ω is the frequency of the driving force. When 
β > 0, the Duffing equation models a periodically forced pendulum as depicted in Figure 5. When α > 0, 

the  spring is  called  a hardening spring and when α < 0, the  spring  is  called  a softening  spring.  When 

β < 0, the Duffing equation models a periodically forced steel beam deflected between two magnets [Ott, 
2002]. Consider the Poincaré map of system (6) as the amplitude Γ varies when k, β, α and ω are fixed. 

The radius of the limit cycle on the Poincaré section is given by r. Figure 6 shows the hysteresis loop for a 
nonlinear pendulum when k = 0.1, β = 1, α = 0.1, and ω = 1.25 and the forcing amplitude is ramped up 

from Γ = 0 to Γ = 1 and then ramped back down again. There is a counterclockwise hysteresis loop and 

the steady states in this case are both stable limit cycles. The examples illustrating wing rock and surge in 
jet engines [Lynch & Christopher, 1999] also involve multiple steady states made up of stable limit cycles. 

Chaotic phenomena in human-like reaching movements using a two-link arm mechanism driven by six 
muscles is described in [Rahatabad et al., 2011], where bifurcation maps, Lyapunov exponents and power 

spectra are employed to detect the chaos. In 1994, Webber and Zbilut applied recurrence plot strategies 

to  assess  physiological  states  such  as respiration  and muscle  fatigue  dynamically. The  methodology  is 
applicable to any rhythmical system including chemical, electrical, hormonal, neural and mechanical, and 
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Fig. 6.   Plot of Γ versus r for the nonlinear pendulum. Note the ringing at the ends of the hysteresis loop. The steady states 

in this case are stable limit cycles. The parameters used in this case were k = 0.1, β = 1, α = 0.1, and ω = 1.25, where Γ is 

linearly ramped up from Γ = 0 to Γ = 1, and then ramped back down again. 

 
provides a nonlinear diagnostic tool in assessing physiological systems and states. Chaos and chaos control 
in cardiac muscle  has been extensively  investigated,  see [Weiss  et  al., 1999] and [Gauthier  et  al., 2002], 

in terms of heart rate variability and arrhythmic mortality, and practical applications of chaos theory to 
the modulation of human ageing were proposed by Kyriatzis et al. in 2003. A simple example of a system 

displaying hysteresis affected by chaos is now described. 
 

 

1.3.    Optical hysteresis and chaos 
 

Optical hysteresis, or optical bistability, as it is sometimes known, was first proposed by Szöke et al. in 1969. 

There has been an immense amount of interest in it regarding its potential applications in high-speed all- 
optical signal processing, all-optical computing and more recently, optical sensing [Lynch & Steele, 2011]. 

For optical hysteresis, nonlinearity is provided by the medium as a refractive (or dispersive) or absorptive 
nonlinearity, or both. The feedback is introduced through mirrors or fibre loops. A block diagram of the 

Simple Fibre Ring (SFR) resonator is shown in Figure 7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.   A schematic of the SFR resonator. The electric fields entering and leaving the fibre ring are indicated. The parameter 

κ represents the power-splitting ratio at the coupler and L is the length of the fibre loop. 
 

 
Three different forms of hysteresis, namely, clockwise, counter-clockwise and butterfly, are all displayed 

in one system when modelling a homogeneously broadened two-level atomic system in a ring cavity within 
and without the rotating wave approximation  [Lynch et al., 2015]. By considering the famous Maxwell- 
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Bloch and Maxwell-Debye  equations,  Ikeda  [Ikeda,  1979; Ikeda  et  al., 1980] theoretically  investigated  a 
nonlinear  absorbing  medium  containing  two-level  atoms  situated  in a bulk ring cavity.  He was able  to 

demonstrate that optical circuits exhibiting optical hysteresis could also contain temporal instabilities, or 
chaos. Subject to certain constraints Ikeda was able to demonstrate that the complicated delay differential 

equations could be approximated by a much simpler discrete complex system [Lynch, 2014]. What’s more, 

this simple system also accurately models the SFR [Lynch et al., 1998]. The iterative equation is given by 
 
 

En+1 = A + BEnei|En |  ,                                                           (7) 

where A = i
√

1 − κEin, B = 
√
κ and Ej  is the electric field amplitude at the jth  circulation around the 

fibre loop. A bifurcation diagram for system (7) is shown in Figure 8, where a counter-clockwise loop is 
 clearly visible. Note that, to the right of the hysteresis loop is a period doubling cascade to chaos. As the 

parameter B = 
√
κ increases, and more light is allowed to circulate in the fibre loop, the chaos shifts to 

the left and swamps the hysteresis loop, which should be avoided for applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8.   Bifurcation  diagram  of the  SFR resonator,  the  power |A 2
 was ramped  up from 0 W m−2

 to  8 W m−2
 

 

, and back 

down again.  (a) When  B  = 0.15, the  isolated  counter-clockwise  hysteresis  loop  (bistable  region)  is  followed  by a region  of 

period-doubling to chaos. (b) When B = 0.24, instabilities encroach upon the hysteresis cycle at both ends. 
 

