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Abstract 

Induced pluripotent stem (iPS) cells, somatic cells reprogrammed to 

the  pluripotent  state  by  forced  expression  of  defined  factors, 

represent a uniquely valuable resource for research and regenerative 

medicine.  However,  this  methodology  remains  inefficient  due  to 

incomplete  mechanistic  understanding  of  the  reprogramming 

process.  In  recent  years,  various  groups  have  endeavoured  to 

interrogate  the  cell  signalling  that  governs  the  reprogramming 

process, including LIF/STAT3, BMP, PI3K, FGF2, Wnt, TGF and MAPK 



pathways,  with  the  aim  of  increasing  our  understanding  and 

identifying new mechanisms of improving safety, reproducibility and 

efficiency.  This  has led to a unified model  of  reprogramming that 

consists of 3 stages: initiation, maturation and stabilisation. Initiation 

of  reprogramming  occurs  in  almost  all  cells  that  receive  the 

reprogramming  transgenes;  most  commonly  Oct4,  Sox2,  Klf4  and 

cMyc, and  involves  a  phenotypic  mesenchymal-to-epithelial 

transition.  The  initiation  stage  is  also  characterised  by  increased 

proliferation and a metabolic switch from oxidative phosphorylation 

to  glycolysis.  The  maturation  stage  is  considered  the  major 

bottleneck  within  the  process,  resulting  in  very  few  “stabilisation 

competent” cells progressing to the final stabilisation phase. To reach 

this stage in both mouse and human cells, pre-iPS cells must activate 

endogenous  expression  of  the  core  circuitry  of  pluripotency, 

comprising  Oct4,  Sox2,  and Nanog,  and  thus  reach  a  state  of 

transgene  independence.  By  the  stabilisation  stage,  iPS  cells 

generally use the same signalling networks that govern pluripotency 

in embryonic stem cells. These pathways differ between mouse and 

human  cells  although  recent  work  has  demonstrated  that  this  is 

context  dependent.  As  iPS  cell  generation  technologies  move 

forward, tools are being developed to interrogate the process in more 

detail,  thus  allowing  a  greater  understanding  of  this  intriguing 

biological phenomenon. 
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Core tip: Induced pluripotent stem (iPS) cells present great promise, 

both  to  research  and  to  medicine.  However,  we  know  very  little 

regarding  the  mechanisms  that  occur  throughout  the  iPS  cell 

reprogramming process and thus the process remains inefficient. In 

this  review,  we discuss the 3 stages of  reprogramming,  initiation, 

maturation  and  stabilisation,  and  clarify  the  signalling  pathways 

underlying each phase. We draw together the current knowledge to 

propose a model for the interactions between the key pathways in 

iPS cell reprogramming with the aim of illuminating this complex yet 

fascinating process. 
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INTRODUCTION     

Pluripotency, the ability of a single cell to give rise to all cells within 

an entire living organism, is of great biological interest both in terms 

of understanding developmental mechanisms as well as the medical 

potential  that  pluripotent  stem  cells  possess.  However,  our 

understanding  of  the  cell  signalling  networks  underlying  this 

complex process still remains incomplete. The first pluripotent stem 

cells  were  isolated  from  mouse  blastocysts  simultaneously  by  2 

groups in 1981[1,2]. This was replicated 17 years later using human 

blastocysts[3].  Embryonic  stem (ES) cells  have since been isolated 



from  other  species  including  rhesus  monkeys[4] and  rats[5,6].  Both 

human and mouse ES cells have provided and invaluable resource to 

understand the basic biology of the pluripotent state. 

A  “core  circuitry”  of  homeodomain  transcription  factors,  Oct4[7], 

Sox2[8] and Nanog[9], governs pluripotency in both mouse and human 

ES cells[10]. These transcription factors are expressed both in vivo in 

the inner cell mass (ICM) of the blastocyst and in vitro, in pluripotent 

cells.  These 3 factors closely  interact within  the cell;  for  example 

Oct4 and  Sox2  have  been  shown  to  form  a  heterodimeric 

transcription complex[11-13] and all 3 factors share target genes[14,15]. 

