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Abstract: FTA® paper can be used to protect a variety of biological samples prior to analysis,
facilitating ease-of-transport to laboratories or long-term archive storage. The use of FTA® paper as
a solid phase eradicates the need to elute the nucleic acids from the matrix prior to DNA amplification,
enabling both DNA purification and polymerase chain reaction (PCR)-based DNA amplification
to be performed in a single chamber on the microfluidic device. A disc of FTA® paper, containing
a biological sample, was placed within the microfluidic device on top of wax-encapsulated DNA
amplification reagents. The disc containing the biological sample was then cleaned up using
Tris-EDTA (TE) buffer, which was passed over the disc, via electro-osmotic flow, in order to remove
any potential inhibitors of downstream processes. DNA amplification was successfully performed
(from buccal cells, whole blood and semen) using a Peltier thermal cycling system, whereupon the
stored PCR reagents were released during the initial denaturing step due to the wax barrier melting
between the FTA® disc and PCR reagents. Such a system offers advantages in terms of a simple
sample introduction interface and the ability to process archived samples in an integrated microfluidic
environment with minimal risk of contamination.
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1. Introduction

The integration of nucleic acid purification and amplification techniques is often at the core
of genetic analysis in microfluidic systems. The development of partially- and fully-integrated
microfluidic systems for genetic analysis is detailed in excellent reviews by Park et al. [1] and
Njoroge et al. [2]. One of the more challenging aspects of integration, which has still not been fully
addressed, is the development of robust sample introduction methods to enable the easy introduction
of biological samples, i.e., the real-world interface.

Biological specimens show great variability with regards to composition and informative value.
For example, clinical samples, such as urine, which have a large volume, but low target analyte
concentration, may be able to provide limited information. On the other hand, forensic blood specimens
where the amount of sample available can be extremely limited (and any nucleic acids present may be
degraded) can provide information on blood typing and DNA profiling, as well as overall blood pattern
analysis. It is therefore important that any real-world interface is able to accommodate a wide range of
samples with maximum efficiency. Pre-concentration of nucleic acids from large volume samples is
commonly achieved through the use of solid-phase extraction matrices [3]. Alternative methods for
large volume sample processing, up to 2 mL, to overcome the macro-micro interface include centrifugal
devices for processing whole blood samples in order to separate out the plasma fraction [4] and digital
microfluidic systems that use magnetic beads within small droplets to capture nucleic acids [5].
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Purification methods used to prepare nucleic acids from biological matrices must be compatible
with downstream processes, such as a polymerase chain reaction (PCR), if they are to be incorporated
into truly integrative microfluidic systems. Challenges can include the confinement of any solid-phase
matrix used, the carryover of reagents and the accuracy of timings for reagent movement [6]. In order to
overcome these challenges, there has been a move away from more traditional silica-based solid-phase
extraction protocols to a range of innovative solutions. Magnetic beads, for example, can be used to
capture nucleic acids or specific target cell types, which, once captured, can be manipulated around the
microfluidic device, through different reagents, by an external magnet [7,8]. Alternatively, the magnetic
beads can be retained within a single chamber and the different reagent solutions flowed over the
reversibly immobilised solid phase [9]. Kim et al. [10] demonstrated the use of a nanoporous aluminium
oxide membrane for nucleic acid extraction, which makes use of more PCR-compatible chemicals
allowing DNA extraction and amplification to be performed in a single chamber. Alternatively, nucleic
acids eluted from a solid phase can be mixed with a flow of concentrated PCR reagent solution, but
this mixing of two flow streams requires a well-characterised system in order to obtain the optimum
elution fraction [11]. Electro-osmotic pumping has also been used to facilitate the integration of DNA
extraction and amplification in a gel-based environment [12].

FTA® paper (Whatman, Maidstone, UK) is a medium onto which a wide range of biological
samples can be stored. It contains chemicals for cell lysis and protein denaturation and also protects any
nucleic acids from oxidative and UV damage, as the paper contains a free radical scavenger [13]. Thus,
it is an ideal medium for long-term storage and/or transport of biological samples. The use of FTA®

paper allows nucleic acids to be captured on a supporting membrane from which they can be directly
amplified without the need for elution [14]. A limited number of studies have demonstrated the use of
FTA® paper within microfluidic devices. Such a methodology has successfully been applied to the
detection of HIV-1 from oral fluids using the FTA® paper in filtration mode to accommodate relatively
large sample volumes prior to reverse transcription loop-mediated isothermal amplification [15].
Gan and colleagues demonstrated that untreated filter paper could be used as an extraction matrix
within a microfluidic system. The filter paper was used to capture a range of biological samples,
including whole blood left to dry onto FTA® paper, whereupon cell lysis was achieved using 10 mM
sodium hydroxide followed by neutralisation with 1 mM hydrochloric acid, then water. The filter
paper, rather than the FTA® paper itself, was then subject to direct PCR amplification both on- and
off-chip [16]. A sample in-answer out system for integrated genetic analysis has also been proposed,
which is able to take a 100-mm2 piece of FTA® paper loaded with sample in a 1-mL syringe and transfer
the biological sample directly onto the microfluidic device where complete analysis is performed [17].