 
 
 

1.4.    Memristors and pinched hysteresis 
 

Professor Leon Chua is widely acknowledged as the father of nonlinear circuit theory. For many decades 

it was believed  that  there  are  three  fundamental  electronic  components,  the  resistor,  the  inductor  and 
the  capacitor,  and many biological systems, such  as the famous Hodgkin-Huxley system  used to  model 

the giant squid axon [Hodgkin & Huxley, 1952], were simulated using these components. It is now known 

that  there  is  another  fundamental  circuit  element,  and its  sub-elements  [Qingjiang  et  al., 2014], called 
the memristor. Chua [1971], used mathematics to prove the existence of the fourth nonlinear fundamental 

nonlinear element which relates flux and charge and he called this component the memristor. In 1976, Chua 
and Kang discovered that a memristor displays a pinched hysteresis, which is shown in Figure 9. It is now 

understood that memristors are a common phenomena in the living world as they are also seen in plants 

and invertebrates [Prodromakis et al., 2012]. More recently, Chua [2013] was able to correct a mistake in 
the Hodgkin-Huxley equations by introducing a memristor term in to their equations. 

Readers interested in the mathematical analysis of the hysteresis models considered in the introductory 
section should consult the papers listed in the reference section. 

Section 2 is concerned with the material and methods for the physical experimentation and Section 3 

presents the experimental results. A mathematical model of lengthening and shortening muscle is presented 
in Section 4 and a discussion and further research are considered in Section 5. 
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Fig. 9.   Pinched hysteresis of a memristor in the I − V plane. a For low frequencies there is a definite pinched hysteresis. b 

As the frequency gets higher, the pinched hysteresis degenerates and the memristor acts like a linear resistor. For more details 

see [Lynch, 2014]. 

 
2.   Materials  and methods 

 

2.1.    Muscle samples 

Soleus muscles were dissected from 18-month-old (adult male, gtf2ird2) mice. The animals were humanely 

killed  using approved  schedule 1 methods (cervical  dislocation)  for other  research  projects approved  by 

the local Animal Ethics Research Committee of the University of Manchester. This is in accord with the 

generally accepted guideline of reducing animal numbers to a minimum in biomedical research. The right 

soleus  muscle was rapidly excised,  weigh  and immersed  in glycerol/relax  solution  at  4◦  for 24 hours. It 

was then treated with increasing concentrations of sucrose [Degens et al., 2010], which acts as an effective 

cryoprotectant, preventing damage of the contractile properties of the fibres. After sucrose-treatment, 

muscles were frozen in liquid nitrogen and stored at -80◦  for later use. 
 

 

2.2.    Solutions 

The composition  of the  solutions  have  been described  previously [Larsson & Moss, 1993; Giliver  et  al., 

2009; Degens et al., 2010]. The relaxing solution contained (mM): MgATP,  4.5; free Mg2+, 1; imidazole, 

10; EGTA, 2 and KCl, 100 and the pH was adjusted to 7.0 using KOH. The glycerol/relax was the same as 
relaxing solution containing 50% (v/v) glycerol. The pCa (-log[free Ca2+]) of the activating solution was 

4.5 and contained: MgATP, 5.3; free Mg2+, 1; imidazole, 20; EGTA, 7; creatine phosphate, 19.6; KCl, 64 
with pH 7.0. 

