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DROP PINCH-OFF FOR DISCRETE FLOWS FROM A CAPILLARY ∗, ∗∗

F. Bierbrauer1, N. Kapur2 and M.C.T. Wilson2

Abstract. The problem of drop formation and pinch-off from a capillary tube under the influence
of gravity has been extensively studied when the internal capillary pressure gradient is constant. This
ensures a continuous time independent flow field inside the capillary tube typically of the Poiseuille
flow type. Characteristic drop ejection behaviour includes: periodic drop ejection, drop ejection with
associated satellite production, complex dripping, chaotic behaviour and jetting. It is well known that
this characteristic behaviour is governed by the Weber (We) and Ohnesorge (Oh) numbers (for a given
Bond number) and may be delineated in a We verses Oh operability diagram.
An in-depth physical understanding of drop ejection is also of great importance to industry where the
tight control of drop size and ejection velocity are of critical importance in industrial processes such
as sealants used in electronics assembly and inkjet printing. However, the use of such a continuous
flow approach for drop ejection in industry is often impractical since such flows cannot be operator
controlled. For this reason it is important to investigate so-called discrete pipe flows where the flow
can be turned on and off at will. This means the flow inside the pipe is now time-dependent being
controlled in a step-wise fashion.
As a first stage in the investigation of drop pinch-off behaviour in discrete pipe flows this paper will
study the critical pinch-off time required for drop ejection starting from a pendant drop. This is the
discrete amount of time the pipe flow is turned on for in order for a drop to be ejected from the capillary.
A Newtonian incompressible free-surface CFD flow code developed at the University of Leeds is used to
investigate the critical pinch-off time for a range of internal pipe velocities (the central flow maximum
in Poiseuille flow). It is found that the time required for drop ejection to occur decreases exponentially
with internal pipe velocity. These characteristic times are also far smaller than typical static drop
release times expected from Harkins and Brown analyses. The phenomenology of the process is due
to the creation of a capillary wave at the pipe exit upon the sudden turning on of the flow inside the
pipe. The capillary wave acts to transport fluid from the upper part of the forming pendant drop at
the end of the capillary to the lower part of the drop both lowering the pendant drop centre-of-mass
and thinning the neck region connecting the drop to the pipe. This allows the drop to be pinched off
at an earlier than expected time as compared to static drop release times.

1. Introduction
The ejection of drops from a capillary plays an important role in engineering and industry. Typical examples

include spray painting of car door panels, water-spray cooling in the steel industry, sealants used in electronics
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assembly and more recently in ink-jet printing. Such systems are constituted by a capillary or spray nozzle
attached to a pipe which provides a given liquid under pressure. The fluid is forced through the pipe so that,
at the open end, a pendant drop starts to form (the drop formation stage); this grows until the forces at work
detach the drop whether through drop ejection due to inertia or drop release due to gravitational forces (the
drop ejection stage). The drop formation stage involves the growth of a pendant drop at the end of the capillary
which forms with a moving interface or free surface.

For the simplified case of free-surface flows where the external environment outside of the drop liquid is
assumed to be a passive gas at constant pressure (or of density significantly less than the drop fluid) we have the
situation shown in Figure 1. In this paper we study the process of ejecting a drop of incompressible Newtonian

Figure 1. Drop ejection parameters and fluid dynamical scales.

liquid, of density ρ, viscosity µ and surface tension σ, from a capillary tube under the influence of gravity. As
seen in Figure 1 the capillary is oriented vertically down in the same direction as the force of gravity Fg. The
capillary tube itself acts to define a natural set of flow parameters including the tube radius R, the central flow
velocity U within the pipe as well as the flow rate Q. The developed flow itself is assumed axisymmetric and
the typical flow field within the capillary may be expressed in cylindrical polar coordinates (r, z). The flow is
generally axisymmetric so that the flow velocity components (ur, uz), radial and axial components, within the
pipe are given by

ur = 0, uz(r) = U

R2 (R2 − r2), U = −R
2

4µ

(
∆p
∆z

)
(1)

This is the well known Poiseuille flow in a pipe with the velocity scale U defined in terms of the pressure
gradient within the pipe. This pipe flow velocity scale is also the maximum velocity along the symmetry line
of the flow. The pressure gradient acts to “push” the fluid out of the pipe. Fluid within the pipe is acted on
by various forces including inertia, the pressure gradient, gravity (with acceleration g = 9.81 m/s2), internal
frictional forces or viscosity and, once a free surface has formed at the end of the pipe, the surface tension force
which acts on the fluid boundary to lower surface energy and restore drop equilibrium. The physical scales of
the flow are then the length scale R, velocity scale U , advective time scale Tadv = R/U as well as a natural
pressure scale ρU2. These scales typically characterise the non-dimensional fluid parameters such as the Weber
number We = ρRU2/σ (the ratio of inertial to surface tension forces), the Reynolds number Re = ρRU/µ (the
ratio of inertial to viscous forces) and the Froude number Fr = U2/gR (the ratio of inertial to gravitational
forces). A related set of parameters can be defined through the Ohnesorge number Oh =

√
We/Re = µ/

√
ρRσ
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which measures the ratio of viscous to inertial and surface forces, the Bond number Bo = ρgR2/σ (the ratio
of gravitational to surface tension forces) and the Capillary number Ca = µU/σ(the ratio of viscous to surface
tension forces).

1.1. Drop Formation from a Capillary
The best known case of drop ejection from a capillary are the dripping faucet experiments used to demonstrate

the possibility of chaotic behaviour in drops of water dripping from a tap [1]. In these experiments a constant
pressure gradient was applied within the capillary ensuring a continuous flow and subsequent drop formation
and ejection from the pipe. We designate this type of flow within the capillary as time-independent continuous
pipe flow. The dynamics of drop formation from such systems have been extensively studied over many years,
focusing on jet break-up [2–4] and continuous dripping [1,5,6], and extending into related flows such as co-flowing
liquid-liquid systems [7] and dispensing of complex fluids [8].

