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Abstract

In this paper, a Cartesian ghost-cell multigrid Poisson solver is pro-
posed for simulating incompressible fluid flows. The flow field is dis-
cretized efficiently on a rectangular mesh, in which the solid body is im-
mersed. A small number of ghost mesh cells and their symmetric image
cells are distributed in the vicinity of the solid boundary. Then Dirichlet
and Neumann boundary conditions can be implemented with the aid of
ghost and image cells. Chorin’s projection method is used for the coupling
of the velocity and pressure of the flows. Pointwise Gauss-Seidel iteration
is implemented to solve the pressure Poisson equation. To speed up the
convergence of the corresponding linear system, sub-level coarse meshes
embedded with ghost and image cells are also introduced and operated
in a V-cycle sequential. Several test cases including the classical ideal
incompressible flow, the lid driven cavity flow and the viscous flows past
a fixed/rotating cylinder are presented to demonstrate the accuracy and
efficiency of the current approach.

1 INTRODUCTION

In the research field of computational physics, Cartesian grid method is an
effective alternative to body-fitted structured and unstructured grid methods.
The advantages of this method include the grid generation being a simple task,
the superior property in implementing high order schemes as well as the lower
computational storage requirement [17, 18]. Furthermore, for the Cartesian grid
cases with the mesh skewness or distortion can be eliminated.

A significant difference between a Cartesian grid and a body-fitted grid is
that in the former the solid body is immersed in Cartesian grid cells [33], which
means the grid lines (or volume surfaces) will not generally align with the solid
boundaries. Unfortunately, this will cause difficulties in enforcing the boundary
conditions directly on the grid lines (or volume surfaces). This problem has been
addressed by many investigators, and great effort has been made to develop
effective methods to overcome this deficiency.[21, 22, 23, 17, 18, 24].

Generally, the methods developed for the treatment of the solid boundary
on a Cartesian grid can be divided into several categories including staircase
approximation, immersed boundary, cut cell and ghost cell methods.
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Staircase approximation method makes use of staircase-like steps, whose
edges are parallel to the grid lines of the regular grid, to handle the solid
boundaries. As this method is rather rough, geometric errors will inevitably
be introduced when dealing with curved boundaries [22, 25].

Immersed boundary method adds forcing terms to the governing equations,
and the boundary is represented by a discrete set of body or surfaces forces to
realize the boundary conditions. Its primary disadvantage is that the solution on
the immersed boundary is smeared out, which means a sharp fluid-to-boundary
interface cannot be resolved [24, 26].

Cut cell approach deals with the solid boundary as a sharp interface; bodies
are cut out of a background Cartesian mesh and cells that are partially or
completely cut are singled out for special treatment [22, 23]. By using this
approach the smearing of boundary can be successfully prevented, but it might
suffer significant stability and convergence problems when very small cut cells
present near the solid body [33, 34]. Several methods such as “multi-valued
dummy point” “the cell merging technique” and “rotated cells” are proposed
to alleviate the time step limitation associated with small cut cells. However,
these methods are rather complicated [17].

In order to avoid the stability problem caused by tiny-sized cut cells, a ghost
cell method is proposed by Dadone et al. for compressible flows [33] in which
only rectangular cells are used in the vicinity of a solid body. This method has
since been successfully applied to two- and three-dimensional inviscid transonic
flows [34, 32].

For solving viscous incompressible flows, the ghost cell method is also gaining
popularity in deal with the solid boundary conditions. Ding et al. [30] adopted
the ghost cell technique in a domain-free discretization method in which frac-
tional step pressure correction method is taken to iteratively solve the velocity
and pressure. Within the internal iterations, successive over relaxation (SOR)
is used to solve the pressure Poisson equation to enforce the divergence-free
condition for the velocity [30]. It is well known that finding the solution of
the Poisson equation is the most time-comsuming part for this type of incom-
pressible solver and a method with a quick convergence rate is essential for the
overall efficiency of the method. In this aspect, a simple and efficient scheme
like multigrid is highly desirable [29].