This interaction facilitates the precise regulation of the core circuitry 

necessary  to  maintain  the  pluripotent  state;  for  instance  Oct4 

overexpression  leads  to  endoderm  and  mesoderm  differentiation 

whereas blockade of  Oct4 induces trophoblast differentiation[7]. This 

may be explained by its biphasic role in  Nanog regulation whereby 

low levels of  Oct4 result in upregulation of  Nanog whereas higher 

levels of  Oct4  result in downregulation of  Nanog[15]. Similarly, small 

increases in  Sox2 expression or  ablation  of  Sox2 expression both 

induce multilineage differentiation[16].  Blockade of  Nanog  does  not 

induce differentiation, thus indicating that  Nanog’s role in the core 

circuitry  of  pluripotency is  to stabilise  the pluripotent  state rather 

than acting as a housekeeper. However, Nanog knockdown does lead 

to an increased capacity for differentiation into primitive ectoderm[9]. 

The  core  pluripotency  circuitry  is  also  autoregulatory  since  all  3 

factors have been shown to regulate the expression of each other as 

well as themselves[14,15,17]. Interestingly, SOX2 is dispensable for the 

activation of Oct4/Sox2 target genes since forced expression of Oct4 

is  able  to  rescue  pluripotency  in  Sox2-/- cells,  however,  Sox2 

expression is necessary to maintain Oct4 expression[8]. Although it is 



clear  that  OCT4,  SOX2  and  NANOG  occupy  the  top  level  of  the 

pluripotency hierarchy, these core factors also regulate a wide range 

of genes associated with pluripotency signalling networks including 

Stat3, Zic3, Tdgf1, Lefty/Ebaf, Dkk1 and Frat2[14].

With the emergence of this complex molecular inter-play of dosage 

dependency  between  hierarchical  transcription  factors  in  the 

maintenance of the somewhat unstable pluripotent ground state, it 

seems  surprising  that  simply  over-expressing  these  factors  in 

somatic  cells  can  induce  the  pluripotent  state.  However,  the 

collective seminal studies of Yamanaka and Thomson show this to be 

feasible  in  their  descriptions  of  reprogramming  somatic  cells  to 

induced Pluripotent Stem (iPS) cells[18-20].  

The original iPS cell reprogramming strategy published by Takahashi 

et  al[19] 7  years  ago remains  robust  and largely  unaltered to  the 

present  day.  The “Yamanaka factors”,  Oct4,  Sox2,  Klf4  and cMyc 

were constitutively expressed using genome integrating retroviruses 

in both mouse[18]  and subsequently human[19] fibroblasts, and under 

ES cell culture conditions were able to induce pluripotency. To date, 

this methodology is still widely used, however, various adaptations 

to the method of vector delivery and reprogramming factors (Table 

1)  have  been  made.  Advances  in  vector  delivery  have  generally 

been  made to  either  improve  efficiency  or  safety,  by  preventing 

integration of the transgenes into the genome. For example, iPS cells 

have now been successfully generated using episomal plasmids[21], 

Sendai  viruses[22]  and  piggyBac  transposons[23]  to  deliver  the 

reprogramming factors  and even proteins[24]  or  small  molecules[25] 

alone.  Many  divergent  cell-types  have  been  successfully 

reprogrammed to pluripotency including neural stem cells[26], neural 

progenitor  cells[27],  keratinocytes[28],  B  lymphocytes[29],  meningeal 



membrane  cells[30],  peripheral  blood  mononuclear  cells[31]  and 

pancreatic   cells[32].  Often  the  minimal  factors  necessary  to 

reprogram  a  cell  depend  on  the  endogenous  “stemness”  of  the 

starting cell, for example, neural stem cells can be reprogrammed 

using  Oct4 alone  since  they  express  high  levels  of  the  other 

Yamanaka factors[26]. 

The common aspiration is that iPS cells will provide an autologous 

source of cells for a multitude of regenerative medicine therapies in 

the future and clinical trials using iPS cells have begun[33]. However, 

the most immediate utility of iPS cell technologies is the ability to 

study  patient-derived  cells  in  the  lab.  iPS  cells  present  the 

opportunity to study a range of diseases in novel ways by isolating 

and  reprogramming  patient-specific  cells  and  then  differentiating 

them into the cell type of interest. For example, iPS cells have been 

generated from patients suffering from a wide range of disorders 

including  Duchenne  muscular  dystrophy,  Parkinson’s  disease, 

Huntingdon’s  disease,  type Ⅰ diabetes  and  Down’s  syndrome 

(reviewed  in[34]).  In  addition,  cells  such  as  disease-specific 

cardiomyocytes, which would be difficult to obtain from patients, can 

also be generated and used to test specific drugs[35]. In summary, the 

generation of iPS cells has stimulated the growth of a hugely active 

new  area  of  research  with  promise  to  revolutionise  medicine. 