In investigating the measurement of surface tension, Harkins and Brown [9] conducted an extensive set of drop
formation experiments to determine the critical drop masses/volumes when the pressure gradient is constant
in the pipe but at very low pipe flow velocities. In this way it was hoped to obtain the critical drop volume
required for a drop to be detached from the capillary. In this sense the drop was released rather than ejected
as inertial forces were considered negligible.

Under stable conditions, continuous pipe flows can generate a reliable source of drops of a given volume
and ejection speed. However, the drop formation and ejection process cannot be operator controlled. In the
industrial application mentioned above, it would be beneficial to be able to eject droplets of a given volume at
will. Note that the idea of producing drops on demand is well established in the widely studied context of inkjet
printing, see e.g. [10–12]. There a pressure pulse, generated for example by a piezoelectric transducer, causes
the ejection of a droplet from a nozzle. Since inkjet nozzles and droplets are so small, gravity plays a negligible
role in the droplet formation and hence such flows belong to a different class from the pulsed capillary flows
under gravity considered here.

Here, a modification of the continuous pipe flow defined previously in equation (1) is proposed so that the flow
may be turned on and off when required. This makes the flow time dependent although still incompressible. The
key assumption in the analysis presented here is that the flow in the capillary always has a fully developed radial
profile, whose amplitude varies with time. Hence the previously defined axial flow which is a continuous flow
is now modified into a step-wise discrete flow defined by altering the axial flow to become: uz(r, t) = φ(r)τ(t),
where τ(t) is the time dependent component of the flow and φ(r) the space dependent Poiseuille flow component.
Whereas the continuous pipe flow solution (1) is a solution of the Navier-Stokes equations in a cylindrical pipe
of infinite length we propose a time dependent pipe flow where this new discrete condition for the axial flow is
imposed only at the pipe inlet (see also Figure 7(b)). The difference between continuous and discrete flows is
shown in Figure 2. The figure shows that the continuous case Figure 2(a) possesses a time dependent component
with τ(t) = 1 whereas the discrete case Figure 2(b) considers a time dependence where the flow is turned on
and off in a discontinuous fashion.

2. Continuous Pipe Flow
Figure 31 shows photographs taken at 60 micro-second intervals (with time increasing left to right) of an

experiment by Peregrine and co-workers [13] for water dripping from a glass capillary of radius 2.6 mm with a
constant pressure gradient within the pipe. It demonstrates the typical process of drop formation and dripping
from a capillary for the continuous case. These experimental results are for water dripping from the end of a
glass capillary of radius 2.6 mm taken at 60 micro-second intervals. The residual fluid remaining behind from
a previous drop ejection starts to grow into a larger pendant drop still attached to the capillary exit, see the
first image on the left of Figure 3. Fluid continues to flow into the pendant drop which expands downward

1Reprinted with permission from [Peregrine, D.H., Shoker, G., Symon, A., J. Fluid Mech., 212:25–39, 1990.]. Copyright [1990],
Cambridge University Press.
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Figure 2. Plots of the time dependent part of the internal pipe flow τ(t) for (a) a typical
continuous process with a constant time dependent component and (b) a simple discrete process
with a discontinuous time dependent component.

Figure 3. Typical drop formation, pinch-off and ejection at the open end of a capillary (the top
of each photo indicates the exit nozzle of the capillary, gravity is oriented vertically downwards)
[13].

under the influence of gravity and inertia, second image in Figure 3. The drop starts to elongate and the neck
region attaching the drop to the capillary starts to thin out (necking), third image in Figure 3. This neck forms
a thread which creates a bridge between a cone-like region near the capillary exit and the top of the primary
drop (threading), the fourth and fifth images in Figure 3. Eventually the pendant drop pinches off at the end
of the thread (last image in Figure 3), forming the primary ejected drop, while the thread recoils towards the
residual fluid attached to the capillary exit (pinch-off). This describes the basic drop ejection phenomenon for
the continuous process, although the thread may also detach from the cone-like residual fluid at the capillary
exit. This creates a freely moving thread which recoils in opposite directions so that a satellite drop can form.
This satellite may rejoin the residual fluid, join the primary ejecting drop or remain separate.

2.1. Dripping Modes
Drop formation depends on the balance of forces acting on the fluid which may be delineated within a so-

called operability diagram of Ohnesorge verses Weber number at constant Bond number. These parameters
describe the relative sizes of inertia to surface tension forces (We) and viscous to surface tension and inertial
forces (Oh) while the ratio of gravitational to surface tension forces is constant (Bo). This is shown in Figure
42 for Bo = 0.3 from a study by Subramani et al [1].

The operability diagram is clearly separated into various distinct regions including a triangular region, in-
dicated by the designation P1 (0.005 < Oh < 3, 0.1 < We < 1.1), where drops are ejected in a periodic
fashion with equal ejection times, this is called period one dripping. Underneath this region, indicated as P1S
(0.005 < Oh < 3, We < 0.1) period one dripping occurs with the associated creation of a satellite drop. To
the left and above the P1 region (0.001 < Oh < 0.4, We > 0.1) the drops are still ejected periodically although

2Reprinted with permission from [Subramani H.J., Yeoh H.-K., Suryo R., Xu Q., Ambravaneswaran B., Basaran O., Phys.
Fluids, 18:032106-1032106-13, 2006]. Copyright [2006], American Institute of Physics.
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Figure 4. Operability diagram for the continuous process showing dripping modes for Bo =
0.3 resized for the non-dimensional parameters used in this paper [1].

undergo period doubling, e.g. P2 dripping where two types of drops of unequal size and ejection times are
ejected, this eventually becomes complex dripping (CD) and finally chaotic dripping. Towards the right and
above the P1 region of the diagram (0.01 < Oh < 10, We > 0.1) the drops are ejected as a jet (J). there is
also a very thin P1 region trapped between the CD and jetting regions. The various critical values Wej ,Wes
indicate the transition between the regions.