In this paper, a Cartesian mesh based ghost-cell multigrid Poisson solver
(GCMGPS) is proposed for solving incompressible flows. The base Cartesian
mesh is generated for the whole computational domain, and the solid body is
immersed in this grid. Within the solid body, a set of mesh cells near the
boundary is chosen and defined as ghost cells. Image cells which are sym-
metric to the ghost cells about the solid boundary are also introduced in the
fluid flow region. Solid boundary conditions including Dirichlet and Neumann
boundary conditions can then be implemented with the aid of ghost and image
cells. Consequently, a simple five-point finite difference discretization scheme
can be applied in the whole computaional domain. Chorin’s projection method
is adopted for the coupled solution of the velocity and pressure of incompressible
flows. Several levels of coarse meshes embedded with ghost and image cells are
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introduced to speed up the convergence rate of the pressure Poisson equation.
This paper is organized as follows. In Section 2, Cartesian ghost cell multi-

grid Poisson solver is described in detail. Then, Chorin’s projection method for
viscous incompressible flows is briefly discussed in Section 3. Numerical exam-
ples including ideal incompressible flow, lid driven cavity and viscous flows past
a fixed/rotating cylinder are presented in Section 4 to validate the proposed
method. Some conclusions are drawn in the last section.

2 GHOST-CELL MULTIGRID METHOD

In two-dimensional Cartesian coordinate system, the Poisson equation can be
written as

∂2φ

∂x2
+

∂2φ

∂y2
= f, φ ∈ Ω (1)

in which φ may represent the fluid flow pressure, velocity potential or other
physical variables, f is a source function and Ω is the computational domain.
On the boundary ∂Ω, φ usually needs to satisfy the Dirichlet boundary condition

φ = σ (2)

where σ is a prescribed function value, or Neumann boundary condition

∂φ

∂n
= 0 (3)

2.1 Ghost-cell boundary condition
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Figure 1: Ghost-cell treatment. (Black circle • represents the solid boundary
point.)

For arbitrary configurations, solid curved boundaries are usually not aligned
with Cartesian grid lines and therefore boundary conditions cannot be directly
implemented on them. This brings a drawback to the Cartesian grid based
method compared to the body-fitted meshes in which boundary conditions can
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satisfied in a straightforward way. In order to overcome this deficiency and to
avoid the complexity in other methods such as the cut cell approach, a ghost
cell method [25, 32, 29, 33, 34] is employed in the present work.

Figure 1 illustrates the essential idea of the ghost cell method for curved
boundaries. The base Cartesian grid is generated to cover the whole domain,
and the solid body is immersed in the rectangular cells. Before the start of
the numerical computation, all mesh points need to be classified into different
categories according to their relative positions to the solid boundary. All the
mesh points in the fluid region are defined as fluid points with mark = 1 while
all the mesh points inside a solid body are defined as solid points withmark = 0.
Within the second group, the mesh points belong to the cells which are patially
cut by the background Cartesian grid lines are defined as ghost cells (or ghost
points). In Figure 1, the open triangles represent the ghost points, the solid
triangles are their symmetric image points about the solid boundary. The black
dots are on the boundary and are at the centers between ghost and image points.
The distance from a ghost or image point to the solid boundary is indicated by
l.