However, the reprogramming process remains extremely inefficient 

and the basic molecular understanding of a process that does not 

appear to readily  occur in nature is  only  just  being unravelled.  A 

greater understanding of the basic biology will lead to more efficient 

methodologies  for  iPS  cell  reprogramming  in  vitro and  also 

potentially  lead  to  strategies  to  therapeutically  manipulate 

differentiated  cells  in  vivo to  become  stem  cells  and  repair  or 



regenerate diseased tissues. 

IPS REPROGRAMMING IS A STEPWISE PROCESS   

Much  progress  has  been  made  in  recent  years  to  define  the 

molecular mechanisms involved in iPS cell reprogramming. This has 

led to the general acceptance of the model proposed by Samavarchi-

Tehrani  et al[36] that reprogramming consists of 3 phases: initiation, 

maturation and stabilisation (Summarised in Figure 1). Throughout 

reprogramming various changes occur not only to the cell phenotype 

but also to gene and non-coding RNA expression, epigenetic status 

and metabolism. In this review we will focus on cell signalling during 

the  3  stages  of  iPS  cell  reprogramming  whilst  other  aspects  are 

reviewed elsewhere by Papp et al[37] and Jia et al[38].  

INITIATION  

The  initiation  phase  of  reprogramming  occurs  in  virtually  all 

successfully  transfected  cells[39] and  is  characterised  by  somatic 

genes  being  switched  off  by  methylation,  an  increase  in  cell 

proliferation, a metabolic switch from oxidative phosphorylation to 

glycolysis, reactivation of telomerase activity and a mesenchymal-

to-epithelial  transition (MET)[40].  MET is a feature of both mouse[41] 

and human[42] somatic cell reprogramming and involves the loss of 

mesenchymal characteristics such as motility and the acquisition of 

epithelial characteristics such as cell polarity and expression of the 

cell  adhesion  molecule   E-CADHERIN,  perhaps  explaining  why  E-

cadherin can replace Oct4 in the reprogramming process[43]. MET and 

the opposite transition, epithelial-to-mesenchymal transition (EMT), 

are key features of embryogenesis[44], tumour metastasis[45] and both 

mouse[46] and human[47] ES cell differentiation. Interestingly, the MET 



that marks the initiation of cellular reprogramming is reversible since 

removal of  the reprogramming factors from mouse “pre-iPS” cells 

after  induction  of  reprogramming  has  been  shown  to  lead  to 

reversion  of  the  cells  to  a  mesenchymal  phenotype[36],  thus 

demonstrating that continued transgene expression is necessary to 

allow cells to progress to the maturation stage. 

Mechanistically,  Sox2  suppresses  expression  of  Snail,  an  EMT 

inducer[48], and  Klf4 induces  E-cadherin expression, thus promoting 

MET[41]. In addition, Maekawa et al[49] have shown that the Glis family 

zinc finger 1 protein Glis1 can substitute cMyc in the reprogramming 

cocktail by inducing MET, thus initiating iPS cell reprogramming. MET 

can also be induced by chemicals, for example, various groups have 

demonstrated  the  ability  of  transforming  growth  factor  (TGF) 

inhibition  to  enhance  the  initiation  stage  of  both  mouse[50,51] and 

human[42] somatic cell reprogramming. This observation is supported 

by the finding that addition of recombinant TGF abrogates iPS cell 

formation[42] and is likely due to the EMT-inducing action of  TGF 

signalling, which then prevents the MET that is critical to successful 

iPS cell reprogramming. TGF signalling promotes EMT  via a wide 

variety  of  mechanisms,  including  mediating  the  disassembly  of 

junctional  complexes,  reorganising the cell  cytoskeleton,  and EMT 

gene  activation[52].  Various  TGF inhibitors  have  been  used  to 

promote reprogramming, including A-83-01[41,53],  E616452[25,50]  (also 

known  as  RepSox)  and  SB431542[42]  (Table  2).  In  addition  to 

promoting MET, TGFβ inhibitors promote  Nanog expression[50], thus 

providing  2  potential  mechanisms  for  their  ability  to  enhance 

reprogramming. Mitogen-activated protein kinase (MAPK) signalling, 



activated by TGFβ,  further induces the expression of  mesodermal 

genes[52].  Inhibitors  of  MAPK  signalling  such  as  PD0325901  have 

therefore been used in combination with TGF inhibitors to promote 

MET[42].