2.2. Static Pinch-Off Behaviour
For very small pipe flow velocities (small We) where the fluid flows slowly into the growing pendant drop, the

drop undergoes so-called static pinch-off behaviour. The drop grows slowly until the gravitational and surface
tension forces balance, and the drop will be released once this threshold is exceeded. This process was studied
extensively by Harkins and Brown [9] where a drop must be pinched off whenever the total pendant drop volume
(the volume of the the residual fluid plus the thread and the forming primary drop) exceeds a certain critical
value Vc. For small pipe flow velocities, and ignoring the effects of viscosity, this is determined by a balance
between gravitational buoyancy forces FB = Vcg∆ρ acting on the pendant drop mass and surface tension forces
FS = 2πσR attempting to minimise drop surface energy. The ejected drop volume Vd is then determined from

Vd = 2FπσR
g∆ρ (2)

Where F = Vd/Vc (≈ 0.6) is the so-called Harkins-Brown correction factor which compensates for the remaining
residual fluid at the pipe exit after a drop has been ejected. We must emphasise that the original Harkins-Brown
approach studied a static pinch-off situation meaning that the drop was released rather than ejected just when
the gravitational force exceeded the surface tension force. This occurs in a static manner whereby no other
forces other than the balance between gravity and surface tension act. That is, there is no flow within the pipe
or the pendant drop. This corresponds to static pinch-off behaviour.

3. Discrete Pipe Flows
As mentioned earlier in Section 1.1, discrete pipe flow may be defined through the axial velocity component

given in the form:
uz(r, t) = φ(r)τ(t) (3)
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separated into space dependent φ(r) (Poiseuille flow) and time dependent τ(t) components respectively. Note
that in reality any flow imposed at the inlet takes a given time to build up to the Poiseuille pipe flow which
would imply that φ = φ(r, t). However, for the purposes of simplicity and as a representation of a realistic
limiting case the representation (3) will be used in this paper. The simplest type of discrete flow is one which
undergoes a very rapid change in velocity for a given timescale TD so that it is natural to express it in terms of
the Heaviside function:

H(t) =
{

1 if t ≥ 0
0 if t < 0

where the flow is turned on as a square wave pulse or step-wise flow. This may then be expressed with
φ(r) = U(R2 − r2)/R2 and τ(t) = H(TD − t) so that:

uz(r, t) = φ(r)τ(t) = U

R2 (R2 − r2)H(TD − t) =
{

U
R2 (R2 − r2) if t ≤ TD
0 if t > TD

(4)

Note that once we have defined the discrete flow in this way it becomes possible to express the discrete volume

Figure 5. Diagram showing a typical step-wise time dependent component of discrete pipe
flow axial velocity over a discrete time TD and delivering an implied discrete volume VD =
πR2UTD/2

delivered within the pipe over time TD as (see Figure 5):

VD = 2π
∫ R

0

∫ TD

0
uz(r, t) drdt = 2πU

R2

∫ R

0

∫ TD

0
(R2 − r2)H(TD − t) drdt = 1

2πR
2UTD (5)

The step-wise structure of the time dependent component τ(t) is shown diagrammatically in Figure 5.

Figure 6. Comparison of (a) the continuous case indicating the characteristic drop formation
stages of necking, threading and pinch-off with characteristic pinch-off timescale Tp, with (b)
the discrete case showing flow discontinuity with characteristic timescale TD shorter (red) and
longer (blue) than the continuous timescale Tp.
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The time dependent component τ(t) of the continuous and discrete flows may be compared by considering the
drop formation and ejection process for the continuous case. Figure 6(a) shows the typical course of events in
continuous drop formation and ejection including: necking, threading and pinch-off indicating the characteristic
pinch-off timescale as Tp. As a comparison Figure 6(b) shows the discrete case where the flow has been shut off
at time TD < Tp before (red) and after (blue), TD > Tp, the continuous pinch-off time.

4. Mathematical Modelling
In this paper we make use of a finite element (FE) numerical model for free surface flows developed in the

School of Mathematics at the University of Leeds by Oliver Harlen and Neil Morrison and further modified by
the authors where necessary for the problem under consideration. The model was first developed for Newtonian
incompressible fluids although later extended for particular non-Newtonian models. Details of the model are
to be found in [14]. It is a Lagrangian-Eulerian finite element code where the stress in each mesh element
is computed in a Lagrangian manner combined with an Eulerian computation of the discrete nodal velocities
and pressures at each time step. The mesh itself is Lagrangian so that the nodes move with the flow. This
makes it ideal for a constantly changing flow such as a free surface flow although it suffers from the well known
problem of mesh distortion as the flow undergoes high shear. For this reason remeshing is necessary as well as
the introduction of extra mesh nodes to maintain resolution in depleted regions and the removal of nodes in
congested regions [15].

The method has been validated for free-surface flows such as those involved in inkjet printing where a drop
is ejected from a nozzle [16]. Since this involves the pinching off of fluid elements when the drop is ejected
from the pipe, it requires an extra condition so the numerical model “knows” when to pinch off the drop as
the connecting thread (see the endpoint of the thread connecting the pendant drop to the primary in the last
photo of Figure 3) thins beyond the limit of resolution. In the model the pinch-off condition is enforced once
the minimum neck radius is below the cut-off threshold of less than 1% of the pipe exit radius. At this point,
the mesh is severed along the shortest edge such that two separate meshes are created - one for the drop and
one for the residual liquid.

One way to further test the model is to study the continuous drop formation process especially the dripping
modes shown in Figure 4. This would confirm its use when studying the drop formation process including the
discrete case.