For clearness, we use subscripts b, g and i to represent the solid boundary,
ghost and image points, respectively. Then the physical boundary condition for
φb can be transformed to the requirement of φg and φi. For simplicity, φb can
be treated as the average of φg and φi

φb =
1

2
(φg + φi) (4)

and the normal derivative of φ at the boundary can be calculated by

∂φb

∂n
=

φi − φg

2l
(5)

Using Taylor series analysis, it is not difficult to know that Eq. (4) and (5) have
the second order accuracy in term of l. For the Dirichlet boundary condition
φg can then be computed by

φg = 2φb − φi (6)

and for Neumann boundary condition it can calculated by

φg = φi − 2l
∂φb

∂n
(7)

The value of the image point φi can be obtained by a bilinear interpolation

φi = k1φ1 + k2φ2 + k3φ3 + k4φ4 (8)

where k1, k2, k3 and k4 are the interpolation coefficients, and they are given by














k1 = (x2 − xi)(y3 − yi)/S1234

k2 = (xi − x1)(y3 − yi)/S1234

k3 = (xi − x1)(yi − y1)/S1234

k4 = (x2 − xi)(yi − y1)/S1234

(9)

where S1234 is the area of the cell in which the image point lies.
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2.2 Multigrid Poisson solver

When simulating incompressible flows by fractional-step projection methods,
the solution of the pressure Poisson equation is needed to maintain the divergence-
free of the velocity field[1, 2]. As this is normally the most time-consuming part
of the computation it is crucial that an efficient scheme like multigrid method
is utilised [29].

Standard iterative methods including Jacobi, Gauss-Seidel (GS) and succes-
sive over-relaxation (SOR) are simple and easy to apply. In the context of ghost
cell methods, some researchers have used these techniques to solve the resultant
linear algebraic equations [30]. However, this type of methods has a tendency of
slow convergence which becomes more prominent when the mesh is refined [35].
It triggers off the necessity of applying multigrid method(MG) to speed up the
convergence. MG has been proved to be effective in terms of solving problems
with N unknowns with O(N) work and storage [38, 39] and has been adopted
in this study.

The basic theory of MG is to eliminate the low-frequency and high-frequency
parts of numerical errors at the same pace. On the fine mesh, high-frequency
errors are removed rapidly, but the low-frequency part is rather stiff which re-
duces slowly even after many iterations. MG successively adopts several levels
of coarse meshes to further expunge the low frequencies. The solution on the
coarse mesh is transferred back to improve the solution on the fine mesh. Usu-
ally, these two steps are called restriction and prolongation (or correction) [35].
As more than two levels of grid are used in the present work, we apply a classical
“V-cycle” to recursively solve linear system from the finest mesh to the coarsest
mesh then from the coarsest to the finest. A brief description of MG is given as
follows.

For simplicity, Eq. (1) is written into a simplified form

Lφ = f (10)

where L is the Laplace operator. Using subscript h to indicate the fine mesh,
then the solution to the linear system on the fine mesh can be expressed by

φh = L
−1

h fh (11)

Supposing φ̃h is the approximate solution and eh is the error, the residual of
Eq. (10) on the fine mesh can be defined as

rh = fh − Lhφ̃h = fh − Lh (φh − eh) (12)

Then it is restricted to the coarse mesh denoted by subscript H

rH = I
H
h rh (13)

On the coarse mesh, the following equation is required to be accurately solved

LHeH = rH (14)
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The error on the fine mesh is then approximated by an extrapolation

eh = I
h
HeH (15)

Consequently, the approximate solution on the fine mesh can be improved by

φ∗

h = φ̃h + eh (16)

NE

SW SE

NW

Figure 2: Restriction and prolongation between fine and coarse meshes. (The
open circles are fine mesh cell centers, the solid symbol is a coarse mesh cell
center.)

For Poisson equations, IH
h and Ih

H are two linear extrapolation functions
designed for restriction and prolongation, respectively. If the physical variable φ
is stored at the mesh cell center, then the restriction function can be constructed
by a volume (or area) average

rH =
rh,NW · Sh,NW + rh,NE · Sh,NE + rh,SW · Sh,SW + rh,SE · Sh,SE

Sh,NW + Sh,NE + Sh,SW + Sh,SE

(17)

and the prolongation is even more simple

eh = eH (18)

These procedures are clearly shown in Figure 2. The open circles represent
the fine mesh cell centers, and the subscripts NW, NE, SW and SE are used
to denote these centers. The solid dot that is slightly bigger than the open
circles displays a cell center on the coarse mesh. A segment of the boundary
is depicted by the solid curve, and the gray part surrounded by this curve is a
portion of the solid body. For conciseness, only a general explanation of MG
is presented in this paper, and more details of the method can be found in the
book of Hackbush[35].