Bone morphogenetic protein (BMP) signalling also plays an important 

role  in  the  initiation  stage  of  mouse  iPS  cell  reprogramming  by 

promoting  MET  via upregulation  of  epithelial  genes  such  as  E-

cadherin, Occludin and Epithelial cell adhesion molecule[36]. Chen et 

al[54]  have shown that BMPs can replace  Klf4  in the reprogramming 

cocktail,  allowing  mouse  embryonic  fibroblasts  (MEFs)  to  be 

reprogrammed  using  Oct4  alone.  However,  constitutive  BMP 

activation  prevents  human somatic  cell  reprogramming.  This  was 

discovered through the observation that a naturally occurring  Alk2 

mutation,  which  causes  fibrodysplasia  ossificans  progressiva  in 

humans, prevents iPS cell reprogramming and that this blockade can 

be rescued by inhibition of the ALK2 receptor[55].

Increased  proliferation  has  been  observed  in  cells  undergoing 

reprogramming as early as 3 d after induction of reprogramming[56] 

and is likely to be initiated by  cMyc transgene expression[57].  Lin28 

expression and  p53 knockdown also increase the efficiency of iPS 

cell reprogramming by stimulating cell  proliferation[39].  Specifically, 

LIN28 has been shown to regulate cell cycle genes such as Cyclin A, 

Cyclin B and Cdk4[58] whilst p53 induces cell cycle arrest via p21 and 

thus p53 knockdown promotes proliferation[59]. 

Fibroblast growth factor (FGF) signalling has also been implicated at 

the initiation stage[60]. Araki et al[61] show that Fgf4 is upregulated on 

day 3 after  induction  of  reprogramming in  MEFs and Jiao  et  al[60] 

show that FGF2 can improve the reprogramming efficiency in the 

early phases of mouse somatic cell reprogramming, whereas it has 



adverse effects in the later stages. Mechanistically, this group have 

shown  that  FGF2  promotes  the  early  stages  of  reprogramming 

through  accelerating  cell  proliferation,  facilitating  MET  and 

eliminating  extracellular  collagens.  In  addition  to  an  increased 

proliferation  rate,  the  minority  of  cells  that  undergo  successful 

reprogramming also exhibit resistance to apoptosis and senescence, 

by transgene expression[56]. Recent studies have shown that miR-302 

expression  allows  cells  to  overcome  reprogramming-induced 

senescence[62] and that silencing of the INK4/ARF locus is also likely 

to be involved, since INK4/ARF blockade improves reprogramming 

efficiency[63,64].  The  INK4/ARF  locus  encodes  tumour  suppressor 

genes  that  activate  the  retinoblastoma  and  p53  pathways.  Its 

inactivation  therefore  blocks  apoptosis  and  senescence  and 

facilitates reprogramming.

The initiation phase is also characterised by a metabolic switch from 

oxidative phosphorylation to glycolysis[65] that occurs around 7 d after 

induction  of  reprogramming[66] and involves phosphatidylinositol-3-

kinase (PI3K)/AKT  signalling[53,67].  For  example,  Chen  et  al[67] have 

demonstrated  that  the  PI3K/AKT  pathway  was  activated  during 

reprogramming in parallel with the upregulation of glycolytic gene 

expression, showing specifically that AKT activated 2 key glycolytic 

regulators,  AS1060 and PFKB2.  Zhu et  al[53]  have also shown that 

PS48,  an  activator  of  the  PI3K/AKT  pathway,  is  able  to  enhance 

reprogramming by upregulating glycolytic genes. By switching their 

metabolism from oxidative phosphorylation to anaerobic glycolysis, 

pre-iPS cells assume an ES cell-like phenotype[68]. ES cells are likely 

to have developed this form of metabolism as an adaptation to the 

hypoxic  in  vivo  environment of  the early  embryo[69].  Interestingly, 

various groups have shown that iPS cell reprogramming is enhanced 



by hypoxia[70,71], likely due to the acceleration of this metabolic shift. 

MATURATION  

Tanabe et al[72]  have recently identified the maturation stage of iPS 

cell  reprogramming  as  being  a  major  bottleneck  in  the  process, 

which  is  likely  to  account  for  the  low  efficiency  of  the  process 

generally. They demonstrate that LIN28, but not NANOG, shp53 or 

CYCLIN  D1,  promotes  maturation  of  iPS  cells.  During  maturation, 

epigenetic  changes  occur  allowing  expression  of  the  first 

pluripotency-associated  genes[40].  These  genes  include  Fbxo15, 

Sall4, Oct4, Nanog and Esrrb. Interestingly, Esrrb has been shown to 

be  sufficient  to  reprogram  MEFs  in  collaboration  with  Sox2  and 

Oct4[73].