4.1. Governing Equations and Boundary Conditions
In order to study the drop formation process we choose to model the process by modelling both the flow

inside the capillary, of radius R, up to a distance h above the pipe exit and the flow that forms once the pendant
drop grows, see Figure 7(a). Figure 7 shows the region of the pipe 0 ≤ z ≤ h that is being modelled as well as
the region of the forming pendant drop and its free bounday. The fluid inside the pipe is under the influence of
a pressure gradient which forces fluid out of the pipe exit. In addition, gravity acts in the negative z direction
to further “pull” on the forming pendant drop.

The non-dimensionalised Navier-Stokes equations, using the scales stated in Section 1: lengthscale R, velocity
scale U , timescale R/U , pressure scale ρU2, may then be summarised as follows, see also Figure 7:

∂u
∂t

+ (u.∇u).u = −∇p+ 1
Re
∇2u− k

Fr
, ∇ · u = 0 in Ω, t > 0 (6)

This is defined inside a domain Ω = Ωp ∪ΩFS where Ωp = {(r, z) : −R < r < R, 0 ≤ z < h} represents the pipe
(p) and ΩFS = {(r, z) : f(r, z, t) < 0} the free surface (FS) with boundaries ∂Ω = ∂Ωin ∪ ∂Ωw ∪ ∂ΩFS where
∂Ωw = {(r, z) : r = ±R, 0 ≤ z ≤ h}, ∂Ωin = {(r, z) : z = h,−R ≤ r ≤ R} and ∂ΩFS = {(r, z) : f(r, z, t) = 0}
where f(r, z, t) = 0 defines the free surface. The vector k is a unit vector in the z direction. Here the size of
gravitational forces in comparison with inertia is taken into account by the Froude number, Fr = U2/gR, and
viscous forces by the Reynolds number, Re = ρUR/µ, see equation (6).
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Figure 7. Diagram showing (a) the finite element mesh, boundary conditions and (b) initial
conditions for the discrete flow problem studied in this paper.

This is subject to wall conditions along the pipe wall at r = ±R:

u(−R, z, t) = 0, u(R, z, t) = 0 on ∂Ωw, t > 0 (7)

and a discrete inlet condition, at z = h, defined for a time TD in equation (4) and shown in Figure 5:

u(r, h, t) = (ur(r, h, t), uz(r, h, t))T =
{

(0, φ(r))T for 0 < t ≤ TD
(0, 0)T for t > TD

, on ∂Ωin (8)

Note that this condition defined by the decomposition (4) is only imposed along the inlet at z = h. The free
surface (FS) boundary condition along the free surface of the forming drop (κ the curvature and n a unit normal
vector to the free surface) obeys the equality between the normal stress and capillary forces (here indicated by
the Weber number and surface curvature):

n ·
[
−pI + 1

Re
(∇u +∇uT )

]
FS

= κn
We

, on ∂ΩFS , t > 0 (9)

and an initial condition at t = 0, which is consistent with the boundary conditions stated in (7) and (8), see
Figure 7(b):

u(r, z, 0) = 0, p(r, z, 0) = 0 in Ω (10)
u(r, h, 0) = (0, φ(r))T on ∂Ωin (11)

In this paper the formation of drops, through the addition of a quantity of fluid to an existing pendant drop
hanging from the end of the capillary, is investigated. The initial condition for the free surface shape therefore
requires careful construction, by the process described in the next section.

4.2. Building a Pendant Drop
As a first stage in the modelling of the drop formation process we are able to build a pendant drop at the

end of the capillary which will form the initial condition for the drop formation process. Starting from the state
where no liquid hangs below the capillary, see Figure 8 we may then build a pendant drop of any volume we
require. The flow is turned on as a square wave pulse, see Figure 5, for a time Tpend = 2Vpend/πR2U where the
volume Vpend is a pre-chosen pendant drop volume.

Figure 8 shows contours of the (magnitude of) velocity inside the capillary and the forming pendant drop.
Note the blue colour indicating small velocities near the pipe walls and a red colouring for the largest velocity
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Figure 8. Building a pendant drop from the “zero” initial condition over a time Tpend of
volume Vpend followed by the decay of oscillations induced at the end of the building process.

at the centre of the (Poiseuille) flow. This is clearly seen in Figure 8 where the flow velocity is shown to grow a
drop at the end of the capillary (the second plot from the left), after which the flow is turned off here marked
by the time t = Tpend.

This discrete time TD = Tpend varies depending on the internal pipe velocity U that is used while the flow
is turned on. The only requirement is that the volume of the pendant drop that is built up is smaller than the
critical break off volume Vd for a static drop, see equation (2). In this paper we chose to use a value of Vpend
close to but smaller than the static break off volume Vd. At the conclusion of this drop building process we add
on an extra amount of time in order to dissipate any remaining drop oscillations from the building process, see
the last three plots in Figure 8. This amount of time may be calculated since it is known [17] that a pendant
drop oscillates with frequency given by fosc =

√
8σ/3πρVpend and that the decay rate τd of the oscillation

varies with fosc, Vpend and kinematic viscosity ν as follows τd = V
1/3
pend/

√
2πfoscν. If the amplitude decay A(t) is

assumed to be given by A(t) = A0e
−λt, where λ = 1/τd, then the amplitude will decay to 10% of its initial value

A0 in a time of T10% = −ln(0.1)/λ. This means that the total time needed for the building of a pendant drop
is Tpend + T10%, if we assume that 10% is sufficient for most of the oscillations to have died away. It was found
that, for the cases studied in this paper, this amount of time was more than sufficient to dissipate extraneous
oscillations.