For simple configurations that align with Cartesian grid, MG is easy to
realize because the coarse mesh can be well handled by blanking the cells located
in the solid body [12]. However for curved boundaries care should be exercised
as as simple blanking will violate boundary conditions. In this context, ghost
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Figure 3: Ghost and image cells on fine and coarse meshes. (Open triangles are
ghost cells and solid triangles are image cells)

cells and their images are also required on coarse meshes and this has been
clearly shown in Figure 3. The left figure exhibits the ghost and image cells on
a fine mesh, and the right figure displays the ones on a coarse mesh. In this
figure, the open triangles are ghost cells, and their images are represented by
solid triangles. On the coarse mesh, the boundary condition is implemented by
using the same method described in section 2.1. If there are several levels of
coarse meshes then the corresponding ghost and image cells are needed for each
level to satisfy the boundary conditions.

3 PROJECTION METHOD

The advective form of incompressible Navier-Stoke equations are given by

{

∇ · ~V = 0
∂~V
∂t

+ ~V · ∇~V = −∇p+ 1

Re
∇2~V

(19)

where ~V is the velocity vector, p is the pressure and Re represents the Reynolds
number defined as

Re =
ρUD

µ
(20)

in which ρ is density, U is the free-stream velocity, D is the characteristic length
or diameter of the solid body and µ is the dynamic viscosity.

As the density of the incompressible fluid flow is a constant, its time deriva-
tive in the continuity equation vanishes. Consequently, the corresponding gov-
erning equations are not hyperbolic and straightforward time-marching meth-
ods designed for compressible flows are not suitable any more. For this reason,
Chorin’s projection method [1, 2] is applied in the present work. A brief de-
scription of this method is given as follows.

Firstly, an intermediate velocity vector field ~V ∗ is calculated by ignoring the
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pressure gradient term in the momentum equation

~V ∗ − ~V n

∆t
= −(~V n

· ∇)~V n +
1

Re
∇

2~V n (21)

where ~V n is the velocity at the nth time level. In the next step, the velocity at
the new time step will be computed by taking the pressure gradient into account

~V n+1 − ~V ∗

∆t
= −∇pn+1 (22)

Rewriting the above equation for the velocity at (n+ 1)th time level, we have

~V n+1 = ~V ∗

−∆t∇pn+1 (23)

Computing the right-hand side of the above equation requires a knowledge of
the pressure at the (n+1)th time step. Taking the divergence of equation (23),
then we have the pressure Poisson equation

∇
2pn+1 =

1

∆t

(

∇ · ~V ∗

−∇ · ~V n+1

)

(24)

The velocity at this time step is required to satisfy the divergence-free (or
solenoidal) condition

∇ · ~V n+1 = 0 (25)

Therefore, equation (24) is simplified as

∇
2pn+1 =

1

∆t
∇ · ~V ∗ (26)

This equation is solved by the Cartesian ghost-cell Multigrid method described
in section 2. Both the advective and viscous terms in Eq. (21) are discretized
by central difference scheme.

U image

V image

P image

P ghost

U ghost

V ghost

Figure 4: Boundary treatment on staggered grid.
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On the solid body, Neumann boundary condition for pressure is imple-
mented, and no-slip condition for the velocity is also required

~V = ~Vb = ub
~i+ vb~j (27)

In order to implement the no-slip condition, ghost cells for u and v components
are also needed. For a collocated grid where the information of u and v are stored
at the same place as p, only one group of ghost cells are needed. However,
a collocated grid arrangement cannot guarantee strong coupling between the
velocities and the pressure. To suppress possible oscillations in pressure and
velocity fields [37], a fully staggered grid is used in the present work. Therefore,
we need to introduce ghost and image cells for u, v and p separately as shown
in Figure 4. The pressure ghost cells and their image cells are depicted by open
circles and bullets respectively. For the velocity component u, the symbol ⊲
and ◮ represent the ghost and image cells. For v, the ghost and image cells
are displayed by △ and N. Having defined the ghost and image cells for the
velocity, its components at ghost cells are given by

{

ug = 2ub − ui

vg = 2vb − vi
(28)

where ui and vi are obtained by the interpolation scheme described by formula
(8).