The ability to store reagents within microfluidic devices offers numerous advantages, including
a reduction in the complexity of the operational process, more compatibility with portable systems and
a decreased risk of contamination. Reagent storage, particularly for molecular biology applications,
has been demonstrated in liquid form, for example through the incorporation of stick [18] or blister
packs [19], through encapsulation within gel matrices [12] or water-soluble nanofibers [20] and as
freeze-dried reagents [21].

The work presented here exploits the direct use of FTA® paper as both a means of simple sample
introduction and as a conduit for the analysis of archived biological samples. The FTA® discs provide
a matrix for DNA purification in the microfluidic device, with the washing solutions transported
using electro-osmotic flow (EOF). This was combined with on-chip storage of PCR reagents, by wax
encapsulation, for integrated processing of archived biological samples by DNA amplification.

2. Materials and Methods

2.1. Manufacture and Functionalisation of Microfluidic Devices

Glass microfluidic devices were produced using standard photolithography and wet-etching
techniques to produce the design shown in Figure 1a [22]. The channels in the 1-mm base plate were
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etched to a depth of 100 µm and the central chamber drilled to a total depth of 600 µm. The base plate
was then thermally bonded to a 3-mm top plate. Access ports (1.5 mm diameter) were drilled in the
top plate to accommodate reagents and electrodes for EOF. The central chamber for DNA extraction
and amplification has a tapered hole (from 3 mm down to 2 mm) in the top plate to allow insertion of
the FTA® paper disc using a Micro-Punch (Harris, Maidstone, UK).

Micromachines 2016, 7, 119 3 of 9 

 

etched to a depth of 100 µm and the central chamber drilled to a total depth of 600 µm. The base plate 
was then thermally bonded to a 3-mm top plate. Access ports (1.5 mm diameter) were drilled in the 
top plate to accommodate reagents and electrodes for EOF. The central chamber for DNA extraction 
and amplification has a tapered hole (from 3 mm down to 2 mm) in the top plate to allow insertion 
of the FTA® paper disc using a Micro-Punch (Harris, Maidstone, UK). 

Silanisation of the PCR chamber was performed in order to prevent DNA polymerase 
adsorption, which would otherwise lead to PCR inhibition [23]. A 150 mM solution of  
trichloro-(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich, Dorset, UK) in 2,2,4-trimethylpentane 
(Fisher Scientific, Loughborough, UK) was incubated in the PCR chamber for 10 min. Solutions of  
2,2,4-trimethylpentane, acetone and distilled water were then sequentially used to wash the  
device [24]. The microfluidic device was then stored in a desiccated environment until required. 

 
Figure 1. (a) Photograph showing the design of the microfluidic device used to perform integrated 
DNA purification and amplification experiments. The buffer wells are connected to the central 
chamber via 250-µm channels. (b) Schematic top-view showing the location of the channels, central 
chamber and reservoirs at the end of each channel. The dashed red line also indicates the cross-section 
view though which (c) occurs. (c) Schematic cross-section showing how the FTA® paper discs are 
placed in the central chamber on top of a layer of wax-encapsulated PCR reagents. 

2.2. Sample Preparation 

Buccal samples were collected using Omni Swabs (Whatman), which were scrapped along the 
inside cheek of healthy volunteers. Each sheet of FTA® paper contains four circular outlines printed 
directly on the paper as a guide to show where the biological sample should be added to the paper. 
For swab samples, the swab head was pressed directly onto the FTA® paper using three  
side-to-side motions to deposit the sample. Whole blood and semen samples were obtained from 
healthy volunteers. For liquid samples, a total of 40 µL was pipetted onto the printed circle area of 
the FTA® paper. During the analysis of semen samples, the use of 1 M dithiothreitol (DTT)  
(Sigma-Aldrich) was investigated as a reducing agent to increase sperm cell lysis. All samples were 
allowed to air dry for a minimum of 3 h before being placed in a desiccated storage environment until 
required. 

2.3. DNA Purification Procedure 

The proprietary chemicals, including a chaotropic salt, impregnated into FTA® paper have 
inhibitory effects on the DNA amplification processes and so require removal prior to  
downstream analysis [13]. 