4.3. Ejecting a Drop
Ordinarily (for example in the Harkins-Brown case), in order to eject a drop we must inject an additional

volume, VD (D ≡ discrete volume), of fluid into the pipe so that the total volume, Vpend + VD, attached to
the capillary exit has a weight that exceeds the capillary forces necessary to support it. The total amount of
fluid entering and leaving the pipe must be conserved (conservation of mass/volume). Therefore, conservation
of volume implies:

Vpend + VD = Vdrop + (Vsat) + Vres (12)
This is shown diagrammatically in Figure 9. Note that to make sure only a given volume VD is added on we

turn the flow on for a time TD = πR2UTD/2 as shown in Figure 5. Note also that this volume is controlled by
the discrete time TD at a given pipe velocity U . It is also clear from Figure 9 that it is possible for a satellite
drop to be formed which is why a volume Vsat is shown in brackets in equation (12), although no satellite is
shown in the figure. The occurrence of satellites during the drop formation process is not the subject of this
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Figure 9. Diagrammatic process of drop ejection by adding a discrete volume VD onto the
existing pendant drop volume Vpend at t = t0 to eject a drop of volume Vdrop after a time
t = t0 + TD.

paper and is left for an upcoming study. After ejection a residual volume Vres remains attached to the capillary
exit.

4.4. Code Validation
The finite element code was previously used to study the inkjet printing process [15, 16]. It was validated

against experimental results for both the continuous (CIJ) and drop-on-demand (DOD) modes used for inkjet
printers. In the CIJ case ejected drop shapes and breakup compared extremely well to Laser Doppler anemom-
etry experiments both qualitatively and quantitatively [15]. Similarly, for the DOD case the simulations were
compared with flash photography agreeing well with drop formation at the pipe exit nozzle, pinch-off length,
ejected drop shape and ejected drop tip position [16].

As an additional qualitative test of the code we study the continuous drop formation process within the range
of scales required for this paper. For this reason we will investigate how the code performs when modelling
the continuous process so that the characteristic dripping modes of Figure 4 may be demonstrated. This is the
continuous case so that the discrete timescale of the problem defined in equations (7)-(11) has TD → ∞ with
τ(t) = 1. The regions to be studied in the operability diagram of Figure 4 are shown as green and orange dots in
the figure. These correspond with the following Weber and Ohnesorge number pairs (Oh,We): the first set of
plots correspond to the points (0.03, 0.3), (0.03, 0.6), (0.03, 0.9) and the second to (0.1, 1.2), (0.03, 0.1), (0.2, 0.3)
at a Bond number of Bo = 0.33. We use the following fluid dynamical parameter values: ρ = 1116 kg/m3,
σ = 0.044 N/m, R = 1.16 mm for varying velocities U and viscosities µ. For example for U = 0.1 m/s and
µ = 0.007 Pas we find We = 0.3, Re = 18.5 and Bo = 0.33 giving Oh =

√
We/Re = 0.03.

Figure 10. Plots of continuous drop formation and ejection for the case of (a) (0.03, 0.3), (b)
(0.03, 0.6) and (c) (0.03, 0.9).
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Figure 11. Plots of continuous drop formation and ejection for the case of (a) (0.1, 1.2), (b)
(0.03, 0.1) and (c) (0.2, 0.3)

Figures 10 and 11 show plots of the drop outline as it grows and is ejected from the capillary. These points were
chosen to correspond with varying kinds of drop formation and ejection. For example (0.03, 0.9) corresponds to
a relatively low Ohnesorge number and a high Weber number which means we expect little influence of viscosity
on the pinch-off process but a strong tendency of the drop to restore itself to its equilibrium configuration due
to high surface tension forces. We expect from Figure 4 that the process will be of the complex dripping type
(most likely P2 period doubling) lying just outside the P1 triangle. We see immediately from Figure 10(c) that
we get two sets of drops ejected at different pinch-off lengths and ejection times. For the case of (0.03, 0.3) we
expect P1 type behaviour and a single drop ejected regularly at equal times which is seen in Figure 10(a). The
case of (0.1, 1.2) is at a slightly larger Ohnesorge number so that viscous effects are more significant but are also
at a quite large Weber number. We again expect complex dripping type behaviour but this time influenced by
the larger viscosity which will tend to elongate a connecting thread between the capillary exit and the primary
drop before pinching off. We can see this clearly in Figure 11(a). On the other hand the case of (0.03, 0.1)
represents smaller viscous forces and moderate sized surface forces and so we expect shorter threads than the
previous case and from Figure 4 we expect to see satellite drops to be generated. This is easily observed in
Figure 11(b). The simulation results clearly show good qualitative agreement with observed data. This shows
how well suited this particular code is for the discrete case studied in the next section.

5. Critical Drop Ejection
This section will study the phenomenon of critical drop formation from a capillary in the case of discrete

flows. To some degree this is akin to the static pinch-off phenomenon investigated by Harkins and Brown [9]
and previously described in Section 2.2. However, in the discrete case, the flow is controlled by the discrete
amount of time TD for which fluid is injected into the pipe so that the ejection of a drop may occur or not
depending on how long the flow is turned on for. It is expected that if the flow is not turned on long enough
then the amount of fluid VD added to the amount of fluid already present at the pipe exit Vpend will be below
the critical amount needed to eject a drop (expressed in the Harkins-Brown sense). This means that the added
fluid simply builds a bigger pendant drop which does not pinch-off. Similarly, if the flow is turned on beyond
this proposed critical ejection time TD > Tcrit then the drop will be ejected and also contribute to the building
of a new residual drop at the pipe exit and/or eject another drop. We propose to study the critical ejection time
that is just enough to eject a drop but no more. This means that if this time is even a little below the critical
value then the drop will not be ejected. Note that this critical ejection time will be a function of the pipe flow
velocity U so that Tcrit = Tcrit(U) since a higher flow velocity will inject more fluid into the pipe over a smaller
discrete flow time TD than for a smaller pipe flow velocity over the same time (since VD = πR2UTD/2). An
important question to be answered is: “Does the critical ejection time depend on the pipe flow velocity in a
simple way?”, this asks whether this time will in fact respond in a similar way to the static case.
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5.1. Injecting Fluid into the Capillary
The following fluid dynamical parameters will be used for the study: ρ = 1000 kg/m3, µ = 0.02386 Pas,