4 NUMERICAL RESULTS

In order to validate the proposed GCMGPS approach, in this paper the ideal
incompressible flow over a cylinder governed by the Laplace equation is firstly
chosen as a benchmark test. Then the method is extended for the solution
of the incompressible Navier-Stokes equation with the test cases including the
lid driven cavity flow and flows over a fixed/rotating circular cylinder at low
Reynolds number.

4.1 Ideal incompressible flow

For Eq. (1), supposing that φ is the velocity potential and f is zero, we have the
Laplace equation which can be used to describe the incompressible irrotational
flow around a circular cylinder. The exact solution of φ for this flow problem is
given by

φ(r, θ) = U

(

r +
a2

r

)

cos θ (29)

where U is the speed of free stream, a is the radius of the cylinder [40].
In the present work, the computaional domain chosen for this problem is a

square with side length of 6, the radius of the cylinder is a = 0.5, the speed of
free stream is U = 1. On the farfield boundaries of the domain, φ is prescribed
according to Eq. (29). The multigrid ghost cell method has been used to satisfy
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the Neumann boundary condition at the solid surface. Five levels of uniform
meshes are utilized to cover the flow field. The number of the mesh points on
the finest grid is 256× 256, and the number of corresponding ghost cells around
the cylinder is 120. For the coarsest level, the number of mesh points is 16×16,
and the number of ghost cells is 4. In the present work, we apply GS as the
basic smooth iterator.

Figure 5: Velocity potential contours in the flow field. (Left: exact, Right:
numerical)

Figure 5 shows the velocity potential contours. The left figure is for the
exact solution and the right figure represents the numerical result. The range
of the velocity potential values for the plotted contours is from -2.9 to 2.9. It is
clear from this figure that the flow pattern from the numerical resutls is nearly
the same as that of the exact solution. In order to examine the accuracy of
the method quantitively, a comparison of φ between numerical result and exact
solution is given in Figure 6 and 7. Figure 6 shows φ around the surface of the
cylinder. Figure 7 presents the value of φ along the horizontal line across the
cylinder center. The region from x = −0.5 to x = 0.5 is located in the solid
body. Obviously, a good agreement with the exact solution is achieved in the
fluid flow region.

The convergence histories for both the GS and the GCMGPS methods are
shown in Figure 8 whewe the residual defined by L2 norm of the errors has been
used as the indicator. It can be seen from the figure that the convergence rate of
the Poisson solver with ghost-cell multilevel grids is much faster than the single
level GS solver. For the GS method, after initial several dozens of iterations, the
convergence rate will slow down substantially while for the GCMGPS method,
it can maintain a nearly constant rate convergence throughout the computation.
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Figure 6: The value of φ on the cylinder.
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Figure 7: The value of φ along the horizontal line across the cylinder center.
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Figure 8: Convergence history of residual for ideal incompressible flow.
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Figure 9: Geometry and boundary conditions of lid driven cavity (L = 1).
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4.2 Lid driven cavity

The lid driven cavity flow, due to its simplicity in geometry, is a popular test case
for many researchers in CFD to validate their new schemes. The computational
domain is a square box with a side length of one unit as shown in Figure 9. The
top boundary of the domain is moving along x direction with a constant speed
u = 1 and the other three boundaries are fixed,

The Reynolds number chosen for this work is Re = 5, 000. A uniform mesh
with 128 × 128 points is used to discretize the flow field. To speed up the
convergence of pressure Poisson equation, six levels of coarsening meshes are
incorporated into the multigrid V-cycle process. For this test case as all the
boundaries of the cavity align with the grid lines, the implementation of the
boundary conditions using the ghost cell method is straightforward. Despite
this, it can still be used to test the accuracy and effectiveness of the multigrid
Poisson solver when combined with the projection method.