 

 

2.3.    Preparation  of single fibres 
 

The  procedures for preparing single  fibres have  been described  previously [Degens et  al., 2010; Gilliver 

et al., 2011]. Briefly, fibre bundles were taken from the -80◦  storage, thawed and treated with decreasing 

concentrations of sucrose and stored in glicerol/relax at -20◦ for use within a month. The day of experiments, 
a small bundle was cut from the muscle and immersed in relaxing solution containing 1 % Triton X-100 
for 20 minutes to permeabilize the membranes and sarcoplasmic reticulum. After this, single fibres were 
teased from one end of the bundle and mounted in a permeabilized-fibre test system (400 Aurora Scientific 
Inc. Ontario, Canada). With the fibre mounted and immersed in relaxing solution, it was tied with nylon 
thread to fine insect pins attached to a force transducer (Aurora, 403) and a lever motor arm (Aurora, 312). 
The sarcomere length (sl) of the resting fibre was set at 2.6µm and checked along the length of the fibre. 
Fibre length (lo) was determined and checked at regular intervals thereafter. Fibre diameter was measured 
at three places along the length of the fibre while submerged in relaxing solution and the cross-sectional 
area calculated assuming the fibre to have a circular cross-section [Gilliver et al., 2010]. All experiments 
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were carried out at 15◦ . 
 

 

2.4.    Methods 
 

Fibres were transferred from the relaxing to the activating solution (pCa 4.5). When the isometric force 
(Fo) reached a plateau, the fibre was subjected to length changes following a bipolar triangle input with 

an amplitude of 5% at a frequency of 0.25(s−1 ). A set of five fibres, one at a time, was used for this type 
of protocol. Then, another set of 20 fibres, one at a time, was subjected to the same wave with an extra 
resting time between the positive and negative half. The amplitudes for this second type of input were 3 

% or 5% of lo at different frequencies starting from f =0.125 (s−1 ) up to 1.25(s−1 ). 
 

Examples of the length change inputs and their corresponding force outputs are shown in Figure 10, 
where Fo and lo are the initial values of force and length respectively. The positive half of the input wave 

corresponded to stretches of either 3% or 5% of lo after which the fibre was returned to lo. On the other 

hand, the negative half corresponded to shortening contractions of the fibre, by the same percentages. 
 

 

 
 

Fig. 10.   Force response (blue curve) to a change in the fibre length (black curve). In case a, there is no rest between stretch 

and contraction, while in case b there are short rest periods. The amplitude of the length change in both examples is 5 % of 

lo, and the frequency is f=0.25( −1
 ) for a and f =0.167( −1

 ) for b. 
 
 

 
3.   Experimental  results 

3.1.    Force  response to a 5% lo length change 
 

In this section, the force-length relationship is plotted for a set of trials. It must be noted that in all the 
figures to follow, the origin of coordinates is where F=Fo and l=lo. The absolute values of these variables 

are  different  between  fibres,  therefore  the  origin is  indicated  in each figure.  The  response  that  appears 
in Figure 11 is a clockwise hysteresis loop representing the force-length relationship to one period of the 

bipolar triangle input shown in Figure 10a. Similar hysteresis loops were obtained with other fibres when 

there is no rest period. 
When a relaxation time after each half wave was added, the response showed a concave hysteresis loop, 

as shown  in Figure 12. These loops resemble those of kiss-and-go hysteresis [Volkov et  al., 2014], which 
tend to touch each other at the center. The arrows indicate the clockwise direction of the loops. 

For the rest of the figures, the force response is normalized  as a percentage  of Fo and a relaxation 

is imposed at the end of each lengthening and shortening interval. Similar figures to those shown in this 
paper can be plotted when there is no relaxation at the end of lengthening and shortening but the overall 

effect is the same in both cases. 
In Figure  13, force  vs length  is  plotted  for two  different  fibres  (a and b),  stimulated  at  the  same 

frequency. The  response  of another  two  single  fibres  (Figures  14a and 14b) was obtained  at  a higher 
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Fig. 11.   a Force-length relationship corresponding to Figure 10a. The curve is a hysteresis loop for only one period of the 

input and for this fiber the origin is where Fo=0.58 (mN) and lo=2.36 (mm). b A convex clockwise hysteresis loop develops 

when there is no relaxation at the end of lengthening and shortening. 
 

 

 
 

Fig. 12.   Force-length relationship corresponding to Figure 10b. The curve consists of two loops that resemble those of kiss- 

and-go hysteresis (a concave clockwise  hysteresis loop).  The loops  tend to touch one another at the origin, where Fo=0.45 

(mN) and lo=2.37 (mm) in this example. 
 

 
frequency of stimulation than that used in Figure 13. All these four fibres had a length change of 5% lo. 

Only the first period of the force response is shown in each case. 
 

 

 
 

Fig. 13.   Normalized  force  vs length  for two  different fibres a and b. The input frequency for both examples was f =0.125 
−1

 
(s ). The force produced by the fibres reached different percentages of Fo. 