LIF/STAT3 signalling is required for the maturation phase of mouse 

iPS cell reprogramming[74]. Interestingly, pre-iPS cell colony formation 

has been observed in the absence of LIF, however, beyond day 6 of 

reprogramming  these  colonies  detach.  This  is  likely  due  to  the 

requirement that cells undergoing the reprogramming process have 

for LIF signalling to maintain cMyc expression[75]. In addition, Tang et 

al[74] demonstrate that LIF/STAT3 activation induces earlier formation 

of an increased number of pre-iPS cell colonies. Mechanistically, this 

group  demonstrate  that  LIF/STAT3  signalling  is  required  for 

demethylation  of  pluripotency-associated  gene  promoters. 

Specifically, STAT3 signalling was shown to directly block the action 

of the DNA methyltransferase DNMT1 and Histone deacetylases 2, 3 

and 8. 

Wnt  signalling  also  enhances  the  maturation  phase  of  mouse 

somatic cell reprogramming whereby exogenous stimulation of the 

pathway  using  Wnt3a  between  days  6  and  9  after  induction  of 



reprogramming  enhances  the  formation  of  Nanog positive 

colonies[76]. Various groups have suggested that expression of Nanog 

is necessary for cells to advance from the maturation phase to the 

stabilisation  stage[39,77]  and thus,  Samavarchi  et  al[36] suggest  that 

Nanog  expression alone is responsible for mediating the transition 

from  pre-iPS  cells  to  stably  reprogrammed  cells.  This  group 

demonstrate that removal of the reprogramming factors from mouse 

iPS cells at day 9 after induction of reprogramming did not induce 

phenotypic  reversion.  Other  groups,  however,  have  reported 

different time points for the stabilisation stage, including day 11[78,79] 

and day 16[80], suggesting that this can vary depending on discrete 

protocols  and  culture  variations.  It  is  clear  that  there  remains 

substantial  information  to  be  learned  regarding  this  critical 

intermediary step but NANOG appears to play a pivotal role in iPS 

cell maturation.

STABILISATION  

Only around 1% of cells that initiate reprogramming make it to the 

stabilisation stage[72]. This can be explained by the observation made 

by Golipour  et al[81] that not all cells are “stabilisation competent”. 

This group identify a gene expression signature that distinguishes 

stabilisation competent and stabilisation incompetent cells and show 

that  stabilisation  competent  cells  require  transgene  repression  to 

enter  this  stage.  Since  the stabilisation  stage is  characterised by 

transgene independence, only cells that have activated endogenous 

pluripotency gene expression are able to maintain pluripotency at 

this  late  stage.  Endogenous  pluripotency  gene  expression  is 

facilitated by demethylation  of  pluripotency gene promoters,  thus 

explaining why various DNA and histone methyltransferase inhibitors 



have been shown to  accelerate iPS  cell  reprogramming,  amongst 

other small molecules (Table 2). This may also explain the ability of 

the H3K27 demethylase UTX to substitute for some of the original 

reprogramming factors[82]. 

The  end-point  of  iPS  cell  reprogramming  is  a  matter  of  some 

controversy. For example, the stabilisation stage of mouse iPS cell 

reprogramming involves X chromosome reactivation whereas human 

iPS cell reprogramming does not[83]. X chromosome inactivation is a 

process that occurs as female embryonic cells, which have 2 active X 

chromosomes, commit to differentiation. This feature of human ES 

and human iPS cells, amongst others (reviewed in[84]), means that 

they  represent  the  primed  pluripotent  state.  Human  iPS  cells 

generated in the presence of ACTIVIN/NODAL and FGF2 ligands are 

stabilised  in  this  primed  state  whereas  mouse  iPS  cells 

reprogrammed  in  the  presence  of  LIF  and  BMP4  can  be  fully 

reprogrammed to the uncommitted naïve ground state (Figure 2). 