2.3.1. Conventional Method 

A 2-mm disc of FTA® paper was removed from the prepared samples using a Micro-Punch 
(Harris) and added to a tube containing 500 µL of sterile water. Samples were then pulse vortexed 3 
times for a total of 5 s before the disc was removed and ready for direct amplification. 

Figure 1. (a) Photograph showing the design of the microfluidic device used to perform integrated
DNA purification and amplification experiments. The buffer wells are connected to the central chamber
via 250-µm channels; (b) Schematic top-view showing the location of the channels, central chamber
and reservoirs at the end of each channel. The dashed red line also indicates the cross-section view
though which (c) occurs; (c) Schematic cross-section showing how the FTA® paper discs are placed in
the central chamber on top of a layer of wax-encapsulated PCR reagents.

Silanisation of the PCR chamber was performed in order to prevent DNA polymerase
adsorption, which would otherwise lead to PCR inhibition [23]. A 150 mM solution of
trichloro-(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich, Dorset, UK) in 2,2,4-trimethylpentane
(Fisher Scientific, Loughborough, UK) was incubated in the PCR chamber for 10 min. Solutions of
2,2,4-trimethylpentane, acetone and distilled water were then sequentially used to wash the device [24].
The microfluidic device was then stored in a desiccated environment until required.

2.2. Sample Preparation

Buccal samples were collected using Omni Swabs (Whatman), which were scrapped along
the inside cheek of healthy volunteers. Each sheet of FTA® paper contains four circular outlines
printed directly on the paper as a guide to show where the biological sample should be added
to the paper. For swab samples, the swab head was pressed directly onto the FTA® paper using
three side-to-side motions to deposit the sample. Whole blood and semen samples were obtained from
healthy volunteers. For liquid samples, a total of 40 µL was pipetted onto the printed circle area of the
FTA® paper. During the analysis of semen samples, the use of 1 M dithiothreitol (DTT) (Sigma-Aldrich)
was investigated as a reducing agent to increase sperm cell lysis. All samples were allowed to air dry
for a minimum of 3 h before being placed in a desiccated storage environment until required.

2.3. DNA Purification Procedure

The proprietary chemicals, including a chaotropic salt, impregnated into FTA® paper have
inhibitory effects on the DNA amplification processes and so require removal prior to downstream
analysis [13].
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2.3.1. Conventional Method

A 2-mm disc of FTA® paper was removed from the prepared samples using a Micro-Punch
(Harris) and added to a tube containing 500 µL of sterile water. Samples were then pulse vortexed
3 times for a total of 5 s before the disc was removed and ready for direct amplification.

2.3.2. Microfluidic Method

The etched channels and chambers were filled with Tris-EDTA (TE) buffer (10 mM Tris
(Sigma-Aldrich), 0.1 mM ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich), adjusted to pH 8.0).
A 2-mm disc of FTA® paper was removed from the prepared samples and placed within the central
chamber of the microfluidic device. Platinum electrodes, connected to an external Paragon 3B Power
Supply Unit (Kingfield Electronics, Chesterfield, UK), were then placed into the reagent and waste
wells. Purification was achieved through EOF of the TE buffer over the FTA® paper, using an applied
voltage of between 50 and 150 Vcm´1.

2.4. DNA Quantification

DNA quantification was performed on a Multiskan™ GO Microplate Spectrophotometer
(Thermo Scientific, Cramlington, UK) according to the manufacturer’s instructions.

2.5. DNA Amplification Procedure

DNA amplification was carried out using the following PCR reagents: 1ˆ GoTaq® buffer,
2 mM MgCl2, 1 unit GoTaq® HotStart DNA polymerase (Promega, Southampton, UK), 10 mg¨ mL´1

bovine serum albumin (NEB Inc., Hitchin, UK), 0.01% (w/v) poly(vinylpyrrolidone), 0.1% (v/v)
Tween-20 (Sigma-Aldrich), 200 µM each deoxyribonucleotide triphosphates (Bioline, London, UK)
and 0.1 µM D21 S11 forward (51-TGTATTAGTCAATGTTCTCCAGAGAC-31) and reverse primers
(51-ATATGTGAGTCAATTCCC-CAAG-31) (Eurofins MWG Operon, Regensburg, Germany) [25].
D21 S11 is an example short tandem repeat locus used in a range of forensic DNA profiling kits, such as
ESI 17 (Promega). It has a wide allele range (12–41.2) and therefore is a powerful tool for discrimination
between individuals [26]. For real-time quantitative PCR (qPCR), PCR products were detected using
SensiFAST™ SYBR Lo-ROX Mix (Bioline), an alternative HotStart DNA polymerase containing SYBR®