σ = 0.044 N/m, R = 1.02 mm. To keep the problem simple we choose to study this phenomenon by first
obtaining the static release volume needed to eject a drop using the Harkins-Brown approach. This forms a
basis for the ejection study. For the above fluid parameters the critical drop release volume is given by equation
(2), with a value of F = 0.6 we obtain Vd = 2FπσR/g∆ρ = 1.44× 10−8 m3 ≡ 14.4 µL. We choose Vpend = 13
µL so that this lies just below the static release volume and provides a test of how the time needed to eject a
drop TD changes as U is increased from a small value to larger values. The algorithm is as follows:

(1) Start with an existing pendant drop volume Vpend = 13 µL and a given pipe flow velocity U = 0.05 m/s
(2) Turn on the discrete flow for a time TD restricted as follows:

(a) test run a simulation for a time T (1)
D where a volume V (1)

D is injected into the pipe
(b) if a drop is not ejected increase the time to T (2)

D in small amounts until a drop gets ejected
(c) repeat this process until the difference between these two times (the drop not ejected TneD and the

drop ejected T ejD ) (T ejD − TneD )/T ejD × 100 < 1%, choose this as the critical ejection time Tcrit.
(3) increment the velocity in (1) by 0.05 m/s and repeat steps 2(a)-(c) to obtain the other critical ejection

times Tcrit as a function of U .

5.1.1. Critical Drop Ejection Time
Figure 12(a) plots the critical ejection time Tcrit (in milliseconds) verses the pipe flow velocity (in m/s). This

data is obtained for each pipe flow velocity U : 0.05− 0.6 m/s in steps of ∆U = 0.05 m/s. Figure 12(b) shows

Figure 12. Plots of (a) critical ejection time Tcrit as a function of pipe flow velocity U for
Vpend = 13 µL and (b) the same graph with a log graph for Tcrit.

the same plot except with the Tcrit axis in log format. We may match the plotted data either as a power or
exponential fit so that we obtain, in dimensional units Tcrit in seconds and U in m/s:

Tcrit = 21.58× 10−6e−20.11U , or Tcrit = 7.6× 10−11U−4.52 (13)

Note that these two kinds of curve fitting only correspond with the data available, that is, with those points
obtained from the simulations which do not include extreme values such as very large or very small values of
U . Presently, the graph of Figure 12(a) indicates that as U → 0 the critical ejection time Tcrit = 21.58 ms
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using equation (13)(a), this is however not defined for (13)(b). Similarly, equation (13)(a) also indicates that as
U →∞ Tcrit = 0 which appears to be approximately accurate as seen from Figure 12(a) although we obtain a
value of Tcrit ' 0 at about U ' 0.45 m/s after which the ejection time remains zero. To ascertain the accuracy
of the current line fit it is necessary to conduct further simulations for very small values of U , for example
U : 0.001− 0.05 m/s and for larger values of U for example: U : 0.7− 1.5 m/s.

Figure 12(b) shows the log version of the first graph which corresponds to approximately the functional form:
ln(Tcrit) = −20.11U + 3.07. This shows that the graph is quite well approximated by an exponential curve.
One cannot be certain that the graph will maintain a constant slope as we approach the end points for small or
large velocities. To some degree the graph tends to indicate that the slope will deviate from a constant as the
velocity becomes small. Strictly speaking at a zero velocity no movement takes place and the original pendant
drop remains attached to the pipe. For this reason we expect the critical ejection time to tend towards infinity
as U → 0. In a similar sense we see from Figure 12(b) that for a velocity of approximately U = 0.7 m/s the
critical ejection time tends to zero. What this implies is that the amount of time a flow needs to be turned
on for in order to eject a drop is close to zero as the velocity approaches 0.7 m/s. This corresponds to a unit
discontinuous pulse such that this pulse alone is sufficient to cause a disturbance in the stable pendant drop
system to cause it to become unstable and eject a drop. In reality, the flow cannot be initiated in this way as
no matter how small the amount of time a flow is turned on for it delivers a small volume of fluid. However it
does provide a possible limit on the maximum pipe flow velocity for which the critical ejection time is zero.

Figure 13. Plots of (a) critical ejection volume Vcrit as a function of pipe flow velocity U for
Vpend = 13 µL and (b) a graph showing the total time to pinch-off TPO after the flow is turned
off.

The critical total pendant drop volume Vpend +Vinj which is given by the existing pendant drop volume and
the amount injected into the pipe Vinj = 21.58πR2Ue−20.11U may be written so that:

Vcrit − Vpend = 10.79πR2Ue−20.11U (14)

which corresponds to the volume shown in Figure 13(a). From the approximation (14) we see that the coefficient
in the exponential −20.11 must have the units of s−1 and the coefficient 10.79 must have units of time. This
is also true for equation (13)(a) whereas for (13)(b) the coefficent 7.6 × 10−11 must be of the functional form:
U4.52t otherwise the units do not match.
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Figure 13(b) on the other hand shows the total time needed to pinch off TPO after the flow has been turned
off. It is clear that this time can be very long when compared to the critical ejection time and appears to be
down to an instability created within the original pendant drop system just enough to eventually eject a drop.
It is not clear from the figure whether the points conform to any particular type of fit although we once again
expect that as U → 0 the time to pinch-off tends towards infinity as at zero velocity no fluid has been added to
the pendant drop and the existing fluid has not been disturbed.

6. Mechanism of Drop Ejection
The main difference between the continuous and discrete systems has to do both with the sudden flow impulse

when the flow is turned on and the discontinuous jump in velocity when the flow is turned off. From the results
of Section 5 we see that these two discontinuities in flow velocity destabilise an initially stable pendant drop
system so that a drop is ejected even when the total volume of the pendant drop plus the fluid added over time
Tcrit is less than the static release volume Vd.

6.1. Flow Resistance
It is important to understand how this instability comes about. Figure 14 shows the development of the

pendant drop shape at the capillary exit at a time of t = 0.85 ms after the flow is turned on for two different
pipe flow velocities: U = 0.1 and 0.6 m/s. The figure also shows the flow inside the forming pendant drop.