Interestingly, human dermal fibroblasts (HDFs) have been shown to 

give  rise  to  naïve  human  iPS  cells  when  reprogrammed  in  the 

presence  of  LIF,  FGF2  and  TGF 1  plus  inhibitors  of  c-Jun  NH2-β

terminal kinase, p38, MAPK and glycogen synthase kinase 3 (3i)[85], 

thus demonstrating that the cell signalling context is critical to the 

determination of naïve and primed pluripotency rather than the two 

states representing a species difference. The derivation of various 

novel  stem  cell  lines,  including  intermediate  epiblast  stem  cells 

which  exhibit  dual  responsiveness  to  LIF  and  ACTIVIN/NODAL 

signalling[86],  has  challenged  the  concept  of  2  distinct  pluripotent 

states, instead suggesting that a spectrum of pluripotency exists, an 

idea we develop in Hawkins et al[87]. Thorough investigation into this 

spectrum  of  pluripotency,  and  therefore  the  transition  from 



pluripotent  cells  to  differentiated  cells,  should  accelerate  the 

delineation  of  mechanisms  occurring  throughout  the  reverse 

process, from a somatic cell to an iPS cell.

CONCLUSION   

A  proposed  model  for  the  signalling  networks  required  for  the 

various stages of mouse and human iPS cell reprogramming can be 

found in Figure 1. However, this knowledge is still vastly incomplete. 

New technological advances are required to thoroughly interrogate 

the contribution of a wide range of signalling pathways to somatic 

cell  reprogramming.  One  of  the  limitations  of  many  current 

approaches is the inability to track reprogramming cell signalling in 

real-time since cells must be sacrificed to obtain data, for example 

for  microarray  analysis[36],  fluorescence-activated  cell  sorting  or 

protein extracts[78] at various time points. Some advances have been 

made to track reprogramming cells in real-time, for example, Smith 

et al[88] carried out time-lapse imaging with the aim of tracking single 

cells  undergoing  the  reprogramming  process.  However,  they 

concluded  that  this  was  virtually  impossible.  We  are  currently 

interrogating  the  role  of  cell  signalling  networks  in  iPS  cell 

reprogramming using a range of GFP reporter HDF lines activated by 

transcription  factors  involved  in  relevant  cell  signalling  pathways. 

This allows us to monitor signalling pathway activity throughout an 

entire iPS cell reprogramming experiment in real-time. We anticipate 

this  will  enable  us  to  temporally  map the  contribution  of  a  wide 

range  of  signalling  pathways  to  iPS  cell  reprogramming,  thus 

illuminating this enigmatic biological phenomenon.
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FIGURE LEGENDS

Figure  1   The  key  stages  in  (A)  mouse  and  (B)  human 

induced  pluripotent  stem  cell  reprogramming  and  the 

signalling pathways that regulate them.

Figure  2   The  core  signalling  networks  that  maintain 

pluripotency in (A) naive and (B) primed pluripotent cells.



Table 1  Factors that have been shown to achieve induced pluripotent stem cell 
reprogramming

Reprogramming fact
or

Human/mouse            Ref.

Oct4 Both Takahashi et al[18,1

9]

Sox2 Both Takahashi et al[18,1

9]

cMyc Both Takahashi et al[18,1

9]

Klf4 Both Takahashi et al[18,1

9]

Nanog Human Yu et al[20]

Esrrb Mouse Feng et al[73]

Glis1 Both Maekawa et al[49]

E-cadherin Mouse Redmer et al[43]

shp53 Both Hanna et al[39]

Lin28 Both Hanna et al[39]

UTX Both Mansour et al[82]







Table 2  Small molecules that enhance induced pluripotent stem cell reprogramming

Small molecule              Function            Ref.

BIX-01294 Histone methyltransferase inhibitor Shi et al[51]

Bayk8644 Calcium channel agonist Shi et al[51]

RG108 DNA methyltransferase inhibitor Shi et al[51]

5-Aza-2’-Deoxycytidine DNA methyltransferase inhibitor Huangfu et al[89]

Dexamethasone Steroid glucocorticoid Huangfu et al[89]

Valproic acid HDAC inhibitor Huangfu et al[89]

Trichostatin A HDAC inhibitor Huangfu et al[89]

SAHA HDAC inhibitor Huangfu et al[89]

PD0325901 + 

CHIR99021

MAPK inhibition and GSK3 inhibition Shi et al[51], Silva et al[77]

SB 431542+ PD032590
1

TGF  inhibitorβ Lin et al[42]

And MAPK inhibitor

A-83-01 TGFβ inhibitor Li et al[41], Zhu et al[53]

E616452 TGFβ inhibitor Ichida et al[90]

AMI-5 Protein arginine methyltransferase inhibitor Yuan et al[13]

Kenpaullone Unknown “novel function” Lyssiotis et al[91]

Adapted from Feng et al[73]. SAHA: Suberoylanilide hydroxamic acid; AMI: Arginine N-Methyltransferase Inhibitor.