 
 

The amount of force produced is different between the fibres even when it is normalized to Fo, as is 



Hysteresis in muscle    11  

s 

 

 

 
 

Fig. 14.   Normalized force vs length for two different fibres. The input frequency was double that used to produce Figure 13, 
−1

 
f =0.25 (s ). 

 
shown in Figures 13 and 14. However, the response pattern is similar, and therefore reproducible, between 

the fibres presented here. 

 
3.2.    Force  response to a 3% lo length change 

Examples  of single  fibres’  force  response to  a length  change of 3% lo are  shown in Figures  15 and 16, 

where the input frequency was f =0.25 (s−1). In Figure 15, two periods of the output are plotted while in 
Figure 16, four periods of the force-length relationship are shown. A similar behavior was observed in all 
fibres, and in some cases (see below Figure 15b), the force response did not appear overlapped during the 
positive semi-periods. Both cycles of the force-length relationship appear overlapped in Figure 15a, while 
in Figure 15b the response to the positive semi-period (or right loop), appears as two loops not completely 
overlapped. 

 

 

 
 

Fig. 15.   Two cycles of length change and its normalized force response for two different fibres a and b with f = 0.25 ( −1). 
 
 
 

3.3.    Force  response of a single fibre to different input frequencies 

In these experiments, the single muscle fibres were subjected to an input that varied its frequency from 

f =0.125 (s−1 ) to 0.625 (s−1) to 1.25 (s−1 ). The objective of these experiments was to look at the shape of 

the force response (loops) from the same fibre when the input frequency had a two or ten-fold variation. 
Figure 17a shows the hysteresis loops of a fibre subjected to a low frequency input, while the curve in 

Figure 17b shows the hysteresis loops of the same fibre for a two-fold increase of the input frequency (high 

frequency). For the second fibre, the curve in Figure 17c shows the loops at a low frequency and the curve 
in Figure 17d displays the hysteresis after a ten-fold increase in frequency. In both cases, the areas of the 

loops (equivalent to energy dissipated) increased with an increase of the input frequencies. 
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Fig. 16.   Four cycles of normalized force vs length, for two different fibres a and b with f = 0.25 ( −1). 
 

 

 
 

Fig. 17.   Normalized force vs length for two single fibres. a a single fibre subjected to a low frequency input, f = 0.625s−1 . 

The energy dissipated in this case was 3.98 × 1 −7 

−7
 J, and b, the same fibre as used in a with f = 1.25s−1 

−1
 . The energy dissipated 

in this case was 5.88 × 10 
−8

 J. c a single fibre subjected  to a low  frequency input, f = 0.125s 
−1

 . The energy dissipated  in 

this  case was 8.45 × 10 
−7

 
J, and d, the  same fibre  as used  in c with  f = 1.25s . The  energy  dissipated  in this  case was 

1.29 × 10 J. The amplitude change was 3% of lo in all cases. 
 
 

4.   Mathematical  model of lengthening  and shortening 
 

4.1.    Hill’s mathematical model 

Hill’s seminal paper [Hill, 1938] published in 1938 presents detailed methods, experiments and mathematical 

modeling of muscle contraction. Hill employs classic macroscopic mechanics to represent the phenomeno- 

logical muscle  model.  Figure  18 represents  the  viscoelastic  model  consisting  of two  elements  in parallel 
with a series element. The contractile element (CE) consists of a function A(t) and a translational damper. 
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\ 

K 

dt 

d dt 

 
This element is in parallel with a translational spring representing the parallel element (PE). Finally, the 

third  element  consists  of a translational  spring  representing  the  series  element  (SE).  The  length  of the 

parallel element is given by LP E  and the length of the series element is given by LSE . The length of the 

muscle is then LM = LP E + LSE . The stiffness (relating changes in force with changes in length) of the 

translational springs 1 and 2 are given by KP E  and KSE , respectively. The same force F develops to the 

left and right because the muscle can only have one force at any given time. Figure 18 is a SimscapeTM 

simulation model of a physical muscle system. Simscape enables one to rapidly create models of physical 
systems  within  the  SimulinkQR

 environment  and is  developed  by MathWorks,  Inc.  Readers  may also  be 

interested in MapleSim which is a ModelicaQR -based system-level modeling and simulation tool developed 
by Maplesoft and Wolfram SystemModeler: a modeling and simulation environment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18.   A Simscape simulation of the Hill muscle model comprising of a series element (SE), a contractile element (CE) and 

a parallel element (PE). 
 