Green I as the DNA intercalating dye and ROX as an optional passive reference standard.
In order to facilitate PCR reagent storage on the microfluidic device, 1.5 µL of a 10ˆ concentrated

PCR reagent solution was added to the recess in the central chamber, enabling the correct working
concentrations to be achieved upon release and mixing with the TE buffer. The PCR reagents were
then covered in a thin layer, approximately 150 µm, of low melting temperature (35–37 ˝C) eicosane
wax (Sigma-Aldrich). The channels and chambers of the microfluidic device were then filled with
liquid reagents and the FTA® disc (see the DNA purification procedure and Figure 1c).

Thermal cycling was performed using a thermoelectric Peltier element, which provided both the
heating and cooling required. The following program was used: initial denaturation at 94 ˝C for 5 min,
35 cycles of 94 ˝C for 30 s, 60 ˝C for 30 s and 72 ˝C for 30 s, with a final extension step of 60 ˝C for 7 min.
Control PCR samples were also run on a Q-cycler 96 thermal cycler (Hain Lifesciences Ltd., Byfleet, UK)
or a Mx3000P qPCR system (Agilent Technologies, Edinburgh, UK) for DNA quantification using the
same thermal cycling parameters. All amplified DNA samples were analysed off-chip using standard
gel electrophoresis techniques.

3. Results and Discussion

3.1. Optimisation of Electro-Osmotic Movement

The feasibility of manipulating the necessary reagents for DNA purification using EOF was
demonstrated. The average mobility due to EOF for TE buffer was 1.1 ˆ 10´5cm2V´1s´1 (Figure 2).
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Figure 2. Graph showing the EOF velocity of the TE buffer used in the DNA purification process.
Error bars represent the standard deviation of the triplicate analysis performed on three separate
microfluidic devices.

Optimisation of the applied voltage was necessary to ensure that potential PCR inhibitors were
successfully removed from the FTA® paper, but that the DNA remained in place. Voltages ranging
from 50 to 150 Vcm´1 were tested (Figure 3), with 100 Vcm´1 producing significantly better results in
terms of PCR product intensity following amplification, indicative of a greater quantity/quality of the
starting template (p < 0.001, one-way analysis of variance (ANOVA) and confirmed using Tukey’s post
hoc test, 95% confidence interval).
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Figure 3. PCR product intensity compared to the voltage applied during the purification procedure on
the microfluidic device (n = 3). Peak area refers to the band intensity/peak area of the PCR products on
the gel. Conventional off-chip positive and negative controls produced peak areas of 4768 (˘780) and
93 (˘93), respectively. Error bars represent the standard deviation from triplicate analysis.

In order to establish the efficiency of the microfluidic process, quantification using qPCR
was performed on FTA® paper discs, which had been spiked with 25 ng of pre-purified DNA
(buccal cells extracted using a QIAamp DNA Micro Kit (Qiagen, Manchester, UK), quantified using
a Multiskan™ GO Microplate Spectrophotometer (Thermo Scientific)) and subjected to different
voltages. In addition, samples were also collected from the anode and cathode wells to check for
movement of DNA to evaluate if the use of EOF, at different applied voltages, results in any loss of
DNA from the FTA® paper (Table 1). The results confirm the initial results, which show 100 Vcm´1 to
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be optimum. It is hypothesised that at the lower voltages, DNA amplification efficiency is reduced
due to the remaining presence of some inhibitors, while at the higher voltages, DNA is being lost from
the FTA® paper due to the strong attraction to the anode.

Table 1. Results showing the amounts of qPCR products formed as a percentage of the original
template DNA added, which are amplified from different locations (FTA® paper disc, anode and
cathode reservoirs) when FTA® discs were subjected to a range of voltages for DNA purification on
microfluidic devices.

Applied Voltage (Vcm´1) 50 75 100 125 150

FTA® paper 77.8% 83.8% 87.3% 42.9% 29.8%
Anode - - - 17.3% 26.8%

Cathode - - - - -

“-“ Indicates no DNA was detected. Negative controls were also performed and produced a null (-) result.