Figure 14. Streamline plots of the magnitude of velocity |u| of drop formation at the capillary
exit for (a) U = 0.1 m/s (left) and (b) U = 0.6 m/s (right) showing streamlines within the
forming drop.

The low velocity case shows almost vertically down streamlines, Figure 14(a), whereas the high velocity case
shows that the streamlines have been diverted from the vertical, Figure 14(b). It is clear that, provided the
pipe flow velocity is quite low, the fluid injected into the drop from the capillary suffers virtually no resistance
when it flows into the existing pendant drop. However, for high pipe flow velocities the existing pendant drop
fluid is unable to adjust quickly enough to the inflow and offers resistance to it. The inflowing fluid is forced
sideways to either side of the pendant drop, Figure 14(b). The free surface of the pendant drop is free to move
and adjusts to the sideways fluid movement by bulging outwards at the fixed end of the capillary exit.

The timescales involved show how this comes about. The advective timescales for the low and high velocity
cases are: TU=0.1

adv = R/U = 10.2 ms whereas TU=0.6
adv = 1.7 ms respectively. The viscous timescale is given by

Tvisc = ρR2/µ = 43.6 ms. The viscous timescale measures the time taken for a fluid to adjust to an imposed
flow. We see immediately that O(TU=0.1

adv ) ' O(Tvisc), both flow timescales are of the same order of magnitude.
However, the high velocity case has O(TU=0.6

adv ) � O(Tvisc), an order of magnitude less than the low velocity



30 ESAIM: PROCEEDINGS

case. This may be summarised through the corresponding Reynolds number which is a function of these two
timescales: Re = Tvisc/Tadv = ρRU/µ, therefore ReU=0.1 = 43.6/10.2 = 4.3 and ReU=0.6 = 43.6/1.7 = 25.6.
This is a clear example of fluid inertia, the inertia of the stationery pendant drop, and can be measured by the
Reynolds number for each case of imposed flow velocity.

Since surface forces always attempt to reduce surface energy a capillary wave is generated which travels along
the free surface in the vertically downwards direction.

6.2. Capillary Wave Generation
Figure 15 shows contour plots of the magnitude of velocity inside the forming pendant drop every 0.85 ms

after fluid starts to be injected into the pipe for the low and high velocity cases. Clearly, no capillary wave is
generated for the low velocity case and it is used here for comparison. For the high velocity case, Figure 15(b),

t = 0 0.85 1.70 2.55 3.40 4.25 5.10 5.95 6.80 7.65 8.50 9.35 10.20 11.05 11.90 ms

Figure 15. Contour plots of the magnitude of velocity |u| of drop formation at the capillary
exit for (a) U = 0.1 m/s (top) and (b) U = 0.6 m/s (bottom) at times after the flow is turned
on. (N.B. all contour plots are shown in non-dimensional form as defined in Section 4, equations
(6)-(11).)

we can observe the motion of the capillary wave as it moves along the free surface of the forming pendant drop.
At first, t = 0.85 ms, the inflowing fluid is forced sideways creating a bulge at the sides (at the capillary exit
where the fluid is pinned to the pipe wall at z = 0, r = R) of the original pendant drop shape. The plot shows
the high and low velocity regions inside the drop as red/orange and blue colours respectively. A high velocity
region is clearly shown at the top of the forming drop (capillary exit) as the inflowing fluid attempts to enter
the existing pendant drop. The flow is turned off after a very small interval, Tcrit ' 0.0001 ms, this is shown
by the sudden low velocity region at the capillary exit when t = 1.70 ms. Note that while the velocity at the
capillary exit is still quite high ' 0.36 m/s the region at the bottom of the forming drop remains at a low
velocity ' 0.12 m/s. The higher velocity region near the top of the drop is seen to move along a horizontal
front vertically down the drop. At t = 2.55 ms it gradually approaches the bottom of the drop and the capillary
wave along the free surface has also moved. In fact we see that the bulge of fluid initially at the capillary exit
has moved further down along the drop and carries fluid with it. By t = 3.40 ms the top of the drop is now a
low velocity region whereas the higher velocity region attached to the bulge of fluid on either side of the drop
has now confined the low velocity region at the bottom of the drop into a small zone. At t = 4.25 ms this low
velocity region has shrunk considerably while the bulge on either side approaches the bottom of the drop. At
t = 5.10 ms the drop has elongated as the capillary wave has almost reached the bottom-centre of the pendant
drop. The fluid on either side now converges towards the centre-bottom of the drop. By t = 7.65 ms the low
velocity region at centre-bottom of the drop is now a higher velocity region ' 0.42 m/s. This pushes the flow
further down and continues to elongate the drop thereby avoiding a tendency for the drop to oscillate in this
unstable configuration. By t = 10.20 ms the gravitational timescale starts to take effect (Tgrav =

√
R/g = 10.2
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ms). This now takes over and stretches the drop vertically downwards, t = 11.90 ms. We see that the capillary
wave, with timescale Tcap =

√
ρR3/σ = 5.0 ms has completed its motion between the times of t : 1.70 − 8.50

ms.
We may compare this with the low velocity case and see immediately that at each time the inflowing fluid has

been able to penetrate into the existing pendant drop with low resistance. This is why there are no low velocity
regions at the bottom of the drop as was seen in the high velocity case. The characteristic flow is quite different
although the end result reached at t = 11.90 ms is similar. The instability which generated the capillary wave
for large pipe flow velocities is large enough to induce drop ejection even for extremely small amounts of fluid
injected into the pipe, see Figures 12 and 13. The capillary wave shows how fluid is transported from the neck
region near the capillary exit to the bottom of the drop.