 
 

A simple differential equation representing the model depicted in Figure 18 is given by: 
 

 
dF (t) KSE 

(

K
  

∆L  (t) + v
 dLM (t)  

( KP E 

\ 

F (t) + A(t)  ,
 

dt 
=  

v P E  M d − 1 + 
SE 

 

 
where A(t) is the active force, vd is viscosity in the damper, ∆LM is the change in muscle length and dLM

 

is the speed of contraction of the muscle. 

A simple MATLAB program of the Hill muscle model is described in [Holmes, 2006], where parameter 
values established by Hill are listed. This model was adapted to model lengthening and shortening muscle 
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Fig. 19.   a The lower figure shows lengthening and shortening as a fraction of muscle length against time. The upper figure 

shows the corresponding force response from the mathematical model. The parameters used in the model are the same as those 

listed in [Holmes, 2006]. b Force-length relationship of the mathematical model plotted using data from Figure 19a (compare 

with Figure 11b). Again there is a convex clockwise hysteresis loop when there is no relaxation at the end of lengthening and 

shortening. Some noise has been added to make the output look more realistic. 

 
as described in the previous sections. The equations are given by: 

LP E (t) = LM (t) − LSE (t), 

F (t) 
LSE (t) = 

α  
+ LSE (0),

 

dF (t) 

dt 
= α

 

( 
dLM (t) 

dt 
+

 

b (F (0) − F (t)) 
\ 

, (8) 
a + F (t) 

where α, a and b are constants. Note that the equations for heat liberation are also listed in the paper 

but they are not required for the work in this paper. The parameters derived by experimentation by Hill 

[Holmes,  2006] and applied  in equations  (8) are  given  by a = 37.24 mN/MM2 , b  = 0.325 lengths/sec, 
   a   
0.257 mN/mm2, α = 

F (0)
 mN/mm2  and LSE (0) = 0.3 (initially 30% of muscle length), and these 

are the parameters used in the models described in this paper. 
 

 

4.2.    Results of the mathematical  model 

Figure  19a shows the output of the mathematical  simulation  for a periodic lengthening  and shortening 
without any relaxation. The lower graph displays the periodic fraction of muscle length change while the 

upper graph shows the force response. Using these results, Figure 19b displays the force-length relationship 

and a convex clockwise hysteresis loop is clearly visible. Notice the similarity of this loop to that shown by 
experiment in Figure 11. 

Figure 20a shows the output of the mathematical simulation for a periodic lengthening and shortening 
with  a relaxation  phase at  the  end of each contraction.  The  lower  graph displays  the  periodic  fraction 

of muscle length change while the upper graph shows the force response. Using these results, Figure 20b 

displays the force-length relationship and a kiss-and-go hysteresis loop is clearly visible. Notice the similarity 
of this loop to those shown by experiments in Figures 12 to 17. 

The classic macroscopic Hill model, consisting of simple first order ordinary differential equations, is 
sufficient to simulate contracting muscle when considering hysteresis effects and has been firmly established 
as a reliable model of muscle contractile dynamics for many decades. A review of the developments of the 

Hill  model up to 2016 can be found in [Ovesy, et al., 2016]. One of the major disadvantages of the Hill- 

type  models  is  that  the  viscoelastic  analogies  do not  map to  the  underlying  physiological  mechanisms 
associated with muscle. Another popular mathematical model of muscle was proposed by Andrew Huxley 

in 1957 [Huxley,  1957] who introduced  sliding  filament  theory  and the  cross-bridge  cycle,  where  actin 
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(thin) filaments slide past myosin (thick) filaments which attach and detach during muscle contraction. A 
comparison between mechanical behaviour modeled by Hill’s equations and metabolic bahaviour modeled 

by Huxley’s equations on muscle-tendon  complex models using experimental data obtained from rat m. 
soleus in situ is given in a recent paper [Lemaire el al., 2016]. Readers may also be interested in the work 

of Zahalak and Ma [Zahalak & Ma, 1990] who bridge the gap between macroscopic and molecular muscle 

mechanics. 

 
a b 

 
250 

200 

150 

100 

50 

0 
0  2  4  6  8  10  12 

Time (s) 

1.5 

1.3 

1.1 

0.9 

0.7 

0.5 
0  2  4  6  8  10  12 

Time (s) 

250 
 

 
200 
 

 
150 
 

 
100 
 

 
50 

 

 
0 

0.85  0.9  0.95  1  1.05  1.1  1.15 
Fraction of Muscle Length 

 
Fig. 20.   a The lower figure shows lengthening and shortening as a fraction  of muscle length against time. Note that there 

is relaxation at the end of each contraction. The upper figure shows the corresponding force response from the mathematical 

model. b Force-length relationship of the mathematical model plotted using data from Figure 20a (compare with Figures 12 

to 17). In this case there are two loops that resemble those of kiss-and-go hysteresis. Some noise has been added to make the 

output look more realistic. 
 