The calculated flow pattern in terms of streamlines is shown on the left
of Figure 10 from which it can be seen that at the chosen Reynolds number
vortices with different sizes are present in the flow field. A close-up view of
the two tiny secondary vortices on either side of the two bottom corners is
shown in Figure 11, which demonstrates the capability of the current approach
in capturing the small flow structures. On the right of Figure 10, the velocity
profiles for its u component along the vertical centre line (x = 0.5) and its v
component along the horizontal centre line (y = 0.5) are compared between
the current numerical result (solid line) and that of Ghia (depicted by ◦) [13]
showing a very good agreement.

U
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present

Figure 10: Lid driven cavity. Left: streamline; Right: center-line velocity pro-
files of u and v (Re = 5000).
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Figure 11: Close view of streamline pattern in the cavity (Re = 5000). Left:
bottom-left corner; Right: bottom-right corner.
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Figure 12: Geometry for viscous flows past a circular cylinder.

14



4.3 Flow past a fixed cylinder

To test the capability of the present method to deal with flow problems with
curved boundaries, the incompressible viscous flows around a fixed circular cylin-
der at the selected low Reynolds numbers of 20, 40 and 100 are then calculated.

Figure 12 shows the geometries of the computational domain and the circular
cylinder. The diameter of the cylinder is D = 1 and the length and the height
of the square-shaped domain are both 30. At the left boundary, the free stream
inflow condition is specified with a constant velocity of u = 1, and at the right
boundary an outflow boundary is implemented. The top and bottom boundaries
are impermeable [24]. A non-uniform mesh with 256 × 256 points is utilized
to cover the flow field. The cells with a minimum size of ∆x = ∆y = 0.03
are located around the surface the cylinder. To implement the solid boundary
condition, 94 pressure ghost cells, 92 u ghost cells and 92 v ghost cells are
identified inside the solid body. The same number of corresponding image cells
are distributed around the cylinder for this level of the mesh. In order to speed
up the convergence of pressure Poisson equation, four levels of coarser meshes
are also introduced. On the coarsest mesh, the number of ghost and image cells
are both 4.

For the Reynolds number of 20 and 40, the streamline patterns are shown
in Figure 13 in which the two symmetric vortices behind the cylinder can be
clearly seen for each Reynolds number and also as expected it can be found
that the wake length Lw increases with Reynolds number. Figure 14 displays
the pressure contours in the flow filed showing a smooth pressure fields. To
indicate the accuracy of the current approach, the hydrodynamic parameters
calculated including the drag coefficient and the length of wake are compared
with the results from other researchers as listed in Table 1 from which it can be
seen that our results agree reasonably well with the cited work [14, 26, 3, 30, 24].

Table 1: Hydrodynamic parameters of flows past a fixed cylinder

Contribution Re = 20 Re = 40 Re = 100
CD Lw CD Lw CD St

Tritton [14] 2.08 − 1.59 − 1.267 0.164
Hartmann [26] 2.043 0.972 1.535 2.240 1.358 0.164
Fornberg [3] 2.00 0.91 1.50 2.27 − −

Ding [30] 2.14 0.94 1.58 2.32 1.391 0.166
Chung [24] 2.05 0.96 1.54 2.30 1.392 0.172
Zhang [7] − − − − 1.425 0.173
Present 2.08 0.92 1.56 2.32 1.410 0.167