6.2.1. Minimum Neck Radius-Limiting Length Aspect Ratios
Two other measures of drop formation characteristics are: (i) the limiting length Ld which measures the length

between the capillary exit, z = 0 in Figure 7, and the lowest point on the free surface along the symmetry axis
(r = 0) of the forming drop and (ii) the minimum neck radius rmin which measures the minimum distance in
the radial direction between the symmetry axis and the closest point on the free surface. These two measures

Figure 16. Plots of (a) free boundaries for the U = 0.1 m/s and 0.5 m/s cases showing times
after flow initiation (b) time verses aspect ratio for the U = 0.1 m/s and U = 0.5 m/s cases
and (c) a direct comparison between the two aspect ratios.

may be used to construct an aspect ratio A = rmin/Ld which measures how quickly the minimum neck radius
decreases with respect to the limiting length before pinch-off occurs. This is shown in Figure 16(b) for the case
of U = 0.1 m/s and 0.5 m/s. In Figure 16(a) is shown the shape of the forming drop on either side of the
symmetry axis starting at t = 0, when the flow is turned on, until a time where the drop pinches off for U = 0.1
m/s (blue) on the left hand side and for U = 0.5 m/s (red) on the right hand side. Although the eventual
pinch-off point (as measured along the symmetry axis) appears to be virtually at the same distance from the
capillary exit we see that the U = 0.5 m/s case pinches off at a much earlier stage than the U = 0.1 m/s case,
at t = 112.2 ms compared to t = 153.0 ms respectively.

Figure 16(b) shows how the aspect ratio changes over time for the high and low velocity cases. At pinch-off
the minimum neck radius becomes zero so that the aspect ratio is zero there. We see that the aspect ratio for
both the high and low velocity cases decreases linearly at the start with almost equal slope. This is followed
by a slowing down of the decrease to an inflection point followed by a rapid downturn of high negative slope.
Zero aspect ratio is reached at an earlier time for the high velocity case. This implies (for the high velocity
case) that fluid has been extracted from the region near the capillary exit, the necking region, and transported
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to the lower part of the forming drop. This is achieved by the capillary wave which naturally travels along the
free surface and takes with it the fluid encased by the “bulge” formed initially.

In Figure 16(c) we see a direct comparison between the two aspect ratios taken at the same time showing a
decreasing aspect ratio left-to-right, bottom-to-top. A direct one to one correlation would indicate the straight
line drawn in the figure. At first this seems to be the case with an almost linear decrease although the high
velocity case still decreases faster than the low velocity case. After a brief period during which the rate of
decrease slows down there is a sudden increase in the rate of decrease for the high velocity case reaching zero
aspect ratio at the top of the graph while the low velocity case has still to reach this point.

Figure 17. Plot showing (a) the change in the position and velocity of the centre-of-mass of
the pendant drop with time and (b) a closeup of the region just before pinch-off

Figure 17 shows the change in the position and velocity of the centre-of-mass (COM) of the pendant drop for
the low U = 0.1 m/s and high U = 0.6 m/s velocity cases. It is clear from Figure 17(b) that the high velocity
case has a lower COM at the same time, especially after t = 0.08 s, as compared to the low velocity case. While
the characteristic shape of the position of the COM is the same in both cases the low velocity case spends a
good deal more time in a period where its position changes very little: ∆t ' 0.07s for the low velocity case as
compared to ∆t ' 0.01.

7. Conclusions
This paper has investigated critical drop formation and ejection behaviour for discrete pipe flow from a

capillary. It is clear that for an initial pendant drop volume of Vpend = 13 µL:
(1) There is a distinct difference between the continuous and discrete flows from a capillary. This difference

occurs because the discrete pipe flow is delivered in a discontinuous step-wise fashion. From the results
shown in this paper it is clear that the two flow discontinuities at initiation and cessation of the discrete
flow are the cause of the difference in drop formation behaviour between the discrete and continuous
cases.

(2) We have shown that the critical time needed to inject fluid into the pipe in order to just eject a
drop depends on the pipe flow velocity and may be written as an exponential in the following form:
Tcrit = C0e

−αU where C0 = 21.58 × 10−6s and α = 20.11 m−1s. Similarly, there is a corresponding
critical volume required to eject a drop given by Vcrit = Vpend + πR2UTcrit/2.
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(3) For larger flow velocities, an impulsive velocity discontinuity at the initiation of the discrete flow at the
capillary exit, and inertial flow resistance of the existing pendant drop, forces fluid to either side of the
capillary exit rather than vertically downwards. The free surface pinned to the capillary exit bulges
outward on either side of the exit. This creates a capillary instability and gives rise to a capillary wave
which travels down the free surface transporting fluid along with it.

(4) As the capillary wave transports fluid from the upper right and left sides of the pendant drop at the
capillary exit it removes fluid from this region. This creates a thinning of the neck region joining the
capillary exit with the lower part of the pendant drop and consequently an enlargement of the lower
part of the pendant drop.

(5) We have shown that for large pipe flow velocities a drop is ejected at an earlier time than for low pipe
flow velocities. The data has shown that the centre of mass of the pendant drop is lower for the high
velocity case and that drop aspect ratios decrease to zero faster than for the low velocity cases.

This is a preliminary study and requires further work such as experimental support. In addition, the results of
this paper have studied the single case of an existing pendant drop volume of Vpend = 13 µL and other cases
involving much lower values of Vpend should be investigated. For such low pendant drop volumes, e.g. Vpend = 5
µL, a good deal more fluid must be injected into the pipe in order to eject a drop. This means that the injection
time needed to eject a drop is longer and that fluid continues to flow into the existing pendant drop for longer
periods of time while a capillary wave is still expected to be generated at high pipe flow velocities. Such a study
would require an extra flow parameter such as the injection volume in addition to the pipe flow velocity used
in this paper. It also requires an answer to the question of how much drop ejection is affected by a longer fluid
injection time as compared to the capillary wave explanation described here. Further numerical experiments
could also be done to study how the the current results are affected by a change in fluid parameters so that
it may become possible to be able to express discrete drop formation in terms of dimensionless operability
diagrams akin to those already constructed for the continuous case [1].
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