 
 
 

5.   Discussion 

The paper presents both a physical and mathematical model of single fibre lengthening and shortening and 

the force-length  hysteresis cycles demonstrate that there is a history associated  with the process. What 

is  truly remarkable  is  that  the  mathematical  models  developed  by Hill  in the  1930s are  still  producing 
accurate representations of experimental data today. 

Experimentally, the muscle force response to a periodic length change has been observed for different 

amplitude and frequency values of the input. Without relaxation, the force-length relationship consisted of 
a convex hysteresis loop for a bipolar triangle input. However, when a relaxation time was added at the end 

of each semi-period, the muscle fibres were able to return to their isometric state giving two characteristic 
hysteresis  loops  that  have  been reproducible  in different  experiments.  The  curves  presented  in Figures 

12 to 17 show one loop on the right of lo representing the change in force when the fibre is lengthened 

and back to the initial length. Another loop is on the left of lo and represents the force change when the 
muscle fibre is shortened and returned to the initial fibre length. Although the loops are not completely 

closed,  they are visibly separated. The behavior  of this force-length  relationship  could be considered as 

”kiss-and-go” loops, as defined  by [Volkov et al., 2014], where the branches do not self-cross, but tend to 
touch each other at the origin of the coordinates system, i.e. where l=lo and F=Fo for the curves in this 

study. This characteristic has been present in all the results regardless of the amplitude or frequency of the 

stimulation. Furthermore, the area bounded by each loop represents the energy dissipated in each cycle 
of lengthening and shortening. In some of the examples, the energy dissipated in the right loop is higher 

than that dissipated in the left loop, for a similar amount of work done on or by the muscle (lengthening 
or shortening).  This difference  in the  loop size  shows that  a higher  amount  of energy  is converted  into 

heat, meaning that the energy conversion to work is less efficient. It appears that the energy stored into 

the stretching muscle beyond optimal length can be used during subsequent shortening, making cyclical 
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movements, such as walking and running more economical than if this was not the case. 

 

In this study, two different amplitudes of the length change were evaluated, 5 and 3% lo. The observed 
force  response as a % Fo was independent  of the  amplitude.  In Figures  15 and 16 are  shown two  and 

four response cycles, respectively.  The hysteresis loops on the right of Figures 15b, 16a and 16b do not 
appear completely overlapped for the whole duration of the experiment. Particularly, in Figure 15b, the 

force produced in the second cycle (at the end of the stretch) was higher than that one in the first cycle, 

given that the force starting point for the second cycle was somehow higher than that from the start of the 
first period. This occurs as a result of muscle fibre stretching and being brought back to lo where it did 

not relax completely to Fo after a complete period of length change, but to a higher force value. Despite 
the force production differing between different single fibres, the force versus length relationship consisted 

of two hysteresis loops that tend to touch each other at the origin of the coordinate system. 
 

When the muscle single fibre was subjected to different input frequencies, the area of the loops increased 
as did the stimulation frequency by two or ten-fold (Figure 15). The change in response when the input 
frequency changed means that this system has rate dependent hysteresis. 

 

Hill’s macroscopic mathematical model was employed using the parameters listed in his paper and the 
same characteristic hysteresis loops are generated as those shown from experiment. Future research could 

focus on muscle fatigue, and the metabolic Huxley [Huxley, 1957] and macroscopic/metabolic Zahalak and 
Ma [Zahalak & Ma, 1990] mathematical models subject to periodic contractions. 

 

In conclusion, when a muscle single fibre is considered as a mechanical system and subjected to a pe- 

riodic input, the force vs length relationship showed hysteresis loops and the system was rate-dependent. 

These loops were reproducible both experimentally and with mathematical  modeling and the hysteresis 
observed in this study is not a pinched hysteresis, but is labeled here as kiss-and-go. Future research is 

expected to concentrate on other forms of hysteresis in muscle, and another potential avenue of research 
is in critical slowing down in muscle, where the return time of a disturbance back to a stable steady-state 

increases close to a bifurcation, see [Bardy et al., 1999] and [Alharbey et al., 2014], for example. 
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