For the case of Re = 100, the flow is not stable any more and any perturba-
tion in the flow will cause asymmetry in the wake region which will eventually
trigger the process of vortex shedding. The computed mean drag from the cur-
rent method is CD = 1.410 which is close to other results, see Table 1. The
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Figure 13: Streamline pattern of steady flows over a fixed cylinder (Top: Re =
20; Bottom: Re = 40).
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Figure 14: Pressure contours in the flow filed (Left: Re = 20; Right: Re = 40).
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Strouhal number defined as St = f · D/U is used to measure the oscillation
frequency in the wake region and apparently the current result of St = 0.167 is
in a good agreement with those from the cited works . The instantaneous flow
patterns for a full cycle are shown in Figure 15. The left column displays the
streamlines, and the right column exhibits the vorticity contours. The vortex
streets formed behind the cylinder are clearly shown in this figure.

t=T × 0/3

t = T × 0/3

t=T × 1/3

t = T × 1/3

t=T × 2/3

t = T × 2/3

t=T × 3/3

t = T × 3/3

Figure 15: Instantaneous flow patterns in a full cycle for Re = 100 (Left: stream-
line; Right: vorticity).

4.4 Flow past a rotating cylinder

Incompressible viscous flow past a rotating cylinder has been the subject of theo-
retical and experimental study for the last several decades due to its importance
in the application area of flow control [15, 16]. Although the center position of
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the cylinder is fixed, this problem is more complicated than flow past a station-
ary cylinder, as the tangential velocity at the cylinder surface is no longer zero.
In this study, it has therefore been chosen to test the capability of the proposed
method to deal with flow problems with non-stationary boundaries.
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Figure 16: Comparison of lift coefficients (Re = 20).

Table 2: Lift and drag coefficients of flows past a rotating cylinder

Contribution CL CD

α = 0.1 α = 0.5 α = 1 α = 2 α = 0.1 α = 0.5 α = 1 α = 2
Ingham et al. [15] 0.254 1.283 2.617 5.719 1.995 1.973 1.925 1.627
Badr et al. [16] 0.276 1.390 2.790 − 1.990 1.970 1.910 −

Chung [24] 0.258 − 2.629 5.507 2.043 − 1.888 1.361
Present 0.257 1.286 2.597 5.446 1.990 1.938 1.801 1.259

The Reynolds number for the selected test case is 20 and the other dimen-
sionless parameter α for measuring the rotation speed will be used and is defined
as

α =
ωoD

2U
(30)

where ωo is the angular velocity of the rotating cylinder, D is the diameter and
U is the free stream velocity. Four test cases with a different rotation speed
from α = 0.1 to α = 2 are calculated. The corresponding lift coefficients are
depicted in Figure 16. The dashed red line is the result of Ingham [15], the solid
blue line with symbol represents the work of Badr [16], the dashed green line
is the result of Chung [24] and the solid black line is from the present work.
It is clearly shown that the lift coefficient CL changes almost linearly with the
value of α. A detailed comparison of CL and CD between the present work and
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Figure 17: Streamline of flows past a rotating cylinder (Re = 20).
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other reference results are given in Table 2. The streamline patterns shown in
Figure 17 also agree well with Chung’s results [24] (not shown here).

5 CONCLUSIONS

In this paper, an efficient Cartesian ghost-cell multigrid Poisson solver is firstly
presented. This is then combined with a central finite difference scheme to solve
the incompressible Navier-Stokes equations on a rectangular staggered grid us-
ing the projection method. With the aid of the ghost cells and their image cells,
the boundary conditions at the solid surfaces can be implemented in a straight-
forward manner. This greatly simplifies the process of both grid generation
and the implementation of high order difference schemes. The accuracy and
efficiency of the method have been demonstrated initially for the ideal flow past
a circular cylinder and then for some test cases of the incompressible viscous
flows such as lid driven cavity flow and the flow around both a stationary and a
rotating circular cylinder. Future work will include the extension of the method
for the solution of the flow problems involving more complex geometries and
arbitrary movements.
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