3.2. Integrated DNA Purification and Amplification

Successful encapsulation of concentrated PCR reagents enabled both DNA purification and
amplification to be performed in a single chamber on the microfluidic device. Concentrated PCR
reagents were located in the recess of the central chamber encapsulated under a layer of eicosane
(optimum 30% v/v; see Electronic Supplementary Information (ESI) Figure S1 for more details).
The FTA® disc was placed on top of the wax layer, in plane with the microfluidic channels, allowing
washing of the FTA® disc with TE buffer. Following DNA purification using the optimized parameters,
PCR reagents were released during the initial denaturing step due to melting of the eicosane layer,
leading to the dissolution of the DNA amplification reagents in the TE buffer. PCR products were
analysed off-chip by capillary gel electrophoresis, which confirmed that successful DNA amplification
had taken place, showing PCR products at 223 and 227 bp, within the expected range of alleles for the
D21 S11 locus (see Figure S2, ESI).

3.3. Analysis of Different Sample Types

Buccal swabs, semen and blood samples represent some of the most commonly-encountered
biological matrices in clinical or forensic settings and have different properties that any purification
system needs to be able to handle prior to genetic analysis. DNA amplification was readily achieved
from buccal swabs and whole blood samples, but not from semen samples (see ESI, Figures S3
and S4). In order to achieve maximum results from the semen samples, additional treatment with
dithiothreitol (DTT) is required to reduce the large number of disulphide bonds present in the sperm
cell membrane [27]. A range of treatment options were tested, and the order in which DTT was added
was found to affect how efficient sperm cell lysis was. Pre-treating the FTA® paper with 1 M DTT prior
to sample addition facilitated the release of significantly more DNA from the semen sample (p < 0.001,
one-way ANOVA confirmed using Tukey’s post hoc test, 95% confidence interval), as well as being the
simplest to implement operationally (Figure 4 and Figure S5 (ESI)).
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conditions for disulphide bond reduction (n = 3). A range of treatment options were tested: (1) semen
added to FTA® paper and dried; (2) semen added to FTA® paper, dried, 40 µL of 1 M DTT added and
dried; (3) semen and 1 M DTT mixed 50:50 (v/v), added to FTA® paper and dried; (4) 40 µL of 1 M
DTT added to FTA® paper, dried, semen added and dried. Error bars represent the standard deviation
from triplicate analysis.

4. Conclusions

The work presented here demonstrates the successful integration of DNA purification and
amplification processes on a single microfluidic device. Direct inclusion of FTA® discs within the
system provides a simple real-world interface that exploits the Micro-Punch to facilitate the addition
of the biological samples into the microfluidic device. The system has been shown to provide a flexible
interface for the analysis of buccal, whole blood and semen samples. The inherent advantages of
using FTA® paper also make the proposed system ideal for the analysis of archived biological samples.
Using EOF in place of more traditional hydrodynamic pumping mechanisms eliminates any moving
parts from the reagent transport mechanism and, thus, simplifies the complexity of the design and
footprint of the overall microfluidic system. By combining both DNA purification and amplification
techniques on a single device, the risk of sample contamination would most likely be reduced.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/7/7/119/s1,
Figure S1: Graph showing the effect of the inclusion of wax within the PCR reagent solution. Samples were
subjected to conventional DNA amplification and analysed by gel electrophoresis (n = 3). Error bars represent
the standard deviation from triplicate analysis, Figure S2: Electropherogram showing PCR products from the
amplification of the D21 S11 locus, using the microfluidic system for integrated DNA purification and amplification,
as confirmed on an ABi3500 Genetic Analyser (Applied Biosystems, Thermo Fisher Scientific, Foster City, CA,
USA) using a GeneScanTM 500 LIZ®Size Standard (n = 3), Figure S3: Graph comparing the relative efficiency
of DNA amplification from a range of biological sample types (buccal swabs, semen samples and whole blood)
analysed on the microfluidic device (n ě 3). Error bars represent the standard deviation of, at minimum, triplicate
analysis, Figure S4: Example gel electrophoresis image showing DNA amplification from a range of biological
sample types: Lane 1, DNA size ladder; 2/3, whole blood; 4/5, semen samples; 6/7, buccal swabs; 8, negative
control, Figure S5: Example gel electrophoresis image showing DNA amplification from semen samples subject
to a range of different dithiothreitol (DTT) treatments on FTA®paper: Lane 1, DNA size ladder; 2/3, 40 µL of
1 M DTT added to FTA®paper, dried, semen added and dried; 4/5, semen added to FTA®paper, dried, 40 µL
of 1 M DTT added and dried; 6/7, semen and 1 M DTT mixed 50:50 (v/v), added to FTA®paper and dried;
8, negative control.
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Abbreviations

The following abbreviations are used in this manuscript:

DNA Deoxyribonucleic acid
DTT Dithiothreitol
EDTA Ethylenediaminetetraacetic acid
EOF Electro-osmotic flow
PCR Polymerase chain reaction
qPCR Real-time quantitative PCR
TE Tris/EDTA buffer
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